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A Daniela
Preface

The imagination is stricken by the substantial conceptual identity between
the problems met in the theoretical study of physical phenomena. It is abso-
lutely unexpected and surprising, whether one studies equilibrium statistical
mechanics, or quantum field theory, or solid state physics, or celestial me-
chanics, harmonic analysis, elasticity, general relativity or fluid mechanics
and chaos in turbulence.

So that when in 1988 I was made chair of Fluid Mechanics at the Universita
La Sapienza, not to recognize work I did on the subject (there was none) but,
rather, to avoid my teaching mechanics, from which I could have a strong
cultural influence on mathematical physics in Roma, I was not excessively
worried, although I was clearly in the wrong place. The subject is wide,
hence in the last decade I could do nothing else but go through books and
libraries looking for something that was within the range of the methods
and experiences of my past work.

The first great surprise was to realize that the mathematical theory of fluids
is in a state even more primitive than I was conscious of. Nevertheless it
still seems to me that a detailed analysis of the mathematical problems is
essential for any one who wishes research into fluids. Therefore I dedicated
(Chap.3) all the space necessary to a complete exposition of the theories
of Leray, of Scheffer and of Caffarelli, Kohn and Nirenberg, taken directly
from the original works.

The analysis is preceded by a long discussion of the phenomenological as-
pects concerning the fluid equations and their properties, with particular
attention to the meaning of the various approximations. One should not
forget that the fluid equations do not have fundamental nature, i.e. they
ultimately are phenomenological equations and for this reason one “cannot
ask from them too much”. In order to pose appropriate questions it is neces-
sary to dominate the heuristic and phenomenological aspects of the theory.
I could not do better than follow the Landau-Lifshitz volume, selecting
from it a small, coherent set of properties without (obviously) being able
nor wishing to reproduce it (which, in any event, would have been useless),
leaving aside most of the themes covered by that rich, agile and modern
treatise, which the reader will not set aside in his introductory studies.

In the introductory material (Chaps.1,2) I inserted several modern remarks
taken from works that I have come to know either from colleagues or from
participating in conferences (or reading the literature). Here and there,
rarely, there are a few original comments and ideas (in the sense that I did
not find them in the accessed literature).

The second part of the book is dedicated to the qualitative and phenomeno-
logical theory of the incompressible Navies—Stokes equation: the lack of ex-
istence and uniqueness theorems (in three space dimensions) did not have
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practical consequences on research, or most of it. Fearless engineers write
gigantic codes that are supposed to produce solutions to the equations: they
do not care the least (when they are conscious of the problem, which un-
fortunately seems to be seldom the case) that what they study are not the
Navier—Stokes equations, but just the informatic code they produced. No
one is, to date, capable of writing an algorithm that, in an a priori known
time and within a prefixed approximation, will produce the calculation of
any property of the equations’ solution following an initial datum and forces
which are not “very small” or “very special”. Statements to the contrary
are not rare, and they may appear even on the news: but they are wrong.

It should not be concluded from this that engineers or physicists that work
out impressive amounts of papers (or build airliners or reentry vehicles) on
the “solutions” of the Navier—Stokes equations are dedicating themselves to
a useless, or risible, job. On the contrary their work is necessary, difficult
and highly qualified. It is, however, important try and understand in which
sense their work can be situated in the Galilean vision that wishes that the
book of Nature be written in geometrical and mathematical characters. To
this question I have dedicated a substantial part of the book(Chap. 4,5):
where I expose descriptive or kinematical methods that are employed in
the current research (or, better, in that part of the current research that I
manage to have some familiarity with). These are ideas born in the seminal
works of Lorenz and Ruelle-Takens, and in part based on stability and
bifurcation theory and aim at a much broader and ambitious scope.

Chaotic phenomena are “very fashionable”: a lot of ink flowed about them
(and many computer chips burnt out) because they attract the attention
even of those who like scientific divulgation and philosophy. But their per-
ception is distorted because to make the text interesting for the nonspecial-
ized public, often statements are made which are strong and ambiguous.
Like “determinism is over”, which is a statement that, if it has some basis
of truth, certainly does not underline that nothing changes for those who
cherish a deterministic conception of physical reality (a category to which
all my colleagues and myself belong) or for those who did cherish it (like
Laplace) when the “theory of chaos” was not, yet.

Hence in discussing chaotic properties of the simplest fluid motions I do
not investigate at all philosophical themes, nor the semantic interpretation
of the words illustrating objective properties. This is so in spite of the “light
and non technical” appearance of this part of the book, which is in fact not
light at all and it is very technical and collects a long sequence of steps,
each of which is so simple not to require technical details.

I find it important that anyone is interested in science—related philosophical
matters (in Greek times this encompassed all of philosophy but things have
changed since; c.f.r. [BS98], [Me99]) should necessarily dedicate the time
needed for a full understanding of the technical instruments (such as ge-
ometry, infinitesimal calculus and Newtonian physics) as already indicated
by Galileo. It would be illusory to think one cpuld appreciate modern sci-
ence without such instruments (i.e. “science”, which is situated out of the
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elapsing time, and which is called “modern”, referring only to some of its

“accidents”); divulgence is often terribly close to mystification.

The analysis is set with the aim of studying the initial development of
turbulence, following the ideas of Ruelle-Takens, and, mainly, for the intro-
duction and discussion of Ruelle’s principle. This is a principle that, in my
view, has not been appreciated as much as it could, perhaps for its “abstruse
nature” or, as I prefer to think, for its originality. I became aware of it at
a talk by Ruelle in 1973; I still recall how I was struck by the audacity and
novelty of the idea. Since then I started to meditate on how it could lead to
concrete applications; a difficult task. In the conclusive Chap. 7 I expose a
few recent proposals of applications of the principle.

Section §6.1 is dedicated to the problem of the construction of invariant
(i.e. stationary) distributions for the Navier—Stokes, equations: collecting
from the literature heuristic ideas which seem to me quite interesting, even
when far from physical or mathematical applications (or from the solution
of the problem).

Kolmogorov “K41” theory cannot be absent in a modern text, no matter
how introductory, and it is succinctly discussed in §6.2; while in §6.3 I
describe some recent simulations which, in my view, have brought new ideas
into the theory of fluids (multifractality): a selection of whose partiality I
am aware and which is only partly due to space needs. Partly it is, however,
a choice made because it concerns research done in he area of Roma and
therefore is more familiar to me.

The last chapter contains several ideas developed precisely while I was
teaching the fluid mechanics courses. Often I deal with very recent works
which might have no interest at all in a few years from now. Nevertheless
I am confident that the reader will pardon my temerity and consider it as
a justifiable weakness at the end of a work in which I have limited myself
only to classical and well-established results.

I tried to keep the book self-contained, not to avoid references to the litera-
ture (that is always present, apart from unavoidable involuntary omissions)
but rather to present a unitary and complete viewpoint. Therefore I have
inserted, in the form of problems with detailed hints for their solution, a
notable amount of results that make the problems perhaps even more in-
teresting than the text itself. I tried use problems with a guided solution
to present results that could well have been part of the main text: they
are taken from other works or summarize their contents. Students who will
consider using the book as an introductory textbook on fluid mechanics
should try to solve all the problems in detail, without having recourse to
the quoted literature; I think that this is essential in order to dominate a
subject that is only apparently easy.!

1 Among the problems one shall find a few classical results (like elementary tides theory)
but also (1) phenomenology of nonhomogeneous chemically active continua, (2) Stokes’s
formula, (3) waves at a free boundary, (4) elliptic equations in regular domains (and
the Stokes equation theory), (5) smoke-ring motions, (6) Wolibner-Kato theory for the
2-dimensional Euler equation theory, (7) potential theory needed for Leray’s theory,
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(8) Sobolev inequalities needed for the CKN theory, (9) several questions on numerical
simulations, (10) some details on bifurcation theory, (11) a few comments on continued
fractions and on the geodesic flows on surfaces of constant negative curvature, (12) the
ergodic theorems of Birkhoff and Oseledec, (13) Lyapunov exponents for hyperbolic
dynamical systems, (14) some information theory questions (for entropy). I think that
until the last chapter, dedicated to more advanced themes, the only theorem used but
not proved (not even with a hint to a proof) is the center manifold theorem (because I
did not succeed developing a reasonably short self-contained proof, in spite of its rather
elementary nature). Several theorems are hinted at by using a heuristic approach. This
is because 1 find often missing in the literature the heuristic illustration of the ideas,
which is generally very simple at least in the simplest nontrivial cases in which they
usually were generated.
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1.1.1

1.1.2

§1.1: Continua 1

CHAPTER 1

Continua and generalities
about their equations

§1.1 Continua.

A homogeneous continuum, chemically inert, in d dimensions is described
by

(a) A region (2 in ambient space (2 C R?), which is the occupied volume.
(b) A function P — p(P) > 0, defined on {2, giving the mass density.
(¢) A function P — T'(P) defining the temperature.

(d) A function P — s(P) defining the entropy density (per unit mass).

(e) A function P — §(P) defining the displacement with respect to a
reference configuration.

(f) A function P — u(P) defining the velocity field.

(g) An equation of state relating T'(P), s(P), p(P).

(h) A stress tensor T, also denoted (7;;), giving the force per unit surface

that the part of the continuum in contact with an ideal surface element do,
with normal vector n, on the side of n exercises on the part of continuum
in contact with do on the side opposite to n, via the formula

d
df = ndo (zn)i =Y 7ijn; (1.1.1)
j=1

(i) A thermal conductivity tensor g, giving the quantity of heat traversing

the surface element do in the direction of n per unit time via the formula

dQ = —£ndT do (1.1.2)
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1.1.3

1.1.4

1.1.5

2 §1.1: Continua

(1) A volume force density P — g(P).
(m) A relation expressing the stress and conductivity tensors as functions
of the observables §,u, p, T, s.

Relations in (g), () are called the continuum constitutive relations: in a
microscopic theory of continua they must be deducible, in principle, from
the atomic model. However in the context in which we shall usually be the
constitutive relations have a purely macroscopic character, hence they are
phenomenological relations and they must be thought of as essential parts
of the considered model of the continuum.

More generally one can consider non homogeneous continua, with more
than one chemical components among which chemical reactions may occur:
here I shall not deal with such systems, but the foundations of their theory
are discussed in some detail in the problems at the end of §1 (¢.f.r. problems
[1.1.7]-[1.1.17]).

We can distinguish between solid and liquid (or fluid) continua. Liquids
have a constitutive relation that allows us to express 7 in terms of the
thermodynamic observables and, furthermore, of the velocity field u: in
other words 7 does not depend on the displacement field 4.

We always suppose the validity of the principles of dynamics and thermody-
namics: i.e. we assumne the validity of a certain number of relations among
the observables (listed above) which describe a continuum.

A notation widely used below will be 7 to denote a tensor 735, 1,5 = 1,...d;

and 7 u to denote the result of the action of the tensor 7 on the vector u,

i.e. the vector whose i-th component is }; 7;;u;. We shall often adopt the
summation convention over repeated indices: this means that. for instance,
ijl 7i;n; will be denoted (unless ambiguous) simply 7;n;.

In this way the relations imposed upon the observables describing the con-
tinuum by the laws of thermodynamics and mechanics are the following.

(I) Mass conservation.

If A is a volume element which in time ¢ evolves into A; it must be

/ p(P,0)dP = | p(P,t)dP (1.1.3)
A Ay

Choosing t infinitesimal one sees that the region A; consists of the points
that can be expressed as

P'=P+u(P)t, PeA (1.1.4)

and this relation can be thought of as a coordinate transformation P — P’
with Jacobian determinant

oP] Ou; Ouy;
i 14+ ) =1 - 2 1.1.
det 2P, det (1 + 6Pjt) +ti§:1 P, +0(t?) (1.1.5)
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§1.1: Continua 3

so that, neglecting O(#?):

/ p(P' ) dP’ =/ p(P+ut,t)(1 40 u)dP =
Ay A

1.1.6 (1.1.6)
:/ P(P)dP+t/ (Op-u+0p+ pd-u)dP
A A
hence we find, from (1.1.3):
17 Op+0-(pu) =0 (1.1.7)
which is the continuity equation.
(II) Momentum conservation (I cardinal equation)
d
118 7 pudP = [ pgdP + ndo (1.1.8)
A A 8A

To evaluate the derivative one remarks that at time ¢
[ w0 (P 0y ap =
Ay

- / p(P +u(P)9,9) (1 +98 - w) u(P + u(P)9, 9) dP
A
1.1.9 /6A(’I“E)ida: /A;(ajﬂj)dp (1.1.9)

and, therefore (1.1.8) becomes

3
110 Ou(pui) + D 9 (uj(pus)) = pgi + . 9jmij (1.1.10)
J

=1

i.e. , by (1.1.7) and the summation convention, we find

1
1.1.11 atuj +H'Quj =g;+ ;6k7'jk (1.1.11)

(111) Angular momentum conservation.

This is a property that is automatically satisfied, as a consequence of the
definition of stress tensor, (1.1.1): if one allowed a more general stress law
7;(n)do, rather than 7;;n;do with a symmetric 7, one would derive that it

imposes that 7(n);do must have the form 7;;n;do, and that 7;; = 7j;.
Let, indeed, A be a set with the form of a tetrahedron with three sides on
the coordinate axes and a face with normal vector n.

2/giugno/2000; 17:50



1.1.12

1.1.13

4 §1.1: Continua

Let 1,,7,,74 and 7, be the stresses that act on the four faces, with normal
vectors the unit vectors 4, j, k of the coordinate axes and n, respectively.
The angular momentum of A with respect to a point Py € A is K =
AP — Py) ApudP < 0(€%), if € is the diameter of A; also the momentum
of the volume forces has size 0(¢*). On the other hand the momentum of
the stresses is a priori of size 0(£3) unless the total force due to the stresses
vanishes:! hence in order that it be of size of order 0(¢*) (as it must by
consistence to avoid infinite angular acceleration of A) it is necessary that a
suitable relation between 7,,7,,75 and 7,, be verified. To find it note that
if the total stress force did not vanish to leading order as ¢ — 0, i.e. if

0 # 7(n)do — (1,doy + T,dos + T4dos) = (T(n) — Tyny — Tyn2 — Tyns)do

(1.1.12)

then it would follow that the total force would be cdo,¢ # 0, hence the

total angular momentum would be of size 0(¢3) with respect to some point
Py of A. Therefore

T(n); = Tjin (1.1.13)

(with the summation convention).?

A
z

IS

x

Furthermore it is 75; = 7;; as one sees by noting that, at leading order in ¢,
the angular momentum of the stresses on the faces of an infinitesimal cube

1 If the total force does not vanish it has size of order £2, i.e. proportional to the surface
area of A and then by changing Py inside A one can find (many) points Py with respect
to which the momentum of the stresses is of P(£3).

One can also say that this relation follows from the first cardinal equation: indeed if
cdo # 0 the total force would have size 0(¢2) while being equal to the time derivative
of the linear momentum which has size 0(£3).
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1.1.14

1.1.15

1.1.16

1.1.17

§1.1: Continua b)

with side ¢, with respect to the cube center, should be of O(¢*), as noted
above, but it is

ClEN L) +in(zi) +EA ()] (1.1.14)

Note that (z j); = (72):, (£ 4)i = 714, (T w)i = 73; are the components of the

stresses on the faces having as normals the coordinate unit vectors j,i,k
respectively, and if one imposes that (1.1.14) vanishes, one gets:

L J  k i j  k i J  k
O=det| O 1 0 + det 1 0 0 +det| O 0 1
T21 T22 723 i1 Ti12 Ti3 731 T32 T33

=i(72s — 732) + j (13 — 731) + k(721 — T12) (1.1.15)

so that 7;; = 7j; often called Cauchy’s theorem.
(1V) Energy conservation.

This is a more delicate conservation law as it involves also the thermody-
namic properties of the continuum.

We imagine that every infinitesimal fluid element A is a (ideally infinite)
system in thermodynamic equilibrium and, hence, with a well defined value
of the observables like internal energy, entropy and temperature.., etc.

The equation of state, characteristic of the continuum considered, will be a
relation expressing the internal energy e per unit mass in terms of the mass
density p and of the entropy per unit mass s: (p,s) — £(p, s).

Then the energy balance in a volume element A will be obtained by ex-
pressing the variation (per unit time) of its energy (kinetic plus internal)

d u?
— — P 1.1.16
T [ 05 +pea (1.1.16)

as the work performed by the volume forces, plus the work of the stresses on
the boundary of the volume element and, also, plus the heat that penetrates
by conduction from the boundary of A. This is the sum of the following
addends

/pg-gdP+/ 1@yda+/ Kij (O:T) -njdo = (1.1.17)
A 9 oA

AT
:/ pg -gdP-l—/ i (iu;) dP—/ Q-(p@)dP-l—/ 0i(kij0;T) dP
N A A A

where we wrote (defining ') 7;; = —pd;; + 7;; with p being the pressure

and where we assumed the validity of Fourier’s law (1.1.2) for the heat
transmission.
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1.1.18

1.1.19

1.1.20

6 §1.1: Continua

Equating (1.1.16),(1.1.17) and using (1.1.11) (multiplied by w and inte-
grated over A) to eliminate the term with kinetic energy one gets

a padP:/ [£'-0u+08 (s 0T)—pd-u]dP (1.1.18)
dt A A -~ ~

and in this relation we recognize that the last term in the r.h.s. is —pd|A|dt,
i.e. it is the work done per unit time by the pressure forces, while the
term before the last yields the quantity of heat that enters by conduction
in the volume element. The lh.s. is the variation per unit time of the
internal energy. Therefore from the first principle of thermodynamics dE =
d@Q —pdV we see that the first term in the r.h.s. must represent an amount of
heat entering the volume element. It is naturally interpreted as the quantity
of heat generated by friction forces described by the tensor z'.

