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Preface

This book grew out 
of a semester-long 
course on the princi-
ples and applica-
tions of ultrasonics 
for advanced under-
graduate, graduate, 
and external stu-
dents at Concordia 
University over the 
last 10 years. Some 
of the material has 
also come from a 4-
hour short course, 
“Fundamentals of Ultrasonic Waves,” that the author has given at the annual 
IEEE International Ultrasonics Symposium for the last 3 years for newcomers 
to the field. In both cases, it was the author’s experience that despite the many 
excellent existing books on ultrasonics, none was entirely suitable for the 
context of either of these two courses.

One reason for this is that, except for a few specialized institutions, acoustics
is no longer taught as a core subject at the university level. This is in contrast 
to electricity and magnetism, where, in nearly every university-level institu-
tion, there are introductory (college), intermediate (mid- to senior-level 
undergraduate), and advanced (graduate) courses. In acoustics the elementary 
level is covered by general courses on waves, and there are many excellent 
books aimed at the senior graduate (doctoral) level, most of which are cited 
in the references. Paradoxically, there are precious few books that are suitable 
for the nonspecialized beginning graduate student or newcomers to the field. 
For the few acoustics books of this nature, ultrasonics is only of secondary 
interest. This situation provided the specific motivation for writing this book.

The end result is a book that addresses the advanced intermediate level, going
well beyond the simple, general ideas on waves but stopping short of the 
full, detailed treatment of ultrasonic waves in anisotropic media. The decision
to limit the present discussion to isotropic media allows us to reduce the 
mathematical complexity considerably and put the emphasis on the simple 
physics involved in the relatively wide range of topics treated. Another 
distinctive feature of the approach lies in putting considerable emphasis on 
applications, to give a concrete setting to newcomers to the field, and to 
show in simple terms what one can do with ultrasonic waves. Both of these 
© 2002 by CRC Press LLC



       
features give the reader a solid foundation for working in the field or going 
on to higher-level treatises, whichever is appropriate.

The content of the book is suitable for use as a text for a one-semester 
course in ultrasonics at the advanced B.Sc. or M.Sc. level. In this context it 
has been found that material for 8 to 9 weeks can be selected from the 
fundamental part (Chapters 1 through 10), and material for applications can 
be selected from the remaining chapters.

The following sections are recommended for the semester-long fundamen-
tal part: 3.1, 3.2, 4.1, 4.2, 4.3, 4.5, 5.1, 5.2, 6.1, 6.3, 7.1, 7.3, 7.4, 8.1, 8.2, 9.1, 
10.1, and 10.2. Many of the sections omitted from this list are more specialized 
and can be left for a second or subsequent reading, such as Sections 4.4, 8.3.1, 
and 10.5. For each of these chapters, a summary has been given at the end 
where the principal concepts have been reviewed. Students should be urged 
to read these summaries to ensure that the concepts are well understood; if 
not, the appropriate section should be reread until comprehension has been 
achieved. A number of questions/problems have also been included to assist 
in testing comprehension or in developing the ideas further.

There is more than adequate material in the remaining chapters to use 
the rest of the semester to study selected applications. It has been the 
author’s practice to assign term papers or open-ended experimental/com-
putational projects during this stage of the course. In this connection, 
Chapters 11 and 12 have been provided as useful swing chapters to enable 
a transition from the more formal early text to the practical considerations 
of the applications chapters.

J. David N. Cheeke
Physics Department

Concordia University
Montreal, Canada
© 2002 by CRC Press LLC
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1
Ultrasonics: An Overview

1.1 Introduction

Viewed from one perspective, one can say that, like life itself, ultrasonics 
came from the sea. On land the five senses of living beings (sight, hearing, 
touch, smell, and taste) play complementary roles. Two of these, sight and 
hearing, are essential for long-range interaction, while the other three have 
essentially short-range functionality. But things are different under water; 
sight loses all meaning as a long-range capability, as does indeed its techno-
logical counterpart, radar. So, by default, sound waves carry out this long-
range sensing under water. The most highly developed and intelligent forms 
of underwater life (e.g., whales and dolphins) over a time scale of millions 
of years have perfected very sophisticated range-finding, target identifica-
tion, and communication systems using ultrasound. On the technology front, 
ultrasound also really started with the development of underwater trans-
ducers during World War I. Water is a natural medium for the effective 
transmission of acoustic waves over large distances; and it is indeed, for the 
case of transmission in opaque media, that ultrasound comes into its own.

We are more interested in ultrasound in this book as a branch of technology 
as opposed to its role in nature, but a broad survey of its effects in both areas 
will be given in this chapter. Human efforts in underwater detection were 
spurred in 1912 by the sinking of RMS Titanic by collision with an iceberg. 
It was quickly demonstrated that the resolution for iceberg detection was 
improved at higher frequencies, leading to a push toward the development 
of ultrasonics as opposed to audible waves. This led to the pioneering work 
of Langevin, who is generally credited as the father of the field of ultrasonics. 
The immediate stimulus for his work was the submarine menace during World
War I. The U.K. and France set up a joint program for submarine detection, 
and it is in this context that Langevin set up an experimental immersion tank 
in the Ecole de Physique et Chimie in Paris. He also conducted large-scale 
experiments, up to 2 km long, in the Seine River. The condenser transducer
was soon replaced by a quartz element, resulting in a spectacular improve-
ment in performance, and detection up to a distance of 6 km was obtained. 
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With Langevin’s invention of the more efficient sandwich transducer shortly 
thereafter the subject was born. Although these developments came too late 
to be of much use against submarines in that war, numerous technical 
improvements and commercial applications followed rapidly.

But what, after all, is ultrasonics? Like the visible spectrum, the audio 
spectrum corresponds to the standard human receptor response function 
and covers frequencies from 20 Hz to 20 kHz, although, with age, the upper 
limit is reduced significantly. For both light and sound, the “human band” 
is only a tiny slice of the total available bandwidth. In each case the full 
bandwidth can be described by a complete and unique theory, that of elec-
tromagnetic waves for optics and the theory of stress waves in material 
media for acoustics.

Ultrasonics is defined as that band above 20 kHz. It continues up into the 
MHz range and finally, at around 1 GHz, goes over into what is convention-
ally called the hypersonic regime. The full spectrum is shown in Figure 1.1, 
where typical ranges for the phenomena of interest are indicated. Most of the 
applications described in this book take place in the range of 1 to 100 MHz, 
corresponding to wavelengths in a typical solid of approximately 1 mm to 
10 µ m, where an average sound velocity is about 5000 m /s. In water—the 
most widely used liquid—the sound velocity is about 1500 m /s, with wave-
lengths of the order of 3 mm to 30 µ m for the above frequency range.

Optics and acoustics have followed parallel paths of development from the 
beginning. Indeed, most phenomena that are observed in optics also occur in 
acoustics. But acoustics has something more—the longitudinal mode in bulk 
media, which leads to density changes during propagation. All of the phe-
nomena occurring in the ultrasonic range occur throughout the full acoustic 
spectrum, and there is no theory that works only for ultrasonics. So the theory
of propagation is the same over the whole frequency range, except in the 
extreme limits where funny things are bound to happen. For example, dif-
fraction and dispersion are universal phenomena; they can occur in the audio, 
ultrasonic, or hypersonic frequency ranges. It is the same theory at work, and 
it is only their manifestation and relative importance that change. As in the 
world of electromagnetic waves, it is the length scale that counts. The change 
in length scale also means that quite different technologies must be used to 
generate and detect acoustic waves in the various frequency ranges.

FIGURE 1.1
Common frequency ranges for various ultrasonic processes.
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Why is it worth our while to study ultrasonics? Alternatively, why is it worth
the trouble to read (or write) a book like this? As reflected in the structure 
of the book itself, there are really two answers. First, there is still a lot of 
fundamentally new knowledge to be learned about acoustic waves at ultra-
sonic frequencies. This may involve getting a better understanding of how 
ultrasonic waves occur in nature, such as a better understanding of how bats 
navigate or dolphins communicate. Also, as mentioned later in this chapter, 
there are other fundamental issues where ultrasonics gives unique informa-
tion; it has become a recognized and valuable tool for better understanding 
the properties of solids and liquids. Superconductors and liquid helium, for 
example, are two systems that have unique responses to the passage of 
acoustic waves. In the latter case they even exhibit many special and char-
acteristic modes of acoustic propagation of their own. A better understand-
ing of these effects leads to a better understanding of quantum mechanics 
and hence to the advancement of human knowledge.

The second reason for studying ultrasonics is because it has many appli-
cations. These occur in a very broad range of disciplines, covering chemistry, 
physics, engineering, biology, food industry, medicine, oceanography, seis-
mology, etc. Nearly all of these applications are based on two unique features 
of ultrasonic waves:

1. Ultrasonic waves travel slowly, about 100,000 times slower than 
electromagnetic waves. This provides a way to display information 
in time, create variable delay, etc.

2. Ultrasonic waves can easily penetrate opaque materials, whereas 
many other types of radiation such as visible light cannot. Since 
ultrasonic wave sources are inexpensive, sensitive, and reliable, 
this provides a highly desirable way to probe and image the interior 
of opaque objects.

Either or both of these characteristics occur in most ultrasonic applications. 
We will give one example of each to show how important they are. Surface 
acoustic waves (SAW) are high-frequency versions of the surface waves dis-
covered by Lord Rayleigh in seismology. Due to their slow velocity, they can 
be excited and detected on a convenient length scale (cm). They have become 
an important part of analog signal processing, for example, in the production 
of inexpensive, high-quality filters, which now find huge application niches 
in the television and wireless communication markets. A second example is 
in medical applications. Fetal images have now become a standard part of 
medical diagnostics and control. The quality of the images is improving every 
year with advances in technology. There are many other areas in medicine 
where noninvasive acoustic imaging of the body is invaluable, such as cardiac, 
urological, and opthalmological imaging. This is one of the fastest growing 
application areas of ultrasonics. It is not generally appreciated that ultrasonics 
occurs in nature in quite a few different ways—both as sounds emitted and 
© 2002 by CRC Press LLC



  
received by animals, birds, and fish, but also in the form of acoustic emission 
from inanimate objects. We will discuss the two cases in turn.

One of the best-known examples is ultrasonic navigation by bats, the study 
of which has a rather curious history [1]. The Italian natural philosopher 
Lazzaro Spallanzani published results of his work on the subject in 1794. He 
showed that bats were able to avoid obstacles when flying in the dark, a feat 
that he attributed to a “sixth sense” possessed by bats. This concept was 
rejected in favor of a theory related to flying by touch. In the light of further 
experimental evidence, Spallanzani modified his explanation to one based on
hearing. Although this view was ultimately proven to be correct, it was rejected
and the touch theory was retained. The subject was abandoned; it was only 
in the mid-20th century that serious research was done in the subject, prin-
cipally by Griffin and Pye. The acoustic theory was retained, and consider-
able experimental work was carried out to characterize the pulse width, the 
repetition rate, and the frequency spectrum. It was found that at long range 
the repetition rate was quite low (10 pps) and it increased significantly at 
close range (100 pps), which is quite understandable from a signal processing 
point of view. In fact, many of the principles developed for radar and ultra-
sonic pulse echo work in the laboratory have already been used by bats. For 
example, Pye showed that the frequency changes monotonically throughout 
the pulse width, similar to the chirp signal described in Chapter 12, which 
is used in pulse compression radar. There is also evidence that bats make 
use of beat frequencies and Doppler shifting. There is evidence that the bat’s 
echolocation system is almost perfectly optimized; small bats are able to fly 
at full speed through wire grid structures that are only slightly larger than 
their wingspans.

It is also fascinating that one of the bat’s main prey, the moth, is also fully 
equipped ultrasonically. The moth can detect the presence of a bat at great 
distances—up to 100 ft—by detecting the ultrasonic signal emitted by the 
bat. Laboratory tests have shown that the moth then carries out a series of 
evasive maneuvers, as well as sending out a jamming signal to be picked 
up by the bat! Several types of birds use ultrasonics for echolocation, and, 
of course, acoustic communication between birds is highly developed. Of the
major animals, the dog is the only one to use ultrasonics. Dogs are able to 
detect ultrasonic signals that are inaudible to humans, which is the basis of 
the silent dog whistle. However, dogs do not need ultrasonics for echolocation,
as these functions are fully covered by their excellent sight and sense of smell 
for long- and short-range detection.

In passing to the use of ultrasonics under water, the seal is an interesting 
transition story. The seal provides nature’s lesson in acoustic impedance, as it
has two sets of ears—one set for use in air, centered at 12 kHz, and the other 
for use under water, centered at 160 kHz. These frequencies correspond to 
those of its principal predators. As will be seen for dolphins and whales, the
ultrasonic frequencies involved are considerably higher than those in air; 
this is necessary to get roughly similar spatial resolution in the two cases, 
as the speed of sound in water is considerably higher than in air.
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Next to bats, dolphins (porpoises) and whales are the best-known practi-
tioners of ultrasound under water. Their ultrasonic emissions have been stud-
ied extensively, and the work is ongoing. It is believed that dolphins have a 
well-defined vocabulary. Some of the sounds emitted are described by graphic 
terms such as mewing, moaning, rasping, whistling, and clicking, all with 
characteristic ultrasonic properties. The latter two are the most frequent. The 
whistle is a low-frequency sound in pulses about a second long and frequen-
cies in the range 7 to 15 kHz. The clicks are at considerably higher frequencies, 
up to 150 kHz, at repetition rates up to several hundred per second. The 
widths of the clicks are sufficiently short so that there is no cavitation set up 
in the water by the high amplitudes that are generated. High-amplitude clicks 
are also produced by another well-studied denizen, the snapping shrimp.

It is not often realized that natural events can give rise to ultrasonic waves. 
Earthquakes emit sound, but it is in the very-low-frequency range, below
20 Hz, which is called infrasound. The much higher ultrasonic frequencies 
are emitted in various processes that almost always involve the collapse of 
bubbles, which is described in detail in Chapter 17. The resonance of bubbles 
was studied by Minnaert, who calculated the resonance frequency and found 
that it varied inversely with the bubble size. Hence, very small bubbles have 
very high resonance frequencies, well into the ultrasonic range. Bubbles and 
many other examples of physics in nature are described in a charming book, 
Light and Color in the Open Air, by Minnaert [2].

The babbling brook is a good example of ultrasonic emission in nature as 
the bubbles unceasingly form and collapse. Leighton [3] measured a typical 
spectrum to be in the range of 3 to 25 kHz. Waterfalls give rise to the high-
frequency contact, while low frequencies are produced by the water as it 
flows over large, round boulders. Another classic example is rain falling on 
a puddle or lake. The emitted sound can easily be measured by placing a 
hydrophone in the water. Under usual conditions a very wide spectrum, 1 to
100 kHz, is obtained, with a peak around 14 kHz. The source of the spectrum 
is the acoustic emission associated with impact of the water drop on the 
liquid surface and the entrainment of bubbles. It turns out that the broad 
spectrum is due to impact and the peak at 14 kHz to the sum of acoustic 
resonances associated with the bubble formation. An analogous effect occurs 
with snowflakes that fall on a water surface, apparently giving rise to a deaf-
ening cacophony beneath the surface.

Easily the largest source of ultrasound is the surface of an ocean, where 
breaking waves give rise to a swirly mass of bubbles and agitated water. The 
situation is, of course, very complicated and uncontrolled, with single bub-
bles, multibubbles, and fragments thereof continually evolving. This situation 
has been studied in detail by oceanographers. The effect is always there, but 
like the tree falling in the forest, there is seldom anyone present to hear it.

While ultrasonics in nature is a fascinating study in its own right, of far 
greater interest is the development of the technology of ultrasonic waves that 
is studied in the laboratory and used in industry. Ultrasonics developed as 
part of acoustics—an outgrowth of inventions by Langevin. There were, of 
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course, a number of precursors in the 19th and early 20th centuries. In what 
follows we summarize the main developments from the beginning until about 
1950; this discussion relies heavily on the excellent review article by Graff [1]. 
After 1950, the subject took off due to a happy coincidence of developments 
in materials, electronics, industrial growth, basic science, and exploding 
opportunities. There were also tremendous synergies between technology 
and fundamental advances. It would be pointless to describe these develop-
ments chronologically, so a sectorial approach is used.

A number of high-frequency sources developed in the 19th century were 
precursors of the things to come. They included:

1. The Savant wheel (1830) can be considered to be the first ultrasonic 
generator. It worked up to about 24 kHz.

2. The Galton whistle (1876) was developed to test the upper limit of 
hearing of animals. The basic frequency range was 3 to 30 kHz. 
Sounds at much higher frequencies were produced, probably due 
to harmonic generation, as the operation was poorly understood 
and not well controlled.

3. Koenig (1899) developed tuning forks that functioned up to 90 kHz.
Again, these experiments were poorly understood and the conclu-
sions erroneous, almost certainly due to nonlinear effects.

4. Various high-power sirens were developed, initially by Cagniard 
de la Tour in 1819. These operated below ultrasonic frequencies 
but had an important influence on later ultrasonic developments.

In parallel with the technological developments mentioned above, there 
was an increased understanding of acoustic wave propagation, including 
velocity of sound in air (Paris 1738), iron (Biot 1808), and water (Calladon 
and Sturm 1826)—the latter a classic experiment carried out in Lake Geneva. 
The results were reasonably consistent with today’s known values—perhaps 
understandably so, as the measurement is not challenging because of the 
low value of the velocity of sound compared with the historical difficulties 
of measuring the velocity of light. Other notable advances were the standing 
wave approach for gases (Kundt 1866) and the stroboscopic effect (Toepler 
1867), which led to Schlieren imaging.

One of the key events leading directly to the emergence of ultrasonics was 
the discovery of piezoelectricity by the Curie brothers in 1880; in short order 
they established both the direct and inverse effect, i.e., the conversion of an 
electrical to a mechanical signal and vice versa. The 20th century opened 
with the greatest of all acousticians, Lord Rayleigh ( John W. Strutt). Rayleigh 
published what was essentially the principia of acoustics, The Theory of Sound, 
in 1889 [4]. He made definitive studies and discoveries in acoustics, including 
atomization, acoustic surface (Rayleigh) waves, molecular relaxation, acoustic
pressure, nonlinear effects, and bubble collapse.
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The sinking of the Titanic and the threat of German submarine attacks led 
to Langevin’s experiments in Paris in 1915—the real birth of ultrasonics. On 
the one hand, his work demonstrated the practicality of pulse echo work at 
high frequencies (150 kHz) for object detection. The signals were so huge 
that fish placed in the ultrasonic immersion tank were killed immediately 
when they entered the ultrasonic beam. On the other hand, the introduction 
of quartz transducers and then the sandwich transducer (steel-quartz-steel) 
led to the first practical and efficient use of piezoelectric transducers. Quite 
surprisingly, almost none of Langevin’s work on ultrasonics was published. 
His work was followed up by Cady, which led to the development of crystal-
controlled oscillators based on quartz.

Between the wars, the main thrust was in the development of high-power 
sources, principally by Wood and Loomis. For example, a very-high-power 
oscillator tube in the range 200 to 500 kHz was developed and applied to a 
large number of high-power applications, including radiation pressure, etch-
ing, drilling, heating, emulsions, atomization, chemical and biological effects, 
sonoluminescence, sonochemistry, etc. Supersonic was the key buzzword, 
and high-power ultrasonics was applied to a plethora of industrial processes. 
However, this was mainly a period of research and development; and it was 
only in the period following this that definitive industrial machines were 
produced. This period, 1940–1955, was characterized by diverse applications, 
some of which include:

1. New materials, including poled ceramics for transduction
2. The Mason horn transducer (1950) for efficient concentration of 

ultrasonic energy by the tapered element
3. Developments in bubble dynamics by Blake, Esche, Noltink, Neppi-

ras, Flynn, and others
4. Ultrasonic machining and drilling
5. Ultrasonic cleaning; GE produced a commercial unit in 1950
6. Ultrasonic soldering and welding, advances made mainly in

Germany
7. Emulsification: dispersal of pigments in paint, cosmetic products, 

dyes, shoe polish, etc.
8. Metallurgical processes, including degassing melts

From the 1950s onward there were so many developments in so many 
sectors that it is feasible to summarize only the main developments by sector. 
Of course, the list is far from complete, but the aim is to give examples of the 
explosive growth of the subject rather than provide an encyclopedic coverage 
of the developments. The proceedings of annual or biannual conferences on 
the subject, such as the IEEE Ultrasonics Symposium and Ultrasonics Interna-
tional, are good sources of progress in many of the principal directions.
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1.2 Physical Acoustics

A key element in the explosive growth of ultrasonics for electronic device 
applications and material characterization in the 1960s and beyond was the 
acceptance of ultrasonics as a serious research and development (R&D) tool 
by the condensed matter research community. Before 1950, ultrasonics would 
not have been found in the toolkit of mainline condensed matter researchers, 
who relied mainly on conductivity, Hall effect, susceptibility, specific heat, and
other traditional measurements used to characterize solids. However, with 
developments in transducer technology, electronic instrumentation, and the 
availability of high-quality crystals it then became possible to carry out quan-
titative experiments on velocity and attenuation as a function of magnetic 
field, temperature, frequency, etc., and to compare the results with the pre-
dictions of microscopic theory. The trend continued and strengthened, and 
ultrasonics soon became a choice technique for condensed matter theorists 
and experimentalists. A huge number of sophisticated studies of semicon-
ductors, metals, superconductors, insulators, magnetic crystals, glasses, poly-
mers, quantum liquids, phase transitions, and many others were carried out, 
and unique information was provided by ultrasonics. Some of this work has 
become classic. Two examples will be given to illustrate the power of ultra-
sonics as a research tool.

Solid state and low-temperature physics underwent a vigorous growth 
phase in the 1950s. One of the most spectacular results was the resolution 
of the 50-year-old mystery of superconductivity by the Bardeen, Cooper, and 
Schrieffer (BCS) theory in 1957. The BCS theory proposed that the conduction 
electrons participating in superconductivity were coupled together in pairs 
with equal and opposite momentum by the electron–phonon interaction. 
The interaction with external fields involves so-called coherence factors 
that have opposite signs for electromagnetic and acoustic fields. The theory 
predicted that at the transition temperature there would be a peak of the 
nuclear spin relaxation time and a straight exponential decrease of the ultra-
sonic attenuation with temperature. This was confirmed by experiment and 
was an important step in the widespread acceptance of the BCS theory. The 
theory of the ultrasonic attenuation was buttressed on the work of Pippard, 
who provided a complete description of the interaction of ultrasonic waves 
with conduction electrons around the Fermi surface of metals.

A second example is provided by liquid helium, which undergoes a tran-
sition to the superfluid state at 2.17 K. Ultrasonic experiments demonstrated 
a change in velocity and attenuation below the transition. Perhaps more 
importantly, further investigation showed the existence of other ways of 
propagating sound in the superfluid state in different geometries—so that 
one talks of a first (ordinary), second, third, and fourth sound in such sys-
tems. These acoustics measurements went a long way to providing a fuller 
understanding of the superfluid state. The case of He3 was even more fruitful 
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for acoustic studies. The phase diagram was much more complicated, involv-
ing the magnetic field, and many new hydrodynamic quantum modes were 
discovered. Recently, even purely propagating transverse waves were found 
in this superfluid medium.

This and other fundamental work led to attempts to increase the ultrasonic 
frequency. Coherent generation by application of microwave fields at the 
surface of piezoelectrics raised the effective frequency well into the hyper-
sonic region above 100 GHz. Subsequently, the superconducting energy gap 
of thin films was used to generate and detect high-frequency phonons at the 
gap frequency, extending the range to the THz region. Heat pulses were used 
to generate very-high-frequency broadband pulses of acoustic energy. In 
another approach, the development of high-flux nuclear reactors led to meas-
urement of phonon dispersion curves over the full high-frequency range, 
and ultrasonics became a very useful tool for confirming the low-frequency 
slope of these curves. In summary, all of this work in physical acoustics gave 
new legitimacy to ultrasonics as a research tool and stimulated development 
of ultrasonic technologies.

1.3 Low-Frequency Bulk Acoustic Wave (BAW) Applications

This main focus of our discussion on the applications of ultrasonics provides 
some of the best examples of ultrasonic propagation. The piezoelectric trans-
ducer itself led to some of the earliest and most important applications. The 
quartz resonator was used in electronic devices starting in the 1930s. The 
quartz microbalance became a widely used sensor for detection of the mass 
loading of molecular species in gaseous and aqueous media and will be fully 
described in Chapter 13. Many other related sensors based on this principle
were developed and applied to many problems such as flow sensing (includ-
ing Doppler), level sensing, and propagation (rangefinders, distance, garage 
door openers, camera rangefinders, etc.). A new interest in propagation led 
to the development of ultrasonic nondestructive evaluation (NDE). Pulse 
echo techniques developed during World War II for sonar and radar led to 
NDE of materials and delay lines using the same principles and electronic 
instrumentation. Materials NDE with shorter pulse and higher frequencies 
was made possible with the new electronics developed during the war, 
particularly radar. A first ultrasonic flaw detection patent was issued in 1940. 
From 1960 to the present there have been significant advances in NDE tech-
nology for detecting defects in multilayered, anisotropic samples, raising 
ultrasonics to the status of a major research tool, complementary to resistiv-
ity, magnetization, x-rays, eddy currents, etc.

One of the most important areas in low-frequency BAW work was the 
development of ultrasonic imaging, which started with the work of Sokolov. 
By varying the position and angle of the transducer, A (line scan), B (vertical 
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cross-section), and C (horizontal cross-section) scans were developed. C scan 
has turned out to be the most commonly used, where the transducer is 
translated in the x-y plane over the surface of a sample to be inspected so 
that surface and subsurface imaging of defects can be carried out. Realization 
by Quate in the early 1970s that microwave ultrasonics waves in water have 
optical wavelengths led to the development of the scanning acoustic micro-
scope (SAM) by Lemons and Quate in 1974. This is covered in detail in Chapter 
14 because it is a textbook example of the design of an ultrasonic instrument. 
The SAM provides optical resolution for frequencies in the GHz range, high 
intrinsic contrast, quantitative measure of surface sound velocities, and sub-
surface imaging capability. In more recent developments the atomic force 
microscope (AFM), also developed by Quate, has been used to carry out 
surface, near-surface, and near-field imaging with nanometer resolution. In 
parallel, much progress has been made in acoustic imaging with phased 
arrays. Recent developments include time-reversal arrays and the use of high-
performance micromachined capacitive transducer arrays.

1.4 Surface Acoustic Waves (SAWs)

The SAW was one of the modes discovered very early on by Lord Rayleigh 
in connection with seismology studies. In the device field it remained a 
scientific curiosity with few applications until the development of the inter-
digital transducer (IDT) by White and Voltmer in the 1960s. This breakthrough 
allowed the use of planar microelectronic technology, photolithography, 
clean rooms, etc. for the fabrication of SAW devices in large quantities. A 
second breakthrough was a slow but ultimately successful development of 
sputtering of high-quality ZnO films on silicon, which liberated device design 
from bulk piezoelectric substrates and permitted integration of ultrasonics 
with silicon electronics. Since the 1960s, there has been a huge amount of 
work on the fundamentals and the technology of SAW and its application 
to signal processing, NDE, and sensors. The SAW filter has been particularly 
important commercially in mass consumer items such as TV filters and 
wireless communications. There is presently a push to very-high-frequency 
devices (5 to 10 GHz) for communications applications.

The above topics are the main ones covered in the applications sections. Of
course, there are many other extremely important areas of ultrasonics, but 
a selection was made of those topics that seemed best suited as examples of 
the basic theory and which the author was qualified to address. Some of the 
important areas omitted (and the reasons for omission) include piezoelectric 
materials, transducers, medical applications (specialized and technical), high-
power ultrasonics (lacks a well-developed theoretical base), underwater 
acoustics, and seismology (more acoustics than ultrasonics and lacking in 
unity with the other topics). In these cases, a brief summary of some of the 
highlights is given to complete the introductory survey of this chapter.
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1.5 Piezoelectric Materials

Much of the remarkable progress made in ultrasonics is due to the synergy 
provided by new high-performance materials and improved electronics. This 
is perhaps best exemplified in the work of Langevin in applying quartz to 
transduction and then developing the composite transducer. A second major 
step forward occurred in the 1940s with the development of poled ceramic 
transducers of the lead zirconate (PZT) family, which were relatively inex-
pensive, rugged, high performance, and ideally suited to field work. For the 
laboratory, more expensive but very high-performance new crystals such as 
lithium niobate entered into widespread use. A third wave occurred with 
piezoelectric films. After a false start with CdS, ZnO (and also AlN to some 
extent) became the standard piezoelectric film for device applications such 
as SAW. The development of polyvinylidine (PVDF) and then copolymers 
based on it was important for many niche applications—particularly in medical 
ultrasonics, as the acoustic impedance is very well matched to water. Other 
favorable properties include flexibility and wide bandwidth. They are, how-
ever, very highly attenuating, so they are not suitable for SAW or high-
frequency applications.

More recently, the original PZT family has been improved by the use of 
finely engineered piezocomposites for general BAW applications. New SAW 
substrates are still under development, particularly with the push to higher 
frequencies. Microelectromechanical (MEMS) transducers are under a stage 
of intense development as they have potential for high-quality, real-time, 
mass-produced acoustic imaging systems.

1.6 High-Power Ultrasonics

This was one of the first areas of ultrasonics to be developed, but it has 
remained poorly developed theoretically. It involves many heavy-duty 
industrial applications, and often the approach is semi-empirical. Much of 
the early work was carried out by Wood and Loomis, who developed a high-
frequency, high-power system and then used it for many applications. One 
of the problems in the early work was the efficient coupling of acoustic 
energy into the medium, which limited the available power levels. A solution 
was found with the exponential horn; a crude model was developed by 
Wood and Loomis, and this was perfected by Mason using an exponential 
taper in 1950. The prestressed ceramic sandwich transducers also were 
important in raising the acoustic power level. Another problem, which led 
in part to the same limitation, was cavitation. Once cavitation occurs at the 
transducer or horn surface, the transfer of acoustic energy is drastically 
reduced due to the acoustic impedance mismatch introduced by the air. 
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However, work on cavitation gradually led to it becoming an important 
subject in its own right. Ramification of the process led to operations such 
as drilling, cutting, and ultrasonic cleaners. Other applications of cavitation 
included sonochemistry and sonoluminescence. High-power ultrasonics also 
turned out to be a useful way to supply large amounts of heat, leading to 
ultrasonic soldering and welding of metals and plastics.

1.7 Medical Ultrasonics

From a purely technical ultrasonic standpoint, there are many similarities 
between NDE and medical ultrasonics. Basically, one is attempting to locate 
defects in an opaque object; the same technological approaches are relevant, 
such as discriminating between closely spaced echoes and digging signals 
out of the noise. So it is not surprising that many developments on one side 
have been applied to problems on the other. Of course, there are differences: 
one is that inspection of in vivo samples is an important part of medical 
ultrasonics. Respiratory effects, blood flow, and possible tissue damage are 
issues that are totally absent in NDE. This has led to much R&D on induced 
cavitation and cavitation damage as well as development of very sophisti-
cated Doppler schemes for monitoring blood flow.

Historically, during the 1940s and 1950s, there was strong emphasis on
therapy. This declined in the 1950s when the current dominant theme of 
medical imaging started. There was much work on the brain, followed by 
applications in urology, ophthalmology, and vital organs (heart and liver). 
Certainly the most celebrated application of ultrasonic imaging in medicine 
is fetal imaging; images of tremendous detail and clarity can be obtained in 
real time. High-resolution in vitro imaging has been carried out in the same 
way. Current trends for in vivo imaging include phased arrays for real-time 
imaging and nonlinear imaging using contrast agents as well as harmonic 
imaging of basic tissue.

1.8 Acousto-Optics

The interaction of light and sound was discovered early in the history of 
ultrasonics. Brillouin suggested the existence of Brillouin scattering in 1922, 
which was followed by low-frequency diffraction (Debye-Sears 1932 and 
Raman-Nath 1935). Schlieren visualization of ultrasonic fields has long been 
a useful tool for exploring scattering and propagation phenomena. Bragg cells 
for acousto-optic modulators are important components in optical commu-
nication systems. An important developing area is that of laser ultrasonics. 
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It has been known since the 1960s that absorption of a laser beam can lead 
to generation of ultrasonic waves by the thermoelastic effect. The mode gen-
erated can be partly controlled by the surface condition. An all-optical system 
can be made by using a Michelson interferometer to monitor surface displace-
ment. A special application of laser ultrasonics is described in Chapter 16.

1.9 Underwater Acoustics and Seismology

Fascinating as they are, underwater acoustics and seismology cannot be 
properly put under the umbrella of ultrasonics as almost all of the work in 
these areas is done in the audio or infrasonic frequency range. It is only the 
tail end, as it were, of a few graphs that penetrate into the ultrasonic regime. 
Nevertheless, the basic theory is the same, and only the length scale is much 
larger. Also, the acoustic phenomena of interest are in many cases identical. 
One needs only cite the names of Rayleigh, Love, and Sezawa waves in the 
earth’s crust, longitudinal and transverse wave propagation in the bulk of 
the earth, and multilayer and reflection and transmission phenomena in the 
case of seismology. For underwater acoustics we have again reflection and 
transmission phenomena, guided waves in channels due to stratified layers 
caused by temperature gradients, scattering of acoustic waves by targets of 
all sorts, bubble phenomena, acoustic imaging, sonar, and the list goes on. In
both cases we have the inverse problem that is at the base of a large chunk 
of NDE. One of the advantages of the situation, at least in principle, is that 
it should be relatively easy for experts in ultrasonics to work on problems 
in these other fields and vice versa.
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2
Introduction to Vibrations and Waves

2.1 Vibrations

The general objective of this chapter is to give an introduction to vibrations 
and waves (see, e.g., [5]). More specifically, the chapter also has the goal of 
recalling the basic mathematical apparatus necessary to read the book and to 
introduce the simple physical ideas and analogies that will be useful through-
out the book. The model system used will be a simple oscillator, a mass con-
nected to a spring, although a simple pendulum or any other similar system 
could have been used. For small displacements it will be seen that the oscilla-
tions are sinusoidal at a single frequency, so-called simple harmonic motion.

Looking at Figure 2.1, we easily see that the motion will be periodic. If the 
mass is displaced initially there will be a restoring force due to the spring. 
For small displacements, Hooke’s law applies, so that the restoring force is 
given by F = −kx. This is in fact the leading term in a Taylor’s expansion of 
the force in terms of the displacement. Hooke’s law is ubiquitous in mechan-
ical problems of vibrations and waves. For example, it is this approximation 
that is used to define the elastic constants of crystals and that is also at the 
basis of the theory of elasticity of solids. If Hooke’s law is not obeyed then 
things become much more complicated, mathematically and physically, and 
we enter the realm of nonlinear acoustics. Except where stated otherwise, 
we will always remain in the linear regime described by Hooke’s law.

Hooke and Newton were great English scientists of the 17th century and 
there was ill-concealed tension between them. It is thus somewhat ironic 
that the basic equation for the simple oscillator and the wave equation are 
both obtained by a happy combination of Hooke’s law and Newton’s equa-
tion of motion. For the mass-spring system this can be written

(2.1)

or

F md2x
dt2
--------=
© 2002 by CRC Press LLC



                 
(2.2)

Physically, this equation provides the solution x(t) for the displacement of 
the mass. Once the mass is released at t = 0, it is pulled in the −x direction 
by the spring, which is in turn compressed by the movement of the mass. 
At the moment of maximum compression, all of the energy of the system is 
stored as potential energy in the spring. The mass is then repelled to the 
right by the spring and at the instant where the spring extension is zero, the 
potential energy is also zero and all of the energy of the system is now in 
the form of kinetic energy of the mass. If there is no dissipative force, the 
process will be periodic with exchange from kinetic to potential energy and 
vice versa and will continue ad infinitum. If there is dissipation, for example, 

FIGURE 2.1
(a) Mass-spring oscillator. (b) Phasor diagram for simple harmonic motion.

d2x
dt2
-------- k

m
----x+ 0=
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friction with the supporting surface, the motion will be progressively 
damped and will finally come to a halt. Finally, it should be noted that this 
is a fixed, isolated vibrator that undergoes periodic motion. There is no wave 
propagated here: that aspect will be discussed in Section 2.2.

Returning to Equation 2.1, this can be clearly identified as the harmonic 
equation, with harmonic solutions. Defining the angular frequency  = k/m,
these solutions are of the form

(2.3)

For this second-order homogeneous differential equation the solution has 
two arbitrary constants to be determined by the initial conditions. Alterna-
tively, the solution can be written

(2.4)

where φ0 is an initial phase angle. The frequency f and the period T are 
determined by

 (2.5)

(2.6)

The subscript zero is used as this is a simple undamped oscillator.
The complete solution can be found using the initial conditions. At t = 0, 

we define the initial displacement x0 and the initial velocity v0, from which 
we immediately find

(2.7)

(2.8)

which completely determines the displacement from Equation 2.4. The veloc-
ity v and acceleration a are immediately found as

(2.9)

ω0
2

x A1 ω0t A2 ω0tsin+cos=

x A ω0t φ0+( )sin=

f0
ω0

2π
------=

T 1
f0
---=

A x0
2 v0

ω0
------ 

  2

+
1
2
---

=

φ0 tan 1– v0–
ω0x0
----------- 

 =

v vm ω0t φ0+( )cos=
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and

(2.10)

From these solutions we can deduce that the displacement and velocity 
are in phase quadrature (displacement lags by π /2), and the displacement 
and acceleration are π out of phase. This type of analysis will be found to 
be important for waves.

2.1.1 Vibrational Energy

For a mechanical system in general the total energy U is the sum of the 
potential energy UP and the kinetic energy UK. These are readily calculated 
for our model system. UP is determined by the work done to compress the 
spring:

(2.11)

The kinetic energy is determined by the usual mechanical formula for a mass m:

Hence, the total energy is given by

 (2.12)

Alternatively, as could have been deduced from the discussion of energy 
exchange during a cycle, the total energy is simply equal to the maximum 
potential or kinetic energy:

(2.13)

2.1.2 Exponential Solutions: Phasors

The previous results for x, v, and a were obtained using the real trigonometric 
functions sine and cosine to represent the periodic variation with time. There 

a ω0vm ω0t φ0+( )sin–=

UP kx xd
0

x

∫ 1
2
---kx2 1

2
---kA2 sin2 ω0t φ0+( )= = =

UK
1
2
---mvm

2 1
2
---mvm

2 cos2 ω0t φ0+( )= =

U UP UK+ 1
2
---mω0

2A2= =

U 1
2
---kA2 1

2
---mvm

2= =
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is an alternative representation that is conceptually simple and mathemati-
cally more economic than the use of real trigonometric functions. This is the 
use of complex exponentials, which is almost universally employed in 
research papers. In the complex plane, it is well known that we can represent 
sine and cosine functions in the complex plane by using Euler’s rule

where . Generally, j is used in engineering practice and i in mathe-
matics and physics, but this is not universal. When they are not used as an 
index, the scalars i or j always represent . We may use them interchange-
ably. In the complex plane the x axis represents the “real” part and the y
axis represents the “imaginary” part of a variable z = x + iy = reiθ. When a 
physical quantity is represented by a complex variable z, by convention its 
physically significant part is given by Re(z). This is pure convention; since 
the real and imaginary parts contain redundant information, the imaginary 
part could equally well have been chosen. The semantics have been chosen 
to reinforce the conventional choice.

Complex exponential notation is ideally suited for the representation of har-
monic vibrations. Thus, instead of describing a physical displacement as x =
A cosω t, we can represent it by the quantity x = Ae jθ = Ae jω t. The radius 
vector A is real and it rotates at constant angular velocity  = ω. Thus, the 
projection on the x axis, the real part, traces out the variation x = A cos ω t
with time. The polar representation is called the phasor representation (A is 
a “phasor”). Phasors are a simple graphical way to represent vibrations and 
they are particularly useful when several different vibrations are added and 
one wishes to calculate the resultant. As before, two quantities must be given 
to specify a phasor, namely the amplitude (radius vector) and the phase 
(angle θ). Another analytical advantage of the use of complex numbers and 
phasors is that multiplication by j corresponds to an advance in phase by 
90° (rotation from the real to the imaginary axis). Similarly, multiplication 
by −j retards the phase by π /2. Thus, phase relationships can be deduced 
instantly from analytical formulae by identifying the imaginary terms and 
their sign.

2.1.3 Damped Oscillations

A simple undamped oscillator is, of course, an academic simplification. In 
the real world, there are always frictional and resistive effects that eventually 
damp out an oscillator’s movement unless it is maintained by an external 
force. In this section we examine the damping effects and then study the 
forced, damped oscillator in the subsequent section.

ejθ θ j θsin+cos=

j 1–=

1–

θ̇
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Most if not all damping mechanisms provide an opposing force that is 
proportional to the velocity or current. Frictional forces and the potential 
drop across a resistor are two common examples. The force can be written

(2.14)

where the subscript m stands for mechanical, to distinguish Rm from an 
electrical resistance R. In a mass-spring system, Rm is often represented as a 
dashpot that slows the movement of the mass. The equation of motion can 
now be written

(2.15)

using a trial solution x = Aeγ  t

leading to a condition on γ

(2.16)

where α = Rm /2m.
For typical mechanical systems of interest, the oscillation persists for at 

least several cycles so that α < ω for this case. We then define a frequency 
 =  for the damped oscillator, so that finally

(2.17)

2.1.4 Forced Oscillations

In practice, virtually all oscillators are forced, either by external amplifiers or 
by feedback. Hence, the frequency response is of prime importance; depending 
on the application, the objective may be to excite the oscillator at a particular 
frequency or over a wide bandwidth. We start by establishing the system 
response at a single driving frequency and then extend these results to the 
response for an arbitrary frequency.

For an applied force Fe  jω  t, the differential equation can be written

(2.18)

F Rm
dx
dt
------–=

d2x
dt2
--------

Rm

m
-------dx

dt
------ ω0

2x++ 0=

γ 2 Rm

m
-------γ ω0

2++ 
  x 0=

γ α α2 ω0
2–±–=

ω1
2 ω0

2 α2–

x e α t– A1ejωt A2e jωt–+( ) Ae−α te
j ω1t φ+( )

= =

d2x
dt2
--------

Rm

m
------- dx

dt
------ ω0

2x++ Fejωt=
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Physically, in the steady state, the system must respond at the applied 
frequency, so we look for solutions of the form x = Ae  jω  t. Substitution in 
Equation 2.18 gives

(2.19)

and

(2.20)

Equation 2.20 has the form of Ohm’s law for an electrical AC circuit. A formal 
analogy can be established by defining the mechanical impedance

(2.21)

where the mechanical reactance  follows from Equation 2.20. 
Analogous to Ohm’s law, we then have impedance = force/velocity. This 
analogy is also valid for acoustic waves and the concept of acoustic imped-
ance will be used throughout this book.

Analogous to electrical circuits, the real and imaginary parts of the imped-
ance can be represented by a vector diagram, corresponding to the complex 
plane, with phase angle tan θ = . The real values of displace-
ment and velocity are given by

(2.22)

(2.23)

Thus the velocity lags the applied force by a phase angle θ. As in an AC 
circuit this will affect the power transferred to the oscillator as the force and 
velocity are, in general, not in phase. The power transferred at time t is

(2.24)

Of more importance is the average power transferred over a cycle

x 1
jω
------ Fejωt

Rm j ωm k
ω
----– 

 +
----------------------------------------=

v dx
dt
------ Fejωt

Rm j ωm k
ω
----– 

 +
----------------------------------------= =

Zm Rm jXm+=

Xm ωm k/ω–=

ωm k/ω–[ ] /Rm

x F
ωZm
----------- 

  ωt θ–( )sin=

v F
Zm
------ 

  ωt θ–( )cos=

P t( ) F t( )v t( ) F2

Zm
------ 

  ωt ωt θ–( )coscos= =
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(2.25)

The maximum power transferred occurs when the mechanical reactance van-
ishes (θ = 0) and the impedance Zm takes its minimum value Rm , which occurs 

at ω = ω0. This is called the resonance frequency of the system. The power as 
a function of frequency is shown in Figure 2.2. An important parameter of the 
power curve P0(ω) is the relative width of the curve around the resonance. 
Like the equivalent electrical system, the width is described by the Q or 

FIGURE 2.2
(a) Mean power input as a function of frequency to show the sharpness of the resonance curve. 
(b) Mean power absorbed by a forced oscillator as a function of frequency in units of F2

 /2mω0.

P0 P t( )〈 〉 1
T
--- P t( ) td

0

T

∫= =

F2

2Zm
---------- θcos

F2Rm

2Zm
2

------------= =

(a)

(b)
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quality factor. There are various ways to define and describe the Q of the 
system and these are summarized as follows:

1. The Q can be defined as the resonance frequency divided by the 
bandwidth BW  frequency difference between the upper and 
lower frequencies for which the power has dropped to half of its 
maximum value:

(2.26)

Hence high Q corresponds to a sharp resonance with a narrow 
bandwidth.

2. The above form for Q can be rewritten in terms of mechanical 
constants. For the two half power points . Using Xm =
ω  m − k /ω, this gives

(2.27)

Thus high Q corresponds to small Rm or low loss.
3. In terms of the decay time τ of the free oscillator, which is the time 

for the amplitude to fall to 1/e of its initial value, τ = 1/α from 
Equation 2.17, α = Rm / 2m,

(2.28)

This means that a high Q oscillator when used as a free oscillator 
will “ring” for a long time, of the order of τ , before the amplitude 
falls to zero.

4. Finally, a formal definition of Q, equivalent to the above, is

(2.29)

Again, a high Q oscillator is a low loss system.
5. Q can also be seen as an amplification factor. As R decreases the 

displacement-frequency curve gets sharper and the amplitude at 
resonance A0 increases significantly. Direct calculation of Q from 
the definition leads to

(2.30)

≡

Q
ω0

BW
---------=

Zm
2 2Rm

2=

Q
ω0m
Rm

-----------=

Q 1
2
---ω0τ=

Q stored energy
total energy dissipated
--------------------------------------------------------------=

Q A0
k
F0
----- 

 =
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F0 /k is the amplitude at asymptotically low frequencies, so Equation 2.30
means that the amplitude at resonance is a factor of Q greater than at low 
frequencies. This is the physical basis for the demonstrably high displace-
ments attainable in mechanical systems at resonance. The same principle is 
routinely exploited in high Q electrical circuits, for example, in RF receivers.

The full analogy between electrical and mechanical quantities is displayed 
in Table 2.1, together with a list of key formulae. Physically, by Lenz’s law, 

inductance corresponds to the inertia (mass) of the system to change in 
current. The condenser stores the potential energy as does the compressed 

TABLE 2.1

Comparison of Equivalent Electrical and Mechanical Resonant Circuits

Electrical Mechanical

Charge Q Displacement x
Current I Velocity v
Applied voltage V Applied force F
Resistance R Mechanical resistance Rm

Inductance L Mass m
Capacitance C Spring compliance C = 1/k
Impedance 
Z = R + j(ω L − 1/ω C)

Mechanical impedance 
Zm = Rm + j(ωm − k/ω)

Differential Equation

Solution

Resonant Frequency

Energy

Phase Angle

Ld2Q
dt2
---------- RdQ

dt
-------- Q

C
----++ V0ejωt= md2x

dt2
-------- Rm

dx
dt
------ kx++ F0ejωt=

Q 1
jω
------V

Z
---= x 1

jω
------ F

Zm
------=

ω0 1/LC= ω0 k/m=

UK
1
2
---LI2= UK

1
2
---mv2=

UP
1
2
---CV2 Q2

2C
-------= = UP

1
2
---kx2=

φ tan 1– ωL 1/ωC–( )
R

-------------------------------- 
 = φ tan 1– ωm k/ω–( )

Rm
----------------------------- 

 =
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spring in the mechanical system. The resistance corresponds to the dissipated 
energy in both cases. Care must be taken in what quantities are held constant 
when comparing electrical circuits to mechanical configurations. For example,
in Figure 2.3(a) the source voltage is held constant and the same current flows 

through all elements in the electrical circuit. This clearly corresponds to the 
mechanical configuration shown in Figure 2.3(b), where all elements have 
the same velocity and amplitude if the force is constant.

FIGURE 2.3
(a) Series electrical circuit and (b) its mechanical equivalent. (c) Parallel electrical circuit and 
(d) its mechanical equivalent.

(a) (b)

(c) (d)
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2.1.5 Phasors and Linear Superposition  
of Simple Harmonic Motion

A phasor has amplitude and orientation (phase angle) and as such is a vector. 
If two phasors have the same frequency then they can be added vectorially. 

Graphically they can be drawn head to tail to give a resultant phasor with 
components as shown in Figure 2.4. For n such phasors we have

(2.31)

For n → ∞ and equal contribution for each constituent, the polygonal locus 
becomes an arc of a circle. In this way, interference and diffraction patterns 
in acoustics and optics can be constructed.

The above results are for superposition of vibrations at the same frequency. 
If the frequencies are different the motion becomes complicated and aperi-
odic, even if there are only two components. In the case of two vibrations 
with frequencies very close together, “beats” can be observed at the differ-
ence frequency. The question will be taken up for the case of waves and the 
formation of wave packets later in the chapter.

FIGURE 2.4
Addition of phasors of equal amplitude and phase difference.

A An φncos
 

∑ 
  2

An φnsin
 

∑ 
  2

+
1
2
---

=

φtan
∑An φsin
∑An φcos
------------------------=
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2.1.6 Fourier Analysis

We now turn to what is in some respects the inverse problem to the addition 
of phasors presented in the last section. If we start with an arbitrary periodic 
function, Fourier showed that it can be represented as an infinite sum of sine 
and cosine (i.e., harmonic) terms. The subject, together with that of Fourier 
transforms for nonperiodic functions, has been treated in numerous texts 
and we only summarize some of the main results here.

We consider an anharmonic (nonsinusoidal) periodic function of time, such 
as a square wave. Then Fourier’s theorem states that it can be represented 
as a Fourier series

(2.32)

where

The symmetry or lack thereof of the function to be analyzed can lead to 
important simplifications. For example, suppose that the origin has been 
chosen so that the square wave in question has odd symmetry. Since sine 
waves have odd symmetry (sin t = −sin(−t)) and cosine waves are even (cos t =
cos(−t)), the Fourier series of this square wave can have only sine terms. 
After only three terms, the general shape of the square wave is reproduced, 
but clearly it will take many terms (in principle an infinite number) to 
reproduce the vertical front.

2.1.7 Nonperiodic Waves: Fourier Integral

The previous results on Fourier analysis (synthesis) can be extended from 
periodic functions to nonperiodic functions (for example, single pulses) by 
a simple artifice. If we extend the period T in Equation 2.32 to T → ∞ then 
we effectively have a single pulse or more generally a transient disturbance 
f(t) that we can describe by a simple generalization of the series

(2.33)

where

f t( ) A0

2
------ An ncos ωt Bn nωtsin

n=1

∞

∑+
n=1

∞

∑+=

An
2
T
--- f t( ) nωtcos td

0

T

∫=

Bn
2
T
--- f t( ) nωtsin td

0

T

∫=

f t( ) 1
π
--- A ω( ) ωtcos ω B ω( ) ωtsin ωd

0

∞

∫+d
0

∞

∫=
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As an example for a square pulse (see Figure 2.5)

(2.34)

which is an even function, the sine term is zero, and

(2.35)

which is also shown in Figure 2.5. This is a very familiar result in optics 
when variables t and ω are replaced by x and k. It corresponds to diffraction 
by a single slit.

It is more economical and standard practice to rewrite Equation 2.33 in 
complex notation to obtain a Fourier transform pair

(2.36)

where the negative frequency, by Euler’s theorem, is nothing more than a 
way to write the complex conjugate

(2.37)

It is readily seen that dimensionally the members of the Fourier transform 
pair are the inverse of each other. Moreover, if the pulse is very narrow in t
space, it is very wide in ω space and vice versa. Two important examples 
are the slit function, already shown as having a sin e Fourier transform, and 
the Gaussian, both shown in Figure 2.5. The Gaussian transform can easily 
be changed into another Gaussian. As a limiting case consider the Dirac delta 
function

A ω( ) f t( ) ωtcos td
∞–

∞

∫=

B ω( ) f t( ) ωtsin td
∞–

∞

∫=

f t( ) E0 t T
2
---<=

0 t T
2
--->=

A ω( ) E0T

ωT
2

-------- 
 sin

ωT
2

--------
--------------------=

sinc ωT
2

-------- 
 =

f t( ) g ω( )ejωt ωd
∞–

∞

∫=

g ω( ) 1
2π
------ f t( )e jωt– td

∞–

∞

∫=

ej ωt±( ) ωt j ωtsin±cos=
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(2.38)

which is an infinite spike of unit area at t = 0. Then the Fourier transform

(2.39)

is a constant, independent of frequency.
The δ function results are a direct demonstration of the bandwidth theo-

rem, which states that

(2.40)

FIGURE 2.5
Some common Fourier transform pairs.

δ t( ) 0 for t 0≠=

δ t( ) td
∞–

∞

∫ 1=

g ω( ) 1
2π
------ δ t( )e jωt– td

∞–

∞

∫ 1
2π
------= =

ω t 1∼∆∆
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Applied to a single pulse, the theorem states that the narrower the pulse the 
wider the associated frequency spectrum and vice versa consistent with the 
results for the Fourier transform of the Gaussian. We return to the bandwidth 
theorem in the next section to generalize it to the case of waves and wave 
packets.

2.2 Wave Motion

Waves are universal, presenting themselves in different guises in nature, and 
they are ubiquitous in the physics and engineering laboratory. They are in 
fact so common in different areas of science (acoustics, optics, electromag-
netics, etc.) that wave motion is usually taught as a subject in its own right 
in elementary physics courses. What follows is not a substitute for these 
elementary treatments but rather a summary that enables us to collect the 
main results in one place, establish notation, and emphasize certain concepts 
that are important for this book, such as phase and group velocity.

The first question is: What is a wave? In fact, simple intuitive answers to 
this question can be reformulated in precise mathematical language to pro-
vide a test for a given function to decide if it corresponds to wave propaga-
tion or not. For the moment we avoid pathological problems such as strongly 
scattering, highly dispersive media, etc., and concentrate on the linear regime 
in simple, nondispersive media. In this spirit we then define a wave “as the 
self-sustaining propagation at constant velocity of a disturbance without 
change of shape.” We can represent the shape of the disturbance by the 
function f(x, t), a Gaussian f(x, 0) at t = 0. The pulse is then propagated at 
constant velocity V, and at time t we can describe the same profile in a moving 
reference frame x′ as f(x′). Since x′ = x − Vt by inspection and there has been 
no change in shape, we have f(x, t) = f(x − Vt) for any time t. This form 
f (x −Vt) is characteristic of a wave traveling to the right, or in the forward 
direction. It is easy to see, for the same coordinate system, that a wave 
propagating to the left would be described by f(x + Vt). This simple rule has 
a functionality that will become clear throughout the book. For example, 
according to it, sin(ω  t − kx) is indeed a wave and sin ω  t is not; in fact, the latter
is clearly an example of harmonic motion of a fixed oscillator, as discussed 
in Section 2.1.

As for the case of simple harmonic motion for a mechanical oscillator, we 
determine the equation of motion of the mechanical system under study by 
combining Hooke’s law with Newton’s equation of motion. One of the sim-
plest possible examples is that of the transverse vibrations of a string or a cord 
(see Figure 2.6). For simplicity we consider the string to be under a certain 
tension T and to be infinite in length. While the tension T is constant along the 
string, this is not true for the y component, due to the curvature of the string.

From Figure 2.6 for an element dx
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(2.41)

Doing a Taylor’s expansion for Fy

FIGURE 2.6
(a) Vibrating string with fixed end points. (b) Forces on a string element.

FIGURE 2.7
Typical dispersion curve showing phase velocity and group velocity for one point on the curve.

(a)

(b)

dFy T θsin( )x+dx T θsin( )x–=
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(2.42)

we have

so that

(2.43)

For small displacement (θ) of the string,  so that

(2.44)

From Newton’s law for a string of mass per unit length ρl

(2.45)

Combining Equations 2.44 and 2.45 we have the one-dimensional wave 
equation

(2.46)

where

(2.47)

The form of the wave equation, Equation 2.46, is in fact completely general for 
all types of waves and the form of  is typical for that sort of mechanical system. 
The tension T that can be applied is proportional to the mechanical stiffness 
of the system, and this fact can be used to obtain a priori estimates of the 
sound velocity in a given system. For example, for a given value of ρl, the 
mechanical wave (sound) velocity in a steel cord is going to be much higher 
than that in a cord made of cooked spaghetti.

F x dx+( ) F x( ) F∂
x∂

------ 
  dx+=

dFy T θsin( )x
T θsin( )∂

x∂
------------------------dx …+ + T θsin( )x–=

dFy
T θsin( )∂

x∂
------------------------dx=

θ y∂
x∂

-------∼sin

dFy T
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---------=
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----=
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2.2.1 Harmonic Waves

For a general wave motion, we write ψ (x, t) = f(x, t) so that the wave equation 
for ψ is

(2.48)

with a general solution of the form

 (2.49)

In order to summarize the basic wave parameters, we consider a wave profile

(2.50)

and if this is propagating to the right then from before

(2.51)

and the well-known wave parameters are:

• initial phase angle φ
• wavelength λ = 2π /k
• wave number k
• period T = 1/f
• frequency f = ω /2π

all of which lead to

(2.52)

and

(2.53)

Let us look in more detail at the velocity. We define the phase of the wave 
as the argument of the harmonic function

(2.54)

∂ 2ψ
x2∂

---------- 1
V0

2
-----∂ 2ψ

t2∂
----------=

ψ C1f x V0t–( ) C2g x V0t+( )+=

ψ A kxsin=

ψ A k x V0t– φ+( )sin=

ω V0k or V0 λ f= =

ψ A kx ωt– φ+( )sin=

ϕ kx ωt– φ+≡
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Then the phase velocity is defined as the velocity of propagation of constant 
phase, e.g., that of a wave crest.

Then

(2.55)

Hence 

kdx − ω dt = 0 for ϕ = constant

so

(2.56)

Alternatively, this result can be obtained using the chain law for partial 
derivatives from thermodynamics

(2.57)

Finally, it is common practice to describe wave motion using the complex 
exponential. As outlined previously,

(2.58)

In physics, it is common to use the above notation, e.g.,

 

and in engineering it is more common to use the complex conjugate

 

where both i and j represent .
Both notations are encountered frequently in the literature. For uniformity, 

we arbitrarily adopt the form exp j(ω t − kx) in the rest of the book.

2.2.2 Plane Waves in Three Dimensions

We adopt a three-dimensional coordinate system (x, y, z) with propagation in
the direction of the propagation vector  = (kx, ky , kz). The wavefront is the 
locus of points of constant phase at a given time t, so for plane waves it can 

ϕ kx ωt– φ+ constant= =

VP
dx
dt
------ 

 
ϕ

≡ ω
k
----=

x∂
t∂

----- 
 

ϕ

ϕ∂
t∂

------ 
 

x

–
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------- 
 

t

----------------- ω
k
----= =

ψ x, t( ) Re A i ωt kx– φ+( )exp[ ] A ωt kx– φ+( )cos= =

ψ x, t( ) A i kx ωt–( )exp=
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be represented as a series of parallel planes. If  is a position vector from 
the origin to a point on the wavefront at time t then the equation of the 
wavefront is

(2.59)

and so in complex notation we describe the plane wave by

(2.60)

By a simple generalization of the one-dimensional case we can show directly 
from the above that, as before,

(2.61)

The solution for propagation in an arbitrary direction  can be written

(2.62)

or in terms of direction cosines nx, ny , nz for 

(2.63)

where

(2.64)

and

(2.65)

The plane wave equation in three dimensions is usually written in terms of 
the Laplacian

(2.66)

so that

(2.67)

r
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2.2.3 Dispersion, Group Velocity, and Wave Packets

Up to now we have considered the simplest possible model for wave prop-
agation: isotropic, homogeneous, linear, and dispersionless. Some of these 
simplifications will be removed later but dispersion is appropriate to con-
sider now. Dispersion basically means that the phase velocity varies with 
the frequency. In optics, dispersion manifests itself in the splitting of white 
light into its spectral components by a prism or a raindrop. In that case, the 
dispersion is due to the frequency-dependent movement of the atomic mass. 
In acoustics, the same effects happen at very high frequencies or with thermal 
phonons near the Brillouin zone boundaries, and the resulting dispersion 
curves can be measured directly by neutron scattering. However, in acoustics 
the relevant length scale is 105 times larger than in optics, so that for the 
relatively low ultrasonic frequency range the wavelengths are quite large, 
of the order of 100 µ m to 1 mm. This is of the same order of magnitude as 
the critical dimension of the films, plates, wires, etc. used to guide ultrasonic 
waves, so we can expect to encounter dispersion in such structures on purely 
geometrical grounds. Hence, it is essential that we appreciate the conse-
quences of dispersion right from the beginning.

For waves of all types, no information whatsoever is transmitted by the 
“pure” sinusoidal carrier wave, apart from its characteristic frequency. To 
transmit information we need to modulate the carrier with other frequencies, 
and it is appropriate to consider the velocity of propagation of this modu-
lation, and thus, more generally, the velocity of propagation of information 
and of energy. The simplest case to consider is that of the wave packet, 
treated in detail in all standard texts on waves. If several neighboring fre-
quencies are linearly superimposed, they form a wave packet with finite 
extension in space and a corresponding finite Fourier frequency spectrum. 
The modulation is somewhat analogous to the beats for simple harmonic 
motion considered earlier. The modulation travels at the velocity of this wave 
packet. For a simple model of two waves with a small difference in frequency

(2.68)

the superposition of ψ1 and ψ2 gives

(2.69)

A whole wave packet can be built up by the superposition of such pairs with a 
center frequency ω 0 = (ω1 + ω 2)/2 and a modulation frequency ωm = (ω1 − ω 2)/2.
For this simple example, the modulation has velocity (ω1 − ω 2 )/(k1 − k2). For 
ω 1 → ω 2 → ω0 this goes to VG = , the group velocity. Two different 
forms of VG for calculation purposes are

ψ1 ω1t k1x–( )cos=
ψ2 ω2t k2x–( )cos=

ψ 2
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2
-----------------------t
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2
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2
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2

---------------------x–coscos=

ω∂ / k∂
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(2.70)

and

(2.71)

The bandwidth theorem of simple harmonic motion can be generalized to 
waves by considering conjugate variables x, k in addition to ω, t. Thus,

(2.72)

where the latter relation becomes evident from Figure 2.5. The bandwidth 
relation has its most famous application to wave packets in quantum 
mechanics where p = h/λ = k is the particle momentum and E = ω  the 
particle energy. Thus, we have

(2.73)

the celebrated Heisenberg uncertainty principle.

Summary

Simple harmonic motion refers to harmonic vibrations at a frequency f of 
a point mass about an equilibrium point. The movement is in general 
maintained by an external force and is damped by frictional forces.The 
motion is governed by Newton’s second law and Hooke’s law, giving 
a natural frequency ω2 = k/m.

Phasor is a representation of the vibration in the complex plane. The phasor 
rotates at the phase angle θ = ω t and the radius vector is the amplitude 
of vibration. Two or more phasors can be added algebraically in the 
complex plane.

Resonance occurs when the imaginary part of the impedance is zero. The 
resonance can be described by the Q or quality factor, which is a 
measure of the sharpness of the resonance. There are five different ways 
of expressing the Q, each with a different but complementary physical 
interpretation.

Fourier series is a way of representing a periodic function as a sum of sines 
or cosines with argument an integral multiple of the fundamental fre-
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quency. The sine series is used for functions of odd symmetry, the 
cosine series for even functions.

Fourier integral is a generalizaton of Fourier series to the representation of 
pulses by a frequency spectrum. A Fourier transform pair links Fourier 
representations of a pulse in the time and frequency domain or quan-
tities in spatial and wave number space.

Traveling waves correspond to the self-sustaining propagation of a distur-
bance in space at constant velocity without change of shape. A 
progressive or traveling wave is characterized by a functional form 
f(kx − Vt).

Harmonic wave is a wave at a single frequency ω, described by a sine or 
cosine function, or in complex notation by exp j(ω t − kx).

Phase velocity VP = ω /k is the velocity of a wavefront of constant phase.
Group velocity VG = δω /δ k is the velocity of propagation of a wave packet. 

For lossless or low loss media it is also the velocity of propagation of 
energy.

Dispersion describes a situation in which the phase velocity varies with 
frequency; it occurs in dispersive media.

Questions

1. Draw a diagram to show how to add two phasors graphically, to 
determine their total amplitude and phase angle. Determine ana-
lytical expressions for the latter.

2. Make a graph of the displacement and velocity for a forced simple 
harmonic oscillator as a function of frequency. Draw the corre-
sponding phasor diagram. Compare results for oscillators where 
R → 0 and R → ∞.

3. Consider a triangular waveform as a function of time. Define the 
amplitude and period. Choose an origin and sketch the first three 
Fourier components. Comment on the use of sine or cosine functions.

4. Draw two limiting cases (width going to zero or infinity) for the 
Fourier transform of a Gaussian pulse.

5. Draw the vector diagram corresponding to tanθ for simple har-
monic motion.

6. Decide which of the following are traveling waves and calculate 
the appropriate phase velocity:
i. f(x, t) = (ax − bt)2

ii. f(x, t) = (ax + bt + c)2

iii. f(x, t) = 1/(ax2 + b)
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a, b, and c are positive constants.
7. Consider a harmonic wave with given ω and k. Give VP , T, and λ

in terms of these quantities.
8. Consider the dispersion curve w(k) = A |sin ka|. Plot w(k) over the 

range − π /a ≤ k ≤ π /a. Make plots of VP(k) and VG(k). Do likewise 
for VP (ω) and VG (ω).

9. Plot Equation 2.69 for the case where ω 1  ω 2. Comment on the 
pertinence of this case for communications.

10. Calculate the group velocity for the following cases where the 
phase velocity is known:
i. Transverse elastic wave in a rod

VP = A/λ

ii. Deep water waves

VP = A

iii. Surface waves in a liquid

VP = A/

iv. Electromagnetic waves in the ionosphere

VP = 

where c is the velocity of light.

>>

λ

λ

c2 A2λ2+
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3
Bulk Waves in Fluids

This chapter makes an extension of the introductory material of Chapter 2 
to the simplest acoustic case of interest to us here, namely the propagation 
of bulk waves in liquids and gases. Formally, this case is much simpler than 
that of solids; fluids in equilibrium are always isotropic and only longitudinal 
(compressional) waves can propagate. Hence, there is no polarization to 
specify, and scalar wave theory can be applied. From another point of view, 
ultrasonic waves in liquids are sufficiently different from those in solids that 
a separate discussion is required. Finally, these results on liquids form a good 
basis for extending the theory to solids. A good discussion of waves in liquids 
is given in [6] and [7].

In terms of notation, Vi with a subscript i will be used for sound velocity, 
V0 for bulk waves in liquids, VL and VS for longitudinal and shear waves 
in solids, VP and VG for phase and group velocity, etc. When the symbol V
stands alone, it normally represents the thermodynamic variable for vol-
ume V.

3.1 One-Dimensional Theory of Fluids

We consider bulk fluids that are homogeneous, isotropic, and compressible 
with equilibrium pressure p0 and density ρ0. As for the case with waves in 
strings in Chapter 2 we apply Newton’s law to an element of volume, and 
we need an additional equation relating a pressure increase to change in 
volume of the fluid, which will be provided by the definition of the com-
pressibility.

Considering a simple volume element, a wave will be provided in the 
following way. If a pressure increase is applied at t = 0 to the plate at the 
origin, this will cause an increase in pressure and density in the layer of fluid 
next to it relative to the layer at the right. Hence, particles will flow to the 
right, leading to an increase in pressure and density, and the disturbance 
will then flow as a series of alternative compressions and rarefactions.
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Considering the volume element between x and x + dx we have

(3.1)

Applying Newton’s law to the element of mass ρ0 dxA

(3.2)

Here P and u are the instantaneous pressure and displacement, respectively.
For simplicity, we distinguish between the equilibrium pressure P0 and 

the instantaneous pressure P to the excess, acoustic pressure p by

so

(3.3)

To link the applied pressure to the compression of the liquid, we define the 
compressibility

(3.4)

and the compression of the liquid will be described by the dilatation S

(3.5)

During a compression of the volume dV = Adx at pressure p on the left to 
dV = A(1 + )dx at pressure p + dp on the right

(3.6)

From the definition of the compressibility

(3.7)

dFx P x( ) P x( ) ∂P
∂x
------ dx+

 
 
 

– A ∂P
∂x
------ dxA–= =

∂P
∂x
------ ρ– 0

∂ 2u
∂t2
---------=

p P P0–=

∂p
∂x
------ ρ0

∂ 2u
∂t2
---------–=

χ 1
V
--- ∂V

∂p
------- 

 –=

S ∆V
V

-------≡

∂u/∂x

S ∆V
V

------- ∂u
∂x
------= =

p S
χ
---– 1

χ
--- ∂u

∂x
------–= =
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Hence, the equation of motion can be rewritten

(3.8)

where

(3.9)

The compressibility can be rewritten

(3.10)

which gives a more general form

(3.11)

Since pressure is only proportional to density in first order, this highlights the
fact that V0 = constant only to first order. In other words, since the pressure-
density relation is nonlinear in an exact theory, linear acoustics, correspond-
ing to V0 = constant, does not exist as such but is only an approximation.

Summarizing from the previous, the wave equation can be written in the 
form

or

(3.12)

or

(3.13)

where
v =  = particle velocity,
S = dilatation = , and 
p = −ρ0 S

∂ 2u
∂t2
--------- V0

2 ∂ 2u
∂x2
---------=

V0
2 1

ρ0χ
---------≡

χ 1
V
--- ∂V

∂p
-------– 1

ρ0
----- ∂ρ

∂p
------= =

V0
2 ∂P

∂ρ
------=

∂ 2u
∂t2
--------- V0

2 ∂ 2u
∂x2
---------=

∂ 2p
∂t2
--------- V0

2 ∂ 2p
∂x2
---------=

∂ 2v
∂t2
--------- V0

2 ∂ 2v
∂x2
---------=

∂u /∂t
∂u/∂x

V0
2
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All of these three forms of the wave equation are equivalent by the above 
relations in the linear approximation. We will focus on the solutions for the 
displacement u(x, t). These can be written

(3.14)

where A(u+) is the amplitude (displacement) of the wave in the forward (+x) 
direction and B(u−) is the amplitude (displacement) of the wave in the back-
ward (−x) direction.

Then p, S, and v can also be written in the form

(3.15)

(3.16)

(3.17)

One immediate consequence of these equations is that they provide the phase 
relations between pressure, displacement, dilatation, and velocity. These can 
best be displayed on a complex phasor diagram as shown in Figure 3.1. From 
a practical viewpoint the relation for the pressure and the velocity are most 
important. For the forward wave, the pressure and velocity lead the dis-
placement by π /2; for the backward wave, the velocity leads by π /2 and the 
pressure lags by π /2. The change in phase relationship with propagation 
direction comes about because pressure and dilatation are scalar quantities 
while displacement and velocity are vectorial.

3.1.1 Sound Velocity

As seen by the form of the solutions the sound velocity V0 =  =  
is the phase velocity of the wave. For bulk waves in infinite media, it is a 
constant for a given medium but is dependent on all of the thermodynamic 
parameters such as compressibility, density, external pressure, temperature, 
etc. Within the present context it is independent of frequency (infinite media) 
and amplitude (linear regime) but in general this is, of course, not the case. 
In fact, the analysis of the velocity is quite different for gases and liquids so 
these two cases will be treated separately.

3.1.1.1 Gases

The approximation of an ideal gas will be made: PV = n0RT or P = ( )ρ, 
where n0 = number of moles. Since sound propagation in a gas is known to 
be essentially an adiabatic process, the relation PVγ = constant is also applicable. 

u A j ωt kx–( ) B j ωt kx+( )exp+exp u+ u−+= =

p ρ0V0
2 ∂u

∂x
------– jρ0ωV0 u+ u−–( )= =

S ∂u
∂x
------ jk u+ u−+–( )= =

v ∂u
∂t
------ jω u+ u−+( )= =

∂P/∂ρ ω/k

RT/M
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This can be written in the form

constant (3.18)

so that

(3.19)

and for equilibrium conditions P0 , ρ0

(3.20)

FIGURE 3.1
Phasor representation for an acoustic wave in a fluid. (a) Forward wave. (b) Backward wave.

a

P
ργ
----- =

∂P
∂ρ
------ γ P

ρ
-------=

V0
γP0

ρ0
-------- γ RT

M
-----------= =
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For air (diatomic) at room temperature (20°C) γ  = 1.4, P0 = 1.01 × 105 Pa 
giving V0 ∼  343 m/s in good agreement with experiment.

In the present treatment of fluids, the first implicit assumption of local 
thermodynamic equilibrium has been made, in that only under this condition 
can local values of P, T, ρ, etc. be assigned. In the case of a gas, the length 
scale for thermodynamic equilibrium is the mean free path l of the gas par-
ticles, i.e., the mean distance between collisions of the molecules. It is stan-
dard that

(3.21)

where
τ = mean time between collisions
v0 = thermodynamic particle velocity of the molecules 
l can be inferred from transport measurements on the gas and v0 is well-

known from the kinetic theory of gases. In order of magnitude  
v0 =  ∝  300 m/s at 20°C.

The second implicit assumption is that in order to obtain wave propaga-
tion conditions, the thermodynamic parameters must be well defined over 
distances much shorter than the wavelength. Otherwise, the propagating 
quantities such as pressure and density would simply not be defined with 
respect to the wave. This then gives the condition λ  l, which must be 
respected for a wave description to apply. This implies an upper frequency 
limit for wave propagation in a gas, for example, for air at STP l ∝  10−5 cm, 
leading to a critical frequency f ∝  1 GHz.

It should be noted that the same conditions apply for liquids and solids 
but the critical frequencies are much higher and do not have any practical 
consequence for ultrasonic waves.

3.1.1.2 Liquids

It is relatively easy to find simple models for the limiting cases of sound 
propagation in gases and solids. Liquids, however, constitute an intermedi-
ate case and it is more difficult to find a simple model connecting the sound 
velocity V0 to the molecular constants. The few available models will be 
outlined briefly.

A semi-empirical approach, similar to that for gases, gives

(3.22)

where KT is the isothermal bulk modulus. Another semi-empirical approach 
is Rao’s rule, of the form

(3.23)

l v0τ=

3RT/M

>>

V0
γKT

ρ0
---------=

V0
1/3V Ra=
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where V is the molar volume and Ra is a constant for a given liquid. It was 
pointed out by Rao that Ra undergoes regular increments among the mem-
bers of a homologous series of liquids so that

(3.24)

where M is the molecular weight.
One of the few relations between V0 and the liquid structure was provided 

by the early study of Schaaffs [8]. He assumed that although a realistic 
equation of state for the liquid was too complicated, some properties of 
organic liquids such as the sound velocity could be deduced from the van 
der Waals equation

(3.25)

where R is the universal gas constant, a = constant, and b = excluded volume.
Schaaffs obtained for organic liquids

(3.26)

Actual comparisons were made by solving for b

(3.27)

Excellent agreement was obtained by comparing b = 4Vmolecule with molecular 
volumes determined by other means. Further discussion of other semi-
empirical approaches is given by Beyer and Letcher [7], including that for 
the sound velocity in liquid mixtures. Values for representative liquids are 
given in Table 3.1.

3.1.2 Acoustic Impedance

Using the electromechanical analogy developed in Chapter 2, we define the 
specific acoustic impedance Z of an acoustic wave

(3.28)

Z carries a sign as v can be either in the positive or negative direction. The 
absolute value of Z for plane waves, useful to characterize the bulk (infinite) 
medium, is called the characteristic impedance of the liquid, Z0 = ρ0V0. A 
third variant, the normal acoustic impedance, will be introduced in Chapter 
7 for reflection and transmission analysis.

Ra AM B+=

P a
V2
-----+ 

  V b–( ) RT=

V0 γ RT M
3 M ρb–( )2
---------------------------- 2

M ρb–
------------------– 

 =

b M
ρ
-----= 1 RT

MV0
2

------------ 1
MV0

2

3RT
------------+ 

 
1
2
---

1–
 
 
 

–

Z p
v
---=
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Using the previous notation we can determine the acoustic impedance for 
forward and backward propagation

(3.29)

(3.30)

Acoustic impedance is a highly useful concept in ultrasonics. From
Chapter 2, it is the direct analogy of impedance in electrical circuits. In the 
latter case, it is well known that there is maximum power transfer between 
two circuits when the impedances are matched. In the ultrasonic case, this 
corresponds to maximum transmission of an ultrasonic wave from one 
medium to another when the characteristic impedances are equal. Character-
istic acoustic impedances for some liquids are shown in Figure 3.2 in a repre-
sentation that is useful for choosing liquids with prescribed density and sound 
velocity.

3.1.3 Energy Density

The energy density is the total energy per unit volume, comprised of the sum 
of the kinetic and potential energy. By definition, the kinetic energy density is

(3.31)

For the potential energy, we consider a volume element V changed to V′ by 
the passage of the acoustic wave.

TABLE 3.1

Acoustic Properties of Representative Liquids

Liquid
VL 

(km-s−−−−1)
ρρρρ 

(103 kg-m−−−−3)
Z0

(MRayls)

Acetone 1.17 0.79 1.07
Liquid argon (87  K) 0.84 1.43 1.20
Methanol 1.1 0.79 0.87
Gallium (30   K) 2.87 6.10 17.5
Glycerin 1.92 1.26 2.5
Liquid He4 (2  K) 0.228 0.145 0.033
Mercury 1.45 13.53 19.6
Liquid nitrogen (77  K) 0.86 0.85 0.68
Silicone oil 1.35 1.1 1.5
Seawater 1.53 1.02 1.57
Water (20°C) 1.48 1.00 1.483

Z+
p+

v+
-----

jρ0ωV0u+

jωu+
------------------------ ρ0V0= = =

Z−
p−

v−
-----

jρ0ωV0u−–
jωu−

--------------------------- ρ0V0–= = =

uK
1
2
---ρ0u̇

2=
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Since S =  from Equation 3.6

(3.32)

and the change in potential energy is

(3.33)

From Equation 3.32

(3.34)

Hence,

(3.35)

FIGURE 3.2
Density-sound velocity/characteristic acoustic impedance relation on a log-log scale for various 
liquids. (Based on a graph by R. C. Eggleton, described in Jipson, V. B., Acoustical Microscopy 
at Optical Wavelengths, Ph.D. thesis, E. L. Ginzton Laboratory, Stanford University, Stanford, 
CA, 1979.)

∂u
∂x
------

V ′ V 1 ∂u
∂x
------+ 

 =

V 1 p
ρ0V0

2
-----------– 

 =

∆UP p V ′d∫–=

dV ′ Vdp
ρ0V0

2
-----------–=

∆UP
V

ρ0V0
2

----------- p pd
0

p

∫= 1
2
--- p2V

ρ0V0
2

-----------=
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Finally,

(3.36)

so that the acoustic energy density

 (3.37)

3.1.4 Acoustic Intensity

The acoustic intensity I is the average flux of acoustic energy per unit area 
per unit time. For a plane wave, it is clear that for a tube element of area A
and length V0 dt, all of the acoustic energy dUa  inside the cylindrical element 
will traverse the end face and leave the cylinder in time dt.

Hence,

so that

(3.38)

3.2 Three-Dimensional Model

The previous results can be generalized immediately to three dimensions. 
Displacement u and velocity v now become explicitly vectors  and  while 
the acoustic pressure p remains a scalar. Hence the 3D description of the acoustic
properties of fluids is usually carried out in terms of the pressure; not only 
is this the simplest choice, but pressure is also the variable that is usually 
measured in the laboratory.

For a surface element  with displacement  the associated volume is 
dV =  • . By Gauss’ theorem

(3.39)

where S( ) is the dilatation.

∆Utot ∆UK ∆UP+ 1
2
---ρ0 u̇

2 p2

ρ0
2V0

2
-----------+ 

  V= =

ua
∆Utot

V
------------ 1

2
---ρ0 u̇

2 p2

ρ0
2V0

2
-----------+ 

 = =

dUa uaAV0 dt=

I
dUa

Adt
----------≡ uaV0=

u v

dA u
u dA

∆V u dA•
S∫° ∇ u•( ) Vd S r( ) Vd

V∫≡
V∫= =

r
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Hence,

(3.40)

Newton’s law in three dimensions is

(3.41)

where −  is the net force on the element.
We want to change to a simple set of variables so that  on the left-hand 

side should be expressed in terms of the pressure. This can be done by using 
S( ) =  •  and then using Equation 3.7, the relation between the dilatation 
and the pressure. Applying those steps to Equation 3.41, we obtain

(3.42)

where

∆ =  •  =   Laplacian

and finally the wave equation

(3.43)

where

(3.44)

In analogy with Equation 3.43 the 3D wave equations for  and  are

(3.45)

(3.46)

S r( ) ∇ u
∂ux

∂x
--------

∂uy

∂y
--------

∂uz

∂z
--------+ +≡•=

ρ0
∂ 2u
∂t2
--------- ∇ p–=

∇ p
u

r ∇ u

ρ0
∂ 2S
∂t2
--------- ∆ p( )–=

∇ ∇ ∂ 2

∂x2
-------- ∂ 2

∂y2
-------- ∂ 2

∂z2
-------+ + ≡

∆ p( ) 1
V0

2
-----= ∂ 2 p

∂ t2
---------

V0
2 1

ρ0χ
---------=

u v

∇ 2u 1
V0

2
----- ∂ 2 u

∂t2
---------=

∇ 2v 1
V0

2
----- ∂ 2 v

∂t2
---------=
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and the solutions for  are

(3.47)

where  is the propagation vector whose direction gives the direction of 
propagation and whose magnitude is

(3.48)

3.2.1 Acoustic Poynting Vector

In the presence of applied volume forces  per unit volume Equation 3.42 
becomes

(3.49)

If this force represents the force by the adjoining fluid on an element dV, 
then the work done per unit volume in time dt is

(3.50)

Referring to the one-dimensional model, we immediately identify the first 
two terms as the variation of the kinetic and potential energy per unit volume,
respectively.

Hence,

(3.51)

and

 by Equation 3.7

u

u u0 j ωt k r•–( )exp=

k

k 2π
λ

------=

f

ρ0
∂ v
∂t
------- ∇ p( )– f+=

dw f du• f vdt•= =

ρ0v dv ∇ p du•+• by Equation 3.49( )=

d 1
2
---ρ0v

2

 
  pdS– ∇ pdu( )•+=

uK
1
2
---ρ0v2=

uP p Sd
0

S

∫– S Sd
χ

----------
0

S

∫ 1
2
---S2

χ
-----= = =
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We define the acoustic Poynting vector

(3.52)

and taking the time derivative of Equation 3.50

For a finite system, integrating over the volume

(3.53)

where  is the instantaneous acoustic power per unit area radiated from 
the system through the surface S. This equation represents the law of conser-
vation of energy at a given time.

The average value of   then corresponds to the average flux density 
carried by the acoustic wave. For a system with no absorption  = constant 
and by Equation 3.53 the net acoustic power radiated from a closed element 
in the steady state is zero.

3.2.2 Attenuation

Up to now we have assumed perfectly lossless reversible behavior of the 
fluid. In practice, there are losses or absorption of acoustic energy by the 
medium. These losses are normally attributable to viscosity and thermal 
conductivity leading to the so-called classical attenuation. In addition, there 
are molecular processes where acoustic energy is transformed into internal 
molecular energy. The finite time for these processes leads to relaxation and 
loss effects.

In fact, all of the loss effects in fluids can be described by a phase lag 
between acoustic pressure and the medium response (density or volume 
change). A classical example from thermodynamics is that of the P-V dia-
gram, which can be used to display the work done on the medium due to 
a pressure change.

The situation is shown in Figure 3.3 on the usual P-V diagram for compres-
sion and expansion of a gas. Let us suppose that changes in P and V are due 
to an acoustic wave. The work done or supplied by the system is given by

P pv≡

dw
dt
------- d

dt
----- uK uP+( ) ∇ P•+=

dw
dt
------- d

dt
----- UK UP+( ) P dA•

S∫°+=

P

P ≡ I
I

W P Vd∫–=
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for the appropriate process. It is well known that the area enclosed by the 
curve for a cycle is the net work done on the system. In the lossless case, 
the system evolves along the same path I during expansion from A to B ( ) 
and compression from B back to A ( ). These two amounts of work are of 
opposite sign so the net amount of work absorbed by the system from the 
acoustic wave is zero. On the other hand, if the system does not respond 
immediately then intuitively volume change will tend to lag that for the 
reversible case for both expansion (II) and compression (I), leading to a net 
amount of work per cycle by the acoustic wave on the medium, leading to 
absorption of energy.

3.2.2.1 Decibel Scale of Attenuation

If we consider the displacement u of the wave as

for the wave without dissipation, then I ∝  u2 for plane waves. If now we add
dissipation, the only effect is that the wave vector  becomes complex, i.e., 
k → β − jα, where α is seen to be the attenuation coefficient for the amplitude 
of the wave, as now

(3.54)

FIGURE 3.3
(a) Reversible transformation from A to B and from B to A in a lossless medium. (b) Transfor-
mation from A to B and from B to A in a lossy medium.

(a)

(b)

A

B

∫
B

A

∫

u u0 j ωt kx–( )exp=

k

u u0 j ωt βx–( ) αx–( )expexp=
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In plane wave conditions, which are standard for attenuation measure-
ment, I ∝  u2, so that the acoustic intensity decays as exp(−2αx). The factor 
of two comes from the difference in attenuation between the amplitude and 
the intensity due to the quadratic term. In practice, care must be taken as to 
what is being measured (and calculated) to avoid confusion on this point.

In practice the attenuation factor for the amplitude is measured by deter-
mining the amplitude ratio r12 of the wave at two different positions x1 and x2.

Hence,

The attenuation in nepers  ln(r12) = α(x2 − x1), so that α is measured in 
Np/m.

It is more common to use the decibel (dB) scale to compare acoustic intensity
level; the attenuation in dB is defined as

(3.55)

where α is in dB/m.
Hence, the relation between the two units is

(3.56)

3.2.2.2 Relaxation Time Formulation for Viscosity

Stokes’ classic treatment includes a time-dependent term in the pressure-
condensation relation [6]

(3.57)

where η is a viscosity coefficient and s = −S is the relative density change or 
condensation. For an applied pressure pa = pa0 exp(  jω  t), if we assume a 
response for the condensation s = s0 exp(  jω  t), direct substitution yields

(3.58)

Clearly, the density change lags the applied pressure by a phase angle φ
where

(3.59)

r12 α x2 x1–( )exp=

≡

attenuation dB( ) 10log10 r12( )2=
20 log10e( )α x2 x1–( ) dB=

α  dB/m( ) 20 log10e( )α  Np/m( ) 8.686α  Np/m( )= =

p ρ0V0
2s η∂s

∂t
-----+=

s0
p0

ρ0V0
2 jωη+

----------------------------=

φtan ωη
ρ0V0

2
-----------=
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If a step function pressure change ∆ pa0 is applied at t = 0, the solution is

(3.60)

and if a step function pressure is suddenly removed

(3.61)

Recalling the electromechanical analogy, it is readily seen that these solutions 
are identical to those for the current in an L-R circuit when a potential 
difference is suddenly applied or removed. That process is described by a 
relaxation time τ = L/R. By analogy, we define a viscous relaxation time

(3.62)

3.2.2.3 Attenuation Due to Viscosity

The effects of attenuation are normally incorporated by using a complex 
wave number

(3.63)

Then

(3.64)

using the Stokes term for the pressure, the wave equation is

(3.65)

substituting for u and separating real and imaginary parts

(3.66)

(3.67)

and

(3.68)

s
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For most fluids at ultrasonic frequencies at room temperature, ω τ  1; hence,

(3.69)

and the modified phase velocity

(3.70)

The important result here is that in this limit α ∼  ω2. This means that α rises 
rapidly with frequency; this will have important implications for acoustic 
devices and NDE. The change in the velocity is small and is neglected in 
most cases in practice.

