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Introduction

Recently VCH published a “Handbook of Microscopy” edited by the undersigned
and to which contributed 90 experts, each on their special field of competence on
methods and applications of microscopy techniques. Only methods applied or
applicable to solids are discussed; they range from the classical optical microscopy
to the most recently developed scanning probe methods such as scanning tunnelling
microscopy and atomic and magnetic force microscopy.

Each of these techniques allows to solve a number of problems but even for the
specialist it is not always evident which technique is best suited to solve a given
problem. An answer to this question was given in a separate volume of applica-
tions; numerous case studies, classified according to the nature of the solid,
illustrate the use of various techniques, focusing the attention on the obtainable
information.

Among the numerous methods those making use of an electron beam are the
most widely used; they are of particular significance because of their great versa-
tility and their wide range of applications. Moreover a number of these methods
can be implemented in a single instrument. It was therefore thought of interest to
publish separately the set of contributions referring to electron beam methods.
The present book is concerned with the fundamentals only, and refers to part III
of the “Handbook of Microscopy” for a full account of the possible applications.

We first introduce the stationary beam methods as opposed to scanning beam
methods. Transmission electron microscopic techniques can be applied to a wide
range of materials. The main limitations are that it must be possible to prepare a
thin foil of the material and that it must be stable against radiation damage by the
electron beam. The various forms of electron microscopy have their specific areas
of application. Diffraction contrast as used in conventional transmission electron
microscopy (CTEM) is the method indicated for the study of defects; it essentially
reveals strain fields and orientation differences, for instance due to dislocations,
stacking faults, anti-phase boundaries, precipitates, grain boundaries and domain
boundaries. It does not reveal the periodic structure of the solid. For this purpose
high resolution electron microscopy (HREM) is required; it has found wide appli-
cation as a method to image complicated crystal structures with a subnanometer
resolution. Recent advances in the interpretation and processing of the images
have allowed to achieve a resolution of the order of 1 A. Structure images obtained
in this way often allow to propose a structure model which can subsequently be
refined by X-ray diffraction. This is especially valuable for materials only available
as fine grain powders. Single crystal electron diffraction patterns and images are
then used to determine the approximate lattice constants and to produce a pre-
liminary model; both are subsequently refined using the Rietveld method of inter-
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preting X-ray powder diffraction patterns. Recently, computational methods have
been developed for quantitative structure refinement from HREM images that can
also be applied to crystal defects.

Convergent beam electron diffraction (CBED) and imaging is very sensitive to
crystal symmetry and to strain. It allows the determination of the local space
group of small crystal areas. It is also a useful tool for the quantitative study of
stacking faults and dislocations and it allows the quantitative determination of the
lattice potential.

With a high energy electron beam (RHEEM) under grazing incidence, surface
features can be revealed such as growth steps, reconstructed surfaces, surface
layers with a structure different from that of the bulk, etc.. The method provides
a foreshortened image of the surface but this is a minor drawback. It requires excel-
lent vacuum conditions. The interpretation problems are addressed in the text.

Electron energy loss spectroscopy (EELS) has a relatively long tradition as an
analytical tool but only more recently have methods become available for the
practical application of the method to elemental mapping, making use of charac-
teristic energy losses for different elements. The method constitutes also a sensi-
tive probe for local chemical bonding, for instance along planar interfaces. The
recent developments have been possible largely due to the availability of suitable
data processing equipment at a reasonable cost. A related feature is the possibility
to obtain zero-loss images by allowing only elastically scattered electrons to contri-
bute to the image. Also images produced by electrons which have suffered a well-
defined energy loss can similarly be obtained.

One of the intrinsic limitations of transmission electron microscopy is the need
to have electron transparent foil specimens. For medium voltage microscopes
(100-200 kV) this limits the foil thickness from 50 A to a few thousand A, depend-
ing on the material and on the applied method of observation. In this thickness
range surface effects may significantly alter bulk phenomena such as dislocation
movement during plastic deformation, grain growth, etc.. Specimens of larger
thickness representative of the bulk can be used in high voltage microscopes
(HVEM) due to the larger penetrating power of the electrons. However with
increasing voltage also the radiation damage rate increases, which limits the
observation time. On the other hand radiation damage can conveniently be studied
under controlled conditions using “in-situ” high voltage microscopy. The large size
of the specimen chamber of high voltage microscopes makes various “in-situ”
studies possible. The specific specimen holders required for such studies are
described.

Substantially undeformed images of surface features, such as growth steps, may
be obtained by low energy electron microscopy (LEEM) in which the beam is inci-
dent normal to the crystal surface and the specularly reflected beam produces the
image. The method is very depth sensitive and allows to detect monoatomic
steps; it requires a very clean ultrahigh vacuum. The contrast depends sensitively
on the acceleration voltage used ( 2-20 V); it does not only reveal surface steps,
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but it is also orientation dependent and changes considerably with the surface
structure. As a result domains of reconstructed surfaces can be revealed.

Moving charges are influenced by magnetic fields; they are subject to the
Lorentz-force. This phenomenon is exploited in transmission electron microscopy
to reveal magnetic domain walls along which the magnetisation vector and hence
also the Lorentz-force changes its direction. Such walls can be imaged either as
dark or as bright lines depending on whether an excess or a deficiency of electrons
is caused at the walls. The different imaging modes are discussed in the chapter on
Lorentz microscopy and a number of examples illustrate the practical applications.

Already in 1948 Gabor, when developing the foundations of holography, had
applications in the field of electron microscopy in mind. However, as yet electron
holography has not become a routine technique. Considerable progress has never-
theless been made by applying numerical reconstruction techniques which became
feasible thanks to the generalized availability of affordable computer hardware.
The contribution included in the book gives an adequate survey of the state of the
art and of the perspectives of further development allowing subangstrom resolu-
tion.

Electron beams can easily be manipulated, i.e. deflected, scanned and focused
into a very small probe by electromagnetic fields. The best known and most wide-
spread example is undoubtedly the TV set. Benefitting from developments in this
highly commercial field a number of scanning beam analytic and imaging methods
have been developed. Methods for chemical analysis using initially a stationary
beam as a probe were made into imaging methods by scanning the electron beam
over the specimen and synchronously scanning another electron beam modulated
by the detector signal over a cathode ray screen. This simple principle has been
applied to a number of different signals. In the simplest cases the signals of interest
consist either of reflected or of transmitted electrons corresponding to two imaging
methods: “scanning electron microscopy” (SEM) and “scanning transmission elec-
tron microscopy” (STEM).

Scanning electron microscopy (SEM) is the most popular of the microscopic
techniques. This is due to the user friendliness of the apparatus, the simplicity of
interpretation of most of the images and the ease of specimen preparation. The
obvious limitation is that only surface features are easily accessible. However a
variety of different imaging modes can be applied: for instance a charge collecting
mode (EBIC) and a light collecting mode (Cathodoluminescence).

Scanning transmission electron microscopy is a very powerful technique operat-
ing at nanoscale. Due to the small size of the electron probe very small specimen
areas can be studied by several parallel modes: nanodiffraction and imaging,
X-ray microanalysis and electron loss spectrometry. Of special interest is the
Z-contrast mode, operating under incoherent imaging conditions. It allows
imaging of individual atom columns combined with their spectroscopic analysis.

Typical methods for the study of surfaces such as Auger spectroscopy (AES) and
photoelectron spectroscopy (XPS), which were initially meant for static chemical
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analysis have been developed into scanning chemical mapping methods. The
different types of electron optical apparatus to achieve this goal are described in
detail. Along the same line X-ray microanalysis had been extended into a scanning
mapping method, which can be applied in most electron microscopes.

SIMS (secondary ion mass spectrometer) is one of the most sensitive surface
techniques using an ion beam as a probe rather than an electron beam. Originally
it was operated in a static mode but like the other beam methods of chemical ana-
lysis it was extended into a scanning imaging mode. Since the incident ion beam
removes surface atoms it can also be used to obtain composition depth profiles.

Two recently developed methods specifically designed to study magnetic pheno-
mena are SEMPA (scanning electron microscopy with polarisation analysis) and
SPLEEM (spin polarised low energy electron microscopy). The first of these
techniques provides high resolution images (as compared to Lorentz microscopy)
of magnetic microstructures by measuring the spin polarisation of low energy
secondary electrons generated in a scanning electron microscope. It is of special
importance for the study of magnetic recording materials. SPLEEM makes use of
the spin-spin interaction between the spins of the incident electrons and specimen
regions with preferred spin alignment in the specular reflection of low energy elec-
trons. It is often combined with LEED (low energy electron diffraction).

Each of the techniques briefly mentioned above is discussed in sufficient detail to
understand the physico-chemical principles involved and to judge the applicability
to solve given materials characterisation problems.

The editors wish to thank the publisher’s staff for their continued support and for
the smooth collaboration in the editing procedure.

The editors, S. Amelinckx
D. Van Dyck
J. Van Landuyt
G. Van Tendeloo
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1.1 Transmission Electron Microscopy

1.1.1 Diffraction Contrast
Transmission Electron
Microscopy

1.1.1.1 Introduction

Image formation in transmission electron
microscopy is essentially a diffraction phe-
nomenon, normal absorption only playing
a minor role. It is therefore necessary to
discuss first the basis of electron diffraction.
A detailed interpretation of an image
requires a knowledge of the corresponding
diffraction pattern, adequately oriented
with respect to the image. Modern transmis-
sion electron microscopes are constructed in
such a way that they can be easily switched
from the imaging mode to the diffraction
mode, and vice versa, without changing the
orientation of the specimen. The electron
microscope optics are discussed briefly
below, emphasizing the general principle
rather than the concrete details, since the
- latter depend on the particular instrument.

1.1.1.2 Instrumentation
Transmission Microscopes

A modern transmission electron micro-
scope can be schematized as a three-lens

system: an objective lens, an intermediate
lens and a projector lens. Each of these
lenses is in actual fact often a composite
lens, but since the details of this depend
on the particular instrument this will not
be discussed here. Moreover, condensor
lenses are used in the illumination system,
but we will consider only the ray paths in
a three-lens, image formation system. The
system allows easy switching from the high
magnification imaging mode to the
selected area diffraction mode. The ray
paths are shown in Fig. 1. Movable
selection apertures are placed: one in the
image plane of the objective lens and a
second one close to the back focal plane.
The front aperture is used to select a small
area (<1 pum) of the specimen whilst view-
ing the image. The second one enables us
to select either a single beam or a number
of image-forming diffracted beams. The
image resolution of the system is to a
large extent determined by the character-
istics of the objective lens, in particular by
its spherical aberration constant. Whereas
in the high-resolution structure imaging
mode the quality of the objective lens is
crucial, this is much less the case for
diffraction contrast images. In the latter
mode the availability of very small beam-
selection apertures is important, since this
determines to what extent a single beam
can be selected for dark-field imaging of
materials with a relatively large unit cell.
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Focused Focused
beam beam
Specimen
Objective
aperture o
Obijective ,

Figure 1. Ray paths in a reference
transmission electron microscope.
(a) High resolution high
magnification imaging mode.

(b) Selected area diffraction mode.

lens \\x_\\: /

Gaussian image
plane

Field-
limiting
aperture

Intermediate
lens

Intermediate
image

Projector
lens

Bright-field image

(a)

The intermediate and projector lenses
provide the desired magnification. When
using the high-resolution mode a
sufficiently large magnification (on the
fluorescent screen or on the TV monitor)
is necessary to see separate atom
columns so as to allow proper focusing.
Although magnetic lenses normally rotate
the image about the optical axis, in
recently designed microscopes these
rotations are compensated for by a suit-
able device and, as a result, the image
and diffraction pattern have parallel
orientations, which is particularly impor-
tant in diffraction contrast work. In
certain instruments the image and the
diffraction pattern may still differ in
orientation by 180° for certain lens com-
binations.

Diffraction pattern

(b)

Lens Configurations

High Resolution, High Magnification
Imaging Mode

The electron beam produced by an elec-
tron source (see below) is collimated by the
condensor lens system (not shown in
Fig. 1a) and scattered by the specimen.
An image is formed in the image plane of
the objective lens (Fig. 1a). The selector
aperture allows us to select one area of
the image (i.e., of the specimen) which is
then magnified by the intermediate lens.
The intermediate lens is focused on the
image plane of the objective lens and an
intermediate image is formed in the image
plane of the intermediate lens. This image
is the object for the projector lens which



forms a final image on a fluorescent screen
or on the entrance plane of a recording
device (see below).

Diffraction Mode

In the diffraction mode (Fig. 1b) the inter-
mediate lens is weakened, that is the focal
length is made larger, in such a way that
the back focal plane of the objective lens
coincides with the object plane of the
projector lens. A magnified representation
of the diffraction pattern is then produced
on the fluorescent screen. In the process
the selected area is not changed since only
the strength of the intermediate lens has
been modified. The diffraction pattern is
thus representative of the selected area.
However, it should be noted that under
high resolution conditions the field of view
in the image is much smaller than the
selected area in the diffraction mode.

Diffraction Contrast Imaging Modes

As discussed below, diffraction contrast
images are maps of the intensity distribu-
tion in highly magnified diffraction spots.
They are usually obtained under two-beam
conditions. The aperture placed close to
the back focal plane of the objective lens
allows us to select either the transmitted
beam or the diffracted beam. The corre-
sponding diffraction spot is subsequently
magnified by the rest of the lens system. If
the transmitted beam is selected, a bright
field image is obtained; that is the area of
the image not covered by the specimen is
bright. If the diffracted beam is selected, a
dark field image is obtained; the back-
ground is now dark.

Whereas the beam remains along the
optical axis in the case of a bright field

Transmission Electron Microscopy 5

image, it encloses twice the Bragg angle of
the active reflection with the optical axis
for a dark field image. Non-axial beams
suffer angle-dependent lens aberrations
and the corresponding image is therefore
often blurred by streaking. This can be
avoided by tilting the incident beam over
twice the Bragg angle; the diffracted beam
then travels along the optical axis.
Recently developed microscopes have a
built-in device that allows the incident
beam to be deflected over the required
angle to bring a selected diffracted beam
along the optical axis.

Electron Sources

In older microscopes the source of elec-
trons is a heated V-shaped tungsten wire,
the tip of the V forming a localized emitter
of electrons with an effective size of the
order of 10 um. In subsequent versions the
effective size of the emitting area is
decreased by attaching a pointed tungsten
wire to the tip of the V-shaped heating
filament. Also, a pointed LaBg single crys-
tal mounted on a V-shaped tungsten heat-
ing filament is often used because of its
small work function. It emits electrons at a
lower temperature than tungsten and,
moreover, the thermal energy distribution
of the electrons is narrower (x1eV), thus
leading to less chromatic abberation. In
recent years the thermal spread of the
emitted electrons has been reduced further
to less than 0.5e¢V by the use of cold field
emission guns. Such guns consist of a very
fine point placed on the pointed filament
which emits electrons by tunneling. A suf-
ficiently strong electric field (of the order
of 10° Vem™) is required in the vicinity of
the field point to cause a sufficiently strong
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tunneling current density. Tunneling can
be thermally assisted by slightly heating
the tungsten point. The brightness of
such sources is about a thousand times
larger than that of the reference tungsten
filament but, since the emitting area
(~5mm?) is much smaller, the electron
current is smaller. Field emission guns
are particularly important in applications
where a high degree of coherence is desir-
able, such as in high resolution atomic
imaging.