Note that ' not only contributes to the energy balance through the heat
generated per unit volume by friction, i.e. £'0u, but also through the me-
chanical work (97 ')u per unit volume: such contributions appear, in fact,
summed together in (1.1.17) (in the form 9(z 'u) = £'0u +udz’).

This leads, therefore, to interpret 7' as an observable associated with

the friction forces inside the fluid as well as with the non normal internal
stresses.

In order that this interpretation be possible it is necessary, of course, that
7;; depends solely on the local thermodynamic quantities (s,7") and on the
gradient (and, possibly, on the higher order derivatives) of the velocity field
and, furthermore, it should vanish if the derivatives of the velocity vanish.
Hence in what follows 7/; =0 if du = 0.

The differential form of the (1.1.18) is

O¢(pe) + 0 (peu) = p(Ore +u-0e) =1" 0u +0- (5 T) —pQd-u (1.1.19)

having used (in the first identity), the continuity equation.
(V) II° law of thermodynamics and entropy balance
Eq. (1.1.19) can be combined with the second principle of thermodynamics

TdS = dE + pd|Al, and S = p|Als, E = p|Ale, d|A]/dt = 0 - w|A| which
gives T'd [, psdP =d [, pedP — [, dP. One obtains

Tp(Os+u-0s)=1"-0u+9(kIT) (1.1.20)

which is the form in which, in applications, energy conservation is often
used.
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1.1.21

1.1.22

1.1.23

§1.1: Continua 7

Introducing the heat current J, e _ & OT then (1.1.20) can be put in the

form

ds J or 1 J
=92 J =1 —Qu=-0-2L 1.1.21
T A TR e (1.1.21)
where ¢ is interpreted as entropy density generated per unit volume and unit
time. The o is also written as

o= JiX; (1.1.22)
J

where X is a vector with twelve components consisting in the —7~29,T,
T~'diu; and J; consists in the J, ;,7};.
Remark: In general thermodynamic forces X; are identified with parameters
measuring how far from thermodynamic macroscopic equilibrium the local
state of the fluid is (e.g. with a temperature or velocity gradient); and the
corresponding currents are identified with the coefficients J; that allow us
to express the entropy creation rate as a linear combination of the forces
X;, c.fr. (1.1.22). It is clear that the identification (“duality”) of the forces
and the thermodynamic currents is not free of ambiguities because in each
problem, given the entropy creation rate o, one can in general represent ¢
in several ways in the form (1.1.22). This is an ambiguity analogous to that
present in the identification, in mechanics, of the canonical coordinates from
a given Lagrangian: one gets different coordinates depending on which are
the variables from which one wants to think that the Lagrangian depends.
An unavoidable further problem lies in the fact that a really precise and
purely macroscopic definition of entropy creation rate is not, to date, well
established in systems out of equilibrium unless the systems are very close
to equilibrium. But this is not the place to enter into a discussion of the
foundations of nonequilibrium thermodynamics, see §7.1+§7.4.

A basic assumption often made in the dynamics of continua is that the
relationship between the thermodynamic forces X; and the currents or fluzes
is linear, at fixed values of the state observables p,p, T

Jj =Y LjxXx (1.1.23)
k

at least if the “thermodynamic forces” X are “small”. This relation can be
combined with the invariance properties for the Galilean transformations,
with other possible symmetries (present in fluids with more components
and/or chemically active) and with two principles of the thermodynam-
ics of irreversible processes, namely the Onsager reciprocity and the Curie
principle.  One obtains, in this way, important restrictions on the tensors
k,T'.
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Onsager’s relations imply that the matrix L is symmetric
L, = Ly; (1.1.24)

while the Curie’s principle says that some among the coefficients L;;, vanish.
If L;, = 0 one says that the current J; “does not directly depend on” (or

“does not directly couple with”) the thermodynamic force Xj. And Curie’s
principle is precisely that the currents J; that have a vectorial character,
i.e. are the components of an observable that transforms, under Galilean
transformations, as a vector (such as the J q), do not couple nor depend
directly on thermodynamic forces with different transformation (or “co-
variance”) properties (such as the derivatives O;u;, that have a tensorial
character). More generally there is no coupling between thermodynamic
forces and currents with different transformation properties with respect to
the symmetry groups of the continuum considered.

For instance the matrix x;; must be symmetric and 7;; must be (as it al-
ready follows from the 171 cardinal equation of dynamics, see above) sym-
metric and expressible in terms of the derivatives O;u; via a linear combi-
nation of Q;u; + J;u; e d;; Oruy, because these are the only tensors that one
can form with a linear dependence on the derivatives 0yu;

Kij = Kji, ng =7 (&-uj + 6Juz) + 77’ O g (52']' (1.1.25)
see (1.2.6), (1.5.2).

Onsager’s relations are a macroscopic consequence of the microscopic re-
versibility of dynamics, c.f.r. [DGM84] and the Curie principle also is rooted
on microscopic symmetries, [DGM84].

The second law of thermodynamics is imposed (not without some concep-
tual difficulties, see problem [1.1.17] below) by requiring that ¢ > 0: which
is obtained by demanding that the tensor £ be positive definite and that

7'-0u >0, i.e. in the case (1.1.25) n,n' + 21 > 0.

Problems.

[1.1.1]: Let X(z,t) be a generic observable and define a current line as a solution
t — x(t) of the equation
& =u(z,1)

where u(z, t) is a given velocity field. The substantial derivative 4X of X, is then defined

dt
by the t—derivative of X (z(t),t) and it is written as

d
EX(E(t)’t) =X +u-0X
Show that

d
pX = Ot (pX) + 2 - (pXu)

(Idea: Use the continuity equation for p).
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§1.1: Continua 9

[1.1.2]: Check that the continuity equation can be read as: “the substantial derivative
of pis —pd-u”.

[1.1.8]: (A kinetic theory problem) Consider a monoatomic rarefied gas, whose atoms
have mass m and radius ¢ and occupy the semi space z > 0. Imagine that the fluid is
undergoing with isothermal stratified motion with a small shearing velocity field of size
v(z) = z v’ parallel to the z—direction. Let p,, be the numerical density (number of atoms
per unit volume), A be the mean free path and v = (3k7/m)'/2 be the average thermal
agitation velocity (kp is Boltzmann’s constant and 7' is the absolute temperature). Find
a heuristic justification, neglecting the horizontal velocity components, for the statement
that the number of particles crossing an ideal surface at height z9 > A coming from
quotae z > zp and without suffering collisions is, approximately, 7 = A\/?

2

zo+A
/ dz / pn dzdy f(w)dw
zQ —wLT>A

if f(w) =eZBT (%L’;T)?’/z is Maxwell’s distribution (with kp representing the Boltz-

mann’s constant.

[1.1.4]: (kinetic theory for viscosity and heat conductivity) In the context of problem
[1.1.3] deduce that the variations of momentum and thermal kinetic energy (i.e. average
of % the square of the velocity minus the average velocity) contained in the gas layer at
height z < 2o, per unit time and surface, are respectively (recalling that we denote by v’

the derivative dt;—(z))
z

dh d T (2mhv’)
w—————(2mhv'),
pn 271'k;BT/m)1/2

2kBT 3 dT
dh d 2—kph—
/ / Pt 27rk;BT/m)1/2( B dz)

Deduce from this that the force per unit surface exerted by the fluid above the height 2o
on the part of the fluid below zg is F' = nv’ with:

i 2 d
n = mvpp A\, v = / e P /2 9P
V3 A% 2T

Deduce also that the amount of heat crossing per unit time and unit surface the height
: _ . dT
20 is Q@ = k- with

3
K= 5k317pn)\7

Hence that n = m-15 (Idea: Use the formula (in fact a definition) Ara?p, = 1
for the mean free path in terms of the atomic diameter o).

3kT
el

[1.1.5]: (Clausius—Mazwell relation between specific heat, viscosity and thermal con-
ductivity) In the context of problems [1.1.3],[1.1.4] assume that the stress tensor of the
gas is ’r” = n(d;uj + dju;) with n constant: compute the force per unit surface that
the part of the gas above height zp exerts on the part of gas below it and deduce that
n = 7; and that, therefore, the relation of Clausius—Mazwell holds between viscosity,
heat conductivity and specific heat at constant volume ¢, = %RMXI (if R is the gas

constants and M4 is the atomic mass, e.g. 4¢ for helium)

K= CyN]
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10 §1.1: Continua

and derive the independence of the viscosity n and of heat conductivity from the den-
sity and their proportionality to vI'. Check that, by refining the calculations, (e.g. not
neglecting the horizontal components of the velocities) the results only change by nu-
merical factors of O(1) independent on the physical quantities m, p,T: in particular the
Clausius—Maxwell relation does not change (in rarefied gases).

[1.1.6]: (energy fluz in a perfect fluid) Show that in a “perfect fluid” (i.e. with 7/, Kk, g =
0, c.f.r. (1.1.18)) it is

2

v? v? v
8t/p(5+e)dP=—/Q-py(5+w)dP=/ p(5+w)y-@da
\% % ov

2
where w = € + p/p. Hence p(% + w)g can be interpreted as energy fluz. (Idea: See
(1.1.18). Alternatively: if do is a surface element with external normal n the amount of
energy crossing do in the direction n is —p(v?/2 +¢€)v - ndo — pv - ndo because the first is
the quantity of energy that “exits” through do per unit time and the second is the work
performed through do by the part of fluid adjacent (but external) to it, per unit time).

[1.1.7] (mass conservation in miztures) Suppose that a fluid consists of a mixture of
n different fluids. Let p1,..., pn be the densities and w,,...,u, the respective velocity
fields. Then p = Z]. p; will be called the “total density” and u = p~ ! Z]. pju; the
“velocity field” of the fluid. Show that the continuity equations can be written in the
form

O pr = =8 - (pruy), orp=—23-(pu)
We shall set J = pu and J, = py (u;, — u): check that if £ 8 + u -9 then

dpr.
dt

1

=—pr0-u—-90-J,

[1.1.8] (mass conservation in chemically active miztures) In the context of problem
[1.1.7] suppose that r chemical reactions are possible between the n species of fluid and
that, otherwise, the particles interactions are modeled by hard cores so that the internal
energy is entirely kinetic.

If the chemical equation for the j-th reaction is EZZI nji, [k] = 0, where nj;, are stechio-
metric integers (e.g. 2[H2] + [O2] — 2[H20] = 0 involves three species Ha, O2, and H2O
of molecular mass 2, 16, 18 respectively), one defines the stechiometric coefficients of the
j-th reaction the quantities v = mgnj, where my is the molecular mass of the k-th
species. Then: ZZ:l vjr = 0, by mass conservation(Lavoisier law), Zk viru, = 0 by
momentum conservation and Ek Vjk %gi =1; by energy conservation if n); is the energy
yield in the j—th reaction.

Let R; be the number of chemical reactions of the j-th type that take place per unit
volume and unit time (a number which can have either sign: R; > 0 means that the
reaction proceeds in the direction of transforming molecules with negative stechiometric
coefficients into molecules with positive coefficients and viceversa for R; < 0). Show that
the equations of continuity are modified as

Ot pr = —Q-(pwkHZRj Vik, Orp = —0 - (pu)
j=1

Furthermore with the notations of [1.1.7]

T
dpr d
%:*PkQ'H*Q'lk‘f’ 5 R; vjg, d—i:fp@

IS

j=1
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§1.1: Continua 11

Finally setting ¢, = pi/p it is
dck
dt = Jk + E RJ Vik

[1.1.9] (momentum conservation in chemically active miztures) Check that in fluids
with several chemically active components the equation corresponding to the /-th cardinal
equation (i.e. to momentum conservation) is

273p+67 +Zpk9k
k=1

dt

where p is the sum of the partial pressures p; of each species, 7' is the sum of the stresses

1;\, on each species plus the tensor Zk uy, J ., and g, = —0V}, is the force, with potential

energy function Vi, per unit mass acting on the k-th species (which might be species
dependent: think, for instance, to a ionized solution in an electric field) provided the
total potential energy does not change in the chemical reactions (i.e. Zk vir Vi, = 0).
(Idea: Write the I-th cardinal equation for each species k:

Ot (prug) + 0 - (Prugu ) = —0pk + 91, + prg, + ZRjijﬂk
J
and sum over k taking into account the momentum conservation in [1.1.8].)

[1.1.10] (energy conservation in chemically active miztures)In the context of [1.1.8],
[1.1.9] call J, = (u;, — u) pi, the diffusion current of the k-th species, see [1.1.7], and
check that the energy conservation equation is

de ,
P = —pd-u+r1 Qg+2gk~ikfé-l

where pe = Zk ok (en + 3 1 (uy —u)?) and J, is suitably defined. (Idea: The energy in

a volume element A due to the k—th species is fA pr(ek + %gi) dx if €}, is the internal

energy per particle. We suppose that no interaction takes place between the species other
than that giving rise to chemical reactions and other than the hard core pair interaction

d
between the molecules. Then, setting ¥y, = (er + %gi), the energy balance for the k—th

species yields
Fe(pr9r) + 8- (prVpuy,) = —0 - (pryy,) +9(z jouy, )+

+org, u, + 0 (Ek - OT) + 0k

where k , - T is the heat flux into the species k£ and §j, is the total energy variation of

the species k due to the chemical reactions, d, = Ej vir(mjk + %gi), with n;; being the
dissociation energy of the k—th species into the components involved in the j—th reaction
so that Zk 0 = 0. Adding and subtracting v where appropriate and summing over k
one finds
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12 §1.1: Continua

1. 1. 1.
Be(pe +p522) +Q-(Z pr(er + Eyi) (), — u) + pe +9592) =
k

=0 (pw-2-Q_p(w, —uw)+9- (O i (w —w) + 3 u)+
k

k

+ Zpkgk (uy —w) + (Zpkgk) ‘ut9- (k- 0T)
k k
hence, from [1.1.9], [1.1.8], one gets the above result with

def 1 .
L= Z((gk—i—iﬂi)lk +£L@k_2)—17k(2k—y)) — k0T
k

see also [DGM84].)

[1.1.11] (heat transport in chemically active miztures)The second law of thermody-
namics, in the case of chemically active systems, takes the form 7'dS = dU + pdV —
Zk tr d(pr V') where py is the chemical potential per unit mass of the k-th species.

Proceeding as in (V) show that [1.1.8],[1.1.9],[1.1.10] imply

1 1
p(0¢s +u - Os) :*?Q'lqﬁ— fg"QEﬁ-

1
t o (e 2o Yo varim v, 1)
k

J

(Idea: Combine [1.1.10] with the second of [1.1.8] or, using the invariance of pV (mass
conservation) with the third of [1.1.8]).

[1.1.12] (entropy flow in chemically active miztures) Set, see also [1.1.10]

1
Aj :Zukl/jk, gy = 5 J, - Zuklk)
3

k=1
_ M pr 1 ;1 ~ A
U——lq'ﬁ— (lk'(Q?—;gk)+g-;Q2—ZRj?
k=1 j=

and check that the entropy balance equation in [1.1.11], generalizing (1.1.21), can be
written p

s
P 0-J,+o
and (therefore, brushing aside conceptual problems on the identification of the various
terms in the balance equation) the quantity J_ can be interpreted as the “entropy cur-
rent” transported by the velocity fields, while ¢ can be interpreted as the quantity of
entropy generated per unit volume (by the irreversible processes that develop during the
fluids motions). If this interpretation is accepted then the second law of irreversible ther-
modynamics requires that ¢ < 0. If this looks too strict an interpretation one should at
least have that I' = fadP <0.

[1.1.13] (entropy creation and thermodynamic forces and fluzes) Check that, defining
the “thermodynamic forces” X and the “thermodynamic currents” or “fluzes” as

3,;T M 3,;11,]' Aj
_ _9. Bk . _2
20 Oy kT

X=( ) L= Jgir Jri>Tiys Rj)
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§1.1: Continua 13

the entropy generated per unit volume o, defined in [1.1.12], can be written
o= JX,
J

thus extending to chemically active multicomponent fluids the results of the theory of
homogeneous fluids. Formulate the Curie principle and Onsager reciprocity relations for
such fluids. (Idea: They are “the same”).

[1.1.14] (entropy creation and constant transport coefficients) Suppose that in a n
components fluid the relation between thermodynamic forces and currents is linear: J; =
Zk L;, Xy, and that L;; are constants and satisfy Onsager relations. Then the entropy

. s d . c
production per unit time I’ = fQ o dP has time derivative

F:z/ZJj-athszz/ZatJj - X, dP
Q Q.
J J

(Idea: T = | Zj . LjkX;X), dP and differentiate).

[1.1.15] (completeness of the equations for miztures) Consider the system in [1.1.8] and
check that the number of equations equals the number of unknowns, listing the variables
and the equations chosen. (Idea: For instance we can describe the system by the densities
Pk, the velocity fields u,, the internal energies e; then the first of [1.1.8] are equations
for py, the [1.1.9] gives an equation for the u, and [1.1.10] gives the equation for the &y.
The equations of state s = sk(€k, pr) and pr = pr(ek, pr) (which are not independent)

give the entropy and the chemical potentials, hence the temperature 7' = gz: (which we

have assumed to be the same for all species) and the partial pressures; one also needs
the constitutive equations expressing the stresses and, more generally, the fluxes in terms
of the forces (i.e. the matrix L) so that for instance R; = ij, L Ek Vit (“law of

mass action”).)