3.2.2.4 Attenuation Due to Thermal Conduction

In simple descriptions of sound propagation, perfect adiabaticity is usually 
assumed. This is only strictly true if the thermal conductivity . In fact, 
there is always a finite κ , so heat will be transported from the hot regions 
(compressions) to the cooler regions (rarefactions) created by the sound 
wave. As for viscous effects the temperature change will lag the applied 
pressure, leading to additional attenuation, described by a relaxation time

(3.71)

The corresponding attenuation in the limit ω τ  1 when added to the viscous 
term that Equation 3.69 gives for the so-called classical attenuation coefficient 
of liquids

(3.72)

It is interesting to compare this classical attenuation to that actually observed 
experimentally in liquids, which is done in Table 3.2 for liquids and gases. 
Excellent quantitative agreement is obtained for inert gases (He and Ar) and 
in cases where the viscous term dominates (glycerin). Otherwise, the exper-
imental value exceeds the classical one sometimes significantly. This is due 
to molecular relaxation phenomena.

3.2.2.5 Molecular Relaxation

This is a subject of physical chemistry in itself, which could easily fill a large 
book. However, since the subject is now well understood and is not of current 
research interest, only a brief overview will be given. A detailed discussion 
has been given by Herzfeld and Litovitz [9] and Beyer and Letcher [7].
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56 Fundamentals and Applications of Ultrasonic Waves
To see how molecular structure can contribute to relaxation effects, let us 
look briefly at the simple physics of relaxation, which will also give insight 
into the viscosity and thermal conduction contributions. Consider a physical 
system at constant temperature that is excited to a higher energy state by 
energy absorbed from an incident ultrasonic wave. The system will attempt 
to return to equilibrium by giving up this energy to surrounding regions at 
a rate determined by a temperature dependent relaxation time. Let us now 
slowly increase the ultrasonic frequency from zero.

In the regime ω τ  1, the variations of the applied field are so slow that 
the process is approximately reversible, the system follows in phase the applied
field, there is little excess absorbed energy, and the attenuation is tiny. This 
is less true as the frequency is raised, leading to an increase in attenuation.

In the opposite limit with ω τ  1 at sufficiently high frequencies, the ultrasonic
field varies so fast that the system cannot follow it. Hence, there is almost 
no absorbed energy and the attenuation is again very small. As the frequency 
is reduced, the system progressively starts to follow the field and absorb 
energy; hence, the attenuation starts to increase.

Clearly, there is an optimal situation at which the system absorbs a large 
amount of energy from the field and dumps it efficiently and irreversibly as 
heat to the surroundings, thus giving a high value of attenuation. This optimal
situation occurs at ω τ ∼  1, at which there is a well-defined peak in the atten-
uation. Experimentally, one can also observe the peak at constant frequency by
varying the temperature (or other parameter) which makes τ  sweep the critical 

TABLE 3.2

Acoustic Absorption in Fluids

All Data for 
T ==== 20°°°°C and 

�0 ==== 1 atm

αααα        /f  2 (Np ⋅⋅⋅⋅ s2 ⋅⋅⋅⋅ m−−−−1)
Shear 

Viscosity
Thermal 

Conductivity Classical Observed

Gases Multiply All Values by 10−11

Argon 1.08 0.77 1.85 1.87
Helium 0.31 0.22 0.53 0.54
Oxygen 1.14 0.47 1.61 1.92
Nitrogen 0.96 0.39 1.35 1.64
Air (dry) 0.99 0.38 1.37 α/f peaks at 40 Hz
Carbon dioxide 1.09 0.31 1.40 α/f peaks at 30 kHz

Liquids Multiply All Values by 10−15

Glycerin 3000.0 — 3000.0 3000.0
Mercury — 6.0 6.0 5.0
Acetone 6.5 0.5 7.0 30.0
Water 8.1 — 8.1 25.0
Seawater 8.1 — 8.1 α/f  peaks at 1.2 kHz 

and 136 kHz

Source: Data from Kinsler, L.E. et al., Fundamentals of Acoustics, John Wiley & Sons, 
New York, 2000.

<<

>>
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region around the peak. Another point is that experimentally the relaxation
peak is very sharp and may be confused with a resonance; care must be 
taken in interpretation as the physics in the two cases is quite different.

The case of gases is the simplest to analyze. The monatomic and inert gases 
have only translational degrees of freedom. τ is hence very short, and there 
is no excess attenuation above the “classical” value. Polyatomic gases have 
rotational and vibrational levels that require a finite time to take up the excess
energy, particularly the latter. This leads to a specific heat of the form

(3.73)

which will obviously lead to a relaxation type attenuation. A classic example 
is CO2 , which at STP exhibits a relaxation peak centered at about 20 kHz; 
the maximum attenuation is of the order of 1200 times that of the classical 
value. Another interesting example is air. Dry air exhibits slightly greater 
attenuation than the classic value but for humid air below 100 kHz there is 
an order of magnitude increase. This is due to the reduction of τ for the 
vibrational mode of the oxygen molecule due to the catalytic effect of the 
water vapor molecules.

Similar relaxation effects have been seen in liquids and this explains the 
excess attenuation in nonpolar liquids such as acetone. The excess attenua-
tion observed in water has been shown to be due to structural relaxation as 
explained by Hall [10]. Water is known to be a two-state liquid, part of the 
water in a free state, the rest in a bound state where the water molecules 
have a more closely packed structure. The ultrasonic wave causes transitions 
between the two states and the associated time delays lead to a relaxation-
type phenomenon. An additional excess attenuation occurs in seawater 
where dissolved salts lead to a type of chemical relaxation.

Summary

Wave equation is a second-order differential equation that allows determina-
tion of the displacement u(x,  t) for given initial and boundary conditions.

Sound velocity in a gas is given by the general formula  = dP/dρ. For a 
perfect gas, V0 = .

Sound velocity in a liquid to a first approximation is given by  where 
KT is the isothermal bulk modulus.

Specific acoustic impedance Z = p/v carries a sign; it is positive in the forward
direction and negative in the backward direction. The absolute value 
for plane waves is the characteristic acoustic impedance Z0 = ρ0V0 and 
is a constant for the medium.

Acoustic intensity is the average flux of acoustic energy per unit area per 
unit time. For a plane wave, it is given by V0.

CV Ce Cm 1 e
t
τ
--–

– 
 +=

V0
2

γRT/M
γKT/ρ0

ua
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58 Fundamentals and Applications of Ultrasonic Waves
Acoustic Poynting vector is defined as  and is the flux density of acoustic 
energy in a given direction.

Decibel is a log scale used to compare acoustic intensities. Acoustic attenu-
ation in a medium is expressed in dB/m or Np/m.

Classical attenuation for liquids and gases is due to viscosity and thermal 
conduction. 

Molecular relaxation occurs in polyatomic gases and liquids. Because of the
phase lag in transferring the ultrasonic energy to the different energy 
levels, relaxation gives rise to an extra attenuation, which is described 
by the parameter ω τ. The limit ω τ  1 applies to most media at ultra-
sonic frequencies.

Questions

1. Draw waveforms as a function of x for u(x), v(x), and P(x) for a 
traveling harmonic wave. Comment on the phase relationships in 
the forward direction of the form in Equation 3.14.

2. Use the results of Question 1 and Equation 3.52 to calculate I(x) for 
this wave. Calculate and sketch the graph of both instantaneous 
and average values of I(x).

3. Using data from Table 3.1, calculate for glycerin:
i. Viscous relaxation time τs

ii. Low frequency attenuation α s; compare this result with that of 
Table 3.1

4. Use an approximation for air as a perfect gas of molecular weight 
29. At STP (0°C and 1 atmosphere of pressure), calculate:

i. Mass density
ii. Average molecular velocity

iii. Mean free time between collisions
iv. Mean free path between collisions

5. Justify Equation 3.7.
6. Show that the condensation s, the density change per unit density =

−S, where S is the dilatation.
7. Find the specific acoustic impedance for a standing wave p = p0

sin  kx  cos  ω t.
8. For two waves of different frequency traveling in the +x direction, 

show that the specific acoustic impedance is ρ0V0.

pv

<<
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4

 

Introduction to the Theory of Elasticity

 

The theory of elasticity is the study of the mechanics of continuous media,
or in simple words, the deformation of the elements of a solid body by
applied forces. In this chapter we deal with static (time independent) elas-
ticity involving homogeneous deformations. In fact, the parameters defined
here can also be used at the finite frequencies occurring in ultrasonic prop-
agation. This is the simplest case and enables us to define concepts such as
deformation, strain tensor, stress tensor, and the moduli of elasticity. We
introduce tensor notation to describe the elastic parameters; it is a simple,
elegant, and powerful approach that is used throughout advanced treaties in
elasticity and acoustics. Complete discussions are given for tensors by Nye
[11] and for elasticity by Landau and Lifshitz [12].

 

4.1 A Short Introduction to Tensors

 

Study of physics and engineering leads to categorizing measurable quantities
as scalars or vectors. Scalars are physical quantities that can be represented by
a simple number, e.g., temperature. Equally important, they are not associated
with direction. A vector on the other hand explicitly depends on direction, for
example, velocity . In 3D space, we must specify the three components 

 

V

 

x

 

,

 

V

 

y

 

, and 

 

V

 

z

 

 to describe the velocity vector  fully.
The concept of tensor has been introduced as an extension of the idea of

a vector. In anisotropic media, tensors are essential to describe the relation
between two vectors. But even in isotropic media the idea of physical quan-
tities specified by more than three components is essential, as will be seen
in the theory of elasticity.

The concept of a tensor can be made concrete by a simple example, that
of the electrical conductivity in a solid. For a one-dimensional system (wire),
it is customary to represent the conductivity 

 

σ

 

 as the proportionality con-
stant linking the current density 

 

J

 

 to the electric field 

 

E

 

, 

 

J 

 

=

 

 

 

σ

 

E

 

. However,
for a three-dimensional medium that is anisotropic, the electric field  and
the current density  will be, in general, in quite different directions. So, in

V
V

E
J

 

0338_frame_C04  Page 59  Thursday, March 7, 2002  7:38 AM

© 2002 by CRC Press LLC



 

60

 

Fundamentals and Applications of Ultrasonic Waves

 

general, one must write

(4.1)

Thus, to specify the conductivity fully, we need to specify the nine compo-
nents that are usually written in matrix form as

(4.2)

The notation on the left is the tensor notation; for obvious reasons, 

 

σ

 

ij

 

 is
termed a tensor of the second rank.

For an isotropic system,  is always parallel to  and 

 

| |

 

 = 

 

σ

 

| |

 

. It follows
in this case that the conductivity tensor is given by

(4.3)

A simple rule that follows from the general form of 

 

σ

 

ij

 

 is that the rank of
a tensor is given by the number of indices. Thus, a scalar is a tensor of rank
zero and a vector is a tensor of rank one.

At this point it should be emphasized that although a tensor can be written
in matrix form, it is not just a simple matrix. A tensor represents a real physical
quantity, such as conductivity, while many matrices (e.g., change of coordi-
nates) are simple mathematical relationships. Many advanced texts show
that a tensor is rigorously defined by the way that it transforms under
coordinate transformation (e.g., see [11]), which will not be needed here, as
all the tensors used in this book represent well-known physical properties.

From a practical standpoint, much economy of presentation and elegance
can be obtained by using the Einstein convention. This convention says quite
simply that when a suffix occurs twice in the same term this automatically
implies summation over that suffix, which becomes a dummy index or
dummy suffix.

For example, Equation 4.1 can be written

(4.4)

J1 σ11E1 σ12E2 σ13E3+ +=
J2 σ21E1 σ22E2 σ23E3+ +=
J3 σ31E1 σ32E2 σ33E3+ +=

σij

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

=

J E J E

σij

σ 0 0
0 σ 0
0 0 σ

=

J1 σ1 jEj∑=

J2 σ2 jEj∑=

J3 σ3 jEj∑=
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or again

With the Einstein convention

(4.5)

where it is understood, and never indicated explicitly, that 

 

i

 

, 

 

j

 

 go over all
available values, here 1, 2, and 3 or 

 

x

 

, 

 

y

 

, and 

 

z

 

. In this relation 

 

i

 

 gives the
direction of current flow.

 

4.2 Strain Tensor

 

The basic idea is that forces will be applied to solid bodies to deform them.
As a starting point there is a need to describe the deformation. If a point at

 from the origin is displaced to position  by the force then the deformation
 is called the displacement vector. In tensor notation  

where 

 

u

 

i

 

 and  are functions of 

 

u

 

i

 

.
Since a point is displaced during a deformation then the distance 

 

dl

 

 between
two points close together is also changed. Using

(4.6)

(4.7)

Hence 

(4.8)

Using 

(4.9)

(4.10)

This can be written as

(4.11)

Ji σijEj

j=1

3

∑=

Ji σijEj=

r r ′
u r′i r–= ui x′i xi–=

x′i

dl2 dx1
2 dx2

2 dx3
2+ + dxi

2 before deformation= =

dl′2 dx′i
2 after deformation=

dl′2 dxi dui+( )2=

dui
∂ui

∂xk
-------- 

  dxk=

dl′2 dl2 2
∂ui

∂xk
-------- dxi dxk

∂ui

∂xk
--------

∂ui

∂xl
------- dxk dxl+ +=

dl′2 dl2 2Sik dxi dxk+=
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62 Fundamentals and Applications of Ultrasonic Waves

where 

(4.12)

If the strains are sufficiently small, which will always be assumed to be the
case in linear ultrasonics, then the quadratic terms can be ignored. The strain
tensor Sik is then

(4.13)

By construction the strain tensor is symmetric so that nine terms reduce to
six. Clearly three of these are diagonal and three are nondiagonal. Each diag-
onal term (i = k = 1, 2, or 3) has the simple significance shown in Figure 4.1.
For example,

(4.14)

is clearly the extension per unit length in the x1 direction. Hence, the diagonal
terms correspond to compression or expansion along one of the three axes.

The off-diagonal terms can be understood with reference to Figure 4.1 for
the case of a deformation of the plane perpendicular to the z axis. For small
deformations

(4.15)

where α1 and α2 are angles with the x and y axes, respectively.
Thus the change in angle between the two sides of the rectangle

(4.16)

is proportional to the shear strain Sxy .

FIGURE 4.1
Strains for a unit cube. (a) Tensile strain uxx. (b) Shear strain uxy. (c) Definition of angles for
shear strain uxy.

Sik
1
2
---

∂ui

∂xk
--------

∂uk

∂xi
--------

∂ul

∂xi
-------

∂ul

∂xk
--------+ + 

 =

Sik
1
2
---

∂ui

∂xk
--------

∂uk

∂xi
--------+ 

 =

S11
∂u1

∂x1
--------=

α1 α1∼tan
∂uy

∂x
-------- , α2 α2∼tan

∂ux

∂y
--------==

α1 α2+
∂ux

∂y
--------

∂uy

∂x
--------+=
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Introduction to the Theory of Elasticity 63

A final property of the strain tensor can be obtained from the following
mathematical results:

i. Any symmetric tensor can be diagonalized at a point by the choice
of appropriate axes. If this is done then the strain tensor has diag-
onal components S(1), S(2), and S(3) and the off-diagonal terms are
zero.

ii. The trace (i.e., the sum of the diagonal terms) of a symmetric tensor
is invariant under change of coordinates. From (i), the trace will
then be S(1) + S(2) + S(3) for the choice of any coordinate system.

Suppose that the coordinates are chosen so that Sik is diagonal; then

(4.17)

where the relative displacement along axis i is S(i).
Consider the volume before and after deformation of a small volume

element dV. It follows that

(4.18)

so that 

(4.19)

again neglecting quadratic terms.
In any coordinate system, the trace can be written

Sii = S11 + S22 + S33 (4.20)

This gives finally

(4.21)

so that Sii gives the relative change in volume under deformation. This can
be expressed as the dilatation S, which is the change in volume per unit
volume, which can be expressed as

S = Sii = S11 + S22 + S33 (4.22)

dl′2 ∂ik 2Sik+( )dxi dxk=

1 2S 1( )+( )dx1
2 1 2S 2( )+( )dx2

2 1 2S 3( )+( )dx3
2+ +=

dV dx1 dx2 dx3=
dV′ dx′1 dx′2 dx′3=

dV′ dV 1 S 1( )+( ) 1 S 2( )+( ) 1 S 3( )+( )=

dV 1 S 1( ) S 2( ) S 3( )+ + +( )≈

dV′ dV 1 Sii+( )=
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64 Fundamentals and Applications of Ultrasonic Waves

4.3 Stress Tensor

We assume a body in static equilibrium under external forces such that there
is no net translation or rotation. What is of concern is the effect of internal
forces on a hypothetical unit cube inside the solid. These forces could arise,
for example, from an ultrasonic wave impinging on the region in question.
In principle there could be two types of forces acting on the cube; body forces
(acting on the volume) and surface forces. Body forces such as gravity will
not be considered, so that a description is needed for surface forces acting
on the faces of the cube. These forces will lead to deformation of the cube,
which can be described by the strain tensor treated previously. Once this
description has been obtained, it will be possible to formulate a three-
dimensional equivalent of Hooke’s law for a relation between the forces and
the deformations.

As seen in Figure 4.2, an applied force will generally be at some arbitrary
angle to the unit cube. Since we are considering forces on the faces of the
cube, we consider a particular face, for example, the xy face with normal
along the z axis.

FIGURE 4.2
Definition of components of the stress tensor.
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Introduction to the Theory of Elasticity 65

The components of the applied force can be separated into two major
classes:

• Normal component to the face, which will give rise to compressive
or tensile stresses.

• Tangential components, giving rise to shear stresses. For the example
considered there are two of these: dFx and dFy .

In one dimension, the stress on a rod is defined as the force per unit area.
In extending this definition to three dimensions, as above, clearly there are
two vectors involved, namely the direction of the surface normal and the
direction of the force. It follows that in three dimensions the stress must be
described by a stress tensor of rank two.

Extending directly from one dimension

(4.23)

so that all of the components are described by a stress tensor of rank two.
The condition of static equilibrium leads to symmetry of the stress tensor.

The tensile stresses along any one axis must balance; otherwise the body
would accelerate, so that there can only be three independent diagonal stresses.
Likewise the shear stresses must balance to avoid rotation, leading to three
off-diagonal stresses. An elegant demonstration of this, together with a
more abstract presentation of the stress tensor is given by Landau and
Lifshitz [12 ].

Finally, for the specific case of a liquid, the pressure is hydrostatic; it is
uniform and the same in all directions. Hence, for a sphere the force in
direction i on surface element dA is

(4.24)

Here δij is the Kronecker delta, an extremely useful mathematical device. It
is defined as

(4.25)

Hence, for uniform hydrostatic compression

(4.26)

Tzz
Fz

Az
------ , Tzy

Fz

Ay
------ , Tzx

Fz

Ax
------= = =

dFi p dAi– pδik dAk–= =
Tik dAk=

δik
1 i k=
0 i k≠




=

Tik pδik–=

Tik

p– 0 0
0 p– 0
0 0 p– 

 
 
 
 

=
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66 Fundamentals and Applications of Ultrasonic Waves

The nondiagonal elements correspond to shear stress; these are zero, corre-
sponding to the well-known fact that an inviscid liquid cannot support a
shear stress.

4.4 Thermodynamics of Deformation

Assume small and slow deformations so that the latter can be assumed to
be elastic (so that it returns to its original state when external forces are
removed) and reversible in the thermodynamic sense.

In general, the thermodynamic identity gives

dU = TdS + dW (4.27)

where
U = internal energy
T = temperature
S = entropy
W = work done on the system

For the particular case of hydrostatic compression

dW = −pdV = −pdSii = −pδik dSik = Tik dSik (4.28)

so that

dU = TdS + Tik dSik (4.29)

as shown elsewhere [12] this form is in fact true in the general case.
For the Helmholtz free energy F = U − TS, so 

dF = −SdT + Tik dSik (4.30)

and for the Gibbs free energy G = H − TS

(4.31)

From the form of a perfect differential in terms of its partial derivatives

(4.32)

and

(4.33)

H U pV+=
G U TS– Tik dSik– F Tik dSik–= =

Tik
∂U
∂Sik
--------- 

 
S

∂F
∂Sik
--------- 

 
T

= =

Sik
∂G
∂Tik
---------- 

 
T

–=
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4.5 Hooke’s Law

In its simplest form Hooke’s law states that for small elongations of an elastic
system the stress is proportional to the strain. There are two different and
equivalent approaches to Hooke’s law for the isotropic solid, each important
and instructive in its own way. The first [12] is based on Landau’s classic
expansion of the Helmholtz free energy in parameters of the system and
subsequent application of statistical physics. In this case, the free energy F
is expanded in terms of the strain tensor

(4.34)

where λ and µ are called the Lamé coefficients. This expansion takes in
account the following points:

i. For the undeformed system at constant temperature Sik = 0 and
Tik = 0. Since Tik = , there is no linear term in the expansion.

ii. Since F is a scalar, every term in the expansion must be a scalar.
Since the diagonal terms  and all diagonal terms  are scalars
the coefficients λ and µ are also scalars.

The form of F can be rewritten to take into account the two fundamentally
different forms of deformation of isotropic bodies:

i. Pure shear, corresponding to constant volume and change of shape.
Sii = 0 in this case.

ii. Pure hydrostatic compression, corresponding to change in volume
at constant shape.

Any deformation can be written as the sum of two, leading to the following
form

(4.35)

The first term is pure shear, the second hydrostatic compression.
The free energy can be rewritten to show shear and compression explicitly

(4.36)

where now

FT F0
1
2
--- λuii

2 µSik
2++=

∂F/∂Sik( )T

Sii
2 Sik

2

Sik Sik
1
3
--- δikSll– 

  1
3
--- δikSll+=

F µ Sik
1
3
---δikSll– 

 
2 1

2
--- KSll

2+=

K λ 2
3
--- µ+ modulus of compression= =

µ modulus of rigidity=

(4.37)
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68 Fundamentals and Applications of Ultrasonic Waves

This rearrangement of terms is more than a mathematical device. It will be
seen that these two moduli determine the velocities of the two acoustic
modes, longitudinal and shear, that can propagate in an isotropic solid.

Statistical physics tells us that the Helmholtz free energy is a minimum
for a system at constant temperature in thermal equilibrium. In the absence
of external forces, this minimum must occur at Sik = 0. The two quadratic
forms in Equation 4.36 must be positive, so a necessary and sufficient con-
dition for F to be positive is that K > 0, µ > 0.

The thermodynamic relations of the preceding section can be used to
determine the relations between stress and strain, in particular Equation 4.32.
Directly from Equation 4.36

(4.38)

so that finally

(4.39)

This result shows that pure compression and shear deformation give rise
to stress components proportional to K and µ, respectively. It is also a man-
ifestation of Hooke’s law as in both cases stress is proportional to strain.

It is easy to find the inverse expression linking Sik to Tik. Directly from
Equation 4.39

Tii = 3KSii (4.40)

Then immediately Equation 4.39 can be inverted to give

(4.41)

which again demonstrates Hooke’s law. Equation 4.41 gives the important
result that the diagonal components of stress and strain are uniquely con-
nected for the case of pure hydrostatic compression. In this case, Tik = −pδik

so that

(4.42)

For small variations we can write the compressibility χ as

(4.43)

dF KSll dSll 2µ Sik
1
3
--- Sllδik– 

  d Sik
1
3
--- Sllδik– 

 +=

KSllδik 2µ Sik
1
3
--- Sllδik– 

 + dSik=

Tik
∂F

∂Sik
--------- 

 
T

KSllδik 2µ Sik
1
3
--- Sllδik– 

 += =

Sik
δikTll

9K
------------

Tik
1
3
--- δikTll–( )

2µ
----------------------------------+=

Sii
p
K
----–=

χ 1
K
---- 1

V
---- ∂V

∂p
------- 

 
T

–= =
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Finally, Euler’s theorem can be applied to obtain a compact form for F.
Since F is quadratic in Sik, Euler’s theorem states that

(4.44)

Together with , this gives

(4.45)

The second approach to Hooke’s law is much more direct and will be of
more practical use. Tij is expanded as a Taylor’s series in Skl

(4.46)

The first term Tij(0) ≡ 0 at Sij = 0 since stress and strain go to zero simulta-
neously for elastic solids. The third (nonlinear) term will be neglected here;
it forms the basis of the third-order elastic constants and nonlinear acoustics.
In linear elasticity, the series is truncated after the second term, leading to

Tij = cijklSkl (4.47)

where 

(4.48)

is known as the elastic stiffness tenor or elastic constant tensor.
A similar Taylor’s series expansion of Sij in terms of Tkl could be carried

out in identical fashion, leading to the elastic compliance tensor sijkl where

(4.49)

Each tensor can be deduced from the other by

(4.50)

and in what follows cijkl will be used exclusively.
Since stress is proportional to strain cijkl represents Hooke’s law in three

dimensions and is the extension of the one-dimensional spring constant k in
F = −kx. It is obviously a fourth-rank tensor, as it must be, as it links two
second-rank tensors. Lastly, since both Tij and Skl are symmetric, this sym-
metry is reflected in cijkl, which is also itself symmetric

cijkl = cjikl = cijlk = cjilk (4.51)

Sik
∂F

∂Sik
--------- 2F=

Tik ∂F/∂Sik( )T=

F 1
2
--- TikSik=

Tij Tij 0( )
∂Tij

∂Skl
---------- 

 
Skl=0

1
2
---

∂ 2Tkl

∂Sij∂Smn
--------------------- 

 
Sij=0, Smn=0

SijSmn+ +=

cijkl
∂Tij

∂Skl
--------- 

 
Skl=0

≡

Sij
∂Sij

∂Tkl
---------- 

 
Tkl=0

Tkl sijklTkl= =

sijkl cijkl
1–=
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70 Fundamentals and Applications of Ultrasonic Waves

and 

cijkl = cklij (4.52)

These symmetry operations reduce the number of independent constants
from 81 to 36 to 21 for crystals of different symmetries. The number varies
from 21 (triclinic) to 3 (cubic) as is shown in numerous advanced texts in
acoustics. For isotropic solids it has already been demonstrated that there
are only two independent elastic constants.

In fact it is well known [12 ] that for an isotropic solid

cijkl = λδijδkl + µ(δikδjl + δilδjk) (4.53)

where λ and µ are the Lamé coefficients already introduced.
It is standard practice to use a reduced notation for the elastic constants,

due to the symmetry of the Tij and Skl. Since each of the latter has six inde-
pendent components, the cijkl tensor has a maximum of 36. This leads to the
introduction of the so-called engineering notation where the cαβ  cijkl. Since
ij and kl go in pairs, the six α and β values are as shown in Table 4.1. Again,
the symmetry of cIJ

cIJ = cJI

leads to a maximum of 21 independent constants.
Since the same symbol c is universally used for the elastic constant tensor,

it is immediately obvious from the number of indices whether the full or
reduced notation is being used. Thus if c11 is used, it can only be in reduced
notation, which is, in fact, more current in the literature. Using Hooke’s law
and the isotropic form of cijkl, we obtain immediately

Tij = λ(Sxx + Syy + Szz) + 2µijSii (4.54)

for extensional stress, i = x, y, z and

Tij = 2µSij (4.55)

TABLE 4.1

Conversion Table from 
Regular Indices to Reduced 
Indices (Engineering Notation)

αααα, ββββ ij, kl

1 11
2 22
3 33
4 23 = 32
5 31 = 13
6 12 = 21

≡
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for tangential stress with i, j = x, y, z and i ≠ j.
In reduced notation the stiffness matrix in the general case is thus

(4.56)

while for the isotropic case

(4.57)

where as before

TJ = λ(S1 + S2 + S3) + 2µSJ, J = 1, 2, 3 (4.58)

for extensional stress and

TJ = µSJ, J = 4, 5, 6 (4.59)

for tangential stress.

4.6 Other Elastic Constants

Four other parameters have found practical use as they are directly related
to measurements, which is not the case, for example, for the parameter λ for
solids. Important mathematical relations between these parameters and val-
ues for representative materials are given in Tables 4.2 and 4.3.

i. Young’s modulus E is defined as the ratio of axial stress to axial
strain for a free-standing rod. E can be expressed using Equation
4.58 as follows.

cIJ

c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26

c31 c32 c33 c34 c35 c36

c41 c42 c43 c44 c45 c46

c51 c52 c53 c54 c55 c56

c61 c62 c63 c64 c65 c66

=

cIJ

λ 2µ+ λ λ 0 0 0
λ λ 2µ+ λ 0 0 0
λ λ λ 2µ+ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

=

0338_frame_C04  Page 71  Thursday, March 7, 2002  7:38 AM

© 2002 by CRC Press LLC



72 Fundamentals and Applications of Ultrasonic Waves

Let the rod be aligned along the x axis, so that the only stress
component is Txx = T1. Then

(4.60)

Hence 

(4.61)

The usefulness of this parameter is that it is obtained in a standard
laboratory measurement. Relations between E and the other elastic

TABLE 4.2
Expressions for the Elastic Constants in Terms of Different Pairs of 
Independent Parameters

λλλλ, µµµµ c11, c44 E, σσσσ E, µµµµ

λ λ c11 − 2c44

µ µ c44 µ

E
E E

K

σ σ − 1

TABLE 4.3

Elastic Constants for Representative Isotropic Solids

Young’s
Modulus

Modulus of 
Compression Lamé Constants Poisson’s

Substance
E

109 n-m−−−−2
K

109 n-m−−−−2
λλλλ

109 n-m−−−−2
µµµµ

109 n-m−−−−2
Ratio

σσσσ

Epoxy 4.5 6.7 5.63 1.60 0.39
Lucite 3.9 6.5 5.60 1.39 0.4
Pyrex glass 60.3 39.6 23.4 24.21 0.25
PZT-5 A 104.1 94.0 67.4 39.6 0.32
Aluminum 67.6 78.1 61.4 25.0 0.36
Brass 104.8 140.2 114.7 38.1 0.38
Copper 128.6 209.0 178.2 46.0 0.40
Gold 80.6 169.1 150.1 28.4 0.42
Lead 34.7 98.8 90.8 12.1 0.44
Fused quartz 72.5 37.0 16.3 30.9 0.17
Steel 194.2 167.4 113.2 80.9 0.29
Beryllium 73.0 115.1 16.3 147.5 0.05
Sapphire (z) 895 298.8 201.0 145.9 0.29

Eσ
1 σ+( ) 1 2σ–( )

--------------------------------------- µ E 2µ–( )
3µ E–

-------------------------

E
2 1 σ+( )
---------------------

µ 3λ 2µ+( )
λ µ+

----------------------------
c44 3c11 4c44–( )

c11 c44–
-------------------------------------

λ 2µ
3

------+ c11
4c44

3
---------–

E
3 1 2σ–( )
------------------------ Eµ

3 3µ E–( )
------------------------

λ
2 λ µ+( )
---------------------

c11 2c44–
2 c11 c44–( )
-------------------------- E

2µ
------

T1 λ 2µ+( )S1 λ S2 S3+( )+=
0 λ 2µ+( )S2 λ S1 S3+( )+=
0 λ 2µ+( )S3 λ S1 S2+( )+=

E
T1

S1
----- µ 3λ 2µ+( )

λ µ+
----------------------------= =

0338_frame_C04  Page 72  Thursday, March 7, 2002  7:38 AM

© 2002 by CRC Press LLC



Introduction to the Theory of Elasticity 73

constants are given in Table 4.2; evidently the two independent
elastic constants can be chosen to be (E,µ), (E, σ ), (λ,µ), or (c11, c44). 

ii. Poisson’s ratio σ is given by the ratio of the lateral contraction to
the longitudinal extension of the rod in (i).

(4.62)

σ can be measured in the same experiment as Young’s modulus. 
It has been pointed out that by Landau and Lifshitz [12] that in
principle −1 ≤ σ ≤ 0.5, although negative values of σ have never
been observed. Also it can be shown that σ > 0 corresponds to λ > 0,
although neither of these is thermodynamically necessary. Finally,
σ ∼ 0.5 corresponds to materials for which the modulus of rigidity
µ is small compared to the modulus of compression K.

iii. Bulk modulus or modulus of compression 

(4.63)

and its reciprocal, the compressibility  

(4.64)

Both parameters should be specified as being given in either adi-
abatic or isothermal conditions.
For a solid under uniform hydrostatic pressure

Tij = −pδij (4.65)

using  

Tij = λSδij + 2µSij

and  

S = S11 + S22 + S33

this gives  

Hence,

(4.66)

as was used earlier in Equation 4.37.

σ S3

S1
-----–

S2

S1
-----–

λ
2 λ µ+( )
---------------------= = =

K
p
S
---–≡

χ 1
V
---- ∂V

∂p
------- 

  .–≡

p λ 2µ
3

------+ 
  S– KS–= =

K λ 2µ
3

------+=
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74 Fundamentals and Applications of Ultrasonic Waves

iv. Rigidity modulus µ. For a pure shear ,
for a free-standing sample. The rigidity modulus thus plays a role
for shear waves analogous to that of Young’s modulus for longi-
tudinal waves in the longitudinal stretching of a free-standing rod.
Since only two elastic constants are needed to describe the isotropic
case fully, there are a number of possible choices. Values for each
of these constants in terms of common choices for the two inde-
pendent constants are given in Table 4.2. Representative values of
these constants are given in Table 4.3.

Summary

Tensor of order n is a tensor requiring n indices to specify it.
Einstein notation or Einstein summation convention is a convention that

repeated indices in the same term of a tensor equation are summed
over all available values.

Strain tensor Sij is a linearized second-order tensor describing the mechanical
strain at a point. The strain tensor is symmetric.

Stress tensor Tij is a second-order symmetric tensor describing the local
stress. The first index gives the direction of the force, the second gives
the direction of the normal to the surface on which it acts.

Lamé constants λ and µ are the constants historically chosen to describe the
elastic properties of an isotropic solid.

Modulus of compression or bulk modulus K is the elastic constant corre-
sponding to hydrostatic compression.

Compressibility is the reciprocal of the bulk modulus.
Elastic constant tensor is a fourth-order symmetric tensor giving the stress

tensor as a function of the strain tensor. It is also called the elastic
stiffness tensor.

Young’s modulus is the elastic constant corresponding to the stretching of
a free-standing bar.

Poisson’s ratio is the ratio of the lateral contraction to the longitudinal
extension of a free-standing bar.

Questions

1. For the case of the axial extension of a bar, what would be the
implications of a negative Poisson’s ratio to the deformation? What
would be the consequences for the other elastic parameters?

2. In Einstein notation a spatial derivative is written using a comma,
for example,  = uij,j. Write the following differential equations

µ shear stress/shear strain≡

δuij /δxj
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and vector algebra forms in Einstein notation:
i. grad ϕ

ii. curl 
iii. div 
iv.
v. = 

3. Write out the following equations written in Einstein notation in
full Cartesian form:

i. uij = (ui,j + uj,i) + (uk,i uk,j)
ii. Pi = dijkδjk

iii. Pi = K0XijEj

4. Verify the results of Table 4.1.
5. Write out in full the results of Equation 4.65 to show that K = λ + 2µ/3.

i. A rectangular plate has length l (x direction), width w (y direction)
and thickness t (z direction). A uniform stress Txx is applied at
the ends and a uniform stress Tyy on both sides, so that the width
remains unchanged. Using Hooke’s law, determine Poisson’s
ratio and Young’s modulus.

ii. Express the above results as a function of E and σ.

Ψ
E

∇2E
δ 2u
δt2
--------- V0

2 δ 2u
δx2
---------

1
2
--- 1

2
---

0338_frame_C04  Page 75  Thursday, March 7, 2002  7:38 AM

© 2002 by CRC Press LLC



      
5
Bulk Acoustic Waves in Solids

Elasticity theory provides a complete description of the static properties of 
a mechanical system and in fact parameters such as the elastic moduli can 
also be used to describe the dynamic properties over the full ultrasonic 
frequency range. However, we need a dynamic theory to describe wave 
propagation and that is provided in the present chapter. We first generalize 
the one-dimensional results for fluids to the case of one-dimensional longi-
tudinal waves in solids. We then examine the three-dimensional solid, where 
both longitudinal and transverse modes are present. Finally, we discuss the 
attenuation mechanisms in a number of important cases.

The basic results for one-dimensional propagation in fluids can be gener-
alized to the one-dimensional propagation of a simple longitudinal mode in 
solids. There are of course many differences between liquids and solids 
regarding their acoustic properties. For our purposes some important ones 
are the following:

1. Compared to solids, liquids are very compressible. This is why the 
acoustic pressure and the compressibility are commonly used as 
parameters for liquids. Except for specialized applications, one never 
uses these parameters in solids; the stress and the elastic constants 
are the appropriate parameters in this case.

2. Liquids can change shape, as it were, at will, or at least to accom-
modate the container. Hence, a liquid cannot support a static shear 
stress; shear waves can only propagate in liquids at high frequen-
cies and then only for a very short distance. However, in solids it 
is essential to take into account longitudinal and transverse waves 
to give a full description. Thus, the scalar theory is insufficient to 
describe the three-dimensional behavior of solids.

3. In liquids the pressure is a scalar and acts uniformly on a volume 
element, so that the modulus of compression (bulk modulus) is the 
appropriate modulus for longitudinal wave propagation. In solids, 
however, one can have a unidirectional compression or tension so 
that the appropriate modulus for longitudinal waves is not the bulk 
modulus.
© 2002 by CRC Press LLC
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In this chapter, we summarize the one-dimensional results and write them 
in the notation for longitudinal and transverse waves in solids. This is fol-
lowed by the three-dimensional theory for isotropic solids. Finally, we describe
the propagation properties of ultrasonic waves and attenuation mechanisms 
in a number of important cases.

5.1 One-Dimensional Model of Solids

We generalize the results of Chapter 3 for fluids as appropriate for longitu-
dinal modes in solids for propagation in the x direction with wave velocity 
VL. We consider an element of length l undergoing an elongation ∂ u due to 
an external force F in the positive x direction.

The external stress is  F/A, so that the net stress on the element is ∂  T =
l( ). This leads to a net force per unit volume on the element of 

The strain is

(5.1)

Hooke’s law is given by T  cS where c is a constant.
Writing Newton’s law

(5.2)

and combining this with Hooke’s law, we immediately obtain the wave 
equation

(5.3)

which can also be written for the stress and the velocity, similar to the case 
for fluids.

The solutions for the displacement are

u = A exp j(ω t − βx) + B exp j(ω t + βx)

As for fluids the first term corresponds to propagation in the forward direc-
tion (+x) and the second to the propagation in the backward direction (−x).

The propagation parameters are

• wave number β = 
• wave velocity VL = 

T ≡
∂T/∂x ∂T/∂x .

S ∂u
l

------ ∂u
∂x
------= =

≡

∂T
∂x
------ ρu̇̇=

∂ 2u
∂x2
---------

ρ0

c
----- ∂ 2u

∂t2
---------=

ω/VL

c/ρ0
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Bulk Acoustic Waves in Solids 79
The instantaneous values of the energy density follow from the expressions 
for the fluid and elasticity theory of Chapter 4.

(5.4)

(5.5)

and hence the average values are

(5.6)

(5.7)

and finally

(5.8)

The acoustic intensity I can be written as

(5.9)

and the instantaneous acoustic Poynting vector

(5.10)

which follows directly as a generalization of Equation 3.52.

5.2 Wave Equation in Three Dimensions

Following the case for optics, on physical grounds we expect to find three 
acoustic polarizations in three dimensions; indeed, it is well known that for 
3N atoms there are 3N normal modes, three branches with N modes per 
branch. On physical grounds, one expects to find one longitudinal branch 
and two transverse branches with orthogonal polarization. This section 
shows how the existence of the longitudinal and transverse branches flows 
directly from the formalism developed thus far.

uK
1
2
--- ρ0v2=

uP
1
2
--- TS=

uK
1
2
--- Re 1

2
--- ρvv∗ 1

4
--- Re ρvv∗[ ]= =

uP
1
2
--- Re 1

2
--- TS∗=

ua
1
2
--- Re TS∗[ ]=

I uaVL=

P vT–=
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80 Fundamentals and Applications of Ultrasonic Waves
The wave equation in three dimensions can be obtained immediately by 
combining the following two equations already seen:

(5.11)

Tij = cijklSkl (5.12)

With the various possibilities of full and reduced notation and the Lamé 
constants, i.e., cijkl, cIJ, λ, and µ, there are many possible choices for proceed-
ing. Anticipating the result we choose c11 and c44; also in this case the decou-
pling between longitudinal and transverse modes is most transparent. Thus

(5.13)

where

(5.14)

Thus the equation of motion becomes

(5.15)

This can be written in vectorial form

(5.16)

where

(5.17)

and

 is the Laplacian (5.18)

Finally,

(5.19)

∂Tij

∂xj
--------- ρ0

∂ 2ui

∂t2
----------=

Tij c11 2c44–( )Sδij 2c44Sij+ c11 2c44–( )Sδij c44
∂ui

∂xj
-------

∂uj

∂xi
-------+ 

 += =

S dilatation Sii divu
∂ui

∂xi
-------= = = =

ρ∂ 2ui

∂t2
---------- ∂

∂xi
------- c11 2c44–( )∂ui

∂xi
------- c44

∂ 2ui

∂xj
2

---------- c44
∂

∂xi
-------

∂ui

∂xj
------- 

 + +=

ρ∂ 2u
∂t2
--------- c11 c44–( )∇ ∇ u•( ) c44∆u+=

∇ ∂
∂x1
-------- , ∂

∂x2
-------- , ∂

∂x3
-------- 

 =

∆ ∂ 2

∂xk
2

--------=

ρ∂ 2u
∂t2
--------- c11 c44–( )∇ ∇ u•( ) c44∇

2u+=
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For very good reasons it is traditional at this point to write that any vector 
can be written as the gradient of a scalar and the curl of a vector, the two 
new quantities being known as the scalar (φ) and vector ( ) potentials.

Thus

(5.20)

where

(5.21)

(5.22)

Substituting in the equation of motion

(5.23)

Using the Helmholtz identity in vector analysis this becomes

(5.24)

Since the first term is purely a scalar and the second purely a vector, the two 
terms must be separately equal to zero:

 (5.25)

 (5.26)

Since c11 = λ + 2µ and c44 = µ, we immediately associate the first equation with
longitudinal waves and the second with transverse waves. It is thus natural 
that the scalar potential φ is associated with the propagation of the purely 
scalar property, the dilatation, and the vector potential with transverse waves 
that must have two (orthogonal) states of polarization. Most important, the 
use of scalar and vector potentials has allowed us to separate the equations 
of propagation of these two independent modes.

Writing mo re explicitly

(5.27)

(5.28)

ψ

u ∇ φ ∇ ψ×+=

∇ ∇ φ( ) 0≡×

∇ ∇ ψ×( )• 0≡

ρ∂ 2φ
∂t2
--------- ρ

∂ 2 ∇ ψ×( )

∂t2
-------------------------+ c11 c44–( )∇ ∇ 2φ( ) c44∇

2 ∇ φ( ) c44∇
2 ∇ ψ×( )+ +=

∇ ρ ∂ 2φ
∂t2
--------- c11∇

2φ– 
  ∇ ρ∂ 2ψ

∂t2
---------- c44∇

2ψ– 
 ×+ 0=

ρ∂ 2φ
∂t2
--------- c11∇

2φ=

ρ∂ 2ψ
∂t2

---------- c44∇
2ψ=

uL ∇ φ,= ∇ uL× 0≡

uT ∇ ψ× ,= ∇ uT• 0≡
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we obtain

(5.29)

where

(5.30)

The vectorial properties of  and  confirm the previous conclusions. 
Since , there is no change in volume associated with  (hence ), 
which is as it must be for a transverse wave. Likewise  means that 
there is no change in angle or rotation associated with , which is char-
acteristic of a longitudinal wave. Displacement deformations for typical 
longitudinal and transverse waves are shown in Figure 5.1.

The energy and acoustic power relations for both longitudinal and trans-
verse waves can be extended directly from their one-dimensional forms. 
Thus the potential and kinetic energies per unit volume are

 (5.31)

and

(5.32)

The instantaneous Poynting vector P , which gave a power flow −vT per unit 
area in one dimension, becomes straightforwardly

 (5.33)

in three dimensions.
The above analysis shows that bulk waves consist of one longitudinal 

mode and two mutually orthogonal transverse modes. A standard terminol-
ogy has been developed to identify these modes and it is used universally 
to describe bulk and guided modes. The plane of the paper (saggital plane) 
contains the x axis and the surface normal (z axis). The y axis is perpendicular 
to this plane. Calculations for bulk modes will then be carried out with 
longitudinal waves and transverse waves with polarization in the plane of 
the paper both having wave vectors in the plane of the paper. These may 
also be referred to as P (pressure) and SV (shear vertical) modes, respectively, 
following the original geophysical terminology. Transverse waves propagat-
ing in the saggital plane with polarization perpendicular to the paper ( y
axis) are called SH (shear horizontal) modes. In this language, the acoustic 

∂ 2uL

∂t2
----------- VL

2 ∇ 2uL,= ∂ 2uT

∂t2
----------- VT

2 ∇ 2uT=

VL
c11

ρ
------= and VT

c44

ρ
------=

uL uT

∇ uT• 0≡ uT ψ
∇ uL× 0≡
uL φ( )

uP Tij
dSij

dt
---------=

uK
1
2
---ρu̇i

2=

Pj xi, t( ) Tij
∂ui

∂t
-------–=
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FIGURE 5.1
Grid diagrams for the deformations caused by bulk plane waves propagating along the x axis. 
(a) Longitudinal waves. (b) Transverse waves polarized in the z direction.
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84 Fundamentals and Applications of Ultrasonic Waves
modes conveniently break up into the orthogonal, uncoupled groups of sag-
gital (P, SV) and SH modes.

5.3 Material Properties

We discuss first the propagation properties primarily associated with the 
sound velocity. This is followed by a summary of the principal sources of 
attenuation of ultrasonic waves. It is important to have a feeling for the 
orders of magnitude of the densities, sound velocities, and acoustic imped-
ances of different materials. Representative values are given in Table 5.1, 
which should be compared with those of Table 3.1. A cursory glance confirms 
what we already know, namely that most solids have densities and sound 
velocities much greater than water, which are again much greater than those 
in air. This state of affairs is most usefully summarized in a single parameter, 
the acoustic impedance, given for longitudinal and transverse waves in 
Figures 5.2 and 5.3. It will be shown in Chapter 7 that the amplitude reflection 
coefficient at the interface between two media is given by

(5.34)

where the incident wave is from medium 1 and partially transmitted into 
medium 2. Two limiting cases are of interest. If Z2 = Z1, the reflection 
coefficient is zero; it is as if the wave continued traveling forward in a single 

TABLE 5.1

Acoustic Properties of Various Solids

Solid
VL 

(km////s)
VS 

(km////s)
ρρρρ 

(103 kg////m3)
ZL 

(MRayls)
ZS 

(MRayls)

Epoxy 2.70 1.15 1.21 3.25 1.39
RTV-11 Rubber 1.05 1.18 1.24
Lucite 2.70 1.10 1.15 3.1 1.25
Pyrex glass 5.65 3.28 2.25 13.1 7.62
Aluminum 6.42 3.04 2.70 17.33 8.21
Brass 4.70 2.10 8.64 40.6 18.15
Copper 5.01 2.27 8.93 44.6 20.2
Gold 3.24 1.20 19.7 63.8 23.6
Lead 2.16 0.7 24.6 7.83 0.44
Fused quartz 5.96 3.75 2.2
Lithium niobate (z) 7.33 4.7 34.0
Zinc oxide (z) 6.33 5.68 36.0
Steel 5.9 3.2 7.90 46.0 24.9
Beryllium 12.90 8.9 1.87 24.10 16.60
Sapphire (z) 11.1 6.04 4.0 44.4 24.2

R
Z2 Z1–
Z2 Z1+
------------------=
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FIGURE 5.2
Density-sound velocity/longitudinal characteristic acoustic impedance plots on a log-log scale 
for various solids. (Based on a graph by R. C. Eggleton, described in Jipson, V. B., Acoustical 
Microscopy at Optical Wavelengths, Ph.D. thesis, E. L. Ginzton Laboratory, Stanford University, 
Stanford, CA, 1979.)

FIGURE 5.3
Density-sound velocity/transverse characteristic acoustic impedance plots on a log-log scale 
for various solids. (Based on a graph by R. C. Eggleton, described in Jipson, V. B., Acoustical 
Microscopy at Optical Wavelengths, Ph.D. thesis, E. L. Ginzton Laboratory, Stanford University, 
Stanford, CA, 1979.)
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medium. On the other hand, if Z2  Z1 then R ∼  1, i.e., the wave is almost 
totally reflected. These two limits are important because in most ultrasonic 
applications one is either trying to keep the wave from going into another 
medium (e.g., reflecting face of a delay line) or, contrariwise, maximize its 
transmission from one medium into another (e.g., maximum transmission 
from a transducer into a sample in NDE). Examples of this type come up 
repeatedly and in practical applications it is important to have an intuitive 
grasp of the magnitude of the acoustic impedances involved.

For order of magnitude purposes let us take a typical solid as having a 
density of 5000 kg · m−3 and a longitudinal velocity of 5000 m · s−1, giving a 
longitudinal acoustic impedance of 25 MRayls where the Rayl (after Lord 
Rayleigh) is the MKS unit of acoustic impedance. Referring to Table 5.1 it is 
seen that the range for typical solids is 10 to 15 MRayls, with some high-
density, high-velocity materials such as tungsten going up to 100 MRayls. By 
comparison, plastics and rubbers are in the range 1 to 5 MRayls, water 
1.5 MRayls, and air is orders of magnitude less at 400 Rayls. This is why, for 
off-the-cuff calculations, a solid-air or liquid-air interface can be taken to first 
order as totally reflecting. In some cases, the required range of sound veloc-
ities or densities of a material is fixed by other considerations (e.g., focusing 
properties of acoustic lenses), in which case Figures 5.2 and 5.3 are useful for 
showing at a glance the possible choices of common materials in a given 
acoustic impedance range.

The densities of materials used in ultrasonics applications are temperature 
independent except for very special cases. This, however, is not the case for 
sound velocity. From absolute zero up to room temperature, the sound velo-
city typically decreases by about 1%, giving a slope at room temperature 

. This is an intrinsic, thermodynamic effect that has 
its origin in the nonlinear acoustic properties of solids. It can be a particularly 
important consideration in the design and operation of acoustic surface wave 
devices and acoustic sensors.

Ultrasonic attenuation α in solids is a difficult parameter to specify in 
absolute terms, yet it is very important. In fundamental physical acoustics, 
a quantitative knowledge of α is often very useful for a validation of models 
and theories; verification of the BCS theory of superconductivity is one 
example, and there are many others. In applications and devices the empha-
sis is almost always on reducing the attenuation as much as possible to 
improve device performance. In some special cases (transducer backings), 
the opposite is desired. In either case it must be controlled, and to do this it 
must be understood. This is not always easy as there are many contributing 
factors that are difficult to control going from the state of the sample to the 
measuring conditions. The attenuation in many samples is almost entirely 
determined by the fabrication and sample preparation process. As for the 
measurement, to obtain an accurate value of α we require in principle a 
perfection exponential decay of echoes in the sample, as explained in 
Chapter 12. This is almost never achieved in practice even under the best 
laboratory conditions. Hence, accurate absolute attenuation values are never 

>>

1/V( ) δV/δT( ) 10 4– K 1–∼
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quoted and in most cases the relative attenuation is measured as a function 
of some parameter, such as temperature, pressure, or magnetic field. Due to 
these difficulties, in fundamental studies it is often more useful to measure 
the absolute and/or relative velocity variations, which are much less prone to
experimental artifacts.

In the following, we consider mainly the principal sources of attenuation, 
their order of magnitude in different materials, and their variation with 
frequency and temperature. Only longitudinal waves will be covered unless 
stated otherwise. Sources of attenuation will be divided into two classes: 
intrinsic (thermal effects, elementary excitations) and those due to imperfec-
tions (impurities, grain boundaries, dislocations, cracks, etc. are some of the 
usual suspects). Detailed discussions of the physical origin of attenuation in 
solids are given in [7] and [13].

The intrinsic component of ultrasonic attenuation for a solid can be 
described from a macroscopic point of view, much as was done for liquids 
in Chapter 3. In the classical attenuation in a fluid, we have

(5.35)

where ∆ λ is the difference between isothermal and adiabatic Lamé coefficients.
CV is the specific heat at constant volume per unit volume, Vi represents lon-
gitudinal or shear velocity, and the other symbols have their usual meanings. 
We notice immediately that since  appears in the denominator and since 
on average VS ∼  , the intrinsic shear attenuation is expected to dominate.

In solids it is more usual to approach the problem from a phonon point of
view where the crystal lattice is represented by a gas of interacting phonons 
of energy , where ω is the frequency of a lattice mode. In this picture the 
ultrasonic wave is composed of very many low-frequency phonons at the 
ultrasonic frequency. The attenuation divides into the same two components 
as above, namely thermoelastic loss and phonon viscosity. For simplicity we 
consider the case of longitudinal waves in an insulating solid where the heat 
is carried by the thermally excited phonons always present at temperature 
T, called the thermal phonons. For thermoelastic loss the regions compressed 
by the ultrasonic wave are heated and the excess energy is transported by 
thermal phonons to the rarefaction regions, which are cooler. As above, this 
component of attenuation can be written

(5.36)

where ∆c = c1 − c0 and c0 are the relaxed and unrelaxed elastic moduli, respec-
tively (i.e., isothermal and adiabatic). The collision time for the thermal 
phonons is

(5.37)

α ω2

2ρ0Vi
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--------------- η ∆λ
λ 2µ+
---------------- 
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where CP is the heat capacity at constant pressure per unit volume. After 
considerable analysis this can be written in the form

(5.38)

where γG is the Gruneisen constant =  and β is the linear expansion 
coefficient.

The viscosity component corresponds to the so-called Akhiezer loss and 
follows from a detailed calculation of the phonon-phonon interaction. The 
physical model is that application of a step function strain leads to an 
effective temperature change of the phonon modes, leading to a redistribu-
tion of their populations by the phonon-phonon interaction. There is a phase 
lag in this process and it leads to energy dissipation hence attenuation. Very 
detailed calculations were carried out by Bommel and Dransfeld [14], Woodruff
and Ehrenreich [15], and Mason and Bateman [16]. Only the final result will 
be given here, which is of the form, for  at room temperature,

(5.39)

where  is a modified form of the Gruneisen constant, treated as an adjust-
able parameter and

(5.40)

where
 is the thermal conductivity at the Debye temperature θD,

M is the average atomic mass, and
V0 is the atomic volume

The model predicts an attenuation that is constant and varies as f  2 at room 
temperature in agreement with experiment. It predicts that the attenuation 
will be decreased for materials with high Debye temperature and low thermal
conductivity. This makes sense physically as the first condition means less 
thermal agitation at a given temperature while the second weakens the 
relaxation effect.

There are, of course, almost an infinite number of ways in which imper-
fections can contribute to α. Physical and chemical imperfections are usually 
badly characterized and theory exists only for the most simple cases. In this 
situation, only the simplest and most important case, that of polycrystals, 
will be briefly described here.

Although crystals exhibit the basic intrinsic attenuation, the same is not 
true of polycrystals. Polycrystals are an agglomeration of many grains, each
having an orientation different from its neighbors. Zener [17] showed that 

α γG
2 CVT

2ρV3
----------------

ω2τ th

1 ω2τ th
2+

---------------------=

3βK/CV

ωτth << 1

α
f2
--- RγG
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the grains produce a thermal relaxation effect similar to that described pre-
viously. However, the most important effect is the scattering due to the 
misorientation of the grains, each of which has a different effective elastic 
constant in the direction of propagation. Full details have been given by 
Papadakis [18]. Very roughly, for scattering of an ultrasonic wave of wave-
length λ by grains of a mean diameter D

(5.41)

where the first term is due to hysteresis and the second corresponds to 
Rayleigh scattering by the grains. Papadakis shows that this term can be 
written as

(5.42)

where β is the average grain volume and S is a material parameter that varies
widely. In the opposite limit where  and is independent of 
frequency. A wealth of experimental data is reported by Papadakis [18]. 
Generally, Rayleigh scattering is observed in the range 1 to 10 MHz with an 
order of magnitude attenuation of roughly 1 dB ⋅⋅⋅⋅ cm−1 at 10 MHz. At higher 
frequencies, the slope generally levels off to an f  2 variation. Average grain 
sizes are the order of 100 µm.

Summary

Displacement (velocity) potentials consist of a scalar (ϕ) and vector poten-
tial ( ). ϕ governs the propagation of pure longitudinal waves and  
that of shear waves.

Three-dimensional wave equation for solids has solutions that are pure 
longitudinal and pure shear waves. The two equations are decoupled, 
which has the consequence that longitudinal and shear waves are inde-
pendent modes of propagation in bulk solids.

Pure longitudinal bulk waves have elastic constant λ + 2µ.
Pure shear bulk waves have elastic constant µ.
Acoustic Poynting vector in a three-dimensional isotropic solid is given by 

Saggital modes have propagation vectors and polarization vectors in the 
saggital plane (plane of the paper).

SH modes have propagation vector in the saggital plane and polarization 
vector perpendicular to that plane.

Attenuation in isotropic solids is due to a variety of defects and elementary 
excitations, including impurities, grain boundaries, dislocations, cracks,
phonons, electrons, magnetic excitations, etc.

α β1f β2f 4,+= λ 3D≥

α βf 4S=

λ << D, α 1/D∼

Ψ Ψ

Pj Tij(δui /δt).–=
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Questions

1. For the one-dimensional solid derive the relation 
2. Rederive Equations 5.25 and 5.26 in terms of λ and µ.
3. Consider a transversely isotropic solid, which is isotropic in a plane 

perpendicular to a principal axis. To what crystal structure is this 
equivalent? Enumerate the possible saggital and SH modes for the 
transversely isotropic solid. You should consider modes both par-
allel and perpendicular to the principal axis.

4. From F igures 5.2 and 5.3 and Table 5.1, determine the three solids 
with the lowest and highest acoustic impedance, respectively. Do 
the same for liquids using Table 3.1. Calculate the energy transmis-
sion coefficient at normal incidence for the case of extreme acoustic 
mismatch in the media chosen.

5. A plane wave of 5 MHz is incident on a steel plate. Calculate the 
required thickness for this wave to be retarded in phase by 90° with 
respect to a wave that passes through a large hole in the plate.

δS/δt δv/δz.=
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6
Finite Beams: Radiation, Diffraction, 
and Scattering

There are many advantages in using plane wave solutions; they are concep-
tually simple and greatly facilitate the mathematics. However, in practice, 
ultrasonics always involves the use of finite size transducers, hence finite 
beams. An immediate consequence is that diffraction effects must be con-
sidered. Furthermore, the consequences for focusing, imaging, leaky waves, 
and scattering from various sizes and shapes of objects, among other issues, 
must be addressed.

One of the many issues of this chapter will be the treatment of diffraction 
effects. For simplicity, we deal with scalar theory for a fluid medium although
the results can be directly extended to a solid medium. We start with radi-
ation from a point source and then extend the discussion to radiation by a 
circular piston. This is a classic problem in ultrasonics and the results give 
general guidelines for the emission of ultrasonic waves from a piezoelectric 
transducer. Following that, an outline is provided for the scattering of ultra-
sonic waves by circular and cylindrical obstacles. Finally, the main issues 
involved in focused ultrasonic waves, acoustic radiation pressure and the 
Doppler shift, are addressed.

6.1 Radiation

6.1.1 Point Source

It is convenient to write the wave equation in a totally general form for a fluid:

(6.1)

Since p is a scalar, we can use any coordinate system and employ the appro-
priate form of ∇ 2.

∂ 2p
∂t2
--------- V0

2∇ 2p=
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Clearly a spherical coordinate system is best suited for problems dealing 
with a point source. Doing the transformation (x, y, z) → (r, θ, ψ), we have

(6.2)

and

(6.3)

Substituting into Equation 6.1 and noting that for spherical waves the pres-
sure is independent of θ and ψ :

(6.4)

Hence,

(6.5)

Since r and t are independent variables, this can be rewritten

(6.6)

with solutions

(6.7)

(6.8)

fd, the solution for diverging waves, will be mainly useful for radiation prob-
lems, while fc , the converging solution, will be appropriate for focused spher-
ical waves. The diverging solution will be treated explicitly in what follows.
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As for plane waves, it will useful to develop relations between displace-
ment, particle velocity, dilatation, and pressure. From Newton’s law

(6.9)

where ur is the radial particle displacement.
This can be integrated to give

(6.10)

or in complex form

(6.11)

Finally, the displacement is

(6.12)

For harmonic solutions at frequency ω

(6.13)

Hence,

(6.14)

(6.15)

(6.16)

Contrary to the case for plane waves, the particle velocity is in general out 
of phase with the pressure while the displacement always lags the pressure 
by .
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The specific acoustic impedance is given by

(6.17)

(6.18)

where the phase angle between real and imaginary parts is tan θ =  or

(6.19)

The modulus of the acoustic impedance

(6.20)

which approaches the value for plane waves for kr  1. This is as expected 
because far from the source the spherical wave approximates a plane wave.

By definition , so the particle velocity can be expressed in terms of 
the impedance as

(6.21)

The intensity I of a spherical wave is by definition the average rate of work 
done per area on the surrounding medium. For a cycle of period T

(6.22)

Using the real part of p and v and the previous results for the phase angle

(6.23)

Using v0 cos θ = p0 /ρ0V0 from Equation 6.20

(6.24)
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It is now possible to formulate the sound field associated with spherical 
waves. Assuming a spherical source of radius a immersed in a fluid, the 
radial velocity at a point on the surface is given by

(6.25)

For small amplitudes, the boundary condition is continuity of the radial 
velocity. From the previous results

so that

(6.26)

This gives the desired result for a small (point) source

(6.27)

6.1.2 Radiation from a Circular Piston

The result will, of course, be much more complex, and much more difficult 
to calculate, than that from a point source. The basic principle is simple; each 
point of the source can be treated as a pointlike source, emitting spherical 
waves as given by Equation 6.27 at distances far enough away from the source.
Then by Huygens principle these various contributions can be summed, 
taking into account the amplitude and the phase from each contribution. In 
practice, analytical results are difficult to obtain, even for the simplest cases, 
leading to a choice between numerical calculation and approximate solu-
tions. The latter approach is chosen here.

The circular piston radiator is an important example in ultrasonics as it is 
about the simplest approximation that can be made for radiation into an 
infinite medium. It is also important in audio acoustics in the theory of 
loudspeakers. The assumption will be made that it is mounted inside an 
infinite baffle, so that sound is only radiated in the forward direction. The 
geometry is shown in Figure 6.1, where it is assumed that the transducer is 
excited with uniform particle velocity across its face.

From Equation 6.27, each infinitesimal source element area  on the piston
produces a differential pressure dp at a point of observation at a distance of 

 given by

(6.28)
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Since the motion of each element is normal to the surface, dp can be written as

(6.29)

The total pressure p at the point (r, θ) is the integral of dp over the full radiator 
surface.

From elementary geometry 

(6.30)

However, the resulting expression for dp is not integrable and so approxi-
mations have to be made. We first treat the far field or Fraunhofer limit, 
where r  a.

FIGURE 6.1
Geometrical variables used for the calculation of the pressure distribution for a plane piston 
circular radiator. (a) Axial view. (b) Radial coordinates in the plane of the radiator.

(a)

(b)
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6.1.2.1 Fraunhofer (Far Field ) Region

For r′, r  a, this can be expanded in a Taylor’s series with the first two terms

Since the distance between two neighboring points is crucial for an accu-
rate calculation of the phase difference between pressure waves emitted from 
them, both of these terms must be retained for the phase. For the amplitude, 

 is sufficient.

(a)

(b)

FIGURE 6.2
Directivity function jinc  x for the circular radiator. (a) Pressure. (b) Intensity.
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We then have

(6.31)

The second integral (over ψ) can be expanded as a power series and inte-
grated to give 2π J0(kσ sin θ) (see Appendix A). The second integral can be 
obtained from

so that

so that finally

(6.32)

The term in brackets is known as the directivity function (DF) as it gives the 
variation of pressure with direction. Numerical values are tabulated in 
Appendix A and the function is plotted in Figure 6.2.

An approximate form for the DF can be obtained by expanding J1(x), 
yielding

In particular, for points along the axis x = 0, then DF = 1 and the result for 
p is identical in form to that of a point-like source of area π a2.

The first zero θ1 of jincx occurs at ka sin θ = 3.83; hence,

    (6.33)

which gives a measure of the angular half width of the principle lobe of the 
acoustic pressure. By the same token the first sidelobe is included between 
the angles θ1 and θ2 where

(6.34)

In this way, one can identify a whole series of lobes, on either side of the 
main lobe, called the sidelobes. These sidelobes are undesirable for two 
reasons. The main objective of an acoustic radiator is to produce a narrow 
collimated beam of acoustic energy to be used in some application, for 
example, imaging or nondestructive testing. The sidelobes represent energy 
lost from the main beam, which is of course undesirable. If the sidelobes are 
big enough, they can interfere with information obtained from the main 
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beam, which is also unwanted. Hence, an important part of the design of 
acoustic radiators involves sidelobe reduction.

An alternative and more efficient way to present the sidelobes is by the use
of polar plots as shown in Figures 6.3 and 6.4 for several different frequencies 
using both dB and linear scales. It is seen that for ka  1, there are many 
sidelobes. As ka decreases, the number is reduced and for ka  1 there is 
really only the main lobe, for which the . In this case, the axial intensity 

FIGURE 6.3
Polar diagram (linear scale) for circular radiators with radius/wavelength ratios of 0.1 (top) 
and 0.5 (bottom).

ka = π /5

ka = π 

>>
<<

DF 1≈
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FIGURE 6.3
Polar diagram (linear scale) for circular radiators with radius/wavelength ratios of 2 (top) and 
10 (bottom).

ka = 4π 

ka = 20π 
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is given by

(6.35)

where A is the area of the piston. Deep in the far field region I0 ∝  , which 
is physically reasonable as far from the radiator, the latter looks like a point-
like source.

6.1.2.2 Fresnel (Near-Field) Approximation

This is the opposite limiting case where the observation point is near the trans-
ducer; a quantitative criteria will be given at the end of the section. As the name 
implies, the situation closely resembles that of Fresnel diffraction in optics.

FIGURE 6.4
Polar diagrams (log scale) for circular radiators with radius/wavelength ratios of 0.1 (top) and 
0.5 (bottom).
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FIGURE 6.4 (Continued)
Polar diagrams (log scale) for circular radiators with radius/wavelength ratios of 2 (top) and 
10 (bottom).

ka = 4π 

ka = 20π 
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Analytical solutions are only available on the axis, where . 
Hence, from Equation 6.28

(6.36)

After integration

with real part

(6.37)

The condition for a maximum or a minimum is given by the cosine term 
and is such that

(6.38)

where

n = 1, 3, 5, 7, … for a maximum 
n = 2, 4, 6, 8, … for a minimum

The final maximum occurs at n = 1 which corresponds to zF = , which is 
called the Fresnel distance. Thus the near field corresponds to z < zF and the 
far field to z > zF. The near field region is characterized by rapid interference 
maxima and minima as shown in Figure 6.5. This makes sense physically as 

FIGURE 6.5
Axial intensity distribution produced by a circular transducer of radius ρ 0 as a function of 
distance � from the transducer. Approximate transverse intensity distributions are plotted below 
this. (From Lemons, R.A., Acoustic Microscopy by Mechanical Scanning, Ph.D. thesis, E.L. 
Ginzton Laboratory, Stanford University, Stanford, CA. With permission.)
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104 Fundamentals and Applications of Ultrasonic Waves
near the transducer a small shift along the axis leads to a relatively large 
shift in phase for the wavelet coming from a given surface element. This is 
not true in the far field where the phase shift is gradual and monotonic for 
all elements and the transducer acts more and more as a pointlike source.

Finally, the variation of acoustic pressure in the transverse plane is also 
sketched in Figure 6.5. It is seen that the beam remains well collimated up 
to the Fresnel distance, although there are considerable intensity variations 
across the beam section. Beyond the Fresnel distance, in the far field, the 
beam widens, as expected, due to the increasing point sourcelike behavior.

6.2 Scattering

Scattering of acoustic waves by obstacles of various sorts is, as in most 
branches of physics, a highly developed and mathematically very sophisti-
cated subject. As in other areas, the main results are relatively easy to present 
for the case where the wavelength is either much greater or much less than 
the characteristic dimension of the obstacle. The problem becomes much 
more difficult, often intractable, when the wavelength is of the order of this 
dimension. In this situation, we will content ourselves with an overview of 
scattering by a few simple objects.

In principle, as for the case of radiation, the scattered acoustic field can be 
determined from Huygens principle, adding the waves emitted from sec-
ondary sources over the surface of the scattering body, taking into account 
their relative amplitudes and phases. For a body of arbitrary size and shape, 
this problem is in general intractable. For scattering by simple objects, two 
approaches will be used to characterize the scattering: polar diagram and 
total scattered intensity as a function of frequency. The polar diagram is 
highly useful because it gives an immediate visual clue as to the intensity 
of sound scattered in a given direction. The total scattered intensity is dis-
played as a function of ka where k is the wave number and a a characteristic 
dimension of the scattering center. This graph is useful for identifying the 
various scattering regimes mentioned above. The two main examples to be 
discussed will be the cylinder and the sphere.

6.2.1 The Cylinder

We suppose a plane wave incident on a rigid cylinder of radius a in a 
direction perpendicular to the cylinder axis. In the geometrical optics limit 
ka  1, the cylinder scatters as a geometrical obstacle in the back direction 
and scatters as interference between the incident wave and the forward 
scattered wave to produce a sharply defined geometrical shadow. This limit 
is more common in optics than acoustics due to the length scales involved, 
although it is easy attainable in an ultrasonic immersion tank.

>>
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The limit k a � 1 requires detailed calculation, which has been carried out 
by Morse [19]. The main steps of the calculation are as follows:

1. Description of an incident plane pressure wave ( ) in cylindri-
cal coordinates.

2. Description of the outgoing wave ( ) in terms of the same 
parameters (amplitude and phase) as in the first description 
above.

3. Calculate the amplitudes and phases of steps 1 and 2 to satisfy 
 at r = a.

4. Calculate the scattered intensity as a function of angle, β  a from the 
solutions of step 3.

For sufficiently short wavelengths, about one half of the intensity is scattered 
in the forward direction and the rest is scattered approximately uniformly 
over the remaining solid angle. This gives rise to a cardiod-type polar plot: 
It becomes more and more directive in the forward direction as the wave-
length decreases as shown in Figure 6.6. The total scattered intensity can 
also be calculated as a function of ka. For ka  1, the scattered intensity rises 
rapidly to saturate for ka  1.

FIGURE 6.6
Polar diagrams (linear scale) for scattered radiation at wave number k from a rigid cylinder of 
radius a for ka = 0.1, 1, 3, and 5, respectively.
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6.2.2 The Sphere

The calculation follows the same lines as for the cylinder. The corresponding 
polar plots are shown in Figure 6.7 and the scattered intensity variation 
with ka in Figure 6.8. The total scattered intensity as a function of ka will 
be discussed. The curve can be divided into three regions. For ka  1, the 
curve approaches asymptotically to the classic Rayleigh formula IS ∼   
as it must in the long wavelength limit. In the opposite, short wavelength 
limit, ka  1, the reflection is mainly specular and the reflected intensity 
saturates. In the intermediate regime the behavior is of a periodic nature 
due to the excitation of creeping or interface waves that travel around the 
curved surface of the obstacle at approximately the longitudinal sound 
velocity in the liquid.

The term scattering cross-section σ   is commonly used to describe scat-
tering problems; it is defined as the total scattered power divided by the 
incident intensity and represents the apparent area that blocks the wave. 
σ  provides a convenient parameter to compare the scattering power of 
different forms of target. For example, for a sphere of radius a, σ  =

(π  a2)(ka)4; it is seen that this form also incorporates the law for Rayleigh 
scattering.

FIGURE 6.7
Polar diagrams (linear scale) for scattered radiation at wave number k from a rigid sphere of 
radius a for ka = 0.1, 1, 3, and 5, respectively. 
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6.3 Focused Acoustic Waves

There are several levels of treatment for focused acoustic waves. The simplest, 
level 1, is to use geometrical optics or ray theory. For the spherically focused 
concave acoustic radiator to be considered in this section, level 1 immediately 
tells us that the acoustic energy is focused at the center of curvature. Level 2 
takes into account diffraction, much in the same way that this has been handled 
for plane circular radiators in the previous sections of this chapter. This level 
demonstrates that the focal point is not an infinitesimal point but that it is 
spread out to the order of magnitude of the wavelength. This leads to the 
concept of point spread function and lateral resolution. The third level of 
sophistication recognizes that since the acoustic intensity is very high near the 
focus, nonlinear effects need to be taken into account. The main effect here is 
the generation of harmonics of the operating frequency in the focal region.

This book is limited to linear systems, so level 3 will not be treated here, 
although nonlinear effects in focusing will be discussed qualitatively in Chapter 
14. Likewise, a full mathematical description of level 2 is beyond the scope of 
the book, and in any case has been provided in detail elsewhere by Kino [20], 
for example, whose general approach will be followed and summarized here. 
Given this we provide mainly a descriptive account of focused beams to a 
depth that will be sufficient to give an accurate description of acoustic lenses.

Rayleigh provided the first detailed treatment of the circular piston 
source described earlier, and these results will be seen to give a good first 

FIGURE 6.8
Scattering power of a sphere of radius a as a function of ka.

ka
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approximation for circular radiators, especially when the radius of curva-
ture is much greater than the wavelength. Early treatments were provided 
by Williams [21] and O’Neil [22]. Lucas and Muir [23] reduced the surface 
integral over the radiator to a single integral and showed that within the 
Fresnel approximation the boundary conditions on the curved surface could
be transformed to the plane of the baffle. Recently, a numerically conver-
gent solution consistent with all limiting cases has been provided by Chen 
et al. [24].

Following Kino [20] we consider the focused spherical radiator shown in 
Figure 6.9. Using the results of Lucas and Muir, it is possible to consider the 
planar element AB as an effective source by taking into account the phase 
difference between a point on the surface of the spherical radiator and its cor-
responding point on the element AB using ray theory. Kino shows that this 
leads to the following expression for the displacement potential in the Fresnel 
approximation with a2  z2:

(6.39)

FIGURE 6.9
Focusing by a spherical radiator. The dotted cylindrical region around C gives the spatial 
resolution and depth of field.
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where u0 is the amplitude of the radial displacement. Integrating over the 
azimuthal angle yields

(6.40)

where J0(x) is a Bessel function of the first kind of zero order. This result can 
be used to determine the displacement at the focus z0

(6.41)

for kz0  1 and hence the beam intensity at the focus compared to that at 
the transducer.

(6.42)

where  is the Fresnel parameter. The lens will hence normally 
function in the regime S < π.

The lateral resolution can be determined by calculating the off-axis inten-
sity at z0. Equation 6.40 yields

(6.43)

The main result here is that the lateral intensity varies as jinc2 ( ), which 
is the same result as for a circular piston far from the source.

Equation 6.40 and its direct result, Equation 6.43, lead to quantitative 
criteria for the resolution. 

1. Spatial resolution 
Using the Rayleigh criterion of resolution as in optics the spatial res-
olution is given by the position of the first zero of the jinc2 x function

(6.44)

where NA = sinθ0 is the numerical aperture.
The relative aperture or F number of the lens is given by 

(6.45)

2. Sidelobes
The sidelobes are important in radiation patterns for plane trans-
ducers as has already been seen. Likewise for focused transducers 
they should be reduced as much as possible to improve signal 
discrimination. The first sidelobe for the spherical radiator occurs 
at the first secondary maximum of the jinc2x function, at  =
5.136. It is 17.6 dB down in amplitude from the main lobe.
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3. Depth of focus
The axial variation of intensity can be determined from Equation 
3.37, and with a suitable criterion, this can be used to determine 
the depth of focus. The simplest way to do this is to inscribe a 
cylinder in the focal region as shown in Figure 6.8. From Equation 
6.44, this gives a depth of focus along the z axis

(6.46)

4. Phase change of π at the focus
It has been shown in great detail by Born and Wolf [25] that there 
is a π phase change at the focus of three-dimensional focusing 
systems. This result also follows directly from Equation 6.40. An 
interesting discussion on this point is given in [26]. The simple 
physical picture is as follows. A spherically converging wavefront 
at the focus comes to a point and then exits the focus as a diverging 
spherical front. This corresponds to a reflection with respect to the 
origin (rotation by π), which corresponds to the π phase change.

6.4 Radiation Pressure

Like all forms of radiation, a beam of acoustic energy will exert a force, or 
radiation pressure, on an object in its path. This phenomenon is important 
in the measurement of acoustic field and in calibration of acoustic instru-
ments such as hydrophones. The actual effect in laboratory or in field
conditions can be quite complicated and depends on the specific configura-
tion of the system under study. In what follows we give a simple treatment 
of an idealized case in order to bring out the basic principles involved. A 
good historical and tutorial account is given by Torr [27].

Consider the case of Figure 6.10 for a perfectly absorbing target. The stan-
dard construction for the energy flux is shown; during a time ∆t, the energy 
contained within a cylinder of length V0∆t will attain the wall and be 
absorbed. For acoustic intensity I, the energy absorbed during time ∆t is 
IA∆t. The wall will exert a force F against the wave and during time ∆t will 
do work equal to FV0∆t, which must be equal to the energy absorbed. 
Equating the two quantities and recognizing that by Newton’s third law the 
wave will exert an equal and opposite force on the wall F = pr A, we find for 
the radiation pressure

 (absorption) (6.47)

For the case of a perfect reflector, the situation is similar to that for the 
pressure exerted by a perfect gas on the walls of the continuer. In that case, 
the calculation is usually made by putting the impulse, F∆t, equal to the change 
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of momentum for particles inside the cylinder of Figure 6.10. For the case of 
absorption, the momentum to be absorbed is simply that of the incoming wave 
as calculated above. However, for the reflector the direction of the momentum 
is reversed so that the impulse, or radiation pressure, is now determined by 
twice the modulus of the momentum of the incoming wave. Thus

 (reflection) (6.48)

In general, due to partial absorption, generation of different acoustic modes 
in the target, partial transmission in composite targets, etc., the actual radi-
ation pressure will have a value somewhere between that of these two 
limiting cases.

6.5 Doppler Effect

A classic manifestation of the Doppler effect is that experienced unconsciously 
by every child watching a passing train. Here the fixed observer (child) hears 
an apparent increase of frequency by the moving object (train) as it approaches, 
followed by a decrease as the train passes and then moves away. This Doppler 
frequency shift is important in ultrasonics, particularly for instrumentation for 
flowmeters, medical applications, and oceanography. In these examples, any 
or all of the source, medium, or receiver may be in movement.

The physical origin of the Doppler effect lies in the variation of the apparent 
wavelength. For the example of the moving source considered above, as the 

FIGURE 6.10
Geometry for acoustic radiation pressure. (a) Perfect absorber. (b) Perfect reflector.
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112 Fundamentals and Applications of Ultrasonic Waves
source emits spherical waves as it moves, the wavefronts in front of the source 
are scrunched together while those behind it become separated farther and 
farther apart as shown in Figure 6.11. The corresponding effective changes in 
wavelength give rise to the observed frequency changes by the fixed observer.

A quantitative estimate of the Doppler effect can be given as follows. We 
consider first motion along the axis for a moving source (VS) and receiver 
(VR) in a medium of sound velocity V0 , with emission by the source of a 
steady signal at frequency fS. Due to the compressing of the wavefronts in 
front of the source, the wavefront is shortened to

(6.49)

If the receiver is moving away from the source it detects a frequency fR

(6.50)

giving finally

(6.51)

In a similar manner it can be shown that for a fixed source and receiver that 
radiates a frequency fS toward a target with velocity VT ,

(6.52)

More complete and rigorous demonstrations of the Doppler shift have been 
given in the literature, for example, Pierce [28].

FIGURE 6.11
Crowding of wavefronts in front of a moving source leading to the Doppler shift. The situation 
is shown at four distinct source positions.
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Some of the applications of the Doppler shift will be mentioned here. 
Doppler methods for industrial flowmeters for liquids and gases are numerous 
and are referred to in Chapter 13. Medical applications are numerous, as this 
is the perfect technique for monitoring movement inside an opaque object. 
Bloodflow, including fetal bloodflow, is an obvious application. Others 
include movement of internal organic components (e.g., heart valves) and 
monitoring arteries for severity of athersclerosis.

Oceanography instrumentation makes widespread use of Doppler, for 
example, for studying ocean layer dynamics using bubbles, plankton, and 
detritus as scattering centers for Doppler sonar. Monitoring movement of 
the sea surface and navigational aid are other applications. In the nonultra-
sonic world, Doppler radar is also an important application.

Summary

Acoustic point source gives rise to spherical waves diverging from the 
point in question. The pressure amplitude of the acoustic wave varies 
as 1/r.

Plane piston source is assumed to be uniformly excited across its face and 
to be enclosed in an infinite baffle such that acoustic energy is only 
radiated in the forward direction.

Fresnel distance from a circular plane piston source is given by z0 = a2/λ . It 
is the position of the last intensity maximum along the axis going out 
from the transducer face.

Near field is that region between the Fresnel distance and the transducer 
face. It is characterized by strong variations in phase and amplitude of 
the acoustic wave.

Far field is that region far from the source and beyond the Fresnel distance. 
The amplitude varies as 1/r and the wavefront approaches a plane wave 
the farther one goes from the source.

Scattering of acoustic waves can in principle be calculated from Huygens 
principle. The scattering amplitude is usually described by the scatter-
ing cross-section that represents the apparent area of the scattering 
object.

Focused acoustic radiator focuses the emitted acoustic waves at the center
of curvature of the spherical radiator. The lateral intensity varies as 
jinc2(ra/λz0), which determines the spatial resolution at the focal 
point.

Radiation pressure of an acoustic wave is given by Equation 6.47 for an 
absorbing target and Equation 6.48 for a perfectly reflecting target.

Doppler effect is a change of observed frequency when source, target, or 
receiver are moving with respect to each other. The effect can be used 
to deduce the velocity of the target.
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Questions

1. Draw the phasor diagram for the displacement, particle velocity, 
and pressure for the point source of Equation 6.13.

2. Draw the vector diagram for the specific acoustic resistance and 
reactance of the previous case.

3. Show that the specific acoustic reactance of a spherical wave is a 
maximum for kr = 1.

4. Calculate the average rate at which energy flows through a closed 
surface that surrounds a point source.

5. For a 5-mm radius transducer, calculate the Fresnel distance in 
water as a function of frequency from 1 to 1000 MHz. Graph this 
result. Extend this result to a family of curves for liquids with sound 
velocities smaller and larger than that of water.

6. Sketch the radiation patterns for transducers of radius 1 mm and 
10 mm into water at frequencies of 1 MHz and 20 MHz. Explain 
the qualitative difference between the radiation patterns.

7. What are the implications for imaging if the side lobes of a focused 
beam compared to the main beam are 30 dB down and 3 dB down?

8. Reconcile Equations 5.33 and 6.24.
9. Calculate the formula for radiation pressure using the concept of 

momentum of a wave and Newton’s second law.
10. For the case of a fixed receiver at angle θ to the motion of the source, 

show that Equation 6.51 becomes

fR fS
1

1 VS θcos
V0

-------------------–
-----------------------=
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7
Reflection and Transmission  
of Ultrasonic Waves at Interfaces

7.1 Introduction

Performing any operation with ultrasonic waves means transmitting them 
from one medium to another where the measurement or actuation is to be 
performed. In other cases, the objective may be to retain a wave in a given 
medium and prevent it from radiating out into the environment. In either 
case, a good understanding of the principles of reflection and transmission 
of ultrasonic waves is essential.

The problem is similar to that in electromagnetic and other wave phenom-
ena. The process can be broken down into a number of simple steps:

1. Draw a diagram of the process and clearly define the interface and 
the coordinate system to be used.

2. Define the incident wave vector (amplitude and incidence angle) 
and identify all possible reflected and transmitted wave vectors.

3. Write down the velocity (displacement) potentials for each medium,
and hence obtain the velocities (displacements) of each wave vector 
in step 2 (above). In terms of them, use the form of standard 
solutions of the bulk wave equation.

4. Apply the appropriate boundary conditions at the interface. Nor-
mally, the number of boundary conditions required is equal to the 
number of solutions to obtain.

5. Insert the solutions into the boundary conditions, thus obtaining a 
set of N equations for the N amplitudes to be determined.

6. Use the fact that these equations are valid for all values of the 
coordinate x along the interface, which invokes the principle of 
conservation of parallel momentum and hence Snell’s law.

7. Solve the set of equations in step 5 to obtain the unknown ampli-
tudes in terms of the incident amplitude.
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A number of typical cases are shown in Figure 7.1 in the usual convention 
used here in which incidence is from the upper medium. The list is not 
complete in the sense that the medium of incidence has been chosen arbi-
trarily. For example, for the solid-liquid interface, incidence from the liquid 
is shown, but the incident wave might be in the solid so that this case would 
have to be worked out separately.

The boundary conditions are easy to state superficially, but their under-
standing is essential to posing and solving the problem correctly. Basically, 
they correspond to the conditions that must be met in order to obtain a 
perfectly defined interface for the problem at hand. The most general case 
is that of the solid-solid interface. For this to be well defined, there must be 
no net stress on the interface or displacement of one medium with respect 
to the other. This leads to boundary conditions of continuity of normal and 
tangential components of stress and displacement, i.e., four conditions, cor-
responding to the four amplitudes to be determined shown in Figure 7.1. If 
these boundary conditions are satisfied at a given time everywhere along 
the interface, then the problem can be posed and solved. If, however, they 
are not respected locally at all times, the interface is no longer well defined 
and the conditions cannot be written down as valid for all values of interface 

FIGURE 7.1
Typical cases of reflection and transmission of acoustic waves at interfaces between solids, 
liquids, and gases.
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coordinate x and so the problem cannot be solved straightforwardly. In fact, 
if the interfacial deformation is not clearly specified, or it is time dependent 
or irreversible, then no solution is possible. If the deformation is well defined 
and time independent, the problem then becomes one of nondestructive 
evaluation (NDE) of interfacial defects, as discussed in Chapter 15. In this 
and succeeding chapters we only consider perfect interfaces.

The chapter is organized as follows. In Section 7.2, we consider reflection 
and transmission at normal incidence for liquid-liquid interfaces. This allows 
us to concentrate on basic concepts such as acoustic mismatch, standing 
waves, and layered media in the simplest mathematical description and the 
most important applications area. The succeeding sections deal with oblique 
incidence for several important cases:

1. Fluid-fluid, the simplest case of transmission between two media.
2. Fluid-solid, which is very important in practice for sensors, NDE, 

acoustic microscopy, etc. It also leads into a rich case for critical 
angles and hence into the subject of Chapter 8, surface acoustic 
waves. Finally, the slowness construction is applied to the reflec-
tion or transmission problem. It has the great advantage of pro-
viding a simple, rigorous, visual demonstration of Snell’s law. 
Subsequently, it will be fundamental to the discussion of acoustic 
waveguides.

3. Solid-solid, SH modes, the simplest case for transmission between 
two solids.

4. Solid-vacuum, the results of which will be useful for acoustic 
waveguides.

7.2 Reflection and Transmission at Normal Incidence

We do this case for illustrative purposes, to see the importance of impedance 
matching in such problems. This is the simplest case; the math is simple, 
and there is no mode conversion. If only longitudinal modes are considered 
it can be used for liquid-liquid or liquid-solid interfaces.