Electron Beam Shaping

The electrons emitted by the source must
be accelerated and a collimated beam must
be formed. This is achieved by applying
a large negative voltage to the emitter,
keeping the anode grounded. Close to
the emitter is a cylindrical electrode, the
‘Wehnelt cylinder’, which is biased at a
negative voltage of a few hundred volts
with respect to the emitter. The function of
the Wehnelt cylinder is to stabilize the
beam current and to focus the electron
beam so as to form behind the anode a
cross-over, which acts as the virtual source
of electrons. The incident beam is finally
shaped into a parallel beam (or possibly a
convergent beam) by the system of con-
densor lenses and by apertures. Typically,
the angular spread may be made as small
as 10™*rad.

Electrical Supply System

Very stable supply systems for the high
voltage used to accelerate the electrons and
for the lens currents are essential to mini-
mize chromatic abberations. In present

day commercial microscopes, supply sys-
tems with a stability of 1 part in 10° are
used.

Vacuum Systems

Clean and vibration-free vacuum systems
are essential to provide stability and avoid
contamination of the specimen by a car-
bon film resulting from the cracking of
organic molecules present in the residual
gas. Anti-contamination devices such as
metal blades surrounding the specimen
and cooling to liquid nitrogen temperature
are available in most microscopes. Use is
made of diffusion pumps, turbomolecular
pumps, ion pumps, and even sublimation
pumps to achieve a vacuum of the order of
133 x 1078 Pa (1078 torr).

Recording and Viewing Media

Usually images are made visible on a
fluorescent screen and viewed by means
of binoculars. The simplest recording med-
ium is still the photographic emulsion
which is particularly efficient for recording
electron images. A shutter mechanism
allows one to remove the fluorescent
screen and expose the underlying film.
Degassing the photographic material
prior to use is strongly recommended. In
order to reduce radiation damage to the
specimen it is important to keep the elec-
tron dose used to view and record the
image as small as possible; for this purpose
electronic viewing and recording methods
have been developed. These techniques are
discussed in Chap. 8, Sec. 1 and 2 of this
Volume.



1.1.1.3 Electron Diffraction
Atomic Scattering Factor

Electrons are scattered by atoms as a
result of the Coulomb interaction with
the positively charged nucleus and with
the negatively charged electron cloud.
The atomic scattering factor thus contains
two contributions of opposite sign [1]

[Z - /()]

sin® @

me’\

fe(g) = 2

(H

where £, (6) is the atomic scattering factor
for X-rays, which are only scattered by the
electron cloud. Z is the atomic number (or
the positive charge on the nucleus), A is the
electron wavelength [see Eq.(2)], m is the
electron mass, e is the electron charge, £ is
Planck’s constant, and 6 is the scattering
angle. The electron wavelength is given by
the de Broglie relation A =h/mv. It is
related to the accelerating potential E by
the relativistic relation

“12
A= h[2m0E<1 n eEz)}
2myc

where my is the rest mass of the electron.
With E in the range 200-400kV the elec-
trons used in electron microscopy are to a
non-negligible extent relativistic since they
travel at speeds larger than half the speed
of light.

The first term in Eq. (1) clearly relates
to the nucleus, whereas the second term is
due to the electron cloud. The interaction
with matter is much stronger for electrons
than for X-rays or neutrons by a factor of
about 10*. Multiple diffraction events will
therefore have a high probability. The
factor 1/ sin? @ in Eq. (1) causes scattering
to be oriented mainly in the forward

(2)
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direction. Values of f.(#) for different
atoms have been tabulated in [2].

Diffraction by Crystals

The amplitude diffracted in any given
direction by an assembly of atoms is the
sum of the amplitudes scattered by the
individual atoms in that direction, taking
into account the phase differences result-
ing from the geometry of the assembly. In
a crystal the atoms are located on a three-
dimensional lattice which can be charac-
terized by its three base vectors a,, a,, and
a;. A general lattice node is then given by

(3)
where /; are integers. The volume of the
unit cell is ¥, = (a; x @) -a;3. The sum
and difference of two lattice vectors is
again a lattice vector.

It is convenient to define the corre-
sponding reciprocal lattice by its base vec-
tors by, b,, and b5, which are related to the
a; by the relations a; - b; = §; where ¢; = 1
if i =jand 6; = 0if i # j. A general node
point of the reciprocal lattice is then
given by

BH = hlbl + hzbz + /’l3b3

AL = llal -+ 12(12 + l3a3

(4)

the h; are integers, called ‘Miller indices’
for planes.

A useful property is 4, - By = Integer.
The volume of the unit cell of the recipro-
cal lattice is V, = 1/V,. The spacing of
lattice planes with indices H (hy,h», h3) is
given by dy = 1/|By|.

A crystal structure is described with
respect to its lattice by specifying the
contents of the unit cell, that is by giving
the position vectors p; for all atoms
j=1,...,N in the unit cell. The assembly
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of scattering units is thus given by the
position vectors 4; + p; for the atoms of

type j.

Diffraction Conditions

The diffraction conditions for a periodic
object can be formulated in terms of direct
space (i.e., of the lattice) or in terms of
diffraction space (i.e., of the reciprocal
lattice). The two formulations have the
same physical content but the latter is
often more convenient and more directly
related to the diffraction pattern.

If the attention is focused on the lattice
the diffraction condition is Bragg’s law [3]
which states that the path difference
between waves ‘reflected’ by successive
lattice planes is an integer number of
wavelengths

2dysinfy = n) (5a)

where dy is the interplanar spacing and 6y
is the corresponding Bragg angle (Fig. 2); n
is an integer. This statement might create
the wrong impression that ‘reflection’
takes place. However, the difference with
specular reflection is important: only for
the discrete angles 6y does ‘reflection’ take
place, whereas in specular reflection all

dy sinfp,

dy

Figure 2. Geometry of Bragg scattering (8, = 8y).

angles are permitted. This clearly shows
that we have, in fact, interference rather
than reflection. Since the notion of ‘reflec-
tion’ has nevertheless been extremely use-
ful, especially in structure determination, it
continues to be used. Due to the small
wavelength of electrons [~3 x 10* nm
(2 x 1072 /OX)] Bragg angles are quite small
(~107* rad) and Bragg’s law can often be
approximated by

2dH0H =n\ (Sb)

In reciprocal space the diffraction con-
ditions can be formulated in terms of
Ewald’s sphere

kg:k0+g (6)

where kg is the wavevector of the incident
plane wave [ky = (1/A)e,, where e, is the
normal to the plane wavefront] and k, is
the wavevector of the scattered wave. The
term g is a reciprocal lattice vector, called
the diffraction vector; it is an element of the
set By and is thus specified by three
integers i, hy, and h3, the Miller indices.
The Ewald condition gives rise to an
elegant construction (Fig. 3). Let &k, repre-
sent the incident wave; its endpoint coin-
cides with the origin of reciprocal space O:
its starting point C is then the center of a
sphere with radius 1/A (Ewald’s sphere)
[4]. If this sphere passes through another
reciprocal lattice node H, a diffracted
beam CH =k, is produced. Tilting the
specimen is equivalent to tilting the
reciprocal lattice over the same angle
about a parallel axis. Tilting thus permits
the ‘excitation’ of specific nodes of the
reciprocal lattice. It should be noted that
since the electron wavelength is of
the order of 0.00lnm (0.01A) (ie.,
k| =10nm™" (10°A7"), whereas the
mesh size of the reciprocal lattice is of



Figure 3. Ewald construction. The Ewald sphere with
radius [ko| = |k,| = 1/X passes through the node G.
ko: wavevector incident beam; k,: wavevector dif-
fracted beam; g: diffraction vector.

the order of 0.1 nm (IA‘I), the sphere
radius is quite large and it can be approxi-
mated for most practical purposes by a
plane normal to the incident wavevector
ky. The diffraction pattern is thus obtained
as a central projection of a planar section
of reciprocal space on to the screen (or
photographic plate).

Diffraction Amplitude

Let ky be the wavevector of an incident
wave exp(2mnikyr) and k = 1/) the wave-
vector of the scattered wave. The phase
difference between the waves diffracted by
an atom at the origin O and an atom P
at r; is (2n/A)(OR + OS) = 2n(k — ko) - 1,
(Fig.4) and the total scattered amplitude
by the assembly of points at positions r; is
then given by

A(k) =) frexpl2mi(k —ko)-r;)  (7)

where f; is the atomic scattering amplitude
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Figure 4. Path difference OR + OS between waves
scattered at O and at P.

of the atoms at r;. This amplitude will be
maximal if all waves are in phase. If the
atoms are assumed to be located on a
lattice r; = 4;; a maximum of A(k) will
then occur if all exponents are integer
multiples of 2xi, that is, if (k — kgy)- A4, =
Integer. This will be the case if
g=k—ky= By, which is the Ewald
condition [Eq. (6)].

The scattered amplitude will also differ
from zero even if the scattering vector
& = k — ky differs somewhat from a reci-
procal lattice vector. This deviation from
the exact diffraction condition is described
by the vector s (Fig. 5) (‘excitation error’
also called ‘deviation parameter’). It
measures the distance of the reciprocal
lattice node Gy to the Ewald sphere; it is
normal to the foil surface. The vector s is
positive when the reciprocal lattice node
is inside Ewald’s sphere; it is negative when
it is outside. The positive direction of s
is thus in the direction of propagation of
the electrons. Equation (7) can now be
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Figure 5. The deviation from the exact Bragg condi-
tion is characterized by s,, which is positive in the
sense of the propagating electrons; x is an alternative
deviation parameter. BZ: Brillouin zone boundary.

generalized to

Alg) = fexp[2mi(g +5) -1/ (8)

Taking into account that an atom with a
scattering factor f; is found at the positions
AL+ p; (j=1,...,N), the amplitude can
be written as

x exp[2mi(g +5) - (AL, + p;)]

—Z [Z Jiexp(2nig - pj)}

x exp(2mis- A;) 9)

where we note that g+ 4; = Integer, since

g is an element of the set By and s- p; is

negligible compared to the other terms.
The expression

Fy =Y fiexp(2nig- p)
J

describes the amplitude scattered by one
unit cell in the direction defined by g; it is
called the structure amplitude or structure

factor. Equation (9) then becomes

Alg) = (10)

Z exp(2nis- A;)
We assume that the crystal contains Ny, N,
and N; unit cells respectively along the a,
a, and a; directions. The scattering ampli-
tude then becomes

Ni—1 Ny—1 Ny—1

:ng

=0 =0 ;=0
x exp[2mi(sih1ay + s2hay + s353a3)] (11)

where 51, 5, and s; are the components of s
along the three base directions of the lat-
tice and s-A4; = s/a; + s:hay + s354a;5.
Separating the triple sum into the product
of three single sums, one obtains

N—1
= Fg[ Z exp(2mis;a; /)

I,=0

A(g)

Ny—1

. Z exp(2nis,a,l5)
h=0

Ny—1
Y exp(21':is3a3l3)} (12)

h=0

Performing the summation of the geome-
trical series, and omitting an irrelevant
phase factor, one obtains finally the von
Laue interference function

sin(ms, Nya;)
sin(ms;a;)

Sin(TES2N2a2>
sin(ms,a;)

Ag) =~ F,

sin(ms3N3a3)

- N, M>,N
sin(ms3a3) R

(13)
which describes the dependence of the
scattered amplitude on the deviation para-
meter.



Since msa;, ns,a,, and wsyay are small,
the sine terms in the denominators can be
replaced by their arguments. We further
note that for large N, sin(nNsa/nNsa) ~
8(s) where (s) = 0 for s 0 and 6(s) = 1
if s = 0. Taking this into account we can
write

Alg) = Fy(5,)8(s2) 6s3) 77

a

(14)

where (2 is the volume of the crystal and
V, is the volume of the unit cell: 2=
N|N,N3V,.

With regard to transmission electron
microscopy, thin foil specimens contain a
large number of unit cells in the two lateral
directions, but along the thickness the
number of unit cells is finite and Eq. (13)
reduces to

n sin(nN3a3s3)

Alg) = Fyy 8(5)8(s2) T o

V.
(15)

where s; is measured perpendicular to the
foil. Introducing the specimen thickness
t = N3a; we can write
S, sin(ms;t)

A(g) = F,—

£y, 6(s1) 6(s2)

16
— (16a)

with S, = N;N,a,a>. This can be rewritten
per unit surface area as:

Ag)

_sin(ms?)
st

(16b)
g
with 1, = (nV,/F,); 1, is called the extinc-
tion distance.

This result is interpreted in terms of
diffraction space as meaning that the reci-
procal lattice nodes of a thin foil are not
mathematical points but are rod shaped
(relrods) and perpendicular to the foil
plane with a weight given by (sin mst)/ns.
This function is shown in Fig. 6.
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Figure 6. Scattered amplitude versus s according to
the kinematical approximation. zg: foil thickness.

The corresponding intensity profile is
called the ‘rocking curve’ according to the
kinematical theory (Fig.6). An amplitude
can be associated with each intersection
point of the Ewald sphere with this seg-
ment, the amplitude being given by the
value of this profile at the intersection
point. It is customary to describe the
diffraction geometry by saying that the
reciprocal lattice nodes have become
‘relrods’ with a length profile in the z
direction, parallel to the foil normal,
given by the above-mentioned function,
but infinitely sharp in the directions x
and y in the foil. In a thin foil the vector
s is thus oriented along the normal to the
foil plane. By convention, s is counted
positive in the sense of the propagating
electrons, that is if the reciprocal lattice
node G is inside Ewald’s sphere.

The Column Approximation

Since Bragg angles are quite small
(~10rad) in electron diffraction, the
intensity observed at a point in the exit
face of a foil is essentially determined by
the diffraction events occurring in a
narrow column of crystal centered on the
considered point extending through the
thickness of the foil in a direction parallel
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N\
0

n

(a) {b)

Figure 7. Column approximation: (a) kinematical
approximation; (b) dynamical approximation.

to the incident beam (Fig.7) [5]. Such a
column diffracts independently of the
surrounding columns; its lateral dimen-
sions are, at most, given by A =6,z
(0, = 0g; zy = t = thickness). For a
strain-free foil limited by parallel faces,
all such columns behave in the same man-
ner and a uniform intensity results in the
image. However, if defects are present,
columns in the vicinity of the defects will
produce an intensity which differs from
that of the surrounding columns and
hence a defect image will result. The ampli-
tude found at the exit point of a column is
given by (omitting irrelevant factors)
t
A, =F, JO e*™% dz (17)
where summation over all unit cells in the
column has been replaced by integration
along the columns. The meaning of z and ¢
is shown in Fig. 8. The exponential is the
phase factor, relative to the entrance point
due to the volume element dz at level z
behind the entrance face. If s is a constant,

dz

Figure 8. Illustration of the notations used.

as is the case in a defect-free crystal, the
result is
_ Fysin(nsi)

Ay =

(18)

which is consistent with Eq. (16). How-
ever, if a defect is present, s becomes a
function of x,y, and z. For a column at
(x,y) one obtains

s

1

A (x,y) =F, J Prislxe) 42 (19)

0
Each column, of which the size is arbitra-
rily small, now furnishes a picture element
of the defect image. For most defects such
images will have to be computed numeri-
cally since the analytical expressions may
become too complicated. Defect imaging is
discussed in detail below.

If the strain-free foil has a nonuniform
thickness the intensity at the exit face will
depend on the length of the column and it
will be equal for columns of equal length.
The columns that produce extrema in
intensity form geometrical loci, called
thickness extinction contours, which are
dark for a minimum and bright for a
maximum. In a wedge-shaped crystal
such contours form a set of straight fringes
parallel to the wedge edge, described by
Eq. (18). Their formation is represented
schematically in Fig.9.