[1.1.16] (Prigogine’s principle) Consider n fluids in mechanical equilibrium (p = cost
and u = 0), with boundary conditions in which T is constant in time (at every point of
the boundary) and the diffusive current of the k-th species vanishes (J, = 0 at every
boundary point). Assume that L;; are constants and that there are no volume forces
(gk = 0). Taking into account that Zk J,, = 0, check that the entropy produced per
unit time and volume is

r n—1
- 1 Aj Bk = Hn
o =Ly 07 = Y Ry - ) Lo @H
j=1 k=1

Check then that the states that make the entropy production I stationary (with respect to
the variations of the forces X) are time independent states (Prigogine). (Idea: Lagrange
equations for the minimum are LX =0, i.e. J = 0: hence R; = O,Jq =0,J, =0 and,

therefore, 2k = 0,4e = 0, 4= — 0 by [1.1.8],[1.1.9],[1.1.10].)
[1.1.17] (Prigogine’s minimal entropy production) Show that the time independent
states of the n fluids in [1.1.14] which minimize (in a strict sense) the entropy production
and that are states of mechanical and thermal equilibrium (i.e. with p, T constants as a
function of time, with 4 = 0 and with a Gibbs function per unit mass g = e —T's+pp~! =
& HECE which is a strict minimum at every fluid point) are states in stable equilibrium

among the thermal and mechanical equilibrium states if the fluids can be regarded as
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14 §1.1: Continua

perfect gases (Prigogine). (Idea: Imagine perturbing the state by slightly varying 7" and
cr, keeping 9p,u = 0; then the system evolves and one has, by [1.1.14]

n—1 Id
. 1 W — Un Aj
F_Z/n(lq-atgf;ik~6tQ-kT;Rj8tFj)dP
- /( 1,0 +Z (92, — ZR]qu ’“_“")dp
Q

And recalling that Zk vjr = 0 and the continuity equations for the concentrations cy
(in [1.1.8] and in the hint to [1.1.11])

n—1 s
r‘:2b/"(47Q'iﬁat%:+_§£: (Q.i% 47j{:zﬁkfg)(%fﬁL%¥ﬂl)df’:
Q k=1 Jj=1
dck
-2 [ (-2 - dP_Z/ 9-J,—
[ sk Soteatziya a0,

dch dck
Z_ *Hn)gg) apP

|
e

="
2|8
<
£

|
=
3
Hlb

and by our time independence assumption it is dd—" = O¢cp; note that T (pg — pn)

depends only on ¢, c, by the perfect gas assumption (in fact in a perfect gas of mass
my, and temperature T' the chemical potential is ur = kT (logpr — %log(chT)_1 -
g log myg)).

However in thermodynamics it is TdS = dU + pdV — Ek prd(crpV) (note that it is
convenient to introduce ¢ because p|A| is constant in time, while pg|A| is not such, by
the second equation in [1.1.8]).

Or: Tds = de+pdp~1 — Zk prdcey, so that (recalling that w = 0) one gets that (fQ-lq —
Zz;ll pOecy (g —pn)) 0t % is equal, by the equation in [1.1.10], which in the present case
becomes pdie = =0 J, to pOee — p Zk(,uk — pn)Otcy, = pCOT, to the heat generated
per unit volume and C is the heat capacity during the transformation.

The thermal equilibrium condition is that in a volume A the function G = U+p|A|-T'S =
>k tkprV (hence, see [1.1.11], dG = —SdT + |Aldp + ), prdpy|Al) be a minimum at
fixed T',p. Therefore in this case dg = Zz;ll(uk — pn)dey (where g = e — T's +pp~ 1),

n—1

and one sees that the quadratic form (Mée,dc) = ), — | ), (Hk — pn) dcpdcy, must be
positive definite. Hence

. pC 9 P
= 2/ (- ﬁ(atT)Z - ?(Matc,atc)) dP <0

in the states that are obtained by a small perturbation of an equilibrium state with
minimal I'.)

[1.1.18] The results on the minimality properties of I' extend to cases more general
than those treated in [1.1.16] but one cannot avoid the condition that the coefficients Ly
are constants, and therefore one cannot, on the basis of the above discussion, formulate a
universal principle stating that the time independent states in a multicomponent fluid are
obtained by minimizing the entropy production compatibly with the boundary condition
and with the acting forces (because the constancy of L;y is a rather restrictive assumption
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which is often not satisfied, not even approximately, c.f.r. [1.1.5]). One can then infer
that there must be some conceptual problem in the interpretation of the thermodynamics
of fluids? for instance the definition of entropy produced per unit mass in [1.1.12] and
(1.1.21) is not completely free of ambiguities and it has a phenomenological nature.
Hence a possible refoundation of nonequilibrium thermodynamics will have to be based
on the principles of mechanics rather than on an extension, in some sense arbitrary, of
the macroscopic equilibrium thermodynamics. It is conceivable that a generalization of
classical thermodynamics to nonequilibrium phenomena (even if statistically stationary)
may simply not be possible, at least not without a deep revision of the basic concepts.
Nothing, in fact, allows us to believe that a so simple and deep theory, such as equilibrium
thermodynamics, is really susceptible of extensions to other nonequilibrium phenomena
with the exception of a few cases which are very special (even though very important).

Bibliography: [LL71], [DGMS84]. Problems [1.1.7] + [1.1.17] provide a
concise exposition of the first 82 pages of [DGM84].

From [LL71] | kinematic viscosity | thermal conductivity | Prandtl number
v cm?2/sec x ecm?/sec v/x

Air 1501071 2.051071 7.331071

Water 1.001072 1481073 6.75

Alcohol 2.20107? 1.331072 1.66 107"

Glycerine 6.8 9.3810~* 7.251013

Mercury 1.201073 2.731072 4.401072

§1.2 Equations of motion of a fluid in general. Ideal and incom-
pressible cases. Incompressible Euler, Navier—Stokes and Navier—
Stokes-Fourier equations.

At an internal point P in the region (2 the equations of motion of a fluid
described by the fields u, T', p are therefore (see §1.2)

(1) Op+0-(pu) =0
(2) p(Oiu+u - Qu) = —0p + pg + Iz’
(3) Tp(Oes +u-0s) =1'0u+0(s9T)
(1.2.1)
(4) s=s(pe), T '=0s(pe), p=-Tpd,s(p,e)
(5) Tz{j = 9ij(§@,p,T), oi]'(ohoa T) =0
(6) kij = &ij (p, T)

and the equationa (4) (equation of state), (5), (6) (constitutive equation)
imply that (1), (2), (3) are a system of five equations for the five unknowns
u, T, p.

Equations (5), (6) could be more general, if one allowed the stress tensor to
depend also on the higher order derivatives of the velocity field u, or if one
allowed the thermal conductivity tensor, too, to depend on the derivatives
of u. As a rule we shall not consider so general models (see, however, §7.4).
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16 §1.2: General and incompressible equations.

One should note that changing frame of reference the equations (1.2.1)
remain invariant: in fact if ¢ — p(z,t), T'(z,t), u(z,t) is a solution of (1),
(2), (3) then t — p'(z’,t), T'(2', 1), u'(z’, ), with

Pl t) = p(a' +ut,t), T'(z',t) =T(a' +ut,t), u'(2',t) =u(z'+vt,t)-v
(1.2.2)
gives the motion as seen from an inertial reference frame moving with ve-
locity v and coinciding with the preceding frame at time ¢ = 0. One checks
immediately that (1.2.2) solves (1.2.1): the main point is, naturally, that
velocity appears only via its derivatives in the constitutive equations.

This invariance property could not possibly hold if the dependence of the
constitutive equations on velocity did not manifest itself through the deriva-
tives of w: it is (also) for this reason that one does not (usually) consider
constitutive equations in which there is an explicit dependence on u (and
not just on its derivatives).

The functions s(p,e) are not arbitrary but they must satisfy conditions
imposed by the laws of statistical thermodynamics and of statistical me-
chanics: for instance p~ts(p,e) must be a convex function of its arguments,
monotonically increasing in € and decreasing in p, see [Ga99a].

Let us examine the class of particular cases of the (1.2.1) in which p is
constrained to stay constant: these are the incompressible fluids.

(A) Incompressible non viscous fluid (Euler equations).

The simplest such fluids are the non viscous (7' = 0) non conducting
(k = 0) ones:
Til]- =0 s Rij = 0. (123)

In these cases, since p is everywhere constant, the (1.2.1) become:

(1) d-u=0

1
2 ) Qu=—-0
(2) hu+u - Ou p_P-I-g (1.2.4)
(3) Os+u-0s=0
4)  s=o(l)

where we chose to think the entropy as a function of 7" since ¢ is not singular
when (Op/0p) = oo (a relation expresing incompressibility).

Property (3) gives (ds/dt) = 0: i.e. s is constant along the lines of current
of an incompressible fluid. Hence the case of a fluid which at the initial
time is “isoentropic”, i.e. the case s(x,0) = so = constant, is particularly
interesting. This is in fact a property that remains true as time evolves and
the temperature will be given at every point by a constant T = f(s¢) and,
therefore, it disappears from the equations of motion.

(1.2.5)
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and we get four equations for the four unknowns w, p, that are called Euler
equations.

One should, however, ask the question of how could eq. (1.2.4) be possibly
related with a real fluid. Density, in such a fluid, would be fixed and entropy
would be a function of the temperature alone: but the equation of state
would then determine the pressure and, therefore, (1.2.4) would be over
determined. For instance if at the initial time s, hence 7', were constant
over the whole volume, they they would remain constant, hence p would be
constant as well (being a function of them) so that dp = 0 and we would
have four equations for the three unknowns w.

This means that (in the incompressible case) the quantity p that appears
in (1.2.4) cannot be naively identified with the pressure in the physical sense
of the word and, consequently, the interpretation of (1.2.4) is more delicate
than it looks at first, c.f.r. remarks following (1.3.10).

(B) Incompressible, non heat conducting, viscous fluid (Navier—Stokes equa-
tions).

The next simplest case is that of a viscous incompressible non conducting

fluid: in this case £ =0 but T # 0. Since T ’J must vanish for d;u; = 0

the simplest model is the one corresponding to the constitutive equation:

7/ =1 (Osuj + Ojui) +1' Q- udy; k=0 (1.2.6)
with scalar n,7' depending only on p and s (and not on the derivatives of

w), which can be intended as a first order term of a series of 77 ;j In powers

of Qu in which the higher order terms are neglected. The coeflicient 7 is a

function of p and s which is usually called dynamic viscosity while one calls
v = n/p kinematic viscosity. Incompressibility is expressed by 0 -u = 0
and hence, in incompressible cases, the second term can be omitted.

An incompressible fluid with constitutive equation given by (1.2.6) and v=
constant is called an incompressible Navier—Stokes fluid, or “NS-fluid’, and
it is described by the equations

(1) d-u=0

1
(2) Ou+u-0u=—--0p+vAu+g
P (1.2.7)
(3) pT(Bys + u - Os) gzau]-l-@uz
ij
(4) s=0o(T)

The first two equations should determine p and w while the fourth estab-
lishes a suitable relation o between s and 7" which allows us to compute,
via (3) and by integration along the current lines, the entropy density s
starting form its initial value. The problem decouples and the “real” equa-
tions are the first two, called the Navier—Stokes equations or NS—equations.
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The interpretation problem mentioned immediately after (1.2.5) evidently
remains in the present case.

(C) Incompressible thermoconducting viscous fluid

More difficult is the description of an incompressible fluid which, besides
being viscous is also thermoconductor. If the fluid density did not de-
pend from the temperature, then the equations for u would be identical to
the Navier—Stokes equations with constant density (incompressibility means
that the constant density is also pressure independent). In this case entropy
should depend only on the temperature, o(T) = [ ¢,dT/T, and equation
(1.2.1) should become the equations:

(1) 2-u=0

(2) Ow+u-Ju=—-9p+vAu+yg (1.2.8)

(3)  pep(OT +u-0T) = g Z(ain + 0ju;)* + kAT

ij

with p = costant. Hence the problem seems to decouple into the tempera-
ture independent one of solving (1) and (2) and then into the one of solving
(3) which is the Fourier equation in presence of transport of matter. The
decoupling is, however, illusory becaus we shall see in §1.5 that the second
and third equations are coupled by the boundary conditions and the latter
may involve p and T'; furthermore the interpretation problems mentioned
for the Euler and Navier—Stokes equations are still present and in a sense
are even more serious, c.f.r. §1.5.

In addition physical conditions under which one can assume with good
approximation a constant density with a varying temperature are quite rare
in applications to fluids.

For instance in convection problems variability of density as a function of
temperature is essential: see the analysis in the following §1.3, §1.5.

The (1.2.8), which have therefore a rather limited interest, will be called
“Navier—Stokes—Fourier equations”.

(D) On the physical meaning of an incompressibility condition.

Since in real fluids it is (Op/dp)s < oo we must ask in which cases a real
fluid can be considered as incompressible.

To evaluate qualitatively the meaning of an incompressibility hypothesis
and its possible validity one can have recourse to dimensional considerations
The idea behind the analysis is: imagine that the fluid had a motion which
is regular and which is characterized by a “typical velocity variation” v
in the sense that velocity varies of the order of magnitude dv with respect
to its average over space and time. Likewise imagine that 67" is a “typical
temperature variation” with respect to the average temperature and dp is
a ”typical variation of pressure”, etc. Furthermore imagine that the above
variations show up on a length scale of size [ or on a time scale 7.
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In this situation quantities like du, Oyu, Au, 01", 0,1, AT, Op can be

estimated to have “typically” size of order of magnitude

6U,|8tg|~6U,|Ay|~5U )

T )
T T @ 0T~ T 18T~

T )
T lonl~ 7

(1.2.9)
which are interpreted as a maximal order of magnitude for such quantities.
Since we suppose that u, p, T are related via the equations of motion it
follows that certain relations must hold among the various quantities in
(1.2.9). More precisely there must exist instants in which a given term of
the equations has the same order of magnitude of any other (otherwise if, for
instance, a term was always (much) smaller than another we could neglect
it and the equation would become simpler).

|Ou| ~

1.2.9

Hence, for instance, since d;u + other terms = —p~19p (c.fr. (1.2.1),
eq. (2)), the remark is that in some instant and in some point it must be
77160 ~ p~op/l; and since u - du+ ... = —p~'Op there will be an instant

and a point where (§v)?/l ~ 6p/pl.
In the isoentropic case, i.e. when (9p/ds), = —p*(01'/0p)s = p*xs can be
neglected in evaluating density variations!, one finds

Ap o (@) op (1.2.10)

1.2.10 p ap . P

and we realize that the condition of validity of the incompresssibility as-
sumption, i.e. Ap/p < 1, can be obtained by estimating the largest values
that dp/p can take.

(E) The case of incompressible Euler equations

In the case of Euler equations (1.2.5), with g = 0 for simplicity, the above
remark tells us that dp/lp can reach the following two sizes
op v dp  (0v)?
e A 4

~ 1.2.11
lp T lp l ( )

1.2.11
2
hence the condition Ap/p < 1 becomes (i—“) # < 1 and (i—“) <1

where v;? = (0p/0p)s and v, has, as it is well known from elasticity theory,
the meaning of speed of sound vs = v5oynq in the fluid. Hence
v

<1
1.2.12 ’
Usound TUsound

<1 (1.2.12)

This relation is interpreted as follows; the Euler fluid can be considered
“incompressible” if the velocity variations are small with respect to the sound

1 Where s is the coefficient of heating in adiabatic compressions and the identity is
derived from dw = T §s + p~16p, if w is the enthalpy per unit mass.
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speed and, furthermore, if the variations manifest themselves over a length
scale small with respect to the length run at sound speed over a the time
scale over which velocity variations are appreciable.

(F) The case of the Navier—Stokes equations.

In the case of the NS equations, still with g = 0, the new term v Awu in the

second of (1.2.7) adds to (1.2.11) a new comparison term v dvl~2 which,
therefore, adds to the conditions (1.2.12) the (dv)r/v2l < 1; or

<1 (1.2.13)
Since the second of the (1.2.8) coincides with the second of the (1.2.7) and
it is the only equation containing p, we see that also (1.2.12), (1.2.13) are
all the conditions of validity of the incompressibility assumption, under the
hypothesis that the coefficient of heating by compression is neglegible.

If, finally, one supposes that in the considered equations it is also g # 0 we
add a new term in the (2) and we see that dp can also become such that
dp/pl ~ g thus leading to the further condition

lg
5 <1 (1.2.14)

sound

v

Which means that, in presence of gravity, the speed acquired in a free fall
from a height equal to the characteristic length over which velocity changes
must be small compared to the sound speed in order that the fluid could be
considered as incompressible; hence (1.2.12), (1.2.13) and (1.2.14) express
incompressibility conditions in the various cases envisaged, always if the
heating coefficient for an adiabatic compression can be considered zero.

(G) Case in which heating in adiabatic compressions is not negligible.
If (%) = p%xs, c.fr. (1.2.10), is not zero, i.e. if the coefficient of heating
P
under adiabatic compression is not zero, we must add to (1.2.10) the term

op\ Is
— | — = pxs 1.2.1
<as>p , =X ds (1.2.15)

and Js is evaluated, in the Navier—Stokes case, via the third of (1.2.7) yield-
ing the two estimates
ds (0v)?