Consider the liquid-liquid interface shown in Figure 7.2(a), with a plane 
pressure wave incident from the left. Due to the difference in acoustic prop-
erties between the two media there are partial reflection and transmission 
at the interface. The three waves can be represented as:

(7.1)

(7.2)

(7.3)

pi A j ωt k1x–( )exp=

pr ARp j ωt k1x+( )exp=

pt ATp j ωt k2x–( )exp=
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Since the two media must stay in intimate contact at a perfect interface, the 
boundary conditions are continuity of pressure and velocity (displacement) at 
x = 0; if these conditions were not met, the boundary would not be well defined. 
Using the definition of acoustic impedance, it follows that

(7.4)

(7.5)

where Z1 and Z2 are the characteristic acoustic impedances of the two media. 
Equations 7.4 and 7.5 can be solved to give for the pressure transmission 
and reflection coefficients

(7.6)

(7.7)

FIGURE 7.2
Configuration for reflection and transmission at normal incidence for (a) Planar interface
and (b) Layer of thickness d between two bulk media.
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These results give the pressure reflection coefficient (Rp ≡ ) and the 
pressure transmission coefficient (Tp ≡ ). Of great importance are the 
acoustic intensity transmission and reflection coefficient. At normal incidence
these can be obtained directly from the definition of acoustic intensity I ≡

.
Thus

(7.8)

(7.9)

from which it can be verified that the law of conservation of energy is 
satisfied.

(7.10)

There is a lot of simple physics in this result. Let us look at the range of the 
modulus of Rp and Tp. If Z1 ≡ Z2 , then Tp ≡ 0 and Rp = 0; it is as if there were 
one uniform medium so there is no reflection.

For Z2  Z1 , Rp ≈ −1 and Tp → 0. This is termed a free boundary, corre-
sponding, for example, to medium 1 = water or a solid, and medium 2 = air. 
There is huge acoustic impedance mismatch so that nearly all of the acoustic 
wave is reflected. There is a phase change of π  for the pressure at the interface.

The transmitted acoustic intensity for this case is given by

as expected.
It is interesting to look at the numerical results for the water-air interface. For

air ρ2 ∼  1.3 kg ⋅ m−3, V2 ∼  330 m ⋅ sec−1 and for water ρ1 ∼ 103 kg ⋅ m−3, V1 ∼ 
1500 m ⋅ sec−1. Then
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For the opposite case, Z2  Z1, giving immediately Rp ∼  1 and T ∼  2. This 
case corresponds to a rigid boundary. The transmitted intensity  ∼  4( )
is again very small as is expected as the acoustic mismatch is again very 
large. Numerically,

Clearly the transmitted intensity is symmetric with respect to the incident 
medium, i.e., the transmitted intensity is the same whether the wave is 
incident from air or water. This is not true for the pressure, nor the particle 
velocity. Symmetry considerations will be discussed later in Section 7.3.1.

7.2.1 Standing Waves

The traveling or progressive waves treated in bulk media thus far are char-
acterized by the propagation of a disturbance (phase) and the propagation 
of energy. This state of affairs can be changed radically if two traveling 
waves, of the same frequency and mode but traveling in opposite directions, 
are combined. This gives rise to standing waves that form a static pattern 
of nodes and antinodes and for which there is no propagation of energy. 
Standing waves are fundamental to the operation of acoustic waveguides 
and resonators and as such have a central place in ultrasonics.

Standing waves can be most easily formed, and described, by the config-
uration of the total reflection of a plane wave treated in the previous section. 
Qualitatively, the situation is shown in Figure 7.3. As already shown, the 
reflected pressure is the negative of the incident pressure. Since the displace-
ment is zero at the rigid boundary by the boundary conditions, the displace-
ment in the incident wave at the boundary is also zero leading to a node. 
Conversely, since displacement and pressure are in quadrature there is a 
pressure antinode at the rigid boundary. Displacement and pressure then 
have a series of nodes and antinodes, the extreme values, at different times, 
being shown in the figure. For a free boundary, the behavior is opposite; that 
is, the pressure has a node at the surface and the displacement has an 
antinode. Again, the latter condition follows directly from the boundary 
conditions at a free surface. Since there are four different cases, a memory 
aid device is helpful. One way is to remember that the displacement is 
maximum (antinode) at a free surface, and that displacement-pressure and 
rigid-free are opposite, so that if one case is remembered the others follow 
automatically. This behavior is demonstrated quantitatively in what follows.

The pressure waves of the previous section (from Equations 7.1 through 
7.3) lead to the following pressure field in medium 1,

(7.11)

where for convenience we set the incident amplitude equal to unity. 

>>
It/Ii Z1/Z2

It

Ii
--- 450 10 6–×

1.5
------------------------- 4× 1.1 10 3–×∼ ∼

p pi pr+ j ωt kx–( ) Rp+ j ωt kx+( )expexp= =
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Hence,

(7.12)

The two limiting cases treated previously are of interest.

For a rigid boundary,

Rp = 1  and (7.13)

For a free surface, 

Rp = −1 and (7.14)

This mathematical form gives a simple and convenient test for distinguish-
ing between traveling and standing waves. Traveling waves correspond to 

FIGURE 7.3
Standing wave pattern at a rigid boundary. (a) Incident and reflected pressure waves. (b) Incident 
and reflected displacements.

(a)

(b)

2p 1 Rp+( ) ej ωt−kx( ) ej ωt+kx( )+[ ] 1 Rp–( ) ej ωt−kx( ) ej ωt+kx( )–[ ]+=

ejωt 1 Rp+( )2 kx 1 Rp–( ) 2j kxsin–( )ejωt+cos=

p 2 kxejωtcos=

p 2 kxe
j ωt−π

2
--- 

 

sin=
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propagation of a disturbance and are necessarily of the form f (ω t − kx) = 0. 
In standing waves, the spatial and temporal variation are separated in the 
form f (ω t)g(kx) = 0 as seen above. This provides a convenient test for cate-
gorizing an unknown waveform as either a free or a standing wave.

The ideal rigid interface or free surfaces are idealizations not always met in
practice, although they are extremely good approximations, e.g., a resonator-
air interface. However, very often the reflection coefficient is not unity, in 
which case the standing wave pattern is not complete, and in particular the 
amplitude at the nodes is no longer zero. The wave field can then be regarded 
as being part standing wave and part traveling wave. The situation is com-
monly described by the standing wave ratio (SWR), given by

(7.15)

We can calculate the power flow for standing waves as follows. From the 
definition of the acoustic Poynting vector as the acoustic power per unit area 
transmitted across a surface and, on the other hand, the model of two reflect-
ing surfaces to set up a standing wave, it is clear that the average acoustic 
intensity is zero. That is to say, there is no net propagation of acoustic energy 
in either the plus or the minus x direction.

This result can be seen more formally as follows. From Equation 5.10, the 
time-averaged acoustic Poynting vector is

(7.16)

For a progressive wave, the acoustic pressure p and the particle velocity  
are in phase and so we get a finite power flow. For standing waves the 
particle displacement and velocity are in phase but they are in quadrature 
with the pressure as shown in Figure 7.3. In this case, the time average in 
Equation 7.16 is equal to zero, corresponding, as we already know, to zero 
propagation of energy.

7.2.2 Reflection from a Layer

The input impedance of a layer sandwiched between two different media 
can be calculated by a direct extension of the reflection coefficient for a single 
interface [29]. From Equation 7.7, we have

(7.17)

SWR
pantinode

pnode
-----------------=

SWR
1 Rp+
1 Rp–
--------------- (nonattenuating medium)≡

I p t( )v t( ) 1
2
---  Re pv∗[ ]= =

v

Rp
Zin Z1–
Zin Z1+
-------------------=
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where from Figure 7.2(b), Zin is the input impedance presented by the layer 
and medium 3 at the 1-2 boundary. For simplicity, we consider normal 
incidence. The factor exp  j(kx − ω t) is not retained in what follows; it is 
common to all terms as the results are valid for all values of x.

In the layer, the pressure can be written as

(7.18)

Due to multiple reflections in the layer, forward and backward waves will 
be set up. A and B can be calculated by continuity of the impedance (since 
p and Vz are continuous) at the interface. The impedance associated with p2

can be calculated using the general formula in Equation 3.28. Hence,

(7.19)

which leads directly to

The same calculation at the 1-2 interface (z = d) can then be used to determine 
Zin , which is:

(7.20)

where ϕ = k2 d is the phase change associated with the layer thickness.
A particularly important application of this result in acoustics and optics 

is the case where d = , i.e., when the thickness of the layer is one quarter 
wavelength. Then, by Equation 7.20, 

Zin =  and (7.21)

which gives Rp = 0 for Z2 = . This is a very well-known and important 
result. It means that to obtain perfect transmission between two media of 
different acoustic impedance it is sufficient to provide a quarter wave layer 
of material between them which has an acoustic impedance equal to the 
geometric mean of the two end media. Of course, this result is only true at 
one particular frequency, that for which d = . Such quarter wavelength 
layers are used in cases where one wants to maximize the acoustic transmission

p2 A j k2z( ) B j k2z–( )exp+exp=

jωρ2p2–
p2∂
z∂

---------
--------------------

z=0

Z3=

A
B
----

Z3 Z2–
Z3 Z2+
------------------=

Zin Z2= Z3 jZ2 ϕtan–
Z2 jZ3 ϕtan–
---------------------------------

λ2/4

Z2
2
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----- Rp

Z2
2 Z1Z3–
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between two media. The case of the single quarter wavelength layer is the 
one of greatest practical importance. It is, however, possible to generalize 
the previous result for an arbitrary number of layers, as described in [29].

7.3 Oblique Incidence: Fluid-Fluid Interface

The case of oblique incidence for the fluid-fluid interface is of some interest 
as it contains much of the simple physics of the fluid-solid interface but is 
mathematically less complicated than the latter. Moreover, certain interesting 
results regarding symmetry for the incident and refractive media can be 
determined in this case.

The situation is shown in Figure 7.1, where a wave of unit amplitude is 
incident on the interface at incidence angle θ to the normal. Corresponding 
angles are defined in the figure for the reflected and transmitted waves, 
which have amplitudes R and T, respectively. The velocity potentials for the 
three waves can be written:

(7.22)

(7.23)

(7.24)

where 

 and hence 

The pressures are given by

(7.25)

(7.26)

(7.27)

and the normal velocities by

(7.28)

(7.29)

(7.30)

ϕ i j ωt kx
i x– kz

i z+( )exp=

ϕ r R j ωt kx
r x– kz

rz–( )exp=

ϕ t T j ωt kx
t x– kz

t z+( )exp=

v ∇ ϕ= p ρ ϕ∂
t∂

------–=

pi jωρ1 ωt kx
i x– kz

i z+( )exp–=

pr jωρ1R ωt kx
r x– kz

rz–( )exp–=

pt jωρ2T ωt kx
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i jkz

i ϕ i=

vz
r jkz
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vz
t jkz
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At the interface z = 0 the boundary conditions are given by continuity of the 
pressure and the normal velocity. Hence,

(7.31)

(7.32)

These two relations will be used to determine the reflection and transmission 
coefficients. Before that, we can obtain the angles of reflection and transmis-
sion by noting that the boundary conditions must be valid for all values of 
x. It follows that

(7.33)

or

Since

we have finally  and

(7.34)

which is the well-known Snell’s law. Looking back at the first line, and using 
the quantum mechanical interpretation of k as the momentum of a wave, 
one can say that this law corresponds to the conservation of parallel momen-
tum, i.e., the component of momentum along the surface. This interpretation 
will be reinforced in the discussion of slowness curves in Section 7.4.

Putting z = 0 in Equations 7.31 and 7.32, we obtain

(7.35)

(7.36)

which can be solved to give

(7.37)

(7.38)

where  and .

pi pr+ pt=
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r kx
t= =

ki θisin kr θrsin kt θtsin= =

kr ω
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From Equations 7.37 and 7.38, we can write the reflection and transmission 
coefficients for the pressure as

(7.39)

(7.40)

Writing the normal acoustic impedance in standard form Z1 =  and
Z2 =  we have, finally,

(7.41)

(7.42)

which is the same general form as for normal incidence.
The reflection and transmission coefficients for the acoustic intensity are 

also of interest. Since we are concerned with transmission and reflection with 
respect to the boundary, only the normal component of acoustic intensity is 
pertinent. For a given θ, the total acoustic intensities are

and the normal components respect the principle of conservation of energy, 
as can be demonstrated from the previous results

(7.43)

Evidently, the acoustic intensity reflection (RI) and transmission (TI) coeffi-
cients are a function of incidence angle; an example will be given for the 
solid-liquid interface.

Let us now pause for breath to reflect on what additional information the 
oblique incidence treatment has given us and how to interpret the results. 
A first requirement is to verify the result that the velocity reflection coefficient 
is equal in modulus but opposite in sign to the pressure reflection coefficient 
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------------------=
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that was stated in the normal incidence example given earlier. This can be 
obtained immediately as

(7.44)

(7.45)

as stated previously. The same result holds evidently for the displacement.
The full consequences of Snell’s law must also be explored. Let us assume 

that the lower medium has the higher sound velocity so that V1 < V2. The 
immediate consequence is that θi < θt . This means that as θ is increased,
the refracted wave rapidly approaches the plane of the interface (x axis). At 
a critical angle θc , θt =  such that

(7.46)

so

(7.47)

In fact, as will be developed later for the fluid-solid interface, this corre-
sponds to the propagation of a surface wave in the plane of the interface. 
For angles θ > θc , there is total reflection and |Rp| ≡ 1.

It is shown in [29] that interesting conclusions can be drawn by using 
normalized parameters as follows. We define n ≡  and m ≡ . Then 
we can rewrite Equations 7.41 and 7.42 as

(7.48)

(7.49)

known as the Fresnel formulae. This form facilitates the study of R and T of 
various material combinations for particular values of θ. Of particular interest 
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is the region of total reflection θi > arcsin n. In this region

(7.50)

(7.51)

In this region the modulus of the reflection coefficient is unity while the 
phase changes monotonically. This behavior will be of importance in the 
study of Rayleigh waves.

7.3.1 Symmetry Considerations

The variation of the various reflection and transmission coefficients has been 
treated in general in [29]. An overview of the main results is given here.

1. Angles of incidence (θ1) and refraction (θ2). If the direction of prop-
agation is reversed and the refracted wave becomes the incident 
wave, then by Snell’s law the new refracted wave is at angle θ1. 
Moreover, from Equation 7.41, if the original pressure coefficient 
is Rp = +V, then reversal of propagation directions leads to a new 
wave with Rp = −V.

2. Reflection and transmission coefficients for p, v , and u. As already 
demonstrated at normal incidence, there are no symmetry relations 
for these quantities if the direction of propagation is reversed.

3. Energy transmission coefficient. The coefficient for transmission of 
acoustic energy normal to the interface is symmetric if the direction 
of propagation is reversed. As seen before,

(7.52)

Expressing Tp in normalized coefficients, Equation (7.49), this becomes

(7.53)

which is symmetric with respect to interchange of the two media.

7.4 Fluid-Solid Interface

The problem is presented in Figure 7.4 where a plane wave is incident from 
the fluid and there is partial reflection in medium 1 and partial transmission 
of longitudinal and shear waves into the solid (medium 2). We wish to 
calculate the reflection and transmission coefficients for the stress and the 
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acoustic intensity. The approach is similar to that presented by Brekhovskikh 
[30] and Ristic [31].

The velocity potentials can be written in the liquid and solid, respectively, as

(7.54)

(7.55)

and the potentials can be expressed as plane wave solutions to the wave 
equation

(7.56)

(7.57)

(7.58)

(7.59)

FIGURE 7.4
Coordinate system for reflection and transmission at a liquid-solid interface with incidence 
from the liquid.
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where k and kL are wave numbers for longitudinal waves in the liquid and 
solid, respectively, and kS the wave number for shear waves in the solid. R, 
TL, and TS are the reflection and transmission coefficients to be calculated. 
Note that these are explicitly the velocity potential reflection and transmission
coefficients. In the liquid, using p = −T = λS, S =  •  , v = jω u and v =  
we have

(7.60)

(7.61)

In the solid, from Equations 4.54 and 4.55,

(7.62)

is the normal stress and

(7.63)

is the tangential stress. 
Here

(7.64)

(7.65)

and as usual for bulk waves

(7.66)

(7.67)
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Substituting these results in Equations 7.62 and 7.63, the stresses are easily 
found to be

(7.68)

(7.69)

These results for the stresses and velocities will be substituted into the 
boundary conditions; assuming an ideal nonviscous liquid, there are three 
boundary conditions and three amplitudes (R, TL, and TS) to be determined.

1. Continuity of normal velocities

(7.70)

or

(7.71)

2. Continuity of normal stress

(7.72)

(7.73)

3. Zero tangential stress since the fluid cannot support viscous stress

(7.74)

(7.75)

Since these results are valid for all values of x along the interface, substi-
tution of the potentials in these three equations immediately yields Snell’s 
law

(7.76)
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hence θi = θr . The situation is very similar to that for the liquid-liquid interface 
and again corresponds to the conservation of parallel momentum along the 
surface.

The three equations coming from the boundary conditions are

(7.77)

(7.78)

(7.79)

with solutions

(7.80)

(7.81)

(7.82)

where

(7.83)

These expressions are very similar to those for the fluid-fluid interface but 
they are more complicated as they involve longitudinal and shear imped-
ance. This can be seen explicitly by defining an effective impedance Zeff

(7.84)

so that the reflectance function becomes

(7.85)

as for the fluid-fluid interface.
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It is instructive to follow the variation of the reflection coefficient R(θ) over 
the full range of incidence angles for the case of a water-aluminum interface 
shown in Figure 7.5. At normal incidence, the reflection coefficient becomes 
that given in Equation 7.7. Its value lies between 0 and 1 depending on the 
acoustic mismatch between the two media. Only the longitudinal wave is 

(a)

(b)

FIGURE 7.5
Reflection coefficient amplitude and phase variation with incidence angle for liquid-solid interfaces.
(a) Water/aluminum. (b) Water/PMMA (small acoustic mismatch). 
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transmitted and there is no mode conversion, i.e., no shear wave is trans-
mitted at normal incidence. As θ increases, longitudinal and shear waves 
are excited in the solid. R(θ) stays more or less constant until the longitudinal 
critical angle, at which point it rises sharply to spike at |R(θ)| ≡ 1. At this angle,
the longitudinal wave propagates along the surface so no energy is propa-
gated into the solid. The shear wave amplitude goes to zero at this angle and
there is total reflection. As θ increases further, we arrive at a second critical 
angle θcs for shear waves, which now propagate along the surface. From θcs

out to 90° there is total reflection of the incident wave, |R(θ)| ≡ 1. There is also
a sudden change in phase from 0 to about 2π in the region of θcs. This is due 
to the excitation of Rayleigh surface waves at an incidence angle θcR ≥ θcs , 
which is the subject of Chapter 8.

Two additional limiting cases are shown in Figure 7.5. The first case, liquid 
helium to sapphire, corresponds to the limit of very high acoustic mismatch. 
R(θ) is close to unity for all θ and the values of θcl and θcs are very small, 
leading to a small “critical cone” of total reflection in the liquid. The other 
limit is that of very small acoustic mismatch, for a water-lucite interface. In 
this case, the sound velocity in the water is less than the longitudinal velocity 
in the lucite but greater than the transverse velocity. Since the acoustic 
impedances are relatively well matched the reflection coefficient at normal 
incidence is much smaller than in the other cases. There is a longitudinal 
critical angle but there can be no transverse critical angle, so the reflection 
coefficient is less than unity out to θ = .

(c)

FIGURE 7.5 (Continued)
Reflection coefficient amplitude and phase variation with incidence angle for liquid-solid interfaces. 
(c) Liquid helium/sapphire (large acoustic mismatch).

π/2
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By direct generalization of the results for the fluid-fluid interface we can 
write for the acoustic intensity reflection and transmission coefficients

(7.86)

(7.87)

(7.88)

These curves have been plotted for the same fluid-solid interfaces as shown 
in Figure 7.6. These curves show very clearly that the energy is transmitted 
into the solid by longitudinal waves up to θcl and by transverse waves up 
to θct but not beyond.

It is useful to have a graphical method for describing reflection and refrac-
tion phenomena. This is provided by the slowness surface, which is the locus 
of the quantity 1/VP vs. wave vector direction. Clearly, it is a surface, in  
space and the radius vector from the origin to a point on the surface has 
length . For a liquid, the slowness surface is a sphere and for an isotropic 
solid it is two concentric spheres. Clearly, a low-velocity medium such as a 
fluid has a large slowness surface while solids generally have smaller slow-
ness surfaces. The slowness surface is particularly useful to determine the 
angles of reflection and refraction of acoustic waves at interfaces. The concept 
is valid for isotropic and anisotropic media.

Slowness surfaces are shown for the interface between a liquid and an 
isotropic solid in Figure 7.7. Since the sound velocity is generally lower in 
the liquid, the slowness surface is larger as shown in the figure. The solid is 
represented by two smaller concentric circles for the longitudinal and shear 
branches. The application of the slowness surface to interface problems is 
based on the principle of conservation of parallel wave vector which was 
established earlier. Since the slowness surface is drawn in wave vector space 
it follows that for a given incident wave, the incident reflected and refracted 
waves have a common kx component as shown in the figure. Thus the reflec-
tion and refraction angles are determined by direct geometrical construction. 
As θ increases, θl and θs increase as the corresponding radius vectors swing 
up to meet the x axis. When the L ray coincides with the x axis, θi ≡ θcl. This 
is clearly the largest angle at which one can excite an L wave with a real 
wave vector in the solid, as for θ > θcl the vertical line no longer intersects 
the L slowness circle. The same reasoning can be applied to the determination 
of θcs. Basically the construction corresponds to a rigorous, visual demon-
stration of Snell’s law and the existence of critical angles. It does not, how-
ever, give any information on the transmitted and reflected amplitudes, 
which must be calculated directly from the boundary conditions.

IR

I
---- R θ( ) 2=

IL

I
----

ρ2 θtan
ρ1 θltan
------------------- TL θ( ) 2=

IS

I
----

ρ2 θtan
ρ1 θstan
-------------------- TS θ( ) 2=

k /ω

k /ω
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(a)

(b)

FIGURE 7.6
Energy transmission and reflection coefficients. (a) Water/aluminum. (b) Water/PMMA trans-
mission.
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(c)

(d)

FIGURE 7.6 (Continued) 
Energy transmission and reflection coefficients. (c) Water/PMMA (reflection). (d) Liquid helium/ 
sapphire.
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7.5 Solid-Solid Interface

The previous examples, particularly the liquid-solid interface, demonstrate 
formally how the velocity potentials and reflection coefficients can be used 
to obtain the reflection and transmission coefficients. This formal treatment 
can be extended to the most general case, the solid-solid interface. For a 
given incident wave, whether longitudinal (P) or bulk shear (SV), there are 
two reflected and two transmitted waves leading to four unknown ampli-
tudes and bringing the full set of boundary conditions into play. Several 
authors [29, 32] have formalized this by writing out the full set of boundary 
conditions for both P and SV incidence and so defining a scattering matrix. 
The various liquid-solid combinations that are possible can then be selected 
by setting the appropriate elastic constants equal to zero (e.g., µ = 0 for a 

FIGURE 7.7
Slowness curves for the solid-liquid interface for increasing incidence angle. (a) Both land S
waves transmitted. (b) L wave critical angle. (c) S wave critical angle.
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liquid) and using the thus simplified scattering matrix to determine the 
relevant reflection and transmission coefficients. In this section, we rather 
focus attention on several representative particular cases that are of subse-
quent interest for acoustic waveguides. These cases are the solid-solid inter-
face for SH modes and the solid-vacuum interface for P and SH waves.

7.5.1 Solid-Solid Interface: SH Modes

The acoustic ray diagram is similar to that for the liquid-liquid interface as 
there is no coupling between SH modes and P and SV waves, but now the 
polarization vector for the particle velocity is in the plane of the interface. 
The appropriate particle velocities are , and  for incident, reflected, 
and transmitted waves, respectively. These could be defined in terms of 
velocity potentials as from Equations 7.56 through 7.59, but since we know 
their form from the solid-fluid example, we write them directly as

(7.89)

(7.90)

(7.91)

The normal and tangential stress can be written, using Equations 7.62 and 
7.63, as

(7.92)

(7.93)

using ω = VS k and  =  we have for the boundary conditions at z = 0

(7.94)

(7.95)

which can be solved immediately to give

(7.96)

(7.97)

as reflection and transmission coefficients for the particle velocity.

vy
i , vy

r vy
t

vy
i A j ωt k θix k θizcos+sin–( )exp=

vy
r B j ωt k θix k θizcos–sin–( )exp=

vy
t C j ωt k θix k θszcos+sin–( )exp=

Tyx
c44

jω
------

∂vy

∂x
-------- 

 =

Tyz
c44

jω
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∂z
-------- 

 =
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2 C44

ρ
-------

A B C+ + 0=

ρ1VS1 A θi B θicos–cos( )– ρ2VS2C θscos–=
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----------------------------------------------------------------= =
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7.5.2 Reflection at a Free Solid Boundary

These results are needed for the partial wave analysis used for acoustic 
waveguides. They follow directly from the scattering matrix [29, 32] by 
setting the several medium constants equal to zero. They can also be worked 
out directly very easily using the boundary conditions developed above and 
this is left as an exercise at the end of the chapter.

i. SH mode incident: free boundary
It follows immediately from the previous treatment with ρ2 = 0 and 
VS2 = 0 that RSH ≡ 1 with zero phase angle. Thus an SH wave is 
totally reflected at a free boundary and converted into another SH 
wave with no mode conversion.

ii. SV mode incident: free boundary
Using boundary conditions of zero normal and tangential stress at 
the boundary we obtain

(7.98)

(7.99)

where AS, BL, and CS are the velocity amplitudes for incident shear, 
reflected longitudinal, and shear waves, respectively, and

(7.100)

iii. P mode incident: free boundary
In similar fashion for a longitudinal wave incident at a free bound-
ary

(7.101)

(7.102)

RLS
BL
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2VL
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VL
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-------------------------------------------------------------------------= =
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The following relations can be obtained from Equations 7.98 
through 7.102

(7.103)

(7.104)

These results will be used in the analysis of acoustic waveguides.

Summary

Boundary conditions are the key to calculating reflection and transmission 
coefficients at an interface between two media. The number of bound-
ary conditions is in general equal to the number of unknowns.

Reflection and transmission coefficients at an interface are in general differ-
ent for displacement, pressure, and intensity.

Standing waves are set up by reflection at normal incidence at a perfectly 
reflecting interface. Such an interface may be rigid (Z2  Z1) or pressure 
release (Z2  Z1). The displacement has an antinode at a free surface and
a node at a rigid surface; the opposite is true for the pressure. The 
reflection coefficient for the pressure is +1 at a rigid interface and −1 at 
a free surface; the opposite is true for the displacement.

Quarter wavelength matching layer allows perfect transmission between 
two media if the thickness is λ  /4 and the acoustic impedance of the 
layer is the geometric mean of those of the two media.

Critical angles of reflection occur for incidence from low-velocity media to
high-velocity media. For a solid-liquid interface, there are critical angles 
corresponding to transmission of longitudinal, shear, and Rayleigh 
waves in the solid.

Slowness surface is a surface in /ω space and the radius vector has modulus 
1/VP . The slowness surface is a convenient tool for calculating the 
critical angles for acoustic waves at an interface.

Questions

1. Calculate 〈I 〉 from Equation 7.16 for a standing wave. Sketch the 
result for p, v, and I.

2. Draw R and T slowness diagrams for transmission from a liquid 
into a solid with elliptical slowness surfaces for the case where:
i. The major axis is parallel to the surface.
ii. The major axis is perpendicular to the surface. Show θcl and θcs

in each case.

RLL RSS–=

RLL
2 RLSRSL+ 1=

>>
<<

k
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3. State two ways in which one can obtain zero transmitted amplitude 
for a given mode at a liquid-solid interface.

4. Draw a figure for the boundary of a solid-solid interface for a 
situation where the boundary conditions for a perfect interface are 
not respected.

5. Draw displacement curves for standing waves corresponding to 
the two cases shown in Figure 7.3 for the pressure.

6. Work out in detail RL(θ), RS(θ), and T(θ) for a solid-liquid interface 
with incidence from the solid. Plot the results as a function of θ.

7. Consider a liquid-liquid interface. A source at position A will pro-
duce a certain acoustic intensity at point B in the second liquid. 
Now put the source at B and demonstrate the reciprocity principle, 
i.e., that A will receive the same acoustic intensity that B received 
in the first case.

8. Design a quarter wave matching layer to get perfect transmission 
at a sapphire-water interface at 1 GHz. Use Figure 5.2 to choose a 
possible material to use for this application.

9. Write down the detailed boundary conditions for each example in 
Figure 7.1; for each case, indicate which parameters are continuous.

10. Calculate in detail the reflection of P and SV waves at the free 
boundary of a solid using the notation and approach of Section 7.4.

11. Show that for a slowness curve at an interface if θ > θc then k in 
the transmission medium cannot be real, i.e., it cannot lie on the 
slowness curve and must be imaginary.
© 2002 by CRC Press LLC



          
8
Rayleigh Waves

8.1 Introduction

Like much of acoustics, surface acoustic waves (SAW) go back to Lord 
Rayleigh, and because of this, SAW and Rayleigh waves are usually used 
synonymously. Rayleigh’s interest in the problem was brought about by his 
intuitive feeling that they could be a dominant acoustic signal triggered by 
earthquakes. His 1885 paper on the subject [33] concluded with the well- 
known remark “… It is not improbable that the surface waves here investi-
gated play an important part in earthquakes, and in the collision of elastic 
solids. Diverging in two dimensions only, they must acquire at a great 
distance from the source a continually increasing preponderance.” This was 
indeed found to be the case and Rayleigh’s pioneering work stimulated a 
great deal of further study of other acoustic modes that could propagate in 
the layered structure of the earth’s crust.

Rayleigh waves are now standard fare not only in seismology but also in 
many areas of modern technology. With the introduction of interdigital trans-
ducers (IDTs) in the 1960s, they have, as it were, been integrated into modern 
microelectronics in the form of filters, delay lines, and many other acousto-
electronic functions. They are ubiquitous in all of the applications of ultra-
sonics described in this book and so it is incumbent upon us to have a good 
understanding of their propagation characteristics.

Rayleigh waves are the simplest cases of guided waves that we will exam-
ine. They are confined to within a wavelength or so of the surface along 
which they propagate. They are distinct from longitudinal and shear BAW 
modes, which propagate independently at different velocities. In Rayleigh 
waves, the longitudinal and shear motions are intimately coupled together 
and they travel at a common velocity. In this chapter we start with a detailed 
description of these waves on the surface of an isotropic solid in vacuum. 
In Section 8.3, the problem is generalized by placing the solid in contact with 
an ambient liquid. We find in this case the propagation of a perturbed Rayleigh
wave, which radiates into the liquid (leaky wave). In addition there is an un-
damped, true interface wave at the solid-liquid interface, the Stoneley wave.
© 2002 by CRC Press LLC
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8.2 Rayleigh Wave Propagation

Consider a wave polarized in the sagittal (xz) plane with surface normal 
along  and propagation in the x direction as in Figure 8.1. Hence, displace-
ment and velocity components are in the x and z directions; there is no 
coupling to the transverse waves with displacement along y (SH mode), 
perpendicular to the sagittal plane.

As with bulk waves we define a scalar and vector potential such that

 

and since the displacement is in the sagittal plane the only nonzero compo-
nent of  is in the y direction. As for bulk waves, φ and  are potentials for 
the longitudinal and transverse wave components, respectively, and the cor-
responding wave equations are given by

(8.1)

FIGURE 8.1
(a) Coordinate system for Rayleigh wave propagation. (b) Grid diagram for near-surface me-
chanical displacement due to Rayleigh waves.
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(8.2)

where kL and kS are the usual bulk wave numbers

Anticipating that the solutions for the surface wave equations for the two 
polarizations will have a common wave number, we look for solutions for 
φ and ψ propagating as harmonic waves along the x axis with wave number 
β = kx and variations in the z direction to be determined by the boundary 
conditions. This leads to trial solutions of the form

(8.3)

(8.4)

which give two new equations for F(z) and G(z) following substitution into 
Equations (8.1) and (8.2)

(8.5)

(8.6)

The slowness curve treatment and the known bulk wave solutions lead us 
to pose

(8.7)

which will be confirmed a posteriori. Both equations have solutions of the 
form  and . The positive solutions are unphys-
ical as they grow indefinitely with increasing z. We retain the negative 
solutions and write them in the form

(8.8)

(8.9)

where

(8.10)

(8.11)

A and B are arbitrary constants.

∂ 2ψ
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---------- ∂ 2ψ

∂z2
---------- kS

2ψ+ + 0=
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ρ

λ 2u+
---------------- and kS

u
ρ
---= =

φ F z( ) j ωt βx–( )exp=

ψ G z( ) j ωt βx–( )exp=

d2F
dz2
-------- β 2 kL–( )2

F– 0=

d2G
dz2
---------- β 2 kS–( )2
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2 β 2< <
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Unlike the problems for reflection and transmission, we are not looking 
for solutions for the unknown amplitudes (indeed these are arbitrary) but 
rather we are looking first and foremost to determining the propagation 
constant β and, hence, the surface wave velocity, followed by the variation 
of the displacements with z that are given by γL and γS.

Since we are dealing with the free surface of a semi-infinite solid the 
boundary conditions are particularly simple; tangential and normal 
stresses are zero on the surface at z = 0 and the displacements are unde-
termined. The general form of the displacements and the stress components 
are

(8.12)

(8.13)

(8.14)

(8.15)

Putting Txz = 0 at z = 0 and using the expressions for φ and ψ, we imme-
diately obtain

(8.16)

(8.17)

From the characteristic equation (determinant of the coefficients equal 
zero) obtained from Txz = 0 and Tzz = 0, we immediately obtain an equation 
for β

(8.18)

This is conventionally written as a sextet equation with the definitions

(8.19)

(8.20)
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so that Equation 8.18 reduces to the Rayleigh equation 

(8.21)

This equation has one real root, ηR, corresponding to the existence of a 
Rayleigh surface wave with the properties given by the two potential func-
tions. Through ξ, ηR depends on Poisson’s ratio σ. An approximate solution is

(8.22)

Over the allowed range of σ (0 < σ < 0.5), the Rayleigh velocity VR thus varies 
from 0.87VS to 0.96VS. This variation is shown in Figure 8.2 as a function of 
σ  and . Typical values of VR for common materials are given in Table 8.1.

The solutions for the displacements can be obtained, knowing β and hence
γL and γS, from Equations 8.12 and 8.13. The real parts of ux(z) and uz(z) are:

(8.23)

(8.24)

FIGURE 8.2
VR /VS for isotropic bodies as a function of VS /VL and σ, using the approximate Equation 8.22.
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The decay with depth of these solutions is shown in Figure 8.3. Several general 
points emerge. First, both components have a decay constant of the order of 
a Rayleigh wavelength, meaning that the surface disturbance is confined in 
a layer of thickness of order λR. Second, the two components are in phase 
quadrature so that the polarization locus is elliptical. In fact, detailed analysis 
shows that the displacement vector rotation is retrograde (counterclockwise) 
at the surface and progressive (clockwise) lower down. It should be appre-
ciated that the actual displacements even at the surface are tiny. According to
Ristic [31]: “in a device operating at 100 MHz with 10 mW average power in a
beam 1 cm wide on a substrate with SAW velocity VR = 3 km⋅s−1, the wave-
length is 30 µm with the peak vertical displacement on the order of 10−10m.” 

TABLE 8.1

Acoustic Surface Wave Parameters for Representative Piezoelectric Substrates 

Material Orientation
VR

(m⋅⋅⋅⋅s−−−−1 )
k2

(measureda )
VAC

(dB////µµµµ    s)
AIR

(dB////µµµµ    s) (ppm////    °°°°C)

LiNbO3 Y, Z 3488 0.045 0.88 0.19 −87
Bi12GeO20 001, 110 1681 0.015 1.45 0.19
LiTaO3 Z, Y 3329 0.0093 0.77 0.23 −52
Quartz Y, X

ST, X
3159
3158

0.0023
0.0016

2.15
2.62

0.45
0.47

38
14

Note: The total loss is given by α (dB/µ s) = VAC F2 + AIR F, where F is in GHz.
a  Scholz, M.B., and Matsinger, J.H., Appl. Phys. Lett., 20, 367, 1972.

Source: Selected data from Slobodnik, A.Z., Materials and their influence on performances, 
in Acoustic Surface Waves, Oliner, A.A., Ed., Springer-Verlag, Berlin, 1978, 300.

FIGURE 8.3
Relative Rayleigh wave displacements as a function of depth for fused quartz calculated from 
Equations 8.23 and 8.24.

1
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The decrease with depth is also extremely rapid. For propagation along the 
z axis on the YZ plane of quartz, Farnell [34] has calculated that the magni-
tude of the acoustic surface wave Poynting vector decreases by four orders 
of magnitude in a distance of 1.8λR, as shown in Figure 8.4.

8.3 Fluid-Loaded Surface

Waves similar to Rayleigh waves on a free surface can propagate on the 
surface of a fluid-loaded solid. Clearly, as the acoustic impedance of the 
liquid goes to zero, such waves will transform in a continuous fashion to 
Rayleigh waves, i.e., the fluid will act as a perturbation on the free surface 
wave. In fact we do not need to make this assumption, and the presence of 
any liquid can be taken into account by the modified boundary conditions.

Including the continuity of normal stress into the free surface boundary 
conditions immediately leads to a new characteristic equation [35]:

(8.25)

FIGURE 8.4
Relative magnitude of the Rayleigh wave Poynting vector as a function of depth for propagation 
along the z axis on the YZ plane of quartz. (From Farnell, G.W., Properties of elastic surface 
waves, in Physical Acoustics, IX, Mason, W.P. and Thurston, R.N., Eds., Academic Press, New 
York, 1972, chap. 3. With permission.)
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This equation has one real root and one complex root. The real root corre-
sponds to a true, undamped interface wave (Stoneley wave) and will be treated 
in a separate section. The complex root, corresponding to a modification of 
the Rayleigh wave, will be treated here. For simplicity we assume that the 
velocity of this wave, , satisfies  ≥ VR, which will be demonstrated shortly. 
These surface waves modified by the presence of the fluid will be called 
generalized Rayleigh waves or, more commonly, leaky Rayleigh waves.

Since the velocity of the generalized Rayleigh wave is complex, it is atten-
uated. As the media have been assumed to be lossless, the surface wave can 
only be attenuated by radiating energy into the liquid. By reciprocity, a wave 
incident from the liquid will also generate such a wave on the surface. 
Generation and radiation can be simply described by a phase matching con-
dition. As seen for reflection and transmission at the liquid-solid interface the
incident wave vector component along the surface is βx = β sin θ = . For 
a generalized Rayleigh wave on the surface,  = . As the incidence 
angle increases from zero, βx increases until finally βx =  at Vx =  at an 
angle θR such that  = . Thus the phase velocity of the incident beam 
projected onto the surface for incidence at θR “phase matches” the velocity of 
the generalized Rayleigh wave, so the incident beam will amplify the latter 
(or generate it in the absence of an initial surface wave). This is in fact a 
resonance phenomenon, and the incident wave creates an extremely sharp 
and narrow surface wave maximum at θ = θR. By the same token, the Rayleigh 
wave radiates or “leaks” into the fluid medium at angle θR. In so doing, it 
loses acoustic energy and is attenuated, leading to the complex root for the 
velocity. It is for this reason that such waves are called leaky Rayleigh waves.

The phase velocity  of leaky Rayleigh waves has been calculated numer-
ically and tabulated by Viktorov [35] for different values of Poisson’s ratio 
and density ratio. The effect is typically very small; for example, for an average
interface the parameters plotted by Viktorov are r =  = 5 and  =
0.5, leading to  ≈ 1.001. For other values of these ratios, the value of 

 increases monotonically. It should be noted that the numerical results by 
Viktorov are exact and do not make the assumption that the liquid density 
is very much less than that of the solid.

The attenuation factor for the leaky Rayleigh wave has also been tabulated 
by Viktorov. In contrast to the velocity this effect is very important, as can be 
verified by placing a drop of water on a SAW delay line. Even at the lowest 
attainable frequencies the signal disappears instantaneously. A simple estimate 
of the effect which clearly brings out the physics was given by Dransfeld and 
Saltzmann [36]. It was demonstrated earlier in the chapter that the SAW has 
normal and tangential components of displacement. The normal component 
launches compressional waves into the liquid and the efficiency of this mech-
anism is mediated by acoustic mismatch between the solid and the liquid. The 
tangential component is coupled to the fluid by viscosity and is generally much 
weaker. The compressional component of energy transfer can be calculated by 
reference to Figure 8.5 for a surface element of thickness λ and width b.
Designating the normal component of the particle displacement amplitude by a

VR′ VR′

ω/Vx

βR′ ω/VR′
βR′ VR′

VR′ V0 / θRsin

VR′

VS/V0 ρ1/ρ2

VR′ /VR

VR′
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we have for the energy transport per second through the element [36]

(8.26)

Since there is continuity of normal displacement at the interface, the energy 
emitted per second by the surface element bdx into the fluid is

(8.27)

so that finally the energy attenuation coefficient for the leaky Rayleigh wave is

(8.28)

Thus the attenuation per wavelength of the leaky wave is given by the ratio 
of the acoustic impedances. Viktorov gives the value αR = 0.11 for a typical 

FIGURE 8.5
(a) Radiation of a Rayleigh wave from a surface element into an adjacent fluid with acoustic 
wavelength λ . (b) Energy balance for a surface element during time dt due to radiation or leaking
of the Rayleigh wave into an adjacent fluid.
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case, so that the wave is attenuated to  of its initial value over the distance 
of about ten wavelengths. This is the reason why, for nearly all practical 
purposes, SAW devices cannot be used in liquids.

The viscous component can also be calculated from Figure 8.5. If the width 
of the element shown is b, the viscous force on the element is

(8.29)

where v0 = the particle velocity at the solid-fluid interface = ω a, where a is 
the particle displacement in the x direction

(8.30)

so that  is approximately the velocity gradient in the fluid.
The energy dissipated per second by the viscous forces is

(8.31)

and using v0 = ω a, the energy flow in the Rayleigh wave is

(8.32)

The viscous attenuation is

(8.33)

This viscous attenuation is typically a hundred times smaller than the com-
pressional term given by Equation 8.28.

Rayleigh waves can be attenuated by many things other than ambient 
media: point defects, roughness, grain boundaries, electrons, phonons, and 
all of the defects and excitations that can attenuate bulk waves. These phe-
nomena can best be studied per se by generating and detecting Rayleigh 
waves on a solid-vacuum interface. However, they do also come into play 
in the present context of a solid-fluid interface. On the theoretical side, we 
consider the reflectivity R(θ) of an infinite plane wave in the fluid incident 
on a perfect interface formed by a nonattenuating solid. The result is the 
typical theoretical R(θ) curve presented in Chapter 7 where there is total 
reflection for θ  > θcs where |R(θ)| ≡ 1. Experimentally, spatially bounded beams
must be used and these give rise to special effects discussed in the next 
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section. However, making allowances for these, one still observes in reflec-
tivity experiments on typical samples a pronounced dip at the Rayleigh 
angle, instead of total reflection, as shown in Figure 8.6. We call this effect 
the Rayleigh dip.

The existence of the Rayleigh dip can be explained in terms of attenuation 
of the surface wave. If there is no attenuation, the incident wave generates 
a Rayleigh wave, which is then re-emitted, effectively leading to total reflec-
tion. This is exactly the situation found in optics in total reflection in a prism; 
the evanescent wave associated with the critical angle exists, but if energy 
is not removed from it by dissipation, the energy in the evanescent wave is 
simply stored and is not propagated. Returning to the Rayleigh wave, if now 
an attenuation mechanism is introduced, part of the energy associated with 
the Rayleigh wave is absorbed. This reduces the amplitude of the re-emitted 
wave, leading to formation of the Rayleigh dip. In the optics analogy this 
corresponds to placing the face of a second prism near to the face where 
total reflection occurs, which taps energy stored in the evanescent wave, 

FIGURE 8.6
(a) Schematic diagram of the modulus of the reflection coefficient at a liquid-solid interface as 
a function of angle: I, Perfect, nonattenuating solid; II, a finite value of attenuation in the solid 
gives rise to the Rayleigh dip. (b) Blowup of (a) around the Rayleigh angle: 1. Zero attenuation, 
2. Small but critical value of attenuation in the solid, 3. High attenuation. Increasing attenuation 
progressively washes out the Rayleigh dip.

(a)

(b)
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which in turn decreases the reflection coefficient from unity. The Rayleigh 
dip will be treated more fully in Section 15.2.3 on critical angle reflectivity.

8.3.1 Beam Displacement

The displacement of bounded acoustic beams at the critical angle has its 
counterpart in optics, which in turn has a long and venerable history going 
back to Newton. Newton carried out experiments with a silver plate put into 
contact with a glass surface at the condition of total reflection. His results were
inconclusive and the question was only settled definitely in the experiments 
of Goos and Hänchen [37], who clearly demonstrated a lateral displacement of
an optical beam that had undergone total reflection. An extensive review of 
the subject has been given by Lotsch [38]. Shortly after that, Schoch [39] did a 
complete experimental and theoretical study of the acoustic counterpart for 
reflectivity of a bounded ultrasonic beam at the Rayleigh angle, now called the 
Schoch displacement. However, Schoch’s theory, modified by Brekhovskikh, 
lacks a physical basis and is valid only for the wide beam limit.

The first step toward a transparent physical model was made by Mott [40], 
followed by a complete experimental study by Neubauer [41]. The latter used 
Schlieren imaging to image the beam displacement and hydrophones to probe 
the spatial variation of the frequency dependence of the reflectivity. A 
Schlieren photograph by Breazeale et al. [42], Figure 8.7, shows the essential 
features found by Neubauer, who proposed a simple model to explain the 
observed structure. The standard reflectivity theory presented in Chapter 7 
predicts a specularly reflected beam with a π phase reversal with respect to the 
incident beam which is seen on the left side of the reflected beam in Figure 8.7. 
In addition, at θ = θR there is a Rayleigh wave in phase with the incident beam.

FIGURE 8.7
Schlieren photograph of an ultrasonic beam incident from the liquid at a water/aluminum inter-
face. The specularly reflected and displaced components are clearly visible. (From Breazeale, M.A., 
Adler, L., and Scott, G.W., J. Acoust. Soc. Am., 48, 530, 1977. With permission.)
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It propagates along the surface as a leaky Rayleigh wave, radiating acoustic 
energy into the fluid. Initially, the specularly reflected component and the 
leaky Rayleigh wave are out of phase, leading to the null observed in a portion 
of the specular region in the left center of the Schlieren image. After that the 
leaky Rayleigh wave radiates into the fluid, its intensity falling off with 
propagation distance, as expected.

Further refinements to the model are brought into the picture using the 
attenuative model of Becker and Richardson [43]. At sufficiently high frequen-
cies, that theory predicts equality of phase for the specularly reflected and 
leaky Rayleigh wave radiation, leading to the disappearance of the null zone 
at sufficiently high frequencies. This effect was also observed by Neubauer.

A rigorous theory for the beam displacement was put in place by Bertoni 
and Tamir [44]. A summary of the relevant parts of their work is given below; 
serious readers should consult the original reference. Bertoni and Tamir give 
a plane wave representation of the incident field particle velocity vinc(x,  z) 
by the Fourier transform pair

(8.34)

(8.35)

where the symbol and axes have their usual meanings. The incident beam 
width is 2w so that the width projected on the surface is 2w0 where w0 = 
w  sec θi. Hence, the integral in Equation 8.34 is over roughly an effective 
width 2w0 and the integral over kx in Equation 8.35 is over an interval , 
which defines the range of angles for the plane waves of amplitude V(kx). 
With conservation of parallel momentum kx = k  sin θi = kl  sin θl = kt  sin θt as 
usual. In wave number space, the full reflection coefficient can be written as

(8.36)

where ρ = , and the reflected particle velocity is

(8.37)

over the same range of wave numbers as for the incident wave. We are 
interested in the range that includes the Rayleigh wave number kR = k   sin θR.

Since kx is in general complex, R(kx) should be considered in the complex 
plane, where it will exhibit poles (denominator zero) and zeros (numerator zero).
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In the absence of liquid, the free surface resonant solutions for kR can be 
found as zeros (kx = ± kP) of the denominator for ρ → ∞. For the free surface, 
kR is real and kR = k  sin θR. This way of finding the solutions for kR will be re-
examined from another angle in Chapter 10 on acoustic waveguides.

If a liquid is now present, such that it is a small perturbation, then the pole
of R(kx) moves from kx = kR to kx = kP , and kP is now complex, as can be deduced
from Equation 8.36. As in the previous section we can write the solution kP =
β + jα = k  sin θP + jα where β ≈ kR and α is the attenuation due to liquid 
loading. Hence, kP is the wave number for a leaky wave. Taking explicit 
account of the poles kP and zeros k0 near the Rayleigh condition, the reflection 
coefficient for the leaky wave can be written

(8.38)

For the lossless case, we already know from Section 8.3 that |R| ≡ 1 for θ > θcs

and the phase is π at θ = θP . This condition is satisfied if k0 ≡  where ∗  is 
the complex conjugate.

For small losses in the solid k0 ≠  and k0 can be calculated from Equation 
8.38. In fact, |R| becomes a minimum for some value of kx ≈ kR, which corre-
sponds to the frequency of minimum reflection observed experimentally.

Bertoni and Tamir carry out a calculation with a Gaussian beam to make 
contact with Neubauer’s experimental results. Using the previous notation, 
the incident particle velocity can be written at the plane z = 0

(8.39)

with associated Fourier component

(8.40)

which may be used in Equation 8.37 to find the reflected field if R(kx) is 
known. The key step taken by Bertoni and Tamir is to divide R(kx) in the 
region around the Rayleigh angle into two parts

(8.41)

where
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is the reflection coefficient for the specularly reflected (geometrical acoustics) 
component and

(8.43)

is the reflection coefficient associated with diffraction effects in re-radiation 
from the leaky Rayleigh wave.

Combining Equations 8.37 and 8.40, Bertoni and Tamir obtain

(8.44)

and

(8.45)

where erfc(γ ) is the complementary error function. Comparing Equation 8.44 
with Equation 8.39, we see that v0 gives exactly the specularly reflected 
component. The form of v1(x,  0) indicates that it is nonsymmetric, i.e., it is 
no longer Gaussian. The magnitude of v1(x,  0) is only large near the phase 
matching condition ki = β. Outside the illuminated region, i.e., x  ω0 , Bertoni 
and Tamir show that

(8.46)

which, from the exponential phase factor, is exactly of the form of a leaky 
Rayleigh wave with Schoch displacement ∆s .

The situation is best summarized by the display of the two solutions in 
[44], together with their sum giving the totally reflected field. Cancellation 
of the specularly reflected peak and the Rayleigh peak are seen to give rise 
to the null, and on the right the trailing edge is clearly due to the leaky 
Rayleigh wave, both results as proposed by Neubauer. The origin of the 
displacement ∆ is likewise shown in [44]. Further quantitative considerations 
confirm all of the other results reported by Neubauer.

8.3.2 Lateral Waves: Summary of Leaky Rayleigh Waves

A summary of the various interface waves associated with leaky Rayleigh 
waves has been given by Uberall [45]. The pure Rayleigh wave in contact with 
a vacuum has a velocity parallel to the surface (a). For the leaky wave in the 
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limit   1, most of the acoustic energy is in the solid but the velocity 
vector  is now tilted toward the liquid due to leakage in that direction.

If incidence from the liquid occurs for angles of incidence other than the 
Rayleigh angle, then it is found that other waves exist near the interface 
called lateral waves. These come about directly from the theory of the reflec-
tion coefficient at the solid-liquid interface, and they are generated at the 
critical angles θcl and θcs. The lateral waves are effectively bulk waves that 
travel parallel to the surface, often called surface-skimming bulk waves. Like 
leaky Rayleigh waves, lateral waves also radiate into the liquid at the appro-
priate angle (θcl , θcs , and θcR for longitudinal and transverse lateral waves 
and leaky Rayleigh waves, respectively) and in the liquid these radiated 
waves are known as head waves. A head wave has a conical wavefront and 
is commonly known as a Schmidt head wave after its discoverer. All of these 
waves were imaged simultaneously in a classic experiment carried out by 
von Schmidt [46]. An electric spark in water near an aluminum surface acted 
as a point source, so that a whole spectrum of incident angles was emitted. 
Thus, L and S lateral waves and leaky Rayleigh waves were excited and 
propagated along the interface. These waves in turn excited conical head 
waves. Using Schlieren imaging, von Schmidt was able to image all of these 
wave fields at the same time.

8.3.3 Stoneley Waves at a Liquid-Solid Interface

Very generally, Stoneley waves are pure interface waves at the boundary 
between two elastic media. As will be seen later, for two solids they exist 
only for certain ranges of density and sound velocity ratios. However, Ewing 
et al. [47] have shown that they exist in all cases for the liquid-solid interface. 
They are pure interface waves in that they propagate without attenuation 
(hence, the velocity is real), and their amplitude decays exponentially on both
sides of the interface. For   1, the energy is mainly in the liquid and 
it decays very slowly with distance in that medium. The velocity is less than, 
but of the order of, the sound velocity in the liquid. On the solid side, the 
wave only penetrates a distance of the order of a wavelength.

It was mentioned that the characteristic equation for the general interface 
wave had one complex root and one real root, and it was shown in the 
previous section that the complex root corresponds to the leaky Rayleigh 
wave. The real root corresponds to the Stoneley wave, which, as stated above, 
propagates without attenuation in lossless media. Brekhovskikh [30] has shown
that for   1 and   1 this root is given by

(8.47)
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where subscript 0 is for the liquid and subscript 1 is for the solid and the 
amplitude decay into the liquid is given by

(8.48)

so that the decay length is

 (8.49)

which is very much larger than the wavelength under the stated conditions. 
Finally, from a practical point of view, the Stoneley wave can only be excited 
at glancing incidence.

Summary

Rayleigh waves are surface acoustic waves in which longitudinal and shear 
displacements are coupled together and travel at the same velocity. The 
displacements are restrained to between one and two Rayleigh wave-
lengths of the surface.

Rayleigh wave velocity is between 0.87 and 0.95 of the substrate transverse 
wave velocity.

Leaky Rayleigh waves occur for Rayleigh wave propagation at a solid-liquid 
interface. Acoustic energy is radiated into the liquid at the Rayleigh 
angle. An incoming wave from the liquid at the Rayleigh angle will 
likewise excite a leaky Rayleigh wave in the solid. Leaky Rayleigh 
waves are attenuated due to transmission of the component normal to 
the surface into the liquid.

Rayleigh dip is the reduction in the reflection coefficient for a solid-liquid 
interface at the Rayleigh angle due to attenuation of the Rayleigh wave 
at the solid surface.

Schoch displacement of the reflected wave due to incidence of a bounded 
beam from the liquid at the Rayleigh angle. The effect is analogous to 
the Goos-Haenchen effect in optics. It is due to phase cancellation 
between the directly reflected wave and the leaky Rayleigh wave.

Lateral waves are bulk waves excited near critical angles, surface-skimming 
bulk waves.

Head waves are leaky waves radiated into the second medium by lateral 
waves.

Stoneley waves at a liquid-solid interface are true interface waves. They are 
unattenuated and are normally localized mainly in the liquid, with a 
sound velocity approximately equal to the liquid sound velocity.
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Questions

1. Explain how bulk fluid loading increases the generalized Rayleigh 
wave velocity while loading by a thin nonattenuating liquid layer 
usually decreases it.

2. Using

 

 

 

show that Equation 8.21 can be written as 

3. Discuss the factors that may come into play in determining the 
difference between BAW and SAW attenuation for a given material.

4. Show that Ψx and Ψz are not allowed for Rayleigh wave propagation.
5. Calculate and plot the Rayleigh wave polarization ellipse to scale, 

down to depths of z = 3λR.
6. Calculate αR (Equation 8.28) and α S (Equation 8.33) for air, water, 

and mercury in contact with surfaces of quartz and PMMA at 
1 MHz and at 1 GHz. Explain the difference between the various 
cases.

7. The attenuation of Rayleigh waves on a piezoelectric substrate is 
given by α (Np/m) = 30 f  2 + 6.5 f, where f is in GHz.
Express the attenuation constant in dB/µ s if the Rayleigh wave 
velocity is 3200 m/s.

8. Explain in simple physical terms why the Rayleigh dip broadens 
out with increasing shear wave attenuation in the solid surface.

9. Early calculations of the Rayleigh wave beam displacement pre-
dicted a displacement that could be significantly greater than the 
beam width. In terms of the model of Section 8.3.1, is this possible? 
Explain.

10. Estimate the decay length in both media for Stoneley waves at a 
water-aluminum interface. Sketch to scale.
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9
Lamb Waves

The previous chapter dealt with Rayleigh waves guided along the surface 
of a semi-infinite solid. This chapter deals with a similar problem, again for 
the case of sagittal waves, that of Lamb waves [48] propagated along a thin 
plate. Mathematically, the problem for Lamb waves is rather more compli-
cated than for Rayleigh waves. We will not stress the mathematical devel-
opment here but rather look at the nature of the simplest solutions, the S0

symmetric modes and the A0 antisymmetric modes, as well as the physical 
nature of the higher-order modes. The origin of the modes will be looked at 
from another angle, that of guided modes, in the following chapter. Very 
detailed and rigorous mathematical treatments of Lamb waves have been 
given elsewhere [26, 35, 49].

One fundamental difference between Rayleigh waves on a free surface 
and Lamb waves in a plate is that in the latter case there is a finite length 
scale, the plate thickness b. This means that for finite values of the ratio of 
the Lamb wavelength λ to b, the Lamb waves are dispersive. Determination 
of the dispersion relation and hence the variation of phase (VP) and group 
(VG) velocities with frequency is an important part of the problem. In many 
areas of physics, for example, lattice dynamics in solids, it is normal to 
describe dispersion by the ω (k) curve for the mode considered. This is also 
done frequently in ultrasonic waveguide problems. This particular presen-
tation has the advantage of clearly and directly displaying the cutoff fre-
quencies for the various modes. However, in practical ultrasonics and NDE, 
the curves showing phase and group velocities as a function of frequency 
are used much more often. This is one of the reasons that where possible 
we present dispersion curves as VP as a function of f  b and also VG as a 
function of f  b. Apart from their widespread use, these curves also have
the advantage that they link experimentally observable quantities. Often 
for new or unusual structures there can be serious difficulties in identify-
ing the nature of the actual acoustic modes observed experimentally. Meas-
uring VP and VG over as wide a frequency range as possible and comparing 
directly with the theoretical curves is the best way to carry out this mode 
identification.
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9.1 Potential Method for Lamb Waves

We follow a simple approach, developed in more detail in [26], using the 
coordinate system defined in Figure 9.1. The object of this section will be to 
obtain the dispersion equation, from which we can deduce the form of the 
fundamental modes in the low-frequency limit.

As in Chapter 7, the displacement can be written in terms of the scalar 
and vector potentials 

(9.1)

where both potentials are independent of the y coordinate. Thus

(9.2)

(9.3)

FIGURE 9.1
Coordinate system used for Lamb waves, with displacement variations for the lowest four 
modes in the limit β S → 0.
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The Laplacian ∇ 2 can be written

(9.4)

where wave vectors in the transverse direction, ktl and kts for longitudinal 
and shear modes, are defined as

(9.5)

(9.6)

and β is the wave number in the x direction.
Following Chapter 7, we can write the normal and tangential stress for 

the isotropic plate as

(9.7)

for the normal stresses and

(9.8)

for the tangential stresses.
For stress-free boundary conditions at the free surfaces, having Txz and Tzz

equal to zero at  z = ± b/2 can only be satisfied simultaneously if they are 
either even or odd functions of z. This means in turn that the potentials φ
and ψ must be of opposite parity, so that, omitting the factor exp j(ωt − βx)

(9.9)

(9.10)

where
α = 0 corresponds to Tzz even, Txz odd
α = π/2 corresponds to Tzz odd, Txz even
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and the displacements become

(9.11)

(9.12)

These solutions divide up naturally into two groups according to whether 
α = 0 or α = π/2.

1. α = 0: These are symmetric solutions with respect to z. The defor-
mation of the plate is symmetrical with respect to the median plane 
z = 0, so that uz(z) = −uz(−z) and ux(z) = ux(−z).

2. α = π/2: These are antisymmetric solutions with respect to z. The 
deformation of the plate is antisymmetric with respect to the center 
so that uz(z) = uz(−z) and ux(z) = −ux(−z).

As can be verified directly from Figure 9.1, the above considerations lead 
directly to the deformations of the plate displayed in Figures 9.1 and 9.2. In 
order to find the dispersion equation, the boundary conditions for the stress 
can be written explicitly as 

(9.13)

(9.14)

FIGURE 9.2
Mode shapes of S0 and A0 modes showing the deformation of particle planes and the retrograde 
elliptical motion at the plate surface for the case b/λ = 0.03. (From Wenzel, S.W., Applications of 
Ultrasonic Lamb Waves, Ph.D. thesis, University of California, Berkeley, 1992. With permission.)
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leading in the usual way to the characteristic equation

(9.15)

which can be rewritten as

(9.16)

where α takes on the successive values of 0 and . The resulting two equa-
tions, together with the definitions of β, ktl, and kts, can then be used to deter-
mine the dispersion relations for the two types of solutions. Numerical solutions
are shown for two relatively extreme cases, brass and sapphire plates in
Figures 9.3 and 9.4. The solutions clearly separate into symmetric and anti-
symmetric groups. For each of these in turn, we must distinguish between 
the fundamental modes S0 and A0 that extend down to zero frequency and 
the higher-order modes that exhibit a cutoff.

FIGURE 9.3
Phase (—) and group ( ) velocities of Lamb modes in a brass plate (VL = 4700   m/s, VS = 2100 

 m/s) as a function of f b.

β 2 kts
2–( ) ktl

b
2
--- α+ 

  kts
b
2
--- α+ 

 sincos

4β2ktlkts ktl
b
2
--- α+ 

 sin kts
b
2
--- α+ 

 cos+ 0=

ω4

VS
4

------ 4β2ktl
2 kts

2 1
ktl

kts
------

ktl  
b
2
--- α+ 

 tan

kts  b
2
--- α+ 

 tan
---------------------------------–=

π
2
---

Frequency × Thickness (MHz × mm)

V
el

oc
ity

 (
m

/s
)

…

© 2002 by CRC Press LLC



166 Fundamentals and Applications of Ultrasonic Waves
1.  Symmetric mode S0. The phase velocity tends to a constant value

(9.17)

(9.18)

Calculation of the displacement using the solutions of the disper-
sion Equation 9.15 shows that in this limit as ω → 0, the displace-
ment is mainly longitudinal and constant. Thus this mode is 
involved in a type of Young’s modulus experiment or stretching 
of the plate. As Rayleigh originally pointed out, this mode corre-
sponds to stretching without bending. Thus it is physically reason-
able that the displacement is almost entirely longitudinal and the 
limiting phase velocity is close to VL.

2. Antisymmetric mode A0. As β → 0, f → 0 and the phase velocity 
of the A0 mode also goes to zero as

(9.19)

FIGURE 9.4
Phase (—) and group ( ) velocities of Lamb modes in a sapphire plate (VL = 11100   m/s, VS =
6040   m/s) as a function of f b.
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In this case, calculation of the displacement shows that there is a 
uniform transverse displacement across the plate, corresponding to 
a bending motion. Again, in Rayleigh’s words, this corresponds to 
bending without stretching. The movement has often been described 
as being like that of a flag waving in the breeze; however, this 
analogy is not to be taken literally as the motion of the flexural 
modes is confined to the saggital plane.

The simple physics of the S0 and A0 modes at low frequency can 
be understood by considering the deformation of a thin sheet of 
paper or plastic. If the sample is gripped uniformly across the ends 
and stretched, this corresponds to an S0-type deformation. There 
is evidently a high resistance to stretching, hence a high elastic 
modulus and a large value of VPL. Of course, in real life the aniso-
tropic nature of paper comes into play, but the general idea is valid 
for an isotropic sample.

When the paper or plastic is bent, there is almost no resistance. 
This corresponds to a low modulus of elasticity and a phase velocity
that tends to zero as the thickness of the sheet is decreased. This 
is compatible with the well-known engineering result, Equation 
13.54, that the bending modulus varies as b3.

3. Higher-order modes with cutoff. As will be developed explicitly in 
the next chapter, cutoff corresponds to β → 0 and hence transverse 
resonance of a longitudinal or transverse wave in the plate. We can 
obtain this condition from Equations 9.13 and 9.14 directly by put-
ting β = 0. This gives

(9.20)

(9.21)

where, as before, symmetric and antisymmetric solutions corre-
spond to α = 0 or α = π/2, respectively. Depending on the type of 
solution, only one of a or b is nonzero. The four possibilities that 
follow from Equations 9.20 and 9.21 are summarized in Table 9.1. 
Clearly, the behavior of symmetric and antisymmetric modes is 
opposite, and a series of transverse resonances of each type occurs, 
with alternating longitudinal and transverse displacements. The 
high-frequency behavior of the modes is obtained by setting f b → ∞.
All of the phase velocities asymptotically approach VR of the plate, 
which is a physically reasonable result as it corresponds to Rayleigh 
waves on the surfaces of a very thick plate that do not interact with
each other if the plate is sufficiently thick. The various S and A
modes may cross each other although modes of a same family do 
not cross.

B
ωcb
2VL
--------- α+ 

 cos 0=

A
ωcb
2VS
--------- α+ 

 sin 0=
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168 Fundamentals and Applications of Ultrasonic Waves
9.2 Fluid-Loading Effects

As will be shown below, there is a direct correspondence between fluid 
loading of the Rayleigh wave on the surface of a semi-infinite solid and fluid 
loading of one side of a plate supporting Lamb waves. However, the plate 
case is rather more complicated as the fluid loading can be one- or two-sided 
with the same or different fluids. Also, a thin plate can be formed into a 
tube, which has the same possibilities of inside and outside loading. We 
describe these other cases more briefly, principally to identify the modes in 
question and the physical principles involved, and to provide a lead-in to 
active current investigations of the subject. The earlier work on fluid loading 
of acoustic modes on plane and curved surfaces has been summarized in an 
excellent review by Uberall [45].

9.2.1 Fluid-Loaded Plate: One Side

There is a one-to-one correspondence with the fluid-loaded Rayleigh wave 
problem. As in the latter case, there is a complex term added to the right-hand
side of the dispersion relation of the Rayleigh-Lamb equation. There are now 
two roots, a complex root corresponding to a leaky Lamb wave (LLW) and 
a real root corresponding to an interface Stoneley wave. As for the case of 
leaky Rayleigh waves, most of the energy in the LLW resides in the plate, 
assuming that the liquid is a perturbation on the solid behavior. The wave 
leaks into the fluid at an angle sin θ = V0/VP where VP is the phase velocity 
of the Lamb wave considered; evidently, the same Lamb mode will be excited 
by a compressional wave incident from the fluid at this angle. Again, as for 
Rayleigh waves, there is a small change in VP due to liquid loading, but this 
effect is negligible in most practical applications as the acoustic impedance 
of the liquid is usually much smaller than that of the solid. The applications 
of LLW in NDE will be discussed fully in Chapter 15. There are some specific 

TABLE 9.1

Properties of Higher-Order Symmetric and Antisymmetric Lamb Modes

Symmetric (αααα = 0) Antisymmetric (αααα = ππππ    ////2)
Even Odd Even odd

Coefficients A  ≠ 0
B = 0

A  = 0
B  ≠ 0

A  = 0
B  ≠ 0

A  ≠ 0
B = 0

Nature of 
displacement

Longitudinal Transverse Longitudinal Transverse

Resonance 
equation

 n = 1, 2, 3 m = 0, 1, 2 n = 1, 2, 3 m = 0, 1, 2

ωcb
2VS
--------- nπ= ωcb

2VL
--------- 2m 1+( )π

2
---= ωcb

2VL
--------- nπ= ωcb

2VS
--------- 2m 1+( )π

2
---=
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practical points that follow from the previous results in the limit f b → 0, as 
follows:

1. The S0 mode is little affected by the presence of liquid as the 
displacement of this mode is mainly parallel to the surface.

2. At not-too-low frequencies in the sonic regime such that VP > V0, 
the A0 mode is relatively highly radiative as the transverse dis-
placements set up compressional waves in the liquid.

3. The A0 mode in the subsonic regime, VP < V0 , is trapped in the 
plate setting up an evanescent wave in the liquid. This makes this 
mode very useful for applications to liquid sensing, which will be 
discussed in more detail in Chapter 13.

The real root of the modified dispersion equation corresponds to a true 
interface wave, which is often called a Stoneley-Scholte mode (A mode). It 
propagates in the liquid parallel to the surface without attenuation. It is the 
direct analog of the Stoneley wave for the liquid-loaded surface. The A mode, 
however, has a phase velocity that has the same general variation with f b as 
the A0 mode, as shown in Figure 9.5. As f b increases from zero, the phase 
velocity increases monotonically and asymptotically approaches the bulk 
fluid phase velocity as f b → ∞.

There has been considerable recent interest in the question of mode repul-
sion effects between Lamb wave modes [50]. This phenomenon occurs in 
the present problem, as a repulsion between the A and the A0 modes in the 
region where the phase velocity of the latter approaches the sound velocity 
in the liquid. This results in an upward deformation of the A0 curve as shown 
in Figure 9.5. Equally important, the two modes exchange character below 
the interaction region, that is to say that the A mode now propagates pre-
dominantly in the solid and the A0 predominantly in the fluid. The two 
modes propagate in both media in the interaction region, although the upper 
mode is very highly attenuated.

9.2.2 Fluid-Loaded Plate: Same Fluid Both Sides

This case was treated in detail in the classic paper by Osborne and Hart [51]. 
They found the existence of the A mode, described above, and in addition 
a new mode, analogous to the symmetric mode S0, called the S mode. It was 
found that the S mode has a roughly horizontal dispersion curve, with a 
phase velocity VS just slightly below that of the bulk fluid phase velocity V0.

9.2.3 Fluid-Loaded Plate: Different Fluids

This case was considered by Bao et al. [52]. They showed that similar repul-
sion phenomena occur although the detailed behavior of the coupled modes 
is different. The A mode increases from zero and asymptotically approaches 
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170 Fundamentals and Applications of Ultrasonic Waves
the phase velocity of the lowest-velocity liquid. The S mode splits at low 
frequency and approaches the phase velocity of the highest-velocity liquid 
at high frequencies.

9.2.4 Fluid-Loaded Solid Cylinder

The treatment for this classic problem has been summarized by Uberall [45]. 
The results are analogous to those for the semi-infinite solid. A Rayleigh 
wave propagates around the curved surface of the cylinder and becomes 
leaky in the presence of the fluid. There are also higher-order Rayleigh-type 
modes that penetrate into the cylinder. These are called whispering gallery 
modes and can be represented in a ray model as multiple reflections around 
the inner surface of the cylinder. The analog of the Stoneley wave for a curved 
surface is called a Franz or creeping wave, which propagates in the liquid 

FIGURE 9.5
(a) Schematic representation of the dispersion curves for a thin plate loaded with fluid on one 
side. The A0 curve is deformed from the vacuum case due to mode repulsion in the region 
where the phase velocity approaches the liquid sound velocity. (b) Loss of the coupled modes. 
(From Wenzel, S.W., Applications of Ultrasonic Lamb Waves, Ph.D. thesis, University of Cali-
fornia, Berkeley, 1992. With permission).
© 2002 by CRC Press LLC



Lamb Waves 171
around the curved surface of the cylinder. There is now a difference with 
the plane surface, however, as the Franz waves radiate tangentially into the 
liquid, and hence, these modes are attenuated for geometrical reasons. This 
propagation path has been directly imaged by Schlieren imaging techniques 
[53]. This attenuation of the Franz waves is in contrast with the Stoneley 
waves for the plane surface, which are unattenuated.

9.2.5 Fluid-Loaded Tubes

This is a complex topic that is the subject of much current research, so we 
provide only a brief description. The case of the tube has all of the complex-
ities of the plate (fluid inside, outside, etc.) as well as those provided by
the curvature of the cylinder. The case of thin-walled tubes will be discussed 
here, where b/a > 0.95 with b the inner radius of the tube and a the outer. 
Experimental results are usually given as VP or VG as a function of f d (d =
a − b = wall thickness) although some of the theoretical results are expressed 
as a function of ka, where k is the mode wave number. The scale factor 
between the two variables is

(9.22)

and phase and group velocities are linked by

(9.23)

To a first approximation the empty tube has modes very similar to those of 
a plate, with the exception that axial and circumferential modes are possible. 
Most of the oceanographic work has been carried out for the case of evacu-
ated thin cylindrical shells immersed in a liquid. The situation is similar to 
that for a plate loaded on one side, except that now the A mode becomes a 
type of creeping (Franz) mode around the outside of the shell and radiates 
into the liquid as for a cylinder. Maze et al. [54] showed that the same mode 
repulsion and exchange of mode character between A and A0 occurs in the 
region where the A0 velocity approaches the ambient fluid sound speed. Also 
of interest is the case where the tube contains a filler liquid inside. This case 
was considered by Sessarego et al. [55] where repulsion and wave character 
exchange effects were found, as well as two Stoneley-type modes A and S. 
The group velocity of the lowest A mode has a maximum in the critical 
region of mode repulsion. Bao et al. [56] also found that new modes inside 
the tube were introduced by the fluid filling (whispering gallery type). 

fd
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2π
------= 1 b
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172 Fundamentals and Applications of Ultrasonic Waves
Again, strong coupling (repulsion) effects occur between these modes and 
the A0 modes in the tube, leading to dispersion curve veering effects between 
the filler modes and change in wave character (fluidborne or shellborne) 
over the full length of the dispersion curve. The strong coupling effects were 
attributed to shear terms in the boundary conditions, which is a general 
effect as shown by Uberall et al. [50].

Summary

Lamb waves are symmetric and antisymmetric acoustic waves propagated 
along a thin plate. Since the wavelength is of the order of the plate 
thickness these waves are dispersive in nature.

A0 and S0 modes are the fundamental Lamb modes. The displacement is 
uniform across the plate thickness at low frequency. In the limit  f b → 0,
the modes correspond to pure extensional and flexural displacements, 
respectively.

Stoneley-Scholte mode is a pure interface mode at the interface between a 
plate and a liquid. As f b increases, the phase velocity asymptotically 
approaches the velocity of sound in the fluid.

Franz waves or creeping waves correspond to the Stoneley-Scholte modes 
for a curved surface; these modes “creep” around the surface of a tube 
or a cylinder.

Questions

1. Explain the order of magnitude of the phase velocity for S0 and A0

modes in the limits f b → 0 and f b → ∞.
2. Describe three different experimental ways in which Lamb waves 

can be generated in plates.
3. Explain physically why the group velocity varies strongly with f b

near a Lamb wave cutoff frequency.
4. Give a qualitative discussion on the different effects of liquid load-

ing on the attenuation of the S0 and A0 modes as f b → 0.
5. What are the main differences between the Lamb wave disper-

sion curves for a thin plastic plate compared to a thin sapphire 
plate?
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6. Of all the fundamental acoustic modes, why is it that the phase 
velocity of the A0 mode goes to zero as f b decreases to zero? How 
could this phenomenon be exploited in sensing applications?

7. Show that Equation 9.16 is equivalent to Equations 10.19 and 10.20.
8. Determine which Lamb modes would be excited in an aluminum 

plate 1 mm thick at 1 MHz and 20 MHz.
9. Compare and explain the difference between the dispersion curves 

for SH and Lamb waves.
© 2002 by CRC Press LLC



          
10
Acoustic Waveguides

10.1 Introduction: Partial Wave Analysis

We have already described in some detail two examples of guided acoustic 
waves, namely Rayleigh waves on a surface and Lamb waves in a plate. 
Both of these problems were solved using the potential method, which can 
in fact be used to solve any acoustics problem in isotropic media. However, 
the potential method cannot be extended to anisotropic media. This is a 
definite shortcoming for quantitative treatment of acoustic waveguides, 
because while the isotropic model is simple and useful to describe the global 
behavior, most acoustic waveguides are in fact made from anisotropic mate-
rials. Thus it would be useful to have a formalism that works in this case, 
and that is provided by partial wave analysis, which will be used in this 
chapter.

The basic idea of the partial wave method is to consider separately the 
different components of the plane wave solutions involved in the particular 
problem at hand; these will typically be either SH or sagittal wave modes. 
These components, the so-called partial waves, are oriented so that they have
a common wave vector β in the propagation direction along the waveguide 
axis. Depending on the conditions (mainly frequency of operation), the trans-
verse components of the wave vector may be real or imaginary. The possible 
modes that can be set up in the waveguide are determined by transverse 
resonance in a manner similar to the situation for electromagnetic 
waveguides. This leads to low-frequency cutoff conditions and many higher-
order modes as the frequency is increased. Slowness curves will prove to 
be very useful as a visual technique to describe the whole waveguide problem.

In this chapter, we will establish a general formalism that can be used to 
describe acoustic waveguide applications, based on partial wave analysis, 
slowness curves, and transverse resonance. In several cases these results will 
provide a complement to the treatments that have already been made using 
the potential method. As before, only isotropic media will be considered. 
The approach follows that adopted by Auld [32].
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10.2 Waveguide Equation: SH Modes

The simplest case is provided by SH modes as there is only one direction of 
polarization and they are decoupled from the sagittal modes, so there is no 
mode conversion or reflection. The basic geometry is shown in Figure 10.1(a), 
where incident and reflected partial waves are shown. The local displacement 
(velocity) is perpendicular to the sagittal plane and the bulk shear wave veloc-
ity is relevant to the problem. The boundary conditions at the free surface lead 
directly to a node for the two components of stress Txz and Tzz and an antinode 
for the velocity v. The principle of transverse resonance says that resonances 
at multiples of λ /2, which are compatible with these boundary conditions, can 
occur as shown in Figure 10.2(b). The fundamental mode n = 0 has uniform 
velocity down to zero frequency, so there is no cutoff. The higher modes have 
cutoffs at frequencies corresponding to the appropriate resonances, as shown 

FIGURE 10.1
Partial waves used for guided wave analysis in several configurations. (a) SH modes. (b) Love 
waves. (c) Lamb waves. (d) Rayleigh waves.
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for modes n = 1 and n = 2 in the figure. Thus

(10.1)

(10.2)

where kt is the transverse wave number.
As shown in Figure 10.1(a), the incident and reflected partial waves have 

a common wave number β along the propagation direction. The solution for 
the full wave equation is

(10.3)

FIGURE 10.2
(a) Displacement curves for the fundamental and two lowest modes for SH waves. (b) Slowness 
construction for SH modes in a plate of thickness b.
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Since ky = 0, and using kz = kt from Equation 10.2 and kx = β, we have

(10.4)

which we call the waveguide equation. It has a very simple geometrical 
interpretation in terms of the slowness curve as shown in Figure 10.2(b). The 
two partial waves with common wave vector are shown together with the 
value of kt from Equation 10.2 and the radius of the slowness curve 1/VS. 
Thus the slowness construction corresponds exactly to the waveguide equa-
tion by Pythagoras’ theorem.

It is instructive to look at the behavior for a given waveguide as the fre-
quency is changed for a given mode number n. As the frequency is increased 
the transverse component nπ/bω decreases, θ increases, and β increases 
toward the boundary of the slowness curve. For ω → ∞ (very short wave-
length) the transverse component goes to zero and the propagation is along 
x with β = ω/VS, corresponding to a bulk wave in this limit. As ω is decreased,
θ increases until at cutoff, defined β ≡ 0, θ = 0, and nπ/bωc = kt/ωc, i.e., transverse 
resonance for this particular value of n. Since β = 0 there is no propagation 
down the guide. Furthermore, for frequencies below cutoff, ω < ωc , the partial 
waves move off the slowness curve and β  becomes imaginary. Thus the wave 
along the x becomes evanescent or nonpropagating, consistent with the 
notion of cutoff.

In order to obtain the full solutions for the velocity and the displacement, 
we need to consider the symmetry properties of the plate. For reconstruction 
of the partial waves, the latter must be in the same state after two reflections. 
This means that the amplitude must be the same, which is guaranteed by 
reflection at a free surface with no mode conversion, and the phase must 
change by a multiple of 2π n. These conditions can be met in a more general 
way by expressing them as a symmetry principle for reflections with respect 
to the median (xy) plane. From the form of the transverse resonances in 
Figure 10.2(a), clearly for n even, there is even symmetry (symmetric mode) 
about the median plane and there is odd symmetry (antisymmetric mode) for 

FIGURE 10.3
Dispersion curves for SH modes in an aluminum plate ( ).VS 3040 m/s=

β 2 ω
VS
------ 

  2
= nπ

b
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  2
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Acoustic Waveguides 5
n odd. Since reflection in the central plane interchanges incident and reflected
waves, then they are identical for symmetric modes and differ by a sign 
change for antisymmetric modes. Hence, the symmetry principle states that 
the amplitudes of incident and partial waves differ at most by a sign change.

The previous considerations lead to a methodology for calculations using 
partial waves, which is summarized for SH modes in the following steps:

1. Define the partial waves; here we have only the SH mode, so

 

2. Define incident and reflected waves

(10.5)

3. Apply the symmetry principle

(10.6)

4. Use boundary conditions on reflection at z = b/2, vi = vR

(10.7)

5. Deduce transverse resonance condition from step 4.

exp jktsb = ±1

Hence

 (10.8)

6. Deduce waveguide dispersion relation and slowness description

(10.9)

7. Form solutions for particle velocity from partial wave solutions. 
For example, for a guided wave traveling toward the right with 
positive velocity maximum on the upper surface

 (10.10)

8. Determine appropriate stresses from Hooke’s law. For the above 
case

 (10.11)
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6 Fundamentals and Applications of Ultrasonic Waves
The dispersion curve for the SH mode can be determined directly from 
the waveguide equation, Equation 10.9. The fundamental for n = 0 goes to 
the bulk shear velocity at fd → 0. The higher modes have cutoff frequencies, 
as can be deduced directly from the waveguide equation.

10.3 Lamb Waves

The dispersion equation for Lamb waves was derived in the previous chapter 
using the potential method. It also provides an excellent example of the 
power of the partial wave method for directly solving the waveguide problem.
The partial wave modes are now composed of longitudinal and transverse 
components in the sagittal plane as shown in Figure 10.1(c); they must obey 
the symmetry relations established in the previous section.

Following the methodology outlined earlier, we define the velocity fields 
incident and reflected partial waves as

(10.12)

for the longitudinal component and

(10.13)

for the shear component.
The symmetry conditions then require

(10.14)

and the reflection condition at the surface z = −b/2 gives

 (10.15)

The determinant of this characteristic equation must vanish as a condi-
tion for nontrivial solutions, and using Equations 7.103 and 7.104, this 
becomes

(10.16)

vxi Ale
jkli r•–

, Ble
jklr r•–

=

vxi Ase
jksi r•– , Bse

jksr r•–=

Bl Al±=
Bs As±=
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jklib/2

Ase
jksib/2

± RLL RLS

RSL RSS
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j– klrb/2

Ase
j– ksrb/2

=

RLL±
ktl kts+( )sin b

2
---

ktl kts–( )b
2
---sin

----------------------------------=
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expanding the sine terms, we obtain

(10.17)

(10.18)

for symmetric and antisymmetric modes, respectively. Expressing RLL in terms 
of ktl , kts , and β, these become finally the Rayleigh-Lamb dispersion equations

(10.19)

(10.20)

for antisymmetric modes.
Here the transverse wave numbers ktl and ksl obey the waveguide 

Equation 10.9. Equations 10.19 and 10.20 can be shown to be equivalent to 
Equation 9.16.

By putting β = 0 in Equations 10.19 and 10.20, we obtain

(10.21)

for symmetric modes and

(10.22)

for antisymmetric modes.
For β = 0 we have kts = ω /VS and ktl = ω /VL, and Equations 10.21 and 10.22 

then give the same transverse resonance conditions as described in Table 9.1.
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8 Fundamentals and Applications of Ultrasonic Waves
10.4 Rayleigh Waves

It is shown by Auld [32] that in the limit βb → ∞, the S0 and A0 modes become 
degenerate, and their displacements are tightly bound to the surface. One 
way to see the significance of this result is to set b → ∞. For a sufficiently 
thick plate, the surface vibrations on the opposing surfaces become decou-
pled, corresponding to independent Rayleigh waves on the upper and lower 
surfaces. Thus the Rayleigh wave solution can be obtained by considering 
partial waves for one surface only. Since the two surfaces are an infinite 
distance apart, there will be only reflected amplitudes for the upper surface 
with no incident wave, as shown in Figure 10.1(d). The reflected amplitudes 
can be written

(10.23)

(10.24)

where the incident amplitudes As  and Al go to zero, and the reflection 
coefficients Rij go to infinity. This can only be done by putting the denomi-
nator for the latter in Equations 7.101 and 7.102 equal to zero. This then gives 
the transverse resonance condition for Rayleigh waves as

(10.25)

The reflected waves must clearly be evanescent and the transverse wave 
numbers can be written

(10.26)

(10.27)

and with

(10.28)

(10.29)

the dispersion equation, Equation 10.25 can be written as

(10.30)
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Acoustic Waveguides 9
which can easily be shown to be identical to the Rayleigh wave dispersion 
relation obtained by the potential method in Chapter 8.

10.5 Layered Substrates

The propagation of acoustic waves in layered half spaces developed histor-
ically in the study of seismology. In zero approximation, the earth’s interior 
can be represented as a homogeneous half space even though it is in fact far 
from that approximation throughout its depth. This model accounts for the 
observation of bulk longitudinal (P) waves and bulk shear (SV) modes, as well
as Rayleigh waves propagated along the surface. In a first approximation 
this half space is covered by a relatively thin crust of quite different mechan-
ical properties. The crust can support modes analogous to those found in a 
free plate; in particular, modified SH plate modes or Love waves can be 
observed. A more detailed approach would have to account for propagation 
in multilayers.

Problems in seismology are of ongoing interest and would justify in their 
own right the study of acoustic propagation in layered systems. Modern 
technology has provided additional reasons for studying this subject. Micro-
electronics is based on varied and ingenious combinations of multilayered 
structures. This has favored the development of SAW technology in its planar 
form involving films of metallization, electrodes, and piezoelectric materials. 
Of more recent interest, microsensors provide another example of the appli-
cation of various acoustic modes in layered systems; the layers are typically 
electrodes, piezoelectric films, or chemically selective films, which may be 
deposited on massive substrates or thin membranes.

A final important example is found in NDE. Protective layers and coatings 
are ubiquitous in modern manufacturing technology and their quality is 
an important issue. NDE techniques involve propagating ultrasonic waves in
these structures and detecting echoes from defects or associated changes in 
acoustic properties. A thorough knowledge of the propagation of acoustic 
waves in such structures is obviously a prerequisite for carrying out such 
NDE investigations.

The previous section dealt with SH and sagittal modes in plates where they 
were seen to be decoupled. This is also the case for propagation in layers on 
substrates and there is a direct correspondence between the two cases for the 
simple modes. There is, however, a major difference between the two cases. 
For propagation in a plate in air or a vacuum, the acoustic energy is con-
strained to the plate, and as has been seen, the propagation can be described 
by incident and partial waves in the plate. If the plate is now deposited on 
a substrate then there is the additional possibility that there will be a wave 
transmitted into the substrate, i.e., the guided mode in the layer may either 
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be trapped or may leak into the substrate. The distinction can be made in a 
clear and distinct manner for the case of SH modes or Love waves. A good 
discussion of layered substrates is given by Farnell and Adler [57].