When a defect-free foil of uniform
thickness is bent the s value becomes



Figure 9. Model for the formation of thickness
extinction contours at a wedge-shaped crystal. I;:
scattered intensity; s, excitation error; o, =

VI (sg2e) /15 '

variable along a line perpendicular to the
bending axis. The loci of equal s value are
then again imaged as contours of equal
brightness; they are called inclination
extinction contours (Fig, 10a). These image
in a sense the rocking curve represented by
Eq. (18). Figure 10b shows a cylindrically
bent uniformly thick foil of graphite; the
inclination contours corresponding to the
main and subsidiary maxima can clearly be
observed.

Amplitude—Phase Diagram

A plane wave represented by
Aexpilkx — wt + )
= Aexp(i) expli(kx — wt)]

is characterized by a complex amplitude
Aexp(iy), a wavevector k and an angular
frequency w. The interference between two
waves of this type, assuming the wave-
vector k and the angular frequency w to
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Figure 10. Diffracted intensity as a function of the
angle of incidence in a cylindrically bent foil: (a)
formation of bent contours (/,: scattered intensity);
(b) cylindrically bent graphite foil.
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be the same for both, produces a resultant
wave with the same w and k but different 4
and 1. The problem thus reduces to sum-
ming the complex amplitudes A4 exp(iy),
the propagation factor being common to
all waves.

The complex amplitude is represented
in the complex plane by a vector with
modulus 4 and argument ¢. It is easy to
show that the sum of the two such vectors
is again a vector representing the resultant
wave. Waves with the same k and w can
thus be summed graphically by adding
vectors in the complex plane.

Apart from a phase factor, the ampli-
tude scattered by a column of crystal along
the z axis, in the kinematical approxima-
tion, is given by the sum

Alg) =F, Zexp(flnisz,,) Az, (20)

or in the continuum approximation by the
integral mentioned above:
H

Alg) =F, Jo exp(2nisz) dz (21)
This sum can be considered as consisting
of terms F,Az-exp(2misz), that is
A=F,Az; 1 =2misz, corresponding
with slices Az of the column. The ampli-
tude phase diagram then consists of
vectors, all of the same length F, Az and
enclosing angles of 2ns Az. In the limit
Az — 0, the locus of the endpoints is a
circle with radius (Fig. 11)

R=F, AlerO (Az/2ns Az)

F
=_£ 22
27s (22)
The length of the circular arc is equal to
the column length, that is to the foil thick-
ness ¢. Figure 11 shows that: the diffracted

Figure 11. Amplitude phase diagram for a perfect
crystal foil.

amplitude will be zero if the circular arc is
a number of complete circles, that is for
t = k/s; and there will be maxima if t =
(1/s)(k + 1) (k = Integer), the maximum
amplitude being equal to the diameter of
the circle [i.e., Apax = (1/15)Fy).

Kikuchi Lines

In sufficiently thick and almost perfect
specimens, spot patterns are no longer
observed; instead a diffraction phenom-
enon, first discovered by Kikuchi in 1928
[6], is produced. It usually consists in the
occurrence of pairs of bright and dark
straight lines in the diffraction pattern, as
shown in Fig. 12. In foils of intermediate
thickness one can observe the Kikuchi
pattern superimposed on the spot pattern.
The geometry of the Kikuchi pattern can
satisfactorily be explained by assuming
that not only are electrons Bragg scattered,
but that also a substantial fraction, espe-
cially in thick foils, is scattered inelastically
and incoherently in the crystal, the energy



Figure 12. Pattern of Kikuchi lines in a rather thick
silicon crystal.

loss being much smaller than the energy of
the incident electron; the electron wave-
length is then not appreciably changed.
Inside the crystal these randomly scattered
electrons impinge on the lattice planes
from all directions, but preferentially in
the forward direction, and can subse-
quently give rise to Bragg scattering.

A symmetrical situation with respect to
the set of lattice planes H, with spacing dy,
is shown in Fig. 13. Bragg scattering out of
the incident beam is assumed to be weak
since the Bragg condition is not satisfied.
However, a fraction of the randomly
scattered electrons have the correct direc-
tion of incidence to give rise to Bragg
diffraction by the set of lattice planes
considered. The geometrical locus of
these Bragg scattered electron beams is a
double cone of revolution with an opening
angle (n/2) — 8 and with its axis along H
(where 0 is the Bragg angle). These cones
are therefore rather ‘flat’” and the inter-
section lines of the two sheets of this
double cone with the photographic plate
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Figure 13. Geometry of the Kikuchi cones in the
symmetrical orientation.

P looks like two parallel straight lines,
although in actual fact they are two
branches of a hyperbolic conical section.
The angular separation of these two lines is
20y. The separation A observed on the
plate is thus A =2L#,, where L is the
camera length, i.e. the specimen to plate
distance. The angular separation does not
depend on the crystal orientation.

The geometry of this cone (i.e., the axis
of revolution and the opening angle) is
entirely fixed by the crystal lattice and
the electron wavelength, and is indepen-
dent of the incident beam direction. Tilting
the specimen thus leads to an equal tilt of
the double cone, but leaves the geometry
of the spot diffraction pattern unchanged,
provided the same reflections remain
excited, that is as long as the same ‘relrods’
are intersected by Ewald’s sphere. The
relative position of the spot pattern and
of the Kikuchi line pattern is thus very
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5=0
(a)

Figure 14. Evolution of the Kikuchi line pattern on tilting. D: dark line; B: bright line; u: separation spot-line;

A: line separation.

sensitive to the orientation, and as a con-
sequence it carries very useful information
which can only otherwise be obtained with
difficulty, as we shall see.

When the specimen is tilted in such a
way that the set of lattice planes g satisfies
the Bragg condition, the situation with
respect to the incident beam is no longer
symmetrical (Fig.14). The elastically
Bragg scattered beam, which produces
the spot G is now one of the generators
of the cone. One of the Kikuchi lines thus
passes through the Bragg spot. It appears
bright (B) on a positive print, that is it
corresponds with an excess of electrons
above the background. The other line

(D) which appears dark due to a deficiency
of electrons, passes through the origin.
The dark line is produced against a high
background caused by the predominantly
forward, inelastically scattered electrons.
Among these electrons, those which satisfy
the Bragg condition are scattered elasti-
cally out of this background onto the sheet
of the cone which passes through the
Bragg spot. Along the parallel line through
the origin, which is the locus of the elec-
trons satisfying Bragg’s condition, there is
as a consequence a deficiency of electrons
compared to the background. On the other
hand, the same electrons which by their
absence cause the dark line through the



Figure 15, Kikuchi bands in a symmetrically oriented
foil of silicon, along the [111] zone.

origin, cause an excess, compared to a
lower background, along the part of the
cone containing the coherently scattered
Bragg beam. This background is some-
what smaller since the scattering angle is
larger. Therefore the excess electrons pro-
duce a bright line through the Bragg spot.
The angular separation of the bright—dark
line pair, is the same as in the symmetrical
orientation; however, the linear separation
measured on the plate may depend slightly
on the tilt angle. The symmetrical situation
is represented schematically in Fig. 13. In
the symmetrical orientation the Kikuchi
lines often form the limiting lines of
‘Kikuchi bands’, the inside of which
exhibit a somewhat lower brightness than
the outside (Fig. 15) [7, 8). In this particu-
lar orientation the Kikuchi lines can be
considered as images of the Brillouin zone
boundaries belonging to the different
reflections.

Determination of Sign and Magnitude of s
Starting with a foil in the exact Bragg

orientation for the reflection G, the bright
Kikuchi line passes through G (Fig. 14a),
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whereas the dark line passes through the
origin of the reciprocal lattice. Tilting
the specimen over a small angle 80 in the
clockwise sense (i.e., towards s < 0 about
an axis in the foil plane, normal to the
g vector), the position of the bright
Kikuchi line moves towards the origin
over u = L &0 (Fig. 14c). The vector g is
then rotated over the same angle 68 and
hence s becomes negative and equal to
s = g 60; the relation between u and s is
thus:

v = <§>s (23a)
and
Au= (g) As (23b)

This relation allows one to determine the
sign and the magnitude of s from the
relative position of a diffraction spot and
its associated Kikuchi line (Fig. 14). It also
allows one to determine the orientation
difference between two crystal parts. The
sign of s is required for a number of
applications such as the determination of
the sign of the Burgers vector of disloca-
tion, the vacancy or interstitial character
of a dislocation loop, and the orientation
difference across a domain boundary, as
will be discussed below. The magnitude of
s is needed when applying the weak-beam
method (see Section 1.1.17.4 of this
chapter).

Refraction of Electrons at an Interface

Refraction of the incident electron beam
takes place at the vacuum-crystal foil
interface because the lengths of the
wavevectors are different in the two
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media:
2 E 1/2

KO = Kvac = (_In—eh—)_ (24)
2me(E + Vy)]'/?

K= Kcryst = [ ( h 0)] (25)

but the tangential components have to be
conserved at the interface. Figure 16 shows
the relation between the two wavevectors;
one has

n=sini/sinr
— (Kt,vac)/<Kt,cryst)
KO Kcryst
Kcryst
Kvac

_(E+V\'?
- E

The refractive index n is thus:

n=[(E+ V) E)'?

Vo) 2
~ | 1+—
(%)

Since Vy < E, n is just slightly larger than
1 and the angle of refraction is very small,

(26)

(27)

Figure 16. Refraction of electrons at the crystal-
vacuum interface.

especially for quasinormal incidence as is
the case in most observations. Refraction
nevertheless produces an observable effect
for grazing incidence. Small polyhedral
particles which are completely embedded
in the incident beam may produce diffrac-
tion spots consisting of a number of
components corresponding to the number
of crystal wedges crossed by the beam.
Refraction also produces an observable
effect on the diffraction pattern of single
thin fibers such as chrysotile.

1.1.1.4 Kinematical Diffraction
Theory

Kinematical Diffraction Theory as a
Born Approximation

A rigorous diffraction theory is based on
Schrédinger’s equation, which describes
adequately the interaction of the imaging
electrons represented by their wave func-
tion ¢ with the periodic lattice potential of
the crystal V(r) (a few volts) [9]. The
proper equation is thus
e

(m) Ap+[E+ Ve =0  (28)
where —e is the charge of the electron, E
is the accelerating potential (about 100-
400kV), and the other symbols have their
usual meanings. We separate out the
constant part Vy of the lattice potential
by introducing V'(r) = V(r) -V, and
E + Vo = h*k}/2m.  Furthermore, we
define the reduced lattice potential U(r) as

v = (3 ) v

7 (29)



with U, = 0 since V), was added to E. We
expand U(r) in a Fourier series:

Ur) = Z U, exp(2mig - r) (30)

The Schrodinger equation can then be
rewritten as

A+ Atk = -4 U(r) ¥ (31)

A solution of the equation without the
right-hand side is the plane wave

o = Cexp(2miky - ¥) (32)

Equation (32) represents the incident wave
with the wavevector k, corrected for
refraction by the constant part V, of the
lattice potential. The right-hand side of
Eq. (31) describes the perturbation caused
by the periodic part of the lattice potential
which is small compared to V. The kine-
matical approximation, which is equiva-
lent to the first Born approximation, now
congsists in substituting ¢ by ¢y in the right-
hand side of Eq. (31), and solving the
resulting equation:

Ay + 4’k

= —4n’ Y Uyexp2ni(ko +g)-#] (33)
14

The solution of this equation is of the
general form

Y=o+ Y U (34)
&
that is, it consists of the solution of the
equation without the right-hand side to
which is added a particular solution of
the complete equation which is of the
same form as the right-hand side. Substi-
tuting Eq. (34) in Eq. (33) and remember-
ing that 1, is a solution of the equation
without the right-hand side, then v, must
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satisfy the equations
At + Ak,

= —4n’U, exp[2ni(ky + g) - ¥] (35)

with the boundary condition v, = 0 at the
entrance face z = 0. Each equation is seen
to involve one beam only; this is consistent
with the kinematical approximation which
implies that the scattered beams are all
independent. Since we are looking for
solutions that represent scattered beams,
we use an ‘ansatz’:

Py(r) = pg(r) exp2mi(ko + g) - ¥]

which has the same form as the right-hand
side but an amplitude depending on #; it is
expected that this dependence on r will be a
smooth variation.

Gevers [9] has shown that, substituting
this expression in Eq. (35) leads, after some
transformations, to

(36)

Ap, + 4ni(ko + g) - grad ¢,
+4n°[kg + (ko +8)°Jipg
= —4n’U, (37)

With the choice of axis adopted in Fig. 17,
and denoting by « the angle between

Ro.
[
/
I

Figure 17. Reference system used in the discussion of
the Born approximation.



20 Transmission Electron Microscopy

ko + g and e., we obtain

Oy Op )

325 + tgaa—xg — 2mis, g
B nilU, (38)
 |ko + gl cosa

we have hereby neglected the term Ay,
which is small compared to the gradient
term because @, is a smoothly varying
function and because the coefficient of
the gradient term is large since from geo-
metrical considerations follows that

_ ki — ko + g
2|ky + g|cos &

The right-hand side of Eq. (38) has the
dimensions of inverse length, which still
depends on g; we shall call it mi/#,, where ¢,
is called the extinction distance. Noting
that kg > g we can put |ky + g| = ky and
obtain

(39)

S¢

112k0 Cos «v

_ P KoCosar 40
£ 2melV,| (40)

and, reintroducing the accelerating voltage
E, neglecting V, <« E we obtain

. AE cos o

t ————  withcosa ~ 1
¢ Vel

(41)
In a plan parallel perfect foil, the scattered
amplitude cannot depend on x and hence
Op,/0x =0. Moreover, even in a
deformed foil it is a good approximation
to assume that electrons propagate along
narrow columns. This ‘column’ approxi-
mation justifies the neglect of the term in
tga, which is very small. We then finally
obtain as the basic equation for the kine-
matical theory:

dd— — 2misp, = (mi/t,) exp(if,) (42)

since V, = |V, |exp(if,).

This equation can readily be integrated
between the front (z = 0) and exit surface
(z=1y) of the foil. Taking into account
that ¢, = 0 for z = 0, this leads to

g =(mi/1)[exp(2misto)][exp(if, )]

fo
X J exp(—2misz) dz
0

(43)

or explicitly, after some simplifications,

@, = ilexp(misty)][exp(if,)][sin(msty/st,)]
(44)

For the scattered intensity per unit of
incident intensity one thus finds

.2
. . sin” (msty)
Iy = Yy = pepy = —— 32
8 fad grg (Slg)2

The variation of I, with thickness is peri-
odic with the period 1/s, being zero at the
entrance face and for ¢y, = n/s (whose n is
an integer), whereas maxima occur for
ty = (n+3)(1/s).

The dependence of 7, on s is represented
in Fig. 18. There is a pronounced central
maximum (for s = 0) given by I,(max) =
(nto/tg)z. There are zeros for s=n/t
(to = zp) and maxima approximately half-
way between the zeros. These secundary
maxima are much smaller than the central
peak.

(45)

A's

o

.

—_—
s

0 1z,

Figure 18. Variation of the diffracted intensity with
the deviation parameters (foil thickness = ¢, = z;).