T— ~
T v 2

(6v)?

l2

and T(SS(STU ~v (1.2.16)

And we thus see that incompressibility is justified, in the NS equations case,
from the validity of (1.2.12), (1.2.13), (1.2.14) and in addition

ov? T (6v)
PXsV T <1 and PXsV <1 (1.2.17)
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Finally, in the case of the (1.2.8) we must add to the last of (1.2.16) the
pT% ~ kOTI2 e pT' 2P 6s ~ k3% ; and therefore (via (1.2.15)) one finds the
further conditions:

0T Tpxs 0T pxs
o 1 o 1 1.2.1
e S R s € (1.2.18)

which complete the list of the incompressibility conditions.

Note to §1.2: dimensional arguments.

One can ask whether the notion of “dimensional argument” can be rendered more precise
from a mathematical viewpoint.

It is useful to recall, for this purpose, that analytic functions enjoy a remarkable prop-
erty: namely if z — f(z) is a function of the variable x defined for « € D, one says that
f is analytic if for every g € D the Taylor series

F@) = 1 ®) (o) (@ — wo)" k! (1.2.19)
k=0

converges for |z — x| small enough. Or, equivalently, f is analytic if it is the sum of its
own Taylor series around every point.

Then it follows that if f is analytic on D and we suppose that D is the closure of a
bounded open set, then it is possible to find a value p > 0 such that the Taylor series of
f around any zo € D has convergence radius at least p > 0. Hence we shall be able to
define f(x) for complex values of x: if |z — zg| < p one sets

F2) =) W) (@o)(z — wo)* /! (1.2.20)
k=0

and if the same point z is closer than p to two points zo and x{, the two formulae for f(z)
obtained by choosing in (1.2.20) once xo and another time x{ must coincide, because the
two functions of z so defined must agree for the real z’s common to the two intervals of
radius p and centers zg,x( (hence for infinitely many points and, hence, their identity
follows from the identity principle for holomorphic functions).

Thus to say that a function z — f(x) is analytic on a closed and bounded real domain
D is equivalent to saying that it is holomorphic in a complex domain D, = {z|3z € D,
|z —z| < p} = {|z — D| < p} for some p > 0.

We shall then say that a function f defined on a closed and bounded domain D is
“regular on scale p” if it is analytic and the convergence radius of its Taylor series around
any point is at least p, or equivalently if it is holomorphic in D,.

The above notion of regularity is particularly relevant for dimensional estimates: indeed
if f is regular on scale p in D we shall say that it has a typical size |f|, = néan |f(2)]

z P

and we shall be able to estimate its derivatives as
107 f(x)] < nl|flop™™ Vo eD (1.2.21)

i.e. the n-th derivative is simply estimated by dividing the size of f by the typical length
p raised to the n-th power. Just as in the dimensional estimates that are introduced in
various arguments in theoretical physics.

Hence the regularity on scale p and the typical size of a physical quantity that depends
on a parameter & have a clear meaning when f is analytic and holomorphically extendible
over a distance p in the complex and, in the extended domain, it is bounded by a constant
| flp which is identified as the “typical size” of f.
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In the previous analysis a regular velocity field u(z, t) must be interpreted as an analytic
function in each of the variables x; and ¢ continuable in the complex, in each variable, by [
in the z; and by 7 in the ¢, remaining bounded therein by dv, and likewise the s = s(z, ),
p = p(z, t) must be analytic and continuable by [ and 7, in x; and ¢, respectively, staying
bounded by ds and dp.

Thus we see that “accepting dimensional estimates” corresponds mathematically to
admitting precise regularity properties on the functions under investigation.

‘Whenever such properties do not hold it becomes necessary to reexamine the dimensional
argument: and sometimes it can turn out to be grossly incorrect. This happens when in
the problem appear “several scales” very different from each other.

For instance sometimes the function f(z) can be written as a sum if infinitely many
functions f1(z) + f2(x) + ... with f; regular on scale p; and of order of magnitude 4;
and, furthermore, p; — 0. It is clear that in such cases one shall be very cautious in

1—r 00

formulating dimensional arguments. For an explicit example consider a sequence f;(x) =
cif(x/pi) with p; = 274 ¢; = 271 or ¢; = 2% with k integer and fix f(z) to be a
rapidly decreasing function (e.g. if D = [0,+00) we can take f(z) = e~ 7).

Finally we mention that (1.2.21) is a simple consequence of Cauchy’s theorem

F (@) = n!% ) g, (1.2.22)

(2ni) | (z —z)ntl

where the contour can be chosen as a circle around z contained in D,: by choosing
exactly the radius of the cirdle to be p and bounding above the right hand side by the
absolute values one immediately gets (1.2.21).

The problems in which there are many length or time scales are called multiscale prob-
lems: dimensional arguments are in such cases called scaling arguments. In recent times
new methods for their analysis have been developed, like the “renormalization group
method”. But since a long time they attract the interests of physicists and mathematicians
and many beautiful phenomena in mathematics and physics have been understood, I just
mention here the almost everywhere convergence of Fourier series for square integrable
functions in mathematics and the ultraviolet stability of some quantum fields in three
space time dimensions in relativistic physics and, as we shall see in the last sections of this
book, in the developed turbulence theory in fluid mechanics, see [Ca66],[Fe72],[BG95].

Problems: Stokes formula.

[1.2.1]: Cousider a viscous fluid occupying the entire space outside a sphere of radius
R and moving with a velocity v, at co. Suppose the motion time independent and the

velocity so small that one can neglect the transport term u - du in the NS equation

0=—p~'9p+np~'Au and 9 -u = 0. This is the Stokes equation which can be written
Arotu=0, 9-u=0, wu=0 iffzg|/=R

Show that there is at most one smooth solution u tending to v, as r — oo and such that

r2|0u| is bounded as r — oco.
The solution, if existent, must have the form

u=vg+ f[1(1)yy + f2(r)n-von + f3(r)n Ay,

with r = |z|,n = z/r and f; == 0. Furthermore f3 = 0 by parity symmetry. (Idea:
Uniqueness follows because the difference § between two solutions must be such that
A¢ = O for some 7; hence multiplying both sides by J and integrating by parts one gets

that 96 = 0. The equation is linear and the only vectors linearly depending on v, which
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can be made with v, and z are v, z,x A vy. Uniqueness implies that the solution must
be parity invariant).

[1.2.2]: Chose v, along the z—axis and check that if u has the form in [1.2.1] then

!
9-u=wor (L aclt) 4 r(L2y)
r r r
1 z
rOtﬂ: vo (f{ - _f2) (Oa _77%)
r r’or
Check also that the choices fi = r~1,fo = r~! and f1 = —r~3, fo = 3r—3 generate

fields u
l(v0+nv0~n), or i(7110-+—3nvo~n)
[ r3 - - T
which have 0 divergence and a harmonic rotation (i.e. a rotation with 0 laplacian).

[1.2.8]: Hence one can look for a solution like
uU=uvy— E(vo—&—nvo-n) +i(—v0+3nv0-n)
R A rd - - =

Show that the coefficients a and b are uniquely determined by the condition u = 0 for
|z] = R and have the value
1
a= 2R, b==-R?
4 4

(Idea: Note, for instance by [1.2.2], that the combinations in front of a and b have 0
divergence and rotation with 0 laplacian).

[1.2.4]: Compute the pressure field associated with the velocity field determined in
[1.2.2] showing that p(z) = —3n Ry, - n/2r%. (Idea: —8p + nAu = 0.)

[1.2.5]: The force exerted on the sphere has, if we choose the z axis parallel to the
force, a z—component

F=R? / ( —pcosd + (77, cosd + 7., sind cos ¢ + 71, sin I sin <p)) sin ¥ dddy

where T;j = n(djuz + d-u;), and show that this implies that F = nRvoS where S is a
constant. Compute S (S = 6w, Stokes formula).

[1.2.6]: (meaning of approzimations) Discuss under which assumptions the approxi-
mation in [1.2.1] can be acceptable. Show that the conditions imposed are realizable
around the sphere because they are: v3/R < wwo/R?, i.e. vor™'!R < 1 which is
read, see the coming sections, by saying that the “Reynolds’ number” is small. How-
ever such conditions are not valid far away from the sphere because there they become
v R/r? < vvo R/r3, i.e. vor~'r < 1. Hence at large distances the velocity field deter-
mined via the Stokes’ approximations [1.2.1], [1.2.3], cannot be taken as correct. (Idea:
Use dimensional arguments to estimate the sizes of the quantities involved.

Bibliography: The discussion reported in (D,EF) follows the ideas in
[LL71].
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§1.3 The rescaling method and estimates of the approximations.

The procedure illustrated in §1.2 to evaluate the orders of magnitude in-
volved in the incompressibility approximations is simple but, in a way, not
very systematic.

In fact the claim that (adimensional) quantities € < 1 can be neglected is
a satisfactory statement only if one is able to evaluate the error made and
to show that corrections really have size € with respect to the terms that
are not neglected, as implicitly supposed in the analysis.

This can only be an asymptotic statement and what one really means, or
what one should mean, is that it is possible to write the solution of the
equations, that we want to approximate, as a series in the parameter €. But
from the discussion we see that ¢ appears in various forms and it is by no
means clear what it does really mean that “we neglect terms of the order
€” in particular when ¢ appears both as an order of magnitude of certain
quantities and as an argument of relevant functions (as it happens when we
say that a function varies on the scale I and I/Tvsouna = € is small (c.f.r.
(1.2.12)).

To make more precise the above intuitive idea we shall translate into a
more mathematical form some of the arguments discussed in §1.2, trying
to construct, at least in principle, an algorithm that allows us to write the
equations necessary for the evaluation of the error as a series in a parameter
(on in the parameters) < 1.

(1) Incompressible Euler equation.

For instance consider the case (A), §1.2, of the incompressible Euler equa-
tion, with g = 0 for simplicity. Assume that the system is a perfect gas with
constitutive equations.

s=cy logT — clogp, T, =0, kij =0 (1.3.1)

which, via the thermodynamic relation p = —T'p? ( )T, implies p = ¢ pT'.

Furthermore suppose that v% ., = (g—’;)s = cT(l + o) is the velocity
sound.!
Let @,p,5 be an initial datum with the property of satisfying the first
of the (1.2.12). This state can be assigned in terms of three functions
w(€),7(£),0(€) very regular in their arguments £ € R* as
We) = vuuna@(7), ple) =F(T), §a) =a(7) (1.3.2)

1 In the case of a perfect monoatomic gas cy = %RMJI,C = RMJ1 with R the gases
constant, and My the atomic mass.
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where € is a very small parameter, so that the initial data in (1.3.2) satisty
a priori the condition that the initial velocity @ be small compared to the
sound speed; and they vary on a length scale [, which is a parameter with
dimension of a length. The velocity vsouna depends on 7' (which depends on
z) and here we define it as equal to the value corresponding to the average
value of T' (computed from the equation of state in the initial configuration).
We shall imagine the system in infinite space and that the functions in
(1.3.2) are constants outside a bounded set and that the initial @ vanishes
outside this set.

We now ask if there exists a solution to (1.2.1), (1.3.1) satisfying (1.2.12)
also at positive times, and if this solution is well approzimated by the so-
lution of (1.2.4) with the same initial data, and the better the smaller €
is.

We shall limit ourselves to the analysis of the case ¥ = constant,d =
constant, even though it will be instructive to write a few more general
equations.

To pose correctly the question we ask whether (1.2.1), (1.3.1) with the
initial datum (1.3.2), has a solution depending regularly on t through
the “rescaled time” ¥ = etl lvspuna: so that the second‘of the (1.2.12)
is automatically satisfied (because the time scale 7 will be such that
€T Vsounal ~t =~ 1 and, hence, /(T Vsound) =~ € < 1).

More formally we ask the question whether a solution of (1.2.1) with equa-
tion of state (1.3.1) exists such that

w(z, t) =€ Vsouna W&l €t Vsounal )
plz,t) =r(zl ™, e tvspunal ) (1.3.3)
s(z,t) =o(zl ™, et vsounal )
with w(,9),7(£,9),0(§,9) reqular functions of their arguments and de-
pending on € so that they can be written as
w =w, +ew; +ew, + ...
r=ry+er +eiry+ ... (1.3.4)
S =09 +€07 —}—5202 + ...

The regularity of w,r,o implies that in the case in (1.3.3) the conditions
(1.2.12) will continue to be satisfied at positive times and therefore we ez-
pect, if the discussion in §1.2 is correct, that the (1.3.3) verify the Euler
incompressible equation, at a first approximation.

The latter property has now a precise mathematical meaning. In fact
inserting the (1.3.4),(1.3.3) in (1.2.1), (1.3.1) and imposing that equations
(1.2.1),(1.3.1) are verified at all orders in €, we obtain equations for the

w;,rj,0; which, solved with the natural initial data

g0|§:0 =w, r0|19:0 = 7 = constant, ao|19:0 =0 (1 5 5)

1Uj,7'j70'j|19:0 =0
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privide us with “solution to lowest order in €”, given by (1.3.3) with w,r, o
replaced by wg, 0,00 and the higher order corrections.
Then the question that we asked above is whether the functions

EVsound Wy (El_l ) Etvsoundl_l)y ro = constant, og (&l_l € tvsoundl_l)
(1.3.6)
verify incompressible Euler equations (1.2.4). Or

ro = constant, O -wy =0

- 1.3.
Opwy +wo - Ogwg = —0cp', 0900 +wy0eoo =0 (1.37)

if p'(£,1) is a suitable function.
The equations for the successive orders should determine recursively
w;,rj,0; and therefore all the corrections, systematically.

We would verify in this way, in a precise sense, that the slow velocity mo-
tions of the perfect gas under analysis is well approximated by the incom-
pressible Euler equations. And, if we could devise an algorithm to compute
the corrections wj,r;,0;5, § > 1, it would make sense also to estimate the
errors of the approximation

X Vsoun t £ Usoun t
Q(gat) :f‘yusoundwo(?:a I d )7 P(Lt) :’FO(T:‘S I d )7
(1.3.8)
& Usoundt
S(gvt) 200(778 1 )

of the solutions of (1.2.1),(1.3.1) via the solutions of the incompressible
Euler equation (1.2.4), (i.e. (1.3.6) and (1.3.7)).

It is useful to underline, again, that in our situation, the second of (1.2.12)
follows from the first because from (1.3.8) we see that the scale of time
evolution is lv_} 7! (hence the second equation of (1.2.12) becomes 2 <
1 which coincides with the first); and if the property of approximation of
(1.3.3) via the (1.3.4),(1.3.5) holds then the validity of (1.2.12) at the initial
time (guaranteed for € < 1 from (1.3.2)) implies its validity at the successive
instants, at least up to the time t = Tolaflv‘;lund if 79 is the instant until
which the Euler equation (1.3.6), in the adimensional variables £, ¢, with
initial data (1.3.5) admits a solution that stays regular in £, . B

Therefore we shall proceed to checking that the assumption that (1.2.1)
admit a solution that can be developed in powers of € is a consistent as-
sumption and that it really leads to (1.3.7) at the lowest order in €. Once
we shall have succeeded, at least formally, we shall have obtained a pre-
cise qualitative check of the incompressibility assumptions. A quantitative
check will require, then, in principle also an analysis of the series (1.3.4) or
at least the analysis of the terms neglected and the possible proof that they
tend to 0 for € — 0 in a way that can be estimated explicitly.

2/giugno/2000; 17:50



1.3.9

1.3.10

§1.3: Approximations estimates. Rescalings 27

Note that the assumption 7 constant and & = constant for ¥ = 0 (i.e. the
case to which we confine our attention) implies that s is constant for all
times because the right hand side of the third of the (1.2.1) vanishes. Then it
follows that the pressure is a function p = p(p) of the density (and p(p) is the
“adiabatics equation”: p(p) = Cp1+C/CV, with C' suitable and independent
of z,t, determined from the initial conditions).

The (1.3.3),(1.3.4),(1.3.5), can be inserted into (1.2.1); taking into ac-
count the assumptions on the constitutive equations made when considering
(1.3.1) and supposing g = 0, one finds (writing only the lowest orders in ¢)

=2t (9yro + g - (rowy)) = 0 (1.3.9)
2,,2 2

Togvsw(aﬁwo +w, 'ngo) +...= Y l(r) (Qro +e0r, +€20r; . )

EVsound

0 (0,00 410, - 0¢0) = 0

where v*(r) = 8’(;—(’)”) |p:r is essentially still the square of the sound speed (at
density r so that we denote it differently from the average quantity v> ).

sound
We realize that, in order that the second equations be consistent, it must
be Org = 0, i.e. the assumptions are consistent only if rg is constant as a
function of €. And the first of the (1.3.9) will say that 9 - w, is constant
in & (being equal to dyro with 7o constant in &) and, hence, vanishing if we
suppose that w, tends to zero at infinity for all times ¥; likewise 71 must
be constant in £. Hence also Oyrg = 0 and ro = 7 stays constant. In such

case the (1.3.9) become the dimensionless equations:

o =T, og =0, (919@04-130 'QEQO = _EQTQ (1310)
and, by the equation of state, T' = constant.

Thus we have obtained in the rescaled variables, (1.3.7), and in the adia-
batic case the incompressible Euler equations.

We see another interesting property: namely what we call “pressure” in
the incompressible Euler equations really is, up to a constant, the deviation
from the average density to second order in €.

In principle we should derive (infinitely many) other differential equations
which should allow us to evaluate the corrections at the various orders in
€. But such equations would certainly be involved (if possible at all) and of
little interest since we shall not have a grip on a theory for them (because we
are unable, to this date, to really build a satisfactory theory for the lowest
order, i.e. for the incompressible Euler equations, as we shall realize in the
coming sections). Hence there is a serious risk that what said so far will
remain for a long time at a formal level.