10.5.1 Love Waves

It is a general property of isotropic media that the SH modes are separated 
from, and hence uncoupled to, the sagittal modes. This is obviously true in 
a layer on a semi-infinite substrate as shown in Figure 10.1(b) and the corre-
sponding SH wave in the layer is known as a Love wave, discovered in 1927 
by A. E. H. Love [58]. For the mode to be trapped in the layer, certain 
conditions have to be met. As will be demonstrated, a basic condition is that 

 where  is the shear velocity in the layer and VS that in the substrate.
Following the usual procedure, we define partial waves as shown in 

Figure 10.1(b). In addition to the incident (i) and reflected (r) wave as for the 
SH plate mode, we have a transmitted (t) partial wave in the substrate. The 
partial waves are

(10.31)

At the upper free boundary at z = b/2, RS ≡ 1 

(10.32)

At the lower boundary, we use the known reflection and transmission 
coefficients for this case, which yield

(10.33)

(10.34)
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Acoustic Waveguides 11
The reflection coefficients on the upper and lower surfaces must be satis-
fied at the same time as a condition for transverse resonance. This leads 
directly to

(10.35)

The behavior of kts is important in this equation. From Equation 10.39, if kts

is real, it corresponds to propagation of a progressive wave in the substrate, 
i.e., energy is leaked out of the layer. We are looking instead for solutions in 
which energy is trapped in the layer and, therefore, where the transmitted wave
in the substrate is evanescent. This corresponds to kts being imaginary, which 
can be accounted for explicitly by posing kts = −jα  ts and looking for real values 
of α ts. Combining Equation 10.35 with the usual waveguide equations for kts

and αts, we obtain

(10.36)

 (10.37)

 (10.38)

The last two equations show that a necessary condition for α ts to be real, 
hence, for trapping to occur, is for . This conclusion concurs with 
that of the slowness curve analysis of Figure 10.4.

Auld [32] solves Equations 10.36 through 10.38 graphically and hence is 
able to obtain threshold frequencies and dispersion relations for all modes 
as a function of β. In fact, Tournois and Lardat [59] have derived an implicit 
relation for the dispersion relation of the form

(10.39)

where

, 

and VP is the phase velocity of the Love wave.
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12 Fundamentals and Applications of Ultrasonic Waves
The phase and group velocities obtained from this relation for some of the 
low-order Love modes for the case of a gold film on a fused quartz substrate 
are shown in Figure 10.5.

The physics of the phase velocity variation with frequency can be under-
stood by considering Figure 10.5 for a fixed layer of thickness b in the limits 
of very low and high frequencies. At very low frequencies the wavelength 
is much greater than the film thickness, so as f → 0, VP tends to the shear 
wave velocity in the substrate. In the opposite limit, f → ∞, the wavelength 
is now much less than the layer thickness so that the fundamental Love 
mode behaves as a bulk shear wave in the layer and the phase velocity 
approaches the bulk shear velocity asymptotically. By the same token, the 
Love modes penetrate deeply into the substrate at low frequencies while 
they are progressively confined to the layer as the frequency increases to 
β b  1. The f  b dependence for the first Love mode for a gold layer on fused 
quartz is displayed in Figure 10.6.

FIGURE 10.4 
Slowness curves for two possible layer-substrate configurations for SH modes. (a) Love modes, 
showing conditions for trapped and leaky modes. (b) SH modes, showing that the SH modes 
are leaky under all circumstances; hence, Love waves are not possible in this case.

>>
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Acoustic Waveguides 13
10.5.2 Generalized Lamb Waves

We are concerned here with sagittal plane modes in a layer on a semi-infinite 
half space. As Love waves differ from the SH modes of a free plate in that 
they can leak into the substrate, so generalized Lamb waves share the same 
property with respect to Lamb waves in a free plate. For a thin layer, these 

FIGURE 10.5
Fundamental and lowest-order Love modes in a gold layer (VS = 1200 m/ s) on a fused quartz 
substrate (VS = 3750 m/s).

FIGURE 10.6
Displacement of the lowest-order Love mode for the case of Figure 10.5 for various values of f b.
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14 Fundamentals and Applications of Ultrasonic Waves
sagittal plane modes can be seen as a perturbation of Rayleigh waves on a 
free surface so they have also been called Rayleigh-like modes.

As for Love waves one of the dominant properties of these modes is that 
the presence of a layer introduces a length scale (thickness) for the wave-
length so that these modes are generally dispersive. Hence phase and group 
velocities of each mode are of importance. Further, analogous to Love waves, 
one can anticipate that the nature of the modes depends on the ratio of layer 
and substrate parameters, in particular that of the shear velocities. The prob-
lem could be solved using partial wave analysis and the waveguide equation 
with transverse resonance similar to the approach used for Love waves. 
However, the calculations become unwieldy, so we will restrict the treatment 
to a description of the various modes that may be excited.

The seminal work of Tiersten [60] allows a clear distinction to be made 
between limiting cases of layer-substrate combinations as well as providing 
a quantitative estimate of the phase velocity V as β b → 0. Tiersten’s approach 
is perturbative, which for small β b yields

(10.40)

Of particular interest is the slope of the dispersion curve at β b = 0

(10.41)

Tiersten shows that this quantity is positive if

(10.42)

where superscript ^ is for the layer material.
The right-hand side of this relation is bounded between  and 1/ . The 

various cases to be considered are best illustrated by the normalized axes 
shown in Figure 10.7. For  the layer is said to “stiffen” the substrate, 
and for  <  VS/  the layer “loads” the substrate. The intermediate region in 
the figure will be treated in the next section and corresponds to Stoneley waves.

For an isotropic substrate, Tiersten showed that the perturbation to the 
Rayleigh velocity is given explicitly by

(10.43)

where IR is the average unperturbed power flow per unit width along x.

F0 V( ) βbF1 V( ) βb( )2F2 V( )++ 0=

dV
d βb( )
--------------

βb=0

F1 VR( ) dF0 V( )
dV

-----------------
VR

+–=

V̂S

VS
------

1 VS

VL

------ 
 

2

–

1 V̂S

V̂L

------
 
 
 

2

–

-------------------->

2 2

V̂S VS 2>
V̂S 2

∆VR

VR
----------

VRb
4IR
--------- ρ̂ VRz

2 ρ̂ 4µ̂
VR

2
------ λ̂ µ̂+

λ̂ 2µ̂+
----------------⋅–

 
 
 

VRx
2+

z=0

–=
© 2002 by CRC Press LLC



Acoustic Waveguides 15
The sign of the term in brackets is positive for stiffening and negative 
for loading as described above. It will be seen that the sign of ∆V/V
follows naturally from the simple physics of the problem. Sufficient con-
ditions for stiffening and loading are given in Figure 10.7. To harmonize 
with the notation of Figures 10.7 through 10.13 in this section we replace 
βb by kh.

1. Stiffening: 
A typical example is silicon ( ) on a ZnO sub-

strate (VS = 2831 ms−1) as shown in Figure 10.8(a). For vanishingly 
thin layer thickness (k h → 0), the velocity is the Rayleigh wave 
velocity for the bare substrate. The high-velocity layer increases 
the effective surface wave velocity until it reaches the substrate 
shear wave velocity. For higher values of kh the partial wave leaks 

FIGURE 10.7
Sufficient conditions for stiffening and loading for isotropic material combinations. (From 
Farnell, G.W. and Adler, E.L., Elastic wave propagation in thin layers, in Physical Acoustics, 
IX, Mason, W.P. and Thurston, R.N., Eds., Academic Press, New York, 1972, chap. 2. With 
permission.)

V̂S VS>
V̂S 5341 ms 1–=
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16 Fundamentals and Applications of Ultrasonic Waves
(a)

(b)

FIGURE 10.8
(a) Phase and group velocities for a silicon layer on a ZnO substrate under stiffening conditions 
( ). (b) Phase velocity of the first Rayleigh mode under loading conditions ( ) for 
ZnO on Si. (From Farnell, G.W. and Adler, E.L., Elastic wave propagation in thin layers, in 
Physical Acoustics, IX, Mason, W.P. and Thurston, R.N., Eds., Academic Press, New York, 1972, 
chap. 2. With permission.)

V̂S VS> V̂S VS<
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Acoustic Waveguides 17
into the substrate so that a true surface wave (evanescent decay) 
no longer exists, and the mode becomes a pseudo-bulk wave. Since 
the phase velocity reaches this condition with a horizontal slope 
the group velocity also goes to zero at this point. This is the only 
solution for the case of stiffening.

2. Loading: 
In this case the slope at kh → 0 is negative as predicted by 

Equation 10.41. This can be understood very simply as follows. For 
kh → 0, as before, the Rayleigh wave velocity approaches that of 
the bare substrate. As kh increases the importance of the layer 
increases progressively, leading to a decrease in velocity due to the 
effect of this low velocity material. Finally, for kh → ∞ the layer 
dominates completely and the velocity approaches the Rayleigh 
wave velocity asymptotically. This explains the overall behavior of 
the first Rayleigh mode shown in Figure 10.8(b). As kh increases, 
higher-order Rayleigh modes are excited in the spirit of transverse 
resonance much as for Love waves. As in the latter case, each of 
these higher modes leaks into the substrate at a sufficiently low 
frequency.

 The lowest of the higher-order Rayleigh modes is important in 
seismology and device physics; it is the Sezawa mode, discovered 
by Sezawa and Kanai in 1935 [61]. The displacement components are 
reversed compared to the fundamental and the displacement ellipse
is progressive for the Sezawa mode and regressive for the funda-
mental mode [57]. Displacements for the first Rayleigh mode and 
second Rayleigh (Sezawa) modes as a function of depth are shown
in Figures 10.9 and 10.10, respectively.

10.5.3 Stoneley Waves

A Stoneley wave [62] is a sagittal interface wave between two solids that is 
evanescent in both media as shown for a tungsten-aluminum combination 
in Figure 10.11. For a solid-solid interface, these are very restrictive condi-
tions on the existence of these modes as shown by the shaded regions in 
Figure 10.12. It turns out from the analysis that the Stoneley wave velocity 
VST lies in the range VR < VST < VS of the dense medium and that VST < VS, 

 of both media.
It is interesting to see how one can pass from the layer situation to the 

Stoneley case for two suitable solids by passing to the limit k h → ∞. This is 
shown in Figure 10.13 for a tungsten-aluminum interface. Initially, if tung-
sten is taken as the substrate and the aluminum as the layer, the curve rises 
from VR(W ) as this case corresponds to stiffening. As seen previously this 
mode exhibits in the range where it approaches asymptotically the shear 
wave velocity VS(W ). However, in this case it rises asymptotically to VST

V̂S VS<

V̂S
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18 Fundamentals and Applications of Ultrasonic Waves
where it becomes a Stoneley mode that exists for h → ∞. If aluminum is 
taken as the substrate this is a loading situation and the fundamental mode 
velocity decreases from VR(Al) at kh = 0, goes through a minimum, and then 
approaches VR(W ) for kh → ∞ as seen previously. In this case, it is the first 
Sezawa mode whose velocity decreases from VS(Al) and approaches VST

asymptotically as  kh → ∞ instead of becoming asymptotic to the layer shear 
velocity as occurred previously for the non-Stoneley cases.

FIGURE 10.9
(a) Vertical component and (b) longitudinal component of displacement for the first Rayleigh 
mode at different values of kh. Gold on fused quartz, f = 100 MHz. Dots at the end of the curves 
indicate the position of the free surface for each kh. (From Farnell, G.W. and Adler, E.L., Elastic 
wave propagation in thin layers, in Physical Acoustics, IX, Mason, W.P. and Thurston, R.N., Eds., 
Academic Press, New York, 1972, chap. 2. With permission.)
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FIGURE 10.10
Displacement for the second Rayleigh (Sezawa) mode. The solid curves are for kh just above 
cutoff. F = 100 MHz. Gold on fused quartz. (From Farnell, G.W. and Adler, E.L., Elastic wave 
propagation in thin layers, in Physical Acoustics, IX, Mason, W.P. and Thurston, R.N., Eds., 
Academic Press, New York, 1972, chap. 2. With permission.)

FIGURE 10.11
(a) Vertical and (b) longitudinal displacement components for aluminum-tungsten Stoneley 
wave (solid curves). Broken curves are for a layer of one material on a substrate of the other. 
F = 100 MHz. The broken curve for  for aluminum on tungsten is indistinguishable from 
Stoneley waves on this scale. (From Farnell, G.W. and Adler, E.L., Elastic wave propagation in 
thin layers, in Physical Acoustics, IX, Mason, W.P. and Thurston, R.N., Eds., Academic Press, 
New York, 1972, chap. 2. With permission.)

u1
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20 Fundamentals and Applications of Ultrasonic Waves
10.6 Multilayer Structures

Although multilayer structures can act as acoustic waveguides, it is most prac-
tical to carry out a formal analysis in this direction. The extreme complexity of 
sagittal modes in a simple solid layer on a substrate illustrates the futility of 
such an exercise. Fortunately, the most important aspect of multilayer structures 
is the transmission or reflection of acoustic waves from them, and this can be 
carried out with surprising transparency. This is an important problem in many 
areas of ultrasonics, including NDE (adhesion, laminated materials, compos-
ites, etc.), oceanography (stratified fluids and sediments), medical ultrasonics, 
and instrumentation (acoustic microscopy and impedance matching of probes).

The multilayer problem has been reviewed in depth by Lowe [63] for the 
case of n layers between solid and media and where reference is made to 
studies of anisotropic layers and cylindrical layers. Achenbach et al. [64] 

FIGURE 10.12
Region of existence of Stoneley wave (shaded region) for V =  = 1/ . Broken lines are lines 
of constant ; material combinations above appropriate line have positive slope for dis-
persion curve at the origin. (1) V = 0,  = ; (2) V = 0, ; (3) ; (4) , 

; (5) , . (From Farnell, G.W. and Adler, E.L., Elastic wave propagation in 
thin layers, in Physical Acoustics, IX, Mason, W.P. and Thurston, R.N., Eds., Academic Press, 
New York, 1972, chap. 2. With permission.)

V̂ 3
V̂S/VS

V̂ 1/ 2 V̂ 1/ 3= V V̂= V 1/ 3=
V̂ 0= V 1/ 2= V̂ 0=
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Acoustic Waveguides 21
provide a detailed procedure for the general analysis of anisotropic layers 
on an anisotropic substrate. As pointed out in [29] and [63], two main 
approaches have been adopted for quantitative analysis:

1. Global matrix method [65] where a single matrix is used to repre-
sent the complete system. It encompasses 4(n − 1) equations for the 
n layers that correspond to the boundary conditions at each interface. 
The method is stable and avoids several well-known pitfalls of 
other approaches but it is exceedingly cumbersome to carry out. It 
will not be discussed further here.

2. Transfer matrix approach originally proposed by Thomson [66], 
corrected by Haskell [67], and formalized in the general theory by 
Brekhovskikh [30]. Each layer is represented by a matrix and the 
n − 1 matrices are multiplied together to represent the whole sys-
tem. This is a conceptually simple approach and results will be 
presented below.

The formalism follows [29] for the case of an isotropic substrate 
(medium n) supporting (n − 1) isotropic layers going from (n − 1) near 
the substrate to layer number 1 next to the incident fluid medium 
(medium 0). A longitudinal wave at angle θ is incident in the fluid 
and longitudinal and shear waves are emitted into the substrate. 

FIGURE 10.13
Dispersion curves for a tungsten layer on an aluminum substrate (solid curve) and aluminum 
on tungsten (broken curve). VS is the velocity of the Stoneley wave. (From Farnell, G.W. and 
Adler, E.L., Elastic wave propagation in thin layers, in Physical Acoustics, IX, Mason, W.P. and 
Thurston, R.N., Eds., Academic Press, New York, 1972, chap. 2. With permission.)
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22 Fundamentals and Applications of Ultrasonic Waves
Each layer is characterized by four waves: two longitudinal and 
two shear in each of forward and backward directions. Conserva-
tion of parallel wave vector is respected for all media and the usual 
boundary conditions of continuity of normal and tangential displace-
ment and stress apply. For the ith layer the matrix aij links displace-
ments and stresses at the upper and lower boundaries by

(10.44)

The matrix elements aij are given in [29]. For the (n − 1) layers, the total 
effect A can be obtained by multiplying the layer matrices, so that

(10.45)

which means that the (n − 1) layers are described by

(10.46)

Finally, the reflected and transmitted waves can be calculated from 
the potentials

(10.47)

in the fluid, and

(10.48)

in the substrate.
These results give the detailed reflection and transmission factors 

that are presented in [29].
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10.7 Free Isotropic Cylinder

In addition to providing a classic problem in acoustics for acoustic modes in 
simple geometries, cylindrical structures also have found some application as 
acoustic waveguides and delay lines in the form of thin rods [68], capillaries, 
tubes [69], etc. The calculation of the acoustic modes in the isotropic cylinder is 
best done with the potential method. Since complete accounts have been given 
elsewhere [26, 32, 68], we summarize the main results only briefly here.

The wave equation and potential functions are of course expressed in cylin-
drical coordinates (r, θ, and z) and the solutions for the potentials and the 
displacements are found in terms of Bessel functions. Displacement components 
are ur and uθ in the section of the cylinder and uz along its length. As usual, the 
boundary conditions for the three components of stress at the free surface Trr , 
Trθ , and Trz are set equal to zero. The determinant of the coefficients is set equal 
to zero and the dispersion equation can be solved numerically. The result is that 
there are three families of modes, which can be described as follows:

1. Compressional modes, which are axially symmetric with displace-
ments ur and uz independent of θ. The dispersion relation, known 
as the Pochhammer-Chree equation, qualitatively resembles Lamb 
waves in that the fundamental mode goes to a constant velocity 
VE =  where E is Young’s modulus and ρ is the density as 
ka → 0, where a is the radius of the cylinder. The other modes all 
have cutoff frequencies and are dispersive.

2. Torsional waves. There is only one displacement component, uθ  , 
which is independent of θ. Again, this mode is not dispersive, with 
constant velocity VS =  where µ is the shear modulus. The 
higher-order modes are dispersive and have cutoff frequencies. 
The dispersion curves for the whole family of torsional modes 
resemble those for SH modes in a plate.

3. Flexural waves. These are the most complicated as they involve 
displacement components ur , uθ , and uz , which vary with θ as sin nθ
and cos nθ . These modes qualitatively resemble the antisymmetric
modes of a plate; in particular, the fundamental has no cutoff and 
propagates down to zero frequency, with velocity  
while the higher modes have cutoffs and are dispersive.

10.8 Waveguide Configurations

Most waveguide configurations of current use are based on the SAW config-
uration. Especially when considered in the context of modern microelectronic 
technology, the standard SAW configuration has several major disadvantages. 
These include beam spread due to diffraction, which can lead to undesired 

E/ρ

µ/ρ

V ωa/2 VE≈
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24 Fundamentals and Applications of Ultrasonic Waves
crosstalk; large width (up to 100 wavelengths), which can lead to large areas; 
and single orientation, i.e., uni- or bidirectional, and inability to turn corners 
or go from one device layer to another.

These disadvantages can be overcome by the use of acoustic waveguides; 
where beam spread is suppressed by the guiding action, the width can be 
reduced to the order of a wavelength and in certain cases the guide can be 
oriented at will (as for fibers, for example). Such acoustic waveguides are being
used increasingly in sensor and NDE applications, and they have good 
potential for multifunction devices and acoustic nonlinear applications due to
the inherent possibility of having a high power density. There are some 
technological difficulties to be overcome such as loss reduction, increase of 
excitation efficiency, and fabrication problems for fibers, but these are soluble 
in principle. General overview of acoustic waveguides have been given in 
[32, 70, and 71].

There are two general considerations that enter into the design of acoustic
waveguides. The first is the degree of field confinement or, viewed otherwise, 
the rate of decay of the acoustic field in the substrate. This must be controlled 
to suit the application. For example, a strong decay is desirable to reduce 
crosstalk but in other applications some degree of coupling between guides 
may be desirable. A second consideration is dispersion. Since such guides are
made using thin films or thin topographical structures there is always an 
intrinsic length scale involved, which introduces dispersion. It is generally 
desirable to design for a dispersionless or low dispersion region within the 
bandwidth, especially for long delay lines. Three different approaches to 
acoustic waveguides will be discussed briefly.

10.8.1 Overlay Waveguides

The basic principle here is to deposit a film or films on the substrate to lower the
sound velocity in the guide region. As seen previously, this can lead to trapping 
in the guide and evanescent decay of this mode in the substrate. The most 
direct way to do this is with the strip guide as shown in Figure 10.14. The 
material of the overlay is chosen so that it corresponds to acoustic loading 
of the substrate beneath it.

The strip guide is dispersive and its behavior with frequency follows the 
behavior expected from Section 10.5.2. As β b → 0, the phase velocity 
approaches the Rayleigh wave velocity in the substrate. Hence, there is almost 
no guiding action and the wave is spread out over the substrate. As the 
frequency increases, the velocity decreases toward the Rayleigh wave velocity 
in the strip and at sufficiently high frequencies the wave is confined to the strip.

10.8.1.1 Slot Waveguide

The slot waveguide is the complementary configuration to the strip. The 
wave is guided along the bare substrate with strips on either side as shown 
in Figure 10.14. The material of the strips is chosen so that it stiffens the 
© 2002 by CRC Press LLC



Acoustic Waveguides 25
Rayleigh velocity of the substrate. As a result, the acoustic wave is trapped 
in the slot that forms an acoustic waveguide.

The basis of the analytical treatment for the slot is similar to that for the 
strip [70], but the dispersion curve is clearly different now as the phase 
velocity increases with frequency. At low frequency, as before, the wave is 
spread out and the guiding action is weak. The velocity increases with 
frequency but at sufficiently high frequency it must again equal the Rayleigh 
velocity in the substrate, so it passes by a broad maximum. At high frequen-
cies, the acoustic wave is confined to the slot.

10.8.1.2 Shorting Strip Waveguide

In the spirit of the strip and slot waveguides, an acoustic waveguide can be 
formed by any means that produces a local change in substrate velocity. The 
strip and slot accomplish this by the use of loading and stiffening layers, 
respectively. Another way to do this is with the metallic shorting strips on 
a piezoelectric substrate. The metal shorts the piezoelectric field, which 
results in a lowering of the Rayleigh wave velocity, the decrease depending 
on the magnitude of the piezoelectric constant. The actual behavior of the 
device is then very similar to that of the strip waveguide. Since the change in 
velocity is typically only 1 or 2% the wave is only weakly guided in this 
configuration.

Finally, a conceptually equivalent approach to the shorting strip would be 
to use diffusion, in implantation or local depoling, to produce the requisite 
local velocity changes. There are indications [70] that waveguides produced 

FIGURE 10.14
Acoustic waveguide configurations: (a), (b), and (c) are flat overlay waveguides; (d) and (e) are 
topographic waveguide configurations; (f) and (g) are two types of circular fiber waveguide.
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by diffusion can produce significant velocity changes of the order of several 
percent but with no accompanying attenuation increase, thus overcoming 
one of the main drawbacks of the overlay technique.

10.8.2 Topographic Waveguides

These are produced by a local deformation of the substrate, in the form of 
a protuberance such as a ridge, wedge, etc. Unlike overlay waveguides, 
where the binding is loose and governed by horizontal reflections, topo-
graphical waveguiding is vertical and strong. Hence, the two cases are qual-
itatively different. The main types are as follows:

1. Ridge, antisymmetrical, or flexural modes. The ultrasonic field is 
strongest at the top of the ridge and dies away exponentially into 
the substrate. This type of guide is strongly dispersive. It follows 
the A0 mode down to a minimum, then rises to a cutoff at a fre-
quency determined by the height-width aspect ratio of the ridge.

2. Ridge, symmetric, or pseudo-Rayleigh mode. In this case, there is 
almost no dispersion. The displacement is a combination of that 
due to S0 and SH modes. It is close to acting like an acoustic co-ax 
line, with tight confinement, almost zero dispersion and propagat-
ing down to zero frequency.

3. Wedge waveguide. An ideal wedge (i.e., one with no substrate effects)
has no length scale and so should be dispersionless. The waveguid-
ing properties should then be controlled uniquely by the apex angle. 
This idealized condition can be approached in practice. Mainly flex-
ural waves are excited in the wedge and they are tightly bound to 
the apex. In practice, the structure has very low dispersion.

10.8.3 Circular Fiber Waveguides

The aim of this development originally was to obtain low loss, low disper-
sion, and very long delay lines. Two types generally developed historically:

 1. Capillary waveguides [69], where the acoustic wave propagates as 
a Rayleigh wave along the inside surface of the capillary. Relatively 
constant group velocity can be obtained over a limited frequency 
range. One big advantage is that the structure can be made by 
drawing standard fused silica tubing.

2. A second approach is that of cladded acoustic fibers [72], based on 
the principle of clad optical fibers. If the velocity of the cladding 
is greater than that of the case, then the acoustic mode can be 
trapped in the case and propagated over large distances. This prin-
ciple has been adapted to the development of cladded delay lines 
as described in Chapter 15.
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Summary

Partial waves are the components of the plane wave solutions appropriate 
to a particular guided wave problem. They are oriented so that they 
have a common wave vector β along the waveguide. Possible modes 
are determined by transverse resonance in the guide.

The waveguide equation encompasses the concepts of transverse resonance 
and cutoff in an acoustic waveguide. Its geometrical formulation in-
volves the slowness curve of the waveguide material, which can be 
used to determine whether a given mode is trapped, propagating, or 
evanescent.

Love waves are SH modes propagating in a layer on a substrate. They can 
only occur if the transverse wave velocity in the layer is less than that 
in the substrate.

Stoneley waves are interface waves between two solids, which propagate 
without leakage. Their existence conditions are quite stringent, depend-
ing on the ratios of densities and elastic constants.

Questions

1. Describe qualitatively the differences between the acoustic modes 
possible in a plate and a tube, for all ranges of the ratio of thickness 
to wavelength and of thickness to tube diameter.

2. Compare the full range of acoustic modes to be found in a fluid- 
loaded rod to those for a tube with fluid loading inside and outside.

3. Explain the physical connection between Rayleigh and Lamb waves
by considering a plate at a given value of f b and varying the 
thickness from zero to infinity.

4. Which acoustic waveguide configuration would be the most appro-
priate for detecting the difference between ice and water on the 
surface of a material structure? Explain.

5. “Theoretically, problems involving SH modes are much simpler to 
solve than those for saggital modes, but experimentally it is much 
easier to excite and study saggital modes than SH modes.” Discuss.

6. Describe qualitatively the changes in the dispersion curve for the 
SH waveguide when the slowness curve is changed from a circle 
to an ellipse with major axis oriented along the guide.

7. Explain why Stoneley waves are nondispersive and have no 
higher-order modes.
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8. Give a qualitative description of guided waves in a fluid contained 
between two solids. Sketch the expected dispersion curve.

9. Sketch the form of the displacements in the fundamental mode for 
compressional, torsional, and flexural waves in a cylinder of radius a.

10. Work out the quarter wavelength matching layer problem between 
a liquid and a solid for the case where two layers are used. Suggest 
suitable materials and thicknesses when the liquid is liquid helium 
and the solid is sapphire.

11. Under what conditions will a Love wave be most sensitive to 
conditions on the surface? This will determine the suitability of 
this mode as an acoustic sensor.
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11.1 Introduction

 

Hooke’s law for a three-dimensional solid gave the previous result

(4.47)

Using the definition of the strain tensor 
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kl

 

, this becomes

(11.1)

Since 
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, the two terms on the right-hand side are equal, so that

(11.2)

The equation of motion was also shown to be

(5.11)

which now becomes

(11.3)

For a bulk medium in three dimensions, we look for plane wave solutions
in the form

(11.4)
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where the propagation vector  is normal to planes of constant phase. Writing
(

 

n

 

1

 

, 

 

n
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, 

 

n

 

3

 

) as a unit vector perpendicular to the wave front, we have

(11.5)

where 

 

V

 

 is the phase velocity. For simplicity the subscript 

 

P

 

 is dropped in
this section.

We also have (

 

u

 

1

 

, 

 

u

 

2

 

, 

 

u

 

3

 

) is the particle displacement vector. To summarize,
for a plane wave propagating in any direction, the direction of propagation
is given by the components of  and the displacement (hence, the polariza-
tion) is determined by .

For bulk waves in isotropic media it was seen that there is one longitudinal
mode and two transverse modes. It turns out that for crystalline media the
corresponding general treatment that one can make is that for a given direc-
tion of propagation three independent waves may be propagated, each at a
particular phase velocity and whose displacements are mutually orthogonal.

In general, these waves will be neither longitudinal nor transverse, and
their displacements will have no specific orientation with respect to the wave-
front. As will be shown for a given crystal structure, there are, however,
certain directions in which “pure” modes (i.e., pure longitudinal or pure
transverse) can be propagated.

Returning to the equation of motion, we now outline the standard procedure
for determining phase velocities and displacements for a given propagation
direction. Substituting the solution Equation 11.4 in the wave equation we
obtain directly

(11.6)

which is called Christoffel’s equation. It is the very basis for subsequent
determinations of the phase velocity. It is put in standard form by defining

(11.7)

so that

(11.8)

This means that 
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 are its eigenvalues,
determined by

(11.9)

Since 
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il

 

 is symmetric by its definition, it follows that the eigenvalues are
real and the eigenfunctions orthogonal, which proves the statement made
earlier on the three modes of propagation for a given direction. Application
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of the 

 

Γ

 

 tensor is a straightforward and a powerful way of determining the
phase velocities for any direction in any crystal structure [26]. We will content
ourselves here with two simple examples for the cubic system based on direct
application of Equation 11.9.

 

11.1.1 Cubic System

 

The elastic constants for different crystal lattices are determined by the cor-
responding symmetry properties of those systems. Equation 11.6 for the cubic
system yields the following three equations:

(11.10)

As mentioned previously, this system can be solved formally for any particular
direction  to give the three orthogonal polarizations and their corresponding
phase velocities. Here we will rather look for the conditions for the existence
of pure modes and then solve the simplified equations for three special
directions.

For longitudinal waves,  is, by definition, parallel to . A necessary con-
dition for this is  
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which leads to 
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(11.12)

For the principal directions involving 0 or 1, this relation can be satisfied by
the following combinations:
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 1:             Direction [111]
   2. one index zero and      Equivalent directions [110], [101], [011]
       the other two unity:
   3. two indices zero and Equivalent directions [100], [010], [001] 
       the other unity:  

(11.13)

This result tells us that pure longitudinal waves propagate in the [100], [110],
and [111] directions or their equivalent. To determine the phase velocity in

c11 c44–( )u01n1
2 c12 c44+( )u02n1n2 c12 c44+( )u03n1n3+ + ρV2 c44–( )u01=

c12 c44+( )u01n2n1 c11 c44–( )u02n2
2 c12 c44+( )u03n2n3+ + ρV2 c44–( )u02=

c12 c44+( )u01n3n1 c12 c44+( )u02n3n2 c11 c44–( )u03n3
2+ + ρV2 c44–( )u03=

u

u n
u n

u02n3 u03n2– 0=
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u01n2 u02n1– 0=
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the [100] direction, for example, we substitute these values of  in Equation
11.10. Rearranging the terms gives

(11.14)

In this case, the calculation of the determinant is trivial leading to

(11.15)

for longitudinal waves. This direction also supports transverse waves, which
by inspection have the phase velocity

(11.16)

Transverse wave phase velocities can be calculated in a similar way,
although now the appropriate relation between  and  is

(11.17)

or

u01n1 + u02n2 + u03n3 = 0

In a fashion similar to that for longitudinal waves it can be shown that the
same directions also support transverse waves. It is a more complicated task
to show that these are the only pure mode directions for cubic systems. This
is carried out in more advanced treatments [26, 73, 74]; our goal here is to
introduce the concept of propagation in anisotropic media and not to give
a complete treatment.

11.2 Group Velocity and Characteristic Surfaces

The crystal structure does more than impose severe restrictions on the allowed
directions for the propagation of pure modes. It also has profound implica-
tions on the direction of propagation of energy, which may be quite different
from the direction of the official wave propagation unit vector . In order to
uncover these implications of crystallinity, we will establish the link between
the energy propagation velocity and phase velocity vectors. This can be done

n
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by rewriting the equation for the acoustic Poynting vector. It was previously
shown that the Poynting vector can be written as

(11.18)

For plane waves,

(11.19)

where the equation for the wave front is njxj = constant. We then have directly

(11.20)

(11.21)

Pi can then be written as

(11.22)

The general form for the Poynting vector for plane waves is Pi = uaVei, where
Ve is the energy propagation velocity and the energy density ua = uK + uP .

It is a well-known result that  so 
Hence,

(11.23)

and finally

(11.24)

where we have put 
We want to simplify the above relation between Vei and V. This can be

done by multiplying both sides of Christoffel’s equation by u0i to obtain
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which means that the projection of the energy propagation velocity on the
propagation direction gives the phase velocity.

This result has immediate practical consequences. In Figure 11.1, we show
a crystal with plane parallel faces fitted with an emitting transducer for
longitudinal waves on the left face and a receiving transducer on the right
(the latter might also be a spherical cavity of an acoustic microscope used
to focus the ultrasonic beam). The propagation direction is chosen to be a
pure mode direction so that the energy propagation direction should corre-
spond exactly with  if everything has been designed correctly. But if a
mistake has been made in the choice of crystal orientation, then while  is
still perpendicular to the transducer face the energy of the ultrasonic beam
will propagate crabwise as shown in the figure. In a worst-case scenario, it
may miss the receiver completely! Perversely, the reflected beam from the
right-hand face will have  antiparallel to , and the acoustic energy will
retrace its path crabwise to the emitting transducer.

To gain further physical insight into this relation between Ve and VP, we use
the well-known result [26] that in linear acoustics the energy propagation
velocity is equal to the group velocity VG where

(11.27)

or in vectorial form

(11.28)

FIGURE 11.1
Transducer on a misoriented anisotropic buffer rod. The ultrasonic pulse will propagate off-
axis in the direction of the group velocity as shown, thus missing a receiving transducer placed
opposite the emitter. The reflected signal returns to the latter.
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By vector analysis, the second form for  shows explicitly that  is per-
pendicular to a constant energy surface in  space.

In analogy with optics and the propagation of electromagnetic waves,
several different surfaces can be constructed to describe the wave propaga-
tion. These have been described in detail in [26].

1. Velocity surface
As shown in Figure 11.2(a), the velocity surface for a crystal is formed

by tracing out the phase velocity variation  as a function

FIGURE 11.2
Schematic view of the characteristic surfaces for acoustic wave propagation in anisotropic solids.
In all cases there are three shells, one quasi-longitudinal and two quasi-shear. (a) The velocity surface,
which gives the phase velocity as a function of direction. (b) The slowness surface, which gives
the variation of 1/VP in /ω space. (c) The wave surface, which is the locus of points traced out
by Ve as a function of propagation direction.

k

VG VG

k

VP VPn=
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210 Fundamentals and Applications of Ultrasonic Waves

of direction from a fixed origin O. There are three sheets corre-
sponding to one quasi-longitudinal mode and two quasi-shear
modes.

2. Slowness surface
As shown in Figure 11.2(b), this surface has already been con-

structed for isotropic systems; in /ω space, it gives the variation of
1/VP with direction for the three branches. A slowness surface is a
surface of constant ω. Hence, for a point P on the surface the radius
vector OP gives 1/VP for that direction, and the group velocity for
that direction is normal to the slowness surface at point P. Since this
is a “reciprocal” space, the L surface is now inside the two S surfaces.

3. Wave surface
As shown in Figure 11.2(c), this is the locus of the group velocity

vector  as a function of direction starting from a fixed origin.
Therefore, it gives the distance traveled by a wave emitted from O
for different directions during a fixed time t. Since the wave arrives
at all points on the surface at the same time, it is also an equiphase
surface. For a given point P on the surface the propagation vector

 for a plane wave with that value of  is perpendicular to the
surface.

11.3 Piezoelectricity

11.3.1 Introduction

There are several different methods for exciting ultrasonic waves, including
piezoelectricity, electrostriction, magnetostriction, electromagnetic (EMAT),
laser generation, etc. Of these, the piezoelectric effect is by far the most
widely used. The subject is covered at an advanced level, for materials and
transducers design perspective in many sources [20, 31]. In the following,
we give a general overview of the subject and introduce the parameters that
come into play when piezoelectric materials are used to make ultrasonic
transducers.

Piezoelectricity means that when we apply a stress to a crystal, not only
a strain is produced but also a difference of potential between opposing faces
of the crystal. This is called the direct piezoelectric effect. Conversely, the indi-
rect effect corresponds to applying a difference of potential, which induces
a strain in the crystal. Since the process is known to work at extremely high
frequency (piezoelectric generation of sound has been reported up to 1012 Hz),
piezoelectric crystals can be used to generate (inverse effect) and detect (direct
effect) ultrasonic waves. The key to the phenomenon lies in the absence of
a center of symmetry in piezoelectric crystals. This is, in fact, a necessary but

k

Ve

n Ve
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not a sufficient condition for piezoelectricity; of the 21 crystal systems lacking
a center of symmetry, 20 are piezoelectric.

The physics of the piezoelectric effect can be understood by referring to the
case of quartz [75]. The piezoelectric crystal is placed between two metallic
plates, which can support a stress and also serve as electrodes. If no stress is
applied, the system of positive and negative charges share a common center
of gravity. This means that there is no molecular dipole moment so the
polarization is zero. If the crystal is subjected to compressive or tensile stress,
the unsymmetrical distribution of positive and negative charge means that
the centers of gravity of positive and negative charges no longer coincide.
This creates a molecular dipole moment, hence a net polarization, the sign
depending on whether compression or expansion took place. This leads to
a corresponding accumulation of charge on the electrodes and hence to a
potential difference between them. If an AC stress is applied, an AC potential
difference is created at the same frequency with magnitude proportional to
that of the applied stress.

The previous example can be made more concrete using a simple one-
dimensional model, which will be retained, for simplicity, in this and the fol-
lowing section. Suppose that ±q are the charges of the positive and negative
ions, and a is the charge in dimension of the unit cell. Again, for simplicity,
we suppose one atom of piezoelectrical material per unit cell. Then the
induced polarization can be expressed as qa/unit cell volume = eS, where e
is the piezoelectric stress constant and S is the strain. Then the usual relation
for dielectric media can be written

(11.29)

(11.30)

where D and E are the electric displacement and electric field, respectively.
The superscript S is standard in the literature for such relations and corre-
sponds to permittivity at constant or zero strain. In a similar way, it can be
shown that

(11.31)

These two relations are known as the piezoelectric constitutive relations;
they will be examined in more detail in the next section.

11.3.2 Piezoelectric Constitutive Relations

Since there are two electrical variables (D, E) and two mechanical variables
(Τ, S), there are several different possible ways of writing the constitutive
relations introduced in the last section. In fact, choosing one electrical and

D ε0E P+=

εSE eS+=

T cES eE–=
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212 Fundamentals and Applications of Ultrasonic Waves

one mechanical quantity as independent variables, we easily find that there
are four different sets of constitutive relations that can be written. If, for exam-
ple, we choose T and E as independent variables we can write S = S(Τ, E)
and D = D(Τ, E). For small variations one can make a Taylor expansion of S
and D about the equilibrium values and retain only the linear terms, resulting
in

(11.32)

(11.33)

The proportionality constants are defined by

(11.34)

where the equality for d (and similar conditions for the other constitutive
relations) can be obtained by thermodynamic considerations. Thus we
have

(11.35)

(11.36)

In a similar way for the other constitutive relations, we have

(11.37)

(11.38)

(11.39)

(11.40)

(11.41)

(11.42)
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Two of these constants merit particular attention for transducer applications
[20]:

1. Receiver constant g, which determines the potential drop across
the transducer for a given applied stress. We use Equations 11.37
and 11.38

(11.43)

(11.44)

For a high-impedance receiver, the input current is small so the
displacement current iD in the electroded piezoelectric transducer
goes to zero. With iD = / , this gives D = constant or zero. Hence,

E = gT, S = sDT (11.45)

For a given input stress T to the receiving transducer, the potential
difference across the transducer is proportional to g. In this con-
nection, a useful relation obtained from [20] gives

(11.46)

2. Transmitting constant h. Another set of constitutive relations gives

(11.47)

(11.48)

and we see that h gives the electric field (hence, potential difference)
required to produce a given strain S. It can be shown that h = e/εS.
All of the above has been done for a simple one-dimensional model.
Of course, real crystals are three-dimensional so instead of constants
linking  (first-order tensors) to Tij, Skl (second-order tensors)
the piezoelectric constants now become third-order tensors, e.g.,
e → eijk. In reduced notation, this becomes eiJ, i = (x, y, z or 1, 2, 3)
and J = 1, 2, …, 6 as for the elastic constants. Thus we can write one
of the constitutive relations as

(11.49)

(11.50)

For a given crystal, the nonzero values of the cij, eIj and εij are
determined by symmetry as shown in detail in advanced treatises
[e.g., 26].
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An important result is that of the PZT, which is transversely isotropic about
the z axis. We consider longitudinal propagation along the z axis, normal to the
surface of a wide plate of PZT. If the width of the plate is much greater than the
wavelength, the edges can be considered clamped so that S1 = S2 = 0, T1 ≠ 0,
and T2 ≠ 0. We wish to determine T3 for an applied electric field Ez. The two
parameters are related by

(11.51)

(11.52)

so the important constants are c33 and e3z. These are among the nonzero
constants for the case of transverse isotropy (hexagonal), which are

c11 = c22, c11 − c12 = 2c66, c44 = c55, c33 (11.53)

ez3, ez1, ez2, ez4 = ez5 (11.54)

εxx = εyy (11.55)

In the next section, we consider the specific case of a transducer and define
a simple coupling constant, which is the one simple parameter retained for
practical characterization of piezoelectric transducers.

11.3.3 Piezoelectric Coupling Factor

The concept of coupling factor is used to determine the efficiency of coupling
of electrical to mechanical energy. The coupling factor is also useful to com-
pare the efficiency of different piezoelectric materials. The subject is fully
treated in the IEEE standard of piezoelectricity [76] and we give only an
overview for the one-dimensional case with propagation along the z axis.

For an infinite piezoelectric dielectric medium with no free charges and
B = 0

(11.56)

which in one dimension leads to

(11.57)

T3 c33
E S3 e3zEz–=
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and

(11.58)

For longitudinal waves, we use the constitutive relations for T and D and
use S = /

(11.59)

(11.60)

and the equation of motion

(11.61)

Putting the two relations together immediately gives a new equation of
motion for uz in the piezoelectric medium

(11.62)

This shows that in the piezoelectric medium the sound velocity is stiffened
compared to the nonpiezoelectric case

(unstiffened) (11.63)

(stiffened) (11.64)

corresponding to

(11.65)

with

the piezoelectric coupling constant (11.66)

Note that this result is only valid for D = 0. Values of K2 typically range from
10−2 to 0.5 so that the correction can be important for strongly piezoelectric
materials. The formulation of K2 is only valid for transversely clamped
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transducers (width much greater than the wavelength), which is generally
true in ultrasonics. In practical transducer analysis, the impedance is deter-
mined by a related and oft-quoted parameter, , the effective coupling
constant

(11.67)

For K2  1,  ≈ K2 but otherwise the difference may be significant.
On a more fundamental level, it can be shown that the piezoelectric cou-

pling factor is given by

(11.68)

where

Uelec = stored electrical energy (11.69)

Uelas = stored elastic energy (11.70)

This relation clearly reveals K2 as being a parameter reflecting the coupling
from electrical to mechanical energy. This relation may also be expressed as

(11.71)

where U is the total stored energy (the sum of kinetic, elastic, and electrical
components).
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12
Piezoelectric Transducers, Delay Lines,  
and Analog Signal Processing

12.1 Bulk Acoustic Wave Transducers

There are almost an infinite number of ways that ultrasonic transducers can 
be used in widely diverse applications. For purposes of this chapter, in speci-
fying the medium that the transducer is coupled to, we group the use of BAW
transducers into four main application areas:

1. Excitation for delay lines
2. General coupling into solids for NDE
3. Emission into aqueous media
4. Resonators in air for sensors and timing applications

The section starts with a summary of the representation of a BAW transducer 
by an equivalent circuit, followed by a discussion of transducer behavior in 
the neighborhood of the resonance frequency. Various cases of impedance 
matching and backing of the transducer are discussed and it is shown how 
these parameters influence the transducer operation in the time and fre-
quency domain. Piezoelectric tranducers are discussed in most books on 
ultrasonics. One of the most comprehensive and useful contributions is given 
by Kino [20] and much of this section summarizes his treatment.

The transducer element is a cut from an oriented piezoelectric crystal, 
chosen so longitudinal or transverse waves are emitted perpendicular to the 
flat faces. Electrodes are applied to the opposite faces as shown in Figure 
12.1(a), so an applied difference of potential gives rise to a uniform electric 
field in the z direction with Ex = Ey = 0. It is standard procedure to ground 
the lower electrode and attach the active lead to the top electrode, either by 
bonding, silver paste, or spring contact for laboratory R&D applications. 
Field applications transducers are packaged with an integral BNC connector 
so that these connections are made automatically. For the unpacked case, the 
ground connection is established easily by a (metallic) sample holder for 
© 2002 by CRC Press LLC
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metallic samples, but the ground connection presents a problem for insulat-
ing samples. This is readily resolved by use of the coaxial configuration 
shown in Figure 12.1(b) in which the ground electrode is wrapped around 
to the front surface, so the ground and center connections can be made from 
above, at the price of a weak fringing field. The electrodes are generally 
vacuum-deposited gold, approximately 0.5 µm thick, on a thin chromium film 
for adhesion. In the equivalent circuit representation, the presence of the elec-
trodes is generally neglected below 100 MHz as their thickness is much less 
than the wavelength. This is not the case at much higher frequencies where 
they must be included.

It is reasonably clear from Figure 12.1 that the transducer must be 
described, in general, by a three-port network. There are two acoustic ports 
corresponding to the media on either side of the transducer and one electrical 
port furnished by the two electrodes. The acoustic parameters conventionally 
chosen for such a description agree with the boundary conditions described 
earlier, namely the force F (stress) and particle velocity v, which correspond 
to the potential difference V and current I in electrical parlance. The sign 
conventions are chosen so that F is positive in the +z direction and the particle 
velocity is positive when pointing toward the piezoelectric material. Appro-
priate values of F and v at the acoustic ports are represented in Figure 12.2(a). 
For the interior of the transducer we have

(12.1)

(12.2)

FIGURE 12.1
(a) Electric field in an ideal thickness 
mode piezoelectric transducer. 
(b) Electric field in a thickness mode 
piezoelectric transducer with coaxial 
electrode configuration.

(a)

V0

V0

(b)

v vF jβz–( ) vB jβz( )exp+exp=

T TF jβz–( ) TB jβz( ) hD–exp+exp=
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These can be re-expressed in terms of equivalent circuit parameters as follows:

(12.3)

(12.4)

(12.5)

(12.6)

The electrical parameters are given directly by V3 and I3 from Figure 12.2.
Finally, the transducer can be described by a 3 × 3 impedance matrix 

coupling the current and voltage parameters as follows:

(12.7)

where ZC =  is the impedance for a transducer of area A.

FIGURE 12.2
(a) Physical parameters of a transducer as a three-port device. (b) Mason equivalent circuit for 
(a). The transformer turns ratio is hC.
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4 Fundamentals and Applications of Ultrasonic Waves
C0 =   is the clamped capacitance. C0 comes up everywhere in the 
equations and is a dominant term in the transducer’s behavior. This is 
entirely normal, as to zero order the transducer looks like a capacitor. The 
overall behavior of the transducer for practical applications can be charac-
terized by the equivalent circuit, which can be derived from Equation 12.7 
above, and the input impedance. The latter can be given by

(12.8)

where  

 

 

and it is assumed that the transducer is in clamped conditions, that is, that 
the transducer width is much greater than the wavelength. The formula 
highlights the importance of the coupling constant as the main piezoelectric 
parameter to characterize the transducer. It is equally clear that  mod-
ulates the overall input impedance response as a function of frequency.

Finally, the full Mason equivalent circuit is given for reference in Figure 
12.2(b). The two acoustic ports and their associated impedances are clearly 
identified. The electrical connection is made via a transducer with turns 
ratio N = hC0 involving a piezoelectric constant as it should. The Mason 
equivalent circuit is the first and best-known equivalent circuit for the piezo-
electric transducer. It has been criticized, for example, for the use of an 
unphysical negative capacitor, and modified, leading to the Redwood, KLM, 
and other models, which are described in detail by Kino [20].

12.1.1 Unloaded Transducer

The basic transducer operation near resonance is best understood for the case 
of the unloaded transducer (Z1 = Z2 = 0), which also provides the basis for 
its use as an acoustic resonator. From Equation 12.8 with Z1 = Z2 = 0 we have

(12.9)
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Piezoelectric Transducers, Delay Lines, and Analog Signal Processing 5
which can be represented as in Figure 12.3 as a capacitance C0 in series with 
a motional impedance Za

(12.10)

FIGURE 12.3
(a) Equivalent circuit and (b) impedance of a piezoelectric transducer as a function of frequency 
showing series (ω  S) and parallel (ω  P) resonant frequencies.
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6 Fundamentals and Applications of Ultrasonic Waves
The circuit exhibits both series and parallel resonances which can be 
described as follows:

1. Parallel resonance
This corresponds to Za → ∞, so that  = (2n + 1)π or resonances 

at n(λ/2) where n is odd. Even resonances do not exist, as they 
would for a nonpiezoelectric plate, due to the odd symmetry of 
the associated RF field. The fundamental resonance is labeled ωp.

2. Series resonance
There is another nearby series resonance taking into account both 

Za and C0 , so that the transducer looks like a series LCR circuit. In 
this case, the total impedance Z3 is equal to zero at ω = ωs

which yields

or

(12.11)

so that   and K2 can be obtained directly from measurements of ωs and ωp.
It is shown by Kino [20] that the transducer can be excited in higher har-
monic modes (n) with an effective coupling constant

(12.12)

12.1.2 Loaded Transducer

The opposite limit of the loaded transducer is a complex subject and the 
frequency response of the transducer depends on the ratio of the acoustic 
impedances of the transducer and those of the sample and backing medium. 
In addition, the choice of the best transducer configuration depends on the 
particular application and is inevitably a compromise between bandwidth, 
pulse response sensitivity, and insertion loss considerations. We provide a 
brief description of the problem and some general guidelines. The most 
important configurations are shown in Figure 12.4.
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Piezoelectric Transducers, Delay Lines, and Analog Signal Processing 7
Let us regard the frequency response of the transducer first. We have seen 
that for a free resonator (Z1, Z2  ZC), the thickness resonance is at d =  
This is consistent with stress-free boundary conditions and an antinode for the
displacement at each surface. If either Z1 or Z2 is greater than ZC, then there 
is a λ /4 resonance; again, if we consider an air-backed transducer roughly 
matched to a substrate, this is consistent with the boundary conditions of a 
displacement node at the interface and an antinode at the free surface. For 
all other cases, the bandwidth is quite broad and the resonance is smeared out.
An air-backed transducer on a reasonably well-matched buffer rod will nor-
mally give adequate bandwidth and good pulse response for most applications.

The time domain (pulse) response is important for many applications. A 
sharp, narrow acoustic pulse is required for doing NDE in the pulse echo 
mode where one wishes to detect echoes from small scattering objects. In 
very general terms, the time and frequency response are connected by Fourier 
analysis, i.e., a wide bandwidth provides a sharp temporal response while 
a sharp resonance will provide an extended response in the time domain. 
For example, a resonant transducer uncoupled in air will exhibit ringing 
over a long time scale. If such a transducer is poorly bonded to a buffer rod, 
it will likewise exhibit ringing; in fact, for an experimentalist, this is a good 
indicator for a transducer bond of poor quality.

From the preceding, it follows that if a transducer is matched well on at 
least one face then it will give good pulse response. For practical reasons,
a specially designed acoustic load is put on the back face (“backing”) to 

FIGURE 12.4
Schematic view of thickness mode piezoelectric transducers in different configurations. 
(a) Generation of acoustic waves in a solid sample or buffer rod. (b) Resonator. (c) Emission 
into a liquid.

backing water

��4  matching layer

(c)

(b)

airair

(a)

<< λ/2
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8 Fundamentals and Applications of Ultrasonic Waves
accomplish this at the small cost of an extra 3 dB in insertion loss. Evidently, 
the worst case would be to have good matching on the back surface with a 
badly mismatched front surface. In this case, all of the energy would go into 
the backing and be dissipated there as heat.

The ideal transducer would be optimized in the way shown by Figure 
12.4(c). An epoxy layer can be loaded with Ti   particles to provide the desired 
impulse response. We assume the transducer is designed to be used for a 
particular working medium, for example, doing NDE of steel or concrete 
blocks. Then appropriate λ /4 matching layers can be chosen to maximize 
energy transfer into the working medium, which will come at the price, of 
course, of reduced bandwidth.

The question of maximum power transfer from the electrical source to the 
sample via the transducer will clearly involve matching the electrical and 
acoustic impedance. Even if the acoustic impedance of the medium is 
matched to the transducer well, at resonance the transducer will have no 
material reactive impedance but it will have a relatively high capacitance reac-
tance, 1/ω C0, especially for low  materials. This means the transducer will 
be badly electrically mismatched to the RF source. One solution to this would 
be to tune out the clamped capacitance with a series inductance. 

12.2 Bulk Acoustic Wave Delay Lines

12.2.1 Pulse Echo Mode

Although some specialized ultrasonic measurements are made in continuous 
wave (CW) mode the majority are made in pulse echo (PE) mode where an 
ultrasonic pulse is emitted from the transducer and echoes from various 
obstacles are received by the same transducer. A variant is the so-called pitch 
catch mode or transmission configuration, where the pulse is launched by 
one transducer and received by another. In either case, sound velocity and 
attenuation can be obtained by measuring the amplitude variation and travel 
time. The problems encountered in ultrasonic PE measurements are concep-
tually and practically similar to those of radar, in part due to the similar 
frequency ranges used and because they are simple and similar ranging oper-
ations. In the following, we consider the standard problem of a transducer 
emitting into a delay line or buffer rod. Most of the problems encountered 
in a more general propagation problem can best be described and studied 
in this “test bench” configuration.

The configuration is shown in Figure 12.4(a). The buffer is typically 5 to 
15 mm in length and perhaps 5 to 10 mm in diameter. The transducer will 
have a slightly smaller diameter to avoid edge effects. In physical acoustics 
and in cases where quantitative data on the materials used is required, a so-
called tone-burst is used. A tone-burst is formed by gating the output of a 
CW oscillator to the desired pulse width and amplifying it as necessary. 

kT
2
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Piezoelectric Transducers, Delay Lines, and Analog Signal Processing 9
We need at least five, preferably ten or more, cycles in the pulse envelope; 
otherwise, the finite pulse width (and shape) will overly affect the frequency 
content. The tone-burst offers an interesting tradeoff: it allows use of high-
sensitivity superheterodyne detection, accurate knowledge of the frequency 
used, and simultaneously the temporal resolution provided by pulse tech-
niques. Moreover, the tone-burst method is not limited to use with only the 
fundamental resonance of the transducer. It was seen earlier that there is an 
effective coupling constant to the odd harmonic resonances, and these can 
be excited by turning the RF source at their frequencies, provided that the 
transducer faces have received the special “overtone polish” to give the 
required transduction efficiency. Due to the fragility of transducer materials, 
it is not practical to mass produce transducer resonators with a fundamental 
resonance greater than 30 MHz. In typical applications, the harmonics can be 
excited at room temperature up to 200 or 300 MHz. At liquid helium temper-
atures (~4 K), where the intrinsic attenuation of the buffer rod becomes 
vanishingly small, at least one case is known where a 10-MHz quartz 
transducer glued on the end of a quartz buffer rod has produced echoes 
up to 10 GHz.

An alternative approach to the oft-used tone-burst in more qualitative 
NDE work, such as thickness measurement of plates, is to use a DC or video 
pulse which can be made very sharp. Here, assuming that the medium is 
nondispersive, the frequency content is of no interest, and one is solely 
concerned with accurate measurements of time of flight. In fact, one could 
loosely say that CW, tone-burst, and DC pulse form part of a tradeoff con-
tinuum, depending on whether the frequency or propagation time informa-
tion is of most importance in the application at hand. Alternatively, the 
approaches can be combined by using a sharp DC pulse at the source and 
doing a spectral analysis of the received signal. This approach was used in 
much of the earlier work [13].

Returning to the tone-burst signal in the buffer rod, the ultrasonic pulse 
will travel down the rod, and multiple echoes will occur between the end 
faces. Each time the pulse hits the transducer it will be detected by the 
receiver, leading to the echo pattern shown in Figure 12.5. If the sample is 
perfect (homogeneous, isotropic, flat, and parallel end faces) and diffraction 
effects can be ignored, we will get a pure exponential decay reflecting the 
losses in the system. This echo pattern can be used to determine the velocity 
and attenuation of the ultrasonic wave.

1. Velocity
We assume for the moment that VP = VG = V. Then the velocity can 

be obtained by simple time of flight measurement between selected 
echoes. Hence, V = 2l/t where l is the appropriate propagation path =
nL, n is the difference in echo number, and L the length of the buffer 
rod. For measurement of very small velocity changes, which is a typ-
ical problem, the fine structure of the RF wave inside the pulse can be 
used as a fine time scale as used in the pulse echo overlap method. 
© 2002 by CRC Press LLC



10 Fundamentals and Applications of Ultrasonic Waves
In fact, there are many embellishments of high-sensitivity velocity 
measurements but the latter is now the accepted approach.

In this connection, two very different types of velocity measure-
ment are generally required. Absolute measurements are needed, 
mainly to determine elastic constants when combined with the 
density. Typical experimental accuracy is of the order 1 to 2%, and 
if exceptional precautions are taken (either with buffer rods or 
acoustic microscopy) accuracy of the order of 10–3% can be 
obtained. Relative velocity measurements are used to monitor rel-
atively small changes in velocity with variation of an external 
parameter such as pressure or temperature, and the measurements 
are the effects of principal interest in physical acoustics and much 
of NDE. Great care must be taken for velocity measurements in 
dispersive media. In this case, time of flight measurements always 
give the group velocity while special phase comparison techniques 
are needed to measure the phase velocity.

2. Attenuation
Attenuation is much more difficult to determine than velocity, 

and the absolute attenuation of a sample is a tenuous concept of 
little interest since it is so sample dependent and sensitive to the 

FIGURE 12.5
Series of echo patterns as a function of increasing frequency showing sidewall reflection effects 
at lower frequencies and attenuation increase at higher frequencies. Germanium single crystal 
sample. Compressional waves propagating in the <111> direction. (a) 10 MHz. (b) 30 MHz. 
(c) 50 MHz. (d) 90 MHz. (e) 130 MHz. (f) 170 MHz. (From Truell, R., Elbaum, C., and Chick, 
B.B., Ultrasonic Methods in Solid State Physics, Academic Press, New York, 1969. With permission.)
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Piezoelectric Transducers, Delay Lines, and Analog Signal Processing 11
presence of small and usually poorly characterized defects. Hence, 
when attenuation is of interest it is usually its relative variation for 
problems in physical acoustics as a function of temperature, pres-
sure, magnetic field, etc. Care must be taken to extract the intrinsic 
attenuation, which is of interest from apparent losses due to the 
transducer, bond phase effects, diffraction, nonparallelism, inhomo-
geneity, etc. Some of these points will be covered in the next section.

Historically, actual attenuation measurements were made using 
an exponential comparator superimposed on the multi-echo decay 
pattern. More recently, relative attenuation measurements have 
been made using a two-gate boxcar integrator, keeping the height 
of one echo fixed and monitoring the variation of the amplitude of a 
later echo with that of an external parameter. Attenuation is, of 
course, important in actual acoustic devices. In this case, it is not 
a question of measuring its absolute value but rather of minimizing 
it and keeping it constant to reduce the insertion loss of the device.

12.2.2 Buffer Rod Materials

In order to obtain long and reproducible delays, buffer rods should be made 
of low loss materials of reproducible characteristics. A simple crystal oriented 
along a pure mode direction is a good choice, especially if the Debye tem-
perature is high so that attenuation due to phonon-phonon interactions is 
reduced. Polycrystals are generally to be avoided as grain boundary scatter-
ing can be severe and in any case is most reproducible between different 
samples. Some glasses make very good delay rods as they can have very 
low attenuations as well as being isotropic and quite cheap. Based on the 
above considerations duraluminum is very good as a makeshift delay line 
at a few MHz, fused quartz is excellent up to at least 100 MHz, and c axis 
sapphire is very good for higher frequencies.

Lengths are usually chosen in the range 5 to 15 mm so that individual 
echoes can be clearly distinguished. If a crystal is used, then the pure mode 
axis must be carefully aligned; otherwise, crablike propagation will occur. 
Of prime importance are the flatness of the end faces and their parallelism. 
The requirements are, of course, highly frequency dependent, as any rough-
ness or deviation from parallelism must be much smaller than an acoustic 
wavelength. For example, at 10 GHz the best optical polish is required (at 
least   where λNa ∼  600 nm) with a parallelism of a few seconds of arc. 
At 10 MHz, these requirements can be relaxed by a factor of 1000 to obtain
the same signal quality. 

Transducer bonding is always a preoccupation in any ultrasonic applica-
tions with solid samples, critically so for physical acoustic measurements as 
a function of temperature. The general requirements are that the bond be as thin
as possible to avoid parasitic phase and attenuation errors, have high trans-
mission, and be perfectly stable and reproducible. For permanently mounted 
buffer rods, epoxy resin is a good choice if the probability of successful 

λNa/5
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12 Fundamentals and Applications of Ultrasonic Waves
bonding is high, otherwise the transducer is invariably lost as the bond is 
essentially permanent. More temporary and demountable solutions usually 
include the use of vacuum grease, silicon oil, and variants thereof. In this 
case, the transducer should be “wrung” onto the buffer rod if the latter is of 
hard material, for example, by pressing the transducer with the eraser end 
of an old-fashioned typewriter brush. Use of bonded transducers for low-
temperature work is particularly exacting due to differential contraction 
between the transducer, bonding agent, and sample. This can be very high, 
leading even to breakage of one or more of the above. One solution, elaborate 
in its execution, has been to condense volatile organic components at low 
temperatures (∼ 100 K) where much of the differential contraction has already 
occurred in cooling down. For low and room temperatures above 100 MHz, 
the ideal solution is to use transducers made of ZnO or AlN sputter deposited 
directly onto the sample, thus eliminating the bond altogether.

12.2.3 Acoustic Losses in Buffer Rods

From a physical acoustics standpoint, losses are important in buffer rods as 
they must be understood, controlled, and quantified if one is to make accu-
rate attenuation measurements. From a device standpoint, they must be 
controlled in order to reduce the insertion loss. So far, we have traced the 
ultrasonic chain from the RF source to the transducer across the bond and 
into the buffer rod to maximize power transfer and minimize loss. Now we 
must consider the buffer geometry. Assuming that the buffer rod has been 
chosen to have the lowest intrinsic attenuation possible, there remain two 
additional components of loss related to geometrical considerations that 
superficially resemble each other in their consequences: diffraction and loss 
due to lack of parallelism.

12.2.3.1 Diffraction

An ultrasonic wave in a buffer rod is not like a laser beam in that there is no 
intrinsic collimation in the generation process. Since the wavelength is of the 
same order as the transducer and rod dimensions at low frequencies, signifi-
cant diffraction effects occur. In the near field, up to distances of the order of 
zF = a2/λ, the beam is approximately collimated. Further out, it spreads and 
eventually bounces off the sidewall and is reflected back into the main beam 
where interference effects occur. For a low frequency buffer rod a  ∼   5 mm, 
f = 5 MHz and  λ ≤ 1 mm so zF ∼  25 mm.

Since tens or hundreds of reflections can occur, diffraction will be an issue 
in this case. The interference effects give rise to a modulation of the echo 
pattern, which is most pronounced at low frequencies. The effect will clearly 
be most visible for samples of low attenuation and the first maximum will 
occur around the Fresnel distance. Figure 12.5 shows the effect for a germa-
nium single crystal as the frequency is raised, as well as the effect of increased 
attenuation at the higher frequencies. A detailed analysis [13] shows that
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the earliest peaks occur at  = 0.73; 1.05; 2.04. As a rule of thumb, diffraction 
effects give rise to an attenuation of 1 dB for each Fresnel distance traveled.

12.2.3.2 Parallelism

An important fact that is not always appreciated is that the piezoelectric 
transducer output is sensitive to the variation of the phase of the ultrasonic 
wave across the wavefront. Special steps can be taken to randomize the phase 
but these are rarely used in practice. This means that interference effects are 
possible and to reduce them the wavefront must be made as parallel as 
possible to the transducer faces. One way that dephasing can occur is if the 
end faces of the buffer rod are not parallel, leading to a tilt of the wavefront 
of the returning wave. If the axial displacement of the wavefront across the 
beam is l, then obviously we want kl  1, or l   λ to reduce the associated 
phase change. For a given buffer rod, hence fixed l, the effect becomes more 
important at high frequencies. At a given frequency, the modulation can
be shown to be proportional to  which is the same as the 
diffraction modulation; this is observed in Figure 12.6. Although the two 
effects give the same manifestation at a given frequency, they are easily 
distinguished; if the effect decreases when the frequency is raised it is due 
to diffraction, and if it decreases at low frequency it is due to parallelism (of 
course, the two can always be present at the same time to complicate mat-
ters). Detailed calculations show that the associated attenuation α ∼  9.10−5faθ. 
For f  = 10 MHz, a = 5 mm, and θ ∼  4.10−4 rad this gives α  = 1.7 dB/echo, 
which is quite significant. Finally, other effects such as dislocation networks, 
temperature gradients, and other inhomogeneities can give rise to attenua-
tions of the same order, so care must be taken to reduce them as much as 
possible.

12.2.4 BAW Buffer Rod Applications

BAW buffer rods have rather specialized uses in niche applications. They 
are ubiquitous in the research laboratory where studies are carried out on 
large crystals for purposes of echo separation. They are also useful for certain 

FIGURE 12.6
Echo pattern for a silicon sample at 30 MHz with a nonparallelism angle θ = 2 × 10−4 rad. The 
envelope clearly follows the curve jinc(2kan θ ) where a is the transducer radius and n is the 
echo number. (From Truell, R., Elbaum, C., and Chick, B.B., Ultrasonic Methods in Solid State 
Physics, Academic Press, New York, 1969. With permission.)
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14 Fundamentals and Applications of Ultrasonic Waves
applications in NDE especially where access to sample in hostile environ-
ments is required. Some of these applications are described in Chapter 15. 
BAW buffer rods also have continued application for use with Quate-type 
and other acoustic lenses for imaging purposes, as described in detail in 
Chapter 14.

Historically, one of the chief uses of BAW buffer rods was for dynamic 
delay lines for storage and signal processing. The technology used up to 
1965 has been reviewed in [77]. Polygonal delay lines made of low loss 
fused silica with 30 or 40 faces were used to produce multiple echoes 
around the polygon. With careful design, such delay lines could produce 
delays up to 10,000 µsec; they could also be tapped to allow signal pro-
cessing functions. Since the advent of SAW planar technology, however, 
these BAW delay lines are now only of historical interest and will not be 
considered further.

12.3 Surface Acoustic Wave Transducers

12.3.1 Introduction

Historically, BAW components were the first acoustic applications in elec-
tronics mainly as delay lines, filters, and oscillators during and after World 
War II. Since the introduction of the integrated circuit their place has 
largely been taken over by SAW. SAW has many advantages, including 
the following:

1. The SAW geometry provides a convenient and accessible length 
scale. Since the velocity of ultrasonic waves is about 10−5 that of 
light the wavelength at a given frequency is 10−5 that of electro-
magnetic waves. This makes it easy to sample and perform oper-
ations on the signal in the time and spatial domain. It also allows 
significant miniaturization compared to bulky electromagnetic 
devices in the microwave range.

2. The surface of a piezoelectric substrate provides a nondispersive, 
guided, and accessible medium for the propagation of an acoustic 
wave that is within approximately 100 µm of the surface.

3. Modern microelectronic fabrication technology is ideally suited to 
SAW devices, including fabrication and characterization of thin 
films and the application of high-resolution photolithography to 
produce very fine and precise electrode configurations.

4. The SAW delay line forms an almost perfect approximation to a 
transversal filter, which is at the basis of modern signal processing.
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5. The long delay available means that large values of  are 
available, where φ is the phase, making the technology adaptable to 
forming oscillators.

6. The tapped delay line configuration is amenable to adding signals 
and the substrate nonlinearity permits operations involving
multiplications.

For these reasons, in the last 30 years SAW has progressively replaced BAW 
devices in microelectronic signal processing, with the notable exception of 
the ubiquitous 5-MHz quartz resonator. In the overall scheme of things, the 
victory may be short-lived, however, as the next emerging technology is seen 
to be MEMS-based filters and oscillators which, at least initially, will be BAW 
based.

12.3.2 Interdigital Transducers (IDT)

Surface acoustic waves can be generated by many ingenious ways [32, 35] 
but the IDT has proved to be ideally adapted to SAW device and signal 
processing applications. The principle of two neighboring electrodes (finger 
pair) of an IDT is derived simply from the BAW thickness mode resonance 
configuration. For the SAW device, the electrodes are now two metallic strips 
positioned on the surface of a piezoelectric substrate separated by a distance 
l creating an electric field in the surface region. A surface acoustic wave is 
then generated by the piezoelectric effect in the usual way. For a single pair 
the Q is small, and the response is broadband. The resonance can be sharp-
ened by adding many finger pairs in interdigital fashion with alternating 
polarity. The system is resonant with the wavelength equal to the distance 
between finger pairs, so that the contributions from all of these add up in 
phase. If the frequency is off resonance then the different contributions are 
no longer in phase and the response is small. Thus, with many finger pairs 
the resonance is sharp and the Q is high.

12.3.3 Simple Model of SAW Transducer

We describe the simplest available model, the delta function model, for the IDT 
transducer. Comprehensive summaries of IDT are available in many sources, 
in particular [20, 70, 78, 79]. The model described here follows [20].

The basic assumption is that the acoustic signal generated by a finger is 
proportional to the charge Q on it. Then for N fingers of width w and 
propagation in the z direction, the amplitude at z due to a source element 
dz′ is

(12.13)

dφ/df

dA z, z ′ , w( ) ασ w, z ′( )e jk z−z ′( )– dz ′=
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where
α = coupling factor
σ = charge per unit length

and the exponential is a phase factor.
If σ (z) ≡ 0 outside the region of the transducer, which is normally the 

case, then this expression can be integrated over all space to give the IDT 
response

(12.14)

This fundamental result shows that the frequency response of the IDT is the 
Fourier transform of the charge density on the fingers.

Applying this to a uniform transducer with N fingers, pair spacing l indi-
vidual width l1, and charge Q per finger (Q = σ l1), one obtains the total 
transducer response as

(12.15)

For N → ∞, this gives

1. Values of kl for zero response

 

2. Bandwidth

(12.16)

(12.17)

An IDT pair and the transducer response are shown in Figure 12.7. Like the 
thickness mode BAW transducer, the IDT can be described by several dif-
ferent models and equivalent circuits. These are discussed in detail in the 
specialized literature and will not be covered here. In what follows, we give 
an overview of several important signal processing applications.
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12.4 Signal Processing

12.4.1 SAW Filters

SAW devices owe much of their widespread use in signal processing to the 
concept of the transverse filter. A transverse filter is basically a tapped delay 
line where each tap is connected to a common input or output. Such filters 
are particularly useful in radar and communications where they give a 

(a)

(b)

FIGURE 12.7
(a) Schematic of a pair of SAW IDT electrodes. (b) Response function for one of the transducers 
shown in (a).
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18 Fundamentals and Applications of Ultrasonic Waves
coherent response to a known form of input signal to which they are matched 
and reject the noise that is unmatched, thereby improving the S/N ratio. They 
are also highly adapted to equalization techniques to reduce distortion; 
equalization uses an inverse filter to cancel out known, unwanted distortion.

The basic form of a transversal filter is shown in Figure 12.8. It is built around 
an ideal band pass filter with bandwidth ∆f = BW. This feeds into a uniform 
tapped delay line with N taps. Each tap can be connected to an independent 
weighing element where either amplitude or phase can be modified. The 
outputs of all of these weighing elements are summed to provide the output 
of the transversal filter. The transfer function of the filter can be written as

(12.18)

Thus the tap weights turn out to be the coefficients of an N-term Fourier 
series. The IDT transducer has all of the major elements of the transversal 
filter. The pair finger spacing determines the bandwidth, which can be made 
close to that of an ideal band pass filter. The finger pairs act as taps and their 
contact pads act automatically as a summing network. Amplitude weighing can
be accomplished by apodizing (Greek, meaning shape) the electrodes, i.e., 
varying their overlap length. Of course, in practice, the IDT departs appre-
ciably from the ideal of a transverse filter, for example, in such areas as cross- 
talk between electrodes, diffraction loss, beam steering (off-axis propaga-
tion), velocity change due to metallization (shorting effect on piezoelectric 

FIGURE 12.8
Schematic representation of a transversal filter using a tapped delay line.
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substrate and mass loading), and velocity change due to temperature vari-
ations. In fact, all of these effects can be solved in large measure by the very 
sophisticated SAW filter design procedures now available. These have been 
applied to band pass filters, which have found widespread use in commu-
nications and television circuitry. Such filters have good shape factors and 
at least 50 dB out-of-band rejection.

12.4.2 Delay Lines

A delay line is a two-port system in which the output signal can be time 
delayed with respect to the input. In the classic BAW or SAW delay line 
configuration, the delay can be controlled by “time of flight” by simply 
adjusting the path length between generating and receiving transducers.

The delay line is one of the oldest and simplest of the signal processing 
functions. Conceptually and technically, it provides the basic building blocks 
for almost all of the other functions. It is also important in its own right, 
particularly for communications and radar applications. We touch briefly on 
the principal parameters including delay, bandwidth stability, and loss.

Regarding loss, there is an intrinsic loss of 6 dB for a SAW transducer even 
if it is perfectly matched as it generates waves in forward and backward 
directions and there is a 3 dB loss for perfectly matched unidirectional gen-
eration. Loss in itself is not a problem for short delay lines of less than 10 or 
20 µsec, and it can usually be reduced or compensated in such cases. Of 
more importance is the presence of spurious signals, which can degrade the 
dynamic range. For SAW delay lines these include “triple transit echoes” 
and spurious bulk waves. The former can be suppressed by a variety of 
design techniques, including use of unidirectional transducers and multistrip
couplers. The latter can be avoided by careful choice of crystal propagation 
direction and the judicious use of absorbing materials.

Maximum attainable bandwidth is basically determined by the piezoelec-
tric material used (K2) and is a tradeoff with the permitted insertion loss. 
For a given insertion loss, the maximum attainable bandwidth is larger
for high K2 materials. In other terms, low K2 materials can be electrically 
matched to the source but at the price of reduced bandwidth. For some low 
K2 materials (e.g., ST quartz), improved temperature stability may be an 
acceptable compromise. In fact, intrinsic temperature stability gives rise to 
a similar compromise with K2 as the bandwidth, in that high K2 materials 
invariably have a high-frequency temperature coefficient (10−4 ppm/°C for 
LiNbO3). There are other solutions to reduce the temperature coefficient such 
as the use of compensating multilayer structures or even controlled temper-
ature, but this is at the cost of the simplicity of the device.

Long delay lines (up to several milliseconds) are needed for specialized 
applications, such as storing TV frames. There is a practical size limit (≤10 cm) 
for inline structures that puts an upper limit of 100 µsec even for slow materials 
such as bismuth germanium oxide (BGO). Various ingenious geometrical 
paths have been devised [80] and in one case this led to a delay of over 900 µsec 
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for a BGO structure at 83 MHz. An alternative solution is provided by acoustic 
waveguides using capillaries and fibers as discussed in Chapter 10.

12.4.3 SAW Resonators

It is well known that cheap, high Q BAW resonators can be made from 
selected cuts of quartz at low frequencies (approximately 5 MHz). Various 
attempts have been made to achieve a similar result with SAW but there is 
no natural equivalent to the thickness resonator, and SAW-BAW conversion 
has defeated many attempts in this direction. However, experience has 
shown that the principle of the grating reflector can be used to produce 
moderately high Q resonators (≤2000) for SAW. In this case, for example, 
metallic lines are placed in an array such that their spacing is λ/2. Even 
though the reflection coefficient of each line is small, the reflected waves are 
in phase leading to a large cumulative effect of the whole array. Quantita-
tively, if Z0 is the characteristic impedance of the substrate and Z1 is that of 
one grating line, the transmission and reflection coefficients are

(12.19)

(12.20)

where β =  and NR is the number of grating periods. For  β > 1.01, 
the value of R approaches unity for NR of the order of several hundreds, and 
R approaches unity even faster for larger values of β.

Such reflection gratings have been used to form a resonant cavity around 
an IDT source-receiver pair. Since the grating is sharply resonant compared 
to the IDT, it gives rise to a sharp resonant spike superposed on the broad 
maximum IDT insertion loss curve. This configuration can be used to form 
a high Q oscillator, as described in the next section.

12.4.4 Oscillators

The resonator configuration consisting of an IDT generator-receiver pair 
centered inside a reflective array can be transformed into an oscillator by 
employing a positive feedback loop. Two conditions (one for the amplitude 
and one for the phase) must be satisfied:

1. Total round trip gain >1. The amplifier in the feedback loop must 
have sufficient gain to overcome the accumulated losses around 
the loop.

2. Total phase shift around the loop =  + φe = 2π n
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where φe is the phase change associated with the transducers and the elec-
tronics and L is the acoustic path length.

Single-mode operation is generally desired. This will occur at the fre-
quency that has the lowest insertion loss (IL) and for which the phase 
condition is satisfied. Evidently, the gain must be adjusted so that the round 
trip gain is greater than unity for this mode but less than unity for all other 
modes. The situation can be optimized by choosing the dimensions such 
that the frequencies for the other modes satisfying the phase condition fall 
on the zeros of the insertion loss curve.

Oscillator stability is one of the main criteria for most applications. Short-
term stability (<1 s) is determined by noise, principally the phase noise (due 
to phase fluctuations) of the amplifier. From the oscillator phase condition, 
we have immediately

(12.21)

where N is the number of acoustic wavelengths in the acoustic transmission 
line. In principle, for a given phase fluctuation ∂φe, the required frequency 
stability can be attained by increasing N sufficiently. Beyond the practical 
limit for this, Johnson noise in the amplifier and losses in the circuit, which 
require increased gain, come into play.

Over the medium term (minutes) and long term (hours), temperature vari-
ations are the main cause of instability and drift. The standard solution is to 
choose ST-cut quartz, which can have a temperature variation close to zero 
over a reasonable range. The residual frequency drift is given by ∆f (ppm) =
0.03(∆T)2 with ∆T in °C. If temperature variations are then minimized stability 
of 1 ppm or better can be easily attained.

12.4.5 Coded Time Domain Structures

The frequency domain filters and other devices discussed up to now were 
essentially nondispersive in nature. We now look at selected time domain 
structures that depend on dispersion for their functionality.

1. Chirp
The chirp IDT is a geometrically broad band transducer which 

was developed to obtain pulse compression, principally for radar 
applications. A basic radar system has two main characteristics: 
the detection sensitivity is proportional to the excited power and 
the resolution sensitivity is determined by the pulse width. In its 
simplest form, the system is then optimized by the use of very 
narrow high-peak power pulses, which can become very expensive 
and tricky to operate. An alternative and cheaper solution lies in 
using the strategem of pulse compression. A DC pulse is applied 
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to the sending IDT, which has a staggered electrode spacing cor-
responding to the bandwidth of the pulse. The lower frequencies 
travel the furthest distance and hence are at the tail end of the 
emitted pulse. The now long pulse is re-emitted with the low 
frequencies now at the leading edge and the pulse is detected by 
an IDT structure complementary to the source. The final result is 
that a very narrow pulse is reconstituted and it is the width of this 
pulse that determines the time resolution. The effective temporal 
resolution is the reciprocal of the bandwidth. More formally, an 
important parameter is the time-bandwidth product T(BW), where 
T is the width of the input pulse. Then the effective pulse width is 
the actual pulse width divided by the time-bandwidth product.

2. Reflective array compression (RAC)
The principle comes from the multireflected polygonal BAW 

delay line as a way to increase the delay significantly compared 
to an inline configuration. In this case, the chirp device is half as 
long as the equivalent inline device. There are additional advan-
tages, including a reduced spurious BAW component due to the 
complex trajectory followed, no electrical connection between the 
reflecting elements, a possibility to use phase compensation using 
additional thin films, and an adjustment of amplitude weighing by 
varying the depth of the grooves of the reflecting elements.

The chirp filter has obvious potential for Fourier transform appli-
cations, as discussed in detail in [80]. It is also a useful RF component 
for instances where a wide band tone-burst capability is desired. 
For example, it has been used to measure the dispersion curves for 
guided waves in a tube using a single transducer simply by linearly 
scanning the frequency of the source generator.

12.4.6 Convolvers

Applications up to now have involved linear summing operations. There is 
also a need for a multiplication capability, for example. This capability can 
be provided in acoustic devices by exploiting the nonlinearity of the medium. 
The product of two input functions, 1 and 2, can be provided by the wave-
wave interaction where the power density of the resultant wave at frequency 
ω 3 is given by

P(ω 3) = KP(ω1)P(ω 2) (12.22)

where K is the acoustic nonlinearity constant. The basic physics of the inter-
action is best seen from a phonon point of view where the interaction can 
be described by conservation of energy and momentum as

ω 3 = ω1 + ω 2 (12.23)

k 3 = k1 + k 2 (12.24)
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In general, the waves involved must be nondispersive as is the case for SAW. 
In addition, the SAW configuration provides the high-power densities char-
acteristic of Rayleigh waves, which facilitate the obtaining of nonlinear 
effects.

The product or convolution integral is usually obtained in the counter-
propagating configuration. In the case where ω 1 = ω2, ω 3 is a spatially uniform 
RF voltage that can be detected by a simple setup of metallization of length 
L in the central region. If the input waves are of the form Si(t) then 
the output signal

(12.25)

which can finally be simplified to [80]

(12.26)

which is the convolution of signals 1 and 2 with time compressed by a factor 
of two. The device can be directly transformed into a correlator by using an 
inverter in one of the sources.

12.4.7 Multistrip Couplers (MSC)

From the preceding, it is easy to imagine geometries using slanting arrays 
or grooves that could be used to split up an acoustic beam and could be 
used to make acoustic power splitters or multiplexers. However, there is a 
simpler and more effective way to do this by electrical connections and this 
is the multistrip coupler. The basic idea is shown in Figure 12.9 where an 
IDT is used to launch a SAW wave; this is picked up by a receiver T1, which 
is electrically coupled to an identical IDT T2. The acoustic energy arriving at 
R1 will be partially converted to electrical energy that will then generate an
identical acoustic wave in T2. Thus we have found a way to split the acoustic 
beam into two separate channels. In fact, the whole process can be done with 
a uniform grating as shown in Figure 12.9(b). The resulting device is known 
as a multistrip coupler (MSC).

In practice the two halves of the grating in Figure 12.9(b) act as coupled 
resonators, so like a pair of coupled pendula, acoustic energy is transferred 
from one resonator to the other as a function of time. In this case, the degree 
of coupling depends on the length of the grating. A simple analysis shows 
that complete transfer of acoustic energy from the first channel to the second 
occurs after a length
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24 Fundamentals and Applications of Ultrasonic Waves
For K2 ∼  0.05, as for a strong piezoelectric like LiNbO3 , this gives L T ∼  40λ. 
For a weaker piezoelectric, the length would be much longer, so for practical 
reasons the application is limited to strong piezoelectric materials. It should 
also be noted that the MSC structure is identical to that of the reflection 
grating used for acoustic resonators. The difference is that in the latter appli-
cation the spacing is adjusted to a frequency f0 corresponding to a spacing 
d = . The multistrip coupler, however, is typically used in the range 0.3 f0 <
f0 < 0.9 f0.

FIGURE 12.9
(a) Acoustic beam splitter. (b) Multistrip coupler. (c) Analysis of multistrip coupler in terms 
of symmetric and antisymmetric modes. (From Ash, E.A., Fundamentals of signal processing, 
in Acoustic Surface Waves, Oliner, A.A., Ed., Springer-Verlag, Berlin, 1978, chap. 4. With 
permission.)

λ/2
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An alternative way to look at the cyclic energy transfer between the two 
channels is to recognize that the rectangular SAW pulse input of Figure 12.9(c) 
can be seen as a superposition of symmetric and antisymmetric modes as 
shown, in the spirit of Lamb waves. These modes have slightly different 
velocities, and if for the material chosen after propagation a distance L T the 
phase difference between them is π, then the emerging phases for the two 
modes are as shown in Figure 12.9(c). In this case the acoustic pulse is switched 
from the first to the second channel by the MSC.

The MSC is a versatile device that is widely used in SAW applications, 
including:

1. Use in band pass filters to allow full use of apodized IDTs in both 
elements of the filter

2. Reflecting grating
3. Unidirectional IDT with low IL and few finger pairs
4. Beam compression (10:1 or greater)
5. SAW multipliers (5 or 10 channels at several hundred megahertz)
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Acoustic Sensors

A sensor is a device for detecting the presence of a physical, chemical, or 
biological property and, by appropriate transduction, transforming the 
detected quantity into an electrical signal. Sensors, in general, are of many 
types, based on sensing mechanisms that may be electrical, optical, acoustic,
magnetic, etc. in nature. We limit the discussion here to acoustic sensors, which
are devices where the environmental property perturbs the acoustic wave. 
Traditionally, sensors have varied in size from very small to very large 
instruments. We make a further distinction here in that we will concentrate 
almost exclusively on acoustic microsensors, that is, those fabricated by 
microelectronic techniques and integrated into silicon or hybrid circuits. 
Some of the more common microsensors that will be discussed in this chapter 
are based on acoustic waveguide geometries discussed in Chapter 10.

Acoustic microsensors may be configured as one- or two-port devices. A 
one-port device, which is active, contains a feedback loop that converts the 
device into an oscillator. The external perturbation is then manifested as a 
frequency shift, as shown for a gas sensor in Figure 13.1. The one-port device 
has the advantage of simplicity but some information is lost. This situation 
is rectified in the two-port passive device, which has an input and output. 
In this case, amplitude and phase can be measured, but the disadvantage is 
that extra, bulky instrumentation is needed to convert this into a practical 
sensor. For this reason, most practical sensors are configured in the oscillator 
mode. Figure 13.1 shows the response curve of a typical gas sensor. Some 
of the more important parameters characterizing the sensor can be appreci-
ated from this figure. It is desirable to operate within the linear range for 
simplicity although a nonlinear response could be handled by adding a look-
up calibration table. The resolution of the sensor, the smallest signal that can 
be measured, is specified by the minimum detectable mass (MDM); it is often 
determined by the electrical noise in the measuring system. It is essential to 
distinguish the resolution from the sensitivity; the latter is proportional to 
the slope of Figure 13.1. The sensitivity of acoustic microsensors will be 
treated in detail later in this chapter. Finally, parameters such as reversibility 
and cyclability will be important practical considerations.

This chapter deals primarily with the different types of acoustic configu-
rations used for sensing. All of these configurations involve the propagation 
1
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of guided waves. Representative applications will be discussed, mainly in 
the realm of physical sensors. Chemical and biological acoustic microsensors 
use similar sensing platforms, but their practical applications involve prob-
lems in chemistry and biology, which are not central to the discussion here.

13.1 Thickness-Shear Mode (TSM) Resonators

These have been traditionally called the quartz crystal microbalance (QCM), 
but the present terminology is applied in line with Ballantine et al. [81], 
where emphasis is placed on the particular acoustic mode employed. The 
TSM was originally developed by Sauerbrey [82] for measuring the thickness 
of metal films deposited on substrates in vacuum. In its simplest form, the 
TSM resonator is simply a shear wave cut piezoelectric thickness resonator 
with free surfaces. The transducer is active over a region defined by the electric
field set up between upper and lower electrodes. The resonant frequency 
can be determined from the condition that the total phase change for reflec-
tion across the bare substrate is 2π, corresponding to constructive interfer-
ence between incident and reflected waves. A superposition of these waves 
leads to the displacement

(13.1)

where x is the coordinate in the plane of the resonator and z is along the 
thickness direction. Constructive interference corresponds to the condition

(13.2)

FIGURE 13.1
Sensitivity, resolution, and range parameters for a typical acoustic sensor.
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which leads to

(13.3)

and hence 

(13.4)

where

(13.5)

where µq and ρq are the shear modulus and density of the quartz, respectively.
Hence, acoustic resonances occur for odd multiples of half the acoustic 

wavelength. In fact, it is well known that for piezoelectric resonators only 
the odd harmonics (n = 1, 3, 5, …) can be excited.