Diffraction by Deformed Crystals:
Models

Deformations of the crystal can be mod-
eled by stating that the unit cell which in
the undeformed crystal was in 4; now
occupies, after deformation, the position
A; + R(r). The deformation field R(r)
characterizes the defect. A few simple
examples of deformation fields are:

(i) Planar translation interfaces such as
stacking faults, out-of-phase bound-
aries, and discommensuration walls.
All these planar defects have a displa-
cement field of the type R=0 for
z <z and R = R, for z > z;, where
zy is the level at which the planar
defect occurs behind the entrance
face (Fig. 19a).

(il) Domain boundaries or twin bound-
aries with a small twinning vector. We
nowhave R=0forz< z;and R = kz
for z > z; (Fig. 19b).

(ii1) A pure screw dislocation has a dis-
placement field described by R =
b[6/2n], where 6 is the azimuth angle,
measured in the plane perpendicular
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R
>

(b)

Figure 19. Displacement function of planar interfaces: (a) stacking fault; (b) domain boundary.

to b. All displacements are clearly
parallel to b.

(iv) A spherical inclusion has a radial,
spherically symmetric displacement
field:
erpr

R=-%

I

(46)

for r = ry; for r <ry, R=cer with
€ =1(2/3)8, where § is the lattice
mismatch between inclusion and
matrix.

Planar interfaces which are inclined
with respect to the foil surface can be
considered as consisting of ‘steps’ that
are one column wide. Along a line perpen-
dicular to the intersection line of the fault
plane and the foil surface, the columns are
assumed to contain a planar fault, parallel
to the foil plane, at the level where the
inclined fault plane intersects the column.
Similarly, an inclined dislocation line is
assumed to consist of small segments,
each one column long, parallel to the foil
plane. It is thus sufficient to consider
defects in planes parallel to the foil
surfaces.
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Scattered Amplitude for a Deformed Foil

Kinematical Formulation

In the case of a deformed foil, the scat-
tered amplitude corresponding to the

scattering vector h=g-+s becomes,
from Eq. (8),
A(h) = Z F,exp[2ni{g + s)]
2
AL+ R(r)] (47)

or, replacing the summation by an integra-
tion as in Sec. 1.1.3.5 of this Chapter.

A(h) = F, JCO]umn exp{2ni[g - R(r) + sz]} dz
(48)

Hereby we have used the fact that g- 4, is
an integer and that s+ R(r) is much smaller
than the other terms in the exponential.
Putting

o =2ng-R(r) (49)
we can write
Ah) = F, J; explia(z)] exp|2nisz] dz (50

Stacking Fault Contrast

Let the fault plane be parallel with the foil
planes at z = z;, behind the entrance face.
Since R is constant in this case, the « is also
constant and we can split the integral of
Eq. (50) into two parts [10]:

Alh)

Fy

2

= J exp(2misz) dz
0

Iy

+ exp(ia) J exp(2nisz)dz  (S1)

=1

or, after evaluating the integrals and com-

puting /(h) = A(h) A*(h)
%g) ={1 — cos(a + nsty) cos(msty)

+ cos(2msu)[cos(a + msty)
(52)

with u =1(2z) — 1), that is u is the dis-
tance counted from the central plane of the
foil.

The intensity [I{h) clearly depends
periodically on the thickness ¢, of the foil
as well as on the level of the fault in the foil
(i.e. on u). For an inclined fault in a foil of
constant thickness, the intensity 7(h) is
clearly a periodic function of u with period
1/s; it is symmetrical in u since the cosine is
an even function. An electron micrograph
will produce a projection of this intensity
distribution, that is a fringe pattern with
depth period 1/s, the lateral extent of
which is confined to the projected width
of the fault (Fig. 20).

— cosmstg)}/ (ms)?

e

Figure 20. Fringe pattern due to a stacking fault (S),
wedge fringes at the twin (T) and distocations (D)
(stainless steel). (Courtesy of J. Van Landuyt.)



Figure 21. Uniformly shaded area due to the presence
of a stacking fault parallel to the foil plane (graphite):
(a) partial dislocations in contrast; (b) stacking fault
areas show up as bright areas. (Courtesy of P.
Delavignette.)

If the fault plane is paraliel to the foil
surfaces a region of uniform shade is pro-
duced in the fault area. This shade can be
either brighter or darker than the perfect
area of the foil (Fig.21).

Domain Boundary Contrast

Let the domain boundary be parallel to the
foil surfaces and situated at z; (Fig.22).
We then have a=0 for z<z and
o =2ng-kz for z; < z<t,. The integral
[Eq.(50)] can again be split into two

0
zl
ey e e e e R S e 2
I
t
1
>
1]
1]
!
1
1 - ZO

Figure 22. Model for a domain boundary.
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parts. Recalling that g-k = As, we have

w -l

exp(2misz) dz

+ J ” exp[2mi(s + As)z] dz

o1

(33)

Since the two crystal parts on both sides
of the surface are perfect, but slightly mis-
oriented, s and As are constant. These
integrals can easily be evaluated explicitly.

Dislocation Contrast

We adopt the geometry shown in Fig. 23,
that is the dislocation line is parallel to the
foil plane (x, y), with the dislocation lying
along the vy axis [11]. We then have
6 = arctg(z/x) and, since R = b(6/2r),
from Eq. (49)

o = (g-b)arctg (%)

where g+ b = n is an integer for a perfect

dislocation but a fraction for a partial

dislocation. The scattered amplitude is

given by

A(h)
F,

14

(54)

+25
= J exp(2misz)

- exp [in arctg ()i; )] dz

The integral can be evaluated for differ-
ent values of n but the results are not

(55)

Figure 23. Foil containing a screw dislocation; the
notation used.
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Figure 24. Image profiles for
screw dislocations according to
the kinematical theory [13, 14].

[

INTENSITY (ARBITARY UNITS)

-6

elementary functions. The numerical
results are represented graphically in Fig.
24 for different values of », as a function of
8 = 2nsx. It turns out that the peak height,
peak shift and peak width increase with
increasing » [11]. It is clear that no image
will be produced if n = 0 because then Eq.
(55) reduces to that for a perfect foil. The
corresponding profiles for edge disloca-
tions are represented in Fig. 25 [12].

Lattice Potential of Deformed Crystals

Deformation can also be introduced in the
diffraction equations using the ‘deform-
able ion approximation’ via the lattice
potential [13,14]. It is assumed that a

ﬁa 27T sX

displaced volume element of crystal carries
along with it the lattice potential it had
before the deformation

Vdef(r) = Vundef(r - R) (56)

As a result the Fourier coefficients of the
lattice potential in the deformed crystal
acquire phase factors since

Vaer(r) = Vo + Y _ Vyexp[2nig - (r — R)]

4

=Vy+ Z[Vg exp(—2nig - R)]

x exp(2mig - r) (57)

Strictly speaking, this series is no longer a
Fourier series, which is consistent with the
fact that the function Vye(r) is no longer a
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Intensity (arbitrary units)
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Figure 25. Image profiles for edge dislocations according to the kinematical theory [12).
periodic function. Accepting nevertheless equation becomes
this approximation, the presence of a
deformation field can be accounted for d%_ . . _di?
' q 2mi{ s, + g 3 Yy
by replacing V, by z z
Imio . i .
Ve — V,exp[-2mnig - R(r)] (58) _ <[—>exp(19g) (60)
g

In view of the relations between ¥V, and
1/, this also amounts to replacing 1/1, by
(1/1,) exp(—icy), with o, = 2ng - R(r).

For a deformed foil, Eq. (42) thus
becomes

¢ .
d—zg — 2mis, Py,
i . .
= <t—>exp(10g)exp(—1a'g) (59)
[
Introducing a new function ¢, =

¢ exp(—ia,) which does not change the
scattered intensity I, = @, = ¢y, this

This equation is of the same form as Eq.
(42), except that s, has been replaced by a
local value

dR
Seff =S¢ + 8 74—

- (61)

which is, in general, a function of x,y,
and z.

Depending on the problem to be trea-
ted, one has to use Eq. (60) or Eq. (59);
if o, is a constant, Eq. (60) cannot be
used since it reduces to that of a perfect
crystal.
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1.1.1.5 Two-Beam Dynamical
Theory [13—-15]

Basic Equations for Perfect Crystals

Rather than directly deriving the funda-
mental equations of the dynamical theory
from Schrédinger’s equation, we shall use
a physically transparent method, related to
the one originally used by Darwin [16]. We
introduce the usual approximations (high
energy approximation, column approxi-
mation, etc.) already in the model, rather
than in the final equations.

The electrons traveling down a column
of crystal can be represented by the wave-
function:

Y(r) = ¢o(z) exp(2mikg - 1)
+ ¢g(z) exp(2mik - r) (62)

where the k and k&, represent the wavevec-
tors of the scattered and of the incident
beam, respectively; the amplitudes ¢, and

¢p of these beams depend on z. The col-

umn approximation justifies to neglect the

x dependence of these amplitudes. We

shall write down the amplitude after inter-

action with a slice dz of the column, at

level z behind the entrance face (Fig. 26).
We can write

po(z +dz) = ¢y(z)do(dz)
+ by (2)P_g(dz)

where ¢_, means that scattering with scat-
tering vector —g has to be taken into
account. This relation states that the trans-
mitted beam results from the interference
between the twice transmitted beam of
which the amplitude is ¢y(z) ¢y(dz) and
the twice-scattered beam with amplitude
¢y(z) ¢_4(dz). Since the slices dz are
arbitrarily thin, it is justified to use the
kinematical approximation for ¢y(dz) = 1
and ¢,(dz). Note that changing g — —g
implies changing s — —s, since the origin
of reciprocal space is now in the node point
G. From Eq. (43) we can conclude that

(63)

lz

tdz

X

<I>§(x,z).d>o(dz) //

(DD()(,Z).(Dg (dz)

- -
\>‘¢o (x.2).®,(dz)
(dz)

<Dg (x,z).(bg z

Figure 26. Illustrating the derivation of the fundamental equations of the dynamical theory.



(ignoring the phase factor of the Fourier
coefficient)

¢g (dZ) = d¢g

= (? ) exp(—2misz) dz

g

(64)

Furthermore, we have ¢(dz) =1 and
hence

oulz + d2) =on(z) + 05(2) ()

x exp(2misz) dz (65)
or
¢o(z 4 dz) — do(2)
= ¢,(2) (g>exp(2nis2) dz (66)

and in the limit for dz — 0:

(doo/de) = (7 ) lexpl@misleg(a) - (67)

—8
Similarly, for the scattered beam we can
write
¢g(z + dZ) = ¢O(Z)¢g(dz)
+ ¢g(z) ¢0(d2)

and taking into account the expressions
for ¢,(dz) [Eq.(64)] and ¢y(dz) =1, and
making the same transformations as for
¢o, We obtain:

(68)

ave/az = (2 )fexp(-2misson(z) (69
4
Equations (67) and (69) form the Darwin—
Howie-Whelan set of coupled differential
equations describing the interplay between
incident and scattered beams in a perfect
crystal. This set can be given a number of
alternative forms by introducing ampli-
tudes differing only by phase factors
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from ¢, and ¢,. This does not change the
resulting intensity distributions.

One can, for instance, substitute 7’ and
S’ for ¢y and ¢,
¢¢ = T’ exp(misz) (70a)
¢, = S exp(—misz) (70b)

The system of equations then acquires a
symmetrical form

dT'/dz + nisT' = (;‘—‘)S (71a)
-g

ds'/dz — nisS = (?) T’ (71b)
8

or one can make the substitution

¢o=T (72a)

¢y = Sexp(—2misz) (72b)

and obtain the following asymmetrical set
of equations:

dT/dz = <£ ) S (73a)
g
: i
dS/dz = 2misS + (t_> T (73b)
g

Depending on the problem to be solved,
either the symmetrical or the asymmetrical
set will have to be used.

Dynamical Equations for Deformed
Crystals

We have seen previously (Sec. 1.1.4.4 of
this Chapter) that the deformation of the
lattice can be modeled by using a local
effective deviation parameter, s.g, which is
a function of r, rather than a constant s.
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We found that s, is given by
d
Sett =S+ - (&-R) (74a)
d
Seff = § -+ —a (74b)
dz

with o« = o, /27. One can alternatively
replace 1/t, by 1/t,[exp(—icg)]. This can
be shown directly by intuitive considera-
tions [17].

These substitutions allow us to adapt
the different sets of equations to the case of
deformed crystals. The presence of a defect
is now described by the variation of s along
the integration columns, the diffraction
vector g being the same all along the
column.

Solution of the Two-beam Dynamical
Equations for a Perfect Crystal

The two equations of the system [Egs.
(73a) and (73b)] can be uncoupled by
eliminating S and 7T, respectively. For S,
one obtains for instance

ds n?

d’s ‘
— 2mis —+—2
tg

a2 §=0

£dz (73)

and similarly for an equation for 7.

Taking into account the initial values
T =1,8 =0 for z=0, and requiring that
the solutions satisfy both equations of the
set, one finds

T = [cos(awg ) — 1(;’ ) sin(no z)]

X exp(mis,z) (76a)

S = (i/a,t,)[sin(no,z) exp(mis,z)]  (76b)

with
(14571

= (77)
The scattered intensity Ig is then

— SS* = sin? {Egiz} (78)

(atg)

and
IT = 1 - [s (79)

since we have, so far, neglected absorption.

The depth periods of both /5 and /7 are
now 1/0, as compared to 1/s,, according
to the kinematical theory. For 5, = 0 the
depth period remains finite and equal to .
Note that for large values of s, o, reduces
to s,.

Equations (78) and (79) as well as Eqs.
(67) and (69) describe the periodic transfer
of electrons from the transmitted beam
into the scattered beam, and vice versa
(Pendellésung effect). The periodic varia-
tions of I (or I1) with the crystal thickness
give rise to the formation of thickness
extinction contours in wedge-shaped crys-
tals (Fig. 27). The contours are the geome-
trical loci of equal thickness. According to
Eqgs. (78) and (79) such fringes should be
periodic; in actual fact the fringes are
found to be damped with increasing thick-
ness, showing that absorption takes place.
We take absorption into account below.

The expressions Is and It also describe
the dependence on s,. The geometrical
loci with s, = Constant are the equi-
inclination or bent contours. According
to the expressions for Ig and Ip, this
dependence should be symmetrical in s,
i.e. Is(=s) = Is(+s) and Iy(—s) = It(+s).
In fact, one finds that It(—s) < It(+s),
whereas Ig(—s) = Ig(+s).This effect, called



Figure 27. Thickness contours in a silicon wedge.

the Borrmann effect, is also a consequence
of anomalous absorption (see below).

Two-beam Lattice Fringes

In the two-beam case the total wavefunc-
tion at the exit face of a crystal foil can be
written as [18—20]

U = exp(2niK - r)[T + Sexp(2mig - r)]
(80)

where K is the wavevector of the incident
electron beam corrected for refraction by
the constant part, V), of the lattice poten-
tial. The total wavefunction ¥ can be
imaged in the microscope by collecting
the two interfering beams in the objective
aperture and focusing on the exit face of
the foil. One then observes the intensity
distribution

I =0U"
=TT" + SS* + T*Sexp(2nig-r)
+ TS" exp(—2mnig-r) (81)

=It + I + 2+/ I+ Ig sin(2nig - ¥ + ) (82)
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where

S
tgp = U—g tg(no,zo) (83)

g
zo being the foil thickness. The image
consists of sinusoidal fringes with a period
1/|g|, which is equal to the interplanar
distance of the lattice planes normal to g.
The fringes are parallel to the traces of
these lattice planes. For s, =0, Eq. (82)
simply reduces to

2
I=1+sin (?) sin(2mg - x)
g

(84)

where the x axis was chosen along g.