The above remarks help understanding the importance of the following
theorem that considers the (1.2.1), (1.3.1) with initial data having the form
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(1.3.5) with @ € C*°, and with @, vanishing outside a bounded set. And
it allows us to say that the solution of the (1.2.1) tends, as € — 0, to the
solution of the incompressible Euler equation in the following sense. We
consider the solution of the equations (1.3.10), wo(9,z),00(, x),ro, then
the following theorem holds, [Eb77], [EM93]:

1 Theorem (incompressible Euler limit): The Euler equation (1.3.10) with
the initial data (at ¥ = 0) wy(z,0) = @W(z), ro = 7, 0o = 7 admits a solu-
tion of class C*°, that rapidly vanishes at infinity together with its deriva-
tives, for times ¥ < 19, if 70 is small enough (but depending on the initial
data).

The existence time 19 can be chosen so that, for the times t < 791/€Vsound
also the (1.2.1), (1.8.1) with initial data of the form(1.3.3) with € a psoitive
parameter, admit a solution of class C*, u_(z,t), p-(z,t), sc(z,t) =&. And
one has

571|HE(£7 t) - Evsoundwo(glilaEUsoundtlilﬂ mo (1 3 11)

|pe(z,t) — 7| ;—0)0

uniformly for t < 19l/eVsound-
Remarks:

(1) Note that the theorem is formulated without involving at all the higher
order terms of the series (1.3.9). Hence, independently of their existence,
it is rigorously established that, at least for a small time ¢, ¢t < Tole Vsound
(but of the order of 7, i.e. “the smaller  is the better the incompress-
ibility property is satisfied’), the incompressible Euler equation provides an
effective approximation to the solution of the (1.2.1),(1.3.1).

(2) The role of the previous statement (1) is to insure that the theorem be
not empty it is obviously necessary to show that the incompressible Euler
equation, with the initial data considered in the theorem, admits a solution
up to a time 79 > 0, which maintains the necessary properties of regularity.
Such a theorem is indeed possible and it will be discussed in §3.1.

(3) It would be interesting to show that the time 79 of the theorem is the
maximum time for which the incompressible Euler equation admits a regular
solution (with the initial datum considered). This would be particularly
interesting in the case of a fluid in a space with dimension d = 2: in this
case, as we shall see, the incompressible Euler equation admits a global
solution (i.e. a solution for all times) without losing regularity (i.e. data
initially of class C'°° remain such). Unfortunately the proof of the theorem
does not allow us to conclude this much and the time 7y is an estimate that
turns out to be shorter than the maximum time for which one can show,
see §3.1, existence of regular solutions for the Euler equations.

(2) The incompressible Navier—Stokes equation.

In this case one must add in the right hand side of the second of (1.3.9)
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the term
PVVsound

12
plus the corresponding higher orders. In §1.2, we saw that, to derive the
conditions of validity of the approximations, the (1.2.13) had to be added
to the (1.2.12) always assuming also g = 0, for simplicity. Proceeding
exactly in parallel to the preceding case of the Euler equations, and using
the notations of (1.3.9), we see that incompressibility with initial data 7 and
5 constant (see (1.3.2)) is consistent if

Ag w, (1.3.12)

v

— = does not depend on € (1.3.13)
8lvsound

which is again (1.2.13). This means that (1.2.13) now demands that the
length scale over which the fields change be of the order of magnitude of | =
ve~tv ! vy'. Asin the Euler case one can prove the following theorem.
Consider the adiabatic Navier—Stokes equations:

ro = constant, sg = constant

1 (1.3.14)
819&0 +wy 'QE wy = _T_on + VOAQO
- 0

with 7 a positive constant, initial data w, € C° and vanishing outside a
bounded region, ro = 7 = constant, oy = ¢ = constant; let w,(¥,§) be a
solution of class C° (in 9, ). Then, [KM81], [EM93]:

2 Theorem (incompressibility; the NS case):

(i) The Navier—Stokes equation (1.8.14) admits a C° —solution for times
¥ < 79,

(2) Let e > 0 be a positive parameter. Assume that the constitutive equations
are kij = 0, (perfect non heat conducting gas) and 7;; = pv(9ju; + Oiu;)
with v given by (1.3.13) for the stress tensor 7;; (NS stress). Given ly >0
the time 79 > 0 can be chosen so that (1.2.1), with the constitutive equations
7;; given by the Navier-Stokes linear tensor (1.2.6), with equation of state
of a perfect gas (see (1.3.1)), and initial data

u(z) = €Vsound@y (=), plz) =7, s(z) =7, with | = lgo (1.3.15)

~|I=

admits a C*—solution, which we shall denote u_(z,t), p-(z,t), and s.(z,t),
defined for times t < 79ly/€?Vsound. Furthermore

-1 —1 _2 —1
e u (x,t) — € Vsound Wo(E Xy ™, €7 Vsound tl —0
|_a(_ ) d 0( 0 d o )| =0 (1.3.16)

lpe(z,t) — 7| =5 0, |se(z,t) — 6| =5 0
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Remarks:

One can propose, about this theorem, considerations identical to the ones
that follow theorem 1 above. Omne sees that in the limit € — 0 entropy
is conserved: which is no longer obvious since the right hand side of the
third of the (1.2.1) no longer vanishes. Nevertheless friction influences
the equation for the velocity. This is, at first, strange looking but it is
understood if one takes into account that w, is a rescaled velocity and a
variation of O(1) due to friction (i.e. due to the term ryAw, in (1.3.14))
generates a variation of energy of the order O(g?) and, therefore, a quantity
of heat and an increase of entropy (and temperature) O(?) which is not
contradictory to the third of the (1.3.16).

Interpreting theorems 1,2 above one can say: on time and space scales
O(e™1) the system follows the incompressible Euler equation; while on time
scales O(e7?) and space scales O(e~ ') the system follows the Navier-Stokes
equations.

What can one then say if the initial datum is given without any free pa-
rameter €7 i.e. can the just stated theorems be concretely applicable as
approximation theorems when ¢ is fixed? The risk being that they are just
conceptual theorems illustrating the asymptotic nature of the incompress-
ibility assumption.

A proposal is the following. Wishing to apply such theorems in a given
particular case one should check that the initial datum can be written
in the form (1.3.4). Then if ¢ is small one shall be able to say that the
incompressible Euler equation holds (for times up to O(e~!)), and one
should also be able to give the approximation error by using the estimates of
the differences in (1.3.11),(1.3.16): indeed such estimates are constructive,
i.e. computable, in the proofs (not described here), of the theorem. As the
time increases, beyond O(e™!), we expect that the velocity field becomes
more uniform in space and that it will, after a time very long with respect
to O(e~1), be described by a regular function of e~*zl;" for some Iy which
should depend on the initial data.

In this situation we shall be in the assumptions of theorem 2 and the
fluid will now evolve following the incompressible Navier—Stokes equation,
with an approximation controlled up to times of order O(¢~2), and it will
proceed towards equilibrium (which is simply the state in which the velocity
field vanishes, because we are supposing that there are no external forces)
keeping a variability on scales of length of order e 1ly and of time of order
e 2y lal Vsound-

The above is a scheme of interpretation of an incompressible evolution:
however it is just a “proposal” because there are no other known theorems
that support such proposal and it is not so clear, in the above proposal, the
cross—over between the two regimes can be described and how. From what
said above not only [y is not calculated but there is no hint nor any idea
on how to calculate it, nor there is any idea on which physical properties
a calculation of Iy could be based.
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Bibliography: This section is based on the ideas and results of the paper
[EMO93]; the original theorems 1, 2 are in [Eb77], [KM81], [KM82]. I have
preferred the approach in [EM93] because it is closer in spirit to the analysis
by Landau and Lifshitz reported in (D,E,F) of §1.2.

§1.4 Elements of hydrostatics.

Hydrostatics deals with solutions of the Euler, Navier—Stokes or more gen-
eral continua, with vanishing velocity fields and with time independent ther-
modynamic functions.

These solutions are very rare, as we shall see by considering a few model
cases.

(1) Hydrostatics in absence of thermoconduction.
(A) Isoentropic case

Equations (1.2.1) become simply

—=0p+yg=0, e=¢(ps) (1.4.1)

p

As an example we shall treat the case of a perfect monoatomic gas

2/3
2 RT RT
€=¢g <pﬁ> 6(5750)/01, se=cT, p= gpch = ’DM—A _ nv
0
(1.4.2)

where €9, po, so are values of €, p, s in a reference thermodynamic state;
n = M/M, with M the total fluid mass and M4 is the atomic mass (n is
called “molar number”); v = M/p is the specific volume of the fluid; R is
the gas constant R = 8.31 107 erg °K ™ '; ¢, is the specific heat at constant

volume (per unit mass), i.e. ¢, = SR/M4. If the gas was diatomic the
factor 3/2 would become, everywhere, 5/2.
Suppose that the force density g is conservative, g = —9G. In the isoen-

tropic case the relation between p and p is simply the adiabatic equation of
state p = R(p): p = p'/7 const with v = 5/3 for a monoatomic perfect gas.
Therefore it is convenient to define the “pressure potential’

P(p) = ’ Rdg,) (1.4.3)
so that (1.4.1) is solved by
B(p(z)) + G(z) = constant,  p = R(p(z)) (1.4.4)

that permits us to determine p(z) in terms of G and consequently to de-
termine p(z),e(z) etc (note that ®(p) is strictly increasing in p and, hence,
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invertible). This holds at least if the values of G(x) are among those of ®;

i.e. they are in @([0,+00)), up to an additive constant.!

One should also remark that if, in the isoentropic case, g was not con-
servative no hydrostatic solution could exist: a non conservative force will
necessarily set the fluid in motion. This is physically obvious and (as we
shall see) remains essentially true also in the case of non isoentropic fluids.

(B) Non isoentropic case.

The non isoentropic hydrostatics is analogous. Now s = so(z) hence p =
7(p, s0) so that the equation in the cases when g is conservative:

—0p =r(p,so(z)) G (1.4.5)

implies that 7(p, so(z)) must be a function of the form R(G(z)), hence p(z)
must also be a function of the form 7(G(z)): then sg(z) must have the
form ¥(G(z)). The interesting consequence is, therefore, that in this case
hydrostatic solutions in which entropy cannot be expressed as a function of
the potential of the volume forces is not possible.

If g is not conservative one finds that hydrostatic solutions exist only if the
volume force is proportional to a conservative force. See problems.

We shall discuss here the latter question in a specific case in which there
are no problems on the possible existence of solutions. Since (1.4.1) is
very restrictive there are not many such cases and only the particularly
symmetric ones are easy to treat.

Consider for instance a fluid occupying the half space z > 0 and subject
to a gravity force with potential energy G = gz, and look for stratified
hydrostatic solutions, i.e. solutions in which the thermodynamic functions
depend only on z. We shall denote them s = s¢(z), T = T(z) p = p(2),
e =¢(z) and p = p(z), (p = r(p,s))- Then (1.4.5) simplifies and we find

LG ) = r(p(2), 50(2)) (1.4.6)

p(z)dz  dz’
which is an ordinary differential equation for p(z) determining it once the
data p(0) = po and the function s = so(z) are known.
More specifically consider a perfect gas in a gravity field; the (1.4.6) be-
come, if one imagines that T' = Ty(z) is a priori assigned (instead of the

entropy)
1 dp 2
e T=T = —pc,T 1.4.7
Y (), p=gpc (1.4.7)
so that if we take T' = Tp(1 + vz) we find

1 gdz
cIp 1+ vz

2chd_p_ :>dp_ 3
T P2

3p dz J P

(1.4.8)

1 Or, in other words if G(z) is bounded below, otherwise the equation does not admit
hydrostatic solutions.
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whose solution is
p= (14 y2)739/CeTon) p, (1.4.9)

In the isothermal case , v = 0, this becomes the well known
p = poe 397/ (2evT0) (1.4.10)
while in the incompressible case (1.4.7) has the equally well known solution
pP="Do—pgz (1.4.11)

Hence it is possible that a gas in which temperature is not constant stays
in a “stratified equilibrium”.

(C) Stability of equilibria

Temperature and density gradients can generate instabilities of the equilib-
rium of a fluid because it could become energetically convenient to displace
a volume element of the fluid by exchanging its position with another and
by taking advantage of the external field or of the density differences due
to temperature differences.

We consider the two following questions about the stratified equilibria in
(B) above: (1) under which conditions are they stable, (2) under which
conditions it is possible to suppose p = constant and therefore use (1.4.11).

The result will be a remarkable stability criterion about the development
of convective motions; in the case of an adiabatic perfect gas, i.e. if heat
conduction is negligible, there will be stability if

oT g
= >_-Z 4.
0z = ¢ (14.12)

This means that temperature can decrease with height, but not too much.
If the variation AT between two horizontal planes at distance h is such that
AT > gh/c,, and if the higher plane is colder, convection phenomena start
“spontaneously”, i.e. they are generated by the smallest perturbations.

To obtain the criterion (1.4.12) let z — T'(z),s(z),p(2), p(z) be the ther-
modynamic functions expressed in terms of the height z.

Let A be an infinitesimal cube at height z containing gas with specific
volume v = v(p, z). Imagine to displace the mass in A and to transfer it in
a volume A’ at height 2z’ = z + dz > z adiabatically (because we suppose
£ = 0 and no heat exchange is possible by conduction).

The new volume occupied by the mass M = Av(p,s)~! will be of size
A" = Av(p',s)/v(p,s) because the gas will have to acquire pressure p'
keeping entropy s, (as in absence of heat conduction the transformations
are adiabatic).
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At the same time the mass originally in A’ will have to be moved in A.
Since this mass is M' = A’ /v(p', ') it will occupy, at the new pressure p, a
volume

A" = M'v(p,s') = A" v(p,s')/v(p',s") =
{ =A v(p,s)v(p,s)/v(p,s)v(p,s) = Al + O(§2?)) (1.4.13)

as one sees by a Taylor expansion of logv(p, s) using that s — s’ and p — p’
have order of magnitude dz.

We interpret this by saying that the mass to be moved away from A’ to
make space for the one coming from A “does indeed fit” in the volume A
left free (up to a negligible higher order correction). Therefore the pro-
posed transformation will be energetically favored (in a gravity field) if
M = Afv(p,s) < M' = A [o(p,5') = A v(p, 8)/v(p, s)o(@', 5'), ive. if

>1 (1.4.14)

If (1.4.14) holds then the equilibrium is unstable and small perturbation
will induce the permutation of the two volumes of gas generating a nonzero
velocity field w # 0 and raise “convective currents”

To see the “usual” meaning of (1.4.14), i.e. of

ov\ ds
_ <$>p ® >0 (1.4.15)

one can use the relation (Ov/0s), = T'/c,(0v/0T),. Since, in most sub-
stances, it is (0v/0T), > 0 the (1.4.15) becomes —ds/dz > 0, so that:?

Bs (05 T (0s) b _ 0T (00) Gy _
6z 8Tp6z op T(Sz_T(Sz oT p5z_

@l (v g Ty (o
_T5z+<8T>pv<0<:>6z< cpv \0T'),

(1.4.16)

is the general instability condition. In the perfect gas case on has stability
if (1.4.12) holds.

Finally, on the basis of the analysis in §1.2, we see that the assumption
p = constant is licit if we limit our interest to a portion of fluid spanning a
height H such that gH < v? and a variation of temperature 67" such

sound’

that (9p/0s), 6s/p = pxs 0T /T = (pxsv2,una/L) (6T)T) < 1.
(2) Hydrostatics in presence of thermoconduction.

In this case too one finds that hydrostatic solutions are rare and special.
For the purposes of an example, and to avoid repetitions, we pose a slightly

2 From G =U + PV — TS = dG = —SdT + VdP.
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different problem compared to the ones already discussed and we treat only
a simple example.

We ask whether a fluid in a container ) and in a conservative force field
g, g = —0G, can, at least in particular circumstances, conduct heat without
developing motion (i.e. if it can “look” like a solid conductor). We shall
assumne therefore that the temperature on the walls is a preassigned function
E—0(§).

For a fluid verifying (1.2.8) one has

8tp =0

Op = —p0G T =

Op = —pdG, 7(v,p) (1417)
Tpdis = AT

T() =9(), €.

The first equation says that p = p(£) and the second that p must be a

function of § through G so that p can be expressed easily in terms of p,
namely

if p(§) = V(G(é))*l, then p(§) = 7(t) + W(G(E)) (1.4.18)
where V(@) is a suitable function and W (G) = — fgo V(G')~1dG'. Since
it must be T' = 7(v,p) it is

T(§) = r(V(G(©), (1) + W(E(E) (1.4.19)
for each £ € €, and, hence, also for £ € 9. Then it will also be 7(t) = 7
= constant. Thus hydrostatic solutions are possible only if the temperature
assigned on the boundary depends on £ via G(§). In this case also T'(§) is
a function of G(¢) and therefore s(¢) has the same property. B
Furthermore assuming that 9(¢) depends on ¢ via G(£) it is not clear that
there is a solution of - B -

Op=0, p=m+W(G), AT =0, T() =9() su o (1.4.20)

In fact the last two conditions on 7" determine 7" uniquely (as the solution of
a “Dirichlet problem” AT = 01in Q, T' =9 on 99); and it is not necessarily
true that 7" will be a function of ¢ via G(£): the latter is a very restrictive
condition. B B
To understand how strong the latter restriction is consider the case of a
gravity field
G(€) =gz, V() =To(z), £€N (1.4.21)

In this case we see that 7', p, s must be functions of z alone and therefore
the equation AT = 0 becomes d*>T'/dz* = 0, i.e. for a suitable y

T(z) =%(z) =To(1+v92) . (1.4.22)
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We thus see that to have hydrostatic solutions not only 9(§) must be a
function of z alone but it must be a linear function. -

Finally, if G = gz and T = (1 + gz) Ty we see that the (1.4.20) can be
satisfied if W (@) is chosen as solution of the equation obtained by imposing
the equation of state T = 7(v, p):

which is a differential equation for W which, once solved, gives W,V and
therefore p and p in terms of G = gz.