Determination of the resonant frequency allows us to calculate the  and 
the displacement profile in the crystal. At resonance, this will consist of stand-
ing waves, due to total reflection at the free surfaces. Since the stress and 
displacement are in quadrature and the stress has a node at the stress-free 
surface, the displacement has an antinode at the surface. This determines 
the form of the standing waves as

(13.6)

Examples of the displacement for two low-order modes are shown in Figure 
13.2. Since the displacement is a maximum at the surface, the resonator will 
be very sensitive to surface conditions (e.g., adsorbed atoms or thin layers) 
and this is the basis for its use as a sensor. Some general properties follow 
from the form of the solution. The motion is entirely shear, so that there is 
no change in thickness for the bare crystal. The fact that the mode is shear 
means that when the resonator is immersed in a liquid, the coupling of the 
transverse displacements takes place by the viscosity, which is very weak 
compared to coupling of absent normal or compressional vibrations. So, the 
sensor can be used in liquid phase if care is taken. Some shear modes in 
quartz are very stable with respect to temperature variations, which is a very 
desirable property for a mass loading detecting device.

The mass loading sensitivity of the device is one of its most important 
characteristics as a sensor. This will be considered on three different levels, 
all of which give insight into the physics of the problem. The first, and 
simplest treatment, assumes that the adsorption of added mass is equivalent 
to increasing the thickness of the resonator, which increases the wavelength 
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at resonance and hence lowers the frequency. These considerations lead to 
a frequency change

(13.7)

FIGURE 13.2
(a) Displacement profile in the fundamental mode for a TSM sensor. (b) Modification of the 
displacement profile by an adsorbed thin film. (c) Third harmonic displacement profile for the 
TSM sensor. (d) Multiple reflection analysis for acoustic waves in a BAW resonator with an 
adsorbed layer.
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For a quartz resonator in their fundamental mode this can be rewritten as 

(13.8)

where
∆f = measured frequency shift
f0 = unloaded resonance frequency
∆ m = added mass
A = piezoelectrically active area

This result was first inferred by Sauerbrey [82]. This result is only strictly 
valid if the deposited mass layer is thin enough so that the mass is effectively 
deposited at the antinode and also if the added material resembles quartz 
in its mechanical properties. Of course, this second requirement is seldom 
met, and the treatment gives no physical insight into the mechanism 
involved, nor how sensitive the result is to the properties of the added mass.

These deficiencies have been remedied by a detailed acoustic treatment 
by Miller and Bolef [83]. Without going into the detailed mathematical anal-
ysis, we can profitably examine the acoustics in this approach. Miller and 
Bolef treat the composite resonator consisting of the quartz crystal and the 
adsorbed thin film as shown in Figure 13.2(d). The density, acoustic phase 
velocity, and length are described by ρq , Vq , and lq for the crystal and by ρf , 
Vf , and lf for the thin film, respectively. CW acoustic waves are incident from 
the left and set up multiple reflections in the system, governed by partial 
velocity transmission (T ) and reflection (R) at the interface where, as in 
Chapter 7,

and Zq = ρqVq and Zf = ρfVf are the characteristic impedances per unit area. 
Total reflection at the two extremities is assumed. The effect of the electrodes 
is ignored in this treatment, although they could easily be included at the 
expense of some additional complexity. The detailed analysis, which can be 
found in [83], then proceeds to determine the resonant frequencies (funda-
mental and harmonics) of the composite resonator and the frequency shifts 
by a Taylor’s series expansion. The result reproduces Sauerbrey’s equation 
as given previously in Equation 13.8. However, there is much more physics 
in this treatment, in particular the demonstration that the wave must prop-
agate in the film for there to be a frequency shift, i.e., it is found explicitly 
that ∆f = 0 when R = 1 at the interface. The authors also point out that 
including terms greater than second order cannot be justified due to correc-
tions to their one-dimensional model due to crystal mounting, temperature, 
gas pressure, and three-dimensional propagation effects.

Another physically based derivation is based on the Rayleigh principle. This 
is a general approach and can be applied to acoustic sensors of quite different 
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6 Fundamentals and Applications of Ultrasonic Waves
geometry, and thus is in some sense a universal theory for sensor sensitivity. 
According to this hypothesis, a mechanical resonant system oscillates at a 
frequency at which the peak kinetic energy UK is equal to the peak potential 
energy UP in the same volume. Analogous to a pendulum, mass on a spring, 
or other oscillating system, there is an interchange of potential to kinetic energy 
every quarter cycle. The two components for the TSM resonator can be calcu-
lated as follows:

By definition,

(13.9)

so that

(13.10)

where ρs is the areal mass density (mass/area) of the surface mass layer.
The peak potential energy UP occurs as usual at points in the cycle where 

displacement is maximum and the velocity is zero. Again, by definition of 
the instantaneous strain energy uS

(13.11)

where c′ is the piezoelectrically stiffened elastic constant. It follows that

(13.12)

Applying Rayleigh’s hypothesis, one directly obtains

(13.13)

where

For weak loading ρs  hq ρq and the above becomes

uK
1
2
---= ρ u̇i

2

i=1

3

∑

 uK
ω2

2
------ ρsuxo

2 ρq ux y( ) 2 yd
0

hq

∫+ 
 =

ω2uxo
2

2
------------- ρs

ρqhq

2
-----------+ 

 =

uS
1
2
---SIcIJ′ SJ

IJ=1

6

∑ 1
2
---cijkl′ ∂ui

∂xj
-------  

∂uk

∂xl
--------

i ,j ,k ,l=1

3

∑= =

uP
1
2
---µqk2uxo

2 sin2 kz( ) zd
0

hs

∫
µqk2uxo

2 hs

4
------------------------= =

ωo

ω
------ 

 
2

1
2ρs

hsρq
----------+=

ωo
nπ
hs
------

µq

ρq
-----=

<<

∆f
fo
-----

ρs

hqρq
-----------–=
© 2002 by CRC Press LLC



Acoustic Sensors 7
eliminating hq

(13.14)

13.1.1 TSM Resonator in Liquid

There are two cases of interest:

1. Biosensing, where a principal objective is to detect the added mass 
of species adsorbed from the liquid phase

2. The study of the properties of a homogeneous bulk liquid

Consider a Newtonian liquid, characterized by a constant shear viscosity η

(13.15)

The velocity and displacement field in the liquid can be obtained by solving 
the Navier-Stokes equations for one-dimensional planar flow using the pre-
vious coordinate system:

(13.16)

Assuming an oscillatory driving force at the interface, which gives a velocity 
field at z = 0 of vx = vxo  cos ω t, the following solutions are obtained

(13.17)

where a viscous penetration depth δ is defined.
δ can be interpreted in the following way. A liquid with zero viscosity does 

not support propagation of a shear wave at all. However, a shear wave will 
be propagated in a liquid of finite viscosity, but it will be very highly damped, 
being attenuated in a characteristic distance δ obtained from Equation 13.13 as

(13.18)

The frequency dependence of δ is of interest, bearing in mind that biological 
macromolecules are of the order of 1 µm in dimension. For sufficiently high 
frequencies, δ can become of this order, so that such a sensor should be very 
sensitive to molecules of this size.

The presence of the liquid leads to a decrease in the resonant frequency, 
analogous to the effect of added mass. The results for the frequency shift for 
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8 Fundamentals and Applications of Ultrasonic Waves
a quartz TSM in contact with a liquid have been given by Kanezawa and 
Gordon [84]. They use for the instantaneous particle velocity in the liquid

(13.19)

where A is the amplitude of the wave at the interface at z = 0. The characteristic
distance for the decay profile is 1/k, the viscous penetration depth δ where, as
in Equation 13.18, δ = .

Using rigid boundary conditions (continuity of transverse stress and velocity),
the authors obtain for the frequency shift

(13.20)

which was found to be in very good agreement with experiment for sucrose-
water solutions.

13.1.2 TSM Resonator with a Viscoelastic Film

The response of resonators with a viscoelastic film deposited on one face is 
important because viscoelastic polymer films are often used as chemically 
selective layers on TSMs and other acoustic sensors for gas sensing. The film 
is attached to the substrate sufficiently strongly that it follows the surface 
motion of the latter. However, typically a phase lag occurs in the movement 
of the upper surface of the film. Different regimes can be defined depending 
on the phase shift of the acoustic wave across the film.

For very thin films, the motion of the film is synchronous with that of the 
substrate, corresponding to very small phase shifts φ  π / 2. The film moves 
as a unit with the upper surface of the resonator, as in the model for mass 
loading in the Sauerbrey microbalance treatment. For thicker films there is a
phase shift, as the free upper surface tends to lag the lower driven surface. For
φ < π / 2, the movement is still in phase but overshoot occurs. Film resonance 
occurs for φ = π / 2. For φ > π / 2, the upper surface is π  out of phase, and the 
damping is very high near resonance. For a given sensor, these effects must 
be understood, and the correct regime identified, in order to make a valid 
analysis of the sensor operation.

13.2 SAW Sensors

From what has been seen so far on Rayleigh waves and the TSM sensor, SAW 
is potentially an interesting sensing configuration. It has been seen that the 
displacements are confined within one or two wavelengths of the surface, so 
that SAW should be very sensitive to the surface environment. One important 
difference with the TSM resonator is immediately apparent; as the operating 
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Acoustic Sensors 9
frequency of the SAW device is raised, then acoustic energy flux is trapped 
closer and closer to the surface. Hence, it is expected that the fractional 
frequency shift will increase with frequency for a SAW sensor; this is indeed 
the case as will be shown in more detail later in the chapter. A second 
difference with the TSM is that with SAW there are displacement components 
both perpendicular and parallel to the surface, so that high loss compres-
sional acoustic radiation into the fluid will occur with SAW for most liquids. 
Except for very rare exceptions, SAW devices cannot be operated in liquids.

SAW can be generated in a piezoelectric substrate in a number of different 
ways, but the interdigital transducer is the method of choice for acoustic 
microsensors. The main reason is that the planar electrodes can be fabricated 
by standard microelectronic techniques, which allows great flexibility in 
design and high volume production. IDT techniques have also become the 
basis for generating and detecting other guided modes to be discussed in this
chapter. The basics of IDT theory and technology have been described in the 
previous chapter and this will be sufficient for present purposes. A typical 
dual-channel SAW sensor is shown in Figure 13.3. A difference measurement 
between sensing and reference channels eliminates the temperature depen-
dence to first order.

13.2.1 SAW Interactions

As will be seen in what follows, guided modes are much richer than reso-
nators in their behavior as sensors in that they have more ways of interacting 
with the adjacent medium. For SAW and the other modes that follow, mass 
loading, acoustoelectric, and viscoelastic interactions are the most common.

For propagating modes the problem can be posed generally as follows, 
following Ballantine et al. [81]. In general, for a wave propagating in a 

FIGURE 13.3
Dual-channel SAW sensor; the sensor channel contains the chemically selective film while the 
reference channel is used to compensate for the effect of temperature variations.
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10 Fundamentals and Applications of Ultrasonic Waves
homogeneous medium, I = uaVe , where I is the power flux density, ua the 
energy density, and Ve the energy propagation velocity in the medium. 
Implicit differentiation gives

(13.21)

where V0 and ua0 are the unperturbed sound velocity and energy density, 
respectively.

Thus an increase in the kinetic energy density will cause a decrease in 
wave velocity. For SAW, a small adsorbed mass moving synchronously with 
the surface causes an increase in kinetic energy with no dissipation. Then, 
directly from Equation 13.9, the change in average kinetic energy per unit 
surface area is

(13.22)

where vxo, vyo, and vzo are SAW particle velocities.
Combining this with Equation 13.21 gives

(13.23)

Since the components , the term in brackets is a constant for the material.
Hence, Equation 13.23 can be rewritten as

(13.24)

where

(13.25)

This result clearly shows that the fractional velocity change increases linearly 
with the operating frequency. This form of the result will also be useful in 
comparing with other sensing modes.

13.2.2 Acoustoelectric Interaction

The calculation of the perturbation to the velocity and attenuation of the 
SAW can be carried out by elementary electrical theory [85, 86]. We first 
calculate the power transferred from the SAW to mobile carriers in the film 
and subsequently the effect of this power loss on the propagation of the SAW 
itself. The coordinate system is the same as that for Rayleigh wave propa-
gation (Figure 8.1) for the case of a film of thickness b much less than the 
acoustic wavelength.
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Acoustic Sensors 11
A SAW propagating on the surface of a piezoelectric substrate has an 
associated electric field  and hence an electric potential

(13.26)

The electric field sets up a current density Jx, which is related to the induced 
sheet charge density ρs (charge per unit area) by the continuity equation

(13.27)

or 

This induced charge density in turn modifies the potential to a net self-
consistent surface potential φ + ψ, so that

(13.28)

The extra surface potential can be found by the relation Q = Cψ as

(13.29)

where Csk is the capacitance per unit area at the interface for wave number k

Cs = ε0 + ε1 (13.30

ε0 = permittivity for the region above the substrate
ε1 = permittivity of the substrate

From Equations 13.27, 13.28, and 13.29

(13.31)

where σs = σ b is the sheet conductivity of the film.
Finally, the power flow to the mobile carriers is

(13.32)

where ρs is given by Equation 13.31.
The effect of this power loss is to change the velocity and attenuation of 

the SAW, i.e., it changes k. This change can be calculated by putting the 
changed potential φ0 as

(13.33)
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12 Fundamentals and Applications of Ultrasonic Waves
with γ = α + jβ. Thus, β is the new wave number and α is the attenuation of 
the wave. They can be related to the complex power by Equations 13.31 and 
13.32. To do this, we define an acoustoelectric impedance Z0

(13.34)

The power flow for a beam of width w can be written in standard form

Pax = uawV0 (13.35)

where ua is the total energy density (electrical plus mechanical) per unit 
surface area:

(13.36)

By definition the power supplied to the carrier is

(13.37)

so that by Equations 13.35 and 13.36

(13.38)

Equations 13.34 and 13.38 are the key results to relate γ   to Iz , and it remains 
to determine Z0. This is done from the definition of K2

(13.39)

Using Equation 13.34, we conclude that

(13.40)

Writing γ = α + jβ and equating real and imaginary parts in Equations 13.34 
and 13.38 with V0 = ω /k we obtain

(13.41)

(13.42)
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These changes are plotted in Figure 13.4. They are seen to give rise to a 
relaxation peak for the attenuation and a step-like increase in the sound 
velocity when the conductivity is sufficiently small. This is referred to as 
“piezoelectric stiffening.”

The value of K2 used above pertaining to SAW can be obtained by meas-
uring the change in ∆V/V when the acoustoelectric interaction is shorted out 
by a conducting film on the surface. However, such a film only shorts out 
longitudinal fields along the surface but not those in the interior; therefore, 
the value of K2 so obtained is less than that pertaining to BAW in bulk 
materials. Finally, it should also be noted that the theory can be modified to 
describe the interaction with conducting solutions [87].

13.2.3 Elastic and Viscoelastic Films on SAW Substrates

The description of the mass loading regime assumed the presence of an 
extremely thin film, so that the mass moved in synchronism with the SAW 
leading to a velocity shift with no attenuation. Films of finite thickness are 
considered here; they can be deformed and absorb energy. The film can 
be described by bulk modulus K = K′ + K″ and shear modulus G = G′ + G″ 
where the in-phase components K′ and G′ are known as storage moduli and 
the quadrature components K″ and G″ are loss moduli. Two distinct regimes 
can be identified. Acoustically thin films are those where the displacement 
is constant across the film in the saggital plane but displacement gradients 
in the plane of the film give rise to compression, tension, and bending of the 
film.

In the simplest case, the film is perfectly elastic, so that the moduli are real 
and there is no loss. Tiersten and Sinha [88] have shown that the SAW 

FIGURE 13.4
Schematic representation of the calculated variation of the velocity and attenuation changes as 
a function of sheet conductivity of the film due to the acoustoelectric interaction.
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14 Fundamentals and Applications of Ultrasonic Waves
velocity perturbation due to the film is then given by

(13.43)

where the ci are the SAW-film coupling parameters, ρh is the mass loading 
term, and λ and µ are the film Lamé constants.

Acoustically thick films are characterized by the displacement of the free 
surface of the film lagging that of the driven film-substrate interface. This 
leads to a shear displacement in the film, which can be described by the 
film’s viscoelastic response. This case has been studied in great detail by 
Martin et al. [89]. It is relevant to the characterization of polymer films on 
SAW sensors in different regimes (glassy or rubbery). The measured atten-
uation and velocity shifts follow closely those calculated.

13.3 Shear Horizontal (SH) Type Sensors

The TSM occupies a unique place in acoustic sensors; apart from its historical 
importance it is also intrinsically a resonator and is, in its classical configu-
ration, uniquely sensitive to mass loading. However, there do exist a number 
of other transverse mode sensors, SH mode, that are based on guided waves 
and that allow other interaction mechanisms with ambient media. All of 
these sensors are very well adapted to use in liquid media (for example, 
biosensing) in that the transverse wave motion is weakly coupled to the 
liquid. There is a fundamental difference between the various SH mode 
sensors and Rayleigh mode devices. Rayleigh modes are intrinsically bound 
to the surface. However, this is not true for SH modes as evidenced by the 
fact that the fundamental SH mode for a plate has a displacement that is 
uniform throughout the plate. This has important implications from a device 
point of view. Whereas both types of waves are usually generated using 
IDTs, SH mode devices require some sort of geometrical confining mecha-
nism that guides the waves and defines their mode structure. The way in 
which this is done is the principal fundamental difference between the four 
types of devices that are described in this section.

13.3.1 Acoustic Plate Mode (APM) Sensors

The device is configured so that it provides a textbook example of an SH 
guided wave system shown below. The wave is launched by an IDT, diffracts 
into the plate, and standing waves are set up. Thus the opposing face of the 
crystal is the confining mechanism for APM modes. While the device super-
ficially resembles a SAW sensor, it has in fact several strong points of similarity
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Acoustic Sensors 15
with the TSM sensor, as will be shown in the following, and as can be seen 
from Figure 13.5.

Assuming for the moment that an SH wave has been set up in the plate, 
the displacement (perpendicular to the sagittal plane) can be described by

(13.44)

Clearly this solution describes standing waves in the transversal direction (by
the cosine term) and propagation down the waveguide with wave number 
γn (by the exponential term)

(13.45)

The situation thus corresponds to the SH mode waveguide of Chapter 10, 
which was described by the slowness diagram and the waveguide equation. 
In Equation 13.45, n is the mode number giving the number of nodes across 
the plate section.

FIGURE 13.5
Acoustic plate mode (APM) sensor. (a) Side view, showing IDTs for generation and detection. 
(b) End view showing acoustic displacement profile with thickness. (c) Love mode. (d) STW device.
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16 Fundamentals and Applications of Ultrasonic Waves
In practice, the acoustic waves are excited by an IDT deposited on a piezo-
electric substrate of appropriate crystallographic cut. An excited mode will 
have a wavelength equal to the IDT periodicity d, i.e., f = V/d. In addition, 
Hou and van de Vaart [90] showed that the coupling efficiency is a function 
of b/λ. In addition to the frequency condition, single-mode operation requires 
that the bandwidth be inferior to the spacing between modes. Although the 
piezoelectric plate is anisotropic, it can be modeled as isotropic for simplicity, 
in which case the excited frequency is

(13.46)

The mass sensitivity is determined by considerations similar to those for the 
TSM and SAW devices. As before, surface perturbations will affect the guided
wave in proportion to the term . The modes with n > 1 have higher 
sensitivity than the lowest mode n = 0. The mass sensitivity can be calculated 
as usual by the Rayleigh hypothesis, and Martin et al. [91] obtain

(13.47)

where J0 = 1/2 and Jn = 1 for n > 1. 
It is instructive to compare the ∆V/V0 expressions with those for the TSM

and SAW. Except for the n = 0 mode, which does not exist for the TSM, the 
results for the APM and TSM are identical with ∆V/V0 ∼  1/b. This makes 
sense physically, as in both cases the acoustic energy is distributed through-
out the interior of the plate, which acts as a dead volume for the sensor, while 
the sensing efficiency is determined by what happens at the surface. Although 
APM and TSM have a reduced sensitivity due to the 1/b factor, Martin et al. 
[91] show that the APM has a lower minimum detectable mass due to the 
higher operating frequency. In contrast to this, for the SAW sensor, the 
sensitivity varies as 1/λ. The thickness of the plate does not intervene directly; 
rather, the acoustic energy is concentrated within a wavelength of the sur-
face. This distance becomes shorter at higher frequencies, leading to an 
increase in mass sensitivity.

Due to its transverse polarization, the APM sensor is particularly interest-
ing for applications in the liquid phase. As with the TSM and the other 
guided wave sensors, the oscillating surface of the APM entrains a thin layer 
of liquid at the interface. Typical liquids can be treated as Maxwellian with 
a single relaxation time τ. At low frequencies, ω τ  1, and the liquid is in 
the Newtonian regime characterized by a shear viscosity η. In the opposing 
limit, ω τ  1, the liquid molecules are unable to follow the motion at suffi-
ciently high frequencies, so that the dissipation decreases to zero and the energy
is stored elastically. In this limit, the liquid acts like an amorphous solid with 
shear modulus µ and τ = η /µ.
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Acoustic Sensors 17
Martin et al. [91] have calculated the plate-to-fluid coupling by a pertur-
bation analysis. They find

(13.48)

and 

(13.49)

where

(13.50)

For ωτ < 1, these results give the well-known transverse decay length in the 
fluid, i.e., the thickness of fluid entrained by the surface. Attenuation and 
velocity change vary as  at low viscosities leading to possible application 
as a microviscometer. The complete viscoelastic theory was shown to give 
a good description of the data over a wide range of viscosities.

The APM device also exhibits an acoustoelectric interaction, similar to 
SAW. In this case, however, the interaction is between the acoustic SH mode 
and a conducting liquid. The result is

(13.51)

(13.52)

where εS , ε l , and ε0 are the dielectric permittivities of the substrate, liquid, 
and free space, respectively, and σ is the bulk conductivity of the liquid. The 
above results are in good agreement with experiment.

13.3.2 SH-SAW Sensor

This type of sensor is very similar to the APM device, while sharing some 
important characteristics with SAW. SAW calculations for anisotropic sub-
strates show that surface waves, or those confined closely to the surface, in 
general have displacement components in all three directions [92]. For certain 
crystal cuts, close to those for pure Rayleigh wave propagation, there exist 
solutions for pseudo-surface waves with an SH component larger than the 
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18 Fundamentals and Applications of Ultrasonic Waves
other two. While this wave leaks into the substrate, certain favorable direc-
tions of propagation keep the energy flux very close to the surface. Such 
modes have been shown to be very useful to form sensing devices. 

Clearly the SH-SAW modes share some characteristics with APM and SAW. 
Like APM, they are essentially SH modes and so are very well adapted to 
liquid phase applications, where their interaction characteristics with the 
liquid are virtually identical to APM. At the same time, like SAW, they can 
potentially be operated at much higher frequencies than APM. Moreover, 
their mass sensitivity is identical to that of a SAW device and is independent 
of the plate thickness. The acoustoelectric interaction is similar to those of 
the two other devices. Applications of SH-SAW devices have been summa-
rized in detail in [87]. 

13.3.3 Love Mode Sensors

Love waves were discussed in detail in Chapter 10. Basically, they are SH-
type waves trapped in a layer on a substrate with the property that the shear 
velocity in the layer is less than that in the substrate, so that the superposed 
layer provides the confining mechanism. Again, such modes are particularly 
useful for liquid phase applications. The general configuration for a Love 
wave oscillator is shown in Figure 13.5(c). X-cut quartz is typically chosen 
as the substrate (VS ~ 5000 m ⋅ s−1) while SiO2 provides a suitable guiding 
layer (VS ~ 3800 m ⋅ s−1). A thin chemically sensitive layer (PMMA with 
VS ~ 1100 m ⋅ s−1) is deposited on the guiding layer for chemical sensing. With 
adjustment of the parameters, a compromise can be attained whereby a 
significant fraction of the acoustic energy flux can be made to propagate in 
this sensing layer. It will turn out that Love mode sensors have a great deal 
of design flexibility, and they constitute potentially the acoustic sensors with 
the highest mass loading sensitivities.

 Jacoby and Vellekoop [93] have made a quantitative study of the config-
uration of Figure 13.5(a). Using a perturbation approach [32], they calculate 
the power flux and the attenuation for modes in the substrate, guiding layer, 
and chemical overlayer. For simplification, an isotropic model and pure shear 
loss are considered. Thus viscous losses are introduced by using a complex 
shear modulus µ = µ0 + jω ηµ , so that they can be described by a loss tangent 
tan δ = ωηµ /µ.

A model system was considered consisting of an ST quartz substrate, assumed
isotropic for simplicity, with density 2650 kg ⋅ m−3 and Vs ~ 5060 m ⋅ s−1. The 
guiding layer was a 5-µ m layer of fused quartz with a 1-µ m overlayer of PMMA
(µ = 1.43 × 109 N ⋅ m−2, ηµ = 0.01 Ns ⋅ m−2). A perturbation method was used 
and found to be accurate up to loss angles of tan δ = 0.1 at ω = 1.5 × 109 s−1, 
which was eventually found to be near the optimal frequency. The distribution 
of power flux in the layered system and the system attenuation were calcu-
lated as a function of frequency. As the frequency was increased, the wave 
was much more concentrated in the layer but the attenuation rose toward a 
© 2002 by CRC Press LLC
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maximum attainable value for device operation. A compromise optimal 
operating frequency of ω = 1.4 × 109 s−1 was determined. This also allowed 
a significant fraction of the power flux to be in the PMMA layer where the 
actual sensing function was carried out.

13.3.4 Slow Transverse Wave (STW) Sensors

For STW sensors, the confining mechanism for SH waves is provided by a 
metallic grating deposited on the surface. Physically, trapping occurs due to 
planar resonance in the grating. X-cut quartz plates are generally used as 
substrates, as in the other SH devices. The STW device resembles a SAW 
device with a grating between the IDTs, Figure 13.5(d), and its general 
behavior is that of a SAW sensor operating in the SH mode.

Baer et al. [94] have described a prototype STW device, the “Attila” oper-
ating at 230 MHz. They characterize the trapping characteristics of this and 
related sensors in terms of the same trapping parameter used previously, 
namely v2/ I. They show that trapping efficiency depends on material (gold 
is much superior to Al and SiO2 due to its higher density) and increases with 
grating thickness for a given material. A specific comparison for trapping 
efficiency between gratings and plates for the same mass of material was 
carried out.

Since the plate corresponds to Love waves, the results showed that in this 
case the STW mode has better trapping and hence, a priori, should have 
higher mass sensitivity. In fact, a more detailed treatment by Wang et al. [95] 
shows that the optimal sensitivity for Love mode sensors is significantly 
better than for the STW mode. Nevertheless, the STW mode sensor displays 
good trapping, minimal reflections from a well-designed grating, and 
improved coupling for the IDT. The sensor was shown to be particularly 
well suited to biosensing.

13.4 Flexural Plate Wave (FPW) Sensors

The FPW sensor [96] is a direct application of Lamb wave propagation in a 
thin membrane. It is potentially the simplest, most sensitive, and with the 
lowest cost of all of the family of acoustic sensors. It has the interesting 
characteristic that it is especially well adapted to liquid phase sensing, yet 
it is not based on the SH mode. The sensing principle can be understood 
directly from the form of the Lamb wave dispersion curves of a thin plate, 
which will be assumed to be immersed in water. 

The A0 mode is of particular interest. If fd (or d/λ) is small enough, then 
the velocity of this flexural mode is less than the velocity of sound in water. 
It then follows from Snell’s law that the acoustic wave is trapped in the 
plate and does not leak into the fluid, much as light waves are totally 
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reflected inside an optical fiber. This is the basis for the interest of the device 
for liquid phase application since loss due to the liquid is small. For general 
applications

(13.53)

 the bending modulus (13.54)

   the effective Young’s modulus (13.55)

In practical circumstances, for membranes (5 to 10 µ m thick), the previous 
considerations lead to operating frequencies of 1 to 10 MHz. This is a definite 
advantage over SAW-based devices, as at these low frequencies the associ-
ated electronic circuitry is simple and low cost. One of the advantages of the 
FPW sensor is that it can be fabricated by standard microelectronic tech-
niques. A silicon nitride membrane is made self-supporting by etching away 
the silicon substrate behind it. A piezoelectric ZnO film is deposited on the 
silicon nitride, and IDTs are used to generate Lamb waves in the structure. 
The geometry of the device has an additional advantage in that etching forms 
a natural cavity for containing liquids to be studied, at the same time allow-
ing transducers, electronics, etc. on the other face to be protected from the 
liquid. The sensing configuration, gas handling system, and a typical result 
are shown in Figures 13.6 through 13.8, respectively.

FIGURE 13.6
Lamb wave (FPW) chemical vapor sensor. (From Wenzel, S.W., Applications of Ultrasonic Lamb 
Waves, Ph.D. thesis, University of California, Berkeley, 1992. With permission.)
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The mass loading sensitivity follows from Equation 13.53. Inevitably there 
will be residual stress induced in the membrane during the fabrication pro-
cess. Including this in the velocity equation we have:

(13.56)

FIGURE 13.7
Typical vapor flow system used for acoustic sensor measurements. (From Wenzel, S.W., Appli-
cations of Ultrasonic Lamb Waves, Ph.D. thesis, University of California, Berkeley , 1992. With 
permission.)

FIGURE 13.8
Frequency shift vs. concentration for toluene vapor. (From Wenzel, S.W., Applications of Ultra-
sonic Lamb Waves, Ph.D. thesis, University of California, Berkeley, 1992 . With permission.)
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A Taylor expansion gives immediately for the perturbed mass loaded system

(13.57)

Thus the sensitivity ∆VP /VP varies as 1/d (M = rd) and becomes very high as 
d  becomes very small; quantitative comparisons will be made with other 
sensors in the next section. Interestingly enough, the sensitivity can be 
increased by reducing the thickness d and hence the frequency f. This coun-
terintuitive behavior is due to the form of the A0 dispersion curve and is of 
course the opposite to that of SAW and related devices where the frequency 
is raised to increase the sensitivity.

As already mentioned, operation in fluids is the main application of the 
FPW sensor. The question of coupled modes between a plate immersed in 
a fluid and the latter was treated in detail in Chapter 9. The lowest-order 
interface mode, the Scholte wave, becomes coupled to the unperturbed Α0

mode, leading to dispersion curve repulsion and mode character interchange 
as discussed previously. In the subsonic regime (VP < V0), the lossless Scholte 
mode travels mainly in the plate, and it is this mode that is involved in the 
sensing mechanism. A very lossy wave, the upper branch, exists in the liquid. 
It is unobserved, as the attenuation is extremely high [97].

It was shown by Wenzel and White [97] that for a plate loaded by a fluid 
on one side the phase velocity becomes

(13.58)

where the evanescent decay length 

(13.59)

δE represents the thickness of the fluid that effectively loads the plate.
For the case of viscous fluid loading, the description for viscous fluids 

given earlier applies. To first order, the effect of the fluid is that of a layer 
of fluid of thickness equal to the viscous decay length, effectively clamped 
to the plate, giving

(13.60)

where δv is the viscous decay length, Equation 13.18.
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This gives a viscosity-dependent phase velocity and an attenuation varying 
as  so that in principle the device can be used as a microviscometer by 
accurate attenuation measurements [81].

13.5 Thin Rod Acoustic Sensors

The thin rod or fiber acoustic wave sensor [98] is a one-dimensional analog 
to the FPW sensor. It shows one of the latter’s main features, namely that the
mass sensitivity varies as the reciprocal of the thickness dimension, so that 
very thin rods or fibers can have very high gravimetric sensitivity.

The mass sensitivity,  = (1/Vp)( Vp / ms) was previously found to be −2 /ρ a,
−1/ρ a, or −1/ 2ρ a for the first torsional, radial-axial (extensional), or flexural 
thin rod modes, respectively [99]. However, these results were obtained with 
the assumption that the radius and the elasticity of the fiber are not affected 
by the added material. In many cases, this assumption is valid, but in other 
cases, the theoretical model which includes the effect of the elasticity and 
the inertia of the loading material has to be used.

Analytic relations including contributions of elasticity and inertia of added 
material on mass sensitivity of a thin rod sensor can be derived from the 
dispersion relation related to the acoustic mode of interest. Since it is desir-
able to operate such a sensor at low frequency, the long wavelength limit 
approximations can be used. By assuming that the thickness of the loading 
material is kept small, as compared to the fiber radius, we can simplify the 
formulae for the dispersion relations for thin rods [99] where R = 1 + h/a
with h = thickness of loading material. We neglect terms of order (h/a)2 and 
higher, which are small compared to one. For the lowest torsional wave 
mode T00 this leads to:

(13.61)

for the lowest extensional wave mode, R01

(13.62)
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for the lowest flexural wave mode, F11

(13.63)

where

 (13.64)

is the shear wave velocity

 (13.65)

is the extensional wave velocity in the low frequency limit:

(13.66)

By substituting Equations 13.61 through 13.63 into the sensitivity formula 
Equation 13.68 in which ms = ρ2 h, the relation describing the mass sensitivities 
of a thin rod sensor in the three modes can be derived. These results are 
summarized in Table 13.1. These formulae indicate that the effect of inertia 
of the loading material (related to ρ2 h) gives rise to a smaller magnitude in 
mass sensitivity of a thin rod sensor although its effect is usually small as 
compared with that of elasticity. The effect of elasticity of the loading material 
(related to CS and CE) can give rise to either a smaller or larger magnitude 
in mass sensitivity of a thin rod sensor. This depends on whether the absolute 
value of (1 − CS), (1 − CE), or (1 − 2CE) is smaller or larger than one.

These results can be compared to those published previously for plate 
wave sensors [100]. In fact, we can observe similarities between T00 and SH0

modes, between R01 and S0 modes, and between F11 and A0 modes. Never-
theless, the plate thickness has to be four or eight times thinner than the 
fiber diameter in order for a plate wave sensor to reach the same magnitude 
of mass sensitivity of a thin rod acoustic wave sensor. 

In order to verify experimentally the theoretical derivations of mass sen-
sitivities listed in Table 13.1, a known amount of mass was deposited on 
a fiber, and the influence of that deposition on the phase of the thin rod 
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acoustical delay line was monitored. Acoustic waves were excited in the fiber 
by using a hollow glass horn designed to concentrate the energy of a 2-MHz 
PZT compressional transducer into the gold fiber. By choosing the orientation 
of the hollow horns compared to the axis of the fiber, either extensional or 
flexural wave modes could be excited and received, as shown in Figure 13.9(a).
The deposited copper formed a solid and uniform layer on the surface of 
the gold fiber. Such a layer is desirable since it does not significantly attenuate 
the amplitude of the acoustical signal propagated in the fiber. Figure 13.9(b) 
shows the variation in phase of extensional wave in a gold fiber, 25 µ m in 
diameter, with mass of copper deposited per unit surface area during dep-
osition and dissolution. The phase angle decreases during deposition and 
increases during dissolution. The average slope of the curves in Figure 
13.9(b) is directly related to the mass sensitivity of the thin rod delay line in 
the extensional mode. In fact, the relation can be expressed as

(13.67)

where l is the fiber length immersed in the electrolyte (8 cm), V is the thin 
rod wave phase velocity (2099 m ⋅ s−1), and f is the wave frequency (1.95 MHz). 
The mass sensitivity of gold fiber , 25 µ m in diameter, is evaluated to be
95 cm2/g.

Considering the related equation in T able 13.1 in which h is assumed to be 
close to zero, our theory pr edicts a mass sensitivity of 95.2 cm2/g. This theo-
retical value is in good agreement with the experimental one (95 cm2/g) pre-
dicted by pure mass loading effect. The flexural wave mode has also been 

TABLE 13.1

Theoretical Mass Sensitivity of a Thin Rod Sensor

Acoustical Modes
 

(Mass Loading Only)
(Mass, Elasticity, and Inertia 

Loading)

  T00

(torsional)

  R01

(extensional)

  F11

(flexural)

Note: Subscripts 1 and 2 denote the fiber and loading material, respectively. The other 
parameters are defined in the text.

Source: From Viens, M. et al., IEEE Trans. UFFC, 43, 852, 1996.  IEEE. With permission.
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26 Fundamentals and Applications of Ultrasonic Waves
excited in a gold fiber of 50 µ m in diameter using a similar system. The 
variation in phase as a function of mass of copper deposited per unit surface 
area is shown in Figure 13.9(c). In fact, the experimental mass sensitivity was 
evaluated to be 44 cm2/g. This agrees reasonably well with the value predicted 
by a model that neglects the effect of inertia of the copper layer (57.9 cm2/g).

FIGURE 13.9
(a) Instrumentation and sample configuration for thin rod sensor mass sensitivity determina-
tion. (b) Variation in phase of extensional wave in a 25-µm diameter gold fiber with mass per 
unit area of deposited copper, during deposition and dissolution. (c) Variation in phase of flexural 
wave in a 50-µm diameter gold fiber with mass per unit area of deposited copper, during depo-
sition and dissolution. (From Viens, M. et al., IEEE Trans. UFFC, 43, 852, 1996.  IEEE. With 
permission.)
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13.6 Gravimetric Sensitivity Analysis and Comparison

The standard structure for this analysis consists of a layer of thickness h
deposited on a plate of thickness b. For BAW sensors, this corresponds 
directly to the resonator and coating layer. For the other configurations, the 
substrate corresponds to the substrate for guided waves along it (FPW, APM, 
and thin rod) or to a semi-infinite substrate (SAW, Love, etc.). In the present 
theoretical analysis, apart from BAW and SAW, we describe the behavior by 
the acoustic modes directly rather than by the type of device. The modes 
considered are the lowest-order flexural Lamb mode (A0), the lowest-order 
extensional Lamb mode (S0), the lowest-order shear horizontal plate mode 
(SH0), the surface transverse mode (STW), and the lowest-order Love mode. 
The definition of the mass sensitivity of a sensor configured in resonant fre-
quency measurements is given by

(13.68)

where ∆ f is the change in resonant frequency for adsorbed mass per unit 
area ∆ms and ms = ρ2h. The sensitivities for all of the acoustic modes have 
been calculated and the results are collected in Table 13.2 [101].

The parameters are defined as follows.

 (13.69)

is the mass ratio of the coating layer to the substrate.

(13.70)

is the ratio of the extensional plate wave velocities of the coating layer and 
of the substrate. Subscripts 1 and 2 are for the substrate and coating, respec-
tively, and E’ is the flexural modulus given by

(13.71)

and

(13.72)
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TABLE 13.2

des

Example of 
Mass Effect of 

the Sensing 
Layer

Example of 
Elasticity Effect 
of the Sensing 

Layer 

 −0.4%  No effect

−31.3% −3.94%

−31.3% −11.8%

 −1.1% −10.2%

  −1.1% −10.2%

A sensing layer on free surface will 
increase mass sensitivity usually

 

 

 f the coating layer on the sensitivity 

 permission.
Sensitivity Formulae and Numerical Examples for Different Acoustic Mo

Mode

Simple 
Theory 

Result, 

 from Two-Layer 
Composite Resonator 

or Waveguide 
Theory Results 

(Mass and Elasticity 
Effects Considered)

Numerical Examples 
for Simple Theory 
Formulae (cm2////µµµµg)

BAW 15.1 (10 MHz)

D2(S0) 626.6 (4.72 MHz)

D1(A0) 626.6 (4.72 MHz)

SH0 22.77 (<18.8 MHz)

SHm 45.4 (> 18.8 MHz)

SAW 370.0 (200 MHz)

STW 180.0 (250 MHz)

Love 
Wave

3944.8 (250 MHz)

Note: The last two columns give the effect of taking into account the properties o
of the acoustic sensor. The various parameters are defined in the text.

Source: From Cheeke, J.D.N. and Wang, Z., Sensors Actuators, 59, 146, 1999. With 
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is the shear wave velocity ratio of the coating layer to substrate

(13.73)

(13.74)

where VR is the Rayleigh wave velocity. V01 and V02 are the extensional plate 
mode velocity at the low-frequency limit for the two materials in the thin 
plate case, respectively. Ei , σi , ρi , λi , and µ i are the Young’s moduli, Poisson 
ratios, densities of the materials, and the Lamé coefficients, respectively.

In the sensitivity formula of the Rayleigh SAW mode sensors, λ is the SAW 
wavelength, and the coefficient K(σ) is a coefficient between 1 and 2. In the 
formula of the STW sensor sensitivity, λ is the STW wavelength and the 
factor KSTW is of the order of unity. In the lowest Love mode sensor sensitivity 
formula, the coefficient value, K(ρ1,2, µ1,2, h), not only depends on the material 
and the thickness of the over layer but also on the optimal design condition.

By using the simple theory, i.e., Rayleigh hypothesis or simple perturbation 
method, where the mass loading is assumed infinitesimal and the inertia 
and elasticity of the sensing layer are ignored, the sensitivity formulae of the
acoustic sensor can be obtained as shown in the first column of Table 13.2. 
In the following numerical analysis, only the magnitude will be used to show 
the sensitivity. It is clear that the magnitude of the sensitivity is inversely 
proportional to the density of the substrate for any kind of sensor. The 
equivalent thickness of the acoustic coating layer depends on the acoustic 
mode. For the two lowest Lamb wave modes and the lowest SH mode, the 
equivalent thickness is the same as the physical thickness of the layer; for 
the BAW and high-order SH modes, it is half of their physical thickness. For 
the SAW, STW, and Love wave sensors, it is quite complicated and we will 
discuss this problem later by numerical examples.

A typical example for each type of sensor is given in the following. The 
substrates of the different kinds of sensors, the parameters of the samples 
and the sensitivity values of the sensors evaluated by using the formulae 
shown in the second column are listed in the fourth column of Table 13.2.

It is seen that the lowest Lamb mode sensors have a high sensitivity. The 
S0 mode has not been used, perhaps due to excitation difficulties. It is well 
known that the lowest flexural mode is a promising sensor [96]. SAW sensors 
have a high sensitivity at high frequency, in this example, K(σ) = 1.7 is used. 
The STW sensor is not really better than its SH counterpart; however, when 
a layer of film is overlaid on the surface of the substrate, the STW becomes 
a Love wave and its sensitivity will greatly increase.

When the inertia and elasticity of the coating layer are taken into account, 
the sensitivity formulae are modified as shown in the third column of
Table 13.2. As mentioned above for the STW case, the acoustic mode will 
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become the Love wave when a layer of soft material is overlaid on the surface 
of the substrate. It is shown that the mass loading of the coating layer will 
decrease the sensitivity of the sensors by a factor of 1/(1 + mr) or 1/(1 + 2mr ). 
The elasticity of the coating layer decreases the sensitivity of plate mode 
sensors but has no effect for the BAW. For the SAW sensors, the elasticity 
effects on the sensitivity are not simple. Usually, the energy will be trapped 
in a thinner layer near the surface and the sensitivity will increase. The 
quantitative relation for the sensitivity of the Rayleigh-type wave sensors is 
quite complicated when the coating layer is involved.

We use the same coating layer for all sensors, a 2-µ m-thick polymer layer 
with following parameters:

VL2 = 2170 m ⋅ s−1 VS2 = 1200 m ⋅ s−1 ρ2 = 1250 kg ⋅ m−3

V02 = 2000 m ⋅ s−1 = 5 × 109 N⋅ m−2 h = 2.0 µ m

The substrates for the sensors are specified in Table 13.3. The evaluated 
results for the inertia terms and elasticity term are listed in the sixth and 
seventh columns, respectively, of Table 13.2. The minus sign in the numerical 
examples means that the sensitivities are decreased. It is shown that for the 
BAW and for the four kinds of plate modes, the sensitivity decreases due to 
the effects of inertia and elasticity. Two kinds of sensors will be emphasized:

1. SAW sensors. For the SAW sensor case, the sensitivity could increase
or decrease depending on the specific case. If the fields have no 
change when the coating layer is overlaid, the sensitivity decreases 
as shown in the formula. However, it is believed that the field 
distribution will usually be changed, the energy will be trapped in 
a thinner layer near the surface and this effect will increase the 
sensitivity. These two effects are in competition. In addition, higher-
order SAW modes may have to be considered when the sensing 
layer is not very thin.

TABLE 13.3

Parameters Used to Calculate the Numerical Values of Table 13.2

Mode Substrate
Frequency

(MHz)
ρρρρ1

(103 kg ////m3)
VL1

(km////s)
VS1

(km////s)
Thickness 

(µµµµm)

BAW X-quartz 10 2.65 5.00 1000
FPW (S0) SiN film 4.72 3.99 11.0 6.04 2.0
FPW (A0) SiN film 4.72 3.99 11.0 6.04 2.0
SH0 Fused quartz <18.8 2.20 3.76 1000
SHm Fused quartz >18.8 2.20 3.76 1000
SAW Fused quartz 200 2.20 5.96 3.76 Semi-infinite
STW ST-quartz 250 2.65 5.06 Semi-infinite
Love 
Wave

2-µm   Polymer 
on ST-quartz

250 2.65 5.06 Semi-infinite

Source: From Cheeke, J.D.N. and Wang, Z., Sensors Actuators, 59, 146, 1999. With permission.
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2. STW as Love waves. STW modes cannot be supported by a free 
surface. The STW can be trapped along the surface by a metal grat-
ing, for example, on ST-cut quartz coated with an aluminum grating
to trap the energy near the surface [95]. In this sample, λ 0 = 20 µ m 
is the period of the IDT, which is the wavelength of the SAW 
operating in the center frequency 250 MHz as reported. The meas-
ured sensitivity was 180 (cm2 ⋅ g−1) [95]. Based on a more general 
formula referred to in [101], the sensitivity value would be: | | = 
1/ρ1λ0 = 1/(2/65 × 0.002) = 188.7 (cm2 ⋅ g−1). It was believed that the 
liquid loading decreases the sensitivity a little (5%, for example) 
[95]. This means that the energy trapping of the STW by a grating 
is weaker than in the Rayleigh wave case. However, when a layer 
of polymer is overlaid on the surface, the energy trapping may 
significantly improve and the sensitivity may greatly increase. This 
is the Love wave case.

The sensitivity of the Love mode sensor was calculated for the same sub-
strate and polymer coating as the STW example. Substituting the given param-
eters (taking the same frequency 250 MHz) into the dispersion equation of 
the Love waves [94], the phase velocity is V = 1.489 km ⋅ s−1 � 1.24VS2. It is 
interesting that it corresponds to an optimal design, i.e., β 2 h = 1.550 = 0.4934π
� π / 2. β2 = propagation constant along the thickness direction. The sensitivity 
value calculated from the formula [94] is 3944.8 (cm2 ⋅ g−1). This value is more 
than 20 times the value of the corresponding STW wave sensor operating at 
the same frequency.

13.7 Physical Sensing of Liquids

13.7.1 Density Sensing

Liquid density is an important parameter for quality control in a large range 
of industries. In addition, knowledge of the density is essential for the deter-
mination of mass flow from volumetric flow and for the determination of 
viscosity by acoustic methods.

Liquid density is most commonly and easily measured by the reflection 
coefficient of longitudinal waves at normal incidence for a known solid in 
contact with the liquid to be measured. Then R =  (Z2 − Z1)/(Z2 + Z1) as in 
Chapter 7. For this method to be accurate it is important to choose a low 
attenuation solid with acoustic impedance not too much greater than that of 
the liquid. Most ultrasonic techniques used for measuring density are based 
on this principle. Lynnworth [102] describes a transmission variant of this 
idea, as well as the use of torsion oscillators and liquid waveguides for 
density measurement.
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f
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Puttmer et al. [103] describe a system, shown in Figure 13.10, based on the 
acoustic impedance principle, which is claimed to be of general validity for 
a wide range of pipe diameters, temperatures, etc. An exciting transducer is 
sandwiched between two identical low impedance buffer rods that are cho-
sen according to the liquid to be studied. The left buffer rod serves to provide 
a level proportional to the amplitude of the excited signal and the right buffer 
provides the solid liquid interface whose reflection coefficient is to be meas-
ured. Then, directly,

(13.75)

(13.76)

where k is a shape factor determined mainly by the acoustic loss in the buffer 
rods. The transducer on the right is used to determine V0 by a simple time 
of flight. Measurements on methanol-water and water-salt solutions indi-
cated a relative error inferior to 0.2%.

The previous device is essentially macroscopic in size as it employs stan-
dard piezotransducers and buffer rods. For many applications, such as on-
line process control it is important to have a microsensor that can monitor 
very small quantities of liquid. The FPW sensor is ideally suited for such 
applications; the motion is mainly normal to the surface and hence is very 
sensitive to the longitudinal acoustic impedance.

The result given previously for the FPW sensor can be rewritten as

 (13.77)

where 

represents the decay length of the evanescent wave in the liquid [104].

FIGURE 13.10
Configuration used for ultrasonic density sensor used in [103].
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For typical FPW plate structures d ∼  2 to 5 µ m and ~100 µ m so that the 
mass of an evanescent depth of fluid is of the order of the plate mass M. 
Hence any variation of fluid density leads to very high velocity and frequency
shifts. The experimental results show agreement to within ±0.2% of known 
density values for aqueous solutions.

13.7.2 Viscosity Sensing

Viscosity sensing is important for a wide variety of industrial processes and 
is becoming increasingly useful for biosensing. Various ultrasonic shear modes
provide a convenient measurement approach, as shear movements parallel 
to the solid-liquid interface are coupled to the fluid by the viscosity. All of 
the methods to be described involve a term (ρη) so an independent measure 
of the density is essential.

The APM sensor has been successfully applied to viscosity sensing [105]. 
The configuration used was to apply a small drop of liquid to be studied on 
the upper surface of the device and to measure the loss in the device due to 
coupling into the liquid. Since the decay distance is small (d ∼  50 nm at f ~ 
150 MHz in water), very small quantities of liquid can be used. The insertion 
loss involves the term  and is given by

(13.78)

 

and A ∼  ω δ  / , where δ  is the wave-liquid interaction length and ρs is the 
substrate density.

Relaxation effects in the liquid are described by a Maxwellian model with 
τ ≡ η /µ. The condition ω τ = 1 for η = ηc  separates into two distinct regimes:

1. For η  ηc , the liquid behaves as an ideal Newtonian liquid with 
loss IL = A . Since density variations are in many cases much 
smaller than those due to viscosity they can be accounted for by a 
small correction.

2. For η  ηc , the fluid molecules cannot follow the motion. The fluid 
behaves as a solid and the loss saturates at IL = A . The behavior 
in the two regimes is clearly seen in the figure.

For viscosities between 1 and 50 cP, the average absolute error is 7%. 
An alternative approach is to use the FPW sensor as a microviscometer. A 

mass of fluid Mη corresponding to the viscous penetration depth can be 
thought of as clamped to the plate. The effect on the attenuation of the FPW 
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mode has been shown to be [104]

(13.79)

where B and δE are defined in Equations 13.54 and 13.59, respectively.
This relation has been used to fit the T dependent viscosity of different 

solutions of DMSO. Due to the low operating frequency of the FPW device, 
it can be used for liquids that are much more viscous than those studied 
with the APM before saturation at ω τ = 1. A disadvantage is that absolute 
values of the attenuation are difficult to measure.

A third approach was originally suggested by Martin et al. [106] for a dual 
TSM configuration. One element had smooth surfaces, the second a series 
of corrugations defined by gold strips. The corrugations trap liquid inde-
pendently of the viscosity so that the difference measurement is proportional 
to the density. The density can then be inferred from the single element 
response. As TSMs have the disadvantages of limited sensitivity, large size, 
pressure effects, and wetting of electrodes, this approach has recently been 
successfully adapted to Love mode sensors, which have the additional 
advantage of very high sensitivity [107].

13.7.3 Temperature Sensing

There are many other application areas where ultrasonic sensors can be used 
advantageously in the laboratory and in industry. It is not feasible to cover 
these in detail but temperature, flow, and level indication will be described 
briefly. A detailed account of these and other applications has been given by 
Lynnworth [102].

Temperature is an important parameter in all areas of instrumentation and 
control. Like other sensing areas there are many alternative approaches and 
a particular one will be chosen according to its competitive advantages. There
are many cheap and reliable sensors available for routine work at ambient 
or near ambient conditions, where an ultrasonic-based system would be too 
cumbersome and expensive. Ultrasonic systems come into their own for sub-
surface interior temperature sensing or in hostile environments (high tem-
peratures or corrosive media). The principle used in all ultrasonic methods 
is the variation of sound velocity with temperature.

Lynnworth makes the distinction between the medium being used as its 
own sensor and external or “foreign” sensors. Using the medium as its own 
sensor is based explicitly on the use of the temperature dependence of the 
sound velocity. Thus for gases

(13.80)
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and to take into account pressure variations using the virial coefficients α, 
β, etc.

(13.81)

This basic technique can also be used in high temperature plasmas, up to 
800 K, by introducing the ultrasonic probe only momentarily into the plasma 
(~0.1 s), just long enough to carry out a sound velocity measurement. The 
same approach can be used in molten liquids (Al and Na) by insertion of a 
suitable probe such as titanium. Liquid sodium in fast breeder reactors can 
be probed ultrasonically noninvasively [102].

Solids can also be probed in the same way as liquids and gases with the 
caveat that the sample must be sufficiently large that it is certain that time 
bulk modes are being excited. If so, then ultrasonics can give unique infor-
mation not available otherwise. In a steel mill, for example, most temperature 
measuring techniques will measure the surface temperature, while ultrason-
ics gives an average over the interior.

Foreign sensors come in a variety of forms. The earliest was the notched 
wire [108], which is similar in form to the thermocouple. Unlike the latter, 
it gives an average value over the length of the sensing region. The ultrasonic 
probe is simpler but requires more complicated electronics. The use of notches
also allows the user the choice of several spatial measurement zones.

The wire thermometric probe is, of course, a nonresonant device, and 
increased resolution and sensitivity can be obtained by using resonant con-
figurations. The classical example is the quartz thermometer, which uses the 
temperature coefficient of a high Q quartz cuptal resonator. Sensitivities as 
high as 30 ppm / °C can be obtained leading to temperature resolution of the 
order of 10−4 °C. Such devices are stable and have a high resolution, low cost, 
and simple technology. They are good for applications such as precision cal-
orimetry and other precise measurements. A macroscopic version of the quartz
thermometer is the tuning fork, which is a low-frequency version (∼ 200 kHz)
of the same basic principle. A high-frequency version is the SAW resonator [109].
These devices have potentially higher sensitivity and faster response than 
the quartz resonator. One particular case will be briefly described.

Viens and Cheeke [110] developed a highly sensitive SAW temperature 
sensor based on YZ-cut LiNbO3 , which has a high temperature coefficient 
of the order of 94 ppm / °C and a high coupling coefficient (k2 = 0.048). The 
device used IDTs with a center frequency of 79 MHz and the resonator was 
formed by 300 frequency selective isolated electrodes placed on either side 
of the IDT, leading to a calculated reflection coefficient of 0.998 at the center 
frequency. This gave rise to a sharp minimum in the insertion loss of less 
than 10 dB at that frequency and an unloaded Q of 1350. The resonator was 
configured as an oscillator by use of a feedback loop with a 40 dB amplifier 
and band pass filter, so that the frequency shift varied linearly with the 
temperature over the range −30 to +150°C. The experimental sensitivity was 
about 80 ppm /°C, close to the predicted value.

V2 V0
2 1 αp βp2 ⋅⋅⋅+ + +( )=
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13.7.4 Flow Sensing

There are many ways of measuring flow in liquids and gases. These include 
variable differential pressure across an orifice (flow nozzle, Venturi, Pitot 
tube, etc.), Coriolis, oscillatory method, displacement, thermal, magnetic, and
ultrasonic. Ultrasonic flow meters have one important advantage over all 
others in that they can be noninvasive, for example, clamped on the outside 
of a pipe in an existing system. They also have excellent long-term stability, 
low power consumption, and low capital cost.

The measurement of flow by any method must take into account several 
characteristics of flow pattern including possible inhomogeneities caused by 
turbulence and flow profile. Generally, one desires an average value, which 
makes point sensors unsatisfactory in this regard. Ultrasonic sensors have 
an advantage here as the beam can be broad, and multiple-path propagation 
for integration and averaging is possible. There are two main ultrasonic 
approaches that will be mentioned: contrapropagating and Doppler.

In the contrapropagating mode, two transducers are placed on opposite 
sides of the conduit and displaced so that the distance between them is L >
diameter and they make an angle α with the flow direction. They are used 
alternatively as transmitter and receiver and if the transit times against and 
with the flow direction are t1 and t2, respectively, the flow velocity VF is given 
by

(13.82)

since the ultrasonic waves are transported by the fluid at velocity VF . The 
method gives a measure of volume flow (l/s) and a measurement of the 
density must be made if mass flow is required. According to [111], this 
ultrasonic drift measurement has the advantages of high accuracy, high 
linearity, rapid response, integration over the sound path, bidirectionality, 
and applicability to a wide range of gases and liquids.

Doppler is a traditional ultrasonic method for flow measurement, widely 
used in medical ultrasound where only one transducer can be accurately posi-
tioned on the patient. It is basically a reflection method in the frequency 
domain based on the Doppler effect, as outlined in Chapter 6. In the 1950s 
and 1960s, Doppler was introduced in medicine (blood flow), industry (e.g., 
flow of corrosive liquids in pipes), oceanography (ocean currents), and a 
diversified range of industries such as paper, food, and textile processing. 
The technology used in medical ultrasonics is now very sophisticated.

Speckle tracking is an alternative reflection mode method used in the time 
domain, where multiple reflections from scattering centers moving with the 
fluid are recorded. It is useful for very low flow that cannot be accessed by 
other methods. It is also useful for mapping flow profiles. Like Doppler, 
speckle tracking is best for monitoring liquids with known scattering centers 
such as liquids with entrained gas bubbles or slurries.
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We will now briefly describe one application of a microsensor to flow. SAW 
devices can be used for this purpose by heating the device above ambient 
temperature [112 and 113], which is then cooled by the flow and registering 
a frequency shift as a consequence. This device has been improved by the 
use of a self-heating SAW [114] by coating a lossy material in the propagation 
path, the dissipated acoustic energy supplying a constant average heat input. 
The device then acts as above in much the same way as a hot wire anemometer.
The device in [114] was made on 128° rotated Y-cut, X-propagating LiNbO3. Its
favorable characteristics include a high temperature coefficient (∼  70 ppm /°C),
linearity from −40 to +100°C, modest thermal conductivity, and a strong 
coupling coefficient (K2 = 0.056). The device was operated at 73.6 MHz. A 
dual oscillator configuration yielded a temperature compensated output with
linearity at low flow rates and a sensitivity greater than 4.10−6/sccm over a 
range of 0 to 500 sccm.

13.7.5 Level Sensing

As in the case of flow there are many approaches to liquid level sensing, 
including mechanical, flotation, optical magnetic, and ultrasonic techniques. 
Again, as for flow, the noninvasive possibilities offered by ultrasonics are 
advantageous, in addition to the comparatively low cost and compact devices.
There are, however, some situations where ultrasonics are not appropriate, 
as with foams or in cases where there is mechanical mixing. The three types 
of ultrasonic devices that will be described briefly include air reflection, 
dipstick, and clamp-on noninvasive.

The air reflection type is adapted to storage containers with an accessible 
cover. An air transducer is fitted into the cover and an emitted ultrasonic 
pulse reflected at the air-liquid interface. The technique is conceptually sim-
ple but it cannot be applied universally.

There have been several different versions of an “ultrasonic dipstick” in 
which a rod, plate, or tube carrying ultrasonic guided waves is immersed 
in the liquid from above. The torsional wave structure using a thin rod [102] 
can measure the liquid level by using the travel time between a reference 
pulse and the liquid interface or the change in travel time for immersion in 
a liquid of known density. A correction factor must be applied for temper-
ature changes. Another variant of the dipstick uses flexural waves [115]. 
Results have been reported for partially immersed duraluminum tubes (14 mm
diameter and 1 mm wall thickness). The instrument works on simple travel 
time monitoring of the echo from the liquid interface. A sensitivity of about 
1 mm for probe lengths up to 10 m has been attained. Extensional waves have
also been used in measuring the amplitude of the signal transmitted between 
two parallel waveguides [102, 116]; it was reported in [102] that the spatial 
resolution was not very good. Another approach proposed using Rayleigh 
waves transmitted along the surface of a bar projecting into the liquid [117]. 
This approach proposes a reflector to reflect the leaky wave back into the 
bar to improve signal strength.
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The clamp-on device is potentially of most interest for general industrial 
applications. Lynnworth and co-workers have used two approaches. One 
excites the A0 Lamb mode around the outside of a large storage tank [118]. 
This method can detect a change in level of several percent. A second approach
is the “hockey stick” delay line for monitoring shear wave reflectivity [119]. 
There is no dispersion indicating that bulk shear waves are involved. The device
can be clamped or welded to hot pipes, so it can be used in a variety of 
industrial situations.

The potential of circumferential waves for level sensing of horizontal thin-
walled aluminum and stainless steel tubes has been investigated [120, 121]. 
Aluminum tubes of 9 cm outside diameter and 0.8 mm wall were interrogated 
by 1.0 MHz circumferential waves for 36 fill levels. There was a monotonic 
increase in the arrival time of the echoes as the tube was filled. For example, 
the second principal echo arrived after 1.5 × 10−4 s for the empty tube and 
3.2 × 10−4 s for the full tube. The results were analyzed in terms of leakage 
of the circumferential waves into the water with subsequent multiple echoes 
inside the tube. This path was demonstrated by suppression of the echoes by
insertion of a coaxial empty tube inside the recipient tube.

Similar experiments in stainless steel tubes revealed large variations (up to
25%) in the travel time with fill level of water. In this case, the propagation
analysis is more complex and is thought to arise from coupled guided modes 
in the steel-water system.

13.8 Chemical Gas Sensors

13.8.1 Introduction

The basic goal of chemical sensing is to detect, identify, and measure the 
concentration of chemical contaminant species in a gaseous environment. 
Such sensors are very important for industrial and environmental applica-
tions, which may include detection of the following:

• Toxic/polluting gases in industrial processes
• Lethal solvant vapors in factories
• Environmental effluents
• Food (e.g., fish) for freshness
• Perfumes, alcohols, etc.
• Indoor air quality

The vast majority of acoustic chemical sensors operate on the principle of 
applying a chemically selective coating layer on the sensor. Such coatings 
are typically polymers or chemical reagents. Adsorption of gaseous species 
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changes the mechanical properties of the layer that in turn are reflected in 
the velocity and attenuation of the acoustic waves. The actual interaction 
mechanisms between the acoustic waves and the layer have already been 
described: mass loading, elastic and viscoelastic effects, electrical conductiv-
ity, permittivity, etc. These different interaction mechanisms can be separated 
by the parametric dependence on temperature, concentration, frequency, etc., 
as well as artifices as metallic layers to short out acoustoelectric effects, thick-
ness effects, etc.

In real life the situation is very different, and most of the problems encoun-
tered come about due to difficulties with the technology of the chemically 
selective layer, some of which are listed below:

• Not chemically selective
• Irreversible
• Saturation
• Lack of adhesion
• Huge cross effects due to temperature, humidity, etc.
• Several mechanisms operative at the same time 
• Irreversible and unpredictable swelling effects
• Long equilibrium time

In the next section the principal characteristics of these chemically selective 
layers will be presented, with examples of chemical sensing using them, 
followed by alternative strategies to deal with the problems outlined above.

13.8.2 Chemical Interfaces for Sensing

Free energy minimization is a simple way to describe analyte or gas phase 
surface interactions [81, 122]. Since there is an entropy decrease Sa on adsorp-
tion of gas molecules on a surface, there must be a lowering of the energy 
of the adsorbed species, which corresponds to binding energy Ha. In equi-
librium the concentration of adsorbed species Cs is given in terms of the 
concentration in the gas phase Ca by the partition coefficient

(13.83)

Clearly, for a given Ca , as the binding becomes stronger, i.e., H becomes 
more negative, the adsorbed concentration increases as do the sensitivity and
MDM. However, a compromise must be maintained; as the binding increases,
gas atoms spend a longer time on the surface leading to longer equilibrium 
times, which is undesirable from a sensor operation point of view. The bind-
ing energy depends on the nature of the gas-substrate interaction. There are 
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two broad categories: physisorption and chemisorption. Physisorption is 
weak bonding based on van der Waals forces, which exist between all atoms 
and molecules. In its simplest form, this type of bonding is totally nonselective.
Such bonds have a low binding energy (0.1 to 1.0 kcal ⋅ mole−1) and they can 
easily be broken, for example, by raising the temperature sufficiently. Since 
the binding is weak the equilibrium time is short (∼  10 to 12 s). Chemisorption
is the opposite limit, that of strong binding (20 to 40 kcal ⋅ mole−1) which 
leads to long equilibrium times (102 to 1017 s) and essentially irreversible bond-
ing. By its nature, chemisorption is much more selective than physisorption. 
In general, a given sensing layer will involve a mixture of both types of 
bonding. Some of the more common cases are described briefly below. 

Self-assembled monolayers combine both physisorption and chemisorp-
tion, where a very thin self-assembled film is formed, e.g., hexadecanethiol 
on a gold substrate. Such films are also adapted to a quantitative study of 
kinetics. Porous films [123] such as the zeolite family have two very attractive 
features. First, it is possible to increase the effective surface area dramatically 
leading to an increase in sensitivity and MDM. Second, the pore size of the 
zeolite family can be engineered with precision, so that in principle it is 
possible to tailor the size of the pores to the molecular diameters of interest, 
thus providing some size selectivity in that only the small molecules can 
penetrate into the interior of the pores. A compromise must be reached for 
small pore sizes as the equilibrium time increases dramatically as the pore 
size is reduced. The structures can be regenerated by heating to a sufficiently 
high temperature. Since water molecules have one of the smallest dynamic 
diameters, there are intrinsic problems with cross effects due to humidity for 
this type of film. Coordination/complexation chemistry for increased sensitiv-
ity and selectivity over that provided by physosorption. Some examples are 
detection of NO2 , iodine, and aromatics by metal phthalocyanine films [81].

Absorption-based sensors constitute one of the most commonly used 
approaches. In this case, the adsorbed gas atoms diffuse into the bulk of the 
film. Some important examples are the detection of hydrogen by palladium 
and of mercury by gold [81]. But the most widespread example of this approach
is the use of various polymer films; the chemistry of the polymer can be con-
trolled by adding appropriate chemical, complexes along the carbon back-
bone. The physical properties of the film can be radically altered by exposure 
to large concentrations of analytes, which may lead to swelling and changes 
in elastic and viscoelastic properties [89]. 

One of the most systematic and scientific approaches to chemical sensing 
has been provided by the linear solvation energy relationship (LSER) [122]. 
In this model, chemical reactions are grouped into five exclusive (orthogonal) 
types of interaction: polarizability, dipolarity, hydrogen bond acidity-basicity,
and dispersion. Corresponding parameters have been determined for a large 
number of analytes and polymers. In this way, it is possible to choose a polymer
film with the appropriate functionality to detect a given analyte species. In 
principle, this approach provides a solid scientific basis to the art of chemical 
sensing.
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13.8.3 Sensor Arrays

In the absence of true chemical selectivity for a single sensor, pattern recog-
nition of the response of an array of sensors, the so-called electronic nose, 
has been developed [124]. In the earlier work [124], a number of sensors, 
ranging from 3 or 4 up to 32 were employed; each sensor had a different 
response so that a given gas mixture gives a characteristic pattern in the 
arrays output response. This pattern could be characterized by a neural 
network which had been trained in its response to known gas components. 
This technique has been used to analyze the composition and relative con-
centration of gas mixtures. Of course, this approach can be used for any type 
of sensor, not just acoustic sensors. The LSER model has been used to refine 
the pattern recognition approach [122]. If an array is made up of a small 
number of sensors, each one responding to one of the LSER orthogonal 
characteristics, then pattern recognition can be used to analyze the analyte. 
In this approach, it was found that the best discrimination is provided by 
the minimum number of sensors needed to represent the LSER model; if 
more than this minimum number of sensors is used then there is actually a 
degradation in performance. 

13.8.4 Gas Chromatography with Acoustic Sensor Detection

Originally discovered by King [125] and later perfected in [126] and [127], 
this intriguing approach is unique in that it separates completely the chem-
istry (analyte identification) and the physics (signal detection), allowing an 
independent optimization of the two functions. Analyte identification is based
on the use of a gas chromatograph, which uses the principle of difference in 
molecular diffusivity down a long capillary (chromatographic column) to 
distinguish between molecular species.

A quantity of the gas to be analyzed is admitted to a preconcentrator and 
then injected into the system as a sharp pulse. Different molecules diffuse 
down the column at different rates, so that a spectrum of the detected pulse as
a function of time for a calibrated column can be used to identify the different 
molecular species, which solves the chemical problem. The physical detec-
tion of the output signal can be carried out in a number of ways, but clearly 
the principle of the ultra high sensitivity of the acoustic microbalance is 
pertinent here. Recent work has focused on the use of uncoated SAW [127] 
and FPW sensors [128]. For the results to be shown here, an uncoated SAW 
device at 500 MHz was used. Unlike previous chemsensors, coating would 
be deleterious as it would reduce response time and possibly uncalibrate the 
system. The SAW detector is placed on a Peltier cooler to allow rapid control 
of the temperature of the detector. In the current version of the instrument 
(Figure 13.11), the signal is normally displayed in a polar diagram (vapor 
print) where the radius is proportional to the amplitude (SAW frequency 
shift) and the polar angle represents time (clockwise variation with t = 0 and 
t = max at 12 o’clock). These polar prints give coherent image patterns that 
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(a)

(b)

(c)

FIGURE 13.11
Gas chromatograph used as a chemical sensor with SAW detection. (a) Detection scheme.
(b) Chromatogram. (c) Olfactory image. (From E. J. Staples, EstCal Corp. With permission.)
© 2002 by CRC Press LLC



Acoustic Sensors 43
are intuitively interpretable; like most natural images, they are easy to 
remember and relate to, unlike the random histograms of conventional sensor
array responses. Moreover, this representation is implicitly and fully consis-
tent with the notion of orthogonal sensor response as each time gives a 
specific sensor response orthogonal to that at other times. This approach 
yields a portable instrument which is very fast (<10 s measuring time) and 
sensitive (better than 1 ppb of trace impurity concentration).

13.9 Biosensing

Biosensing affords a good example of liquid phase acoustic sensing. The 
present discussion will concentrate on immunoassay, the detection of immu-
noglobins, for special protein molecules also known as antibodies. These 
molecules are able to recognize and interact with alien proteins, antigens, 
by an ideally perfectly selective “lock and key” coupling. In the normal 
biosensing configuration, the antibody is coated directly on the surface of 
the sensor, and the antigen in solution couples selectively to it. Several exam-
ples of some of the previous acoustic sensor configurations will be given.

Baer et al. [94] have applied the 250 MHz “Attila” STW sensor to biosensing 
and detection of human immunoglobin (HIgG). An amino silane was formed 
on the SiO2 surface and the antibody coupled to it. A dual path (sensor and 
reference arms) liquid flow system was employed and an RF interferometer 
was used to measure the phase difference between the two channels, engen-
dered by the velocity shift in the sensor due to mass loading. The reference 
channel, identical to the other except that there was no antibody coated on 
it, was used to compensate for any nonspecific changes in temperature, 
density, or conductivity.

The measurement cycle involves the following flows in series: pure buffer 
solution, pure analyte flow (HIgG), and recycling agent, which regenerates 
the sensor and removes the antibody-HIgG complex. Absence of nonspecific 
spurious protein binding was verified. The system could be cycled at will. 
Taking into account phase noise and the mass sensitivity of the device, an 
MDM of 45 ng/ml was estimated. Andle et al. [129] have made extensive 
improvements to the APM configuration to produce an equally sensitive 
device. A distributed acoustic reflecting transducer design was employed to 
reduce the insertion loss and render the device unidirectional. The device was
operated at 50.5 MHz. Experiments similar to those of Baer et al. were carried 
out with HIgG. They were able to detect 20 ng/ml of HIgG. The same device 
was used to detect double stranded DNA. Polymerase-amplified genomic 
DNA (200 ng/ml) from cytomegalovirus was detected. The results indicate 
an MDM of 40 ng/ml in this case. These examples show that SH devices are 
very well adapted to biosensing. The field is still in its infancy and many 
new applications can be anticipated in the future.
© 2002 by CRC Press LLC



          
14
Acoustic Microscopy

14.1 Introduction 

Acoustic microscopy involves imaging the elastic properties of surface or sub-
surface regions using acoustic waves as well as measuring the mechanical 
properties on a microscopic scale. In most of the work done so far, this has 
involved focusing acoustic waves by an acoustic lens that is mechanically 
scanned over the field of view. Following the initial work of Sokolov [130], 
the real start of the field was the development of the scanning acoustic 
microscope (SAM) by Lemons and Quate in 1973 [131]. This was essentially 
an extension of the traditional focused C scan ultrasonic imaging system, 
which is a broadband scanned ultrasonic imaging system using a spherical 
lens of high F number to image surface detail or defects in the interior of 
opaque samples. 

The heart of the Lemons-Quate SAM is the acoustic lens, shown in Figure 14.1.
A radio frequency (RF) tone burst, typically 50 to 500 ns wide and containing
a single RF frequency in the range 10 to 1000 MHz is applied to a piezoelectric 
transducer fixed on the top surface of the acoustic lens body. The transducer 
converts the RF pulse into an ultrasonic wave with the same frequency that 
is emitted into the lens body. This ultrasonic wave propagates to the opposite 
face and impinges on the surface of a spherical cavity that has been carefully 
ground and polished in the lens body. The lens cavity is coupled by a liquid 
drop, usually water, to the sample surface, which is placed at the focal point 
of the spherical lens. The ultrasonic pulse is thus transmitted into the water, 
comes to a focus, and then is reflected back to trace out the same path in 
reverse. The amplitude of the reflected pulse is proportional to the difference 
between the acoustic properties of the sample and that of the water at the 
focal point, so that the amplitude gives a measure of the microscopic prop-
erties of the sample at that point. The pulse is reconverted to an RF pulse 
by the inverse piezoelectric effect, and this RF pulse is then fed into an RF 
receiver tuned to the appropriate frequency. The average amplitude of the 
pulse is determined, converted into a digital signal, and sent to a computer 
imaging system. The lens is then mechanically displaced a small distance 
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FIGURE 14.1
Spherical acoustic lens used in scanning acoustic microscope. (1) Upper electrode. (2) Trans-
ducer. (3) Lens body. (4) Lens body length. (5) Lens aperture. (6) Coupling liquid. (7) Lens 
diameter.
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and the whole process is repeated. In order to form an image, the lens is 
scanned successively from point to point along a line that typically contains 
500 points or pixels. Successive lines are then scanned in raster fashion, so 
that an image is formed in the same way as on a TV screen.

Despite its simplicity, the spherical acoustic lens is an almost perfect imag-
ing device. All of the usual aberrations that enormously complicate the 
design of optical microscopes are absent from the SAM, principally because 
the imaging is always done on axis at a single frequency. An essential aspect 
is that the acoustic velocity of the lens is chosen to be much greater than 
that of the coupling liquid, which reduces spherical aberration to a mini-
mum. The result is that the spatial resolution, the smallest distance between 
neighboring image points, is close to its ideal theoretical value, being limited 
by diffraction or the natural broadening of any wave focused to a point. As 
Lord Rayleigh showed, a point can best be described as a circle of diameter 
equal to the wavelength of the wave that is used for imaging. The wavelength 
is inversely proportional to the frequency, so to increase the resolution and 
decrease the size of the smallest circle, the frequency must be increased. 
Herein lies one of the main design considerations of acoustic lenses. 

With increase in frequency, while the resolution increases proportionally, 
the acoustic losses increase even faster, so that eventually the reflected pulse 
becomes too small to measure. Hence, systematic steps must be taken to 
reduce losses if the goal is to maximize the resolution. From the RF source 
to the receiver, such steps include the following: 

Maximize peak power and minimize pulse width to separate closely 
spaced echoes.

Match electrical impedance between transducer and the electronics 
to maximize power transfer.

Use the most efficient and low-loss transducer possible.
Choose lens body material that is low loss and high velocity.
Use a highly oriented single crystal to avoid beam steering and ensure 

that maximum acoustic intensity reaches the cavity.
Use a small diameter lens to reduce transmission length in the liquid.
Use acoustic matching layers to maximize transmission into the liquid 

and reduce stray reflected echoes in the lens body.
Choose a low attenuation liquid.
Use a high sensitivity, low-noise receiver. 

These conditions are easy to fulfill at 10 or 100 MHz; at 2 GHz, the upper 
operating frequency of the Leitz ELSAM, where the resolution is about that 
of the standard optical microscope, they are exceedingly difficult, and indeed 
relatively little work has been done in this range. 
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Reflection SAM is generally done in one of two imaging modes: (1) high-
resolution surface imaging, where a high-frequency, high numerical aperture 
(NA) lens is chosen or (2) subsurface imaging, for which a sufficiently low-
frequency and low NA lens is used, so that most of the ultrasonic wave 
penetrates into the sample. Many examples of reflection SAM imaging can 
be given, including biomedical imaging of soft and hard tissues, thin films, 
substrate materials, subsurface defects in materials and devices, stress, cracks,
etc. An example of each type will be given in the next section. With increasing 
frequency, the most common applications are:

1. Low-frequency regime (10 to 100 MHz) is generally used for detect-
ing defects in microelectronic chips and other subsurface damage.

2. The medium-frequency range (100 to 1000 MHz) is generally used 
for a wide variety of nondestructive evaluation (NDE) and biological 
samples, as well as quantitative microscopy (to be described).

3. High-frequency range above 1 GHz is restricted to special studies 
needing very high resolution. The highest resolution attained in 
this range is 20 nm using liquid helium as a coupling liquid. 

In the early days of acoustic microscopy, it was discovered that slight 
defocusing is needed to obtain high-contrast images. A theoretical under-
standing of this phenomenon quickly leads to the realization that one could 
obtain quantitative information from the SAM by continuously defocusing 
and bringing the sample toward the lens for a fixed x, y position of the lens 
axis (z direction). Periodic variations of the voltage of the reflected signal 
are observed, the so-called V(z) phenomenon [132]. Typical behavior is seen 
in Figure 14.2, which shows a series of oscillations of V(z), with constant 
distance ∆z between the minima. It is possible to obtain the Rayleigh surface 

FIGURE 14.2
V(z) curve for a gold film on a fused quartz substrate at 190 MHz. (From Kushibiki, J., Ishikawa, 
T., and Chubachi, N., Appl. Phys. Lett., 57, 1967, 1990. With permission.)
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wave velocity directly from ∆z and this forms the basis for the quantitative 
applications of the SAM. 

A simple explanation for the V(z) effect is as follows: One can divide the 
acoustic wave incident on the sample into two beams, a central one (C) and 
an outside cone of rays (R), as shown in Figure 14.3. The central beam is directly
reflected by the sample and serves as a reference. The outer conical beam
arrives at the sample surface at the appropriate angle to set up Rayleigh surface
waves. These are reradiated or leaked back into the liquid and eventually 
return to the transducer. These two components interfere constructively or 
destructively, depending on the lens-to-sample distance, which results in the 
set of interference fringes observed in V(z). 

The consequences of the V(z) effect are many, and in fact the phenomenon 
is fundamentally important for all aspects of acoustic microscopy. For the 
spherical lens, the Rayleigh surface waves are excited in all directions and 
some appropriate average pertains for each point on the surface. This is 
important for high-contrast imaging, for example, of the grain structure of 
an alloy. Each grain has a particular crystallographic orientation compared to
its neighbor, and so each one has a different average surface wave velocity. 
This leads to a different reflected signal for each grain via the V(z) effect, 
so that some grains will give a maximum reflection and others a minimum 
one. The situation will be reversed for some other neighboring value of z. 
All of this results in the SAM having very high intrinsic contrast, so that 
special staining or etching techniques often used in metallography are not 
required. This identifies one important advantage of SAM for studying metals,
alloys, and inhomogeneous samples. 

One specific application of quantitative acoustic microscopy has been the 
development of the line focus beam (LFB) for directional measurements 
[133]. The spherical Lemons-Quate lens is replaced by a cylindrical lens, so 
that the focal point is replaced by a focal line. Of course, it is no longer 
possible to obtain acoustic images, but there are compensations for quanti-
tative microscopy. The V(z) phenomenon remains essentially the same with 
the important proviso that Rayleigh surface waves are now emitted in the 
direction perpendicular to the focal line. Therefore, the V(z) can be related 
to a specific propagation on the sample surface. By rotating the lens one can 

FIGURE 14.3
Simplified two-beam model to show the physical origin of V(z).
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measure the anisotropy in the Rayleigh wave velocity and, by an inversion 
procedure, the elastic constants. These effects have been studied by many 
workers. It has been shown that accuracies of the order of 10−4 in the velocities 
are possible providing displacements, water temperature, and frequency are 
measured very accurately. Examples of studies carried out with the LFB are 
crystal anisotropy, anisotropic films on substrates, wafer mapping, optical 
fibers, etc.

In addition to reflection mode acoustic microscopy, some work has also 
been done in transmission. In the original work of Lemons and Quate, two 
identical “Quate” lenses were placed face to face in a confocal configuration 
and a thin sample holder was positioned perpendicular to the lens axis in 
the focal plane, as shown in Figure 14.4. Although found to be very effective, 
this configuration has some serious alignment problems, especially at high 
frequency. It is especially suitable for the imaging of acoustically transparent 
or biological samples where the transmitted signal is very sensitive to vari-
ations in sample attenuation and to a lesser extent the phase. Extremely high 
resolution, high contrast images of red blood cells were obtained. The con-
figuration is also well adapted to the study of living cells. A second config-
uration for focal plane imaging, Figure 14.4(b), was used by Germain and 
Cheeke [134]. Because of its geometry and its use at low frequencies there were 
no particular alignment problems. It was used for quantitative determination 

FIGURE 14.4
Transmission acoustic microscopy 
configurations. (a) Confocal. (b) Fo-
cal plane imaging.
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of the nonlinear acoustic properties of liquids as well as for harmonic imag-
ing using resonant transducers.

Another different but complementary tool to the SAM is the scanning laser 
acoustic microscope (SLAM) [135]. In the SLAM, the sample is irradiated 
from the back side by a continuous uniform beam of ultrasound, which is 
then transmitted to the front surface. The impinging ultrasonic beam creates 
a surface disturbance on the front surface and an image is formed by scan-
ning a laser beam over the front surface to image this disturbance. The SLAM 
is basically a near field shadow imaging system. Another feature is that it is 
possible to obtain simultaneous optical and acoustic images in real time 
(30 frames per second). Since the transmitted ultrasound intensity is affected 
by defects in the bulk of the sample, these can be detected by SLAM imaging. 
The technique has been widely used for evaluating bonding, delamination, 
defects in microelectronic devices, biomedical imaging, and many other appli-
cations. The real-time aspect is particularly interesting for NDE, for example 
to study the propagation of a crack in a material under stress. Other advan-
tages include the possibility of detecting surface waves of extremely small 
amplitudes(~10−6 nm/  bandwidth) and doing plane-by-plane imaging by 
a holographic technique. The resolution of the acoustic images is determined 
principally by the width of the laser beam, the depth of the defect, and the 
ultrasonic wavelength. 

14.2 Resolution 

The characteristics of an acoustic beam focused by a spherical radiator have 
been described in Chapter 6. For SAM, an acoustic lens of this type at the end
of a buffer rod (Quate lens) is used for focusing and reception of the ultra-
sonic signal. This means that the point spread function (PSF) for the confocal 
configuration used in the SAM is sharper than that for the single lens. In 
fact, it is the square of the single lens PSF, and so varies as jinc2X. The trans-
verse definition is therefore sharper for the SAM and is given by

(14.1)

 (14.2)

where the subscript c refers to the confocal configuration and θ0 is the half 
aperture angle. The result is that the sidelobes in the SAM are much lower, 
35 dB down from the focal peak as compared to 17.6 dB for the single lens. 
However, while the diffraction limited performance is greatly improved by 
the confocal configuration, it then becomes very sensitive to the presence of 
aberrations, which will now be regarded in detail. By the very fact of on-axis

Hz

drc 3 dB( ) 0.37λ
θ0sin

--------------=

drc Rayleigh( ) 0.56λ
θ0sin

--------------=
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imaging at a single frequency, four out of five aberrations identified in optical 
microscopy are immediately eliminated: chromatic, barrel distortion, pin-
cushion distortion, and astigmatism. That remaining, spherical aberration 
(SA) can easily be eliminated, in theory and in practice, in the following way. 
A geometrical optics approach will be adopted to determine both the parax-
ial focal length and an approximate formula for the aberrations, following 
the original approach of Lemons and Quate. One of the principal differences 
with the case of optics is that SA is greatly reduced in the acoustic case, which
makes it possible to design SA-free spherical acoustic lenses. This is a fortu-
nate circumstance as high-frequency acoustic lenses are very small (~ 20 µ m 
diameter), where it would be difficult to grind and polish aspherical surfaces.

In Figure 14.5(a) the center of curvature is taken as the origin of the 
coordinate system. A reduced velocity variable is defined as

 (14.3)

(a)

(b)

FIGURE 14.5
Geometry used for analysis of spherical aberration of acoustic lenses. (a) Ray tracing analysis. 
(b) Wavefront analysis. (From Lemons, R.A., Acoustic Microscopy by Mechanical Scanning, Ph.D. 
thesis, E.L. Ginzton Laboratory, Stanford University, Stanford, CA, 1975. With permission.)

n
V0

V1
-----=
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where 
V0 = sound velocity in liquid
V1 = sound velocity in solid

A ray incident parallel to the axis at aperture angle θ will be focused at point 
f, where by Snell’s law  and from simple geometry

 
(14.4)

Passing to variables normalized to the radius of curvature (r = 1) and using 
s = sin θ 

giving the focal distance at angle θ

(14.5)

For  this expression yields the usual expression for the paraxial focus

 (14.6)

The deviation of the position of f(θ) with respect to f0, f0 − f(θ), corresponds 
to SA.
Equation 14.5 shows explicitly that the SA

• Increases with angle θ
• Increases with reduced velocity n

It is the variation with n that is the most important for SAM. The key point 
is that the SA can be made very small indeed if n is minimized, and it is 
here that the acoustical situation becomes very favorable compared to its 
optical counterpart. In optics there is only a small (~ 30 %) variation of relative 
refractive index, so that SA is intrinsically quite large. However, in acoustics 
there is typically a big difference between sound velocities of liquids and solids 
and in fact the original choice of Lemons and Quate of sapphire (V1 ∼  11.1 ×
105 cm ⋅ s−1) and water (V0 ∼  1.5 × 105 cm⋅s−1) corresponding to n = 0.135 was 
almost optimal from the point of view of SA.

θ′sin n θsin=

f y
θ θ′–( )tan

---------------------------- x+=

y 1 θtan θ′tan⋅+
θtan θ′tan–

----------------------------------------- x+⋅≈

y s, x 1 s2– , θtan– s

1 s2–
----------------- , θ′tan ns

1 n2s2–
-----------------------= = = =

f n

1 n2s2– n 1 s2––
--------------------------------------------------=

s << 1

f0
n

1 n–
------------=
© 2002 by CRC Press LLC



10 Fundamentals and Applications of Ultrasonic Waves
Lemons and Quate have shown the difference between optical and acous-
tical SA by using ray tracing comparisons for n = 0.667 for the optical case and 
n = 0.135 for the acoustical case, as shown in Figure 14.6. The broadening of 
the focal point due to SA and hence the limit of resolutions due to SA is usually 
described by the circle of least confusion, the minimum diameter of the bundle 
of rays around the focus. For this calculation, the aberration limit for the optical 
case is about 40 µ m and only of the order of 0.5 µ m for the acoustic case.