The contrast of the fringes clearly
depends on z;, whereas the localization of
the fringes depends on s,, since this deter-
mines ¢. Fors = 0, ¢ = 0, the bright fringes
coincide with the lattice planes gx =
Integer + % The fringes are therefore called
lattice fringes; their formation can be under-
stood on a purely geometrical basis [21].

The phase ¢ in Eq. (82) will, in general,
also depend on the exact imaging con-
ditions. Since the beams T and S may
enclose different angles with the optical
axis of the microscope, additional phase
shifts will, in general, occur. As long as we
consider diffraction contrast images, the
image transfer function of the microscope
is not important since the intensity distri-
bution in a single beam does not depend
on its shape. However, when considering
the interference of more than one beam,
the function plays an important role and
cannot be ignored.

1.1.1.6 Absorption

Absorption can be described phenomeno-
logically by assuming the refractive index
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n = c¢/v(where ¢ is the velocity in a vacuum,
and v is the velocity in a medium) to be
complex. Representing a plane wave as

¥ = Yo explikz — wi)]

with kK = w/v = wn/c and making n com-
plex n. = n + iy leads to a complex wave-
vector

(85)

ke == (n+in) (86)
and to a wave
¥ =g expli(kez — wr)

= g exp(—wpz/c) expli(kz — wr)]  (87)

which is clearly damped, the amplitude
absorption coefficient being puw/c.

Replacing V, by V + 1} in the lattice
potential has the desired effect, since it
makes the wavevector K complex:

o 2mel(E + Vo) + W]

K 7 (88)
= K* +i[2meW,/*K]K (89)

We now define

1 2meW, /WK (90)

To

by analogy with

1

— = 2meVy /K (91)

Iy
The complex wavevector K* then becomes

K*Z:K2+i<5>
7o

and, since 1/K7y < 1, then

L\ 12
K'=K[1+—
<+KT0>

i
~K|[1
< +2KTO)

(92)

or, finally,

K*:K_{_L

27'0 (93)

The boundary conditions now require that
at the entrance face z = 0 the tangential
component must be conserved, i.c.
K{ = K. The imaginary part being zero
for z < 0, this means that for z > 0 the
imaginary part must be oriented along
ey, l.e.

K=K+ <L>en
27'0

The expression exp(2niK - r) then becomes

exp(2miK - r) exp <—_nz>

To

(94)

(95)

since e, +r = z. The absorption coefficient
for the amplitude is thus u = /7.

It has been shown by Yosioka [22] that
anomalous absorption can be taken into
account by assuming the lattice potential
to become complex: V(r)+iW(r). We
have shown that this applies to the con-
stant term V + i}, and leads to normal
absorption in that case. This procedure
can be generalized by replacing also the
other Fourier coefficients by complex
quantities: V, — V, +1W,. In view of the
relation between 1/7, and V, [Eq.(41)],
this is equivalent to replacing

1 1 i
—_——

Ly lg T

(96)

where we have introduced the absorption
lengths, T,, which are related to W, in the
same way as t, are related to V.

1 2meW,

—=—t (97)
Tg hk

Ty > tg, since W, < V,. If 1/t, becomes
complex it is clear that o, [defined in



Eq. (77)] must also become complex
(98)

O, = 0 +10;
Omiitting, for simplicity, the index g at

o, and oy, one finds a good approximation,
noting that 7 < o7 and 1/7'g2 < l/té:

o, = (1/t)[1 + s262]'? (99a)

o, = (0,t,7,)”" (99b)

We note that g; - r = 0;z.

1.1.1.7 Dynamical Equations
Including Absorption

Anomalous absorption effects can be
taken into account in the basic equations
[Egs. (67) and (69)] or in the equations
derived from these, by the above-
mentioned substitutions [Egs. (96) or
(98)]. Equations (67) and (69) then
become, for instance,

% = i i +1 (%g)] exp(2mis,z) ¢, (z)

—_

(100)

dog — 7 1 +i (lﬂ exp(—2mis,z) ¢y(z)

dz g Ty
(101)

The substitution can also simply be per-
formed directly in the final solutions
[Eq. (76)]. Although the method is purely
phenomenological, the result allows a
physically meaningful interpretation.
Moreover, in order to obtain tractable
analytical solutions one adopts the follow-
ing approximation: o is replaced by
o, +1io; in the periodic terms of the Egs.
(76a) and (76b), but in the coefficients we
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replace o by o,. This approximation pre-
serves the essential features of anomalous
absorption. It allows to show that the
wavefunction, v, of the transmitted
beam results from the interference of two
waves with slightly different wavevectors
(e = unit normal to the foil)

K+1l(s+o)e (102a)
and
K+1l(s—o0)e (102b)

For the wavefunction, g, of the scattered
beam, the two interfering waves have
wavevectors

K+g+i(s+o)e (103a)
and
K+g+l(s—o,)e (103b)

The beating of these two waves causes the
periodic depth variation of ¢)p and 15 with
a period 1/o,, that is the Pendellosung
effect.

The four waves present in the total
wavefunction, ¢ = ¢ + 15, belong to
two Bloch wavefields, v, and ¢,. For the
waves of the first wavefield, +;, the sign of
o, 1s positive; it contains the two waves
with wavevectors K +§(s+o,)e and
K + g+ (s + o,)e. The second wavefield,
,, corresponds to the negative sign of oy;
it contains the two waves with wavevectors
K +%(s—o,)eand K+g+%(s—ar)e. In
the simple case s = 0, the wavefield ¢, has
a maximum amplitude in planes coinciding
with the atomic planes, whereas ¢, has
maximum amplitude along planes exactly
in between the atomic planes [13, 14].

The first type of wavefield which is
strongly excited for s < 0 is strongly atten-
vated, whereas the second wavefield,
which*i$ more strongly excited for s > 0,
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is less attenuated by anomalous absorp-
tion. These results are physically mean-
ingful. Electrons propagating close to
atomic cores, that is electrons for which
the wavefunction is peaked at the atomic
positions, will have a larger probability to
excite X-rays and hence to be ‘absorbed’
than will electrons passing between atomic
planes.

The damping of the thickness fringesin a
wedge-shaped crystal can be understood on
the basis of these results. The depth varia-
tions of I5 and Iy are in both cases caused
by the beating of two waves, one of each
wavefield. Since one of these waves is
attenuated much more than the other, the
beating envelope (which has a maximum
amplitude when the two beating waves have
equal amplitude) decreases with depth in
the crystal, even though one of the waves
has still an appreciable amplitude.

The Borrmann effect [23] can also be
understood on the basis of the same
model. For s> 0 the amplitude of the
rapidly attenuated wave in %y, that is
111 = (s/0y)], is smaller than that of the
passing wave, thatis (3 [1 + (s/0,)]), which
is enhanced by anomalous absorption. As
a result 1)y will have a larger amplitude for
s > 0 than for s < 0 for the same absolute
value of 5. A similar asymmetry is absent
for 15, where the amplitudes of the two
constituent waves are both 1/(20t,), which
only depends on s°.

1.1.1.8 Rocking Curves for Perfect
Crystals Taking into Account
Anomalous Absorption

Explicit expressions for /; and Ig are
obtained by computing It = ¥r -7 and

Is = 15 - 1. Since 0; < o, and 7, > , one
can approximate the expressions by
neglecting higher order terms in ¢,/7,.
After lengthy but straightforward calcula-
tions, one obtains

It =[coshu + (s/0,) sinh u]?
_ [(a%tg)z]sinzu (104)

with u = no;z, v=rmnoz,0, = (Urthg)fl,
and o, = [l + (stg)z]l/z/tg. Similarly,

.12 )
IS:smh u+szmv (105)
(ov2g)

These expressions are represented in Fig.
28 for a rather thin foil. Note the asym-
metry of I7 with respect to s (Borrmann
effect), even for a rather thin foil.

In the limit o; — 0, thatisas u — 0, one
obtains the corresponding expressions for
the non-absorption case:

)

5= —S‘(r;r:‘g‘)’;z (106a)
and
L=1-1I (106b)

For s = 0 one obtains

Is = sinh? u + sin®v (107a)
and
It = cosh? u — sin® v (107b)

Note that now
It + Is = sinh? u + cosh®u > 1!

This apparently absurd result is due to the
fact that normal absorption, which attenu-
ates both beams to the same extent, has
been neglected. It can readily be intro-
duced by multiplying by exp(—mnzy/7)
[from Eq. (95)].
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Figure 28. Rocking curves
for a perfect crystal taken
into account in anomalous

o absorption. The transmitted
intensity It (a) is
asymmetrical in s - /,,
whereas the scattered
intensity /g (b) is

b symmetrical in s - 1, [12].

The expressions for Is and It can be
rewritten (s = 0) as

It = [cosh 2u = cos 2v] (108)

where the plus sign refers to the trans-
mitted beam and the minus sign refers to
the scattered beam.

1.1.1.9 Dynamical Diffraction by
Deformed or Faulted Crystals
[13, 14, 24]

Basic Equations

Quantitative studies of defects in crystals
are usually performed under optimized
two-beam conditions, since this allows
the most straightforward and detailed
interpretation. The system of two-beam
equations which lends itself most con-
veniently to the description of diffraction
by non-perfect crystals is the Darwin—
Howie-Whelan system of coupled differ-
ential equations.

Different formulations of this system
are available; their solutions for the

N
w

amplitudes of scattered (S) and trans-
mitted (7)) beams differ by phase factors
only, and hence lead to the same
intensity distribution, that is to the same
image. We shall use two different forms of
this system, depending on the problem to
be treated.
The asymmetric form [from Eq. (73)]:

ar _ <ﬂ> S (109a)
dz g

ds . mi

i 2mis, S + (g) T (109b)

and the symmetric form [from Eq. (71)]

!

dTr o (T o
E‘FTCngT = (?;)S (1103)
ds’ C Ty L,
P — Tis, S = (g)T (110b)

The amplitudes 77, S, T, and S are related
as follows:

T = T’ exp(nis,z) (111a)
S = S exp(—mnisyz) (111b)
We have shown in Sec. 1.1.4.4 of

this Chapter that deformation can be
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introduced in the diffraction equations by
applying the deformable ion approxima-
tion, a defect being modeled by means of a
vector field R(r), called its displacement
field. It was also shown that the Fourier
coefficients of the lattice potential then
become functions of r and acquire a
phase factor V, exp(—ia,) with o, =
2mg-R. Strictly speaking, the series
given by Eq. (57) is then no longer a
Fourier series, which is in agreement
with the fact that the lattice potential is
no longer periodic. It nevertheless turns
out to be a good approximation,
especially for small gradients of R(r). The
presence of the defect can then be taken
into account by substituting in the diffrac-
tion equations V, — Vyexp(—iq,). In
view of the direct proportionality of 1/¢,
and V, [Eq.(41)], this implies that 1/t
has to be replaced by (1/1,)exp(—iag).
Equations (109a) and (109b) then take
the form

dT 7 .
i (——) exp(iog)S

(112a)
lg

ml
1

ds .
P = 2misgS + (

) exp(—ia,)T (112b)

g

and Egs. (110a) and (110b) become

/

dTr , wi .
P + mis, T' = <I—_> exp(icg)S’  (113a)

-8

d—Sl—wi S = UL exp(—ia,)T" (113b)
dz % = ly P £

Both systems of equations can be trans-
formed so as to involve only the gradient
of the displacement field.

Putting T = T" and S = §" exp(—ic,)
the first system of equations [Eqs. (112a)

and (112b)] is transformed into the set

1 3
iﬂz(l‘)y' (114a)
dz Iy
1 d !
ddS = i (sg + —3) s
A
+ <§1) 7" (114b)
tg

with o = a,/2m. Performing the substitu-
tion

T = T" exp(nic, 115a
pimiay
§" = 8" exp(—miag) (115b)
leads to the system
" : dalg 11
dz +7T1<Sg+E)T
= (ni/t_g)S'" (116a)
I d !
5 )5
= (mi/t)T" (116b)

The sets of Egs. (113) and (116) are of the
same form as the corresponding sets for
the perfect crystal except for the s value.
They suggest a simple interpretation: the
presence of the defect causes the local s
value, Ser = 5, + g+ dR/dz to be, in gen-
eral, different from its value in the perfect
part of the foil. Locally, close to the defect,
the Bragg condition is thus better or less
well satisfied than in the rest of the foil,
and hence the locally diffracted beam has a
larger or smaller amplitude than in the
perfect part.

If o =2ng-Ry;= Constant, which is
the case for a translation interface, with
displacement vector R,, we have
da/dz = 0 and the sets of Eqgs. (114) and
(116) reduce to those for a perfect crystal.



This is consistent with the fact that the
two parts of the crystal on either side of
the interface remain perfect. We have
therefore to use the sets (113) or (112)
to treat this problem, as we shall demon-
strate below, rather than the sets (114) or
(116).

If the interface is a domain boundary
described by R = kze, (see Sec. 1.1.1.4 of
this Chapter) we have dR/dz = ke. and
now the sets (114) and (116) can be used.
They show that the crystal can be
described as an assembly of two juxta-
posed crystal parts separated by the inter-
face and having different s values: s and
s+ As, with As = ke,

For the displacement field of a disloca-
tion, neither the factor exp(ia,) nor the
gradient dR/dz disappear (except for those
g for which extinction occurs). The sets of
Eqgs. (114) and (116) as well as (112) and
(113) are thus suitable descriptions in this
case.

The anomalous absorption has not yet
been introduced explicitly in the different
sets of equations for faulted crystals.
Phenomenologically this can easily be
done by replacing 1/¢, by (1/t, +1i/7,) or
o by (0. +10;) in the sets of equations.
Alternatively, it can be done by making
the same substitution directly in the final
results. We shall follow the latter approach
for a discussion of the fringe patterns at
inclined planar interfaces.

Matrix Formulation for the Amplitudes of
Transmitted and Scattered Beams for
Perfect Crystals

For a systematic discussion of the contrast
at planar interfaces we make use of a
matrix formulation for the amplitudes of
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the transmitted and scattered beams by a
perfect crystal slab [24], which we now
derive first.

Let T and S represent the transmitted
and the scattered amplitudes for an
incident wave with unit amplitude. The
initial values at the entrance face of the
slab are represented by the column
vector (f); at level z the amplitudes of
transmitted and scattered beams are
represented by the column vector (g).
From Sec. 1.1.1.5 of this Chapter we
know that, ignoring a common irrelevant
phase factor,

T=T(zs,)

= cos(na,z) — 1(S—g> sin(no,z)  (117)

Og

S=S(z,5)= (—1—) sin(mo,z) (118)
Tglg

are the solutions of the sets of Egs. (71) or

(73) with initial values ((1)). Anomalous

absorption is taken into account by assum-

ing o, = o, + 10 [Eq. (98)] with

[1+ (sz,)%]'72

lg

(119a)

Or =

|

(Urang)

(119b)

g; =

In view of the linear character of the
system of differential equations, for an
incoming wave with an arbitrary ampli-
tude we can write

(5= (5 )5,

where the elements A, B, C, and D of the
2 x 2 matrix remain to be determined.

(120)
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From
(see) = (o 5)0)
=(3)

we conclude that
A=T and B=S.