Obuiously the conclusion is that convective motions are necessarily gener-
ated inside a fluid in a conservative force field and not in thermal equilib-
rium, apart from very special cases.

The only case in which, under rather general assumptions, one can have
static thermoconduction is an incompressible fluid, see (1.2.8); in this case
the equations are

P =00, Op = —podG, pocy0:T = kAT
T dar’ (1.4.24)

where now s depends only on T and dS/dT" = ¢, because

(g_;))T __ (%)p —0 (1.4.25)

while p has to be thought of as no longer related to s or 7' because

dp Js
(w)v - (m)T‘O (1.4.26)

One can ask how to reconcile the possibility of a solution of (1.4.24), in
which T depends on time, with the impossibility of such a solution that we
have just shown in the case of a compressible fluid. In fact the incompress-
ible fluid is in a suitable sense a limit case of the compressible fluid.

In reality a compressible fluid close to an incompressible one (in the sense
discussed in §1.3) cannot be, for the above discussion, a static thermocon-
ductor and it will start “flowing”. However the motion will be the slower
the closer we are to a situation in which the fluid can be regarded as incom-
pressible.

Therefore the question of the connection between (1.4.24) and (1.4.20)
implies a study of a nonstatic problem and it will be analyzed later (c.f.r-
§1.5).
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(3) Current lines and the Bernoulli theorem.

A fluid motion is called static if the velocity and thermodynamic fields
describing it are time independent.?

For such motions it makes sense to define the “current lines” as geomet-
ric, time independent, curves; they are just the solutions of the differential
equations

E=u(f) . (1.4.27)

Current lines play an important role particularly in the case of isoentropic
Euler flows. A simple but important property associated with them is
“Bernoulli’s theorem” .

Let p = p(p) be the adiabatic equation of state of the fluid; then we define,
as above, the pressure potential ®(p) = [* dp’/p(p') and therefore the Euler
equations are

9-(pu)=0 w-du=—-p 'dp-0G (1.4.28)

Multiplying the second equation by u we recognize that it becomes
u2
u-0 [_? + ®(p) + G} =0 (1.4.29)

If t — £(t) is a point that moves on a current line according to (1.4.27)
and if X (&, t) is a function then 0;X + wu -9 X is the t-derivative dX/dt
of X(£(t),t) evaluated in ({(¢),t). Hence we see thatsetting X(,t) =

u?(€)/2 + ®(p(€)) + G(§), the (1.4.29) says that X is constant along the
current lines of the fluid:

+ ®(p) + G = constant (1.4.30)

oIS,

This is an equation expressing the vis vivae theorem, as the following clas-
sical alternative derivation shows.

Let S’ be a surface element through ' with normal n' parallel to the fluid
velocity u' in §': draw the current line through every point of S’, forming in
this way a “current tube” which we shall cut, at a point §”, with an element
of surface S" orthogonal to the velocity u'" in &".

Consider the fluid enclosed in the current tube at time ¢ = 0. At time ¢+ 8t
the surface S’ will be displaced forward by w'dt while the other surface S”
will be displaced forward by u'dt.

The kinetic energy variation of the considered part of the fluid will be, by
the static state assumption, simply

lunzpuuu -n"6tS" —

SU u?p'u -n'otS’ (1.4.31)

2 Often one calls such flows “stationary”: here this appellation is avoided because we shall
reserve the name “stationary” for states of the fluid that have well defined statistical
properties: see Chaps. 5,6,7.
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which must equal the work of the applied forces. The external forces perform
a work given by the variation of the potential energy (changed in sign)

Glplslul R Q’(St _ Gllpllsllull R ﬂ”(;t (1432)

while the calculation of the pressure forces is more delicate because we must
take into account that such forces not only work on the external faces and
on the bases of the tube but also inside it. To compute the work done by the
pressure forces we divide the tube into sections S’ = S1,Ss,...,S, = S"
normal to the velocity and spaced so that the center of S;y; follows the
center of S; by an amount much smaller than the quantity n; - u;0t, if u;
and n; are velocity and, respectively, normal vector to .S;.

Under such conditions the fluid element can be regarded as rigid and sub-
ject to a force equal to the difference between the pressures on its two bases
times their area. Then the work can be computed as

n—1

> (pi — pit1) Siw; - n,; 6t (1.4.33)

i=1

because the pressure forces do not perform work on the lateral face of the
current tube (since they are orthogonal to it: recall that the stress tensor
is —p (Si]').

Mass conservation imposes that p;S;u; - n; 6t = @) for all i. Hence (1.4.33)
becomes

QY B g [ & e -eee. s
~  pi » P(D) ' o
And summing (1.4.31), (1.4.32), (1.4.34) we find

12 "2
+o(p)+G =

N
N

+3(p") +G" (1.4.35)

vol!
‘I
)

In the case of incompressible motions (1.4.35) becomes simpler becauseqq

®(p) = P (incompressible case) (1.4.36)
p

where p is the (constant) fluid density.

From (1.4.35), (1.4.36) we read that increasing the velocity implies that
the pressure diminishes (in the incompressible case) or (in the more general
isoentropic case) the potential of pressure diminishes. In the incompressible
case to a shrinking of the tube section corresponds an increase of the velocity
and therefore a decrease of the pressure. It is a property on which several
pumps rely.

2/giugno/2000; 17:50



§1.4: Elements of hydrostatics 39
Problems

[1.4.1] (integrability of a vector field) The (1.4.1) shows that only force fields for which
there is an integrating factor u(z), i.e. such that g = pu(z)0G for some G, can generate
hydrostatic solutions; show that, in such solutions, the pressure depends on z via G(z)
and that also the product pu is a function of G. Show also that in the 2-dimensional cases
every force field admits, at least locally in the vicinity of a point where it does not vanish,
an integrating factor (but in general this is only a local property). (Idea: Let p = r(p, s)
be the equation of state and let g = u(z)9dG; since two scalar functions with proportional
gradients have the same level surfaces the (1.4.1) implies that: p is a function of z via
G: plz) = m(G(z)) and, again by (L4.1), up = r(m(G(z)), s0())u(z) = F(G(z)) for a
suitable F').

[1.4.2] In the context of [1.4.1] show that if the entropy density so(z) is known then one
can compute the pressure. Note that, however, in general one needs to check compatibility
relations between so(z),u(z) and the equation of state p = 7(p,s) in order that the
equation be soluble. (Idea: The pressure must be a function 7(G). Then 9p/0G =
r(m(G(z)), so(z)) p(z) = «'(G(z)) and from this differential equation one deduces 7 by
fixing its value at a point z, and by integrating the equation along a curve which leads
from z, to z, after having expressed so(z) and z in terms of G along the curve. The
procedure depends upon the curve and therefore compatibility conditions are necessary.)

[1.4.3] In the context of the above two problems assume that the volume force g is
conservative with potential G, and assume that the entropy so(z) is given and it is a
function of the potential, so(z) = S(G(z)), show that the compatibility conditions in
[1.4.2] are satisfied and that a hydrostatic solution of the second of the (1.2.1) is possible.
(Idea: The p can be expressed in terms of the equation of state p = r(p,s) and of the
solution p = 7(G) of the differential equation

o=, S(G)) w(Go) = Po

and the hydrostatic solution will then be p(z) = 7(G(x)).

[1.4.4] (temperature and in hydrostatic states)Check that the hydrostatic solutions in
[1.4.3] will, in general, correspond to states of the fluid in which temperature changes
from point to point and they will, therefore, be really possible only for very special
temperature distributions because in general the temperature will be incompatible with
the hydrostatic solution of the third of the (1.2.1). (Idea: Note that the equation of state
allows us to express 1" as a function of s,p and it will not be, in general, true that the

third of the (1.2.1), will hold, c.f.r. [1.4.3], unless 0k 01" = 0 of course).

[1.4.5] (calm air condition) Imagine air as a perfect diatomic gas with molecular mass
my = 28.8my, my = hydrogen mass = 1.67 - 10724 g and take kg = 1.38 - 10716 erg
°K~! g = 9.8-10% cm/sec?, ¢, = %:L—i = %%, R = kpNp and Ny = Avogadro
number, R = 8.31-107 erg/° K, No = 6.02210%3). Compute, if the ground temperature
is T = 20°C, which is the value of Ty such that if the temperature at height z = 103 m
is 7" > Tp then convective currents will not develop. (Idea: To(z) = T — gzc;' is
the limit case as given by eq. [1.4.12]; thus one finds Tp > T — 9.6°K (i.e. a gradient
of 0.96 - 1072°K/m). If T < T, air cannot be observed in a hydrostatic stratified
equilibrium.)

[1.4.6] In “real” and calm atmosphere in equilibrium the temperature gradient that is
observed is ~ 0.6-1072 °K/m and therefore the calm atmosphere in normal conditions is
in stratified equilibrium. Check this statement by finding and consulting some geophysical
data.

[1.4.7] (incompressibility estimate for air) Express the condition under which a perfect
gas in mechanical equilibrium in the gravity field and at constant temperature can be
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40 §1.4: Elements of hydrostatics

considered as incompressible. (Idea: from the discussion in §1.2 one sees that density
variations on the scale [ over which sensible variations of pressure occur are such that:

AP o 3—21, where ¢ is the sound velocity. Take, in the case of air, ¢ ~ 10® km/h.

Check that the characteristic scale over which density variation take place is ~ ¢?/g,
i.e. ~ 10*m. Hence one can consider that in normal conditions air is incompressible (for
what concerns the hydrostatic state) over length scales of the order of a kilometer and
therefore one can use (1.4.11) to evaluate the height from a measurement of pressure. For
larger heights p cannot any more be considered as constant and to compute the height z
in terms of p it becomes necessary to know also how temperature changes with height. At
least for quota differences not too large it is possible to evaluate the height from pressure
measurements, independently of the temperature distribution: it is the principle on which
altimeters work. Using a “naive” altimeter, based on the formula p = —pgz + v (i.e. on
an empirical gauge performed under ideal atmospheric conditions) can lead to important
errors if the atmospheric conditions are not “ideal”.) (Idea: It is

Apl 9.8

-1 _ -4 -1
pf_mm =1.27-10""*m™".)

[1.4.8] (gravity and calm planetary athmospheres) Consider a perfect gas in equilibrium
in a gravitational field generated by a sphere of given mass and radius and, defining
“stratified equilibria” states in which the thermodynamic quantities depend only upon
the distance from the center of the sphere, repeat the analysis performed in this section
in the case of the half space. Apply the results to the Earth’s atmosphere and to that
of some other planet (e.g. Mars and Venus), computing which could be the maximum
temperature gradient compatible with a stratified equilibrium. Compare the results with
the average gradients at the surface of the planets as deduced from known astrophysical
data. (Idea: Part of the problem is to look for, and find, the necessary astrophysical
data.)

[1.4.9] (a case of impossibility of hydrostatic states) Consider a perfect gas with equation
of state (1.3.1) (é.e. s = ¢y logT — clogp and therefore p = pTc and € = %CT, where

¢ = R/Mp,c, = %c if R is the gas constant and Mo is the mass of a mole). Suppose
that viscosity and thermal conductivity are given by the Clausius—Maxwell relations
(n = c1TY?, k = coT/?, with suitable c1,c2: c.for. [1.1.5]). Suppose that the stress
tensor is expressed in terms of the viscosity as 7;; = n(9;u; + 0ju;). Assume also that
the gas is enclosed in a cubic container 2 with walls temperature fixed To(P), P € 09.
Show that in general the gas cannot stay in equilibrium (i.e. keep u = 0, and T,p =
constant) and find a distribution of temperature on the walls Ty which does not permit
configurations of (mechanical and thermal) equilibrium in presence of a gravity force.
(Idea: Show that the equations are

Otp + 9(pu) =0
peu(0¢T +u - 0T) = —p0 - u + 9(kOT')

1

deu+tu-Qu=—=0p++z’ @+2Ay+g
P P =
3

p=plec, e==cI

[\

and check that u = 0 (mechanical equilibrium) implies that AT + %(QT)z/T =0
(i.e. AT3/2 =0 and dlogp = g/(cT)), hence that g must be parallel to 9T (considering
the rotation of the last expression and using that g is conservative): this is in general

false. For instance if To(z,y,2) = 9x2/3 for (x,y,z) on N then T'(x,y,z) = 9z2/3 is
solution of the equation for 7' but its rotation is not parallel to g.)

[1.4.10] (elementary tide theory) Consider a homogeneous spherical planet 7" of radius
R coated by an ocean of depth h > 0, large enough. Let L be its small. lonely, satellite

2/giugno/2000; 17:50



§1.4: Elements of hydrostatics 41

(also spherical and homogeneous). Denote by My and M/, the respective masses and
assume that the motion of the two heavenly bodies about their center of mass be circular
uniform and let p be the distance T'L of the two heavenly bodies: p > R > h. Assuming,
for simplicity, the satellite on the equator plane and the planet rotation axis orthogonal
to it, compute the equilibrium configuration of the fluid surface and evince Newton’s
formula according to which the tidal ezcursion (i.e. the maximal height variation between

successive high and low tide) is p = §R(E)S%. (Idea: If G is the center of mass, its
distance from the center 1" is pp = Wp and the angular velocity of revolution of

the two heavenly bodies is w, such that w?p = k(Mg + M7)p~2, if k is the gravitational
constant. Let n be a unit vector out of 7" and note that, imagining the observer standing
on the frame of reference rotating around G with angular velocity w (so that the axis
TL has a fixed unit vector g), the potential energy (gravitational plus centrifugal) in the
point rn has density proportional to

My Mg, 1o, 2 2
—k—— — k— - - —w +r° —2ppra
r (p?2 + 72 —2apr)t/2 2 (P pra)

if @ =i-n = cos¥. Develop this in powers of r/p to find

M Mg 3 . s 1 M
_k_T_k_L_az(f)z 2T
r p 2 p 2 p
3 .
(50
p \r p° Mt 2

( )2 + cost =
p

%(E Ty Mo +%))+cost

because the linear terms cancel in virtue of Kepler’s law (w?p® = k(My + My,)); and
therefore the equation of the equipotential surface is

P Mg 3
=+ ) (M

Zcos?9+ =) = cost
r p 2 )

Hence, setting 7 = (1 + ¢)R, we find: ¢ ~ (1:)3 %L 2 cos? ¥ + cost; the constant is

determined by imposing that the solid of equation 7 = (1 + £(¢)) R has the same volume
as the ball » = R and, of course, h has to be large compared to u (otherwise ...).)

[1.4.11] (tides and Moon mass) Knowing that on the open Atlantic (e.g. St. Helen
island) the tide excursion is of about 90 ¢cm, [EH69], and supposing that this would be
the tidal excursion on a Earth uniformly covered by a layer of water in a time independent
state and subject to the only action of the Moon, estimate the ratio between the mass of
the Moon and that of the Earth. Suppose R = 6378 Km, p = 363.3 103 Km equal to the
minimum distance Earth—-Moon.

[1.4.12] (ratio of Moon and Sun tides) Estimate the ratio between the Moon tide and

i . eL . Mg
the Sun tide. (Idea: = = MS(PL

and that the Moon mass is (approximately) the one deduced from the problem [1.4.11]).

)2 ~ 2, supposing that the Sun mass is Mg = 106 M,

[1.4.13] Taking into account the result of [1.4.12] compute again the Moon mass and
the ratio between the Sun tide and the Moon tide. (Idea: The Moon tide will then be of
about 50cm rather than the 80 cm of [1.4.11].)

[1.4.14] (tidal slowing of a planet rotation) Let wp the daily rotation velocity of the
planet T" above, and suppose that the daily rotation takes place on the same plane of the
satellite L orbit. Assume that the planet is uniformly coated by a viscous fluid which
adheres to the bottom of the ocean while at the surface it is in equilibrium with the
satellite (i.e. the tide is in phase with the satellite and therefore rotates with an angular
velocity wp — w with respect to the planet surface). Let wp > w and let the depth of
the ocean be h; suppose as well that the friction force be n times the gradient of velocity:
then the momentum of the friction forces with respect to the rotation axis will be

™ _ . ‘ 4 i
A:/ iﬂwi'iRSinﬂi'iZWRZSinﬂdqﬂ _ SJW
0 =
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42 §1.5: Convection

Estimate the daily and annual deceleration of the planet assuming that the annual rev-
olution velocity is wp /365, and that n = 0.10 gs tem™!, R =6.3102 Km, h = 1.Km,
w = 2nd~', M7 = 5.98 x 10?7 g, estimating the number of years necessary in or-
der that the planet rotation velocity (around its axis) be reduced by a factor e!.
(Idea: The inertia moment of the planet is I = %MTR2 and therefore wp = —A/I,

i.e. wp(t) = wp(0)e~t/T0 Ty = 3Mrh/20nR?. The result is Ty = 1.5 - 107 years which
means that (in this friction model) the day would, at the moment, be longer by about
.55 sec every century, i.e. by about 0.65-1072% a century.)