An important point is that as SA is a geometrical effect, it scales with the 
size of the lens and so decreases as the lens is made smaller. The lens radius 
used in the above simulation was about 0.8 mm, which is much bigger than 
an actual acoustic lens that would be used for an acoustic wavelength in 
water of 0.5 µ m. Thus, in the latter case, the SA would be even more negli-
gible than it was estimated to be above. The conclusion is that for a sapphire-
water system the SA will be negligible at all frequencies.

Additional insight can be afforded by approaching the problem from a 
wave point of perspective. The ideal case of no aberration corresponds to a 
spherical wave converging on the focus. The presence of SA causes a defor-
mation of the wavefront at the exit pupil of the lens, so that the effect can 
be described as a phase deformation  of the actual wavefront 
compared to the spherical reference. Combined with the amplitude distri-
bution over the exit pupil p(r, θ, ϕ), this gives the generalized pupil function

(14.7)

FIGURE 14.6
Ray tracing comparison of the performance of a single surface lens in an optical system (left) and 
an acoustic system (right). (From Lemons, R.A., Acoustic Microscopy by Mechanical Scanning, 
Ph.D. thesis, E. L. Ginzton Laboratory, Stanford University, Stanford, CA, 1975. With permission.)

kW(r, θ, ϕ )

P r, θ, ϕ( ) p r, θ, ϕ( ) jkW r, θ, ϕ( )( )exp=
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The SA, , can be calculated with the aid of Figure 14.5(b). A plane 
wave A-A’ is shown incident on the lens and the corresponding converging 
wavefront B-B’ in the exit pupil of the lens is shown, together with a reference 
sphere that crosses the lens at reference angle θ. Thus, if there were no 
aberration, the point B’ would be found at P; in other words, the SA can be 
expressed by Ws(θ) = [P, B’]. This distance can be found by application of 
Fermat’s principle, as the time of propagation from A-B must be the same 
as A’-B’. Formally, this means

 

which yields

 (14.8)

We know f0 =  and finally, after a Taylor’s expansion

(14.9)

The first term gives the primary SA and has a form similar to that given 
by the Seidel theory of aberrations. For small values of n this gives W ~ n2, 
which shows explicitly that SA is negligible for suf ficiently small n.

As a specific example, Lemons [136] shows that for a sapphire-water lens 
with r = 0.4 mm, W(50°, 0.135) ~ 0.4 µ m. For a 500-MHz wave, which would 
be a typical frequency for such a lens, this is about an eighth of a wavelength.

For surface imaging, where maximum resolution is normally desirable, 
the NA is normally made as large as possible. As described before, increasing 
the resolution can be most directly accomplished by raising the frequency, 
and the acoustic attenuation in the liquid then becomes the main parameter. 
A r esolution coefficient has been defined to compare the best resolution that 
can be obtained for various coupling liquids [137], taking into account the 
focal length and the attenuation in the liquid. This resolution coefficient Rc

is defined as [138]

(14.10)

where α = α 0  f 
 2 for a given liquid. In general, one has to go to cryogenic 

liquids to obtain significant improvement over water. Relevant acoustic 
parameters for solids, including those used for lens fabrication, are given in 
Table 5.1 and Appendix B.
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12 Fundamentals and Applications of Ultrasonic Waves
Various strategies can be employed to increase the resolution, depending 
on the experimental conditions. The following points can be made: 

1. For the vast majority of applications at not-too-high frequencies, 
water is the simplest and almost optimal choice.

2. The liquid metals gallium and mercury have attractive acoustic 
properties, but they are difficult to work with, and this fact has 
greatly reduced their use in practical applications. 

3. Significant gains can be achieved by heating the water to 60°C or 
higher. 

4. High-pressure gases such as argon are in principle attractive; how-
ever, the acoustic impedance difference between sample and gas 
means that topography dominates the image properties. 

5. Cryogenic liquids can be used to advantage because of their low 
attenuation and velocity [139]; however, the acoustic impedance 
mismatch is so great that the reflectivity is almost 100% every-
where on the sample surface, so that topography again domi-
nates. Also, this is not a practical route for most industrial 
applications.

6. Nonlinear enhancement of the resolution can be used to advantage. 
The high acoustic intensities at the focus mean that harmonic gen-
eration is very pronounced in this region. Rugar [140] showed that 
the threshold power for significant generation of the second har-
monic is given by 

(14.11)

where sd = fractional depletion of the fundamental

where βL is the fluid nonlinear coupling constant.

It is known that an increase in resolution by  is obtained by generation 
of the second harmonic at the focus, and Rugar [140] showed that in reflec-
tion microscopy this enhancement is maintained even though the second 
harmonic is subsequently converted down to the fundamental. This work 
was extended by Germain and Cheeke [141], who showed experimentally 
that a similar resolution enhancement by  occurred for higher harmonics 
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n and that significant resolution improvement could be obtained by detecting 
them directly at the focal plane in a transmission configuration. They showed 
that this mode of operation is particularly advantageous for samples in solu-
tion and biological samples. 

14.3 Acoustic Lens Design

Lens design for the SAM is a pinnacle of achievement in ultrasonic science 
and engineering. All of the essential ingredients of ultrasonic propagation 
in solids and liquids are assembled and an optimum solution must be found 
by compromise and ingenious choice of materials and design. The difficulties 
increase exponentially with frequency and it is somewhat miraculous that 
resolution in the 10-nm range has been attained under special laboratory 
conditions.

Our goal here is much more modest and it is mainly to see how the building 
blocks of Chapters 2 through 8 can be applied to the problem. We describe 
first the common components that make up a typical acoustic microscope 
lens, as shown in Figure 14.1. We then give a critical discussion on how these 
parameters are chosen for the case of a lens to be used either for surface 
imaging or quantitative V(z) measurements; lens design considerations for 
subsurface or interior imaging will be given in Section 14.4.

The starting point in Figure 14.1 is the piezoelectric transducer, which in full
detail would be described by the Mason equivalent circuit. The transducer 
assembly includes the two metallic electrodes. These can be neglected in 
analysis for frequencies less than 100 MHz; they should be included above 
that frequency and they must be included for frequencies at 1 GHz or above. 
Matching of the transducer assembly to the RF source can be accomplished 
crudely with stub tuners but much more effectively by carefully designed 
series and parallel inductances to tune out the transducer capacitance. The 
diameter of the top electrode defines the active region of the transducer; this 
should be slightly larger than the diameter of the lens cavity to assure 
roughly uniform illumination of the lens. The coupling factor (K2) of the 
piezoelectric material should be as high as possible to ensure a high dynamic 
range, which is essential for good image contrast. The design of the trans-
ducer assembly will generally be one of two general approaches. If very 
sharp DC pulses are used then the electronics and transducer assembly must 
have broadband characteristics. Alternatively, very-high-frequency systems 
for high resolution and V(z) applications will intrinsically involve narrow 
band highly resonant transducer assemblies.

At first glance, the lens body is a supporting structure but in fact it is much 
more than that and there are a number of key design issues. The role of the 
lens body is to act as a propagation medium between transducer, lens cavity, 
and back. A primary requirement for the lens body material is that its velocity 
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be much higher than that of the liquid used so that spherical aberration is 
reduced to acceptable levels. The material must have very low attenuation 
to minimize insertion loss. At low frequencies, it can be isotropic or poly-
crystalline; fused quartz and aluminum work well below 100 MHz. At suf-
ficiently high frequencies, well above 100 MHz, it must be an insulating crystal
oriented along a pure longitudinal wave symmetry direction. In the GHz 
range, precision alignment of top electrode, crystal axis, and lens center are 
critical. If the alignment is not perfect, the acoustic beam will be displaced 
and then will only partially illuminate the lens. For example, for a 2-mm-long
sapphire lens body, a 1° lens body axis misalignment will give an 11-µ m 
beam displacement at the lens, which would be intolerable for a 20-µ m 
diameter acoustic lens for the GHz range. Apart from precision alignment, 
choice of lens body material, e.g., using cubic YIG instead of trigonal Al2O3, 
can reduce the beam displacement. The length of the lens body is a key 
parameter. It is generally accepted practice that this be 1 to 3 or 4 Fresnel 
lengths in order to achieve uniform illumination of the lens. Below a Fresnel 
length of one, we enter the nonuniform regime of the near field; much above 
3 or 4 Fresnel lengths, most of the beam power will miss the lens. Chou et al.
[142] have calculated the point spread function for acoustic lenses with 
Fresnel parameters S = 0.5, 1.0, and 10.0 and find that S = 1.0 is optimal for 
reducing the sidelobes at the focal plane. Another influence of the lens body 
is that ideally there would be no echoes in it, as these often overlap and 
obscure the focal plane echo to be detected. To some extent this can be 
avoided by a careful choice of dimensions and materials so that the lens echo 
falls between two lens echoes. The best solution is to use matching layers on
the lens surface which provide a double benefit: they significantly reduce 
the undesirable lens echo and significantly increase the focal plane echo to 
be detected. Undesirable reflections can also be reduced by roughening the 
outer surfaces of the lens body.

The heart of the acoustic microscope is evidently the lens cavity itself. This 
cavity is produced by carefully grinding and polishing a spherical recess in 
the face opposite the transducer. The lens cavity radius is an important 
parameter for several reasons:

1. It determines the maximum pulse width as the reflection from the 
front face of the lens and from the sample at the focal plane must 
be clearly time resolved.

2. This pulse width determines the maximum receiver bandwidth 
and hence the receiver noise figure.

3. The pulse width also determines the axial resolution or depth of 
field for the case of subsurface imaging. Apart from resolution 
considerations, the choice of the NA follows directly from the lens 
diameter. For surface imaging, it is critical that the NA be suffi-
ciently large to include the specimen Rayleigh angle, which is an 
essential element of the contrast mechanism.
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4. Most important, the lens diameter must be sufficiently small so 
that loss in the liquid between lens surface and sample is within 
acceptable limits.

The choice of the liquid has been covered in the discussion on resolution; 
we assume from here on that water has been chosen. This leads to the water-
lens interface as the last major design issue. Because of all of the other 
constraints already mentioned, at this stage we usually end up with a big 
difference in acoustic impedance between lens and liquid. Since this interface 
has to be traversed once in each direction, at sufficiently high frequencies 
the insertion loss of the lens will become unacceptably large. Acoustic match-
ing layers is the indicated solution for what is already a highly constrained 
problem.

From Equation 7.21, we have

(14.12)

where
Rp = reflection coefficient for waves incident from the lens body of acoustic 

impedance Z1

Z2 = acoustic impedance of the layer material
Z0 = acoustic impedance of the liquid

with the condition d =  where d is the layer thickness.
The desired condition is , which is achieved by , the 

standard quarter wavelength matching condition. For a given solid-liquid 
combination, choice of potentially suitable matching layers is given by con-
sulting Figure 5.2. Of course, it is unlikely to find a material that exactly fits 
the bill but it does enable the lens designer to optimize the layer material 
chosen or, perhaps, rethink the solid-liquid combination chosen.

For such combinations as sapphire-water, borosilicate glass or carbon layers
are quite suitable. Rugar [143] has found that amorphous carbon films on 
sapphire give almost perfect matching into water at 1 GHz on planar surfaces.
In practice, high-frequency matching layers for acoustic lenses becomes rather
technical. The sputtered or evaporated films produce a cos θ thickness profile, 
which reduces the transmission efficiency. Also, in cases of extreme mismatch,
two matching layers may be needed. A detailed discussion is given by Rugar 
[143]. For our purposes it is important that above 500 MHz matching layers 
are virtually essential, and reduce the insertion loss by tens of dB. At low 
frequencies (below 100 MHz), it is nontrivial to control the required matching 
layer thickness but if careful lens design is carried out matching layers are 
not really needed in this regime.

In the ideal case lens design for surface imaging involves the choice of the 
required resolution, which is approximately 0.7λ for an F 0.75 lens. This 
determines the frequency. Once an acceptable coupling fluid has been chosen,
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the maximum lens diameter is determined, assuming a maximum allowable 
loss (say 60 dB) in the liquid. The lens body material is chosen to respect  
and minimum attenuation. The lens body length is then chosen to optimize 
the illumination of the lens. Further steps to maximize the signal-to-noise ratio 
include the following:

1. Choice of high performance transducers such as bonded lithium 
niobate or PZT plates below 150 MHz, sputtered ZnO or AlN at 
higher frequencies

2. Impedance matching of the transducers to the RF source
3. Choice of a suitable matching layer for the lens
4. Choice of low-noise, high-sensitivity electronics

For order of magnitude considerations at 1 GHz, if we assume a receiver 
dynamic range of the order of 120 dB, then this might be divided up as 
follows: 30 dB for various losses in the lens, 60 dB for losses in the liquid, 
and 30 dB available to provide sufficient image contrast. 

If these principles are followed, then we arrive at the order of magnitude 
choices presented in Table 14.1 for two quite different cases: 30 MHz and 
1 GHz. Of course, in a given situation there might be special constraints, 
e.g., available instrumentation or lenses, so the approach might have to be 
somewhat flexible. High-resolution surface imaging is assumed above; quan-
titative V(z) measurements would require a similar approach but with other 
considerations.

TABLE 14.1

Typical Design Parameters for Low Frequency and High 
Frequency Acoustic Lenses for Scanning Acoustic 
Microscopy

Property 30 MHz 1 GHz

Transducer
• Material
• Diameter
• Electrodes

Lithium niobate
6 mm
Au-Cr

ZnO (1.4 µ m)
200 µ m
Au-Cr (0.2 µ m)

Lens body
• Material
• Orientation
• Diameter
• Length

Fused quartz
NA
10 mm
10 mm

Sapphire
C axis
6 mm
4 mm

Lens cavity
• Diameter
• Opening
• Matching layer

5 mm
4 mm
NA

100 µ m

Borosilicate glass
Liquid

• Type
• Temperature

Water
20°C

Water
60°C

n << 1
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Although spherical and cylindrical lenses are by far the most used in SAM, 
other lens designs have been proposed at various times for particular appli-
cations. These are displayed in Figure 14.7 and described very briefly below:

1. Standard spherical lens, already described in detail. The main vari-
ables are the lens diameter and the aperture.

2. Concave lenses (spherical emitters). Several variants have been 
developed. Liang et al. [144] carried out many low-frequency 
experiments with these devices at 3 MHz. At higher frequencies, 
various piezoelectric films were posed in the spherical cavity to 
focus at the center of curvature. These devices include ZnO films 
[145] and PVDF [146]. The latter has a low intrinsic insertion loss 
as it is well matched to water.

3. Lamb wave lens [147]. As described in Section 15.3.1, the higher- 
order Lamb modes can be excited at characteristic angles given by 
sin θ = V0/VP for different values of plate phase velocity VP . Atalar 
has developed a lens where the central part emits at normal inci-
dence and the outside part at a constant angle θ. If the lens is placed 
in a defocused position above the plate to be studied as the fre-
quency is swept, various Lamb modes become excited as the above 
condition becomes satisfied. It becomes useful to create a V(  f  ) 
curve in analogy to the V(z) curve.

4. Bow-tie transducer. Davids and coworkers [148] developed this 
transducer in an attempt to produce a spherical lens with direc-
tional characteristics.

FIGURE 14.7
Different types of acoustic lenses used in scanning acoustic microscopy.
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5. Shear wave lens. Khuri-Yakub et al. [149] attempted to use shear 
wave transducers illuminating a spherical lens to create direction-
ality as in [148] by mode conversion at the lens interface. A char-
acteristic cos θ variation was confirmed experimentally.

6. Fresnel lens. Yawada and coworkers used a Fresnel-type lens [150] 
that allowed simultaneous optical and acoustic images of the same 
local region of the sample.

14.4 Contrast Mechanisms and Quantitative Measurements 

14.4.1 V(z) Theory

A typical V(z) curve is shown in Figure 14.2; by convention, negative z
corresponds to a decreased lens-to-sample distance. The two main interfer-
ing beams are shown in Figure 14.3, and those that appear to come from the 
focal point interfere at the piezoelectric transducer, which is sensitive to the 
phase. By simple geometry from Figure 14.3, the relative phase difference 
between the two beams is

(14.13)

where θR is the Rayleigh angle, defined as sin θR = V0/VR. Clearly the inter-
ference condition depends on Z, giving rise to the series of minima seen in 
Figure 14.2. The period of the oscillations is 

(14.14)

so that measurement of ∆ z for a given f and V0 gives θR, hence VR, for the 
sample at this position. Similar considerations give for the attenuation 

 (14.15)

However, the attenuation is much more difficult to obtain accurately, and 
most of the work has been done on measurement of VR. 

While the simple two-beam model is useful for understanding the physics 
of V(z), many simplifications have been made. A more rigorous mathematical 
treatment of the phenomenon is provided by scalar wave theory [151], which
is used to describe the refraction of all acoustic waves over the lens aperture 
into the liquid. For a given z, the result is 

(14.16)

φG φR– 2kz 1 θcos R–( )– π+=

∆z 2π
2k 1 θRcos–( )
------------------------------------=

∆α 2z α0 θRsec αR θtan R–( )=

V z( ) P
0

π/2

∫ θ( )R θ( )e 2zk θcos– θ θcossin θd=
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where P(θ) is the pupil function that characterizes the lens transmission 
properties, which depend on the geometry and the lens material parameters, 
and R(θ) is the amplitude reflectance function. By redefining variables such 
that u = kz, t = (1/π)cos θ, and Q(t) = P(t)R(t), we find 

 (14.17)

so that V(u) and Q(t) are a Fourier transform pair for a lens with a known 
pupil function. Thus the measurement of the full V(z) curve over the full 
range of z should lead in principle to a determination of R(θ ), which will be 
given below. Analogous treatment can be given for transmission, although 
the applications have been much less numerous. The formulation is

 (14.18)

where P(θ) is the lens function for the two lenses and T(θ ) is the transmission 
function for a layer of thickness d for incident and refracted angles θ. 

In addition to the wave theory, a ray model more complete than the 
simplified version already mentioned has also been developed [152]. It is an 
interesting complement to the wave theory, as various modes such as surface-
skimming bulk waves may be put explicitly into the model, as described in 
detail in [138].

14.4.2 Reflectance Function from Fourier Inversion

Inversion of the wave theory gives: 

(14.19)

so that measurement of V(u) can give R(θ). As mentioned by Briggs [138], 
there are several precautions to be observed with this formula: one can only 
obtain R(θ) for the range of angles included within the lens opening; the full 
curve V(u) is needed, as truncation can cause errors; the results are sensitive 
to attenuation associated with fluid loading, especially at high frequencies; 
and V(u) is a complex function, so measurement of the amplitude and phase 
are needed. The first measurements were carried out by Liang et al. [144], 
shown in Figure 14.8 for water-fused silica interfaces at 10 MHz. A lead sample, 
for which no Rayleigh waves are excited in this case, was used as a reference 
to obtain the pupil function. The most spectacular result was an observation 
of an expected phase change of 2π, at the Rayleigh angle, which allowed 
accurate determination of vR. A dip in the amplitude is also seen at ϑR; this is 
usually due to damping of the Rayleigh wave, but care must be taken as such 
dips could also be due to anisotropy and/or truncation of the data. 

V u( ) Q
0

1/π

∫ t( )e i2πut– td=

A z( ) P
0

π/2

∫ θ( )T θ( )e i z−d( )k θcos– θ θcossin θd=

Rt t( ) V u( )
V0

------------
∞–

∞

∫ e i2πut– ud=
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14.4.3 Line Focus Beam

Developed by Kushibiki and Chubachi [133], the line focus beam (LFB) 
technique exploits Rayleigh waves emitted perpendicular to the focal line 
of a cylindrical lens. The generally accepted analysis uses a ray approach 
that can be summarized as follows. The reflected signal can be written as 

(14.20)

(a)

(b)

FIGURE 14.8
(a) Experimental V(z) of water-fused silica interface at 10.17 MHz. (b) Comparison of the theoretical 
and experimental reflectance function for a water-fused silica interface. (From Liang, K.K., Kino, 
G.S., and Khuri-Yakub, B.T., IEEE Trans. Sonics Ultrasonics, SU-33, 213, 1985. © IEEE. With permission.)

V VG VR+=
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where VR is the Rayleigh wave contribution and VG is due to the sum of all 
other scattered waves. 

For square law detection 

 (14.21)

where θ is the phase angle between VG and VR and all terms are z dependent. 
The measuring system is calibrated using a lead sample; to a good approx-
imation, VL = VG. Two assumptions are then made to complete the analysis 
for the LFB: 

1. , which reduces to

2. The phase depends linearly on z, leading to 

Neglecting attenuation, it is found that the spatial frequency of the Fourier 
transform of V(z) is centered at 

Taking attenuation into account, the final results are expressed as

 (14.22)

(14.23)

Several experimental precautions are needed to obtain very high accuracy 
for VR and α N with the LFB; steps include use of goniometers for tilt align-
ment, careful temperature control of the water drop, and careful measure-
ment of the lead reference calibration curve. Likewise, there are several steps 
in the data analysis necessary to get accurate data reduction for Fourier 
analysis, including filtering and subtracting out VL by an iterative procedure. 
The accuracy of the LFB can be written in terms of precision in temperature, 
distance, and frequency measurements as

(14.24)
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VR << VG
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------ 2k 1 θcos R–( )= =

VR V0 1 1 V0ξ0

4πf
-----------– 

 –
 
 
 

=

αN
α θRcos 2α0+

2kR θRsin
-----------------------------------=

δ VR

VR
---------- 0.0011δT( )2 0.464δf

f
----- 

  2

0.464δ∆z
∆z

--------- 
  2

+ +
 
 
 

=

© 2002 by CRC Press LLC



22 Fundamentals and Applications of Ultrasonic Waves
from which it can be deduced that for a relative accuracy of 10−3 in ∆V/V, ∆T
is needed to ±0.9°C, ∆f/f to 0.2 %, and ∆z/z to 0.2%. For a relative accuracy of 
10−4, ten times greater precision is needed for each parameter. Full details are 
given in [133] for determinations of ∆V/V and αN over 30 different materials. 
Accuracies of 10−4 for ∆V/V and 2% for αN are claimed. 

14.4.4 Subsurface (Interior) Imaging

Subsurface imaging is one of the unique capabilities of SAM because unlike 
light many other forms of radiation ultrasonic waves can penetrate optically 
opaque media. They can thus be used to detect and image defects and other 
subsurface structure.

Surface imaging and metrology (V(z)) applications mentioned previously 
used wide aperture lenses, to maximize resolution and to excite Rayleigh 
waves, respectively. In subsurface imaging, the requirements are different, in
fact, complementary. In this case, one aims to maximize the acoustic energy 
that penetrates into the substrate. In that context, it is undesirable to generate 
Rayleigh waves at the surface, as this would simply subtract acoustic energy 
out of the main beam. For this, and for other reasons to be seen, it is preferable 
to use a narrow beam, at least one narrow enough to avoid Rayleigh wave 
generation.

A number of other factors limit the subsurface imaging effectiveness. The 
signal levels are small due to the large acoustic mismatch between sample 
and coupling liquid. One solution would be to increase the pulse width, but 
there is a conflicting requirement of keeping narrow pulses to ensure good 
temporal resolution for resolving subsurface structure. Pulse compression tech-
niques are one solution to resolve this problem. Another factor is that the 
resolution is degraded compared to that obtained for surface imaging as the 
sound velocity inside the sample is typically much higher than that in the cou-
pling liquid. For a given frequency, this leads to longer wavelengths and 
lower resolution. The resolution is also degraded by the higher spherical 
aberration introduced at the interface, as shown in Figure 14.9.

There are a number of solutions to the above difficulties. The use of a 
reduced aperture lens, say 30°, not only avoids Rayleigh wave generation 
but also reduces spherical aberrations. Use of high-density, low-attenuation 
liquid metals such as gallium and mercury helps to increase the transmitted 
acoustic intensity. Finally, use of the shear mode for subsurface imaging is 
advantageous as for many materials the shear wave velocity is close to that 
of the coupling liquid. With these subterfuges, most of what was lost in 
signal level and resolution has now been regained.

Yet another approach to improve performance in subsurface imaging is to 
use aspherical lenses. Pino et al. [153] have used a geometrical optics 
approach in designing an aspherical lens to attain a diffraction limited focus 
inside the solid. They used Fermat’s principle to equalize the transit time 
from the exit pupil to the focus. This leads to an aspherical surface with a 
smaller curvature on the outside of the lens compared to that in the axial region. 
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The calculations were confirmed experimentally by the observation of diffrac-
tion limited imaging inside the solid with no increase in the sidelobes.

A final point is that high resolution is not an overriding concern in sub-
surface imaging. The main application is in NDE and in most cases one 
wishes to observe if there is a defect and not to study it in refined detail.

14.5 Applications of Acoustic Microscopy

14.5.1 Biological Samples

Ultrasound imaging and quantitative study of biological tissue have several 
characteristic differences from similar studies on materials. There is no flat, 
well-defined reflecting surface, and biological tissues are generally more 
homogeneous in their structures, typically with high attenuation and sound 
velocity in the range of that of water. Since the shear modulus is low and shear 
viscous damping is high, we are only concerned with longitudinal waves.

As a consequence, while the technology is generally the same as for mate-
rials, there are important differences. Transmission mode imaging or through 
transmission substrate reflection is much more frequently used although the 
analog of reflection SAM, ultrasonic backscatter microscopy (UBM), has been 
used in some work. Traditionally, the frequency range for medical imagery 
has been below 10 MHz although in some of the work to be described here 

FIGURE 14.9
Subsurface imaging in acoustic mi-
croscopy. (a) Longitudinal and shear 
focal regions. (b) Longitudinal (L) 
and transverse (T ) spherical aberra-
tion associated with either one of the 
focal regions shown in (a).
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this has been extended toward the 30 to 100 MHz range. As in NDE, ceramic 
transducers with their high-coupling coefficients are frequently employed 
although polyvinylidene fluoride (PVDF) and copolymers find relatively 
more frequent use than in NDE because of their good impedance match to 
water. It should be noted that medical imaging has several imaging modes, 
namely A scan (amplitude/time trace as on the oscilloscope), B scan (section 
normal to the sample surface), and the usual C scan used for imaging materials.

Acoustic microscopy in the 10 to 100 MHz range can be either in vivo or 
in vitro [285, 286]. One of the common imaging applications in this range is 
for dermatological diagnosis. A wide bandwidth and sufficiently high fre-
quency of the transducer and electronics are essential to obtain sufficient 
axial and lateral resolution. Typically, the transducer is placed at the end of 
a lever and mechanically scanned by a DC motor, with acoustic coupling 
supplied by an ultrasonic gel. B scan is used to identify the various layers 
and interfaces of normal skin (epidermis, dermis, and hypodermis) and 
muscle. One of the main applications is imaging of pathological skin in order 
to determine the size and depth of tumors, a complement to other techniques 
for determining malignancy. Inflammatory diseases such as psoriasis 
plaques can also be monitored by B scan. Most of the commercial units 
operate near 20 MHz. Recent work at 50 MHz shows that the depth of 
exploration is limited to about 4 mm at this frequency. 

Another much studied area is that of opthalmological applications. At low 
frequencies (<15 MHz) commercial instruments are routinely used to meas-
ure dimensions of internal structures of the eye and to detect structures 
hidden by the eye lens. More recently, there have been developments of high-
frequency (30 to 100 MHz) biomicroscopes, which are useful for imaging 
small structures a few millimeters below the surface, for imaging the cornea 
for thickness, for state of corneal grafts, and for detecting cysts and tumors. 
This high-frequency work provides new, unique information on eye struc-
tures and is a promising area of development. 

Intravascular ultrasonic imaging is another important area in medical appli-
cations, where the main problem is detection of hardening of the arteries, or 
atherosclerosis. In vitro studies have been carried out to establish a correlation 
between ultrasonic images at about 50 MHz and histology. The agreement is 
excellent for detection of arterial wall thickening due to plaque in most arteries, 
and good calculation is also obtained for the more elastic carotid artery. In vivo
ultrasonic imaging is under development, while in vivo ultrasound is already 
useful for diagnosis and monitoring during surgery. The prime advantages of 
acoustic imaging are good resolution, contrast, and real-time imaging. 

All of the very-high-frequency (> 500 MHz) work has been done by SAM. 
Developments have proceeded more slowly than originally anticipated, in 
part because of the difficulties in image interpretation, but also because it is 
not a well-known technique so that it has not been easy to make connections 
with traditional cell biology. Several studies have been made of cells in culture, 
notably fibroblasts. SAM can be used as a tool to measure (1) topography, 
with the aid of the observed interference fringes; (2) attenuation, which is, 
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however, difficult to interpret because of model dependence and assump-
tions on homogeneity; and (3) reflectivity, which suffers from similar ambi-
guities. A key issue for image interpretation is the model used for the acoustic 
properties of the cytoplasm. An effective medium approach for the sound 
velocity in the saline/fibril system can be used, as for porous systems, for 
example. There are, at present, too many uncertainties in the acoustic param-
eters to provide a basis for interpretation of SAM images. Work is ongoing 
using all of the techniques of acoustic microscopy to elucidate the mechanical 
properties of cytoplasm. Important work is under way to study cell dynamics 
by SAM. Interference reflectometry has been used to visualize the elasticity 
distribution in cells. A subtraction scheme for images taken at different times 
has been used to image cell motility and relate this to changes in elasticity, 
topography, or attenuation. This is a promising tool in its ability to detect 
all motile responses to applied stimuli. 

14.5.2 Films and Substrates

Achenbach and coworkers [154] have used the LFB to determine the elastic 
constants of isotropic materials in bulk, plate, or thin film configurations at a 
single frequency. The heart of the method is an inversion procedure in which 
best estimates of elastic constants are put into a theoretical model for V(z) to 
calculate velocities and amplitudes of leaky waves, which are then compared 
with those determined experimentally by LFB. The difference, or deviation D, 
is used to adjust the input elastic constants, and the process is repeated until 
convergence by least squares is obtained. Good agreement, of the order of 1%, 
has been obtained for velocities for glass and aluminum in bulk form, glass 
plates, titanium films on gold, and a gold film on glass. The advantage of the 
method is that it only requires a single frequency measurement by LFB.

Anisotropic films on anisotropic substrates [154] have been studied as an 
extension of the inversion method for isotropic systems. The wave model is 
used as the starting point for calculating V(z). The reflection coefficient is 
calculated for the anisotropic case by a matrix method, where layers are 
represented transfer matrices, which are multiplied together to give the 
reflection coefficient. The measured and calculated V(z) give good overall 
agreement for various isotropic/anisotropic combinations, such as TiN films 
on MgO substrates. As in the previous section, the actual inversion procedure 
for determining elastic constants is carried out by comparing surface acoustic 
wave (SAW) velocities extracted from the experimental V(z) curves with 
those calculated by finding the roots of the Christoffel equation. In making 
the comparison for anisotropic materials, the distinction must be made 
between regular SAW and pseudo-SAW; for the latter, VR is greater than for 
out-of-plane transverse waves. These two components correspond to quali-
tatively different regions of the angular velocity variation for SAW.

For a given specimen, the most reliable inversion technique is to compare 
SAW velocities obtained experimentally and those calculated theoretically by
an iteration process with minimization by a Simplex method over a wide range
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of frequencies. A less acceptable alternative is to measure a few frequencies 
or several specimens with different thicknesses at a single frequency, but the 
latter approach is based on the dubious assumption that the properties of 
films of different thicknesses remain the same. 

Considerable work has been done on film thickness measurements by 
SAM. For medium-thickness films (1 to 20 µm), ultrasonic microspectrometry 
(UMSM) [155] has been demonstrated to be an effective real-time online 
device. This technique works for films such that the layer transverse wave 
velocity is smaller than that of the substrate. Dispersion calculations show 
that the two lowest-frequency modes are the Rayleigh mode and the Sezawa 
mode, the latter having a low-frequency cutoff when it leaks into the sub-
strate. It has been demonstrated in practical conditions in UMSM that, when 
the frequency is scanned, a dip occurs at cutoff, which enables a determina-
tion of the film thickness. For very thin films (d < 1 µm), the thickness can 
be determined easily in the laboratory by a V(z) measurement, given an 
appropriate knowledge of the film parameters. 

Film adhesion is another important problem which, in principle, is ideally 
suitable for study by the SAM. There have been a number of studies, which 
have been well summarized in [156]. The basic idea is to use a high NA 
acoustic lens, so as to excite Rayleigh and Lamb waves in the multilayer 
system. One can then compare experimentally measured dispersion curves 
to those predicted by the theory for various states of interfacial contact: 
perfect, intermediate, or loss of contact. It was found that in the two limiting 
cases there was excellent agreement between theory and experiment, and 
that known imperfect interfaces fell between the two. Finally, it was found 
that surface-skimming compressional waves (SSCW) were even more sensi-
tive than generalized Lamb waves to the interface conditions.

14.5.3 NDE of Materials

Subsurface imaging is carried out by focusing an acoustic lens below the 
surface. The attenuation in the solid, which may be very high (composites) 
or very low (single crystals), will be a major factor in limiting the maximum 
imaging depth. The confocal nature of subsurface acoustic imaging is such 
that it is possible to obtain plane-by-plane image slices; a demonstration for 
composites is given in [157]. 

The presence of stress in materials can be measured by acoustic microscopy 
by the effect of stress on sound velocity via the third-order elastic constants. 
For surface and near surface stress, the SAM is a useful tool for detecting 
the presence of applied and residual stress, with reasonably high spatial 
resolution depending on the approach that is used, by use of Rayleigh or 
SSCW detection. Applied stress leads to the acoustoelastic effect, the change 
in velocity due to an applied stress field. There is an advantage to using the 
LFB instead of more conventional SAW technology because of the flexibility 
of liquid coupling and the directionality and the 1 or 2 mm spatial resolution 
provided. A demonstration of the technique has been given by Lee et al. [158] 
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for 6061-T6 aluminum using Rayleigh waves and SSCW, and for polymethyl 
methacrylate (PMMA) using SSCW. Samples were cut in a dog bone shape 
and placed in a uniaxial loader, with strain gauges attached to the surface. 
Calibration was carried out using a uniform load and measuring velocity 
parallel and perpendicular to the loading direction as a function of strain 
and by measuring v (θ ) for several fixed values of strain. This procedure 
gives the two principal acoustoelastic constants for the material, which 
allows subsequent measurements of unknown nonuniform stress fields. In 
both cases, good agreement was obtained with finite element calculations. 

Near-surface residual stress can also be measured using the Rayleigh wave 
velocity. The study by Liang et al. [159] used time-resolved phase measure-
ments of the Rayleigh waves using a spherical lens. Excellent agreement was 
obtained for the spatial variation of residual stress by comparison with actual 
Vickers hardness measurements. Again, the acoustic technique would 
require a calibration procedure for a given material. 

It has also been shown that bulk stress in solids can be imaged using the 
acoustic microscope [160]. The technique is based on measuring acoustic 
birefringence under applied stress. Shear modes created by mode conversion 
can be imaged; those propagating through the stressed region have a decreased
amplitude compared to those that traverse stress-free regions. By comparing 
the two, one can measure and image the variation in a stress field throughout 
the volume of the sample. Longitudinal waves give complementary results, that 
is, maximum amplitude where the shear mode has minimum amplitude. 
Possible applications include residual stress detection and crack-induced 
stress in ceramics and composites. 

Qualitative and quantitative assessment of crack forms, dimensions, and 
growth rates in materials is important for NDE, particularly in determining 
the estimated lifetime of industrial components. SAM imaging adapts to this 
problem well particularly because of its subsurface ability. One characteristic 
of SAM images of cracks is the strong fringing observed with spacing of λR/2,
which clearly demonstrates that Rayleigh waves are involved. This conclu-
sion is also confirmed by detailed theoretical analysis [138]. 

The smallest cracks that can be detected by SAM are determined by acous-
tic considerations for the minimum width [138]. Since Rayleigh waves need 
to propagate in a continuous fashion and they involve a strong, shear com-
ponent, the viscous penetration depth determines the smallest crack width 
at a given frequency. This length varies as , and for water at 1 GHz it 
is about 18 nm. The minimum length is determined mainly by ultrasonic 
time of flight considerations because short pulse techniques are mainly used 
to determine this dimension. For example, a pulse width of about 8 ns is 
needed to detect a crack 100 µm long. The time of flight diffraction technique 
(TOFD) has been used to identify various possible paths from the acoustic 
lens to the crack and then by use of a ray model to identify the observed 
rebound echoes by transit time. The model was validated in plastic materials 
and then applied to the measurement of actual cracks in aluminum-lithium 
alloys down to a depth of 220 µ m. The same technique was used to measure 

1/f
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crack growth under elastic loading in aluminum alloys, and good agreement 
was obtained with subsequent destructive inspection. Crack detection is 
thoroughly explored in [161]. 

14.5.4 NDE of Devices

This section is concerned with two complementary areas of the application 
of acoustic microscopy to the NDE of microelectronic and optical devices. 
The first is the important industrial area of microelectronic packaging of single 
chips, stacked chips, multichip modules, and stacked modules. The need here 
is for low-cost, high-speed detection of packaging defects such as leaks, voids, 
delaminations, etc., and their visualization. The principles involved are based 
on those of subsurface imaging of defects and acoustic studies of defects as 
discussed above. Ideally, these tests will be carried out online in real time. 
The second is more laboratory-level research and development to characterize 
the homogeneity of microelectronic chips and optical fibers, which is achieved 
by measuring the spatial variation of the acoustic parameters.

The application of SAM and SLAM to microelectronic packaging has been 
fully covered in [162] and [163], with many examples of acoustic and other 
images. In [163], particular emphasis is put on the complementary nature of 
SAM, SLAM, x-rays, and optical and destructive analysis. One of the important 
areas is in the ceramic packaging of chips, where one of the chief issues is 
leaks in the lid sealing. Entry of moisture and other contaminants leads to 
corrosion or change in electrical properties. SAM at 50 MHz was shown to be 
a useful technique for lid seal inspection, giving depth-specific information 
and void detection for both solder and glass-seal devices. Shear-wave imaging 
was shown in [162] to give good resolution for void detection up to 2 mm 
depth. Failure in plastic-packaged devices was found to be due largely to 
differential contraction, and SAM was found to be useful for detecting internal 
cracking and delamination, and to be very complementary to x-ray inspection.

Die-attach, the bond between a semiconducting chip and the substrate, is 
another area where SAM and SLAM have proven very useful. Bond integrity 
is important to provide good thermal, electrical, and mechanical contact, 
which are all essential for proper device operation. Voids, cracking, and poor 
adhesion are among the main problems, and it is shown by numerous images 
in [162] and [163] that these can be detected by SAM and SLAM. SAM is 
good for work in the reflection mode and can give unique information on 
the disbond. Other special applications in microelectronic packaging include 
detection of voids at tape automated bonding (TAB) interfaces, poor adhe-
sion at soldered joints, and detection of delaminated leads. These detailed 
studies clearly show that SAM and SLAM are now indispensable diagnostic 
tools for microelectronic packaging.

Two other microscopic monitoring tools of device components and materials 
should be mentioned. Kushibiki et al. [164] have done extensive studies of 
wafer mapping using the LFB. For example, studies were carried out on a 36°
Y-cut LiTaO3 wafer to be used for shear horizontal (SH) SAW. Rayleigh-type 
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SAW waves were excited along the x axis, as this direction was found to be 
most sensitive to chemical composition and elastic inhomogeneities. Exper-
iments were carried out as a two-dimensional mapping of 6 × 6-mm squares 
over a 76-mm diameter wafer. The results showed that by measuring velocity 
variations it is possible to carry out physical and chemical quality control as 
follows: (1) VLSAW was proportional to the Curie temperature varying as 
0.52 m/s per °C, (2) variations of 0.03 Li2O mol% could be detected, and 
(3) residual multidomains produced during poling were detected by elastic 
inhomogeneities. A similar study was carried out over the section of cladded 
optical fibers [165], where different sections were doped with GeO2, F, and B2O3

to produce a controlled variation in refractive index. The LFB was used to 
compare the profile of VLSAW with that of the refractive index. Very good 
agreement was obtained indicating the potential of the LFB as a character-
ization tool for optical fibers and preforms.

14.6 Perspectives

Conventional acoustic microscopy is now a mature subject. Its use in the 
microelectronics industry as an NDE tool is becoming more frequent; there 
is still a need for faster, ideally real-time imaging in this area. The LFB tech-
nique is finding increasing application as a research tool. The high-frequency 
SAM is used mainly for specialized applications and its future may well be 
in the biological area. As for future development, it seems likely that this 
lies with the application of atomic force microscopy to acoustic imaging.

In conventional (far-field) acoustic microscopy, it is axiomatic that the 
spatial resolution is limited by the wavelength. However, this condition can 
be circumvented by using the principle of near-field imaging, in which a probe
or pinhole is placed very close to the surface. If the size and distance, d, of 
the probe are much less than the wavelength, the resolution is limited by d
and not λ. This principle is valid for any type of wave and was first dem-
onstrated by Ash and Nicholls [166] for electromagnetic waves and Zieniuk 
and Latuszek [167] for ultrasonic waves. The development of the atomic 
microscope has led to several variance of a near-field acoustic microscope.

Takata et al. [168] used a vibrating tip provided by a scanning tunneling 
microscope, whereby the tip generated strains in the sample, which were 
detected by a piezoelectric transducer coupled to the sample. The detected 
signal depended on the tip-sample interaction and the ultrasonic propaga-
tion from the tip to the transducer. Cretin et al. [169] have developed micro-
deformation microscopy, again based on a vibrating tip that is mechanically 
scanned across the face, which in this case creates microdeformations in the 
surface. In transmission mode, a cantilever beam terminated with a diamond 
or sapphire tip is vibrated at frequencies from 20 to 200 kHz. The microde-
formations induce strain in the sample, which is detected by a piezoelectric 
transducer fixed onto the opposing face. Experiments on silicon wafers and 
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polycrystalline stainless steel showed that the image contrast is related to 
grain orientation. In the reflection mode, the cantilever is fixed to a piezo-
electric transducer; results complementary to transmission are observed.

All of the most recent work is based on the use of atomic force microscope 
as the detector of vibrations set up by ultrasonic waves applied to the sample 
[170]. This has the advantage that one can control the frequency, mode direc-
tion and amplitude of the applied wave. Most of the work has been done 
for vertical surface displacements and this will be discussed first. A typical 
experimental setup is shown in Figure 14.10. The system is integrated with 
a commercial AFM, and the cantilever displacement is measured optically. 
Low-frequency scanning for the AFM mode is done in the range 1 to 20 kHz. 
The sample to be studied is placed on an appropriate piezoelectric trans-
ducer. One big advantage of this geometry is that one can define the mode, 
amplitude, and frequency of the driving ultrasonic wave. 

In the low-frequency limit, the ultrasonic frequency f is much less than the 
cantilever resonance frequency f0; this is called the force modulation mode 
(FMM). The peak-to-peak cantilever deflection amplitude is given by [170] 

 (14.25)

where a = sample vibration amplitude, k = cantilever spring constant, s = 
tip-sample contact stiffness, zc , cantilever deflection due to static repulsive 
force, and K = k/s. It is clear that V depends little on K for , so we expect 
little intrinsic contrast for imaging in this regimen. This regimen is also 
characterized by the absence of tip-sample indentation. 

FIGURE 14.10
Schematic illustration of an AFM/UFM. A thickness mode PZT transducer is bonded to the sample 
stage to excite vibrations of 1 to 10 MHz. (From Yamanaka, K., New approaches in acoustic 
microscopy for noncontact measurement and ultra high resolution, in Advances in Acoustic
Microscopy, Vol. 1, Briggs, A., Ed., Plenum Press, New York, 1995, chap. 8. With permission.)

V 2zc
a/zc

1 k/s( )+
---------------------=

K << 1
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The much more interesting limit, called ultrasonic force microscopy (UFM), 
corresponds to . At low amplitude, a < (k/s)zc, the average force per 
cycle on the tip is zero, and so the tip stays on the sample surface. At suffi-
ciently high amplitude a, even though the cantilever cannot follow the ultra-
sonic vibration, the tip comes away from the sample surface during part of 
the cycle, as the average tip-sample repulsive force is nonzero. Above the 
threshold amplitude a0, the cantilever deflection due to the ultrasound is [170]

 (14.26)

The procedure followed was to amplitude-modulate (triangular) the ultrasonic
beam at a frequency below f0 and measure the cantilever deflection. From 
Equation 14.26, the instrument performance is governed by three factors: 
normalized cantilever deflection, normalized ultrasonic amplitude a/z, and 
normalized cantilever stiffness K = k/s. Contrary to the FMM regimen, in the 
UFM regimen the deflection signal depends strongly on K, so the intrinsic 
contrast is expected to be high. Thresholds are observed for various values 
of k/s, and in principle, dynamic elastic effects can be determined from them. 
The full theory of Hertzian contacts shows that the force curve F(d) is very 
nonlinear, which is determined in the detection mechanism. The additional 
cantilever deflection for different repulsive forces and different values of 
effective elastic constants can be calculated as a function of vibration ampli-
tude; as before, the added deflection is very sensitive to these variations for 
UFM and not for FMM leading to the theoretical prediction of good contrast 
in the former case and not in the latter. Several examples are presented in 
[170] for UFM vertical mode imaging, principally of defects in highly ori-
ented pyrolytic graphite (HOPG) and structure of a floppy disc surface. This 
work confirms sensitivity of the technique to subsurface elasticity variations 
and the good image contrast of UFM. Typical fields of view are 400 nm by 
500 nm, with ultrasonic frequencies of the order of 5 MHz. 

A smaller amount of work has also been done on lateral displacements 
using the UFM by suitable choice of piezoelectric transducer. For the UFM, 
the lateral mode AFM (LM-AFM) is based on measurement of the torsional 
vibration of the cantilever, which is dominated by friction. This principle is 
used to image the frictional force distribution by amplitude measurement, 
while the phase gives the energy dissipation. The image is free from topograph-
ical effects, which are automatically subtracted in real time. There is some 
indication that the technique is sensitive to subsurface shear modulus variations.

Atomic force acoustic microscopy (AFAM) is a related study on vertical 
mode imaging [171]. Again, an ultrasonic transducer in the low MHz range 
sets up surface vibrations, which are coupled to the tip as described by the 
mass-spring model. These vibrations excite flexural waves in the cantilever 
in the MHz range, which can be detected by a very fast knife-edge detector. 
Resonance of the cantilever surface system can easily be calculated in a mass-
spring model and were measured up to mode n = 9 by impulse excitation, 

f >> f0

za zc
k
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szc
------- 2 ka
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------- k
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knife-edge detection, and Fourier transform. The nonlinearity of the tip-
sample force is used to explain the ultrasonic coupling to the cantilever. At 
sufficiently high amplitude, the mean displacement is shifted by nonlinear-
ity, and at very high amplitude, cantilever frequencies other than that used 
for the ultrasonics are excited. Examples are given of the use of the AFAM 
for imaging as a function of amplitude; strong variations in contrast are 
observed, which are interpreted as reflecting the variation in the sound 
transmission due to the tip-sample interaction forces. 

The configuration used in scanning local acceleration microscopy is again 
basically similar to that used for the UFM and the AFAM [172], at frequencies 
much higher than the tip cantilever resonant frequency. Imaging is done in 
CW at low amplitude in the so-called contact mode. The basic result is that 
at sufficiently high frequencies the output signal is determined by the can-
tilever acceleration and not the static force acting on it. The cantilever stays 
in contact with the sample and the sample stiffness can be mapped as it 
enters in the interaction stiffness. As before, it has been shown experimen-
tally that the contrast is better than with the AFM, and, moreover, that a 
contrast variation with frequency predicted by the theory is observed. A 
“diode” and “subharmonic” mode are identified at higher amplitude, and 
their interpretation is ongoing. 
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15
Nondestructive Evaluation (NDE) 
of Materials

15.1 Introduction

NDE is a huge and diverse field. Regarding experimental methodology it 
includes not only ultrasonics but also a wide range of complementary tech-
niques such as x-rays, optical, thermal, electrical, and magnetic measurements.
We restrict ourselves to ultrasonics and even then the scope is wide; we may 
look for defects in existing structures, measure elastic constants and other 
material parameters in process technology, carry out thickness measure-
ments on thin-walled vessels or in layered structures, etc. We will concentrate 
on describing those approaches that depend on the propagation properties 
of ultrasonic waves, principally the use of guided waves in supporting struc-
tures such as surfaces, plates, layers, etc. The aim is to discuss the principles 
by which such guided waves interact with defects and how they can be 
useful for determining elastic properties. The chapter will not be a compen-
dium or systematic review of all known results, nor a complete academic 
treatise on acoustic wave defect interaction. Moreover, any objective such as 
the latter would be exceedingly complex, as defects can be clothed in an 
almost infinite variety of guises.

The general approach to ultrasonic NDE has evolved considerably over time
and from a historical perspective we can identify several main approaches 
to the subject:

1. Classical NDE
The field has followed two separate but related paths. In the first, 

defect detection, we are looking at in situ, field inspection tech-
niques for the detection of various defects or material failures that 
occur with time and/or wear in existing structures. One can think 
of countless examples: cracks in rails of railway lines, stress corro-
sion cracks in pipelines, lack of adhesion at certain areas of a 
protective coating to its substrate, etc. Detection and characterization
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of these defects may include determining their existence, making 
an acoustic image of them, and obtaining quantitative information 
on them. A second avenue of NDE involves determination of the 
intrinsic material properties themselves, such as ultrasonic attenu-
ation measurements to determine grain size distribution in alloys, 
determination of the elastic constants of an anisotropic ceramic 
coating, etc.

2. NDE for material processing
This is a more modern approach, in many cases an ideal yet to 

be attained. In the so-called intelligent processing or manufacturing 
operation, sensors are placed at strategic points in the process tech-
nology diagram so that the physical and chemical properties are 
monitored during production. If these differ from their required 
values the process is modified accordingly in real time to correct 
the situation. Thus the appropriate preventive steps are taken dur-
ing the manufacturing process to eliminate or reduce the probabil-
ity of failure of the material during its working life. The success of 
this approach depends on the development of a full process model 
that establishes the important processing variables.

3. Intelligent materials
Many large and complex industrial structures such as aircraft 

fuselages, bridges, etc. incorporate networks of embedded sensors. 
This is particularly feasible in composite materials where the sensor 
probes can be incorporated during fabrication. Such sensors give 
continuous monitoring of the state of the material during service, 
and by detecting signs of incipient failure by the detection of small 
cracks, stress, etc. they perform a valuable NDE function.

4. Modern signal processing
Ultrasonic inspection has evolved considerably from the original 

direct pulse echo approaches. Techniques have been developed to 
recover signals buried in the noise. New approaches, such as neural 
network signal processing, can be used to help in flaw identification 
and determination of the ultrasonic propagation path in complex 
geometries.

Formal NDE classification procedures make a clear distinction between 
forward (inductive and predictive) and inverse (deductive) approaches. In 
the forward problem, we set up a model based on established physical laws 
that enable us to calculate measurables (for example, the ultrasonic velocity 
of a certain acoustic mode) from known model parameters (elastic constants). 
So the forward problem corresponds implicitly to the approach taken by a 
typical textbook in ultrasonics; if we know the elastic constants then by the 
standard theory (Christoffel equation) we can calculate the (measurable) 
sound velocity for a mode of specified polarization in any direction in the crystal.
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The approach is inductive in that if we do this for a given set of parameters 
we can generalize the result to predict the measurables for all similar direc-
tions, materials, etc.

Although textbooks implicitly adopt the forward approach, practical NDE 
implicitly takes the opposite tack, the inverse approach. NDE is in fact very 
much like detective work. With a given set of tools (ultrasonic techniques), 
we determine experimentally the measurables (ultrasonic velocity and atten-
uation) and use the resulting data set to propose a suitable model that will 
enable us to infer or deduce the model parameters (i.e., to catch the criminal, 
the elastic constants). The general problem is, of course, very difficult, and like
the criminal counterpart, there is no general solution. Specific approaches 
must be devised to account for the particularities of a given problem, and 
to a general extent the development/outcome is dependent upon how many 
other parameters are known by other means. Thus the general NDE inverse 
problem is unsolved, as the general NDE field variables are neither known 
nor constrained. More often, there are more unknowns than knowns, so the 
problem is in general underdetermined.

An example of a typical ultrasonic NDE problem has been described by 
Gordon and Tittmann [173]. Suppose that we want to deduce the hardness 
gradient in a steel rail from measurements of ultrasonic velocity and atten-
uation. This really involves two separate problems:

1. An inverse problem to infer the model parameters from the ultra-
sonic measurements.

2. A forward problem to determine hardness from the model param-
eters. Clearly, there may not be, probably will not be, complete 
intersection between the parameters involved in the two problems. 
It is likely that there are some parameters that are needed to 
predict the hardness that cannot be deduced from the ultrasonic 
data and that may not be available from other sources. Other con-
cerns are sensitivity issues related to how sensitive the calculated 
values are to the parameters and questions of uniqueness of a given 
solution.

There are many possible approaches to the inverse problem. One classifi-
cation scheme distinguishes between direct and indirect approaches. In the 
direct approach, a given model (for example, a one-dimensional Born model 
for scattering) is used to describe the scattering of an ultrasonic wave, as 
described by Chaloner and Bond [174]. We describe briefly an indirect 
method used by the same authors, based on the Monte Carlo search method, 
which is rather more general in applicability and makes few a priori assump-
tions on the nature of the defect. As a first step, the information sought from 
the inversion must be parameterized; for example, three possible parameters 
might be flaw radius, density, and longitudinal sound velocity. A four-
dimensional parameter space containing all possible solutions is then set up. 
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A random point is chosen to start a Monte Carlo search. Synthetic scattering 
data from this point is then compared to the experimental data. The degree 
of fit by least squares is recorded and the search continues. In the “Hedgehog”
modification described in [174], for points where the fit is good, all neigh-
boring points are examined to optimize the process.

After this is done, a new random starting point is chosen and the same 
procedure is repeated. Although this approach can be computationally cum-
bersome, it is very flexible and can be used with any desired forward model 
for the defect scattering.

Concentrating on the inverse problem, we are then faced with the question 
of how to obtain ultrasonic data on the field sample in question. In what 
follows, in the spirit of Chapter 12, we assume that contact piezoelectric 
transducers will be employed. A number of issues have to be addressed in 
order to make the ultrasonic measurement, including surface state, surface 
shape, coupling medium, temperature, and sample geometry. These will be 
covered briefly in order to give an idea of the practical constraints involved.

Let us consider as an example an irregularly shaped sample placed in a 
field inspection setting. Before attaching the transducer to it, one should 
clean off all the relevant surface region of any dirt, loose scale, sand, loosely 
adhering layers of paint, coatings, rust, etc., which could cause air gaps and 
prevent the ultrasonic wave from penetrating into the material. Strongly 
adhering layers are not generally a problem and they may inadvertently 
provide some degree of impedance matching. If the surface can be mechan-
ically formed then a uniformly curved or plane surface is desirable. Surface 
roughness should be of the order of a tenth of an acoustic wavelength or 
less. Otherwise, moderate roughness is not a problem and may help to retain 
the coupling fluid between transducer and surface. Regarding surface cur-
vature a convex shape is preferable to concave, with the additional positive 
result that it will probably produce a narrower beam. A specially shaped 
coupling block could be made to ensure transmission for concave surfaces.

An appropriate acoustic coupling agent is an important part of the process. 
Its nature is not critical in the low MHz range but it becomes increasingly 
difficult to make an acceptable acoustic bond if higher frequencies and/or 
lower temperatures are involved. For low MHz ultrasonics at room temper-
ature, most oils and greases will work. Since they are generally high atten-
uation, low-impedance media they should be thin. For this reason it is not 
recommended to fill a very rough inspection surface with copious quantities 
of couplant. Commercial couplants are available; otherwise, silicone oil and 
vacuum grease are quite satisfactory. If the sample is to be cooled below room
temperature, it is advisable to remove the water from vacuum grease by 
heating and pumping. Salicylic acid phenol ester (SALOL) is a useful couplant
for shear waves where a solid bond is needed. SALOL has a low melting 
point, only slightly higher than room temperature, so that it can be liquefied 
to place the transducer then left to solidify to form the desired solid bond.

High temperatures pose a special set of problems. One solution is to transmit 
the ultrasonic pulse by a water squirter, which can be used up to 300°C. 
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Since splashes may degrade the ultrasonic reflection, squirter techniques are 
best used in transmission. Dry coupling is also possible for higher temper-
atures; various special high temperature pastes have also been developed. 
For temperatures above 200 or 300°C, water-cooled delay lines can be used, 
as described in Section 15.7.

Sample shape provides a separate set of potential problems as this can 
distort the ultrasonic signal or introduce spurious echoes, such as those due 
to end faces, etc. If the defect is near an edge of the sample, then the transducer 
emplacement becomes critical. If the transducer is also placed near the edge 
in an attempt to get a direct echo from the defect, diffraction of the ultrasonic 
beam and subsequent reflection from the edge will distort the signal. It is 
preferable to place the transducer far from specimen edges and irradiate the 
suspected defect at an angle. Other complications arise due to mode conver-
sion into transverse or surface waves. The resulting parasitic echoes can be 
identified by manual ray tracing or by the use of commercially available 
software packages.

Some of the above problems can be alleviated by using noncontact meth-
ods. One popular approach is to use a powerful laser beam to generate the 
ultrasonic pulse and an air-coupled ultrasonic transducer to receive the signal.
In analogy with the liquid squirter, Hutchins et al. [175] have recently developed
a gas jet for coupling to the sample. Electromagnetic transducers (EMATs) 
are an effective noncontact method for generating and detecting shear waves 
in metals. The most universal and undoubtedly the most commonly used 
noncontact method is the water immersion tank where the sample is placed 
in a water bath and irradiated by an ultrasonic beam in the water whose 
position and angle of incidence can be controlled independently. Many such 
systems are available commercially.

15.2 Surfaces

Material surface coatings, layers, or surface modifications are an important 
part of modern technology. Clearly NDE of such structures to determine 
their quality is important. Type I NDE, defect detection, is best carried out 
with Rayleigh waves, which are ideally suited to surface inspection prob-
lems. Scattering of Rayleigh waves by defects in these structures, cracks, 
voids, delaminations, etc. is analogous to the bulk wave situation, so that a 
defect echo could be detected by pulse echo studies. For frequencies in the 
range 1 to 10 MHz defects can be detected in a surface region of 0.5 to 5.0 mm.
Scanning acoustic microscopy (SAM) is an excellent approach for very small 
defects, which can be imaged as well as quantified by V(z). It has been shown 
that cracks as small as 20 nm can be detected by this method. Of course, 
defects that intersect the surface can be observed optically and in many cases 
this is sufficient.
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15.2.1 Principles of Rayleigh Wave NDE

SAW is also ideally suited to Type II NDE of surface structure, the determi-
nation of elastic constants, for example, in the reconstruction of the gradient 
of near-surface elastic properties. As the frequency is varied, different depths 
of the surface region can be sampled by the SAW signal. A good example 
for the forward problem is the prediction of the SAW velocity as a function 
of frequency for an inhomogeneous sample, as discussed by Gordon and 
Tittman [173]. Three models were considered:

1. Mixture rule
It is assumed that the SAW is influenced by a weighted summa-

tion of contributions from layers near the surface region. Additional 
assumptions are linear weighting, penetration depth proportional 
to one wavelength scaled by a constant C, and isotropic lossless 
layers. For m layers, the SAW velocity is then given by

(15.1)

where

2. Perturbation
In this approach it is assumed that the variations in parameters 

were mutually proportional, specifically that the density and elastic 
constants vary with time according to the same functional form F(z).

3. Thomson-Haskell method
This is a propagator matrix operator adapted from geophysics. 

Stresses and displacements between two points are related by a 
series of matrix multiplications. By application of the free surface 
boundary conditions, the eigenvalue problem for Rayleigh waves 
in the layered structure can be solved.

These three approaches were applied to two quite different systems where 
the variations were known. The first was a hardened sample 1043 steel that 
was known to have constant density and Poisson’s ratio with depth. The second
was a Ni/Cu/Ni structure of constant density. In both cases, the elastic
constants varied in a subsurface region 1 to 3 mm in depth. It was found that
the rule of mixtures gave a very good approximation to the known profile while
the perturbation method was the least satisfactory. The Thomson-Haskell 
method gives an exact solution and would be a good general approach if 
the number of independent variables could be limited.
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15.2.2 Generation of Rayleigh Waves for NDE

Of the methods already encountered for generating Rayleigh waves, it should
be said that the IDT does not provide a practical approach to field NDE. 
Critical angle reflectivity (CAR) is a very useful laboratory tool for Type II 
NDE, but again it is not a practical way of looking for defects. However, 
there are a number of other practical ways for generating low-frequency 
Rayleigh waves (≤ 30 MHz) and these are summarized in Figure 15.1. Bulk 
wave transducers (Y-cut quartz) can be placed flat on the surface with oil 
or grease coupling. Evidently, most of the energy is lost as a radiated trans-
verse bulk wave, but a usable Rayleigh wave can still be generated. Also 
shown in Figure 15.1(a), a longitudinal wave transducer making contact with 
an edge can generate Rayleigh waves. The wedge configuration shown in 
Figure 15.1(b) is one of the most popular methods. A longitudinal wave is 
launched into a plastic block (longitudinal wave velocity VLP) cut at the 
appropriate angle (sin θ = VLP /VR) to excite Rayleigh waves in the substrate. 
The principle used is exactly that of phase matching (conservation of parallel 
wave vector) used in critical angle experiments.

The basic idea of the IDT can be retained to make a flexible, portable device, 
shown in Figure 15.2(c). A comb structure is built on an aluminum plate 
with an array of parallel grooves; the device is then excited ultrasonically 
by a longitudinal transducer placed on the back side of the structure. The 
device is then pressed against the sample to be tested and Rayleigh waves 
are generated when the frequency is adjusted so that the distance between 
neighboring teeth is equal to the Rayleigh wavelength (λR = 2a). For various 
reasons, all of these techniques are restricted to frequencies well below 50 MHz.

FIGURE 15.1
Practical methods for excitation of Rayleigh waves for NDE. (a) Edge-bonded longitudinal
bulk wave transducer. (b) Wedge excitation at angle sin θR = VW /VR where VW is the longitudinal 
wave velocity of the wedge material. (c) Periodic comb-like excitor. (d) Laser generation.

(a) (b)

(c) (d)
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In any case, industrial quality surfaces would scatter and attenuate Rayleigh 
waves at significantly higher frequencies.

15.2.3 Critical Angle Reflectivity (CAR)

The physics of CAR is at the basis of much of modern NDE of surface regions 
by ultrasonics and is an essential component of acoustic microscopy. As 
originally developed by Mayer [176] and Rollins [177], it is a simple technique,
requiring only one free surface of the sample, as opposed to the more strin-
gent conditions of two flat parallel surfaces of a large sample required by 
standard ultrasonic techniques. A simple CAR goniometer is shown in
Figure 15.2. The system is immersed in a fluid bath, usually water. Transmitting 
and receiving transducers are designed so that a reasonably well-collimated 
beam is incident on the surface at angle θ. The reflected beam is detected 
at the same angle. Sweeping through the values of θ from 0 to 90 enables 
tracing of a reflectivity curve; a typical one was sketched in Figure 8.6. Key 
features of the curve include critical angles for longitudinal, shear, and 

FIGURE 15.2
Goniometer for reflectivity and transmission experiments. (a) Reflection. (b) Combined reflection
and transmission configuration based on [179].

(a)

(b)
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Rayleigh waves, from which the corresponding sound velocities can be obtained
by sin Θ = V/Vi. The origin of these has already been explained; when the x
component of the incident wave vector matches that of a wave in the solid 
travelling parallel to the surface, there will be an anomaly in the reflection 
coefficient (RC). Determination of the reflection coefficient at normal inci-
dence can then be used to determine the density. Thus one simple series of 
noncontact measurements can be used to determine the principal acoustic 
parameters of the solid. Potentially, the most useful feature of Figure 8.6 is 
the minimum at the Rayleigh angle observed for actual samples, but which is
not predicted for ideal lossless solids. For samples with zero material atten-
uation, the Rayleigh wave is purely evanescent, i.e., energy is stored but not 
propagated in it. In this case, theoretical and experimental reflectivity curves 
show total reflection in this region. If the sample has nonzero material atten-
uation, then energy is dissipated from the Rayleigh wave, giving rise to the 
dip at the Rayleigh angle shown in the figure. This effect has been investigated 
quantitatively by Becker and Richardson [43] and the variation of dip depth 
and width with shear wave attenuation is shown in the figure.

It is seen that the RC has a minimum for a certain value of shear wave 
attenuation per wavelength ls , where ls = αλ  is the shear wave loss parameter, 
after which the RC increases and the Rayleigh dip broadens out. Thus the 
sharp resonance observed at ΘR for small attenuation is smeared out as the 
loss increases, which is expected physically.

The main conclusions from this work are as follows:

• The shear wave parameters are the most important in determining 
the Rayleigh angle (shear velocity) and nature of the Rayleigh dip 
(attenuation).

• Ther e is a critical value of ls and a frequency for which the reflection 
coefficient is zero, which can be related to material parameters.

• The FWHM is constant up to the critical value of ls , then it increases 
linearly with ls.

• The phase of the RC goes from 0 to 2π for zero shear attenuation 
and fr om π /2 to −π /2 at the critical value of ls.

In addition to the above, Rollins [178] showed that the size, shape, and 
position of the Rayleigh minimum had a strong dependence on frequency, 
roughness, presence of coatings, strain, and crystal anisotropy. The frequency 
dependence can be easily understood from the Schoch displacement consid-
erations of Chapter 8. Likewise, since all sound velocities depend on crystal 
orientation, it is quite normal that the phase velocity of Rayleigh waves 
should also depend on the propagation direction. The basic configuration of 
CAR is of interest here as it corresponds exactly to the textbook treatment 
of ultrasonic reflectivity and Rayleigh wave generation. In its modern appli-
cations, the technique is used indirectly in acoustic microscopy, as has been 
seen, and in a modified form for the study of Lamb waves and layered 
systems, which will be developed in the following sections.
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15.3 Plates

15.3.1 Leaky Lamb Waves: Dispersion Curves

The CAR technique can be extended directly to the study of Lamb waves in 
plates using the same type of goniometer. Such measurements can be used to
measure the dispersion relations of plates and layered structures and they can
also be extended to the study of defects (e.g., lack of adhesion between layers, 
point defects). Moreover, this geometry is particularly well suited to the gen-
eration of guided interface waves. Guided waves are an ideal probe for carry-
ing out NDE of layered structures as they are very sensitive to the conditions 
at the interface, the study of layered structures. Since they are dispersive 
and multimodal in nature, a large number of data points can be generated 
for different frequencies, as compared to the data available from bulk waves. 
Also, the different modes are directly accessible from reflectivity measure-
ments at different angles.

The plate is immersed in water and is insonified by tone bursts at a single 
frequency by a transducer placed at a distance greater than a diameter but 
less than two Fresnel lengths for optimal operation. Specular reflection and 
transmission and leaky waves are obtained. For a given angle of incidence, 
the wave in the fluid has an x component kx = kf sinθ. When this is equal to 
the wave number of a Lamb mode along the plate, this mode becomes excited 
by phase matching. This plate wave then immediately leaks into the liquid 
as in Chapter 8 for Rayleigh waves. As in the latter case, there is creation of 
a null zone due to destructive interference between the specularly reflected 
wave and the reradiated guided wave, followed by an extended decay 
region of the leaky waves. A similar phenomenon occurs for the transmitted 
component.

A practical goniometer of a universal nature has been developed by Rochlin
and Wang [179], as shown in Figure 15.2(b), where it is possible to use a 
reflector behind the sample so as to detect reflected and transmitted beams. 
The theoretical expression for the reflection and transmission coefficient have 
been presented in a convenient form by Chimenti and coworkers [180] as

(15.2)

(15.3)

where A, S, and Y are complicated functions of the material parameters given 
in [180].

The zeros of the RC correspond roughly to transverse resonances in the 
plate, so we expect the RC as a function of the frequency to exhibit a series 

R AS Y2–
S iY+( ) A iY–( )

-----------------------------------------=

T iY S A+( )
S iY+( ) A iY–( )

-----------------------------------------=
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Nondestructive Evaluation (NDE) of Materials 11
of sharp minima, corresponding to the excitation of successive Lamb modes 
in the plate. This is in fact observed, as is shown in Figure 15.3 for an 
aluminum plate immersed in water at an angle of 20°. In an actual experi-
ment, the full frequency range required for the transducers is determined 
by calculating the wavelengths corresponding to the characteristic lengths 
of the problem, namely, the thicknesses of layer and substrate. This range 
can be covered by a set of appropriate broadband transducers. A series of 
incidence angles (every degree or half degree) are assigned between the lon-
gitudinal and transverse critical angles. The reflected amplitude spectrum 
for a given angle, determined by FFT, is used to determine the set of minima 
corresponding to the generation of Lamb waves at the corresponding values of 
fd. The phase velocity VP corresponding to this angle is given by VP = V0 /sinθ.
In this way, by sweeping through various fixed angles one can build up the 
full dispersion curve, as shown in Figure 15.4.

FIGURE 15.3
Leaky Lamb wave spectra for a smooth surface of 2024 aluminum plate at 20° incidence. Solid 
curve: deconvoluted measurement results; dashed curve: theoretical prediction. (From Lobkis, 
O.I. and Chimenti, D.E., J. Acoust. Soc. Am., 102, 150, 1997. With permission.)

FIGURE 15.4
Simulated Lamb wave dispersion curves for an uncoated sample of aluminum 4 mm thick 
compared with experimental data. (From Xu, P.-C., Lindenschmidt, K.E., and Meguid, S.A., J. 
Acoust. Soc. Am., 94, 2954, 1993. With permission.)
© 2002 by CRC Press LLC



12 Fundamentals and Applications of Ultrasonic Waves
15.3.2 NDE Using Leaky Lamb Waves (LLW)

Chimenti [180] has described in detail how the LLW configuration can be 
used as an inspection method for detecting and imaging defects in plates. 
The sample is set up for insonification at an angle θ as shown in Figure 15.2, 
and an RF tone burst is emitted. The frequency of the tone burst is swept 
over the available bandwidth, which should be sufficiently wide to encom-
pass a large number of Lamb modes. An FFT of the data is taken to produce 
a pseudo-frequency spectrum that mimics the behavior of an RF pulse in 
the time domain. If there is a defect in the specimen, this produces the 
equivalent of a defect echo in the pseudo-spectrum. Thus a measure of the 
change in the spectrum for this particular data point gives information on 
the presence of the defect. If the sending and receiving transducers are 
scanned over the plate then a C scan image of the plate with defect can be 
produced. Chimenti showed that use of the median pseudo-frequency, as 
the quantity to be measured, was the most satisfactory of several possible 
approaches. This frequency, f1 /2, is defined by

(15.4)

For a given point this procedure then gives a single number, f1 /2 , to describe 
the defect. The process can be repeated at each point in the full x-y plane and
the result displayed as a C scan image. An example is shown in Figure 15.5 

FIGURE 15.5
Leaky Lamb wave scan of a composite plate containing simulated defects. Images were formed by
the median frequency representation. Defects closest to the sound entry field are on the left. (From
Chimenti, D.E., Ultrasonic plate wave evaluation of composite plates, in Proc. 1993 Ultrasonics 
Symp., Levy, M. and McAvoy, B.R., Eds., IEEE, New York, 1993, 863. ©IEEE. With permission.)
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Nondestructive Evaluation (NDE) of Materials 13
for a number of simulated defects in a composite plate. The method is an 
attractive alternative to conventional C scan imaging.

15.4 Layered Structures

15.4.1 Inversion Procedures

We are principally concerned here with single or multilayer coatings on 
substrates that can be assumed to be fully characterized (thickness, density, 
and sound velocities VL and VS are assumed known). Such coatings are 
extremely important industrially as they may provide mechanical, chemical, 
or electrical protection to prevent abrasion, wear, corrosion, etc. In this case, 
the general NDE problem is considerably more complicated than that for the 
single homogeneous plate. Type I NDE, defect detection, can be approached
in a similar way to that for plates, but there is a new and perhaps dominant 
feature for the layered system, namely the question of adhesion of the layers 
between themselves and with the substrate. This is treated as a separate issue
below. Type II NDE, dimensions and elastic constants, can be approached 
through the inverse problem. However, thickness gauging is generally seen 
as an important problem in its own right, and again, this will be treated as 
a separate issue in Section 15.4.5.

Because of their guided mode character, LLWs adapt well to the study of 
multilayer structures. Several inverse approaches have been used in the past, 
and one of them, the Simplex algorithm [183], will be described briefly here. 
The Simplex algorithm has the advantage that it always converges. The pro-
cedure for the LLW case is as follows:

1. Obtain LLW data experimentally, as outlined above.
2. Calculate the RC and the dispersion function. If there is a theoret-

ical relationship between RC and material properties, as above, 
then this could be used in principle. However, there are difficulties 
in mode identification as well as lack of a precise functional form 
near the reflection minima. A more useful approach is to use the 
dispersion equation for the free plate in the form

(15.5)

It has been shown [180] that in most cases the dispersion curve for 
the free and water-loaded plate is very nearly equal and it simpli-
fies the procedure enormously to use that for the free plate.

3. Inversion procedure
For a given multilayered isotropic plate specimen, the properties 

h (thickness), ρ (density), VL (longitudinal wave velocity), and VS

G f, Vp( ) 0=
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14 Fundamentals and Applications of Ultrasonic Waves
(shear wave velocity) are to be determined from the dispersion 
equation

(15.6)

where (   fi , Vi) are the sets of the LLW data points.
The optimization procedure consists in minimizing the sum of 
squares

where is the complex conjugate of Gi and Wi is a weighting 
function for the data points. Numerous examples on aluminum 
epoxy, aluminum plates, and graphite/epoxy composites showed 
that the Simplex algorithm recovered exactly the known material 
parameters, even when starting with initial values with a 50% error 
with respect to the true values.

Despite the overall power of the technique, there are a number of problems 
in the inversion of LLW data on multilayer structures. These include the 
following:

1. Coupling effects. The minimum of eight parameters (thickness, den-
sity, longitudinal, and shear wave velocity of the layer and substrate) 
for a single isotropic layer on an isotropic substrate are generally 
coupled together, leading to lengthy and complex computations. It 
is desirable to decouple these parameters as much as possible, and 
this cannot be done in a straightforward inversion approach.

2. Irregular or wrong data can derail the convergence of the inversion 
procedure. However, this procedure is so complex and nontranspar-
ent that it is not easy to identify which subset of the data is reliable.

3. Mode identification is essential for the full inversion approach. 
However, the actual data may only cover a limited frequency range 
on an uncharacterized sample and some data may be missing.

These difficulties and others can be avoided by a recent, simpler approach, 
modal frequency spacing, which will be described in the next two sections.

15.4.2 Modal Frequency Spacing (MFS) Method

The basic idea of the MFS method is to simplify the inversion procedure as 
much as possible by decoupling the parameters. The method was developed 
by Xu et al. [182], who showed that simple relations could be obtained 
between the elastic constants of the plate to be inspected and the shifts 

G fi, Vi, h, ρ, VL, VS( ) 0 i 1,…, x= =

SSR WiGi
�Gi

i=1

n

∑=

Gi
�
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Nondestructive Evaluation (NDE) of Materials 15
between frequencies of the leaky Lamb waves. As a simplification, the plate 
and the coating will be considered as isotropic. The method has been used for 
transversely isotropic coatings on isotropic substrates and could in principle 
be extended to more anisotropic systems. In the MFS work, the thickness of 
coating and substrate and the density of the substrate were assumed to be 
known. The goal was then to determine the longitudinal and transverse sound 
velocities in the substrate and coating and the density of the coating. Again, 
the effect of the fluid used for inspection on the dispersion characteristics of 
the bare and coated plate has been neglected as the effect is known to be small.

The MFS method starts with an analysis of the bare plate (hc = 0). The 
dispersion relations are then given by the Rayleigh-Lamb equations as

(15.7)

for symmetric modes and

(15.8)

for antisymmetric modes, where

and hs (hc) = substrate (coating) thickness and α = L, S. As the frequency 
increases, the symmetric and antisymmetric modes are usually excited alter-
nately, as was seen in Chapter 9.

A first objective is to decouple VL and VS in Equations 15.7 and 15.8 so 
that each can be related independently to a set of experimental parameters. 
VL can be decoupled by having the wave from the fluid at normal incidence, 
where only longitudinal waves are excited in the plate. In this case, instead 
of Equations 15.7 and 15.8, we have a simple cutoff frequency equation for 
longitudinal waves in the plate

(15.9)
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16 Fundamentals and Applications of Ultrasonic Waves
so that VL can be determined by the frequency difference between adjacent 
modes ∆ f

(15.10)

Decoupling of VS can be accomplished at high frequency for oblique inci-
dence. If the latter is chosen so that

then Equations 15.7 and 15.8 can be rewritten as

(15.11)

for symmetric modes and

(15.12)

for antisymmetric modes, where

For high frequencies, i.e.,

>> 1 (15.13)

Equations 15.11 and 15.12 become, respectively, 

(15.14)

and

(15.15)
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with respective roots

so that adjacent symmetric and antisymmetric modes have a spacing of π.
From trigonometry tan (φ1 − φ2) is infinity, so that 

(15.16)

Finally, using Equations 15.14, 15.15, and 15.16, we have the desired result, 
that the frequency spacing ∆ f between adjacent symmetric and antisymmet-
ric modes is given by

(15.17)

Thus, from Equations 15.10 and 15.17, using the experimental values of the 
appropriate ∆f, hs , and VP , VL  and VS can be determined directly.

For the coated plate, the cutoff frequency equation at normal incidence 
becomes

(15.18)

where the two terms correspond to standing wave resonances in the sub-
strate and coating, respectively. The roots of Equation 15.18 can be deter-
mined graphically from the intersections of the two families of curves as 
shown in Figure 15.6(b). In this approach the MFS is taken to be a constant 
and an average value is used. At oblique incidence the theory is more 
complex. In practice, the velocities of coating and substrate were weighted 
by their relative thickness by the relation

(15.19)

where  is the nominal phase velocity of an equivalent uniform plate that 
includes the presence of the coating.

In applications, the following procedure was adopted:

1. For the bare substrate, measure ∆ f at normal incidence, ∆ f and VP

at various angles θ. This gives average values of VL and VS of the 
bare substrate.
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18 Fundamentals and Applications of Ultrasonic Waves
2. Use these values as the starting point of a trial-and-error inversion 
to find the parameters VL and VS that best fit the experimental 
dispersion curves.

3. For coated samples, the substrate is now fully characterized and 
hs, ρs, VL, and VS are fixed. Step 1 is repeated for the coated sample 
to give average values of  and .

4. Equation 15.19 is used with the values of  and  from step 3 
to determine starting values of  and .

5. Step 2 is repeated and  are varied to get a best fit with the 
experimental diffusion curves.

6. is adjusted to optimize the fit, which is not very sensitive to this 
parameter.

Excellent agreement was obtained with experiment for three different 
plasma sprayed coatings on titanium and aluminum samples.

15.4.3 Modified Modal Frequency Spacing (MMFS) Method

The basic approach [184] is the same for MFS except that the explicit variation 
of the MFS with frequency is taken into account. This fact is used to determine
simple relations that can be used to determine all of the elastic constants 
from the measured MFS. In this case, experimental cutoff frequency data for 
the separate longitudinal and transverse-like modes must be obtained.

The same coating on substrate configuration as shown in Figure 15.6(a) is 
considered. The sample is immersed in a water bath and a longitudinal wave 
at normal incidence is incoming from the fluid. As before, the boundary value 
problem leads to a cutoff frequency equation for the longitudinal waves

(15.20)

if the effect of the surrounding liquid is ignored. The roots of Equation 15.20 are
the cutoff frequencies and are given by the intersection points in Figure 15.6(b).
The parameter MFS = ∆ fn = fn − fn−1 is no longer a constant for the coated 
plate but varies periodically, as shown in Figure 15.6(c). As shown in the 
figures, there are two characteristic regions. In the regular region the MFS 
is roughly constant and changes smoothly. The region where the MFS 
changes abruptly is called the transition region. By using Equation 15.20 and 
looking at the behavior of the second term, we have the following results:

1. In the regular region, the second term is very small, i.e.,

(15.21)
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and the MFS at the zone center is given by

(15.22)

where

is the MFS of the uncoated plate.

FIGURE 15.6 
Geometry and analysis for MMFS method. (a) Definition of parameters for a coated plate. 
(b) Cutoff frequencies are obtained as the roots of Equation 15.20. (From Wang, Z. et al., Material 
characterization using leaky Lamb waves, in Proc. 1994 IEEE Ultrasonics Symp., Levy, M., Schneider, 
S.C., and McAvoy, B.R., Eds., IEEE, New York, 1994, 1227. © IEEE. With permission.)
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2. In the transition region, the second term goes to infinity

(15.23)

and at the minimum of the transition region

(15.24)

3. Zone spacing

(15.25)

FIGURE 15.6 (Continued)
Geometry and analysis for MMFS method. (c) Distribution of MFS with frequency and identi-
fication of frequency parameters. (From Wang, Z. et al., Material characterization using leaky Lamb 
waves, in Proc. 1994 IEEE Ultrasonics Symp., Levy, M., Schneider, S.C., and McAvoy, B.R., Eds., IEEE, 
New York, 1994, 1227. © IEEE. With permission.)
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The physics of the composite resonator comes out in the form of Equations 
15.21 through 15.25. The fine scale variations in MFS (∆ fM and ∆ fT) are to 
first order governed by ∆ f0 multiplied by a correction factor. Roughly speak-
ing, each modal resonance corresponds to putting an extra standing wave 
wavelength in the substrate. Likewise, the overall frequency modulation of 
the MFS curve corresponds to successive resonances in the coating. In fact, 
Equation 15.25 shows that the experimental determination of ∆ fc gives direct 
valuable information on the acoustic properties of the coating. The acoustic 
impedance ratio of coating to substrate,

(15.26)

is also an important parameter. It is shown in [184] that for A < 1 Equations 
15.22 and 15.44 can be written as

(15.27)

(15.28)

The important feature of the MMFS approach is that Equations 15.25 through 
15.27 give simple algebraic approximate formulae whereby experimental 
measurement of ∆f0, ∆fc, ∆fM, and ∆fT leads to a direct determination of VL, 

, /ρs, and hc /hs. Thus what was previously an inverse problem has turned 
into a forward calculation involving the resolution of a few simple linear 
equations. It has been shown by extensive simulations that the approxima-
tion procedure used here leads to calculation errors that are typically of the 
order of 1 or 2%. In order to obtain acceptable accuracy, the number N of 
modal frequencies within a period should be of the order of ten or more, 
where

(15.29)

The previous partial wave analysis was carried out for longitudinal waves. 
An identical approach can be used for SV and SH shear modes as discussed 
elsewhere [185]. The shear wave approach will evidently yield VS and  as
well as the other parameters. Thus, if all of these partial waves can be 
generated at normal incidence, all of the acoustic parameters of the coating 
and plate can be determined.
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15.5 Adhesion

The quality of adhesion between coatings and substrates or between two 
layers is an important industrial problem. Because of the ability of ultrasonic 
waves to penetrate opaque media with possibility to set up guided waves, 
ultrasonics is one of the most promising techniques. There has been extensive 
work on ultrasonic studies of adhesion over the last 20 years. Earlier work 
has been reviewed in [186]. Recent work for isotropic and transversely iso-
tropic layers has been reviewed in [187] and [188]. Work since then has been 
focused mainly on anisotropic media and cylindrical surfaces. The different 
layers involved are identified in Figure 15.7.

There are several types of adhesion problems [187]. Complete disbonds, 
voids, or porosity in the adhesive layer can generally be addressed by sub-
surface imaging, for example, in acoustic microscopy. A second aspect, poor 
cohesion due to a weak adhesive layer, has been addressed by several tech-
niques. However, the problem of a weak interface layer (interlayer) poses 
many challenges and this aspect will be addressed here. An overriding 
consideration throughout will be that shear at the interface is clearly the key 
point, so that the guided or other modes used to probe the interface will 

FIGURE 15.7
Models and configurations used for adhesive joints. (a) Simple model of an adhesive joint. The 
outer regions are the bulk adherends. The central adhesive layer is 100 µm thick. The two 
interlayers are about 1 µm thick. (b) The aluminum-adhesive joint consists of an anisotropic 
layer of Al2O3, a weak boundary layer (WBL), and a primer. (c) Experimental configuration for 
reflectivity measurements on an aluminum-epoxy interface.

(b)(a)

(c)
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have to have a strong shear component. A simple spring model of the struc-
ture to be probed will now be described.

The idealized model presented here [189] clearly shows the physics 
involved and provides a basis for theoretical interpretation of studies of the 
problem by Lamb wave interrogation. The ideal interface is described by the 
usual boundary conditions for two solids in contact with the x axis parallel to
the interface and the z axis perpendicular to it. Any weakening of local rigidity
or contact is described by a spring model, with normal and tangential stiff-
ness constants Kn and Kt at the interface of a two-layer isotropic composite. 
In this model, the boundary conditions can be written as

(15.30)

(15.31)

(15.32)

(15.33)

where Tzz and uz are stress and displacement components normal to the 
interface and Txz and ux are the shear stress and displacement along the 
interface.

For an ideal interface, two limiting cases can be identified in terms of 
values of the spring constants. For a “rigid” boundary, the case usually 
assumed for solid-solid interface problems, Kn → ∞ and Kt → ∞. This leads 
to the standard boundary conditions, ux1 = ux2 and uz1 = uz2, as the stresses 
at the interface must be finite. The opposing limit assumes “slip” between 
the two bodies at the interface. In this case the normal stress and displace-
ment are continuous, as usual, so that again Kn → ∞. However, the shear 
stress now vanishes at the interface as there is no binding contact between 
the media. Hence, the shear stresses vanish and the shear displacements are 
discontinuous, which can be obtained by setting 

Kt → 0

Stress and displacement can be expressed in terms of displacement scalar 
and vector potentials in the usual way. Following an approach similar to 
that for Lamb waves, we can express these functions as 

(15.34)

(15.35)

Tzz1 Tzz2=

Txz1 Txz2=
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Hence

(15.36)

(15.37)

(15.38)

(15.39)

Substituting the form of the potentials into Equations 15.36 through 15.39, we 
obtain an 8 × 8 dispersion equation for the Lamb modes. The results are 
calculated for an aluminum-copper interface for a rigid and a slip interface. 
The rigid interface solution resembles that for a Lamb wave in a plate. 
However, the solution for the slip interface is quite different; the S0 mode 
becomes a doublet with limiting low-frequency velocities

(15.40)

(15.41)

where σi are the Poisson’s ratios of the two media. Thus measuring these 
limiting low-frequency Lamb wave velocities can, in principle, give an indi-
cation of the state of the interface layer. The model also shows the importance 
of shear stresses parallel to the interface, which will be investigated in some 
practical cases in the next section.

Cawley [187] has extensively reviewed ultrasonic inspection of adhesive 
joints. A promising method was found to be that of detecting the zeros in 
the reflection coefficient of shear waves incident from the adhesive layer. Such
measurements can be performed with the goniometer shown in Figure 15.2, 
which has the advantage of being well suited to measuring very thin samples 
as well as being a very simple system. Alternatively, angular measurements 
on the interface of bulk samples can be carried out, as was done in [187]. In 
either case, the incidence angle is chosen to be larger than the longitudinal 
wave critical angle, so only shear waves are reflected at the interface. The 
state of the interlayer has a strong effect on the location and sharpness of 
the reflection zeros as a function of frequency. Unfortunately, as Cawley 
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points out, the “zero” frequencies are more sensitive to the properties of the 
adhesive layer than those of the interlayer. Despite the difficulties in precise 
measurement of amplitude, Cawley concludes that the study of the modulus 
of the RC is a more fruitful approach.