We now make use of the symmetry of
the system of Egs. (71). We note that this
system is mapped on itself by the substitu-
tion T—S§, S—T, s,— —s,, since
te =1t_, in a centrosymmetric crystal.
This means that the solution for initial
values (?) is given by

S A C\ /0 C
_ = = (122)

T B D 1 D
where the minus sign means: T =
T(z,—s,) and s = S(z,—s,). We con-
clude that C =S8 and D=T"). The

response matrix is thus completely defined
for arbitrary initial values

() (5 7)),

We shall represent the response matrix M
of a perfect crystal slab as

(T s
M(z,s):(S T(_>>

Imagining a slab of perfect crystal with
total thickness zy to be sliced in perfect
slabs with thicknesses zy,2>,...,2,_1,2,
such that z; +z,+- 42, =z, should
clearly not influence the final result. We
must therefore have

Mz + 2+ +24,5)
:M(zn,sg)-M(znv],sg)...M(zl,sg)
(125)

(121)

(123)

(124)

This property of the response matrix can
be verified by multiplying the matrices.

Equation (125) can formally be general-
ized to include also the subtraction of a
lamella, that is

Mz —22’Sg)

= M(—2,,8,) M(z,5,) (126)
where
_(T(=2) $T(-2)
M(=z,5,) = (S(_Z) v ) (127)

1.1.1.10 Matrix Formulation for a
Foil Containing a Translation
Interface

A description of the diffraction effects
associated with translation interfaces can
be based on the set of Eqgs. (113) [24]. The
vector R, describes the displacement of the
exit part with respect to the entrance part
of the foil, it determines the sign of
a, = 21g- Ry. In the front part a, =0,
whereas in the exit part o, # 0. The trans-
lation interface at z = z; is assumed to be
parallel to the foil surfaces. The total foil
thickness is z; + z; = zy. The front part
being perfect and undisplaced,; its response
matrix is M(z),s,). Let the response
matrix of the second part be represented
by

U Xx )
VY
where X, ¥, U, and V must be determined
from the set of Egs. (113). We note that
this set of equations reduces to that for a

perfect undisplaced slab by means of the
substitution 7' =T°, § = S*exp(—ioy).

(128)



The solution of this set of equations is thus
T* = T(z,5,) and S°* = S(z3,s,) since the
front and exit parts have the same orienta-
tion. For the original set the solution is
thus

T =T(z,s,) (129a)
and
S = S(z3,5,) exp(—ia,) (129b)

that is
T(Z? Sg)

(S(Z,sg)exp(—iag)>:(lli j) ((1)>

a4

:( V> (130)
and hence
U=T(z,s,) (131a)
and
V = 8(z5,5,) exp(—ia,) (131b)

We note that the system (113) is mapped
onto itself by the substitution 7' — §’,
S 1T, Sg — —Sg, and o, — —a_,. The
solutions of this new set then also remain
the same as those of the original set, except
that the interchange of S’ and 7’ has
caused the initial values to become (?)
and that s, — —s,. We thus find

e (0 0)

z<);> (132)
and
X = 8(z5, —5,) exp(icy) (133a)
and
Y =T(z,—s,) (133b)
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Thus, in a more concise notation, the
response matrix of the exit part is

Sg_) exp(iay) ) (134)

(e
S> exp(—iay,) T2<‘)

The response matrix of the faulted slab can
thus be formulated as

< Z) B ( S5 expT(z—iag)

(5 2)0)
X (-)

S T 0
Matrix (134) can conveniently be written
as the product of three matrices:

Séw) exp(iay)
7"

SgA) exp(iag))
(_
7"

(135)

T;
( S> exp(—iay,)
(o e (5 200
o exp(—ia,)/ \ S, Tz(_)

(o cptn)

This suggests to introduce as a shorthand
the shift matrix

S(a,) = ((1) exp?iag))

The final result for the response of the
faulted slab can then be written as

(136)
(137)

(g) = S(—ag) M,S ()M, (é) (138)

with
T, s

M] = M](Z]’S]) = ( -](*)> (139)
5 7
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The shift matrices have the property

<(1) exp?ial)>((1) exp?iaz))

B ((1) exp[i(a(l) + a2>])

that is S(a) S() = S(a) + ay); they
commute.

The result can be generalized directly to
a succession of overlapping translation
interfaces characterized by phase angles
o, all referred to the front slab:

(140)

( T>: - B (—ar) M3&(a2) &(—a)) M,

S
1
x@(a’l)Ml(()) (141)
Introducing the phase angles o; =

o — o), which now describe the relative

displacements of successive lamellae, the
rear part being displaced with respect to
the front one, we obtain

()= sttt ()
(142)

1.1.1.11 Matrix Formulation for
a Foil Containing a Domain
Boundary [20]

It is possible to generalize further by
assuming that in successive lamellae the s
values may be different, as in the case of
domain boundaries.

For a pure domain boundary the
transmitted and scattered amplitudes are

given by

( §>: M (23, 562) M (21, 5¢1) (;) (143)

where now s, 1 # $,5.

Equation (142) also describes the most
general case of overlapping mixed bound-
aries, that is boundaries containing a
translation component as well as
exhibiting a difference in deviation
parameters, provided the s values in the
successive matrices, M;, are assumed to be
different.

1.1.1.12 Matrix Formulation for a
Crystal Containing a Non-reflecting
Part: the Vacuum Matrix

A foil may contain lamellae which are very
far from any reflecting orientation under
the diffraction conditions prevailing in the
rest of the foil; except for absorption they
behave as if no material was present in that
lamellae. This is, for example, the case for
a microtwin lamella in a face-centered
structure if an uncommon reflection is
excited in the matrix. It also applies to a
cavity and to a precipitate lamella with a
lattice different from that of the reflecting
matrix. Even though such parts of the foil
do not contribute to the diffraction
phenomena, their presence influences the
relative phases of the waves diffracted by
the foil parts in front and behind these
inactive lamellae. This can be accounted
for by including the appropriate matrix in
the matrix product, describing such a non-
diffracting part [24].

In a nonreflecting part the extinction
distance, 1, is infinite and the system of



Egs. (113) thus reduces to

((ii—z+7ring:0 (144a)
and

(31—5 — 7isgS = 0 (144b)
which integrate to

T = T, exp(—mis,z) (145a)
and

S = Sy exp(mis,z) (145b)

where T, and S, are the amplitudes at
the entrance face of the non-reflecting
‘vacuum’ lamella. One can thus write

T exp(—mis, z) 0
( S )0111_ ( 0 exp(mis,z) )

T
(sh 140
The ‘vacuum’ matrix is thus
V(z,sg)
_ (exp(—msgz) 0 ) (147)
0 exp(mis,z)

where z is the thickness of the nonreflecting
part as measured along the beam path and
s, is the deviation parameter of the crystal
part preceding the ‘vacuum’ lamella.

1.1.1.13 Fringe Profiles at Planar
Interfaces [25]

General Formulae

Multiplication of the matrices in Eq. (138)
results in the following expressions for T’
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and S:

T="T,+ Sng_) exp(ic) (148a)
and

S = T, S exp(—ie) + 5, T\ (148b)
The minus signs in Sé_) and Tz(_) indicate

that the expressions S, and 75 have to be
modified by changing s to —s. Equations
(148) express the fact that the transmitted
amplitude results from the interference
between the doubly transmitted beam
T1T2 and the doubly scattered beam
S S2 Jexp(ic). The minus sign in 52

indicates that the scattering, by the second
part of the foil of the beam which has
already been scattered by the first part,
takes place from the —g side of the lattice
planes. This implies that the deviation
parameter has to be changed from s to
—s, since for this second scattering event
the node G acts as the origin of reciprocal
space (Fig.29). This second scattering

15,0 574

Ewald sphere
\ +
[°)
ﬂ;;f//}?/

Figure 29. Transmitted and scattered amplitudes for a
crystal containing a planar interface.
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process is accompanied by a phase shift
o = 2ng + R due to the translation over R
of the lattice planes in part II with respect
to those in part I. This is taken into
account by the phase factor exp(ia). A
similar interpretation can be given to the
expression for S. The phase factor is now
exp(—ia) rather than exp(ic) because the
phase shifts due to'the dlsplacement of
part II have opposite signs for S2 ) and
for S,, since g has opposite sign for the two
processes.

Introducing the explicit expressions for
T; and S; (j = 1 or 2) given by Eqs. (117)
and (1 18) in Egs. (148a) and (148b), and
noting that ¢ = o, + ig; since anomalous
absorption is taken into account, leads
to explicit expressions for It = TT* and

= S§S”. It turns out that it is possible
to cast these explicit expressions for It
and I in a form which allows a
detailed analytical discussion of the
fringe profiles. Detailed calculations are
given in [25] also for the general case,
where the deviation parameters s; and
s, as well as the extinction distances #,,
and 7, in parts I and II, respectively,
are assumed to be different. We do
not give the details here of these
straightforward but tedious calculations,
but we will summarize the significant
results.

The expressions for It and I can be
written as sums of three terms
Irs = I+ I+ 17 (149)

Translation Interfaces

We consider first pure translation inter-
faces [2]. Thus s; = s, =5, and limiting
ourselves to the case when s=0, the

expressions become

(1) 2
ITS 2cos <2>

x [cosh(27o;zg) £ cos(2ma,zg)]  (150)
14; = 2s1n2<(;>
x [cosh(4moju) £ cos(4no,u)) (151)

1% % 5 sm afsin(27o,z; ) sinh(27o;z,)

+sin(270,z;) sinh(27o;z,)] (152)

where the upper sign corresponds to /1 and
the lower sign to /g. The total thickness is
zo = 2| + 25, where z, is the thickness of
the front part and z, that of the rear part.
Furthermore, we have u = 1(z| — z,), that
is u is the distance of the interface from
the midplane of the foil. Along a planar
interface intersecting the foil surfaces, as is
often the case, z; and z, vary along the foil
in such a way that z; 4+ z, remains constant
and equal to zg. In the projected area of the
interface fringes will be formed which,
according to the column approximation,
can be considered as being due to the
intersection of the depth variation of It
(or Ig) with the inclined interface.

If a«=n-27, where n is an integer,
which is the case if there is no stacking
fault, sinae=0 and sin{a/2)=0. The
only remaining term is then IT%, which
as a result must represent the contribution
due to the perfect crystal. This term only
depends on the total thickness zgy; it
describes a background onto which the
fringes represented by the other terms are
superimposed.

The second term, IT 5> depends on u and
not on z; and z, separately It represents
a function which is periodic in u, with a
depth period 1/20,. The center of the



pattern, at ¥ = 0, exhibits an extremum;
it is a minimum for Iéz) and a maximum
for If). This pattern consists of fringes
which are parallel to the central line of
the pattern. We shall see that the ampli-
tude of the fringes is only large enough
to be visible in the central part of the
pattern.

The dominant features of the pattern, in
sufficiently thick foils, are described by
If’%. Where the interface is close to the
entrance face z; is small and z, ~ z;, and
the factor sinh(27o;z,) is then large. The
term 1 sin o sinh(27o;z,) sin(2mo,z, ) repre-
sents a damped sinusoid with a depth
period 1/o,. This term disappears at the
rear surface where z, = 0. If sin« > 0, the
first extremum is a maximum; as a result
the first fringe will be bright at the entrance
face. For sin« < 0, the first fringe will be
dark.

Where the interface is close to the exit
face and z; ~0; the term
+1sinasinh(270yz,) sin(27o,2;) is now
dominant. It again represents a damped
sinusoid. The first extremum, which now
refers to the last fringe, is either a max-
imum or a minimum, depending on the
sign of sina. Note that the extremum is
different for /1 and g since in the first case
the plus sign applies, whereas for I5 the
minus sign applies.

Figure 30 and Table 1 summarize this
discussion. Note that these results, in
particular those pertaining to the nature
of the edge fringes, imply that anomalous
absorption must be sufficiently large to
make sure that the dominant behavior is
described by the term I?;

For a discussion of the behavior in the
central part of the pattern the term I%
may become important, since the two
terms of Iy compensate for certain

71~ zZg
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thicknesses and 142; may then become the
dominant term.

For the important case o = +2x/3,
which occurs in cubic-close-packed struc-
tures, the stacking fault fringes have the
following properties, provided the foil is
sufficiently thick so as to make anomalous
absorption a dominant feature.

The bright field fringe pattern is sym-
metrical with respect to the line u = 0. This
can be deduced quite generally from the
implicit expressions [Eqs. (148)] for s; =
s, =s, which shows that I = TT" has
the symmetry property

IT(21,22,S,Q) :IT(ZZaZlvsva) (153)

On the other hand, Iy =SS has the
property

IS(Zlaz2aS7a) :15(22721,—5', —-&) (154)

that is the dark field fringe pattern is anti-
symmetrical with respect to the foil
center since interchanging z; and z, also
requires changing the signs of s and o,
which changes the nature of the edge
fringes.

The fringes are parallel to the closest
surface; as a result, new fringes caused by
an increase in foil thickness are generated
by fringe splitting close to the center of the
pattern. This result can be understood by
noting the relative shift, with increasing
thickness, of the curves representing the
two terms in 143% in the central part of the
foil where they overlap.

Close to the entrance face of the foil
the fringe patterns are similar, but close to
the exit part they are complementary. This
property is generally true for diffraction
contrast images when anomalous absorp-
tion is important; it is also true for
dislocation images. The computed profiles
shown in Fig. 31, which can be compared
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Table 1. The properties of fringe profiles due to planar interfaces, showing the nature of the first and last edge
fringes for different signs of sin « and 8. A schematic profile and an observed pattern are given for the two types

of fringe.
a=2n(g-R) 8= 511y — Sy,
Bright field Dark field Bright field Dark field
First Last First Last First Last First Last
sina > 0 B B B D 6>0 B D B
o #ET - - - - - - - - -
sina < 0 D D D B 6<0 D B D D

with the observed fringes in a silicon
wedge, allow verification of most of these
properties.

It is clear from the foregoing discussion
that the nature of the edge fringes depends
on the sign of sin«. The case when oo = 7
is singular, because now sin a = 0 and the
term If; (which is mostly dominant) is
now absent, as is the background term

I%l% since cos(a/2) =0. The complete

fringe pattern for s = 0 is then represented
by

o

s = 3[cosh(4noiu) + cos(4no.u)]  (155)

since sin(a/2) = 1.

This expression shows that the bright
field and dark field images are comple-
mentary with respect to the nonperiodic
background which is described by
cosh(4nowu). This background exhibits a
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_ : t
"U\,\WW t-5.00 +, =525
1 U-ﬂ =5.25
=5.50
WW ]" [ =6.00
\l =6.00
=6.50 =6.25
1 - Figure 31. (a) Computed
profiles for a stacking fault
1 =6.75 with increasing thickness of
i ' the specimen. (b) Fringe
=6.50 pattern due to a stacking
§ ! fault in a wedge-shaped foil
WWVV\W =7.00 of silicon (s = 0; g = 220;
05 p o = 2m/3; thickness = 51,—
[

(a)

minimum for » =0, that is it shows a
minimum in the central part of the pattern.
The fringes with a depth period 1/(20,) are
parallel to the central lines u = 0; they are
superimposed on this background. As the
thickness increases, new fringes are added
at the surfaces.

Domain Boundary Fringes

We now consider interfaces separating two
juxtaposed crystal parts in which the
deviation parameters for homologous,
simultaneously excited reflections are

7t,.) (Courtesy of G. R.