[1.4.15] (effective depth of oceans) Compare the value of the deceleration computed
in [1.4.14] with the observed value for the Earth (deduced from astrophysical tables
(to be found) or from scientifically alert newspapers, also to be found) and compute
the “effective depth” of the terrestrial oceans, defined as the depth of an ideal ocean
that would produce the observed deceleration with the above (oversimplified) friction
mechanism, and compare it with the actual average depth.

[1.4.16] (tides on Mars) Had Mars an ocean uniformly covering it, how wide would the
Sun tide be there? (Idea: ~ 5.23 c¢m because the radius of Mars is 3.394 - 108 c¢m, its
distance to the Sun is 227.94 - 101! cm and its mass is 0.64 - 1027 g.)

[1.4.17] (tides on Europe and Moon) Assuming that Europe (satellite of Jupiter) had
a deep enough uniform ocean estimate the height of the tide generated by Jupiter. Same
for the pair Moon-Earth (Idea: write a small computer program to solve the general
problem of the static tide generated on a satellite by its planet to solve all problems of
this kind and play with various cases like Titan—Saturn etc.)

Bibliography: [LL72], [BKM74].

§1.5 The convection problem. Rayleigh’s equations.

We now investigate in more detail the (1.2.1), and the (1.2.8), to find
a “simple model” (i.e. simpler than (1.2.1) themselves) for some incom-
pressible motions in which nontrivial thermal phenomena take place. Es-
sentially we search for some concrete case in which (1.2.8) is derived as a
“consequence” of (1.2.1), which is a consequence “exact in some asymp-
totic sense”. We shall find a physically interesting situation, known as the
“Rayleigh regime”, describing a simple incompressible heat conducting and
viscous fluid flowing between two surfaces at constant temperature.

(A) General considerations on convection.

The problem we shall address here is to deduce equations, simpler than the
general ones in (1.2.1), valid under physically significant situations and that
can still describe at least a few of the phenomena of interest, i.e. motions
generated by density differences due to temperature differences. We look for
a system of equations that could play the role plaid by the incompressible NS
equations in the study of purely mechanical fluid motions (i.e. motions in
which temperature variations and the heat and matter transport generated
by them can be neglected).

Incompressibility in the simple form of the assumption that p = const
is obviously not interesting as, by definition, one has convection when the
density variations due to temperature variations are not negligible.
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Therefore we ask whether a physically compressible fluid, a perfect gas to
be specific, admits motions that preserve the volume, i.e. such that -u =0
with a good approximation, without having constant density.

In general, however, the divergence 9 - u is not a constant of motion and,
therefore, one can doubt that the above question is a well posed one. And
in fact we shall find that solutions with 0 - u = 0 can only exist in an
approximate sense, giving up the requirement that the equation of state be
exactly verified and replacing it, in some sense, by the 0 -u = 0. More
precisely we shall find approximations that transform the general equations
(1.2.1) into equations that are approximate but which include among them
the 0 -u = 0, assuming that it is verified at the initial time, even though it
is not necessarily p = const.

(B) The physical assumptions of the Rayleigh’s convection model.
Consider, for definiteness, a perfect gas
s=-cyloge—clogp=s=cylogT — clogp+ cost (1.5.1)

i.e. p = cpT, e = cyT, where cy is the specific heat at constant volume,
¢ = R/M 0 is the ratio between the gas constant R and the molar mass, and
the internal energy is denoted e to avoid confusion with the adimensional
small quantity € introduced in the following. However the assumption of
perfect gas is not necessary and the only change in considering a general
fluid is that some quantities will be constants that cannot be computed
unless one specifies the substance under study.

We suppose the fluid to be enclosed between two horizontal planes at height
z =0 and z = H, subject to a gravity force g = (0,0, —g).

Boundary conditions are fixed by assigning the “ground temperature and
the “temperature in quota”, T' =Ty, if 2z =0, and T'=Ty — 67T, if z = H.
Furthermore we shall assume that the velocity field is tangent to the planes
z = 0 and z = H and that the horizontal momentum [wu;dz, j = 1,2,
vanishes (in the following we shall take the notations u = (ug, uy,u;) and
u = (u1,u2,us) as equivalent).

We shall study motions in which the pressure is close to the static baro-
metric pressure, p = pg — pogz, and in which density is close to a given pg
and pg is large with respect to pogH.

Supposing that the viscosity coefficients n,7’, c.f.r. (1.2.6), are constant
(the problems in §1.1 show that this is an assumption that can be reasonable
if the temperature variations are sufficiently small, see also below) it follows
that the “exact” equations are, if v =n/p,v' =n'/p, c.fr. §1.1 and (1.2.1):

pT(9rs +u - 9s) = KAT + L Qu+u)* + (n +1')(2 - w)?

Oru+u - du=vAu+ (v+v)30 u) - -dp+g (1.5.2)

=

Op+0-(pu) =0
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to which one adds the equation of state s = s(e,p) in (1.5.1), or (equiv-
alently) the two relations s = cylogT — clogp, p = c¢pT, and also the
mentioned boundary conditions. We shall suppose k,v constant, for sim-
plicity.

It is interesting to make the side-remark that the condition that friction
generates entropy at a positive rate is expressed by n(du + du)* + 7'(0 -

u)?/2 > 0, i.e. n’ > —2n. The case n' +n = 0 is therefore possible, from
this point of view, hence it is theoretically relevant.

Note that, given sg, ug, po at time ¢ = 0, we can compute Tp, pp at the same
instant via the equation of state and, hence, via (1.5.2), @, $, p (at t = 0):
so we can compute u,s,p at time dt > 0. Motion is therefore formally
determined by the equations (1.5.1),(1.5.2).

If, furthermore, at t = 0 one has 9 - u = 0 it is not necessarily 0 -4 = 0 at
the instant ¢ = 0: hence it is not necessarily 0 - u = 0 at time dt > 0.

It follows that the condition 0 - 4 = 0 can be added only provided we
eliminate one of the scalar relations, e.g. the continuity equation. And this
can only be consistent if the incompressibility conditions seen in §1.2 are
realized and if, also, the temperature variations do not cause important
density variations.

If « is the thermal expansion coefficient at constant pressure (a ~ T
if 0T is small, in our perfect gas case), the latter condition simply means
that ¢ = adT <« 1. And the incompressibility condition seen in §1.2 is
formulated in the same way by requiring that a typical variation v of the
velocity has to be small with respect to the sound velocity vsound-

An estimate of v can be obtained by remarking that motions that de-
velop starting from a state close to rest are essentially due to the density
variations due to temperature variations, which naturally generate a small
archimedean force with acceleration a 67" g.

Thus a typical velocity in a motion close to rest, at least initially, is the
one acquired by a weight that falls from a height H with acceleration gadT":

v =+/HgadT (1.5.3)

and the time scale of such motions will be the time of fall, of the order
7. = H/v. We shall make some simplifying assumptions, namely

(h1) we shall only consider motions in which the space scale and the time
scale over which the velocity varies are of the order of H and, respectively,
of v™YH? or 1. = H/v assuming that the latter two times have the same
order of magnitude. Furthermore

(h2) we shall also suppose that all velocities have the same order of mag-
nitude, otherwise (c.f.r. §1.2) the discussion on incompressibility would be
more involved; in this way there will be only one “small” parameter ¢:

H-! H
e adl ~ —— ~ Z ~ (1.5.4)

Usound Usound Vsound
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Here ~ means that the ratio of the various quantities stays fixed as ¢ — 0:
in other words the ratios of the various quantities should be regarded

as further parameters; the notations are a = —pfl(g—%)p ~ T~ and

v = (g—g) ~ (cT')~*.1 Note that the convective instability condition

(1.4.12) (¢ > —£) becomes, since 2L ~ 2L “g‘LT v? q > 1 and hence the
Cp

conditions (1.5.4) correspond to unstable situations (although “marginally”
so because this parameter is ~ 1) with respect to the birth of convective
motions, at least in absence of thermoconduction, c.f.r. (C) in §1.4.
Convective motions in turn can be more or less stable with respect to per-
turbations: the latter is a different, more delicate, matter that we shall
analyze later. Their instability will thus be possible (and even be strong)
depending on other characteristic parameters: we shall see that in fact con-
vective motions arise even though the adiabatic stability condition (1.5.4)
holds but then the quantity Rp, = vpc,/k is large.

Writing p~16p = p~! (ap/BT)p(ST + p~'(0p/Bp) ;Op we see that the fluid
can be considered incompressible if, estimating p~1dp as |i| ~ v?H™! ~
|u - 0 u| and using (1.5.3), it is

HgadT
2

asT < 1, <1 (1.5.5)

sound
and under the assumptions (1.5.4) the incompressibility condition (1.5.5)
will simply be € < 1.
(h3) We shall also assume to be in a situation in which /g H/v?

ound —

V9H/cT < adT =c are small so that (1.5.5) is automatically vemﬁed.

Under the hypothesis (1.5.5), and supposing that the velocity and tempera-
ture variations in the motions that we consider take place over typical scales
of length of the order H and of time of the order v~*H?, the equations of
motion will be written, setting T =Ty + 9 — 0T /Hz, as

0-u=0
G+u-Qu=vAu+g— %Qp (1.5.6)
. oT
19+u-819—— XAt?-l——(Bu-l—@u)
~ o~ 2¢,

where we set xy = /-ep_lcp ; the continuity equation has been eliminated

(and its violations will be “small” if (1.5.5) holds)? and the last equation

1 In fact the sound velocity is defined as (9p/0p)s TV = =+/c(l+cy/c)T = /cpT, rather

than by V/¢T', because usually one considers adiabatic motions; but the two definitions
give the same order of magnitude in simple ideal gases because cy =3¢/2.

2 Indeed the terms O¢p e u - 9p of the continuity equation have (both by (1.5.4)) order
of magnitude O(padT v/H?), while the third term pd - u has order O(p/vH) and, by
(1.5.4), vH ~ v the ratio of the orders of magnitude is O(¢). To lowest order the
continuity equation is thus 9 -u = 0.
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is obtained from the first of (1.5.2) by noting that, within our approxima-
tions, the thermodynamic transformation undergone by the generic volume
element must be thought as a transformation at constant pressure, so that3
Tds = cpdT'.

We shall suppose that v, x,c, in (1.5.6) are constants (again for simplic-
ity). And we shall always imagine, without mention, that the boundary
conditions are the ones specified before (1.5.2).

(C) The Rayleigh model.

The (1.5.6), valid under the hypotheses (1.5.5),(1.5.4), are still very in-
volved and it is worth noting that the conditions (1.5.4) allow us to perform
further simplifications because there are regimes in which the equations can
contain terms of different orders of magnitude.

For instance we can consider the case in which the (1.5.4) are “automati-
cally” true and one supposes the external force g tends to 0 and the height
H tends to 0o, as € — 0. This facilitates the estimate of the various or-
ders of magnitude in terms of ¢ = ad7T". It will be possible, in fact, to fix
g = goe? and H = hoe~! (keeping fixed v, Vsound, Po, To) which, for small ¢,
is a regime that we shall call the Rayleigh regime. In this regime the typical
velocity will be v = O(e) because adTg is interpreted as the archimedean
buoyancy due to the density variations.

In this situation we can see further simplifications, as ¢ — 0, because
several terms in the last two equations (1.5.6) have order of magnitude in €
which is O(g%); hence all terms of order O(e*) (or smaller) can be neglected
in the limit in which ¢ — 0. Indeed

(I) the term vc, ' (9u)? in the energy balance equation is negligible; i.e. one

can think that the heat generation, by friction, inside the fluid is negligible.

3 A more formal discussion is the following. Imagine s as a function of p,T (in a perfect
gas it would be s = cp logT + clogp); then

Tds = cpdT + (g—;)TdT (1.5.7)

and we can estimate the ratio p/1" by estimating T as 0T H2/v and p by remarking
that O(|9p|) ~ O(pw) ~ pvv/H? and hence the variations dp of p have size O(dp) ~
O(pvv/H) and, therefore, O(p) = O(pvv?/H?3). Hence if we compare p/p to T/T we
get pvvT /pdTH which has size O(g) by (1.5.4): for instance in the free gas case this
is (v/Vsound) - (W/HVsound) - (1/adT) = O(e) (we consider a fixed fluid so that the
parameters Usound; P,V are regarded as constants). Hence in the variation of entropy
we can suppose p = constant to leading order, so that T'ds = cpdT" (and in the free
gas ¢p = ¢y + ¢). Note that the perfect gas assumption is not necessary for the above
argument: it is only made to perform an explicit computation of (as/ap)T which is a
constant in this argument as it is a property of the fluid.

Note also, as it will be used in the following, that if x ~ v (c.f.r. [1.1.5]), the term

n(0u + Ou)?/2 has size O(mqv?H~2) = O(prv?> H~2) = O((v/Vs0und)?(V/HVsouna)?) =

O(e*) so that it can be eliminated from (1.5.6). See [EMS83].
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(I) quantities of order e in the second and third of (1.5.6) will be neglected.

Before discussing the condition of validity of the above hypotheses (I) and
(IT) note that the typical velocity variations, c.f.r. (1.5.3),(1.5.4), will have
order v = gHa 0T = O(e)vsouna while the typical deviations of temper-
ature and pressure from the hydrostatic equilibrium values will have order
adT = € or v/Vsound (i-e. again < O(e)) respectively, if measured in adi-
mensional form).

Hence neglecting terms of order (ad7')* allows us to keep in a significant
way the nonlinear terms in (1.5.6), which have order O(e?).

We first discuss the hypothesis (II); we remark that by the definition of ¥,
see (1.5.6), it is

1 1 _ Lo g
ot (=20p) =75 (0p N 9p) = p2(aT)P(— TH

ape _
:p—QQﬁ Apg+ O(e*) = —acd A (9g) + O(e*)

YAOp = (1.5.8)

because if, as we are assuming, we think that H = hge™',g = goe?, with
€ = adT then

(a) in the first line, noting that dI' = di — ‘%sz, 0z = —g/g, we use

oy = £ = ap and the part of dp proportional to 90).9p does not
ar/p T ap

contribute and, furthermore, because

(b) 9p — pg has order O(g?) (i.e. the order of & and hence of the product of
vH~2 times the typical velocity v = O(e), see above). Thus we can replace
dp with pg up to O(e*) and

(¢) adT,a ~ O(e) and hence ap™ §T/H = O(e?) and ap™' 99 A 9p =
ap™rOY A g+ O(e?)

Therefore (II) implies rot (—p~*9p + agd) = O(g?*), i.e. for some p' it is
1
—;Qp = —adg + 0p' + O((a6T)*) (1.5.9)

or, since g is conservative, also g — p~'9p = —avg + I’ + O(e*).
We now turn to (I), analyzing with the method of §1.2 its physical signifi-
cance. In the Rayleigh regime the term that we want to neglect has order

of magnitude

v Hygadl (1.5.10)

v .
—(Ou)? ~ !
cp(~g) ¢ H?

and it has, therefore, to have order of magnitude small compared to the order
of magnitude of the other terms of the equation, i.e. ¥,u - 9V, %Tuz, XAY.
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And one has

; voT orT orT
19"\-‘0(?), F’U/z NO(F\/QQ(STH)

orT

(1.5.11)
u - 09 ~O(v/gHa 6T%6T), XAY ~ O(Xm)

and comparing (1.5.10) with (1.5.11) one finds that the incompressibility
conditions (1.5.5) and the conditions of validity of the hypotheses (I) and
(IT) can be summarized into

VIHa T < Vsound, e=adl K1,

v\ gHadT (1.5.12)
0T > Hga 0T — 1
oL > H90n e S
supposing, as said above, that motions take place over length and time
scales given by H and by H?v~! respectively.
The conditions can be simultaneously satisfied by choosing

goho v

~1l, —~1 (1.5.13
CpTO \/ CpToho ( )
where go, ho, Ty are fixed and we used a = T~1, 02
is € € 1, (note that these relations are just the (1.5.4)).
In such conditions the equations, including the boundary conditions spec-
ified before (1.5.2), become

e=adl, g=goe?, H=hpe?,

~ ¢cpT', provided it

(o5

u=0
G+u-9u=rvAu—adg—Ip (1.5.14)

. T
19+g-§19:xA19+%uz

90)=0=9(H), wu.(0)=0=u,(H), /uwdgz/uydgzo

and we do not write the equation of state nor the continuity equation be-
cause s and p no longer appear in (1.5.14) (and, in any event, the equation
of state will not hold other than up to a quantity of order O((«6T)?). The
function p' is related, but not equal, to the pressure p: within the approxi-
mations it is p = po — pogz + p'.

We must expect, for consistency, that u = O((« dT')) = O(e) and ¥ = O(e),
and that the equations make sense up to O((adT)?), as they now consist
entirely of terms of order O(e3).

In fluidodynamics one defines various numbers by forming dimensionless
quantities with the parameters that one considers relevant for the stability
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of the flows studied. In the present case the nonlinear terms in (1.5.14)
make sense, and one can define a number measuring the strength of the flow,
namely R = v/v, with v. =v/H (i.e. R =+/adT gH/(v/H)): instabilities
can arise for large R, i.e. for large velocity variations.

One should stress that, in the considered regime, the Reynolds number is a
“free” parameter, e-independent (by (1.5.13)) in the sense that it is possible
to keep R constant while ¢ — 0.

In a general flow the “Reynolds number” R of a velocity field is defined
as the ratio between a typical velocity and the “geometric speed”, i.e. a
velocity formed by the viscosity and a typical length scale. Sometimes
there are several numbers that one can imagine to define because there are
various different length or time scales. In the present situation the number
R, or better R%, formed by using the “geometric speed” scale v/H is called
Grashof number, see [LL71].