Representative results for simulations of the RC for an interface with a 
porous inside layer were carried out for shear waves incident at 32° on an 
aluminum epoxy composite. The results clearly show that the RC is very 
sensitive to the thickness and sound velocity of the interlayer, while remain-
ing virtually insensitive to a significant variation of velocity in the adhesive 
layer. This work was followed up by a detailed experimental study of anod-
ized aluminum-epoxy interfaces, again for reflection of shear waves at 32°
incidence. The anodized layers can be modeled as a transversely isotropic 
structure in which the elastic constants can be predicted as a function of 
porosity. The results for a 50-µm oxide layer were consistent with a porosity 
in the range 58 to 70%. Oxide layers down to 10-µm thickness should be 
detectable with this technique. The porosity of the layer determines the 
minimum detectable oxide thickness for the following reason. There is a 
large acoustic impedance mismatch between aluminum and epoxy, and 
increasing porosity decreases the impedance contrast between the two 
media, which ultimately establishes the limits of the technique. The conclu-
sion of these studies is that ultrasonic reflectivity is a useful tool for the 
quantitative characterization of the interlayer in adhesive joints. 

15.6 Thickness Gauging

Thickness determination of thin-walled vessels, sheets, coatings on substrates, 
etc. has traditionally been one of the most widespread ultrasonic techniques and
this capability is provided in many commercially available instruments. There
are two general approaches: time and frequency domain. Time domain stud-
ies are conceptually the simplest. A sharp ultrasonic pulse or tone burst is 
propagated in the sample and the time between two consecutive echoes is 
measured with precision. An alternative approach in the frequency domain 
is based on varying the frequency and looking for the fundamental resonance 
in the wall or layer. Both types of methods are described in [190].

This section is devoted to the description of several modern methods based 
on the use of guided waves. A first group is based on determination of 
reflectivity/transmission curves, and the second exploits the existence of cut-
off frequencies in layered systems. A final example gives a demonstration of 
the applicability of the perturbation principle to describe layered structures.

1. Wideband acoustic microscopy
 Lee and Tsai [191] used a wideband scanning acoustic micro-

scope (50 to 175 MHz) focused on a composite sample formed by 
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a layer of thickness d2 on a substrate. Sputtered pyrex films on 
sapphire and photoresist films on glass were studied. The acoustic 
beam could be focused on the surface of either the composite or 
the bare substrate. Labeling water, layer, and substrate as media 1, 
2, and 3, respectively, we have:
a. Amplitude reflection coefficient at the water substrate interface

(15.42)

b. Input impedance of the film-substrate composite

(15.43)

c. Complex RC at the water composite interface

(15.44)

d. Phase difference between acoustic waves reflected from the com-
posite and the substrate alone

(15.45)

As the frequency is varied over the bandwidth, the RC reaches a
minimum at the resonance frequency fR where d2 = λR/4. From 
Equation 15.45, measurement of the differential phase at resonance 
leads to a determination of d. In fact, Lee and Tsai [191] show that 
the best approach is fit the full RC as a function of frequency to 
Equations 15.42 through 15.45, which yields values of V2, d2, and 
ρ2. For the frequency range used in this work, films of thickness 3 
to 30 µm could be measured. Submicron films could be studied 
using this technique with frequencies above 600 MHz. Another 
advantage of the SAM technique is the high spatial resolution that 
can be attained.

2. Low-frequency normal incidence inspection
Low-frequency reflection and transmission at normal incidence 

is an off resonance technique which should be applicable to a wide 
range of configurations, including self-supporting foils and films 
[192]. The basic idea is to irradiate a thin layer situated between 
two identical substrates of acoustic impedance ZS = ρSVS. For sim-
plification, lossless materials are considered. The through amplitude
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transmission coefficient for a layer of thickness h and acoustic 
impedance Z = ρVl is

(15.46)

where

The energy through transmission coefficient and finally

(15.47)

For a very thin layer such that kh << 1

(15.48)

This relation holds for longitudinal and shear waves at normal 
incidence. The linear behavior with frequency allows important 
information to be gathered from the slope. Two limiting cases are 
considered. For a high impedance layer Z >> ZS, Equation 15.47 can 
be rewritten as

(15.49)

This relation does not involve the bulk wave velocity in the layer, 
so if the density is known the thickness can be determined or 
conversely. This limit is particularly useful for such cases as immer-
sion tank characterization of foils or studies of polymers, paper, 
etc. in air.

The opposite limit Z >> ZS will be appropriate, for example, to 
describe an adhesive joint between metal plates. In this case, Equa-
tion 15.47 can be written as

(15.50)
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28 Fundamentals and Applications of Ultrasonic Waves
Thus the slope is given by πKSSh /c where c = ρ is the elastic 
modulus of the layer. This result can be used for adhesive charac-
terization as the larger specific compliance h/c is known to be 
related to the state of cure and the joint quality. For this case, 
longitudinal and transverse waves can be used.

15.6.1 Mode-Cutoff-Based Approaches

These approaches use the basic characteristics of guided waves. They enjoy 
all of the usual advantages of guided waves for NDE, they are very sensitive, 
and they are adaptable to microscopic and macroscopic situations. The first 
of these, UMSM [155], was developed as a potential online NDE technique 
with high spatial resolution. It is effectively a miniaturized version of an RC 
goniometer and either planar or focused beams can be used. The method 
applies to the case of a lossless or low loss layer having a shear wave velocity 
lower than that of the substrate. It has previously been shown in this case 
that the fundamental mode in the layer is the Rayleigh mode and the next 
highest one is the Sezawa mode. As the frequency is lowered the latter has 
a cutoff at the point where the phase velocity equals the shear wave velocity 
of the substrate. Below this the Sezawa mode leaks into the substrate and 
becomes evanescent; in this region, it is called a pseudo-Sezawa mode.

If the Sezawa mode is excited by an incident wave from the fluid then this 
cutoff can be detected by a dip in the reflected coefficient at the critical 
frequency; in effect, the energy that is lost from the incident beam is coupled 
directly into the substrate by the intermediary of the layer, as schematized 
in Figure 15.8. Since the effect occurs at a critical value of fd, the thickness d
can be inferred immediately from a knowledge of the cutoff frequency fc. In 
practice, the phenomenon is observed in a UMSM goniometer. Operating 
over a frequency range 30 to 150 MHz, the goniometer is set at the angle 
corresponding to the usual leaky wave condition, in this case for Sezawa 
cutoff phase velocity Vc, at sin θ = Vw /Vc. The frequency is then scanned and
the cutoff condition is easily identified by a dip in the RC at the appropriate 
frequency, as in Figure 15.8(b).

The system can be made very sensitive by the use of accurate microposi-
tioners and temperature compensation of the water, leading to estimated 
stability and accuracy of ±2% and ±1%, respectively. High-speed resolution 
can be obtained using acoustic lenses, enabling values of the order of 200 µm
to be obtained. The UMSM has been designed for rapid online measurement 
of film thickness in the range 1 to 20 µm for the 10 to 200 MHz frequency 
range. Submicron thicknesses can be measured by the LFB technique 
described in the next section.

Another approach is to use the leaky Sezawa modes measured by the LFB 
[193]. The physical principle involved is the same as for layer thickness 
determination by UMSM, except that now the leaky Sezawa mode is detected 
directly with the LFB. Above cutoff, the leaky Sezawa wave leaks only into 

Vl
2
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(a)

(b)

(c)

FIGURE 15.8
Ultrasonic microspectrometer. (a) Wave propagation conditions for (i) Leaky pseudo-Sezawa 
wave is excited for k < kc and (ii) Sezawa mode is excited for k > kc. (b) Dispersion curve and 
cutoff condition for Sezawa modes for a gold layer on a 42-alloy substrate. (c) Reflection 
coefficient calculated as a function of θ and f d for case (b) above. (From Tsukahara, Y. et al., 
IEEE Trans. UFFC, 36, 326, 1989. ©IEEE. With permission.)
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the water. Below it, the pseudo-Sezawa wave leaks into the substrate and 
the water, leading to a jump in attenuation at the cutoff frequency. The 
velocity and attenuation were measured for a gold film on a fused quartz 
substrate as a function of frequency as shown in Figure 15.9. c44 and ρ were 
used in the fitting, while the thickness d is obtained directly from the cutoff 
condition. Thus all three quantities could be obtained by a measurement of 
the leaky mode as a function of frequency. It is interesting to note [194] that 
at much lower frequencies the leaky Rayleigh wave could be well separated 
from the pseudo-Sezawa wave in the experimental V(z) curve, so that c11

could also be obtained, thus enabling the direct determination of all four 
material constants in a single experiment. It is, of course, assumed that all 
of the corresponding parameters for the substrate are known.

The cutoff principle can also be used directly on the higher-order Lamb 
modes of a plate or pipe; this approach should be particularly useful for the 
noninvasive detection of inaccessible layers of corroded material on the 
inside surface of a pipe. The principle of detection [195] is easily appreciated 
by an examination of the group velocity curves for Lamb waves in an 
aluminum plate, as was shown in Chapter 9.

The higher-order modes all have a cutoff frequency at specific values of 
fd. Thus a wave generated at a frequency above cutoff would propagate 
down the plate, but one generated below cutoff would be reflected, as in 
Figure 15.10. Comparing cutoff frequencies for corroded and noncorroded 
samples would then provide a measure of the corrosion layer thickness d. 
The method has been tested on laboratory samples of aluminum with an 
accuracy of about 5%.

FIGURE 15.9
Frequency dependence of measured and calculated propagation characteristics of leaky Sezawa 
and pseudo-Sezawa wave modes for a gold film on a fused quartz substrate. The solid lines 
are calculated with the bulk constants of gold, while the dotted lines are computer fitted. (From 
Kushibiki, J., Ishikawa, T., and Chubachi, N., Appl. Phys. Lett., 57, 1967, 1990. With permission.)
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15.7 Clad Buffer Rods

Cladded acoustic fiber delay lines were first developed by Boyd et al. [72] 
as an alternative to bulk wave polygon lines and surface wave wraparound 
delay lines discussed earlier. The principle involved is based on that used 
in optical fibers; the acoustic fiber consisted of a low-velocity (e.g., glassy) 
core and a higher-velocity cladding to confine the acoustic energy to the core 
and reduce spurious losses due to surface effects, mechanical supports, etc., 
as well as to eliminate crosstalk. Depending upon the transduction mecha-
nism employed, torsional or radial axial modes can be excited in the fiber. 
Such long delay lines have also been used for acoustic imaging [196] when 
a spherical cavity is ground in one end face.

More recently, cladded buffer rods have been developed for various spe-
cialized applications in NDE [197]. The basic principle is the same in that 
the cladding is used to suppress spurious structure created at the surface 
due to diffraction and mode conversion. In this case, bulk longitudinal or 
transverse waves are transmitted in a low-amplitude core. Since one of the 
main applications is NDE at high temperatures, core materials such as Al, 
Zr, and fine-grained steels have been used. Thermal spray techniques have 
been used to deposit claddings that may be up to several millimeters thick, 
enough to support the cladding function as well as to permit machining of the
outer surface for providing screw threads, etc. These long, high-quality buffer
rods have potential for application in many industrial processes carried out in 

FIGURE 15.10
Reflection of Lamb waves near the cutoff condition due to pipe wall thickness reduction caused 
by corrosion.
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hostile or challenging environmental conditions. Several examples are given 
below:

1. High-temperature NDE. Many large-scale industrial processes are 
carried out at elevated temperatures, e.g., 700°C for aluminum die 
casting, 200 to 400°C for polymer extrusion, and 1500°C for molten 
glass and steel. Conventional ultrasonic transducers can be used 
at the very most up to 350 to 400°C so new solutions must be 
found. Clad buffer rods fill these requirements and have been used,
for example, at the interface between molten Mg and an MgCl2

salt at around 700°C. A 1-m-long rod was used with an air cooling 
device at the top end to cool the transducer and its RF connection. 
For aluminum melts, the buffer rods had to be chosen with care 
to avoid corrosion. For a stainless steel cladding in an aluminum 
melt at 960°C, the measurement had to be done in less than 30 min 
to avoid these effects.

2. Thickness measurements at high temperatures. An important prob-
lem is that of corrosion on the inner surfaces of pipes and containers 
carrying molten metals or corrosive chemicals at high temperature. 
To do this, the clad buffer rod can be put in contact at normal inci-
dence with the outer surface of the pipe and multiple echoes in the 
pipe wall can be observed. If temperature effects are taken into 
account, an accurate measurement of the in-service wall thickness 
can be carried out.

3. Online monitoring during polymer extrusion. The buffer rod can 
be fitted into the wall of the extruder, its extremity positioned flush 
with the cavity surface. The study showed that accurate measure-
ments could be made in real time of the thickness of polymer melt 
extruded at an angular speed of 5 rpm at constant conditions of 
220°C and 540 psi. This allows real-time monitoring of the compo-
sition of polymer blends and other properties of the mixture.
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16
Special Topics

The effects discussed in this chapter are twofold in nature. One group 
(multiple scattering, time reversal, and air-coupled ultrasonics) are part of 
traditional ultrasonics, but recent advances have given them topical interest. 
The other group (picosecond ultrasonics and resonant ultrasound spectros-
copy) are relatively new techniques that promise to enlarge the scope of 
ultrasonic studies of materials and devices. Their inclusion here is justified 
by the high probability that they will be of lasting interest in future work 
on ultrasonics.

16.1 Multiple Scattering

Multiple scattering of acoustic waves occurs in a variety of situations and 
materials. It is generally associated with propagation in inhomogeneous 
media. Several important application areas include oceanography and oil 
exploration (bubbly, gassy liquids, already mentioned, and fluid-bearing 
sediments), and various engineering applications (e.g., fluidizers and filtra-
tion systems). We will briefly summarize results from two areas. The first of 
these, fluid-saturated porous media, has been extensively studied in connection
with oil exploration. The emphasis here is on a complete description of the 
acoustic modes in such systems. The second example is more fundamental 
in nature and relates to the meaning of the group velocity in multiple scat-
tering media.

Fluid-saturated porous media are correctly described by the Biot theory 
[198], which applies to those situations where the fluid and solid media are 
continuous and interpenetrating. In particular, the case of isolated, empty 
pores is excluded from the discussion and will be mentioned briefly at the 
end.

A basic assumption is that the pore and grain sizes are small compared to 
the wavelength and that each volume element could be described by an 
average local displacement. Biot then solved the equations of motion to 
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determine the velocities of the shear (VS), fast compressional (VF), and slow 
compressional (VSL) in the medium in terms of the porosity φ :

(16.1)

(16.2)

(16.3)

where
N  = shear modulus of the skeletal frame and of the composite
Kb = bulk modulus of the skeletal frame
ρs, ρf are solid and fluid densities
α is a parameter proportional to the induced mass of the skeletal frame in 
the fluid, to be explained below

In the equations of motion, Biot introduced a density ρ and a density matrix 
ρij satisfying the following relations

(16.4)

(16.5)

(16.6)

(16.7)

It then follows that

which represents the inertial drag that the fluid exerts on the solid. α was 
shown to be a purely geometrical quantity, for example, for spheres [199]

(16.8)

For  negligible viscosity, attenuation effects can be ignored. Also, the quoted 
results in Equations 16.1 to 16.3 are valid for Kb, N  Kf. In this case, the fast 
compressional wave corresponds to solid and fluid moving in-phase and the 
slow compressional wave to out-of-phase movement between solid and 
fluid. It is this slow compressional wave that is the characteristic feature 
of porous media of this type. In fact, it turns out [200] that the slow wave 
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Special Topics 3
is a generalization of the well-known mode of fourth sound in superfluid 
helium contained in a porous superleak at low temperatures.

Plona [201] was the first to observe the slow compressional wave experi-
mentally. Experiments were carried out at 2.25 MHz on a water-saturated 
system of glass beads (approximately 0.25 mm diameter) about 15 to 20 mm 
thick. Oblique incidence allowed mode conversion to take place and hence 
the possibility of ultrasound propagation by shear and/or compressional 
waves in the sample. For a porosity of 25%, sound velocities of 4.18, 2.50, 
and 1.00 km/s were identified as fast compressional, shear, and slow com-
pressional, respectively. A detailed, quantitative comparison with the Biot
theory allowed Berryman [199] to confirm this identification. Experiments 
at very low frequencies (∼ 1 to 10 Hz) by Chandler [202] showed that in this 
limit the propagation passes from propagative to diffusive. The attenuation 
of acoustic waves in these systems was studied by Stoll and Bryan [203] and 
by Stoll [204]. The so-called self-consistent theory [199] was a quantitative 
effective medium theory for the case where the pores are isolated, rather 
than continuous.

Ultrasonic propagation in porous media is a traditional area of interest in 
the field of strongly scattered ultrasonic waves. A related subject of long-
standing interest is the question of group velocity in strongly scattering media.
The issue here is to elucidate the coherence of ballistic ultrasonic pulses that 
propagate through strongly scattering media. Strong scattering leads to high 
attenuation and dispersion as well as unphysical values of the group velocity. 
Indeed, Sommerfeld and Brillouin have questioned the existence of a true 
group velocity in this case. These speculations have lead to a large body of 
work on multiple scattering, diffusion, and acoustic localization [205].

The question of group velocity and coherence of ultrasonic pulses in bal-
listic propagation through strongly resonant scattering material was eluci-
dated by Page et al. [206]. They studied ultrasonic propagation from 1 to 
5 MHz through a suspension of monodispersive glass beads (radii 0.25 to 
0.50 mm) in water to form samples 2 to 5 mm thick with a glass bead volume 
of about 63%. The samples were placed in a water bath and 25-mm diameter 
piezoelectric transducers were used in a transmission configuration. The 
scattered sound was effectively cancelled by random phase fluctuations, so 
that an unscattered ballistic wave was propagated through the system; this 
wave was found to be completely spatially and temporally coherent. Special 
techniques were used to measure the phase and group velocities as a function 
of ka. Significant dispersion was found, and surprisingly, both velocities were 
found to be inferior to those of the constituent media as well as inferior to 
the Stoneley wave velocity at a water-glass interface. The theoretical calcu-
lation of the phase and group velocities was carried out by determining the 
Green’s function of the wave equation and hence the spectral function, given 
by the the negative imaginary part of the Green’s function. The peaks of the 
spectral function were used to calculate the phase velocity in the suspension, 
which gave excellent agreement with experiment. The group velocity was 
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calculated by numerical differentiation of the dispersion curve, and again 
excellent agreement with experiment was obtained.

The basic feature to be explained is that a pulse maintaining full spatial 
and temporal coherence can travel through a dispersive medium with such 
slow velocities. The physical picture emerges showing that with strong scat-
tering each particle is subjected to the scattered waves from the other parti-
cles. This leads to an effective renormalization of the medium due to strong 
resonant scattering such that the medium takes on the properties of the 
scatterers and the resonances vanish. The group velocity directly senses this 
effective renormalization. These results are far more general than just for the 
case of acoustic waves, so that similar effects should be seen in light waves 
and microwaves, for example.

16.2 Time Reversal Mirrors (TRM)

Time reversal has received much attention in physics and is perhaps best 
known for its role in the famous question of the arrow of time. The micro-
scopic laws of physics are invariant with respect to time reversal, that is, for 
a given microscopic process the solutions of the equation of motion at time t
can also be generated for time −t, as second-order differential equations are
involved. The paradox is, of course, that this conclusion is not true for 
macroscopic thermodynamic processes, which are irreversible and dissipa-
tive in nature, leading to time evolving in one direction and never in the 
reverse. The situation is summarized in a famous cartoon in which a man 
throws a bomb into a pile of debris and the destroyed house in question 
reconstructs, which of course never happens in nature. This paradox of 
microscopic reversibility and macroscopic irreversibility has been resolved 
in a convincing fashion by the use of Boltzmann’s original concept of 
entropy [207].

Because of the specific properties of acoustic waves, it is possible to achieve 
macroscopic time reversal acoustically. The subject has been vigorously 
developed by M. Fink and coworkers [208]. Under the conditions of adiabatic 
processes the pressure field p in a heterogeneous medium of density ρ(r) and 
compressibility κ (r) can be described by the wave equation

(16.9)

which is time invariant due to the second-order time derivatives. We con-
sider the emission of an acoustic pressure wave from a point source, the 
wave subsequently having its trajectory modified due to multiple scattering, 
refraction, etc. If we can somehow reverse the waveform at some time t (in 
a time reversal cavity) then there is a complicated waveform p(r, −t) that will 
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Special Topics 5
then synchronously reconverge onto the original source. For various reasons, 
a time reversal cavity cannot easily be constructed and it is more common 
to use planar time reversal mirrors (TRM), which are described below. It 
should be noted here that apart from time invariance, spatial reciprocity 
between source and receiver should also be satisfied.

With the aid of Figure 16.1 we describe the process of time reversal focusing 
in the transmit mode using a TRM. In the first step, an ultrasonic wavefront 
is emitted by the array. It travels through an unspecified inhomogeneous 
medium and is hence deformed in some arbitrary way. The wavefront 
impinges on the point target that re-emits part of it as spherical waves. This 
spherical wave front is again distorted by the medium. The second step 
consists in recording this backscattered pressure wave by the array. In the 
third step, the recorded signals are re-emitted in reverse order (last in, first 
out) and the inhomogeneous wavefront, being now perfectly matched to the 
medium, converges to a focus on the target. A similar type of reasoning can 
be applied to the receiver mode. There are some conditions on the process. 
Single scattering events in the medium (first Born approximation) can be 
compensated exactly by the TRM. For strong scattering where multiple scat-
tering occurs, the measurement interval must be sufficiently long to receive 
all of the multiply scattered waves. Full details are given in [208].

FIGURE 16.1
TRM focusing through inhomogeneous media requires three steps. (a) The first step consists 
of transmitting a wavefront through the inhomogeneous medium from the array to the target. 
The target generates a backscattered pressure field that propagates through the inhomogeneous 
medium and is distorted. (b) The second step is the recording step: the backscattered pressure 
field is recorded by the transducer array. (c) In the last step the transducer array generates on 
its surface the time-reversed field. This pressure field propagates through the aberrating me-
dium and focuses on the target. (From Fink, M., IEEE Trans. UFFC, 39,555, 1992. ©IEEE. With
permission.)
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Time reversal can be used to improve performance of focused acoustic 
beams and of acoustic imaging. They are applicable in all areas of acoustics, 
particularly in cases where strong scattering reduces the effectiveness of 
conventional techniques. Several examples are given below [209]:

1. Multiple scattering. A water tank experiment was carried out with 
an array of 96 piezoelectric transducers [210]. A 3-MHz pulse was 
emitted from a small source and then passed through a “forest” of 
about 2000 steel rods, leading to strong multiple scattering. The 
ultrasonic signal received by any one transducer in the array was 
a long incoherent echo train extending over hundreds of microsec-
onds. Time reversal was then carried out by the array and a single 
sharp signal was then detected at the source by a hydrophone. The 
detected signal was of the order of 1 µsec in width. What is perhaps 
even more striking is that the width of this focal line was about 
six times smaller than that pertaining to a direct focusing exper-
iment when the rods were removed. It was shown that this 
improvement in spatial resolution by multiple scattering was due 
to the fact that the whole multiple scattering medium acts as coher-
ent focusing source with high aperture, hence the enhanced focusing
performance seen in Figure 16.2.

2. Waveguide. This is another laboratory demonstration where mul-
tiple scattering is provided by a water channel bounded by steel 
and air interfaces. A 99-element array was placed downstream to 
pick up the multiple echos from the guide walls, spread out over 
about 100 µsec when detected with one of the array transducers. 
Again, time reversal led to observation of a single sharp pulse at 
the source position. This experiment has relevance to acoustic under-
water communication in oceanography and the results have been 

(a) (b)

FIGURE 16.2
(a) Directivity pattern of the pressure field received by s in homogeneous medium (dashed line) 
through medium I (thick line) and through medium II (thin line). (b) Directivity patterns of the TRM 
through 2000 steel rods (thick line) and in water (thin line). The theoretical sinc function is repre-
sented by the dashed line. (From Derode, A. et al., Phys. Rev. Lett., 75, 4206, 1995. With permission.)
© 2002 by CRC Press LLC



Special Topics 7
extended to actual measurements in the ocean for a channel 120 m 
below the ocean surface and 7 km long.

3. Kidney stones. This is a direct application of time reversal, but its 
application is complicated by the fact that the stone moves as the 
patient breathes. Once the most reflective part of the stone can be 
tracked in real time, the power is increased to the level needed to 
shatter the stone. Other medical applications include hypothermia 
for destruction of diseased tissue, including prostate cancer and 
applications to the brain.

4. NDE for detection of small defects in solids, which may be heter-
ogeneous, anisotropioc, or have a complicated shape. Defects as 
small as 0.4 mm in 250-mm titanium billets have been detected.

5. Detection of surface roughness by displacement of the TRM before 
re-emission. RMS height and surface height autocorrelation func-
tion can be determined. Possible applications include arterial wall 
properties in vivo, mapping of the sea floor, and determination of 
interface roughness of solid joints.

16.3 Picosecond Ultrasonics

Conventional laser ultrasonic techniques have been used for a number of 
years as one of the preferred methods where a noncontact approach is required,
often due to hostile environments that prevent the use of other techniques 
[211]. We briefly describe the major components of a typical laser ultrasonic 
system as background material for the more recent development of picosec-
ond ultrasonics.

Pulsed lasers can be used as sources for a laser ultrasonic system. Three 
general generation mechanisms are employed. Thermoelastic generation 
occurs due to absorption of light at the surface or in the first few nanometers 
below it. The heated region causes thermoelastic expansion and the launch-
ing of a low-level acoustic wave. Higher levels can be obtained by use of 
constrained thermoelastic generation, produced by the effect of a glass slide, 
oxide layers, etc., on the surface. In this case, the laser beam is absorbed in 
a region well below the surface. Finally, if the laser power density exceeds 
the appropriate threshold, ablation can occur, leading to very high-amplitude 
ultrasonic waves. To some extent, this mechanism is destructive and may be 
excluded for certain applications.

Optical detection of ultrasonic waves is generally carried out by interfero-
metric or other means for measuring surface displacement, such as Michelson 
or Fabry-Perot interferometry. These systems have the disadvantage of being 
expensive and lack sensitivity compared to conventional methods such as 
piezoelectric detection. For both generation and detection the surface prop-
erties of the sample are critical; in some respects, one can compare the input 
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8 Fundamentals and Applications of Ultrasonic Waves
and probe laser beams to the coaxial cable of a conventional system and the 
sample surface plays the role of the piezoelectric transducer. Surface absorp-
tivity and reflectivity are two important material parameters. Thus the choice 
of a laser ultrasonic system vs. a conventional pulse echo system will revolve 
around the importance of a large number of parameters and constraints, 
including cost, sensitivity, and need for contact or noncontact.

Picosecond ultrasonics is a development of laser ultrasonics with the objec-
tive of probing the acoustic properties of microstructures. With conventional 
ultrasonics, the best one could obtain are 1-ns pulse widths, which gives 
minimum spatial resolution of the order of 5 µm, which is too thick to be 
useful for most microstructures. On the other hand, with laser pulse widths 
of the order of 10−14 s or less, the acoustic properties of very thin structures 
could in principle be probed. The first results were reported by Thomsen
et al. [212] in 1986 and since then work has been reported by several other 
groups [213 and 214]. The technique is a fairly direct extension of conven-
tional laser ultrasonics. The typical sample to be studied is a thin film depos-
ited on a substrate. An evaporated transducer film is deposited on the 
sample. This transducer, usually a metal film, absorbs the light from the laser 
and consequently heats up. A thermal stress pulse is emitted into the sample 
as the transducer relaxes. The form of the stress pulse is determined by the 
ratio of the acoustic impedances of the transducer and sample. Desired prop-
erties of the transducing film include a high optical absorption coefficient
and a high sound velocity in order to produce an intense, short stress pulse.
The film is excited by a pulsed laser, typically in the range 0.5 to 5 ps on a 
20-µm diameter spot, producing a temperature rise of a few degrees Kelvin 
and strains of the order of 10−4 to 10−5.

Detection is usually carried out optically to retain the flexibility of the non-
contact approach and to detect such short pulses. In the original scheme, 
changes in reflectivity in the transducer were detected, due to changes in 
optical constants caused by the ultrasonic wave. The probe pulse was split off 
from the main pulse and delayed by the appropriate time. It has been shown 
that the change in reflectivity of the transducer is proportional to the average 
strain in it induced by the ultrasonic pulse. Since the early work, interferomet-
ric methods have also been used, which enable independent determinations 
of phase and amplitude to be made. Another development has been the gen-
eration of pure transverse modes in the thin samples. This has been attained 
by mode conversion in an isotropic film deposited on an isotropic substrate 
[215] from a longitudinal acoustic pulse initially generated in the film.

The overall performance of picosecond ultrasonic techniques for the study 
of thin films is very impressive. In the time domain, several echoes have been
observed in 70-nm silica films in the early work [216] and similar results by 
several groups are now routinely available. This means that the thickness of 
very thin films of known acoustic velocity can be probed, or the elastic 
constants can be determined for films of known thickness. In the frequency 
domain, the frequency spectrum of the acoustic waves generated by the 
technique is the Fourier transform of the emitted pulse. This means that 
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acoustic waves with wideband spectra centered at frequencies up to hun-
dreds of GHz can be produced. Since the frequency-dependent attenuation 
can also be deduced [216], this opens the door to new ways to study physical 
acoustics on the interactions of high-frequency acoustic phonons.

Several studies have already been carried out on a variety of insulating, 
semiconducting, and metallic systems and the principal results are described 
briefly below.

1. Amorphous solids
Amorphous materials (e.g., glasses) are known to display a 

characteristic behavior in their acoustic and thermal properties at 
very low temperatures [217]. The behavior below 1 K can be 
explained by the two-level system (TLS) model to describe inter-
action of the wave with localized defects. However, at higher tem-
peratures the situation is far from clear. In this context it is 
important to have measurements over as much of the frequency/
temperature parameter space as possible to be able to compare 
results with the theoretical models. Picosecond ultrasonics has been 
very useful in this regard.

 The first study [218] on a SiO2 (fused silica) showed that α ∼  ν 2

for frequencies from 75 to 450 GHz and was independent of tem-
perature from 80 to 300 K. Additional data on amorphous polymers 
and metals (amorphous TiNi) [219] suggest that this behavior may 
be universal, as a quadratic frequency dependence was observed 
up to 320 GHz and the attenuation increased with temperature by 
a factor of two or three in the range 80 to 300 K. When data obtained 
using other techniques are added, the following general picture 
emerges. The attenuation rises rapidly with temperature from 1 to 
80 K and then rises much more slowly up to 300 K. The frequency 
dependence is linear below 10 GHz, changing to quadratic in the 
range 10 to 50 GHz. This general picture was used to compare with 
existing theories, mainly the fracton model [219].

2. Reflectivity of high-frequency phonons at interfaces
These studies are closely related to the well-known Kapitza 

boundary problem in low-temperature physics [220]. In 1941, 
Kapitza showed experimentally that there is a temperature jump at 
a copper-liquid interface in the presence of a heat flux, the so-called 
Kapitza resistance RK. This thermal contact resistance exists between
any two media in contact but is usually only observable at low 
temperatures using thermal conductivity techniques; due to its T  3

temperature variation, RK is usually too small to measure above 
4.2 K. Khalatnikov [221] showed that the thermal boundary resis-
tance could be described theoretically by considering the partial
reflection and transmission of thermal phonons (high-frequency 
ultrasonic waves with a frequency spectrum given by the Planck 
distribution), the so-called acoustic mismatch model (AMM). 
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10 Fundamentals and Applications of Ultrasonic Waves
Khalatnikov carried out a simple energy transmission calculation 
using the techniques of Chapter 7 and integrated over all incidence 
angles and frequencies. For the heat flux using the Planck distri-
bution the phonon frequency at the maximum of the distribution 
is situated at about 3kBT, or 63 GHz at 1 K where kB is Boltzmann’s 
constant.

It turns out that the experimentally observed Kapitza resistance 
between solid and liquid helium above 0.1 K is much smaller than 
that calculated by the AMM, leading to a so-called anomalous 
Kapitza resistance or conductance. In contrast, results for thermal 
phonons below 0.1 K or for ultrasonic waves below 10 GHz at all 
temperatures gave consistently good agreement with AMM for all 
cases studied. This situation led to the belief that there was an extra 
heat transfer mechanism acting in parallel for sufficiently high-
frequency phonons and considerable effort was put toward its 
discovery. The effect was also studied by thermal phonon reflec-
tivity experiments, which also suggested an anomalously low 
phonon reflectivity between ordinary solids (e.g., quartz or sapphire)
and condensed media exhibiting quantum effects. There is, how-
ever, convincing experimental evidence that the “anomalous” 
Kapitza resistance is in fact due to thin layers of imperfections at the
interface, which come into play at sufficiently high phonon frequen-
cies and are basically invisible at long wavelengths. The picosecond 
ultrasonic technique presents an interesting alternative approach 
to the problem since it can be used over a wide frequency range 
(10 to 700 GHz) and in principle there are no restrictions in tem-
perature. The work thus far reported can be divided naturally into 
solid-solid and solid-liquid interfaces.
a. Solid-solid interfaces 

In contrast to the case for liquid helium interfaces, all of the 
work up to now has shown good agreement between experi-
ment and AMM [222 and 223]. This work has covered frequency 
variations over the full thermal phonon range up to room tem-
perature and temperatures from 0 K up to almost room temper-
ature. A detailed review of this work has been given in [224]. 
In the picosecond ultrasonic experiments, films of Al, Ti, Au, 
and Pb were deposited on substrates of diamond, sapphire, and 
BaF2 [225]. Optically induced ultrasonic waves were excited and 
detected on the front surface in the usual way. Theoretical AMM 
curves as a function of temperature were calculated taking into 
account phonon dispersion and density of states in the metals. 
Globally, it was found that the results for Al and Ti on diamond 
and sapphire were in reasonable agreement with theory, but for 
Au and Pb films on diamond and sapphire, the measured con-
ductances were significantly higher than the calculated values. 
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After consideration of various effects such as electron phonon 
interaction, interface quality, etc., it was concluded that the dis-
crepancy was probably due to anharmonicity in the metal films.

b. Solid-liquid interfaces [226] 
In this case, a transparent dielectric layer deposited on Al 

transducing films on the substrate acted as the medium forming 
the interface with the liquid. This served to protect the Al film 
from the liquid and facilitated the technical analysis of the re-
sults. A 200-fs light pulse was used, allowing frequency varia-
tions from 100 to 300 GHz at 300 K. The dielectric films were 
layers of Si3N4 or SiO2. 

 In a first set of experiments, ethylene glycol was used as the 
liquid. It was found that the reflection coefficient was slightly 
lower than that predicted by the AMM model. Velocity disper-
sion in the liquid was discounted as a cause of the discrepancy, 
which was felt to be more likely due to modification of the liquid 
properties near the interface. Measurements were carried out 
on interfaces with liquid argon and nitrogen in a second series 
and found to be in good agreement with the AMM.

3. Other effects
Picosecond ultrasonics has also been used for a number of other 

studies, including electron diffusion in metals [227] and localized 
phonon surface modes in superlattices [228]. It would appear that 
picosecond ultrasonics is an emerging, powerful technique for the 
study of physical acoustics, particularly of microstructures. The tech-
nique has now become commercialized [229] and is being used 
routinely for the characterization of thin films in the microelectron-
ics industry.

16.4 Air-Coupled Ultrasonics

In the work covered up to now, ultrasonic transducers have been coupled to 
the propagation medium either by direct bonding or by fluid, usually water, 
coupling. Ideally, one would want to excite ultrasonic waves in the sample by 
a noncontact method. Laser generation and electromagnetic transducers 
(EMATs) for metals are two ways of doing this, and they would work even 
in vacuo. An alternative approach would be to use the ambient air itself as 
a coupling medium and this is the subject of the present section [230].

Especially for NDE, water has many advantages as a coupling medium. 
Of course, it is available everywhere, it has low sound velocity and very low 
attenuation at low frequencies, and it is compatible with most materials. It 
can be used in “water-immersion” or “water-squirt” configurations. There are,
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however, some disadvantages; water does damage some materials, such as 
paper, some foams, chemicals, and some materials for electronics and aero-
space. It can also fill the pores of porous materials and change their acoustic 
properties. Air as a coupling medium has a similar list of desirable attributes, 
mainly its universality and its compatibility with most industrial processes. 
The one big and challenging disadvantage is that air is very badly acousti-
cally mismatched with almost all industrial and transducer materials. In this 
section, we look at several traditional and more recent innovative approaches 
to this subject to overcome this difficulty.

Some of the problems encountered in air-coupled ultrasonics can be seen 
by considering emission from a flat PZT transducer, which for our purposes 
will be operated from a few hundred kilohertz up to a few megahertz. The 
transducer will generally be used in resonant mode to take advantage of the 
high Q, hence the bandwidth will be narrow. Often a quarter wavelength 
matching layer with low acoustic impedance will be used on the front surface 
although use of such layers will be restricted by the low Q of many otherwise 
suitable materials. At least, on the transmitter side, the large acoustic mis-
match with air can be partly compensated by using very high electrical input 
peak powers (up to about 10 kW). An alternative approach is to use the 
transducer in wide band mode, which will give rise to better pulse response. 
In this case, the matching layer on the front surface is deleted and a backing 
is used to broaden the resonance.

Focused transducers turn out to be of more interest than flat ones as they 
can be used for C scan imaging, and they provide excellent signal to noise 
in the range 100 kHz to 2 MHz. Possible configurations include using a flat 
transducer and a shaped plastic element or using a shaped piezoelectric 
ceramic or composite transducer to focus the acoustic waves directly. Con-
siderations for matching and/or backing layers are the same as for the flat 
transducers. Some special applications of focused air-coupled transducers 
have been made in the high-frequency end and these will be described briefly.

Wickramasinghe and Petts [231] described a gas-coupled acoustic micro-
scope with gas pressurized up to 40 kb to decrease the acoustic mismatch 
difference between the lens surface and the gas. This work was followed by 
experimental studies at 2.25 MHz in pulse echo C scan mode using argon 
gas at 30 atm [232]. Acoustic microscopy has also been carried out in air at 
standard atmospheric pressure [233], which is a significant simplification. 
The lens was a spherically shaped PZT-5H element with an RTV quarter 
wavelength matching layer operating at 2 MHz; this gives a spatial resolution 
equivalent to that for a 9-MHz system operating in water. The two-way 
insertion loss was 50 dB (excluding air losses) with a 10% bandwidth, which 
allowed use of tone bursts containing about 10 cycles. Phase and amplitude 
images were recorded. Since the reflectivity at an air-solid interface is very 
close to unity, this instrument finds its main application as a profilometer. 
This was demonstrated quantitatively by precise phase measurements of the 
step height of a 7.5-µm aluminum film on a quartz substrate. For the F2 lens 
at 2 MHz, quantitative measurements could be made with a height resolution 
© 2002 by CRC Press LLC



Special Topics 13
of 0.1 µm rms and a transverse resolution of 400 µm. Qualitatively, the 
topographical nature of the imaging was demonstrated by images of a Lincoln
penny. Thus the instrument was shown to be a noncontact surface profilo-
meter that is basically insensitive to the material properties. Another recent 
air acoustic microscopy development was the air-coupled line-focused capac-
itive transducer, using a transducer principle to be described below [234]. 
The system operated in the range 200 to 900 kHz with a focal line width of 
about 0.67 mm. Imaging was carried out using two such transducers at right 
angles, which defined an image point at their intersection. As above, oper-
ation of the system was demonstrated for step height measurements and 
surface topography imaging.

Considerable activity took place in the 1990s on the development of micro-
electromechanical (MEMS) applications to ultrasonic sensors and actuators. 
We focus attention here on MEMS-based transducers for generation and 
detection of ultrasonic waves. Historically, the generic system that served 
as the basis for the later MEMS devices is the condenser microphone, which 
generally operates below 100 kHz. In this case, a steel membrane is stretched 
over a solid dielectric backplate with air gaps. The restoring force is pro-
vided by the tension in the membrane. The micromachined version for 
operation at higher frequencies was developed by Schindel et al. [235]. In 
this case, the silicon backplate has a series of etched holes that provide the
restoring force. The etched surface is coated with gold to provide a con-
ducting backplate. The membrane is a metallized insulating film that pro-
vides an improved impedance match to air. The emitted ultrasonic wave 
fields have been mapped for plane piston, annulus, and zone plate config-
urations, and the results are in good agreement with theory. The devices 
have been shown to have a wide bandwidth and to be operable above 2 MHz
in air.

A different approach using surface micromachining has been adopted by 
Khuri-Yakub and coworkers, to obtain capacitive micromachined ultrasonic 
transducers (cMUTs) [236]. A thin silicon nitride membrane on silicon nitride 
supports is micromachined from a silicon wafer substrate. An aluminum top 
electrode is deposited on the membrane to form the top plate of a capacitor, 
the substrate acting as the bottom plate. The advantage of this geometry is 
that the membrane and the cavity air gap depth can be very thin (submicron) 
leading to very high capacitances and electric fields. This has been shown 
explicitly by an analysis with the Mason model, which shows that the trans-
former ratio n is given by 

(16.10)

where
VDC is the DC bias of the electrode
ε0 is the dielectric constant of free space

n VDC
ε0ε

2S

εclt εla+( )2
---------------------------=
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14 Fundamentals and Applications of Ultrasonic Waves
ε is the dielectric constant of the membrane material
lt is the membrane thickness
la is the air gap thickness 
S is the area of the transducer

Thus the transformer ratio is the product of the DC electric field and the 
unbiased capacitance. The capacitance can be several tens of farads and the 
electric field of the order of 108 V/m. This leads to large changes in capaci-
tance during operation and hence very high sensitivity.

The behavior of the transducer in air and in water is quite different. In air, 
as DC bias is applied, the transducer has a resonance and the impedance of 
the transducer at resonance is comparable to that of air. The dynamic range 
in air is of the order of 50 dB higher than that of piezoelectric transducers, 
a huge increase in performance that permits much better sensitivity and 
operation at higher frequencies. For immersion in water, the impedance of 
the membrane is much smaller than that of water and can be neglected. 
There is no resonance and broadband operation can be assured by appro-
priate impedance matching. A detailed comparison with a PZT transducer 
for imaging applications in an underwater camera with a center frequency 
of 3 MHz and a bandwidth of 0.75 MHz has been carried out. It was found 
that the dynamic range is comparable in both cases while the cMUT system 
has a much wider bandwidth.

It has been shown that cMUTs have significantly improved performance 
compared to piezoelectric transducers for air and immersion applications. 
They can also be used in arrays for imaging applications and work is ongoing 
in this direction. Applications of air-coupled ultrasonics is a rapidly expand-
ing field, and we can expect further developments in transducers, instru-
mentation, and measurement techniques. There will also undoubtedly be 
increased use of hybrid techniques for NDE with various transmitter/
receiver combinations chosen among piezoelectric, laser, EMAT, magneto-
restrictive, capacitive, air coupled, etc., where the particular advantages of 
each type of transducer can be exploited. Some of the principal issues that 
need to be addressed have been highlighted by Hayward [237]. These 
include transducer development, transducer noise, electronics, and the gas 
propagation channel. There may be a tendency to overlook the latter, but 
the same characteristics are required of the gas propagation as of a good 
buffer rod: stability, homogeneity, low attenuation, low diffraction, constant 
temperature, etc. It was shown in [237] that for air-coupled transducers, 
varying the sample temperature can have a drastic effect on the echoes in the
gas column, and that for a 100°C increase they became buried in the noise. 
One possible solution is to use a gas jet, analogous to the water-squirt [238], 
to provide a homogeneous propagation channel. This solution has recently 
been explored by Hutchins et al. [175]. As described in [230], the type of air-
coupled transducer described in this chapter can readily be fitted into a 
standard C scan system to provide reflection, through transmission, leaky 
Lamb wave measurements, etc. Some applications include examination of 
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delaminations in fiber composites, defects in solar panels, pipeline wall thick-
ness variations, determination of elastic moduli properties, etc. Two represen-
tative examples, NDE of gas pipelines and quality testing of paper, will be 
described briefly.

Since gas pipelines are buried underground, an inside-the-line automated 
test system for inspection of pipeline walls for defects associated with effects 
such as stress corrosion cracks is highly desirable. One challenge is that 
natural gas has a very low acoustic impedance. This is partially offset by the 
fact that the line is pressurized to about 70 b. A gas-coupled ultrasonic system 
has proven to be satisfactory for such applications [239]. A second applica-
tion involved the use of capacitive transducers for testing paper [240]. Trans-
mission experiments at 1 MHz were carried out, enabling the observation 
of thickness resonances, which could be correlated with paper thickness and 
moisture content. The possibility of imaging structure was also demon-
strated.

16.5 Resonant Ultrasound Spectroscopy

Most ultrasonic phenomena described in this book would normally be car-
ried out in the laboratory or field by the pulse echo method. This gives a 
direct measure of the sound velocity for the acoustic mode selected; by 
knowing the density one can infer the corresponding elastic constant. This 
information is useful for obtaining thermodynamic information on materials 
and to study basic properties such as phase transitions or for NDE. A given 
material can be studied completely and all of the elastic constants deter-
mined as outlined in Chapter 12 by studying either longitudinal or trans-
verse waves in differently oriented samples of the material. This is a tedious 
business and such studies are certainly not done routinely in most ultrasonic 
laboratories. Recently, a new method has been developed, resonant ultra-
sound spectroscopy (RUS), whereby all of these elastic constants can be 
determined by one experiment on a single sample.

RUS is a conceptually simple technique that is nevertheless potentially 
very powerful. A sample of arbitrary shape is excited, usually by a piezo-
electric transducer, and it exhibits a very large number of shape resonances. 
For most simple shapes, modern computing power is sufficient to enable the 
resonances to be calculated (the forward problem) and comparison with 
experiment then yields the elastic constants (inverse problem). Since there 
are now conditions on shape, size, surface condition, or orientation, the 
method is much more flexible than conventional ultrasonic techniques. In 
what follows the technique will be described. A number of applications will 
be covered, particularly in physical acoustics and NDE. A comprehensive 
review has been given by Maynard [241] and a detailed account is given in 
the book by Migliori and Sarrao [242].
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Much of the early work in RUS was done in the earth sciences, principally 
in using the earth’s oscillations to determine the earth’s structure, as well as 
in the determination of the elastic moduli of the materials making up the 
earth’s crust and believed to make up the interior. One of the more spectac-
ular applications was by Schrieber and Anderson [243], who measured 
spherical lunar rocks by RUS and determined their elastic constants. In an 
engaging analysis, the authors showed that lunar rock moduli are surpris-
ingly close to those of green (and other) cheese and made a parody of purely 
empirical, statistical studies to show that this demonstrated the moon was 
made out of green cheese! Following this success, other workers adopted 
the technique to rectangular parallelepipeds of anisotropic material. Exten-
sions of this were soon made to other shapes and also to smaller samples, 
so as to apply the method to the high-temperature superconductors, which 
initially were only available in the form of small, irregularly shaped samples.

The forward problem involves using a set of known elastic moduli cijkl, to 
determine the complete set of resonant frequencies fn, for an arbitrarily 
shaped specimen. While finite element analysis is potentially applicable, the 
most successful approach uses a Lagrangian minimization procedure, 
which gives a three-dimensional differential equation for the displacement 
and the stress-free boundary conditions. The displacement can be approxi-
mated by a linear combination of basis functions, the latter depending on 
the sample geometry. Legendre polynomials can be used for the uniform 
rectangular parallelepipeds considered in the early work; more generally, 
basis functions of the form xlymzn can be used to describe almost all sample 
shapes.

The inverse problem is challenging and can be facilitated if the direct 
problem is simple. The most straightforward approach is to start out with a 
good set of initial elastic constants and carry out successive iterations until 
the process converges. A Levenberg-Marquadt scheme has been used suc-
cessfully for inversion calculations.

The measurement technique should approximate ideal conditions as 
closely as possible. This mainly involves supporting the sample lightly 
between two piezoelectric transducers such that stress-free boundary con-
ditions are respected. One transducer is used to set the sample into vibration 
and the other is used to detect the amplitude and phase of the response. The 
electronics can be adapted to the problem, so that CW phase-sensitive detec-
tion techniques can be used and the receiver bandwidth can be chosen to 
roughly match that of the resonances, which can then be recorded by sweep-
ing the frequency. Four types of sample holder will be mentioned. The first 
involves the use of copolymer PVDF transducers, which have such a low Q
that there is little risk in confusing transducer resonances with those of the 
sample. The sample is supported at its corners and no bonding agent is used. 
In a second approach, if a higher coupling factor transducer such as lithium 
niobate is used, low-frequency resonances of the transducer are suppressed 
by fixing the transducer on a high-velocity backing such as diamond. Met-
allized polymer sheets can be used to provide the electrical connections to 
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the lithium niobate as described in [242]. A third configuration involves 
supporting the sample on alumina buffer rods, so high temperature meas-
urements can be made up to almost 2000 K. Finally, RUS can also be adapted 
to a standard cryostat as described in [242] so that measurements can be 
made down to very low temperatures.

Applications of RUS, apart from in the earth sciences, have so far been 
carried out in two main areas: physical acoustics and NDE. The work in 
physical acoustics has mainly been involved in second-order phase transi-
tions, which may be described by the Landau theory [244]. The Landau 
theory describes the transition in terms of an order parameter that is zero 
in the high-temperature symmetric phase and goes to a finite value below 
the transition where the system is unsymmetric. Landau wrote the thermo-
dynamic free energy F as an expansion in the order parameter q. At a given 
temperature, the stable state is determined by the condition ∂F/∂q = 0. One 
common type of phase transition that can be described in this way is the 
structural phase transition, in which a crystal changes symmetry when it is 
cooled below a transition temperature. One example is SrTiO3, which under-
goes a transition from cubic to tetragonal at 105  K. The Landau analysis 
predicts that the elastic constant involved undergoes a steplike decrease on 
cooling through the transition, which has been confirmed by RUS and conven-
tional ultrasonic measurements. Another example of great interest in physical 
acoustics is the study of the high-temperature cuprate superconductors. 
When this remarkable family of high-temperature superconductors was dis-
covered in the mid-1980s only very small samples were available, which 
made it difficult if not impossible to study them by conventional ultrasonic 
techniques. At the same time, as mentioned in Chapter 1, it was known that 
the conventional metallic superconductors have an interesting, characteristic 
response to ultrasonic waves, so it was felt that ultrasonics would be a 
valuable tool to study cuprate superconductors and help identify the phys-
ical mechanism involved. RUS was used successfully for a number of these 
superconductors, where anomalies were observed at the transition temper-
atures. As final examples for physical acoustics, RUS has been useful in 
detecting anomalies at magnetic transitions, in heavy Fermion antiferromag-
netic transitions, and for characterizing quasicrystals.

Conceptually, it is easy to see how RUS could be a useful technique in 
NDE. In a typical sample, the RUS resonances are highly degenerate due to 
the symmetry. Introduction of a defect such as a crack breaks the symmetry 
locally and hence partially reduces the symmetry of the crystal as a whole. 
This will lead, for example, to the splitting of a resonant peak, and generally 
the size of the splitting is proportional to the size of the defect. This will 
only work for degenerate modes; for example, torsional modes are nonde-
generate so the effect does not occur. Similarly, if a defect is in a region under 
strain it will reduce the stiffness constant locally, hence the resonant frequen-
cies will be lowered. So the decrease of fn of those modes affected by the 
crack provide another potential NDE tool. Of course, RUS is a laboratory 
NDE technique and is not adaptable to rough-and-ready field testing.
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An area of some potential for RUS is that of metrology of nominally 
identical industrial parts. RUS can be used to determine weight, density, and 
size of parts; for this type of measurement it is best to use the lowest reso-
nances, which are sensitive to the sample dimensions. This approach can 
also be combined with testing for flaws. Some examples include:

1. Detection of small cracks in steel roller bearings of dimensions as 
small as 1 × 1 × 300 µm

2. Length variations of nominally similar parts, with an accuracy of 
±5 µm for linear pieces or the diameter of spheres

3. Mass of ceramic parts and the detection of chips and cracks

Apart from the small degree of field use for which it can be used, RUS 
also has a number of constraints insofar as the type of sample that can be 
investigated. As pointed out in [242], some limitations are listed here:

1. Samples of small size and weight. Sample size governs the fn and 
if the sample is too large the resonant frequencies may be uncom-
fortably low. Of course, the measurement technique can always be 
adapted; the largest sample measured so far is a bridge across the 
Rio Grande River! Weight is also a constraint on the supports and 
in providing no-stress boundary conditions. And as with all meth-
ods in NDE, it becomes progressively more difficult to detect 
smaller defects in large samples.

2. The nonuniqueness of the response. A sample to be studied by RUS 
must be very well understood. In general, there are many possible 
causes of a frequency shift, for example, length change, change in 
elastic constants, homogeneity, or presence of a defect. Parameters 
must be tightly controlled to identify unambiguously the origin of 
the change.

3. In general simple shapes are better, as they are more easily calcu-
lable and they are highly degenerate, so that the presence of defects 
lifts the degeneracy.

4. High Q samples are preferable, as a low Q broadens the resonances 
and reduces the sensitivity.
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Cavitation and Sonoluminescence

Cavitation, the rupture of liquids and its associated effects, is a much more 
general phenomenon than that caused by the propagation of an intense 
ultrasonic wave in a liquid. It can be engendered hydrodynamically (ship’s 
propellers, turbines, etc.), by absorption of a laser beam, or by the passage 
of elementary particles in a liquid, among other possibilities. Indeed, the 
subject became of interest to the British Royal Navy in the late 19th century 
due to rapid propeller erosion of its warships. The importance of the damage 
ultimately led to the general study of the implosion of a liquid in an empty 
spherical cavity carried out by Lord Rayleigh in 1917. However, we are par-
ticularly interested in acoustic cavitation here not only because of its intrinsic 
interest as an acoustic phenomenon in its own right but also because of its 
present and potential applications. These are due, in part and principle, to the
controlled erosion of nearby surfaces caused by collapsing bubbles, leading 
to ultrasonic cleaning, machining, etc. Other applications are in the medical 
area (hypothermia, lithotripsy, and the associated dosimetry concerns), 
sonochemistry, emulsification, etc. The actual mechanism is still incom-
pletely understood, and in different cases almost certainly involves shock 
waves, imploding liquid jets, and the high temperatures and pressures asso-
ciated with bubble collapse. The effect is demonstrably efficient; in some 
cases, one single bubble collapse is sufficient to create a deep cavitation pit.

17.1 Bubble Dynamics

17.1.1 Quasistatic Bubble Description

For a bubble of radius R0 in a liquid of surface tension σ, the pressure inside 
the bubble is

‘ (17.1)pi p0
2σ
R0
------+=
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where the hydrostatic pressure equals the pressure far from the bubble and 
also that in the liquid just outside the bubble. If now we take into account 
the vapor pressure pv and quasistatically change the pressure in the liquid, 
for example, by an ultrasonic wave, we have [3]

(17.2)

where κ is the polytropic coefficient and R0 the equilibrium radius.
This is a new condition of equilibrium. If the pressure is increased the bubble

will be smaller but stable. Likewise, if it is decreased the bubble will become 
larger but again stable. If PL < 0 and the bubble is large enough that the internal
pressure can overcome surface tension, then the bubble will grow explosively;
the threshold pressure at which this occurs is the Blake threshold pressure. 
Since the present treatment is quasistatic, it cannot describe the subsequent 
bubble wall evolution, which will be carried out in a later section with the 
Rayleigh-Plesset equation. Since the evolution at the threshold will be rapid, 
this justifies neglect of such effects as buoyancy and dissolution in the above 
discussion.

The critical radius is determined by putting dpL/dR = 0 in Equation 17.2. 
For isothermal conditions, this gives

(17.3)

Using this value of Rcrit in Equation 17.2, we can find the critical value of pL. 
It is customary to express this threshold by pL = p0 − pB where pB is the Blake 
threshold. This gives [3]

(17.4)

when surface tension dominates, the usual case for small bubbles,

(17.5)

17.1.2 Bubble Dynamics

The starting point for the calculation of the bubble dynamics is the Rayleigh-
Plesset (RP) equation. This is the dynamical description of an isolated spherical
bubble in an incompressible liquid with surface tension σ  and viscosity η. The
hydrostatic pressure is p0 and the applied (acoustic) pressure pa(t) = pa0 sin ωt. 
Far from the bubble, the pressure in the liquid is p∞ = p0 + pa(t). The derivation 
of the RP equation and other aspects of bubble dynamics have been described 

pL p0
2σ
R0
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R
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Cavitation and Sonoluminescence 3
in great detail by Leighton [3] and some of the main points affecting the 
acoustic properties of bubbles will be summarized here.

An applied sound pressure leads to a new value of the bubble radius R(t).
Leighton shows that the kinetic energy acquired by the liquid in this 
process is (1/2)ρ  and using  and integrating, this 
gives for the increase in liquid kinetic energy 2πρR3  Equating this to the 
work done by p∞ far from the bubble and the pressure pL in the liquid near 
the bubble wall

(17.6)

Using Equation 17.2 and adding a viscous term, we finally have the full RP 
equation

(17.7)

This intimidating differential equation is nonlinear and can be integrated in 
prescribed conditions to give the time-dependent bubble radius R(t). For 
sufficiently small amplitudes, the nonlinear terms can be dropped and the 
equation becomes that of a linear oscillator. In this case, writing 

 

(17.8)

the equation for a driven harmonic oscillator with resonance frequency ω0. 
The value of ωr (Minnaert frequency) determined by the RP equation is 

(17.9)

For large bubbles where the surface tension can be neglected

(17.10)

For large air bubbles in water, this reduces to 

f0R0 ≈ 3(Hz − m). (17.11)

For small bubbles, where surface tension dominates

(17.12)
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Ṙ
2
.

pL p∞–( )4πR2 Rd
R0

R

∫ 2πρR3Ṙ
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4 Fundamentals and Applications of Ultrasonic Waves
Solutions to the RP equation can be obtained numerically for R(t) and a 
variety of results can be obtained depending on the precise values of ω0, 
R0, and pa that are used. An example is shown in Figure 17.1. The response 
is nonlinear but in the steady state, the solutions are periodic and relatively 
permanent. In this case the oscillations are known as stable cavitation. In 
the opposite limit, the bubbles group by a factor of two or more per cycle 
and then collapse violently and disintegrate before or near the end of the 
cycle. This is known as transient cavitation. Both of these conditions can 
be reproduced numerically from the RP equation, which has been described 
in detail by Lauterborn [245], Neppiras [247], Walton and Reynolds [246], 
and Leighton [3]. The model has been extended to take into account damp-
ing by sound radiation [248] and further refinements have been added by 
Prosperetti et al. [249].

17.1.2.1 Bjerknes Forces

The RP equation shows that the bubble carries out damped-driven nonlinear 
motion under the influence of an applied acoustic pressure. At low amplitudes, 
it will act like a linear oscillator and we will apply the results of the variation 
of the phase of such an oscillator in this section.

We know that a bubble of volume V will be subjected to the time-averaged
radiation pressure  We suppose that the bubble is at position x in a 

FIGURE 17.1
The radius of an air bubble in water trapped in an acoustic field with pa = 1.275 atm, R0 =
4.5 µm, and fa = 26.5 kHz. The calculation is based on Equation 17.7, courtesy of Haizhong Lin. 
(From Cheeke, J.D.N., Can. J. Phys., 75, 77, 1997. With permission.)

V∇ p–〈 〉 .
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Cavitation and Sonoluminescence 5
standing wave field of the form

(17.13)

For 2pa0  p0, the bubble will undergo harmonic oscillations of the form

where α is the phase angle with the applied pressure. The volume of the 
bubble is

(17.14)

where V0 = (4/3)  is the equilibrium volume. For the driven oscillator, 
bubbles larger than resonant size are π out of phase with the driving pressure 
(α = π) and smaller bubbles are in phase (α = 0). Using these results for α
with Equations 17.13 and 17.14, we obtain 

(17.15)

for large bubbles, and 

(17.16)

for small bubbles.
Comparing these results to the form of the pressure field leads to the 

conclusion that bubbles larger than the resonant value are subjected to a 
force from a pressure antinode to a pressure node. Conversely, small bubbles
are pushed toward a pressure antinode. The force responsible is called the
primary Bjerknes force. According to this picture, small bubbles experience a
force pushing them to the pressure antinode where they grow under the 
influence of the ultrasonic field to resonant size, at which point they will 
eventually be pushed back to a pressure node and ultimately dissolve or 
disintegrate. Of course, Bjerknes forces are only one piece of the puzzle 
and bubble growth by rectified diffusion (to be discussed in the next 
section) is also important.

Bjerknes forces exist not only in standing waves but in any sound field 
where there is a pressure gradient. Thus, for example, small bubbles will 
migrate to the pressure antinode in a focused ultrasonic field. In this and 
other geometries, the bubbles can agglomerate to form “streamers.” Finally, 
there are also secondary Bjerknes forces between two bubbles or a bubble 
and its image at a boundary. Detailed calculations show that if two bubble 
oscillations are in phase the bubbles attract while the force is repulsive for 
bubbles in antiphase. A very full and complete treatment has been given 
by Leighton [3].
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6 Fundamentals and Applications of Ultrasonic Waves
17.1.2.2 Rectified Diffusion

We suppose a state of stable cavitation. Then the gas content in the bubble 
can change due to the variation in diffusion conditions over a cycle, leading 
to a net pumping of gas dissolved in the liquid into the bubble. As described 
by Leighton [3], there are two components:

1. Area effect. The basic idea is very simple. If R < R0, then the gas 
inside the bubble is compressed to concentrations greater than the 
equilibrium value so there is a net flow of gas out of the bubble. By
the same token, when the bubble radius is larger than the equilib-
rium value, the gas concentration in the bubble is decreased and 
there is a flow of gas into the bubble. These flows do not cancel; 
although the relevant fractions of a cycle for the two processes are 
roughly comparable, the area is much bigger in the latter case, lead-
ing to a net inflow of gas atoms into the bubble over a cycle.

2. Shell effect. The diffusion rate of gas in a liquid varies as the con-
centration gradient. We consider two thin liquid shells around the 
bubble. When the bubble expands the distance between shells con-
tracts, so the concentration gradient increases, leading to a high 
rate of diffusion in the liquid. Conversely, when the bubble con-
tracts the diffusion rate is diminished due to a lower concentration 
gradient. 

The area and the shell effect work together to increase the net inflow of 
gas into the bubble from the liquid. This one-way pumping effect is called 
rectified diffusion. For bubbles above a certain minimum size there is a 
threshold for rectified diffusion in the acoustic field, so that the bubble 
grows progressively up to the resonant size. If the acoustic wave amplitude 
is further increased, the bubble will encounter another threshold for tran-
sient collapse. Rectified diffusion plays a central role in bubble growth in 
an acoustic field and is particularly important in the behavior of trapped 
single bubbles, to be discussed later.

17.1.3 Acoustic Emission

Oscillating bubbles in a liquid act as a point source of sound. At low drive 
levels, the bubble motion is linear and acoustic emission occurs at the fun-
damental frequency. As the acoustic power is increased, harmonics appear 
in the stable cavitation regime. In the early part of the transient cavitation 
regime, subharmonics and ultraharmonics (odd harmonics of subharmonics) 
appear superposed on a background continuum. This white noise gives rise 
to a very audible, characteristic sound. A better understanding of cavitation 
noise is important for the extending applications of the phenomenon as well 
as for a better understanding of the mechanisms of cavitation itself.
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Cavitation and Sonoluminescence 7
Esche [250] was the first to observe subharmonics and their existence has 
since created considerable interest. The situation up to 1980 has been sum-
marized by Neppiras [247] and more recently by Leighton [3]. Some of the 
suggested origins of subharmonics are parametric surface vibrations of the 
bubble, oscillations associated with larger bubbles, parametric amplification
in the liquid, two- or three-period transient cavitation, etc. From a practical 
point of view, it has been established that generation of the subharmonic 
is not an acceptable indicator of the onset of transient cavitation. On the 
fundamental side, there has been much recent interest in the subharmonic
f0/2 as being a step on the way to chaos in the system.

Lauterborn and Cramer [251] have observed a progressive sequence from 
period doubling to broadband noise in water with increase of the acoustic 
power. A characteristic period doubling bifurcation behavior has been 
simulated by Ilychev et al. [252] and also by Kamath et al. [253], who 
presented the results on a bifurcation diagram. Lauterborn and Cramer 
[251] have quantitatively analyzed the experimental power spectrum and 
found a period doubling route to chaos. After a cascade of period, doubling 
bifurcations occurred a chaotic noise attractor was found. The calculated 
Lyapunov exponent for the spectrum was positive, confirming the exist-
ence of a chaotic system with a fractal dimension of three. This suggests a 
highly correlated bubble structure in agreement with observations.

17.1.4 Acoustic Response of Bubbly Liquids

Since bubbles are highly nonlinear acoustically, it is not surprising that a bubbly
liquid is a highly dispersive and attenuating medium. The response of the 
medium is very important in areas such as oceanography and high-power 
ultrasonics in liquids. Since it involves a large number of bubbles of different 
sizes in various states of interaction, it is a highly complex subject. In fact, 
the theory for even a very simplified system is complicated. In the following, 
we give a brief summary of some of the main features. Recent surveys of 
the subject have been given by Leighton [3] and Medwin and Clay [254].

If we consider the attenuation of a plane wave incident on a bubble, the 
total cross-section can be written as the sum of scattering and absorption 
cross-sections. At resonance these scattering cross-sections are hundreds 
or thousands of times larger than the geometrical cross-section. Bubbles at 
resonance are described as presenting a “hole” to the incident wave. This 
region of low acoustic impedance distorts the incident sound field and sets 
up a power flow toward the bubble. This huge distortion of the incoming 
wave corresponds to the extremely high scattering cross-section. Moreover, 
bubbles larger than the resonant size scatter sound relatively even more, 
due to a geometrical shadow effect [3].

There is a similar, large effect on the sound velocity of bubbly liquids. 
In this case, where the velocity is given by  the origin of the 
modification of V0 is not due to the effect on the density but rather that on 

V0 K/ρ= ,
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8 Fundamentals and Applications of Ultrasonic Waves
the compressibility χ = 1/K. The analysis shows a strong variation of V0

near the resonant frequency of the form

(17.17)

where
Y = ωr /ω
U = N( πa3) = void fraction
δ = damping constant
kR= ωr /V0

for N bubbles per unit volume of radius a. 
For f  fr , Vp → V0 while for low frequencies

(17.18)

In oceanographic applications, akR is a constant, so the low-frequency veloc-
ity depends only on the void fraction. This fact has been used to develop an 
effective medium theory [255] for oceanography. The result is

(17.19)

(17.20)

(17.21)

where ρb and ρω are the densities of air in bubbles and of water and Kb and 
Kω are the respective bulk moduli.

These results agree with the previous formulation for U ≤ 10−5.

17.2 Multibubble Sonoluminescence (MBSL)

MBSL was discovered in 1934 by Frenzel and Schultes shortly after the intro-
duction of high-power ultrasonic generator technology. Basically, it is the 
emission of light by bubbles in a liquid undergoing cavitation. Despite nearly 
70 years of investigation, the phenomenon is still not completely understood. 
One of the difficulties is that most if not all of the experimental parameters
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Cavitation and Sonoluminescence 9
are badly defined experimentally. We are dealing with millions of bubbles 
of varying sizes and phases of collapse in an inhomogeneous, unspecified 
acoustic field, for a phenomenon where the collapse is very sensitive to bubble
size, acoustic pressure, and frequency. Cavitation is also notoriously sensitive 
to the initial state and history of the liquid. When the parameters have been 
controlled, it has been a case of either physicists using a well-defined sound 
field on a poorly characterized liquid, or chemists investigating a superbly 
specified liquid with an unknown sound field. Nevertheless, the subject is 
important industrially and it has led to a new area of application (sonochem-
istry) and a new, controlled experimental configuration, single bubble 
sonoluminescence (SBSL). Before studying the latter, it behooves us then 
to become familiar with the principles of bubble dynamics, cavitation, and 
some of the main results of MBSL. The subject has been reviewed in [246] 
and more recently in [256], some of which is included in the following.

Following the discovery of SL by Frenzel and Schultes, Zimakov pro-
posed the first explanation for the phenomenon, namely that it was caused 
by an electrical discharge between the vapor cavities and the glass wall of 
the container. The first formal theory was put forward by Chambers. At the
time liquids were thought to have a quasi-crystalline structure similar to 
solids, and in this triboluminescent model, it was proposed that SL was 
similar to the emission of light by many crystals when they are crushed. 
Levsin and Rzevkin suggested that SL was due to an electric discharge 
associated with liquid rupture. This idea was extended by Harvey in 1939 
with the balloelectric theory, which was based on the collection of electric 
charge at the liquid-vapor interface, leading to an electrical discharge upon 
compression of the bubble. An alternative electrical model, the electrical 
microdischarge theory, was presented by Frenkel in 1940. The model 
involved statistical fluctuations of charge on the surface of nonspherical cav-
ities, leading to electrical discharge, this time during the expansion phase of 
the bubble.

Other models followed in quick succession. In the mechanochemical 
theory in 1939, Weyl and Marboe  proposed that molecules were fractured 
during expansion of the bubble, their radiative recombination giving rise 
to SL. Griffing ascribed the effect to chemiluminescence; the high temper-
atures caused by the cavity collapse were supposed to give rise to oxidizing 
agents such as H2O2, which would dissolve in the surrounding liquid, caus-
ing chemiluminescent reactions. In 1950, Neppiras and Noltink advanced the
hot-spot theory in which the adiabatically compressed gas gave rise to black-
body radiation. Jarman proposed a variant of the hot-spot model by postu-
lating that shock waves were formed inside the bubble and that these lead 
to SL. Hickling incorporated the thermal conductivity of the gas in the hot-
spot model and was able to explain SL results for several gases. Finally, 
further variants of the electrical discharge model were proposed by Degrois 
and Balso and by Margulis, but these efforts proved unfruitful. 

Most of these early theories were forcefully qualitative and speculative 
in nature, mainly due to the lack of systematic experimental results 
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10 Fundamentals and Applications of Ultrasonic Waves
obtained in controlled conditions. Most of them were rejected over time as 
more experiments were carried out; in this context, the resurrection of 
Jarman’s shock wave model is somewhat ironic as it was rejected by the 
opinion of the day more than 30 years before its now increasing acceptance. 
Nevertheless, several of these models directly sowed the seeds for further 
experimental and theoretical work, particularly the hot-spot and chemilu-
minescent models. The hot-spot theory pointed to the need to attempt a 
fit to a black-body spectrum and generated serious interest in the measure-
ment of experimental spectra. Gunther et al. showed that the spectra for 
water-xenon mixtures could be fitted to a black-body spectrum at 600 K 
for the spectral range 300 to 700 nm. Furthermore, in a related study, 
Gunther et al. also showed that SL was emitted as sharp flashes lasting 
about 1/50 of a period and with the same frequency as the acoustic wave, 
setting the stage for later studies of SBSL.

17.2.1 Summary of Experimental Results

In a typical MBSL experiment, acoustic waves are excited in the liquid of 
interest by a high-power ultrasonic source. A piezoelectric sonicator (Mason 
horn), spark coil, or laser are some of the most common sources used. Standing
waves, typically near 20 kHz, are set up in the basin and the emitted light 
is collected either by photographic images or by a spectrometer to measure 
the visible spectrum. The spectrum obtained depends, of course, on the gas-
liquid combination studied. For example, Gunther et al. [257] found that the 
MBSL spectrum of water saturated with noble gases was a continuum from 
300 to 700 nm that could be fitted to a black body for a temperature of about 
600 K. Flint and Suslick [258] have made extensive studies of aqueous, 
hydrocarbon, and halocarbon liquids and have been able to correlate the 
observed line spectra unambiguously to excited state molecules created dur-
ing cavitation. Line spectra were also observed by Gunther et al. for gas-
saturated salt solutions and these authors identified the metal ion transitions 
giving rise to the line spectra. In what follows, the total intensity of the 
sonoluminescence is often used to determine the dependence of MBSL on 
various parameters of the measurement. Given the uncertain reliability of 
the data, these will be summarized very briefly so as to give an overview of 
the phenomenon and a basis for comparison with SBSL.

1. Dissolved gas
 Dissolved gases are present in all liquids. If the liquid is degassed,

higher power levels must be used to obtain MBSL. The gas in the 
bubble is a mixture of dissolved gas and liquid vapor. The physical 
properties of the gas influence the bubble dynamics; high thermal 
conductivity reduces the bubble maximum temperature and high 
compressibility increases it. Chemically, the gas composition 
strongly affects the free radicals present, hence the sonoluminescence.
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2. Liquid properties
 Again, the physical properties of the liquid directly affect bubble 

dynamics: surface tension, density, and vapor pressure. However, 
no convincing dependencies of sonoluminescence on these param-
eters have been confirmed, other than semi-empirical correlations.

3. Liquid history
 It has been known for a long time that the presence of nuclei 

strongly reduces the liquid tensile strength, and hence lowers the 
cavitation threshold. The driving intensity and pulse length also 
affect subsequent cavitation properties.

4. Temperature
 A general tendency of decreasing MBSL with increasing temper-

ature has been observed. However, a critical discussion by Leighton 
[3] suggests that the evidence provided by the data is unclear in 
this regard.

5. Hydrostatic pressure
 An increase of hydrostatic pressure has two opposing effects, 

namely limiting the maximum radius but increasing the compres-
sive forces on collapse. For the total population of bubbles, an increase
in p0 increases the Blake threshold and hence reduces the number 
of bubbles that can undergo transient cavitation. Experimentally 
the MBSL intensity typically goes through a maximum with p0.

6. Acoustic pressure amplitude
 Most results show a linear increase of MBSL intensity with acous-

tic power, which is expected qualitatively.
7. Acoustic frequency

 There are competing factors as the frequency is increased. The 
number of antinodes increases although their size decreases, but 
attenuation reduces the effective power at the antinodes. Moreover, 
the acoustic field distribution changes with frequency.

The early studies on SL spectra and ideas on chemiluminescence led to 
a series of systematic studies by Flint and Suslick during the 1980s, which 
culminated in the first quantitative and systematic studies of SL and an 
experimental determination of the temperature at the center of the bubble 
for MBSL systems. They carried out a series of methodical experiments on 
MBSL for the various molecular species, demonstrating that the observed 
spectra are consistent with the excitation of various vapor species inside 
the bubble. Coupled with parallel work described below, this work showed 
that MBSL is fundamentally a thermal chemiluminescent effect and is not 
due to electrical discharge or other competing models described earlier. 

A quantitative determination of the MBSL emission temperature was made 
for the first time by Flint and Suslick [258] in 1991. The ro-vibronic spectra of 
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12 Fundamentals and Applications of Ultrasonic Waves
excited states of C2, from silicone oil were identified and compared with 
synthetic spectra generated by the Speir method, which is the standard 
approach for adding a set of overlapping, dense, spectral lines, each of the form

(17.22)

where
v = energy of the transition in cm−1

A = the Franck-Condon factor for the vibrational transition
S = line strength
G = energy of the vibrational state
F = energy of the rotational state above the vibrational state
Tv = vibrational temperature and
Tr = rotational temperature

The systematic spectra were fitted to experiment using three adjustable 
parameters: Tv , Tr , and the spectrometer aperture. For thermal equilibrium 
(Tv = Tr), this procedure gave a best fit for TSL = 5075 ± 156 K. The identi-
fication of well-known spectral lines and the ability to fit them using 
standard theoretical procedures gives strong credibility to these experi-
mentally deduced temperatures. 

17.3 Single Bubble Sonoluminescence (SBSL)

17.3.1 Introduction

Felipe Gaitan joins the select ranks of graduate students who have made 
major discoveries in the course of their Ph.D. research studies. The precursor 
to his work was the study by Crum and Reynolds [259] using an ultrasonic 
horn in a water bath. They set up acoustic standing waves and obtained 
clear evidence of light emission from bubbles trapped at the pressure anti-
nodes that they associated with stable cavitation. Using a levitation cell, 
Gaitan et al. [260] were able to trap a single bubble at the pressure antinode, 
and they observed that it emitted a tiny burst of light once per cycle. They 
carried out a detailed study of the SBSL associated with the bubble including 
pulse width and synchronicity. 

This work was continued by Barber and Putterman [261], who found 
that the light pulses were surprisingly sharp and synchronous. The three 
hallmarks of SBSL emerged from this early work by Gaitan and Barber:

1. Extremely sharp pulses of light, of the order of 50 ps wide.
2. Amazing synchronicity, on a much finer time scale than the phase 

noise of the ultrasonic source
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3. Enormous concentration of energy, of the order of 12 orders of 
magnitude. It is amazing that very low frequency acoustic waves 

ω ∼  10−12 eV) combine on their own in such a way as to emit 
photons with an energy of the order of 1 eV.

4. Since that time there has been a flurry of experimental and theo-
retical work to elucidate the nature of SBSL and, more specifically, 
identify the mechanism of light emission. It is a happy coincidence 
of nature that although the parameter space available to the phe-
nomenon is small and very restrictive, this space includes water 
near room temperature and pressure. An intriguing result is that 
noble gas atoms appear to be an essential ingredient of the phe-
nomenon. With increasing information on these points and the 
hallmarks mentioned above, together with new insights, experi-
ment and theory have danced a tantalizing tango to the tune of 
SBSL throughout the 1990s. Experiment has thrown at least one 
curve ball to the theorists, obliging them to explain more than they 
in fact had to. At present, experiment and theory find themselves 
on a plateau of convergence, so this is a suitable time to review the 
main developments in the field.

There are a number of reasons why it is interesting and possibly profitable 
to study SBSL. Some of these, not necessarily in order of importance, include 
the following:

1. Understand cavitation better by being able to do controlled exper-
iments on a stable system.

2. Create a microchemical laboratory with temperature, pressure, and 
other parameters controlled by bubble dynamics, i.e., a refined and 
controlled version of sonochemistry.

3. Explain universal bubble phenomena by comparing the results for 
those for bubbles created by other techniques.

4. Enrich the study of thermodynamics by the addition of a unique 
system.

5. Set up one of the best performance/cost physics undergraduate 
laboratory experiments.

6. Work toward the goal of controlled fusion.

The plan of our discussion of SBSL is as follows. In the next section, we 
describe the basic experimental setup and the simple physics of the phe-
nomenon. In Section 17.3, we apply the RP equations to the bubble dynam-
ics and describe the parameter determination and fitting. This is followed 
by a brief summary of the main experimental results, then a more detailed 
critique of some of the more important features including spectrum, line 
width, shock waves, pressure effects, and the dissociation hypothesis. 
Finally, two of the more successful models are described; they share some 

(h
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14 Fundamentals and Applications of Ultrasonic Waves
common assumptions and conclusions and are both able to account for the 
available experimental facts. At this point we will be well placed to decide 
if SBSL can be accounted for by known mechanisms, or it is an exotic phe-
nomenon involving radically new physics.

17.3.2 Experimental Setup

A typical experimental setup for SBSL is shown in Figure 17.2. The liquid is 
contained in a 500-ml flask and the piezoelectric transducer is glued to the 
sidewall. It is driven by the amplified sinusoidal signal from a function gen-
erator. To avoid excessive power dissipation due to standing waves, it is advis-
able to tune out the transducer capacitance with a series inductance (the author
has seen smoke coming out of the BNC connectors of an untuned system). 
The liquid must be degassed, which can be done by heating and pumping. 
For an open system the desired gas can be injected at the center by use of a 
syringe. Once the bubble is stabilized and emitting as described below, the 
light can be detected by a photomultiplier tube (PMT). In good conditions, 
the experienced eye can easily see the bubble in dim light conditions. A good 
account of a simple experimental system is given by Hiller and Barber [262].

Bubble trapping follows the general principles of acoustic levitation. In 
the case indicated, the transducer frequency is chosen to set up a funda-
mental standing wave resonance, which has a pressure antinode (velocity 
node) at the center. Radial nodes are set up along all diameters so that the 
bubble is trapped at the center. In the vertical direction, the buoyancy force 
is balanced by the Bjerknes force, so the bubble is actually trapped slightly 
above center. The same sort of reasoning applies to cylindrical resonators 
except that the symmetry is cylindrical instead of spherical.

FIGURE 17.2
Experimental setup for single bubble sonoluminescence. The laser and photomultiplier tube 
(PMT) are used for MIE scattering to determine the bubble radius as a function of time. (From 
Cheeke, J.D.N., Can. J. Phys., 75, 77, 1997. With permission.)
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As the acoustic pressure amplitude pa is increased, the bubble passes 
through several well-defined regimes, as shown in Figure 17.3. At very low 
amplitude, the buoyant force dominates and the bubble floats to the sur-
face. pa must also be above the dissolving threshold, otherwise the bubble 
will dissolve in the liquid. Above the trapping threshold, the bubble under-
goes stable oscillations near the flask center. As pa is increased, the bubble 
goes into the dancing regime, which has been described as representing a 
shuttlecock motion. At the upper end of this regime the bubble becomes 
very small and almost disappears. Once it crosses the SBSL threshold, 
however, it becomes very stable, apparently locked in place, and it glows 
with a faintly bluish hue. For pure water, this region is roughly 1.1 < pa <
1.3 bars. At the upper bound, the bubble drifts off and disappears. If the 
driving pressure pa is now lowered, there is hysteresis and SL persists below 
the original SBSL threshold.

Assuming that the bubble is stable and emitting, we now follow it through 
one cycle as shown in Figure 17.4. When the acoustic pressure is negative, 
the bubble expands to its maximum radius (Rmax ∼  40 µm for f ∼  20 kHz); 
at this point, there is almost a vacuum inside the bubble. As pa turns positive, 
the bubble undergoes a violent collapse since there is no force opposing it. 
There is a deep overshoot past the equilibrium radius (5 µm) to a minimum 

FIGURE 17.3
Various bubble regimes in a stationary acoustic field in a water-glycerin mixture. With increasing 
pressure for this mixture the SL regime occurs for an acoustic pressure from 1.3 to 1.5 atm. 
With decreasing pressure there is a hysteresis regime as shown. (From Cheeke, J.D.N., Can. J. 
Phys., 75, 77, 1997. With permission.)
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radius Rmin ∼  0.1 µm, which is close to the van der Waals limit. This is 
followed by a series of afterbounces, which occur very approximately at the 
Minnaert frequency, the free bubble resonance frequency.

The moment of emission of the light pulse occurs almost exactly at the 
first, deep minimum. This point was a source of some confusion in the 
early work on MBSL; for SBSL, determination of the precise moment in 
the cycle of luminous emission is straightforward if correct triggering 
techniques are used. It has been established unambiguously that the light 
is emitted just before and almost exactly at the deep minimum, as will be 
clarified in the later discussion. From cycle to cycle, the emission occurs 
precisely at this point, leading to the precise synchronicity of the phenom-
enon. The flashes are rather weak, with 107 photons per flash. The narrow 
width and the continuous spectrum will be discussed later.

In addition to optical emission, there is also a well-defined acoustic emis-
sion (ae). The ae pulses can be detected by placing a needle hydrophone a 
millimeter or two from the bubble. There is a strong ae pulse corresponding 
to emission at the principal minimum as can be confirmed by time of flight 
from the bubble to the hydrophone using the velocity of sound in water. 
There are also subsequent weaker ae pulses that originate from the weaker 
collapses of the afterbounces. It is difficult to get useful data from the hydro-
phone measurements [263] due to the finite frequency and temporal response 
of the hydrophone and the fact that it cannot be placed too close to the bubble 
to avoid perturbing its motion. Recently, important results on ae have been 

FIGURE 17.4
Simultaneous measurements of the sound field (top), bubble radius (middle), and SBSL (bottom) 
in a water-glycerin sample at pa = 1.2 atm and f = 22.3 kHz. (From Gaitan et al., J. Acoust. Soc. 
Am., 91, 3166, 1992. With permission.)
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obtained with a streak camera and these will be reported later. It is estimated 
[264] that at least 99% of the energy radiated from the bubble occurs by
acoustic emission, which in fact starts in the dancing regime. The change in 
the bubble dynamics in the dancing and SBSL regimes is shown in Figure 17.6.

One of the most important pieces of experimental information is the 
quantitative determination of R(t) by Mie scattering. Mie scattering of a 
wave by a spherical object provides an exact solution for the scattered 
intensity is measured over an angular range of 30 to 60° to average out 
diffraction effects. Fits to the theory at different times in the bubble cycle 
give the variation R(t). The absolute determination of bubble radius param-
eters will be discussed next.

17.3.3 Bubble Dynamics

The numerical solutions of the RP equation give the bubble motion R(t), 
providing that we have at our disposition a thermodynamic model to 
describe the gas. Since the bubble motion is relatively slow over most of the 
cycle, the overall shape of the R(t) curve is not sensitive to the details of the 

FIGURE 17.5
Comparison of the background-subtracted spectra of MBSL and SBSL in a 0.1 M NaCl solution. 
Each spectrum was normalized to its highest intensity. In MBSL there is a peak for the sodium 
emission line at 589 nm, which is absent in MBSL. (From Matula, T.J. et al., Phys. Rev. Lett., 
75, 2602, 1995. With permission.)
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particular model chosen. However, the choice of model is absolutely critical 
in the region of collapse, and in the last 100 ps of collapse the hydrodynamic 
model of the RP equation is no longer valid.

Regarding first the overall shape of the R(t) curve, one of the simplest 
choices is the adiabatic van der Waals equation, with the assumption that 

FIGURE 17.6
Bubble radius vs. time for about one cycle of the acoustic field as a function of increasing drive 
level for an air bubble in water. The relative intensity of the emitted light as a function of drive 
level is indicated by the vertical lines. (From Barber, B.P. et al., Phys. Rep., 281, 65, 1997. With 
permission.)

FIGURE 17.7
Phase diagram for pure argon bubbles in the plane /p0 vs. pa /p0, together with experimental 
data. The filled symbols are for stable SBSL bubbles and the open symbols are for stable non-
SBSL bubbles. (From Lohse, D. et al., Phys. Rev. Lett., 78, 1359, 1997. With permission.)
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the gas pressure inside the bubble, pg, is spatially uniform. Then

(17.23)

where 
H = R0(b/vm)1/3

b = van der Waals excluded volume
vm = specific molar volume at STP
R0 = equilibrium radius of the bubble
γ = Cp /Cv 

An R(t) curve based on such a model is shown in Figure 17.1; it exhibits 
all the usual features that have already been discussed. A number of variants
on the simple adiabatic model have been studied by different authors and 
each variant shares the common feature of compressional heating and pres-
sure rise during collapse. One treatment that is qualitatively different spe-
cifically allows pg = pg(r, t) and Tg = Tg(r, t), which allows spatially nonuniform 
solutions, in particular the excitation of shock waves [265]. It has still not 
been clearly established whether shock waves exist inside the bubble during 
collapse, and this point will be discussed separately.

The determination of the bubble parameters in SBSL is a nontrivial 
question. The important parameters of the liquid (σ, η, pv) and the chemical 
composition of the gas depend, evidently, on the particular choice made. 
The operating frequency is determined by the fundamental resonance of 
the acoustic trapping cell. In the actual experiment, parameters p0, T, pa, 
and gas concentration c∞   /co are chosen by the experimenter. This leaves R0, 
which cannot, in fact, be independently controlled but is determined by all 
of the other parameters and self-consistently by the dynamical equations.

In order to establish the absolute R(t) curve, the parameters R0 and pa

must be determined. After much study, it is now generally accepted that 
the most accurate approach is to determine them by a direct fit to the RP 
equation solutions as outlined by Barber et al. [266]. Since the relative R(t) 
curve is known by Mie scattering, the absolute values of the other param-
eters, e.g., Rmax and Rmin, follow directly. A key parameter is the expansion 
ratio Rmax /Rmin. It has been established empirically that expansion ratios of 
the order of ten or greater are needed to produce SBSL. It should also be 
noted that R0 and pa are the two main parameters used to describe the 
stability conditions for SBSL given in the next section.