(b) Booker.)

slightly different [25]. Such boundaries
occur, for instance, in microstructures
that result from phase transitions in
which rotation symmetry elements are
lost. Often the interface is a coherent
twin with a small twinning vector. Under
these conditions the simultaneously
excited diffraction vectors g, and g, differ
by Ag =g, —g;, where Ag is perpen-
dicular to the coherent twin interface
(Fig. 32). The difference in the deviation
parameters, As = s, — 51, is the projection
of Ag along the normal to the foil plane. In
the ‘symmetrical’ case, one has s, = %As
and s; = — 1 As, that is s; = —s,.



44 Transmission Electron Microscopy

Figure 32. Schematic representation of a coherent
domain boundary. TB, (Twin boundary).

The expressions for the transmitted and
scattered amplitudes for a pure domain
boundary (i.e., without a translation
component) are given by

T=TT,+557 (156a)
and
S=TS,+ T8, (156b)

of which the interpretation has been dis-
cussed in detail for the case of a stacking
fault.

The general expressions for the intensi-
ties It and Ig, assuming the extinction
distances in the two parts to be different,
can again be written as the sum of three
terms, and a discussion similar to the one
given for translation interfaces is possible
[25]. For sufficiently thick foils the behav-
ior is again dominated by the terms I%,
which we will now discuss.

The general features of the fringe pat-
tern are adequately exhibited by the ‘sym-
metrical’ case defined above. The terms

3

IT; are now given by [25]

’

w4IT3g = — 16{cos(2n0o, 7))

x sinh[2(ng; 525 + ,))
F cos(2noy»2)

x sinh[2(noy 1z £ ¢1)]} (157)

with
wh =1+ (stg)2

lg = %(’gn + tgz)

b= Sll‘g11 — SZZg,Z

2¢; = argsinh(st, ;)
and
Sty = 5811y, + slg,)

The upper sign applies to It and the lower
to Ig. The nature of the fringes is visibly
determined by the parameter 8, which is
assumed to be sufficiently small so that the
same g vector is excited in both crystal
parts.

Close to the front surface the first term
of I% determines the behavior since
sinh(2’nai,222 +¢,) is large for z, =~z
and z; ~ 0. Close to the exit face the
second term is dominant. The dependence
of the nature of the edge fringes on the sign
of é is summarized in Table 1 and in
Fig. 33.

The most striking and useful feature is
the difference in the symmetry of the fringe
patterns, due to translation interfaces.
Whereas the bright field pattern for a
translation interface is symmetrical with
respect to the central line, it is roughly
anti-symmetrical for a domain boundary,
the edge fringes being opposite in nature.
On the other hand, for the special case
§) = —s; and t, = t,, the dark field image
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Figure 33. Schematic representation of the fringe profile due to a coherent domain boundary [25]: (a) It;
(b) Is. BF, bright field; DF, dark field. /7 (Transmitted Intensity), /s (Scattered Intensity).

is symmetrical for domain boundary fringe
patterns, but anti-symmetrical for trans-
lation interfaces. If 7, and ¢, are signifi-
cantly different, the depth periods close to
the front and rear surfaces may be differ-
ent. As for translation interfaces, the
fringes are parallel to the closest surface;
this is a consequence of anomalous
absorption and it is therefore only true in
sufficiently thick foils.

A characteristic feature of domain
boundary images is that the domain con-
trast on either side of the interface (i.e., on
either side of the fringe pattern) may be
different, which is never the case for trans-
lation interfaces. However, for s, = —s,
(i.e., in the symmetrical situation) the
domain contrast is the same in both
domains in the dark field image, but not
in the bright field image. This is a conse-
quence of the symmetry of the rocking

curve for the scattered beam, on the one
hand, and its asymmetry for the trans-
mitted beam (the Borrmann effect), on
the other.

Along certain interfaces there may be a
phase shift as well as a difference in the
orientation or length of the excited diffrac-
tion vector in the two crystal parts. The
fringes produced along such interfaces
have properties which are intermediate
between those of pure « fringes and pure
6 fringes [25].

Extinction Criteria

It is clear that no « fringes are produced if
g+ R = Integer. In Egs. (150)-(152) for
Itg, the terms If% and Ifé become
zero. Only Iélg is different from zero; how-
ever, this term represents thickness fringes,
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as it only depends on z;. In fact it is easy to
verify that for a perfect crystal Egs. (151)
and (107) are identical (for s = 0).

If an image is made using a diffraction
vector which is common to the two crystal
parts, that is if a diffraction spot belonging
to the unsplit row or the unsplit plane
is selected, the 6 component of a mixed
interface becomes inoperative and only a
possible translation component may
produce o fringes. It is also possible to
eliminate selectively the translation com-
ponent from the images of mixed bound-
aries. In this way it is, for example,
possible to image the lattice relaxation
along antiphase boundaries or stacking
faults with a displacement vector Ry + ¢
by exciting only a systematic row of reflec-
tions (...—2g,—g,0,4+g,+2g...) for
which g.R = Integer. The presence of
relaxation is then revealed by the occur-
rence of weak residual fringes, due to the
additional displacement e, for which
g€ # Integer [26]. Using a number of
different reflections for which g-Ry=
Integer but for which g-e # Integer, one
can obtain a fair idea of the direction,
sense, and magnitude of € from observa-
tions of the nature and contrast of the edge
fringes in the residual fringe patterns.

1.1.1.14 Domain Fragmented
Crystals: Microtextures

Many phase transformations lead to a
decrease in space-group symmetry, the
space group of the low-temperature
phase being a subgroup of that of the
high-temperature phase. As a result, a
single crystal of the high-temperature
phase usually becomes fragmented into

domains after transformation into the
low-temperature, low-symmetry phase.
The structures within these domains are
then related by symmetry operations lost
during the transformation. The lost sym-
metry elements can be either rranslations
or rotations [27]. The interfaces resulting
from lost translation symmetry are
translation interfaces (e.g., antiphase
boundaries, stacking faults, discommen-
surations, and crystallographic shear
planes). Lost rotation symmetry elements
give rise to twins or domain boundaries.
The use of the term domain boundary will
be reserved for those cases where the lat-
tices of the two domains are only slightly
different. The reciprocal lattice nodes
belonging to the two domains are then
sufficiently close to each other to be excited
simultaneously, albeit with different devia-
tion parameters, and produce § fringes.

At the other extreme, if the diffraction
spots in a diffraction pattern made across
the interface are sufficiently split so as to be
able to make a dark field image in one of
the components separately, we call the
interface a twin. The image so obtained
then exhibits wedge fringes in the selected
domain. It is clear that the distinction
between twins and domain boundaries is
not very strictly defined in this way and
intermediate situations are possible.

In some cases the lattices of the two
domains separated by the interface are the
same but the structures may be different.
This is, for example, the case in noncentro-
symmetrical crystals where the structures
in the domains may be related by an
inversion operation, or by a two-fold
axis, the lattice being unperturbed by the
interface. The domain structure in -
quartz provides an example of the latter
type. The high-temperature 3 form of



Figure 34. Dauphiné twin domains in a-quartz
revealed by domain contrast [28-30]. BF, bright
field; DF, dark field.

quartz has point-group symmetry 622,
whereas the low-temperature o« form
belongs to the point group 3 2, that is the
six-fold axis of the g phase becomes a
three-fold axis in the o phase. On cooling
to below the 3 — « transition temperature
(about 573°C), the 3 phase breaks up into
Dauphiné twins, o and «,, of the « phase.
The structures of «; and «a- are related by
the lost 180° rotation about the three-fold
axis, whereas the lattice of o and o
remains common (Fig. 34) [28-30].
Inversion boundaries occur in many
non-centrosymmetric crystals and, for
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example, in the cubic y-phase alloy Fe-
Cu-Mo-Ti (Fig. 35) [31].

Domain textures can conveniently be
studied by a combination of diffraction
and imaging techniques exploiting differ-
ent diffraction contrast phenomena.

1.1.1.15 Diffraction Patterns of
Domain Textures

Domain textures produce a composite dif-
fraction pattern which is the superposition
of the diffraction patterns of the separate
domains. This usually affects the geometry
of the diffraction pattern by the occurrence
of split spots; in some cases only the
intensities are changed compared to those
of a monodomain pattern.

Where differently oriented domains
overlap when viewed along the zone axis,
double diffraction may occur. This may
sometimes complicate the interpretation
by simulating a diffraction pattern with
lower translation symmetry than that of

Figure 35, [nversion domains in
the x phase of Fe-Cr-Mo-Ti
revealed by domain contrast
[31].
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Figure 36. Diffraction
pattern of NiyMo exhibiting
weak double-diffraction
spots. (a) observed pattern;
(b) Schematic: small dots
represent double diffraction
spots; (c) one orientation
variant; (d) second
orientation variant.

the separate domains, as a result of the
double-diffraction spots (Fig. 36).

If several orientation variants are pre-
sent in the selected area the diffraction
pattern may become quite complicated
and difficult to ‘unscramble’. The interpre-
tation can be simplified by first making
monodomain diffraction patterns of the
domains on both sides of the interface
and subsequently from an area across the
interface separating the two domains.
However, this is only possible if the
domains are sufficiently large.

The diffraction patterns across twins
have characteristic features which allow
one to determine the twinning elements.
The reciprocal space of a reflection twin is
represented in Fig. 37a; it exhibits a central
row of unsplit nodes, perpendicular to the
mirror plane in real space. This is a general
feature of the relationship between direct
and reciprocal space. A common lattice
plane in real space (the coherent mirror
plane) is represented in reciprocal space as
a common lattice row perpendicular to the

B 10
~
200
malrix (c)
. .
gy
b 3jo
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b
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mirror plane. A common lattice row in
direct space, as is the case for the lattice
row along a 180° rotation twin axis, is
represented in reciprocal space as a com-
mon reciprocal lattice plane perpendicular
to the twinning axis. All other spots are
split (Fig. 37b) [32].

In the case of a reflection twin the
spot splitting is parallel to the unsplit
row and its magnitude is proportional to
the distance from the unsplit row. The
magnitude of the spot splitting is a direct
measure for the twinning vector. For a
180° rotation twin, the spots are all split
along a direction parallel to the unsplit
plane; the magnitude of splitting is pro-
portional to the distance from the unsplit
plane.

It is not always obvious how to distin-
guish between the two cases, since many
sections of reciprocal space will look very
similar. Tilting experiments exploring the
relevant parts of reciprocal space are
required in order to differentiate between
the two cases. An example of the type of
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ROTATION TWIN

Figure 37. Reciprocal lattice of (a) a reflection twin and (b) a 180° rotation twin [32]. USR, (unsplit row); USP

(unsplit plane).

experiment to be performed is shown in
Fig. 38 [33].

The presence of higher order symmetry
elements relating the structures in the dif-
ferent domains is reflected in the symmetry
of the diffraction pattern. Figure 39 shows,
for instance, the presence of three ortho-
rhombic orientation variants related by
120° rotations along the zone axis. Such
microstructures can usually be analyzed in

terms of reflection or 180° rotation twins,
by considering pairs of domains.

The distinction between a diffraction
pattern produced by a quasicrystal along
a noncrystallographic zone (e.g., a five-
fold or ten-fold symmetry axis) and a
diffraction pattern due to multiply-
twinned ‘classical’ crystals is not always
obvious, and has given rise to much
debate.

Figure 38. Tilting
experiment in MoTe,
allowing the presence of
180° rotation twins to be
shown {33]. 1 and 2 are the
tilt axis.
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Figure 39. Composite diffraction pattern of a foil
containing three orthorhombic orientation variants
of NizMo related by 120° rotations. (Courtesy of
G. Van Tendeloo.)

The presence of domains which are
built on a common lattice is not reflected
in the geometry of the diffraction pattern
since it causes neither spot splitting nor
additional spots compared with a mono-
domain pattern. The relative intensities of
the spots are affected, but this is not easily
detected in electron diffraction patterns.
Imaging techniques are of considerable
help in the study of such textures.

1.1.1.16 Imaging of Microtextures

Microtextures can be imaged ecither by
means of domain contrast, by interface
contrast, or by both.

Domain Contrast of Orientation Variants
Domain contrast usually finds its origin in

a small difference in the deviation para-
meters in adjacent domains leading to a

significant difference in brightness in either
the bright field image or the dark field
image, made in a split reflection. More
pronounced contrast arises if the dark
field image is made in one of the compo-
nents of a split reflection. However, this is
only possible if the spot splitting is large
enough.

The difference in brightness in the
bright field image can be understood with
reference to the asymmetric rocking curve
for I7. In the vicinity of s = 0 the s depen-
dence of It is quite steep and a small
difference in deviation parameter leads to
a pronounced difference in transmitted
intensity. Optimum domain contrast is
thus obtained if the average deviation
parameter is close to s = 0.

In the dark field image optimum con-
trast is achieved if a single spot can be
isolated. If this is not the case the symme-
try of the rocking curve for I shows that
now the optimum contrast is obtained for
an average s which is different from zero.

Domain contrast can also arise because
the moduli of the structural factors, and
hence the extinction distances, are
different in adjacent domains. This is,
for instance, the case for Dauphiné twins
in quartz [28-30]. The lattices of «; and
oy coincide, no spot splitting occurs
and the above-mentioned contrast phe-
nomena are Iinoperative. However, a
number of coinciding reflections have
structure amplitudes of different magni-
tudes. Dark field images made in such
reflections will give rise to domain con-
trast, often called structure factor contrast
(see Fig. 34).

It is clear that translation variants
cannot give rise to domain contrast since
the lattices, as well as the structures, are
strictly parallel in the two domains.



Interface Contrast

It is also possible to image the interfaces
rather than the domains. This is the only
possibility for translation interfaces. For
orientation variants domain contrast and
interface contrast are often produced
simultaneously.

The interfaces separating translation
variants such as out-of-phase boundaries,
crystallographic shear planes and stacking
faults are imaged as o-type fringes in
reflections for which g- R, # Integer.
This is also the case for interfaces separat-
ing structural variants built on a common
lattice, but having different structure
amplitudes. We have seen above that
domain contrast arises as a result of struc-
ture factor contrast when the moduli of the
structure factors are different. However, it
often happens that the structure factors
have the same modulus in the two
domains, but have a different phase. This
is the case for certain reflections in domain
fragmented a-quartz. A dark field image in
such a reflection will not exhibit domain
contrast but will reveal the interfaces as a-
type fringe patterns.

The phase angle, o, can be deduced as
follows. The structure factors for the struc-
tures in the two domains is written with
respect to a common origin. The two struc-
ture factors are then related as follows:

F\y = FY expliay) (158)

where « is the phase angle characterizing
the fringe pattern, F ,(,2) and F )(ql) are the
structure factors with indices H in the exit
and front part, respectively.

Inversion boundaries revealed by
means of interface contrast in the x
phase of the alloy Fe-Cr-Mo-Ti are visible
in Fig. 40 [31, 34-36].
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Figure 40. Inversion domains in the x phase of Fe-Cr-
Mo-Ti, as revealed by interface contrast [34].

A particular type of interface contrast
arises in dark field images made in double-
diffraction spots caused by overlapping
orientation domains. The projected inter-
facial region will now appear bright since
double diffraction is only produced in the
regions of overlap along the interfaces
(Fig. 41).

The contrast at discommensuration
walls is somewhat similar to that at anti-
phase boundaries. In the latter case dark
field imaging in superstructure spots is
used, whereas discommensuration walls
are best imaged in dark field images, select-
ing incommensurate diffraction spots due
to the modulation.