In fact there is a second ‘natural “geometric speed scale”: namely H 'y.
Often x ~ v (as, in perfect gases, the Clausius—Maxwell relation implies,
c.f.r. problem [1.1.5]: x = vc¢y/ey): but there are materials for which
vx~! = Rp,., called the Prandtl number, is very large and, therefore, the
speed H 'y is very different from H~'v and instability phenomena can
arise at lower velocity gradients. The following table gives an idea of the
orders of magnitude (c.f.r. [LL71], p. 254) of the experimental values of
RPT‘

Mercury . .. . . 0.044
Air . . . . . 0733
Water . . . . . 675
Alcohol . . . . . 168
Glycerine . .. . . T7250.

The convective instability problem, i.e. the determination of the values of
the parameters R and Rp, in correspondence of which the trivial solution
u = 0,9 = 0 of (1.5.14) loses stability (in the sense of linear stability),
was investigated by Rayleigh who did show, as it will be seen in §4.1, that
the convective instability is controlled by the size of the product R?Rp,,
sometimes called the Rayleigh number:

_gadT H 3

Rpay = T R?Rp, (1.5.15)

or, sometimes, the Péclet number, [LL71].

Remarks:

(1) Note that if the (1.5.4) hold then R = 1: this means that R = O(1),
i.e. it stays fixed as € — 0. Hence, physically, R g4y large is in general related
to large Rp, as well as to large R. However in perfect gases Rp, = 1, c.f.r.
[1.1.5].

(2) Obviously, since the problem allows us to define two independent dimen-
sionless numbers (except in the free gas case, as remarked) we must expect
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that there is a two—parameters family of phenomena described by (1.5.14)
and one should not be surprised that for each of them one could define
a characteristic number having the form R®RY : considering the “large”
quantity of possible pairs of real numbers (a,b) one realizes that there is
the possibility to make famous not only one’s own name, but also that of
friends (and enemies), by associating it to a “convective number”.

To organize rationally the convective numbers it is useful to define the
following adimensional quantities

r=tvH ? ¢=aH ' n=yH ', (=2zH ',

9 (1.5.16)
9 =2 W = (VgHadT) " u
adT
where the functions u®,9° are regarded as functions of the arguments

(T7 67 777 C)'

One checks easily that the Rayleigh equations in the new variables take
the form

H?a 6T
@+ Ru - 0u= Au— Rde — Op, RQZ%
U+ Ru 90 = Rp, AV + Rus, Rp. :%
o (1.5.17)

u:(0) = u.(1) =0, 9(0) =9(1) =0, /umdg = /uydg =0

where after the change of variables we eliminated the labels 0 and recalled
t,z,y, z the adimensional coordinates 7,&,7, ¢ in (1.5.16) redefining p suit-
ably; furthermore we have set e = (0,0, —1).

The equations (1.5.17) hold under the hypothesis that (1.5.13) hold: note
again that in such case R = gohdv~? and Rp, = vk~ ! can be fixed inde-
pendently of €. This is important because it shows that various regimes
depending on two parameters (the parameters R, Rp,) exist in which the
equations are admissible, if € is small.

Remark: one can also note that if 67" was < 0, i.e. if the temperature
increased with height, the equations (1.5.17) and (1.5.14) would “only”
change because of the sign of ¥ in the first of the (1.5.17) or of ¥g in the
second of (1.5.14). This can be seen by looking back at the derivation, or by
remarking that changing the sign of 67" is equivalent to exchange the role
of z =0 and z = H. The heat transport equations between two horizontal
planes with the one above warmer that the lower one (where “up” and
“down” are defined by the direction of gravity) are therefore, if 67" > 0

H3a 6T
4+ Ru - du = Au+ Rie — Op, RQ:%
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9+ Ry -09= RPiAﬁ—i—Ruz, Rp, =
0-u=
u(0) = u.(1) =0, 9(0) =¥(1) =0, /ugcdg = /uydg =0

v
— 1.5.18
X ( )

which are, however, less interesting because they do not imply any (linear)
instability of the thermostatic solution, see §4.1.

(D) Rescalings: a systematic analysis.

One can ask for a more systematic way to derive (1.5.17). One can again
use the method, actually very general, employed in §1.3.

Suppose that e = « 6T, a =T, 02 ., = ¢, T and
H
€ =adT, e = gT ~ e, e = HL R e, e—0
e s ¢ Usound (1.5.19)
R=2"C2" and Rp,=Z2  fixed
v K

which is a “regime” that we shall (as above) call the Rayleigh convective
regime with parameter €. We are, automatically, in this regime if the pa-
rameters are chosen as in (1.5.13). We now look for a solution of (1.5.2)
which can be written as

w(z, t) =(gHa 0T)? v (zH tvH?)

oT 0 -1 -2
T(a,t) =Ty — zrz+0T0 (wh ~, tvH ?) (1.5.20)
p(z,t) =po(zH ') +er’(zH ', tvH ?)

p =epo(zH ') +&%p°(aH ', tvH?), g=¢ego

where u®(&,7),9°(€,7),r%(E,7) can be thought of as power series in e
with regular coefficients in &, 7: note that under the assumptions (1.5.19)
the three parameters e,&’,e" are estimated by e, which therefore is our
only small parameter. Furthermore the functions Ty — 6TzH~! and
po(zH 1), po(zH 1) are solutions of the “time independent problem”,
i.e. of (1.4.6), with boundary conditions po(0) = p and Tp; namely

po(C) = P, po(€) = po(0) + PgohoC (1.5.21)

obtained from (1.4.10) by applying the equation of state to express pg in
term of p (given by (1.4.10)) and of the temperature Ty — 67°C.

One can now check, by direct substitution of (1.5.20) into (1.5.2), with
W =u4+e?+...,p=potert+er?+..,p° =p>+ep®+... and
190 191 +¢ev¥? + ..., that the lowest orders u!, 9%, p, po verify (1.5.17).

As in footnote ® one has to note that p turns out to be of O(g*) in an
equation in which all terms have the same size of order O(g?) so that p =0
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up to order O(e*) and (since p = ¢pT’) we can replace Tp by —pT in the
entropy equation. Also here the assumption of perfect gas is not essential.

Hence the lowest order of u®, 9%, py describes the asymptotic regime in
which the (1.5.17) are exact: we shall say that the convective Rayleigh
regime is exact in the limit “c — 0 with the relations (1.5.18) fixed”.

This is a mathematically transparent method, apt to clarify the meaning
of the approximations and it is the version for the (1.5.2) (in the problem
of the gas between two planes at given temperatures) of the analysis of the
incompressibility assumption of §1.3. Hence we can hope in the validity of
theorems of the type of the ones in §1.3: however such theorems have not
(yvet) been proved in the present case.

This viewpoint is clearly more systematic because it allows us, in principle,
also to find the higher order (in €) corrections which, in a similar way, should
verify suitable equations.

To determine that, in a suitable limit, a certain regime (i.e. certain simpli-
fied equations) are “asymptotically exact” it is usually necessary to proceed
empirically as above (or as in §1.2) and only a posteriori, once the struc-
ture of the equations has been understood and the relevant adimensional
parameters have been identified, it becomes possible to “guess” the right
rescaling and the limit in which the equations “become exact”.

It is convenient to note here that it is not impossible that for the same
equation one can find several “regimes” in which the solutions are described
by “rescaled” equations (simpler than the original ones, but usually different
and depending on the regime). Although we do not attempt to discuss
an example for the model (1.5.2) considered here, there are many other
examples: we already met in §1.3 an instance in which a fluid can be found
in a “Euler regime” or in the (different) “Navier—Stokes regime”.

Problems

[1.5.1]: Examine some consequence of a violation of the (1.5.4).

Bibliography: [LL71]: §50,§53,§56; and [EM93]: from the latter work, in
particular, I have drawn many of the basic ideas and the methods of the
present section.

§1.6 Kinematics: incompressible fields, vector potentials, decom-
positions of a general field.

It is important to keep in mind various representations of velocity fields
in terms of other vector fields with special properties. Much as in elec-
tromagnetism it can be important to represent electric or magnetic fields
in terms of potentials (like the Coulomb potential or the vector potential).
Indeed, sometimes, the basic equations expressed in terms of such auxil-
iary fields take more transparent or simpler forms. In this section and in
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the problems at the end of it we shall discuss some among the simplest
representation theorems of vector fields of relevance in fluidodynamics (and
electromagnetism).

(A) Incompressible fields in the whole space as rotations of a vector potential.

Consider incompressible fluids: the continuity equation will require that
d-u=0 in (1.6.1)

Suppose u of class C* on = R? and rapidly decreasing at infinity: i.e. for
each p,q > 0 let |¢]99"u(¢) ——— 0.1 Then there is a vector field A such

[€]—c0
that
rot A = u, 0-A=0 (1.6.2)

Constructing A is elementary if one starts from the Fourier transform rep-
resentation of u

u) = / a(k)e™ S dk (1.6.3)

Indeed (1.6.1) means k - (k) = 0 i.e. a(k) = ik A a(k) where a(k) is a
suitable vector orthogonal to k£ and unique for k # 0. Hence

u(f) = / ik A a(k)e™Edk = rot / a(k)e™Edk = rot A(¢) (1.6.4)

However the vector field A in general, although being of class C°°, will not
have a rapid decrease at infinity.

This can be evinced by remarking that for £ — 0 the expression for a(k)
in terms of u(k) will not, in general, be differentiable in k. In fact from
0 -u =0 it follows that @&(0) = 0.2This implies only that u(k) has order k
for k — 0. However to have that a(k) = zk/\@(@)/@2 be regular in k = 0 one
should have that k A @(k) has the form of a product of k* times a regular
function of k: but the vanishing of 4(0) implies only that a(k) is bounded as
k — 0 with, in general, a limit depending on the direction along which one
lets k tend to O (and therefore it is not differentiable in k at 0). Hence a(k)
is bounded and approaches rapidly zero as k — oo, but it is not everywhere
differentiable in k and, as a consequence, its Fourier transform A(&) will be
C*° but it will not tend to zero rapidly for £ — co.

The above can also be derived directly from the formula, which does not
involve Fourier transforms,

S,
A©) = - /Rg el ot u(n) (1.6.5)

1 Here and in the following we shall denote with symbols like 0P a generic derivative of
order p with respect to the coordinates z.

2 Because @(k) is of class C* in k by the decrease of u and of its derivatives as & — 0o
hence @(k) = @(0) + O(k) and 0 = k - (k) = k - @(0) + O(k?): since k is arbitrary it
must be 4(0) = 0.
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i.e. A= —A"lrotu, well known in electromagnetism (A can be interpreted
as the magnetic field generated by a current u: this is a form of the “Biot—
Savart law”).

(B) An incompressible field in a finite convex volume Q as a rotation: some
sufficient conditions.

Often one needs to consider vector fields representing the velocity u of a
fluid in a finite container 2 which we always suppose with a very regular
boundary of class C*°. We ask whether given u € C*°(Q) it is possible to
find A € C*=(12) so that

u= rot A divA=0 (1.6.6)

A field A verifying (1.6.6) and in C*°(2) will be called a vector potential for
u.

Evidently to show that a field A exists it will suffice to show that u can
be extended outside © to a function C°°(R3) vanishing outside a bounded
domain Q D Q and, everywhere, with vanishing divergence.

Referring to the problem in (A) the difficulty is that the ezistence of an
extension is not evident. And if Q contains “holes” it is not true in general
(see the problem [1.6.12] for an example). In what follows we shall exhibit
one such field by considering convex domains 2 for which the geometric
construction is possible. The theorem can be extended to far more general
domains (regular convex domains whose boundary points can be connected
to 0o by a curve that has no other points in €2, i.e. domains “with no holes”
see problems [1.6.11]%[1.6.14]).

To show the existence of an extension of u outside ) we need to understand
better the structure of the divergence free vector fields. We consider the
case in which (2 is strictly convex and with analytic boundary (see problem
[1.6.8]) for the general case).

Consider the components us and ug of u: we shall extend them to functions,
that we still denote with the same name, defined on the whole R and
there of class C° and vanishing outside a sphere Q of large enough radius
containing ) in its interior. For this purpose we consider the cylinder of all
the lines parallel to the axis 1 that cut (2: they will define a line A closed
on 02 and smooth.

Let X be a surface of class C*° containing A and intersecting transversally
(i.e. with a non zero angle) every line parallel to the axis 1. We consider
the function u; on ¥ N and extend it to a function defined on the whole
¥, of class C™ there, and vanishing outside the sphere Q.
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Fig. (1.6.1): The directed lines reprent the field u, the circle represents  and the
vertical dotted line the surface X while the horizontal dotted line represents a segment
parallel to the axis 1. The dotted circle represents 2.

Every point of R? can be represented as §0 + i, & with §0 €eXand £ € R
and we shall denote it (§,§), see Fig. (1.6.1). We then define

£ 3
(€, +i,6) = wi(€,) + / S 0ui(E, + i) de’ (16.7)
=2

ji=

and we thus obtain a velocity field u with zero divergence defined in R3
and extending the field given in Q. By construction this field is identically
zero outside a cylinder parallel to the axis 4, containing 2. Furthermore if
one moves along the axis ¢; and by a distance large enough away from (2 it
becomes constant and parallel to the axis 1 itself

VR4 &> 0 large
u(§, +¢&iy) = {v_(gz)zl Z¢> 0 large (1.6.8)
where Vi (&) = u1(éo) + foioo - Z?:Q Oju; d¢', c.for. (1.6.7). Here “large”
means |£| > Ly and fix L > Lg. This is illustrated in the left square in Fig.
(1.6.2).

Fig. (1.6.2): The left square contains the extension of the field current lines until
they become parallel to the l-axis. The right square is the mirror image of the left
square and the curved dotted lines match the lines exiting from the right square with the
corresponding ones of the left square.

We now set

2/giugno/2000; 17:50



1.6.9

1.6.10

1.6.11

1.6.12

56 §1.6: Gradient—solenoid decomposition

W€+ (L+ Qi) = —u;(§ + (L—Oi)  j=2,3

1.6.9

uy (&, + (L +8iy) = +ui(§, + (L= &)iy) 0<¢<2L ( )
It is clear that «' extends u from ) to R® and that for & = +oo it has for
every “transversal coordinate” § € X, the same limit V_ €3 0)11; furthermore
0-u' =0.

Counsider now a cylinder I parallel to i;, such that Q C T, with a bounded
circular base orthogonal to ¢;. Continue the lines of the cylinder which are
parallel to the axis into a smooth bundle of curves parallel to the axis ¢; so
that each closes onto itself as symbolically drawn in Fig. (1.6.2).

In the closed tube ' consider a vector field @ defined so that it remains
tangent to the just constructed curves (which define T'). The field & will be
equal to V__(§ )i, at the point where /T joins the curve that has transversal
coordinate & .

One then continues the function @ in T, outside T, so that the flow of
@ through equal surface elements normal to each curve, among the ones
considered, remains constant.

The field u is of class C°°, vanishes out of I' and everywhere it as zero
divergence.

We can then think of @ as a field on R® vanishing outside the tube I' and

write it as

|1

=rotA, 0-A=0. (1.6.10)

where A is a suitable vector field of class C* (c.f.r. (A)). This shows that the
restriction of A to £ has the properties that we wish for a vector potential.

(C) Ambiguities for vector potentials of incompressible fields.

It is clear that, once one has found a field A that is a vector potential for
an incompressible field u, one can find infinitely many others: it suffices to
alter A by a gradient field. Then we ask the question: given u € C*(Q),
with 0 -u = 0 and given a vector potential A, for u which ambiguity is left
for A7 We still suppose that the domain (2 is simply connected.

If A and A, are two vector potentials for u then A — A, is such that
0-(A—Ap) =0and rot (A — A4,) = 0: i.e. there is ¢ € C°°(Q) such that

A=A4,+0p, Ap=0. (1.6.11)
Therefore we see that A is determined up to the gradient of a harmonic
function .
If we did also require that A -n = 0 on 0} then given a vector potential
A, for u and set ¢ = solution of the Neumann problem

Ap=0, Onp=—-4y'n (1.6.12)
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we realize that there exists a unique vector potential A such that
u=r10t A, 9-A=0 in, A-n=0 su 0N (1.6.13)

and more generally one can imagine other properties (like boundary con-
ditions or other) apt to single out a vector potential for an incompressible
field among the many possible omnes.

(D) A regular vector field in Q0 can be represented as the sum of a rotation
field and a gradient field.

Let £ — w(§) be a vector potential defined on R* and there of class C'™
and rapidly decreasing at oco. If @w(k) is its Fourier transform, it will be
possible, uniquely, to write, for k& # 0,

(k) = ik Aa(k) + kf(k) with a(k) k=0 (16.14)

with a(k), f(k) rapidly decreasing and of class C*° for k # 0. Hence
w= rot A+ Oy (1.6.15)

Or every vector field can be represented as a sum of a solenoidal field and
a gradient field, because the fields that have zero divergence are also called
solenoidal. Note that, as in the case (4 ), the potentials will have in general
a slow decay (normally proportional to @(0) and decaying as O(|{|™?) as
& — o0.

The same result also holds, therefore, to represent a field w € C*°(2) when
Q) is a finite region. It suffices to extend w to C°°(R?) and apply (1.6.14),
(1.6.15).

(E) The space X,ot(2) and its complement in L2(12).

The space Ly () admits a remarkable decomposition into a direct sum of
two orthogonal subspaces, “the rotations and the gradients’. This is not an
extension of the decompositions discussed so far: indeed we shall see that
also