17.3.3.1 Bubble Stability

SBSL can only be established if the following four conditions are satisfied 
[267]:

pg

p0
-----

R0
3 H3–

R t( )3 H3–
------------------------- 
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γ
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1. Energy processing
 There must be sufficient energy transfer between the acoustic 

wave and the bubble, that is, between the moving bubble wall and 
the enclosed gas. The criterion that appears to satisfy all models is 
that the bubble wall Mach number be greater than one, i.e.,  

2. Shape stability
 A sufficiently violent collapse can only be attained by the collapse

of spherical bubbles. If the bubble becomes too large (≥10 µm) then 
various shape oscillations and instabilities are set up that destroy 
the sphericity.

3. Diffusive stability
 The diffusive time scale is much longer than that for the RP 

dynamics, but the solutions of the latter control the boundary con-
ditions for the diffusion problem. In pa − R0 space the stability 
condition is that dR0 /dpa > 0 for stability. Following the earlier 
discussion on bubble dynamics, if R0 is below the equilibrium value 
the bubble shrinks and dissolves. Above it, the bubble grows by 
rectified diffusion. If it becomes too large, as in the second condition, 
then shape instabilities occur and the bubble becomes unstable. 
While the R0 vs. pa curves are useful for theoretical considerations,
they are not applicable to the laboratory results as R0 cannot be 
controlled directly experimentally. It will be shown shortly that for 
air bubbles only the argon concentration  is relevant. Hence, 
the stable regions can be identified in the plane  vs. pa as 
shown in Figure 17.6, which does not involve any fitted parameters. 
From an experimental point of view SBSL can only occur in a tiny 
region of parameter space.

4. Chemical stability
 Chemical stability comes into play because of the high temper-

atures known to exist inside the bubble at collapse, at least of the 
order of 10000 to 20000 K. Such temperatures will cause the disso-
ciation of the molecular constituents of the gas; for example, for an 
air bubble, N2 and O2 are dissociated at these high temperatures 
and the radicals will recombine to form such products as NO, NH, 
NO2, and HNO3, which are water soluble. In fact, for an air bubble 
only argon (about 1% of normal air) is stable. The above process 
will be repeated cycle after cycle, and it is easily seen that this cor-
responds to a process of argon rectification. When the bubble is big, 
dissolved gases diffuse into the bubble and after collapse the reac-
tion products dissolve in water as the argon steadily accumulates. 

Mg
Ṙ
Vg
----- 1≥=

p∞
Ar/p0

p∞
Ar/p0
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In this picture, SBSL of an air bubble is, in fact, that of an argon 
bubble. By a happy accident of nature, it is seen from Figure 17.7 
that the normal concentration of argon in natural air corresponds 
to the small available stable area in phase space. The model in this 
section is known as the dissociation hypothesis (DH).

17.3.4 Key Experimental Results

Experimental results for SBSL have been summarized briefly elsewhere [256, 
266, 268]. Here we focus attention on very recent results that are relevant 
to a critical understanding of the models for bubble dynamics and light 
emission.

17.3.4.1 SBSL Spectrum

It has been known from early on [266] that the spectrum was continuous in 
the visible and that there are no indications of the presence of line spectra. 
This result has recently been confirmed with nm resolution [266]. An inter-
esting set of controlled spectral measurements of MBSL and SBSL on iden-
tical fluids and gases with the same calibrated spectrometer was carried out 
by Matula et al. [269]. The spectra of dilute NaCl solutions show sharp 
emission lines for OH∗  and Na∗  for MBSL but a very continuous spectrum 
for SBSL. These results tend to confirm the generally accepted picture that 
MBSL emission lines involve dissociation of both gas and liquid molecules, 
and SBSL involves only the spectrum of gases dissolved in the liquid.

Typical SBSL spectra for rare gases dissolved in water are shown in Figures 
17.8 and 17.9. Figure 17.8 demonstrates a strong increase of the SBSL radiance 
with decreasing temperature. It has been shown by Hilgenfeldt et al. [270] 
that this increase in SBSL at lower temperatures is due to the temperature 
dependence of the water viscosity and vapor pressure and the argon solubility. 

FIGURE 17.8
Corrected spectra for a 150-mm partial pressure bubble of helium in water at various temper-
atures. (From Barber, B.P. et al., Phys. Rep., 281, 65, 1997. With permission.)
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Lower temperatures also allow larger stable bubbles and larger driving pres-
sures. Thus it is proposed that the temperature effect is mainly a bubble 
dynamics effect. The variation with wavelength shows several characteristic 
features. Above 800 nm, no spectra can be observed due to absorption by the 
water from 800 nm down to 300 nm. The spectrum shows a monotonic 
increase with a broad maximum for the case of xenon from 300 to 200 nm. 
Important corrections must be made due to absorption in the glass and water, 
yet in the UV below 200 nm the water absorbs all of the emitted light.

According to the DH hypothesis, the SBSL spectrum for an air bubble 
should be the same as that for a stable argon bubble. The latter has been 
calculated for two successful models to be described later, and good agree-
ment is found with Figure 17.9. Similar agreement has been found by 
Hammer and Frommhold [268]. In fact, the DH hypothesis has been veri-
fied experimentally by several direct tests that will now be described.

17.3.4.2 Direct Test of the DH Hypothesis

The DH hypothesis has been verified directly by several experimental studies 
and many others have given indirect supporting evidence. We describe 
briefly the first reported direct verification by Matula and Crum [271] and 
then list the other supporting evidence.

Matula and Crum developed a technique for monitoring R(t) and SBSL 
emission cycle by cycle. In this way, they were able to show that a bubble 
that had already been above the SBSL threshold sonoluminesces easily and 
that such a bubble resembles an argon bubble in its SL properties. Two sets 
of experiments were carried out:

1. A virgin air bubble was compared to one that had been stabilized 
for 30 s in the SL state. pa was then lowered below the threshold 
and after several thousand cycles it was then raised above the 

FIGURE 17.9
Room temperature spectra of various noble gases in a cylindrical resonator. No transmission 
corrections have been made. The gases were dissolved at 3 mm pressure. (From Barber, B.P. 
et al., Phys. Rep., 281, 65, 1997. With permission.)
© 2002 by CRC Press LLC



Cavitation and Sonoluminescence 23
threshold. SL occurred almost immediately. If, however, the bubble 
is kept too long below the threshold it reverts to the virgin state. 
These observations strongly support the hypothesis of accumula-
tion of argon above the SBSL threshold and depletion by diffusion 
below it.

2. In a second set of experiments, a pure N2 bubble was compared to 
a pure argon bubble under the same conditions. The pure N2 bubble 
behaved as the virgin air bubble in the first experiment while the 
pure argon bubble behaved as the “recycled” air bubble in the second
part of the above experiment. This strongly supports the conclusion 
that the latter had transformed into an argon bubble by a progressive
rectification process. The authors draw an additional conclusion 
from these experiments. Since argon rectification requires several 
thousand cycles of SBSL and MBSL bubbles only exist for several 
cycles, this is a fundamental difference between the two processes. 
Further confirmatory experimental studies of the DH hypothesis 
using a second harmonic added to the drive signal were carried 
out by Holzfuss et al. [272] and Ketterling and Apfel [273].

The following studies also support the DH hypothesis:

1. Experimental confirmation of the theoretical phase diagram for 
argon bubbles by Barber et al. [266]

2. Direct measurement of the phase diagram by Holt and Gaitan [274]
3. Ambient pressure variation of SBSL by Dan et al. [275]

17.3.4.3 SBSL Pulse Width

The early work indicated that the pulse width was too narrow to be meas-
ured: in one case less than 50 ps [261] and in another inferior to 12 ps [276]. 
However, recent elegant experiments by the group of W. Eisenmenger indi-
cate that the actual pulse width is in the range of 60 to 300 ps depending on 
the experimental conditions [277]. This work has had a considerable effect 
on the evaluation and evolution of the theoretical models.

The principle used is that of time-correlated single photon counting
(TC-SPC). A time-to-amplitude converter (TAC) is started by the first SBSL 
photon, stopped, and reset by the second, and the process continues. Thus 
a statistical count is made of the arrival times of independent single photons,
leading to a measure of the auto correlation function of the pulse shape. 
Since this depends on the experimental conditions, it is important to control 
the main parameters such as driving amplitude, gas concentration, etc. It 
was found that the full width half maximum (FWHM) increases with pa

and the gas concentration. Most importantly, it was found that the FWHM 
was independent of wavelength over the visible spectrum. This drives a 
nail into the coffin of the black-body model, which predicts a much larger 
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pulse width at the red end than in the UV. The results are, however, 
compatible with a Bremsstrahlung model as the mechanism for SBSL emission.

The above results were confirmed by other workers [278] and also sup-
ported by streak camera measurements by the same group [264]. It had 
been observed that the pulse shape was asymmetrical, but TC-SPC measure-
ments could not distinguish if the slower part was on the rising or the 
trailing edge. The steak camera results showed directly that the trailing 
edge had a slower decay, and the other results were compatible with those 
obtained by TC-SPC. It was observed that the slower decay and its increase 
with pa were consistent with the conclusion that the energy emission is 
almost entirely due to emission of acoustic waves.

17.3.4.4 Shock Waves

The violent nature of the bubble collapse understandably led to much spec-
ulation on the possible role of shock waves. This was particularly true in the 
early period, when it was thought the the SBSL flashes were much narrower 
than 50 ps. A detailed shock wave model by Wu and Roberts [265] was able 
to predict pulse widths compatible with this feature. However, with the more 
recent work showing pulse widths of the order of 50 to 300 ps, shock waves 
are no longer seen as an essential component of successful theories. The 
situation has also been complicated by the success of the DH hypothesis. 
Finally, there are two quite separate stories to discuss, namely the existence 
of shock waves inside the bubble as opposed to their existence outside the 
bubble. These will be considered separately, as the experimental and theo-
retical implications are quite different in the two cases.

Wu and Roberts assumed a spatially and temporally varying pressure and 
temperature inside the bubble. They solved the RP equation together with 
the hydrodynamic conservation equations for a van der Waals air bubble. 
The system was solved with a fine grid of points with a temporal resolution 
of about 4.10−4 ps near the principal minimum of the bubble radius. They 
obtained detailed solutions for all of the relevant thermodynamic parameters 
in a region 400 ps around the minimum. Solutions were found for a shock 
wave spherically converging on the bubble center, giving rise to an extremely 
sharp temperature spike. Using a Bremsstrahlung model, they calculated a 
very sharp SBSL spike emitted near the principal minimum.

The role of shock waves was considered later by Cheng et al. [279] in the 
light of the DH hypothesis. They considered a much more complete descrip-
tion of the physical processes than that of Wu and Roberts by including 
diffusion effects, variable gas content, surface tension, and compressibility. 
They used a range of equations of state for nitrogen and argon bubbles. The 
inclusion of a hard core affects the compressibility; a higher compressibility 
favors shock formation. In fact, they found that whether shocks were excited 
or not depends in a sensitive fashion on the choice of parameters. Globally, 
it was found relatively feasible to excite shocks in nitrogen (air) but not in 
argon. In the context of the DH model, they suggest that shocks may well 
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occur during the argon rectification stage during the period that the bubble 
is being cleansed of air, and smooth compressional waves dominate the 
situation during the argon-rich part of the process. There is little experimen-
tal input on the question; it has been observed that the bubble wall collapse 
speed well exceeds Mach 1 (/M/ ∼  3) but no shock waves that could exist 
inside the bubble could be detected by the technique used [266].

The status of shock formation in the liquid is equally fascinating. A number 
of studies [263] using needle hydrophones placed close to the bubble report 
observation of ae, but any shock wave that was present at emission would 
have transformed into any ordinary sound pulse at distance much less than 
the 1 to 2 mm hydrophone distance. Also, extrapolation of measured sound 
pressures back to the bubble center is too uncertain a process to allow any 
conclusions to be drawn. The question was settled by the elegant experi-
ments of Pecha et al. [264], who used a streak camera to image the emission 
of a shock wave from the bubble. They found a variation of the velocity from 
4000 m/s at emission to 1430 m/s, the velocity of sound in water at 60°C, the
ambient temperature, after a propagation distance of 50 µm. The imaging
mechanism was provided by the refractive index gradient at the shock front. 
The Cole formula was used to estimate the acoustic pressure gradient p(z) 
from the measured velocity gradient extrapolating back to the bubble to 
obtain a pressure of about 60 kb at emission.

17.3.4.5 Ambient Pressure Variation

Ambient pressure was seen to have an effect on MBSL and this is also true 
for SBSL. The theoretical situation was studied by Kondic et al. [280] in the 
framework of the RP equation. They focused attention on the relation between
p0 and R0. At first, they found a decrease in the expansion ratio when p0 is 
increased, predicting a decrease in R0 at constant pa. They also studied the 
dependence of R0 on pa and p0 for different gas concentrations ci/c0. In the 
stable regions of the solution, for air bubbles this implies an increase of R0

with p0. For concentrations corresponding to argon bubbles (ci/c0 ∼  0.002), the
theory predicts a decrease in R0 with increase of p0. Thus, measurement of 
the variation of R0 with p0 provides a direct test of the DH hypothesis. An 
experimental study by Dan et al. [275] for air bubbles in the accessible range 
of p0: 0.8 to 1.0 b confirmed both of these predictions: an increase of SBSL 
by a factor of about five when decreasing p0 to 0.8 b at constant pa, and an 
increase of R0 from 7 to 9 µm, in support of the DH hypothesis. The bubble 
disappeared below 0.8 b, presumably due to shape instabilities.

There is a second way to study the influence of p0 indirectly. Young et al. 
[281] applied magnetic fields B up to 20 T to air bubbles in water in the range 
10 to 20°C. The objective was to see if the field had an effect on the plasma 
at the bubble center that was predicted by many models. Experimentally, 
they found that the thresholds for SBSL increased with B, leading them to 
propose that B acted as a kind of negative acoustic pressure. Yasui [282] 
provided a detailed theoretical foundation. He showed that for a polar liquid, 
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B gives rise to a Lorentz force on the molecular dipole moment. Incorporating 
this in the RP equation, he found that it adds a term that is formally equiv-
alent to increasing p0. Comparison with the experimental results of Young 
indicates that the application of a field of 6 T corresponds to a 10% change 
in p0. The model predicts that the effect should increase with the magnetic 
flux density and the amount of water in the cell. It also predicts that there 
should be no effect on nonpolar liquids.

17.3.5 Successful Models

One of the most difficult challenges in SBSL remains the determination of 
the origin of the light-emitting mechanism. In part, this is due to the difficulty 
in probing inside the bubble. As a consequence, most of the main evidence 
is provided by the details of the optical emission spectrum. The latter being 
continuous, a priori there is no unique matching of a model spectrum to 
experiment. However, enough important parameters have emerged so critical 
comparisons can be made. We briefly describe two successful models that 
have so far passed all of the tests provided by experiment.

Hilgenfeldt et al. [283] put forward a simple model that correctly predicts
the parameter dependences of the temporal and frequency properties of the 
light emission. The approach is based on the use of simple bubble dynamics, 
assuming a spatially uniform temperature, isothermal during most of the
collapse, and adiabatic just near the minimum. Applying the DH hypothesis 
they assume only noble gases are in the bubble in the steady state. Using typical
parameters for the experiment, they calculate maximum temperatures of the 
order of 20000 to 30000 K, leading to a small degree of ionization of the noble 
gases (∼ 3% for argon and 10% for xenon). The absorption and emission 
processes are assumed to be the following:

1. Bremsstrahlung due to electrons near ions
2. Bremsstrahlung due to electrons near neutrals
3. Ionization/recombination

The calculated spectrum is in good agreement with experiment regarding 
FWHM, FWHM wavelength independence, spectral variation of intensity, 
relative behavior of argon and xenon, and their partial pressure depen-
dence. The model is simple, does not rely on extraordinarily high temper-
atures or pressures in the bubble, and does not need to invoke a new and 
exotic mechanism for light emission.

An alternative approach that has also successfully met comparison with 
experiment is by Moss et al. [284] in which the bubble is modeled as a ther-
mally conducting partially ionized plasma. The model incorporates shock 
wave generation on collapse, leading to excess heating at the bubble center, 
and local ionization and creation of a two-component plasma of ions and 
electrons. An energy cascade occurs from ions to electrons to photons via a 
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Bremsstrahlung emission mechanism. Comparison is made with “a star in 
a jar,” with a hot, optically opaque center, and a cooler, optically thin outer 
region. As in most of the models, the action predominantly occurs in the 
final 100 ps. The calculated spectrum is in good agreement with experiment. 
The main difference between the two models is the assumption of uniform 
heating in the first case and shock waves in the second. Both models are 
firmly based on the DH hypothesis. It may be that in practice both mecha-
nisms may be operative during different phases of the compression cycle, 
as proposed by Cheng et al. [279].
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Appendix A

TABLE A.1

Bessel Functions of the First Kind of Order 0 and 1, 
Together with the Directivity Function for a Piston

x J0(x) J1(x)

Pressure Intensity 

0.0 1.0000 0.0000 1.0000 1.0000
0.1 0.9975 0.0499 0.9988 0.9975
0.2 0.9900 0.0995 0.9950 0.9900
0.3 0.9776 0.1483 0.9888 0.9777
0.4 0.9604 0.1960 0.9801 0.9607
0.5 0.9385 0.2423 0.9691 0.9391
0.6 0.9120 0.2867 0.9557 0.9133
0.7 0.8812 0.3290 0.9400 0.8836
0.8 0.8463 0.3688 0.9221 0.8503
0.9 0.8075 0.4059 0.9021 0.8138
1.0 0.7652 0.4401 0.8801 0.7746
1.1 0.7196 0.4709 0.8562 0.7331
1.2 0.6711 0.4983 0.8305 0.6897
1.3 0.6201 0.5220 0.8031 0.6450
1.4 0.5669 0.5419 0.7742 0.5994
1.5 0.5118 0.5579 0.7439 0.5534
1.6 0.4554 0.5699 0.7124 0.5075
1.7 0.3980 0.5778 0.6797 0.4620
1.8 0.3400 0.5815 0.6461 0.4175
1.9 0.2818 0.5812 0.6117 0.3742
2.0 0.2239 0.5767 0.5767 0.3326
2.1 0.1666 0.5683 0.5412 0.2929
2.2 0.1104 0.5560 0.5054 0.2555
2.3 0.0555 0.5399 0.4695 0.2204
2.4 0.0025 0.5202 0.4335 0.1879
2.5 −0.0484 0.4971 0.3977 0.1581
2.6 −0.0968 0.4708 0.3622 0.1312
2.7 −0.1424 0.4416 0.3271 0.1070
2.8 −0.1850 0.4097 0.2926 0.0856
2.9 −0.2243 0.3754 0.2589 0.0670
3.0 −0.2601 0.3391 0.2260 0.0511
3.1 −0.2921 0.3009 0.1941 0.0377
3.2 −0.3202 0.2613 0.1633 0.0267
3.3 −0.3443 0.2207 0.1337 0.0179
3.4 −0.3643 0.1792 0.1054 0.0111

(continued)

2J1(x)
x

----------------
2J1(x)

x
---------------- 

 
2
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TABLE A.1 (continued)

Bessel Functions of the First Kind of Order 0 and 1, 
Together with the Directivity Function for a Piston

x J0(x) J1(x)

Pressure Intensity 

3.5 −0.3801 0.1374 0.0785 0.0062
3.6 −0.3918 0.0955 0.0530 0.0028
3.7 −0.3992 0.0538 0.0291 0.0008
3.8 −0.4026 0.0128 0.0067 0.0000
3.9 −0.4018 −0.0272 −0.0140 0.0002
4.0 −0.3971 −0.0660 −0.0330 0.0011
4.1 −0.3887 −0.1033 −0.0504 0.0025
4.2 −0.3766 −0.1386 −0.0660 0.0044
4.3 −0.3610 −0.1719 −0.0800 0.0064
4.4 −0.3423 −0.2028 −0.0922 0.0085
4.5 −0.3205 −0.2311 −0.1027 0.0105
4.6 −0.2961 −0.2566 −0.1115 0.0124
4.7 −0.2693 −0.2791 −0.1188 0.0141
4.8 −0.2404 −0.2985 −0.1244 0.0155
4.9 −0.2097 −0.3147 −0.1284 0.0165
5.0 −0.1776 −0.3276 −0.1310 0.0172
5.1 −0.1443 −0.3371 −0.1322 0.0175
5.2 −0.1103 −0.3432 −0.1320 0.0174
5.3 −0.0758 −0.3460 −0.1306 0.0170
5.4 −0.0412 −0.3453 −0.1279 0.0164
5.5 −0.0068 −0.3414 −0.1242 0.0154
5.6 0.0270 −0.3343 −0.1194 0.0143
5.7 0.0599 −0.3241 −0.1137 0.0129
5.8 0.0917 −0.3110 −0.1073 0.0115
5.9 0.1220 −0.2951 −0.1000 0.0100
6.0 0.1506 −0.2767 −0.0922 0.0085
6.1 0.1773 −0.2559 −0.0839 0.0070
6.2 0.2017 −0.2329 −0.0751 0.0056
6.3 0.2238 −0.2081 −0.0661 0.0044
6.4 0.2433 −0.1816 −0.0568 0.0032
6.5 0.2601 −0.1538 −0.0473 0.0022
6.6 0.2740 −0.1250 −0.0379 0.0014
6.7 0.2851 −0.0953 −0.0285 0.0008
6.8 0.2931 −0.0652 −0.0192 0.0004
6.9 0.2981 −0.0349 −0.0101 0.0001
7.0 0.3001 −0.0047 −0.0013 0.0000
7.1 0.2991 0.0252 0.0071 0.0001
7.2 0.2951 0.0543 0.0151 0.0002
7.3 0.2882 0.0826 0.0226 0.0005
7.4 0.2786 0.1096 0.0296 0.0009
7.5 0.2663 0.1352 0.0361 0.0013
7.6 0.2516 0.1592 0.0419 0.0018
7.7 0.2346 0.1813 0.0471 0.0022
7.8 0.2154 0.2014 0.0516 0.0027
7.9 0.1944 0.2192 0.0555 0.0031
8.0 0.1717 0.2346 0.0587 0.0034

2J1(x)
x

----------------
2J1(x)

x
---------------- 

 
2

© 2002 by CRC Press LLC



     
Appendix B

Acoustic Properties of Materials

The following tables are reprinted from the Specialty Engineering Associates 
(SEA) Web site (www.ultrasonic.com) with the permission of Johnson-Self-
ridge, P., and Selfridge, R. A., Approximate materials properties in isotropic 
materials, IEEE Trans., UFFC SU-32, 381, 1985 (©   IEEE, with permission). 
Notes and references on the abbreviations used are given at the end of the 
tables. Except where noted, the notation is the same as has been used 
throughout this book. For a list of vendors consult the SEA Web site.

Note that the units as originally expressed by the author have been modified
to respect the convention used in this book.
© 2002 by CRC Press LLC
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 7.4   

© 2002 by
E B.1

stic Properties of Solids and Epoxies

Solid/Epoxy
VL

(103 m/s )
VS

(103 m/s)
ρρρρ

(103 kg/m3)

Alumina 10.52  3.86
Aluminum - rolled 6.42 3.04 2.7
AMD Res-in-all - 502/118, 5:1 2.67  1.35
AMD Res-in-all - 502/118, 9:1 2.73  1.35
Araldite - 502/956 2.62  1.16
Araldite - 502/956, 10phe C5W 2.6  1.23
Araldite - 502/956, 20phe C5W 2.54  1.39
Araldite - 502/956, 30phe C5W 2.41  1.5
Araldite - 502/956, 40phe C5W 2.31  1.67
Araldite - 502/956, 50phe C5W 2.13  1.95
Araldite - 502/956, 60phe C5W 2.1  2.24
Araldite - 502/956, 70phe C5W 1.88  3.17
Araldite - 502/956, 80phe C5W 1.72  4.71
Araldite - 502/956, 50phe 325mesh W 2.16  2.86
Araldite - 502/956, 60phe 325mesh W 1.91  2.78
Araldite - 502/956, 70phe 325mesh W 1.82  3.21
Araldite - 502/956, 80phe 325mesh W 1.64  4.55
Araldite - 502/956, 90phe 325mesh W 1.52  8.4
Arsenic tri sulphide As2S3 2.58 1.4 3.2
Bacon P38 4 2.17 1.9
Bearing babbit 2.3  10.1
Beryllium 12.89 8.88 1.87
Bismuth 2.2 1.1 9.8
Boron carbide 11  2.4
Boron nitride 5.03 3.86 1.965
Brass - yellow, 70% Cu, 30% Zn 4.7 2.1 8.64
Brick 4.3  1.7
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24

 

0.3

 

 

 

AS

  

4.02  1.69 @ 5
AS 2.67  5.68 @ 5
AS 7.31   
AS 6.26 0.17  
AS 7.38   
 

  

42.4 0.39  
KF 8   
CRC 44.6 0.37  
AS 4.45 0.38 6.6 @ 2
AS 4.58   
AS 10.91  13.2 @ 2
AS 3.25   
AS 4.61  8.3 @ 2
AS 3.84   
AS 4.44   
AS 6.4 0.33  
AS 3.11   
AS 3.29   
AS 3.78   
AS 5.95   
AS

  

3.24  8.3 @ 2
AS

  

3.16 0.36 7.4 @ 1.3
AS

  

3.3  8.8 @ 2
AS

  

4.18 0.32  
AS

  

4.27 0.31  
AS 8.74   
AS 8.06   
AS 11.3   
AS 2.64 0.4  
AS 2.65   
AS 2.62   

 

(

 

continued

 

)
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Cadmium 2.8 1.5 8.6
Carbon aerogel 3.5  1.15
Carbon aerogel 3.14  0.85
Carbon - pyrolytic, soft, variable properties 3.31  2.21
Carbon - vitreous, very hard material 4.26 2.68 1.47
Carbon - vitreous, Sigradur K 4.63  1.59
Columbium (same as Niobium) m.p. 2468°C 4.92 2.1 8.57
Concrete 3.1  2.6
Copper, rolled 5.01 2.27 8.93
DER317 - 9phr DEH20, 110phr W, r3 2.18 0.96 2.04
DER317 - 9phr DEH20, 115phr W, r3 1.93  2.37
DER317 - 9phr DEH20, 910phr T1167, r3 1.5  7.27
DER317 - 10.5phr DEH20 rt, outgass 2.75  1.18
DER317 - 10.5phr DEH20, 110phr W, r3 2.07  2.23
DER317 - 13.5phr mpda, 50phr W, r1 2.4  1.6
DER317 - 13.5phr mpda, 100phr W, r1 2.19  2.03
DER317 - 13.5phr mpda, 250phr W, r1 1.86 0.93 3.4
DER332 - 10phr DEH20, rt cure 48 hours 2.6  1.2
DER332 - 10.5phr DEH20, 10phr alumina, r2 2.61  1.26
DER332 - 10.5phr DEH20, 30phr alumina, r2 2.75  1.37
DER332 - 11phr DEH20, 150phr alumina, r2 3.25  1.83
DER332 - 14phr mpda, 30phr LP3, 70°C cure 2.59  1.25
DER332 - 15phr mpda, 25phr LP3, 76°C cure 2.55 1.18 1.24
DER332 - 15phr mpda, 30phr LP3, 80°C cure 2.66  1.24
DER332 - 15phr mpda, 50phr alumina, 60°C cure 2.8 1.43 1.49
DER332 - 15phr mpda, 60phr alumina, 80°C cure 2.78 1.45 1.54
DER332 - 15phr mpda, SiC, r5 3.9  2.24
DER332 - 15phr mpda, SiC, 25phr LP3, r5 3.75  2.15
DER332 - 15phr mpda, 6 micron W, r5 1.75  6.45
DER332 - 50phr V140, rt cure 2.34 0.97 1.13
DER332 - 64phr V140, rt cure 2.36  1.13
DER332 - 75phr V140, rt cure 2.35  1.12
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AS

  

2.55   
AS   7.5 @ 2,

11.2 @ 2.5
AS 2.74  9.6 @ 2
AS 2.63  12.0 @ 2
AS

  

6.24   
CRC 17.63 0.34  
AS 2.5  13.3 @ 0.5
AS 2.68  8.4 @ 5
AS 12.01  9.4 @ 5
AH 4.2   
AH 5.25   
AH 6.65   
AH 9.02   
AH19 12   
AS 11.88  15.9 @ 4
 3.4 0.45  
 2.85   
 2.94   
 4.88   
AS 3.21  4.5 @ 2
AS 3.14  8 @ 2
AS 3.25  6 @ 2
AS 3.22  6 @ 2
DYNA 12.55 0.17 6.2e-5 @ 2
M

    

29.6   
 14.09   

© 2002 by
E B.1 (continued )

stic Properties of Solids and Epoxies

Solid/Epoxy
VL

(103 m/s )
VS

(103 m/s)
ρρρρ

(103 kg/m3

DER332 - 100phr V140, rt cure 2.32  1.1
DER332 - 100phr V140, 30phr LP3, r8 2.27 1.13 2.55

DER332 - 100phr V140, 30phr LP3, r9 2.36  1.16
DER332 - 100phr V140, 50phr LP3, r8 2.32  1.13
DER332 - 50phr V140, 50phr St. Helens Ash, 60°C 2.43  1.94
Duraluminin 17S 6.32 3.13 2.79
Duxseal 1.49  1.68
E.pox.e glue, EPX-1 or EPX-2, 100phA of B 2.44  1.1
Eccosorb - CR 124 - 2PHX of Y 2.62  4.59
Ecosorb - MF 110 2.61  1.6
Ecosorb - MF 112 2.4  2.19
Ecosorb - MF 114 2.29  2.9
Ecosorb - MF 116 2.45  3.69
Ecosorb - MF 124 2.6  4.5
Eccosorb - MF 190 2.67  4.45
Epon - 828, mpda 2.829 1.23 1.21
Epotek - 301 2.64  1.08
Epotek - 330 2.57  1.14
Epotek - H70S 2.91  1.68
Epotek - V6, 10phA of B, r6 2.61  1.23
Epotek - V6, 10phA of B, r7 2.55  1.23
Epotek - V6, 10phA of B, 20phA LP3, r6 2.6  1.25
Epotek - V6, 10phA of B, 20phA LP3, r7 2.55  1.26
Fused silica 5.7 3.75 2.2
Germanium, mp = 937.4°C, transparent to infared 5.41  5.47
Glass - corning 0215 sheet 5.66  2.49

 CRC Press LLC



 

A
ppendix B

 

415

 

 

  

11.4 0.28  
 11.1 0.245  
 10.1 0.25  
AE 16   
 14   
 13.1 0.24  
AE 12.1   
AE 13   
 13.4   
 10.5   
RB 5   
CRC 63.8 0.42  
EM 17.6   
M

    

51   
 0.19   
AS

  

3.19  17.0 @ 5
BB 4.52   
BB 4.3   
BB 4.7   
BB 5.33   
BB 6.1   
BB 7.04   
AS

  

4.88  22.4 @ 5
AS

  

4.7  15.1 @ 5
AS

  

5.4  14.9 @ 5
 3.49   
 3.39   
BB 3.05   
BB 2.92   
BB 3.07   
BB 3   

 

(

 

continued

 

)
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Glass - crown 5.1 2.8 2.24
Glass - FK3 4.91 2.85 2.26
Glass - FK6 (large minimum order) 4.43 2.54 2.28
Glass - flint 4.5  3.6
Glass - macor machinable code 9658 5.51  2.54
Glass - pyrex 5.64 3.28 2.24
Glass - quartz 5.5  2.2
Glass - silica 5.9  2.2
Glass - soda lime 6  2.24
Glass - TIK 4.38  2.38
Glucose 3.2  1.56
Gold - hard drawn 3.24 1.2 19.7
Granite 6.5 2.7  
Hafnium, mp = 2150°C, used in reactor control rods C 3.84  13.29
Hydrogen, solid at 4.2 K 2.19  0.089
Hysol - CAW795/25 phr HW796 50°C 2.7  1.18
Hysol - C8-4143/3404 2.85  1.58
Hysol - C9-4183/3561 2.92  1.48
Hysol - C9-4183/3561, 15phe C5W 2.62  1.8
Hysol - C9-4183/3561, 30phe C5W 2.49  2.14
Hysol - C9-4183/3561, 45phe C5W 2.3  2.66
Hysol - C9-4183/3561, 57.5phe C5W 2.16  3.27
Hysol - EE0067/H3719 76°C, formerly C9-H905 2.53  1.93
Hysol - EE4183/HD3469 90°C 2.99  1.57
Hysol - EE4183/HD3469, 20phr 3µ Alumina 3.07  1.76
Hysol - ES 4212, 1:1 2.32  1.5
Hysol - ES 4412, 1:1 2.02  1.68
Hysol R8-2038/3404 2.59  1.18
Hysol R9-2039/3404 2.59  1.13
Hysol R9-2039/3469 2.61  1.17
Hysol R9-2039/3561 2.53  1.18
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RLB

     

7.54

 

 

 

33.5 @ 5

 

 

     

3.66

 

0.34

 

 

 

 

  

47.2 0.31  
 18.7   
 46.4 0.29  
 33.2 0.27  
 24.6 0.44  
 20.5  Q = 15
 33   
 10 0.32  
AE 10.5   
 63.1 0.29  
 47.6 0.33  
 49.5 0.3  
M 42.2 0.39  
AS 1.76  10.5 @ 1

RLB 1.79 0.36 5.3 @ 5
CRC 69.8 0.32  
RLB 5.61 0.27 1.2 @ 5
RLB 11 0.31 2.0 @ 5
 2.86   

© 2002 by
E B.1 (continued )

stic Properties of Solids and Epoxies

Solid/Epoxy
VL

(103 m/s )
VS

(103 m/s)
ρρρρ

(103 kg/m3

Hysol R9-2039/3561, 427phr WO3 2.15  3.51
Ice 3.99 1.98 0.917
Inconel 5.7 3 8.28
Indium 2.56  7.3
Iron 5.9 3.2 7.69
Iron - cast 4.6 2.6 7.22
Lead 2.2 0.7 11.2
Lead metaniobate 3.3  6.2
Lithium niobate - 36° rotated Y-cut 7.08  4.7
Magnesium - various types listed in ref ‘M’ 5.8 3 1.738
Marble 3.8  2.8
Molybdenum 6.3 3.4 10
Monel 5.4 2.7 8.82
Nickel 5.6 3 8.84
Niobium, m.p. = 2468°C 4.92 2.1 8.57
Paraffin 1.94  0.91

Phillips 66 “Crystallor” 2.17 1.03 0.83
Platinum 3.26 1.73 21.4
Poco - DFP-1 3.09 1.73 1.81
Poco - DFP-1C 3.2 1.81 3.2
Polyester casting resin 2.29  1.07
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AE 13.5   
 31   
 4.1   
 33   
AS 37.5   
 4.2  Q = 10
KF 15.3 0.42  
AS 6.61  14.9 @ 5
AS 4.92  54.7 @ 5
M 1.93   
M 10.37   
PK 44.3   
DP 2.08   
AS 3.7  3.8 @ 1.3
 6.24   
 1.84   
AS 19.7   
PK 42   

© 2002 by
Porcelain 5.9  2.3
PSN, potassium sodium niobate 6.94  4.46
Pressed graphite 2.4  1.8
PZT 5H - Vernitron 4.44  7.43
PZT - Murata 4.72  7.95
PVDF 2.3  1.79
Quartz - X-cut 5.75 2.2 2.65
Resin Formulators - RF 5407 3.06  2.16
Resin Formulators - RF 5407, 30 PHR LP3 2.56  1.92
Rubidium, mp = 38.9, a ‘getter’ in vacuum tubes 1.26  1.53
Salt - NaCl, crystalline, X-direction 4.78  2.17
Sapphire (aluminum oxide) Z-axis 11.1 6.04 3.99
Scotch tape - 0.0025″ thick 1.9  1.16
Scotchcast XR5235, 38 pha B, rt cure 2.48  1.49
Scotchply SP1002 (a laminate with fibers) 3.25  1.94
Scotchply XP 241 2.84  0.65
Silicon - very anisotropic, values are approximate 8.43 5.84 2.34
Silicon carbide 13.06 7.27 3.217
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Long

Mate
�

(103 kg////m3) tan �
Tc

(°°°°C) Ref.

Lithiu 0.188 4.64 0.001 1150 [5]
K83 -
met

   finite 4.3  570  

K350 0.307 7.7 0.024 360 [8]
PCM      strong 7.4 0.006  [5]
P3 - a
titan

0.083 5.45 0.003 110 [5]

P5 - l 0.125 7.3 0.011 260 [5]
P6 - l 0.216 7.34 0.014 290 [5]
P7 - l 0.315 7.69 0.019 320 [5]
“surf 0.062 7.95 0.0014 280 [5]
“surf 0.063 7.95 0.0016 280 [8]
“surf
repo
for 5

0.062 7.95 0.0016 280 [8]

LTZ1 0.294 7.6 0.007 350 [8]
LTZ1
elec

0.287 7.6 0.007 350 [8]

LTZ2 0.301 7.5 0.02 360 [8]
LTZ2
elec

0.29 7.5 0.019 360 [8]

LTZ5 0.135 7.6 0.008 350 [5]
LTZ5 0.13 7.6 0.01 350 [8]
PZT4 0.219 7.5 0.008 328 [5]
PZT4 0.336 7.5 0.004 328 [6]

kp
2

© 200
E B.2

itudinal Wave Transducer Materials

rial (MRayl) (103 m////s) (103 m////s) Qm

m niobate - 36°Y-cut 34.2 7.36  100 39 0.24
 modified lead 
aniobate, after poling

25.6 5.95  110 150 0.169

 - lead zirconate titanate 33.7 4.381  75 790 0.249
35.7 4.82  150 270 0.291

n inexpensive barium 
ate

31.3 5.75  200 885 0.179

ead zirconate titanate 31.6 4.33  80 847 0.127
ead zirconate titanate 35.1 4.78  70 883 0.24
ead zirconate titanate 36 4.68  65 1000 0.259
ace wave material” 37.4 4.709  1000 240 0.23
ace wave material” 37.2 4.683  1000 230 0.231
ace wave material” after 
ling @200°C, 50V/0.001″ 
 min

37.4 4.706  1000 200 0.251

 - with plain electrode 35.6 4.682  500 640 0.254
 - with wrap-around 
trode

35.6 4.679  200 600 0.254

 - with plain electrode 35.4 4.717  75 920 0.262
 - with wrap-around 
trode

34.4 4.583  100 830 0.259

 - lead zirconate titanate 36.8 4.84  186 450 0.154
 - lead zirconate titanate 36.5 4.803  200 370 0.157
 - lead zirconate titanate 36.1 4.82  500 635 0.233
 - lead zirconate titanate 34.5 4.6  500 635 0.263

Z3
D V3

D V3
E

εεεε 33
s kt

2
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PZT5 0.285 7.75 0.023 365 [8]
PZT5 0.36 7.75 0.02 365 [6]
PZT5 0.36 7.5 0.025 193 [5]
PZT5 0.423 7.5 0.02 193 [6]
PZT5
titan

n.a. 7.5 0.02 193 [5]

PZT5
titan

n.a. 7.5 0.02 193 [5]

PZT8
not 
Vern

0.26 7.6 0.004 300 [6]

Pz 11 0.099 5.55 0.007 125 [5]
Pz 23 0.259 7.55 0.02 350 [5]
Pz 24 0.243 7.6 0.014 330 [5]
Pz 25 0.3 7.45 0.039 280 [5]
Pz 26 0.276 7.6 0.002 320 [5]
Pz 27 0.298 7.7 0.024 350 [5]
Pz 29 0.332 7.4 0.03 235 [5]
Pz 32 0.02 7.7 0.0024 400 [5]
Pz 45 ! 7.2 0.004 500 [5]
Nova 0 7.63 0.009  [5]
PC11 ! 7.6 0.0035 355 [5]
PC23 0.352 7.67 0.035 140 [5]
PC24 0.446 7.71 0.017 210 [5]
PC25 0.455 7.97 0.016 360 [5]
PC26 0.426 7.98 0.016 315 [5]

(continued)

© 200
A - lead zirconate titanate 34.5 4.445 3.97 75 870 0.24
A - lead zirconate titanate 33.7 4.35  75 830 0.236
H - lead zirconate titanate 32.6 4.35  50 1260 0.292
H - lead zirconate titanate 34.2 4.6  65 1470 0.255
H - lead zirconate 
ate, pillar mode

27.4 3.66 2.59 65 1450 0.549

H - lead zirconate 
ate, array element mode

28.5 3.8 2.81 65 1365 0.502

 - lead zirconate titanate, 
as uniform as other 
itron ceramics, brittle

35 4.6  1000 600 0.23

 - lead barium titanate 30.5 5.5  500 1150 0.158
 - lead zirconate titanate 34.4 4.56  100 900 0.241
 - lead zirconate titanate 35.9 4.72  2000 310 0.246
 - lead zirconate titanate 34 4.56  80 975 0.282
 - lead zirconate titanate 35.2 4.62  1000 790 0.256
 - lead zirconate titanate 34.8 4.51  60 930 0.257
 - lead zirconate titanate 33.2 4.49  60 1300 0.296
 - modified lead titanate 37.1 4.82  1000 250 0.181
 - bismuth titanate 34.8 4.83  1000 205 0.016 0
 7A - lead titanate 35.2 4.61  800 140 0.196 ~
 - lead titanate 37.2 4.89  800 140 0.223 0
 - lead zirconate titanate 35.9 4.68  60 2700 0.224
 - lead zirconate titanate 36.7 4.76  100 1150 0.277
 - lead zirconate titanate 37 4.64  120 530 0.23
 - lead zirconate titanate 37 4.63  100 700 0.229
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TABL  

Long

Mate
�

(103 kg////m3) tan �
Tc

(°°°°C) Ref.

EC64
pilla

n.a. 7.5 0.0016 320 [5]

EC64
arra
equi

n.a. 7.5 0.004 320 [5]

EC97 0 6.7 0.009 240 [11]
EC98 0.263 7.85 0.02 170 [11]
EC69
plat

 7.5 0.038 300 [11]

Quar 0.01 2.65 0.0001 575 [9]
ZnO,
6 m

 5.68 small  [10]

LT01 small 7.7 0.0033 300 [11]
SEA3 0.52 7.8 0.007 260 RLB
C580  7.55 0.0103 300 AS

kp
2

© 200
E B.2 (continued )

itudinal Wave Transducer Materials

rial (MRayl) (103 m////s) (103 m////s) Qm

 - lead zirconate titanate, 
r mode

29.4 3.924 3.046 1800 668 0.447

 - lead zirconate titanate, 
y element mode, PZT4D 
valent

30.5 4.065 3.155 400 650 0.447

 - lead titanate 34 5.08 4.38 950 188 0.295
 - lead magnesium niobate 33.4 4.26 3.82 70 3230 0.231
 - lead zirconate titanate, 
e mode

41.5 5.53  80 619 0.265

tz - X-cut 15.21 5.74  106 4.5 0.0087
 single crystal, hexagonal 
m Z-cut thin film

36 6.33   8.8 0.078

- lead titanate, plate mode 37.37 4.854  250 144.5 0.277
 - lead zirconate titanate 34.94 4.48 4.02 35 1100 0.26
0 pillar mode 30.05 3.981 3.111 7740 500 0.4389

Z3
D V3

D V3
E

εεεε 33
s kt

2
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TABL

Shea

Mate g////m3) tan � Tc (°C) Ref.

Lithiu 4 0.001 1150 [5]
“surf 5 0.0024 280 [7]
C5500 0.03 350 [5]
PZT-4 0.004 328 [6]
PZT-5 5 0.02 365 [6]
PZT-5 0.02 193 [6]
PZT-8
Vern

0.004 300 [6]

© 2002 by CR
E B.3

r Wave Transducer Materials

rial/Comments
Zs

(MRayl)
Vs

(103 m/s) Qm εεεεr kt

�
(103 k

m niobate 163° Y-cut 20.6 4.44 100 58.1 0.305 4.6
ace wave material” 22.1 2.78 1000 360 0.25 7.9

16.55 2.18 35 800 0.436 7.6
19.72 2.63 500 730 0.504 7.5

A 17.52 2.26 75 916 0.469 7.7
H 17.85 2.38 65 1700 0.456 7.5
 not as uniform as other 
itron ceramics, brittle

18.32 2.41 1000 900 0.303 7.6
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TABL

Acou

�
103 kg/m3)

ZL

(MRayl)

Poisson 
Ratio

(σσσσ)
Loss

(dB/cm)

AS 1.03 2.31  11.1 @ 5
AS 1.05 2.36 10.9 @ 5
AS 1.07 2.32 11.3 @ 5
AS 1.19 3.26 0.4 6.4 @ 5
AS 1.18 3.08 0.4 12.4 @ 5
M 1.4 3.63  
AS 1.19 2.56 21.9 @ 5
AS 1.42 3.45 30.3 @ 5
JA 0.94 1.69  
JA 0.95 1.6  
JA 1.35 2.99  
AS 1.2 2.75 23.2 @ 5
AS 1.06 2.68 5.1 @ 5
 1.18 3  
AS 1.27 2.97 20.0 @ 5
 1.7 4.93 7.2 @ 2.5
 1.12 2.9 0.39 2.9 @ 5
AS 1.14 3.15 16.0 @ 5
PKY 1.4 3 0.1 @ 1
PKY 1.18 2.6  
PKY 1.36 2.85  
AS 1.22 2.77 22.1 @ 5

AS 1.2 2.72 23.5 @ 5

© 200
E B.4

stic Properties of Plastics

Plastic
VL

(103 m/s)
VS

(103 m/s) (

ABS, Beige 2.23
ABS, Black, Injection molded (Grade T, Color #4500, “Cycolac”) 2.25
ABS, Grey, Injection molded (Grade T, Color #GSM 32627) 2.17
Acrylic, Clear, Plexiglas G Safety Glazing 2.75
Acrylic, Plexiglas MI-7 2.61
Bakelite 1.59
Cellulose Butyrate 2.14
Delrin, Black 2.43
Ethyl vinyl acetate, VE-630 (18% Acetate) 1.8
Ethyl vinyl acetate, VE-634 (28% Acetate) 1.68
Kydex, PVC Acrylic Alloy Sheet 2.218
Lexan, Polycarbonate 2.3
Lustran, SAN 2.51
Mylar 2.54
Kodar PETG, 6763, Copolyester 2.34
Melopas 2.9
Nylon, 6/6 2.6 1.1
Nylon, Black, 6/6 2.77
Parylene C 2.15
Parylene C 2.2
Parylene D 2.1
Polycarbonate, Black, Injection molded (Grade 141R, Color No. 701, 
“Lexan”)

2.27

Polycarbonate, Blue, Injection molded
(Grade M-40, Color No. 8087, “Merlon”) 2.26
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AS 1.18 2.69 24.9 @ 5
CRC 0.9 1.76  
 0.96 2.33  
 0.92 1.79 0.46 2.4 @ 5
AH 0.9 1.7   
 1.21 2.72   
 0.88 2.4  5.1 @ 5
AS 0.89 2.36  18.2 @ 5
 1.04 2.55   
AS 1.04 2.42 3.6 @ 5
 1.05 2.52 0.35 1.8 @ 5

1.11 2.6 0.37
 1.24 2.78 4.25 @ 2
AS 1.38 3.27 11.2 @ 5
AS 1.02 1.95 24.3 @ 5
AS 0.83 1.84 3.8 @ 1.3,

4.4 @ 4
AS 1.52 3.83 15.7 @ 5
AS 1.33 2.96 12.8 @ 5

© 200
Polycarbonate, Clear, Sheet Material 2.27
Polyethylene 1.95 0.54
Polyethylene, high density, LB-861 2.43
Polyethylene, low density, NA-117 1.95 0.54
Polyethylene DFDA 1137 NT7 1.9
Polyethylene oxide, WSR 301 2.25
Polypropylene, Profax 6432, Hercules 2.74
Polypropylene, White, Sheet Material 2.66
Polystyrene, “Fostarene 50” 2.45
Polystyrene, “Lustrex,” Injection molded (Resin #HF55-2020-347) 2.32 1.15
Polystyrene, Styron 666 2.4 1.15
Polyvinyl butyral, Butacite (used to laminate safety glass together) 2.35
PSO, Polysulfone 2.24
PVC, Grey, Rod Stock (normal impact grade) 2.38
Styrene Butadiene, KR 05 NW 1.92
TPX-DX845, Dimethyl pentene polymer 2.22

Valox, Black (glass filled polybutalene teraphlate “PBT”) 2.53
Vinyl, Rigid 2.23
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ZL

(MRayl)
Loss 

(dB/cm)

1.94  
2.0
1.16 23.4 @ 4
1.3 33.7 @ 4
2.16 33.4 @ 2
2.38 >24.0 @ 1.3

12.16 14 @ 0.4
1.63  
1.54  
2.1  
2.62 32.0 @ 5
1.96 46.1 @ 4
1.56  
1.74  
1.83 100 @ 5
1.91  
2.05  
2.36  
1.38  
1.55 73.0 @ 5
1.71  
1.78 35.2 @ 5
1.86  
1.92 35.2 @ 5
1.66  
1.68 27.6 @ 5
TABLE B.5

Acoustic Properties of Rubbers

Rubber
VL

(103 m/s)
ρρρρ

(103 kg/m3)

Adiprene LW-520 1.68 1.16
Butyl rubber 1.80 1.11

AS Dow Silastic Rubber GP45, 45 Durometer 1.02 1.14
AS Dow Silastic Rubber GP70, 70 Durometer 1.04 1.25
AS Ecogel 1265, 100PHA OF B, outgass, 80C 1.96 1.1
AS Ecogel 1265, 100PHA OF B, 100PHA Alumina, R4 1.7 1.4
AS Ecogel 1265, 100PHA OF B, 1940PHA T1167, R4 1.32 9.19
 Ecothane CPC-39 1.53 1.06
 Ecothane CPC-41 1.52 1.01
 Neoprene 1.6 1.31
AS Pellathane, Thermoplastic Urethane Rubber (55D durometer) 2.18 1.2
AS Polyurethane, GC1090 1.76 1.11
BB Polyurethane, RP-6400 1.5 1.04
BB Polyurethane, RP-6401 1.63 1.07
LP Polyurethane, RP-6401 1.71 1.07
BB Polyurethane, RP-6402 1.77 1.08
BB Polyurethane, RP-6403 1.87 1.1
BB Polyurethane, RP-6405 2.09 1.3
BB Polyurethane, RP-6410 1.33 1.04
LP Polyurethane, RP-6410 1.49 1.04
BB Polyurethane, RP-6413 1.65 1.04
LP Polyurethane, RP-6413 1.71 1.04
BB Polyurethane, RP-6414 1.78 1.05
LP Polyurethane, RP-6414 1.85 1.04
BB Polyurethane, RP-6422 1.6 1.04
LP Polyurethane, RP-6422 1.62 1.04
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2.59 12.2 @ 2
1.24 2.5 @ 0.8
1.32 2.8 @ 0.8
1.41 2.8 @ 0.8
1.32 3.2 @ 0.8
1.41 2.8 @ 0.8
1.37 34.0 @ 5.00
1.37 11.25 @ 2.25
1.37 3.69 @ 1.00
1.36 43.2 @ 5.00
1.35 10.8 @ 2.25
1.35 3.76 @ 1.00
1.41 22.2 @ 2.25
1.45 13.1 @ 2.25
1.44  
1.55  
1.64  
1.73  
1.78  
1.89  

(continued)
AS PR-1201-Q (MEDIUM), PHR 10, RT Cure 1.45 1.79
 RTV-11 1.05 1.18
 RTV-21 1.01 1.31
 RTV-30 0.97 1.45
 RTV-41 1.01 1.31
 RTV-60 0.96 1.47
AS RTV-60/0.5% DBT @ 5.00 MHz 0.92 1.49
AS RTV-60/0.5% DBT @ 2.25 MHz 0.92 1.49
AS RTV-60/0.5% DBT @ 1.00 MHz 0.92 1.49
AS RTV-60/0.5% DBT @ 5.00 MHz/10 PHR Toluene 0.92 1.48
AS RTV-60/0.5% DBT @ 2.25 MHz/10 PHR Toluene 0.91 1.48
AS RTV-60/0.5% DBT @ 1.00 MHz/10 PHR Toluene 0.91 1.48
AS RTV-60/0.5% DBT @ 2.25 MHz/5 PHR Vitreous C 0.94 1.49
AS RTV-60/0.5% DBT @ 2.25 MHZ/10 PHR Vitreous C 0.96 1.51
AS RTV-60/0.5% DBT @ 1.00 MHz/13.6 PHR W, R11 0.86 1.68
AS RTV-60/0.5% DBT @ 1.00 MHz/21.3 PHR W, R11 0.83 1.87
AS RTV-60/0.5% DBT @ 1.00 MHz/40.8 PHR W, R11 0.8 2.04
AS RTV-60/0.5% DBT @ 1.00 MHz/69.5 PHR W, R11 0.73 2.39
AS RTV-60/0.5% DBT @ 1.00 MHz/85.2 PHR W, R11 0.71 2.52
AS RTV-60/0.5% DBT @ 1.00 MHz/100.0 PHR W, R11 0.69 2.75
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Aco

L

ayl)
Loss 

(dB/cm)

AS .88  
 .36 3.2 @ 0.8
 .44 4.2 @ 0.8
 .99  
 .12  
 .07  
 .31 2.5 @ 0.8
AS .4 2.2 @ 0.8,

        8.4 @ 2
 .46 3.8 @ 0.8
 .18 4.35 @ 0.8
 .1   1 @ 0.8
 .29 2.2 @ 0.8
 .3  
AS .74 15.5 @ 1
JF  
JA .34  
JA .07  
JA .04  
JA .15  

© 200
LE B.5

ustic Properties of Rubbers

Rubber
VL

(103 m/s)
ρρρρ

(103 kg/m3)
Z

(MR

RTV-60/0.5% DBT @ 1.00 MHz/117.4 PHR W, R11 0.67 2.83 1
RTV-77 1.02 1.33 1
RTV-90 0.96 1.5 1
RTV-112 0.94 1.05 0
RTV-116 1.02 1.1 1
RTV-118 1.03 1.04 1
RTV-511 1.11 1.18 1
RTV-560, 0.6% DBT 0.99 1.41 1

RTV-577 1.08 1.35 1
RTV-602 1.16 1.02 1
RTV-615, use with 4155 primer 1.08 1.02 1
RTV-616 1.06 1.22 1
RTV-630 1.05 1.24 1
SOAB 1.6 1.09 1
Silly Putty, very lossy, hard to measure 1 1 1
Sylgard 170, a silicon rubber 0.974 1.38 1
Sylgard 182 1.027 1.05 1
Sylgard 184 1.027 1.05 1
Sylgard 186 1.027 1.12 1
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TABL

Acou

ρρρρ
03 kg/m3)

ZL

(MRayl)
Loss, αααα

( Np/cm)

0.871 1.02
0.9 1.069
0.934 1.131

M 0.891 1.05
LB 0.791 1.07 54
M 0.783 1.01
M 0.729 1.359
M 1.26 1.28
M 0.81 1.003 74.3
CRC 0.79 0.95 48.5
M 1.135 1.645
LB 0.786 0.92 92
CRC 0.791 0.872 30.2
M  0.804 0.983 64.5
M 0.81 0.976
M 0.86 1.132
M 1.022 1.675
DR 1.43 1.2 15.2
CRC  0.87 1.12 873
M 0.878 1.16
M 0.868 1.16  
 1.522 1.776 1.63
M 2.89 2.67  
M 0.84 0.827  
M 0.877 1.03  
M 0.988 1.431

(continued)

© 2002 by CR
E B.6

stic Properties of Liquids

Liquid
VL

(103 m/s)
∆∆∆∆V/∆∆∆∆T

(m/s°°°°C) (1

Acetate, butyl 1.27  
Acetate, ethyl, C4H8O2 1.19  
Acetate, methyl, C3H6O2 1.21
Acetate, propyl 1.18  
Acetone, (CH3)2CO at 25°C 1.174 −4.5
Acetonitrile, C2H3N 1.29  
Acetonyl acetone, C6H10O2 1.4  
Acetylendichloride, C2H2Cl2 1.02  
Alcohol, butyl, C4H9OH at 30°C 1.24  
Alcohol, ethanol, C2H5OH, at 25°C 1.207 −4
Alcohol, furfuryl, C5H4O2 1.45  
Alcohol, isopropyl, 2-Propanol, at 20°C 1.17  
Alcohol, methanol, CH3OH, at 25°C 1.103 −3.2
Alcohol, propyl (n) C3H7OH at 30°C 1.22  
Alcohol, t-amyl, C5H9OH 1.2  
Alkazene 13, C15H24 1.32  
Aniline, C6H5NH2 1.69  
Argon, liquid at 87K 0.84  
Benzene, C6H6, at 25°C 1.295 −4.65
Benzol 1.33  
Benzol, ethyl 1.34  
Bromobenzene C6H5Br at 22°C 1.167  
Bromoform, CHBr3 0.92  
t-Butyl chloride, C4H9Cl 0.98  
Butyrate, ethyl 1.17  
CARBITOL, C6H14O3 1.46
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TABL  

Acou

ρρρρ
03 kg/m3)

ZL

(MRayl)
Loss, αααα

( Np/cm)

CRC 1.26 1.448  
DR 1.221 1.65 10.1
CRC  1.594 1.48 538
M 1.88 1.82  
LB 1.106 1.442 167
M 1.1 1.432  
CRC  1.49 1.47  
M 0.962 1.4  
M 0.948 1.391  
M 0.99 1.222  
M 1.14 1.39  
M 0.813 1.07  
M 1.2 1.758  
M 1.033 1.425  
CRC 1.018 1.755  
CRC 0.713 0.7023  
M 0.94 1.241  
M    
M 1.134 1.842  
M 1.157 1.67  
3m 1.19 1.86  
3m 1.94 1.33  
3m 1.68 0.86  
3m 1.76 1.02  
3m 1.78 V  
3m 1.76 1.01  
3m 1.85 1.21  
LB 1.024 1.205 317

© 2002 by CR
E B.6 (continued )

stic Properties of Liquids

Liquid
VL

(103 m/s)
∆∆∆∆V/∆∆∆∆T

(m/s°°°°C) (1

, M Carbon disulphide, CS2 at 25°C 1.149  
Carbon disulphide, CS2, 25°C, 3 GHz 1.31  

, M Carbon tetrachloride, CCl4, at 25°C 0.926 −2.7
Cesium at 28.5°C the melting point 0.967  
Chloro-benzene, C6H5Cl, at 22°C 1.304  
Chloro-benzene, C6H5Cl 1.3  

,M Chloroform, CHCl3, at 25°C 0.987 −3.4
Cyclohexanol, C6H12O 1.45  
Cyclohexanone, C6H10O 1.42  
Diacetyl, C4H6O2 1.24  
1, 3 Dichloroisobutane C4H18Cl2 1.22  
Diethyl ketone 1.31  
Dimethyl phthalate, C8H10O4 1.46  
Dioxane 1.38  

, M Ethanol amide, C2H7NO, at 25°C 1.724 −3.4
, M Ethyl ether, C4H10O, at 25°C 0.985 −4.87

d-Fenchone 1.32  
Florosilicone oil, Dow FS-1265 0.76  
Formamide, CH3NO 1.62  
Furfural, C5H4O2 1.45  
Fluorinert FC-40 0.64  
Fluorinert FC-70 0.687  
Fluorinert FC-72 0.512  
Fluorinert FC-75 0.585  
Fluorinert FC-77 0.595  
Fluorinert FC-104 0.575  
Fluorinert FG-43 0.655  
Fluoro-benzene, C6H5F, at 22°C 1.18  
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AS 1.57 1.12  
DR 6.09 17.5 1.58
M 0.803 1  
CRC 1.26 2.34  
M 1.019 1.511  
M 1.116 1.77  
CRC 1.113 1.845 120
JA 1.108 1.76  
JA 1.087 1.75  
JA 1.06 1.71  
M    
M    
M    
M 1.12 1.784  
M 1.123 1.81  
DR 0.147 0.035 1.73
DR 0.145 0.033 70
DR 0.126 0.023 226
 0.659 0.727 87
M 0.819 1.065  
AS 1.42 2.89  
 0.07 0.08 5.6
LB 1.183 2.012 242
M 0.62 0.615  
CRC  0.81 1.072  
M 0.884 1.23  
CRC 13.5 19.58 5.8
M 0.85 1.115  
M 0.805 0.972  
M    
M 1.09 1.645  
M 1.107 1.411  

(continued)

© 2002 by CR
Freon, TF 0.716  
Gallium at 30°C mp = 28.8°C (expands 3% when it freezes) 2.87  
Gasoline 1.25  
Glycerin - CH2OHCHOHCH2OH, at 25°C 1.904 −2.2
Glycol - 2,3 butylene 1.48  
Glycol - diethylene C4H10O3 1.58  
Glycol - ethylene 1,2-ethanediol @ 25°C 1.658 −2.1
Glycol - ethylene Preston II 1.59  
Glycol - polyethylene 200 1.62  
Glycol - polyethylene 400 1.62  
Glycol - polypropylene (Polyglycol P-400) at 38°C 1.3  
Glycol - polypropylene (Polyglycol P-1200) at 38°C 1.3  
Glycol - polypropylene (Polyglycol E-200) at 29°C 1.57  
Glycol - tetraethylene C8H18O6 1.58  
Glycol, triethylene, C6H14O4 1.61  
Helium-4, liquid at 0.4 K 0.238  
Helium-4, liquid at 2 K 0.227  
Helium-4, liquid at 4.2 K 0.183  
n-Hexane, C6H14, liquid at 30°C 1.103  
n-Hexanol, C6H14O 1.3  
Honey, Sue Bee Orange 2.03  
Hydrogen, liquid at 20 K 1.19  
Iodo-benzene, C6H5I, at 22°C 1.104  
Isopentane, C5H12 0.992  

,  M Kerosene 1.324 −3.6
Linalool 1.4  
Mercury at 25.0°C 1.45  
Mesityloxide, C6H16O 1.31  
Methylethylketone 1.21  
Methylene iodide 0.98  
Methyl napthalene, C11H10 1.51  
Monochlorobenzene, C6H5Cl 1.27  
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Acou

ρρρρ
03 kg/m3)

ZL

(MRayl)
Loss, αααα

( Np/cm)

M 1 1.442  
DR 1.2 0.72 23.1
LB  1.01 1.505  
CRC   1.2 1.756  
DR  0.8 0.68 13.8
M 1.13 1.504  
JA 0.821 1.17  
CRC  0.969 1.431  
GD 0.942 1.42 10100
JA 0.922 1.34  
M    
M 0.99 1.472  
MH 1.17 1.24  
JA 0.94 1.37  
M 0.922 1.63  
JA 0.825 1.19  
JA 0.843 1.23  
JA 0.918 1.32  
M 0.835 1.86  
JA 0.914 1.31  
M 0.87 1.51  
 0.88 1.5  
JA 0.818 0.74  
JA 0.94 0.91  
JA 0.968 0.95  
JA 0.972 0.96  
MH 1.02 1.437  
MH 1.15 1.68  

© 2002 by CR
E B.6 (continued )

stic Properties of Liquids

Liquid
VL

(103 m/s)
∆∆∆∆V/∆∆∆∆T

(m/s°°°°C) (1

Morpholine, C4H9NO 1.44  
Neon, liquid at 27 K 1.2  
Nicotin, C10H14N2, at 20°C 1.49  

,M Nitrobenzene, C6H6NO2, at 25°C 1.463 −3.6
Nitrogen, N2, liquid at 77 K 0.86  
Nitromethane CH3NC2 1.33  
Oil - baby 1.43  

,M Oil - castor, C11H10O10 @ 25°C 1.477 −3.6
Oil - castor, @ 20.2°C @ 4.224 MHz 1.507  
Oil - corn 1.46  
Oil - diesel 1.25  
Oil - gravity fuel AA 1.49  
Oil - jojoba 1.455  
Oil - linseed 1.46  
Oil - linseed 1.77  
Oil - mineral, light 1.44  
Oil - mineral, heavy 1.46  
Oil - olive 1.445  
Oil - paraffin 1.42  
Oil - peanut 1.436  
Oil - SAE 20 1.74  
Oil - SAE 30 1.7  
Oil - silicon Dow 200, 1 centistoke 0.96  
Oil - silicon Dow 200, 10 centistoke 0.968  
Oil - silicon Dow 200, 100 centistoke 0.98  
Oil - silicon Dow 200, 1000 centistoke 0.99  
Oil - silicon Dow 704 @ 79°F 1.409  
Oil - silicon Dow 705 @ 79°F 1.458  
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GD 1.11 1.5 8200
JA 0.9 1.3  
JA 0.93 1.32  
M 0.88 1.268  
JA 0.92 1.34  
M 0.92 1.28  
JA 1.6 1.6  
DR   1.11 1 9.9
M    
 0.626 0.642 100
M    
M 0.83 1.51  
M 0.982 1.39  
M 8.81 21.32  
M 0.877 1.202  
AS 1.04 1.68  
M    
M 11.9 19.3  
M 1.05 1.1  
CRC 0.88 1.104  
M 0.87 1.191  
M 1.104 1.54  
M 1 1.483  
CRC 0.998 1.494 22
 1 1.509 19.1
DR 1 1.55 10.9
M    
M    
M    
CRC 1.025 1.569  
DR 2.86 1.8 22
CRC 1.37 1.222  
M 0.864 1.145  

© 2002 by CR
Oil - silicon Dow 710 @ 20°C 1.352  
Oil - safflower 1.45  
Oil - soybean 1.43  
Oil - sperm 1.44  
Oil - sunflower 1.45  
Oil - transformer 1.391.39  
Oil - wintergreen (methyl salicylate) 1.38  
Oxygen, O2, liquid at 90 K 0.9  
Paraffin at 15°C 1.3  
n-Pentane, C5H12, liquid at 15°C 1.027  
Polypropylene oxide (Ambiflo) at 38°C 1.37  
Potassium at 100°C, mp = 63.7°C (see ‘M’ for other temps) 1.82  
Pyridine 1.41  
Sodium, liquid at 300°C (see ‘M’ for other temps) 2.42  
Solvesso #3 1.37  
Sonotrack couplant 1.62  
Tallow at 16°C 0.39  
Thallium, mp = 303.5°C, used in photocells 1.62  
Trichorethylene 1.05  
Turpentine, at 25°C 1.255  
Univis 800 1.35  
Water - heavy, D2O 1.4  
Water - liquid at 20°C 1.48  

, DR Water - liquid at 25°C 1.4967 2.4
Water - liquid at 30°C 1.509  
Water - liquid at 60°C (temps up to 500°F listed in ‘CRC’) 1.55  
Water - salt 10% 1.47  
Water - salt 15% 1.53  
Water - salt 20% 1.6  
Water - sea, at 25°C 1.531 2.4
Xenon - liquid at 166 K 0.63  

,M Xylene Hexafloride, C8H4F6, at 25°C 0.879  
m-Xylol, C8H10 1.32  

C Press LLC



432 Fundamentals and Applications of Ultrasonic Waves
TABLE B.7

Acoustic Properties of Gases 

Gas
VL

(103 m////s)
∆∆∆∆V/∆∆∆∆T

(m////s°°°°C)
ρρρρ

(kg/m3)
ZL

(kRayl)

CRC Acetone vapor (C2H6O) at 97.1°C 0.239 0.32
CRC Air - dry at 0°C 0.33145 0.59 1.293 0.4286
M Air - at 0°C, 25 atm 0.332
M Air - at 0°C, 50 atm 0.335 
M Air - at 0°C, 100 atm 0.351 
M Air - at 20°C 0.344
M Air - at 100°C 0.386 
M Air - at 500°C 0.553 
CRC Ammonia (NH3) at 0°C 0.415  0.771 0.32
CRC Argon - at 0°C 0.319 0.56 1.783 0.569
CRC Benzene vapor (C6H6) at 97.1°C 0.202 0.3
CRC Cardon monoxide (CO) at 0°C 0.338 0.6 1.25 0.423
CRC Carbon dioxide (CO2) at 0°C 0.259 0.4 1.977 0.512
M Carbon disulfate 0.189
CRC Carbon tetrachloride vapor (CCl4) 

@ 97.1°C
0.145

CRC Chlorine at 0°C 0.206   3.214 0.662
CRC Chloroform - CH(Cl)3 at 97.1°C 0.171 0.24
CRC Deuterium at 0°C 0.89 1.6 0.19 0.1691
CRC Ethane - C2H6 at 0°C 0.308  1.356 0.418
CRC Ethylene - C2H4 at 0°C 0.317  1.26 0.4
CRC Ethanol vapor - C2H5OH at 97.1°C 0.269 0.4
CRC Ethyl ether - C4H10O at 97.1°C 0.206 0.3
CRC Helium at 0°C 0.965 0.8 0.178 0.172
CRC Hydrogen at 0°C 1.284 2.2 0.0899 0.1154
CRC Hydrogen bromide - HBr at 0°C 0.2  3.5 0.7
CRC Hydrogen chloride - HCl at 0°C 0.296  1.639 0.485
CRC Hydrogen iodide - HI at 0°C 0.157  5.66 0.889
CRC Hydrogen sulfide - H2S at 0°C 0.289  1.539 0.445
CRC Methane - CH4 at 0°C 0.43  0.7168 0.308
CRC Methanol vapor - CH3OH at 97.1°C 0.335 0.46
CRC Neon - at 0°C 0.435  0.9 0.392
CRC Nitric oxide - NO at 10°C 0.324  1.34 0.434
CRC Nitrogen - N2 at 0°C 0.334 0.6 1.251 0.418
CRC Nitrous oxide - N2O at 0°C 0.263 0.5 1.977 0.52
CRC Oxygen - O2 at 0°C 0.316 0.56 1.429 0.451
M Oxygen - O2 at 20°C 0.328  1.32 0.433
CRC Sulfur dioxide - SO2 at 0°C 0.213 0.47 2.927 0.623
M Water vapor at 0°C 0.401
M Water vapor at 100°C 0.405
CRC Water vapor at 134°C 0.494 
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Abbreviations

AE = Handbook of Tables for Applied Engineering Sciences
AH = Andy Hadjicostis, Nutran Company, 206-348-3222.
AJS = A.J. Slobodnik, R.T. Delmonico, and E.D. Conway, Microwave Acoustics 

Handbook, Vol. 3: Bulk Wave Velocities, Internal Report RADC-TR-80-188 
(May 1980), Rome Air Development Center, Air Force Systems Com-
mand, Griffiths Air Force Base, New York 13441.

AS = Alan Selfridge, Ph.D., Ultrasonic Devices, Inc.
CRC = Handbook of Chemistry and Physics, 45th ed., Chemical Rubber Com-

pany, Cleveland, OH, p. E-28.
DP = Don Pettibone, Ph.D., Diasonics, Sunnyvale, CA.
FS = Fred Stanke, Ph.D., Schlumberger, Inc., Ridgefield, CT, private commu-

nication. 
GD = Genevieve Dumas, IEEE Trans. Sonics Ultrason., Mar. 1983.
JF = John Fraser, Ph.D., ATL, Bothell, WA.
KF = Kinsler and Frey, Fundamentals of Acoustics, John Wiley and Sons, 1962.
LB = Schaaffs, W., Numerical Data and Functional Relationships in Science and 

Technology, New Series Group II:  and Molecular Physics, Vol. 5: Molecular 
Acoustics, K.H. Hellwege and A.M. Hellwege, Eds., Springer-Verlag, 
Berlin, 1967. (This reference contains velocity and density information 
for just about any organic liquid. Other volumes in this work contain 
much information on various anisotropic solids and crystals.)

LP = Laust Pederson
M = MetroTek Inc., Application Note 23.
ME = Materials engineering, Dec. 1982.
RB = Rick Bauer, Ph.D., Hewlett Packard, Page Mill Road, Palo Alto, CA.
RLB = Ram lal Bedi, Ph.D., formerly with Specialty Engineering Associates, 

Milpitas, CA.
SIM = Simmons, G. and Wang, H., Single Crystal Elastic Constants and Calcu-

lated Aggregate Properties, 2nd ed., MIT Press, Cambridge, MA, XV, 370, 
1971.

© Ultrasonic Devices Inc., 1996.
Tc = Curie temperature
εr = Relative dielectric constant, multiply by 8.84⋅10−12 for MKS units (F/m)
ε33 = Unclamped dielectric constant
kt = Coupling coefficient between E3 and thickness mode
kp = Planar (radial) moe coupling coefficient
tan δ = loss tangent (dimensionless)

 = Velocity corresponding to antiresonance (open circuit)V3
D
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 = Velocity corresponding to resonance
VS = Shear velocity
ZS = Shear impedance times 10−6 kg ⋅ m2/s

 = Longitudinal wave impedance corresponding to antiresonance times 
10−6 kg ⋅ m2/s
 = Change in acoustic velocity per change in temperature in m/s °C.

Loss, or attenuation, is given in several different formats in these tables. The 
most specific way is with the @ symbol. The number before the @ is the loss 
in dB/cm, the number after the @ symbol is the frequency at which the 
attenuation was measured in MHz. For liquids the attenuation is given in 
Np/cm. To get loss in dB/cm multiply α  by 8.686 ∗    f   2 where f is the fre-
quency of interest in Hz. This representation obviously assumes that loss 
increases in proportion to frequency squared, and is most commonly used 
for low-loss materials such as glass and liquids.

Transducer modeling programs will commonly assume loss increases only 
in proportion to the first power. If this is the case, then it is appropriate to 
use the material quality factor, or acoustic Q. To convert between dB/cm 
and Q, the following equations can be useful:
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V3
E

Z3
D

∆V
∆T
--------

Q 2 ∗  π ∗  Stored energy( )
Energy dissipated per cycle
-------------------------------------------------------------------=

Q W0
Stored energy

Average power loss
------------------------------------------------=

Q 86.9 ∗  π ∗  f 
dB/cm( ) ∗  velocity( )

-----------------------------------------------------=
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Appendix C

Complementary Laboratory Experiments

A system of group projects was developed during the evolution of the subject 
matter of this book when used for teaching purposes. One format involved 
the use of weekly problem sets for the fundamental part of the material 
(Chapters 2 through 10), similar in type and level to the questions found at 
the end of these chapters. During the second part of the course, two alter-
native schemes were used. One involved the assignment of term papers on 
a special topic, examples of which are given at the end of this section. The 
other, and more elaborate approach, consisted of experimental projects. 
These projects were open-ended as opposed to set-piece laboratory experi-
ments. What was actually done depended on the students’ backgrounds, 
availability of equipment, and qualified instructors. Hence it is stressed that 
the notes given below should be seen as guidelines or suggestions as to how 
a suitable laboratory component could be set up and not as formal, ready-
to-use laboratory methodology descriptions. 

For this second part of the course, students were divided into teams of 
two or three. A term project was carried out by each team, enabling the 
students to go more in depth in a given area than they could have done 
otherwise. Students were asked to divide up tasks in theory/computer cal-
culation on the one hand and experimental testing on the other. Typical 
subject areas are given below. The approach was very flexible, a particular 
aspect being worked out in consultation with the teacher, and the actual 
work carried out under the guidance of a graduate student. The projects 
were for approximately 1 month, after which the group compiled a single 
report synthesising the work of all of the participants. The work was then 
presented in a series of short oral presentations; instruction was given to 
assist in preparing the report and making the presentation, which was of  a 
length and style similar to that of conference presentations. The advantage 
of this approach was that students were generally very motivated to learn 
the theoretical part and to carry out a successful project. Learning to work 
in a team and acquiring communication skills were other advantages of this 
approach.

The required material was largely accessible from research laboratories. 
Computing requirements were modest and in all cases could be met with 
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the departmental PCs. The laboratory equipment available included:

1. HP Model 4195A Network/Spectrum Analyzer
2. One of the following:

a. MATEC RF tone burst ultrasonic generator and receiver (10 to 
90 MHz)

b. RITEC RAM 10000 tone burst ultrasonic generator and receiver 
(1 to 100 MHz)

c. UTEX  UT 320/340 Pulser/receiver or equivalent, such as those 
produced by Panametrics or Metrotek (tone burst systems are 
ideal for this type of experiment as they allow easy control and 
variation of the frequency and quantitative verification of 
frequency-dependent effects)

3. Standard RF attenuators, cables, etc.
4. Laboratory oscilloscope, ideally digital scope with FFT capability, 

such as the 300 MHz LeCroy digital oscilloscope

A list of typical projects is given below, with notes on particular aspects that 
can be easily investigated and compared with theory. This list is by no means 
exhaustive, and it is easy to extend it by the procurement of modest addi-
tional resources, such as focusing transducers, additional buffer rods, means 
of temperature variation and control, magnetic field etc.

1. Transducer characterization
It is useful to obtain a collection of piezoelectric transducers from 
various sources. Commercially packaged resonators can easily be 
obtained in the range 1 to 20 MHz, as can unmounted transducers, 
longitudinal or transverse, with either fundamental or overtone 
polish from suppliers such as Valpey Fisher Inc. In the latter case, 
LiNbO3 transducers with a fundamental in the range of 5 to 15 MHz
and with overtone polish are the most convenient choice, typically 
5 or 6 mm in diameter.

 Transducer characterization is best made with respect to a well-
defined equivalent circuit. This could be a series resonant circuit in
parallel with the static capacitance (Butterworth–Van Dyke equiv-
alent circuit for resonators) or the full Mason Model for a loaded 
transducer. Suggested experiments include:
a. Characterization of the resonance of an unloaded transducer 

(resonator) using the network analyzer; determination of trans-
ducer parameters by measurement of amplitude and phase 
response, as well as series and parallel resonant frequencies; iden-
tification of harmonic frequencies; effects of liquid loading on the
resonance for both longitudinal and transverse polarization.
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b. Frequency response of a transducer glued to a buffer rod, with 
air loading on the opposite face. Points to verify include:
(i) Frequency response of the odd harmonics.
(ii) Use of inductors/RF transformers to increase the transducer 

response.
(iii) Observation of echoes in the buffer rod.
(iv) Comparison of shape of the first echo with that of the ex-

citing RF pulse; effect of bond quality on the echo shape.
2. Bulk acoustic wave (BAW) propagation

Experiments in this section are based around the use of a trans-
ducer mounted on the end of a buffer rod. Ideally, buffer rods made 
of materials such as fused quartz, sapphire, etc. can be obtained 
with end faces optically polished and parallel from suppliers such 
as Valpey–Fisher. Otherwise, for studies in the low MHz range, it 
is possible to machine and polish the end faces of materials such 
as perspex, duraluminium, brass, stainless steel, etc., using stan-
dard workshop practices to obtain usable echo trains. Duralu-
minium is particularly useful due to its low attenuation and its 
machinability.

 The buffer rod should have dimensions of the order of 1 cm in 
length and 1 cm in diameter; these dimensions are not critical and 
should be chosen so that the rod diameter is significantly greater 
than that of the transducer, with the buffer long enough so that 
clearly separated, nonoverlapping echoes are observed on the oscil-
loscope. Longitudinal transducers with overtone polish and a fun-
damental frequency of 5 or 10 MHz are recommended for the 
experiments of this section. Such experiments include:
a. Mount the transducer on the end of the buffer rod with a suit-

able ultrasonic couplant; vacuum grease or silicon oil are con-
venient, as they give a good bond at room temperature which 
is stable for a few hours and is easily changed. The transducer 
bond can be improved by wringing it onto the buffer surface 
using a soft rubber eraser, for example.

b. Tuning the generator to the transducer fundamental frequency; 
observing echoes. Existence or not of an exponential decay of 
the echo amplitudes should be registered. Transducer bond can 
be optimized to give maximum echo amplitude.

c. Estimation of VL and comparison with the handbook value; 
estimation of absolute and relative error.

d. Using the same transducer bond as above, steps (b) and (c) should
be repeated at odd harmonic frequencies up to the maximum 
attainable values with the ultrasonic generator used. Variation 
of the overall modulation of the echo train and the number of 
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echoes is particularly significant. How can these be explained 
for the particular buffer rod used?

e. For a machined buffer rod, remachine one end face so that there 
are now nonparallel end faces to within a degree or so. Repeat 
step (d) and explain any observed variation in the modulation 
of the echo train.

3. BAW reflection and transmission

These experiments are most conveniently carried out with a buffer 
rod with the end opposite the transducer partially immersed in a 
liquid. In this configuration it is possible to measure reflection at nor-
mal incidence and transmission and reflection from a plate immersed 
in the liquid. The appropriate theoretical values can be calculated 
using the theory of Chapter 7. Recommended experiments are:

a. Use a 5- or 10-MHz longitudinal wave transducer bonded to 
one end of the buffer rod as in experiment #2; prepare buffer 
rods of plexiglass, duraluminum, and stainless steel, which form 
a convenient trio of buffer rods that have low, medium, and 
high acoustic mismatch to liquids such as water; design and 
construct sample holders to enable the far end to be immersed 
in a fluid bath.

b. Pulse echo experiments at low frequency in bare buffer rod; 
adjustment for obtaining maximum number of echoes.

c. Exposure of the end of the buffer rod to the fluid in question; 
recording of the echo pattern and comparison with that for the 
unexposed rod; calculation of the reflection coefficient for each 
echo; draw conclusions on the accuracy of the method vs. echo 
number.

d. Systematic study of the three buffer rods against three different 
liquids with significantly different acoustic impedances; com-
pare with theory.

e. For a given liquid-solid combination at a given frequency, cal-
culate the material and thickness of the layer needed to minimize
the reflected signal; attempt to verify this result experimentally.

f. Repeat (c) for the case where there is a reflecting plate immersed 
in the liquid; trace possible ray paths for various returning 
echoes in the buffer; compare with experiment to identify all 
observed echoes; estimate the reflection coefficient at the fluid-
plate interface.

4. SAW device fabrication, measurement, and sensor applications

IDTs operating at about 50 MHz can be made very easily in a standard
darkroom using photolithography techniques using the following 
materials; Y-Z LiNbO3 SAW plates, about 15 mm long, 10 mm wide, 
and 0.5 mm thick; mask for standard transmitter–receiver transducer 
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design, required to have an impedance of 50 Ω when used with 
the chosen substrate; 10 finger pairs for two transducers about 10 mm
apart, aperture approximately 5 mm for Y-Z lithium niobate. The 
steps for transducer fabrication are as follows:

a. Clean the substrate with acetone and soak in methanol.
b. Deposit approximately 200 nm film of aluminum by flash 

evaporation.
c. Deposit a photo-resist film by pipette on the substrate in yellow 

light conditions. Incline the substrate to drain off excess photo-
resist.

d. Bake the photo-resist film at 120°C for at least 15 min to harden 
the film.

e. Clamp the mask on top of the photo-resist film and expose to 
ultraviolet light for the recommended time.

f. Remove the mask in darkness and dip the substrate for a few 
moments in NaOH to remove the exposed portions of the photo-
resist. The remaining photo-resist protects the aluminum during 
etching.

g. Etch the plate in a solution of HNO3 , HCl, and H2O, removing 
it rapidly at the required moment to avoid overetching.

h. Thoroughly rinse the plate and then remove excess photo-resist 
with a small amount of NaOH.

If sufficient time and facilities are not available for in-house fabri-
cation, then finished SAW plates with IDTs can be bought from the 
manufacturer.

 A number of instructive experiments can be carried out using 
the SAW device. These include:
a. Testing the frequency response with the network analyzer: a

power splitter can be used to provide a reference signal, enabling 
tracing of the insertion loss as a function of frequency. The result 
should be compared with the expected theoretical response.

b. Transducer matching: if the impedance is 50 Ω, then it remains 
to tune out the static capacitance, here about 0.3 pF. This is most 
conveniently done with a variable inductance in series with the 
transducer.

c. Timing flight measurement: the transmitting transducer is ex-
cited by a low-amplitude tone burst. To prevent burnout of the 
IDTs it is advisable to use a fixed attenuator (PAD) of 10 or 20 dB
in series with the input if high power sources such as the Matec 
are used. The source and receiver are tuned to the IDT central 
frequency. Absolute and relative Rayleigh wave velocity of the 
substrate can be measured in this way. Compare the measured 
value with that given in the tables.
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d. Liquid loading by leaky waves can be demonstrated very effec-
tively by putting a drop of water on the substrate between the 
electrodes; the propagated acoustic signal immediately disap-
pears. It is instructive to repeat the experiment with liquids of 
lower acoustic impedance and increased volatility, such as acetone.

e. Transforming the SAW device into an oscillator is easily accom-
plished by placing an RF amplifier into a feedback loop con-
nected between the two IDTs, in series with an RF attenuator. 
The attenuator setting must be low enough so that the loop gain 
exceeds the losses. Interesting conclusions can be drawn from 
the behavior of the signal across the device observed on an 
oscilloscope at high and low values of attenuation. The oscilla-
tion frequency should be measured with a frequency counter.

f. Using the SAW device as a temperature sensor is possible due 
to the temperature dependence of the sound velocity in LiNbO3, 
which gives rise to a predicted temperature variation of the 
propagation time as 94 ppm/°C. In light of the discussion in 
Chapter 13, this can easily be measured as the frequency shift 
of the oscillator in the preceding section, which is directly pro-
portional to the delay time, hence the velocity variation. The 
SAW substrate can be placed on a cold plate and then a hot 
plate to cover a temperature range of about 100°C, around room 
temperature. A calibrated thermometer should be attached to 
the SAW substrate, which should then be cycled slowly in tem-
perature. Readings of the frequency shift at various fixed tem-
peratures should be made; the frequency shift vs. temperature 
should give a linear variation of a value close to that predicted.

5. Advanced experiments
There are a number of more advanced experiments of potential 
interest, but they rely on the availability of specialized equipment. 
These possibilities will be mentioned only briefly here; they have 
been found to be relatively easy to set up and to be instructive, 
even if carried out at an elementary level.
a. Acoustic radiation measurement by hydrophone and water 

tank
If an ultrasonic immersion test bath with x-y-z micropositioners 
is available, then this provides a suitable means for measuring 
the acoustic radiation patterns of immersion transducers. Im-
mersion transducers can be purchased from vendors such as 
Panametrics. Detection is carried out by a needle hydrophone 
which contains a small pointlike piezoelectric detector such that 
it does not perturb the acoustic field. Measurement of the radi-
ation pattern of a transducer and comparison with theory for 
both near field and far field is feasible.
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b. Acoustic microscopy: if a low-frequency acoustic microscope is 
available, there are a number of simple experiments that can be 
performed with few complications. The most direct of these is 
experimental verification of the resolution of an acoustic lens. The 
lens is focused on the edge of a plate and scanned in a direction 
perpendicular to the plate edge at constant height. It is important 
that the lens axis be vertical and the plate accurately adjusted to 
be horizontal. Over the plate the reflected amplitude is constant, 
and it then decreases continuously to zero as the focal point is 
scanned away from the plate edge into the bulk liquid. The  width 
of the resulting curve gives the resolution. This can then be com-
pared with theory for the lens opening and frequency used.

A second instructive experiment, done in the same configuration 
as above, is the measurement of a V(z) curve. The lens axis is 
centered on the middle of the plate, roughly in the focal position. 
In this case the x,y coordinates of the lens are held fixed, and the 
plate is scanned along the z axis toward the plate. A series of 
maxima and minima are observed as described in Chapter 14. The 
result can be used to deduce the Rayleigh wave velocity in the 
plate, which can then be compared to the tabulated value.
c. Schlieren imaging: if a Schlieren imaging system is available, then 

it is the tool of choice to image the propagation paths of ultrasonic 
waves. Typical operation is at 10 MHz in a water bath. Phenom-
ena such as direct reflection and Schoch displacement are easily 
observable, as is the imaging of a focused acoustic beam.

6. Topics for term papers
If suitable ultrasonic equipment is not available for experimental 
projects, then term papers involving literature searches and sum-
maries on specific topics are useful. Possible topics include:
Ultrasonic tomography
Fresnel acoustic lens
SAW biosensors
SAW gas sensors
SAW temperature senors
Acoustic spectrum analyser
Laser generation of ultrasound 
Equivalent circuit model of IDTs
Acoustoelectric effect
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