Inversion Boundaries

The first observations of inversion bound-
aries were made on the cubic noncentro-
symmetric x phase in the alloy system
Fe-Cr-Mo-Ti [34-36] (see Fig. 35). The
contrast at this type of boundary requires
some specific discussion. It has been found
experimentally that under the appropriate
diffraction conditions the domain struc-
ture can be revealed by domain contrast
as well as by interface contrast. Inversion
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Figure 41. Interfaces in NigMo revealed by
different imaging modes: (a) BF image; (b)
in double-diffraction spot; (c) DF image in
020 of one variant; (d) DF image in 020 of
second variant.

domains have a common lattice and hence
there is no splitting. The structures are
related by an inversion operation, that is
the reflections # in one domain and —H in
the other domain are always excited simul-
taneously and to the same extent. The
moduli of the structure factors of simulta-
neously excited reflections H and —H are
always the same according to Friedel’s law
Iy =1 y. The phases oy and a_py are
different for most reflections since the
structure is noncentrosymmetric. For a
noncentrosymmetric crystal the phases
associated with the Fourier coefficients of
the imaginary part of the lattice potential
need not be equal to those associated with
the Fourier coefficients of the real part.

Serneels et al. [34] have shown that
domain contrast arises as a result of the
violation of Friedel’s law in dark field
images in non-centrosymmetric crystals
under multiple beam conditions, along a
zone which does not produce centro-
symmetry in projection. This means that
the zone axis cannot be a symmetry axis of
even order. For example, in the x phase
domain contrast is produced when the
zone axis is along the three-fold rotation
axis.

Interface contrast arises as a result of
the difference in phase of the structure
factors associated with the different
domains. The interfaces are imaged as «
fringes, the lattices being parallel in the



domains. The difference in phase between
the Fourier coeflicients related to real and
imaginary parts of the lattice potential
leads to weak interface contrast, even
under two-beam conditions [34].

1.1.1.17 Dislocation Contrast
Intuitive Considerations

Dislocations are usually visible as dark
lines in two-beam diffraction contrast
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images, made with small values of the
deviation parameter. When applying the
weak beam method, that is for large values
of s, the dislocations appear as bright lines
on a darker background.

The two-beam image formation at
dislocations can easily be understood on
intuitive grounds [18-20]. The foil repre-
sented in Fig. 42 contains an edge disloca-
tion in E. The lattice planes used for
imaging are indicated schematically. Due
to the presence of the dislocation the
lattice planes in the vicinity of E are
slightly curved and inclined in opposite

0

Figure 42. Intuitive model
for the origin of contrast at
an edge dislocation E. The
thickness of the lines is a
measure of the intensity of
the electron beams. BF,
bright field; DF, dark field.
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senses to the left and right of E. As the
specimen is a thin foil, the Bragg condition
is relaxed; the reciprocal lattice nodes have
become ‘relrods’. We can therefore assume
that diffraction occurs, even though the
Bragg condition is only approximately
satisfied with s < 0 in the part of the foil
which is not affected by the presence of the
dislocations. On the left of the dislocation,
at E,, the rotation of the lattice planes is
then such that, locally, the Bragg condi-
tion is better satisfied, that is || is smaller,
and hence the diffracted beam will be more
intense than in the perfect parts of the foil.
On the right of the dislocation in E,, the
lattice rotation is in the opposite sense and
hence the diffracted beam locally will be
weaker than in the perfect part of the foil.
The relative intensities of the diffracted
beams are indicated schematically by
lines of different widths in Fig. 42. Since
no electrons are lost, the transmitted beam
will be depleted where the scattered beam
is enhanced.

Selecting the diffracted beam by means
of an aperture and magnifying the corre-
sponding diffraction spot will produce a
map of the intensity distribution in this
beam. This map will reveal a lack of
intensity (i.e., a dark line) to the right of
the dislocations in E, and an excess of
intensity over the background in E;. The
dislocation will thus be imaged as a
bright—dark line pair. This image is called
a dark field image.

When selecting the transmitted beam a
similar intensity map can be produced by
magnifying the intensity distribution in the
direct beam. Such an image is called a
bright field image; in this approximation
it is complementary to the dark field
image, bright and dark lines being inter-
changed. Bright and dark field images are,

in fact, only small portions of strongly
magnified diffraction spots, the intensity
distribution being the image.

The possibility of forming such images
is a consequence of the ‘local’ character of
electron diffraction. Electrons only sense a
narrow column of material because the
Bragg angles are small, electron diffraction
is strongly peaked forward, and the foil is
thin. The columns form, in a sense, the
‘pixels’ of the image. The assumption that
electrons travel in narrow columns is the
basis of the ‘column approximation” intro-
duced above.

The same type of reasoning can be used
to demonstrate that screw dislocations
produce a line image. As a consequence
of the presence of the screw dislocation,
the families of lattice planes intersecting
the dislocation line are transformed into
helical surfaces. To the left and right of the
dislocation the lattice planes are slightly
inclined in opposite senses, and hence the
local diffraction conditions are different to
the left and the right. Again a bright—dark
line is produced (Fig. 43).

In both cases, the dark line image is not
produced at the dislocation core, but in a
slightly displaced position called the image
side. Changing the diffraction conditions
so as to make s > 0 in the foil part which is
far away from the dislocations, changes the
image side, as can be demonstrated by the
same reasoning used above. Also, changing
g to —g changes the image side, since now
reflection takes place from the other side
of the lattice planes. Finally, changing the
sign of the Burgers vector changes the sense
of inclination of the lattice planes on a
given side of the dislocation, and hence
also changes the image side. Summarizing,
we can say that the image side depends on
the sign of p = (g - b)s.
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This rule becomes undetermined if
g+-b=0. The relation g-b =0 is, in fact,
the criterion for the absence of contrast. It
expresses the fact that no image is pro-
duced when diffraction occurs by the lat-
tice planes which are left undeformed by
the presence of the dislocation. To a first
approximation, all displacements around a
dislocation are parallel to the Burgers
vector and are thus parallel to the lattice
planes for which g-b = 0. This extinction
criterion is strictly valid for screw disloca-
tions in an elastically isotropic medium,
for which all displacements are parallel to
b, but it is only a first approximation for
edge dislocations. Deviations occur even
for screws in strongly anisotropic media,
the reason being that the actual extinction
criterion is g+R =0. The displacement
field of an edge dislocation contains a
component perpendicular to the glide
plane, which causes some residual contrast
even if g+ b = 0, as we shall discuss below.

Some contrast may also result, even
though g-b =0, from the fact that the
specimen is a thin foil. The presence of
dislocations in a thin foil modifies the
displacement field as a result of surface
relaxation effects and this may produce
contrast. For instance, a pure screw dis-
location parallel to the incident beam and
perpendicular to the foil surfaces is not
expected to produce any contrast since

B C
A \ \ \ \ \ 5
B' c
Figure 43. Geometry of
lattice planes in the vicinity
A of a screw dislocation,

D' leading to image contrast.

g-b =0 for all active g vectors. However,
such dislocations produce a dark—bright
dot contrast which was attributed to the
lattice twist. It was shown by Eshelby and
Stroh [35] that, close to the emergence
point of a screw dislocation in the foil
surfaces, significant elastic relaxation
takes place which transforms the lattice
planes parallel to the dislocation line into
helical surfaces, the sense of the helical
twist being determined by the sign of the
screw dislocation. This helical twist pro-
duces a bright—dark dot pair because on
one side of the emergence point the lattice
planes are tilted inro the Bragg condition
and on the other side they are tilted out of
the Bragg condition. The line joining the
bright—dark dot pair is perpendicular to g
(Fig. 44a). Depending on the sense of the
helical twist (i.e., on the sign of the screw
dislocation), the dot pair is bright—dark or
dark—bright. The sign of the screw dislo-
cation can thus be determined from such
images. Images of this type observed in a
platinum foil are shown in Fig. 44b.

An edge dislocation parallel to the foil
surfaces and with its glide plane also par-
allel to the foil causes a slight misorienta-
tion of the two crystal parts separated by
the dislocation. The tilt angle, 6, depends
on the foil thickness and on the position of
the dislocation within the foil, being a
maximum, 6., = b/t, where ¢ is the foil
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Figure 44. (a) Schematic
illustration of the surface
relaxation around the
emergence points of screw
dislocations in the foil
surfaces. This surface
relaxation produces image
contrast for g- b = 0. (b)
Screw dislocations viewed
end-on in platinum [59].

thickness, if the dislocation is in the central
plane. As a result of this slight ‘buckling’
of the foil, a brightness difference is
produced between the two crystal parts,
separated by the dislocation. The tilt angle,
6, can be measured by the displacement of
the Kikuchi lines; its sense depends on the
sign of the dislocation, and therefore a
knowledge of & allows the sign of the

dislocation to be determined (Fig. 45)
[18-20].

An edge dislocation viewed end-on
along the beam direction produces con-
trast because in the vicinity of the disloca-
tion the interplanar spacing is slightly
modified, g changes in length and in orien-
tation and, consequently, the diffraction
conditions also change. Along a column
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Figure 45. Buckling of a thin foil due to the
presence of an edge dislocation parallel to
the foil surfaces. The positions of the
Kikuchi lines in areas I and II are shown
schematically.

top
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parallel to the dislocation (i.e., along z), s
remains constant, but s becomes a function
of x and y, chosen in the foil plane. As a
result, the scattered and transmitted inten-
sities depend on the column positions, that
is an image is produced. The contours of
equal s (i.e., of equal brightness) are shown
in Fig. 46; they image the strain field
around the edge dislocation [37, 38].
According to the simple g - b = O criter-
ion, an edge dislocation with its supple-
mentary half-plane parallel to the foil
plane or, stated otherwise, with its Burgers
vector, b, along the incident beam, would
not produce any contrast. Due to the
presence of the ‘bump’ in the glide plane
(i.e., the component of the displacement
field) towards the supplementary half-
plane, perpendicular to the glide plane,
g+ R is not zero for all g vectors perpendi-
cular to b and some contrast is produced.
Prismatic dislocation loops in planes par-
allel to the foil plane have this configura-
tion. The displacement field of such loops

(a)

{c)

Qo1 p
—_—

Figure 46. Contours of equal deviation parameter s in
the vicinity of an edge dislocation viewed end-on
[37, 38].
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Figure 47. Radial displacement field around prismatic
loops.

now contains a radial component R, which
is inward or outward for vacancy and
interstitial loops (Fig. 47), respectively, as
well as a normal component R, = b.

For a diffraction vector g parallel to the
foil plane the dot product with the normal
component g - R, = g - b will be zero every-
where along the loop. However, g R,
varies along the loop and vanishes only
along the two diametrically opposite seg-
ments where g is perpendicular to R,, as
represented in Fig. 47. As a result, there
will be two short segments only along
which complete extinction occurs; the
‘line of no contrast’ joining these two
segments is perpendicular to the active g
vector.

Somewhat against intuition, one finds
that parallel dislocation lines with the
same Burgers vector do not necessarily
exhibit the same contrast, especially when
they are close one to the other, as in a
ribbon. One of the lines is usually imaged
as a darker line than the other(s); which
line will exhibit the strongest line contrast
depends on the sign of s and on the sense of
g. The effect is particularly striking in
triple ribbons in face-centered-cubic, low
stacking fault energy alloys, and in

graphite. An analytical theory, based on
the kinematical diffraction theory, allows
one to account satisfactorily for the
observations, on noting that the total
strain field of a triple ribbon is different
from that resulting from the mere super-
position of the strain fields of three iso-
lated dislocations [39].

Semi-Quantitative Considerations

It is often useful to be able to predict
semiquantitatively, or even only qualita-
tively, the two-beam image characteristics
to be expected for a given defect. For
dislocation lines this is possible within
the framework of the dynamical theory,
including anomalous absorption, by refer-
ring to the analytically soluble case of the
stacking fault,

Consider, for example, an inclined edge
dislocation with its Burgers vector parallel
to the foil plane and an active reflection
such that g-b=1. A sketch of the dis-
placement field of the dislocation is repre-
sented schematically in Fig. 48. The bright
field and dark field image profiles can be
obtained by considering a row of columns
along a line perpendicular to the disloca-
tion line, and computing for each of these
columns the amplitude of the transmitted
and scattered beams.

We first note that these amplitudes are,
to a large extent, determined by the phase
relation between the top and bottom ends
of the columns and not so much by the
details of the variation of this phase along
the column. In any case, the phase varies
rapidly only in the close vicinity of the
dislocation core. We therefore accept as a
reasonable approximation that the ampli-
tudes emerging from such a column will be
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the same as those emerging from a column
which intersects a stacking fault at the level
of the dislocation core and which intro-
duces abruptly the same shift between the
top and the bottom as the dislocation.
Consider as a simple example the columns
passing through the dislocation core for
the case n=g-b=1. The phase shift
between the top and the bottom of these
columns is then m, as is immediately evi-
dent from the geometry shown in Fig. 48a.
The inclined dislocation will then exhibit
along its core the same contrast variation
with depth as an inclined stacking fault
with o = n, situated everywhere at the
same level as the dislocation core. If for
the same dislocation n=g-b =2, the
brightness along the core will be the same
as that of a perfect crystal with the same
thickness, since now « = 2n along the
central strip (Fig. 48b).
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@ Figure 48. Schematic
’ illustration of the

displacement field around
an edge dislocation for the
casesn=1(a)and n =2
(b), illustrating how the
qualitative features of the
image can be deduced from

n=2 ' the profiles of stacking fault
o=2r =

O<o<m fringes. DF, dark field.

{b)

The image of an inclined dislocationis a
two-dimensional brightness map and
requires a knowledge of a large number
of section profiles or, alternatively, of a
number of longitudinal profiles, parallel to
the dislocation. Profiles of the latter type
can be obtained by considering strips of
stacking fault, all parallel to the disloca-
tion core and at the same level, but at
increasing distances from this core. For
n=1 the central strip corresponds, as
mentioned above, to « =n. The corre-
sponding « values for successive strips on
moving to the right away from the disloca-
tion vary from o = 7 to 2w far to the right.
As a result, on the right of the dislocation,
sina < 0. On the left of the dislocation the
o values vary from 0 at the extreme left to
o = 7 at the dislocation position; on the
left of the dislocation sin & > 0. The image
profiles of stacking faults (for s = 0) show
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that the contrast will oscillate. Along the
strips where sina > 0 (i.e., on the left of
the dislocation) the first extremum behind
the entrance face will be a maximum in the
bright field image, whereas on the left of
the dislocation, where sin« < 0, the first
extremum will be a maximum. Near the
exit face the last fringe in the bright field
image will be the same as the first, on
the left as well as on the right, of the
dislocation. The dislocation contrast thus
oscillates as a function of depth, since the
maxima and minima in brightness on
the two sides of the dislocation (i.e., for
sina > 0 and sina < 0) are in antiphase.
The oscillations will be most pronounced
for foil thicknesses equal to (2k + 1)z, or
(2k +3)1, as for these thicknesses the
stacking fault fringes in the bright field
image vary strongly in brightness (see
Fig. 30). In the dark field image the bright-
ness variation is less pronounced for the
same thickness; on the other hand, the
variation is now more pronounced for
foil thicknesses of 2kt, and (2k + 1)1,. At
the same time, the difference between the
brightness for sina > 0 and sina < 0 is
more pronounced in the bright field for
thicknesses of (2k + 1)1, and (2k +3)1,
than for thicknesses of 2kt, or (2k + 1)¢,.
In the former case the contrast is ‘oscillat-
ing’, whereas in the latter case it is ‘dotted’;
the inverse is true for the dark field image.
The stacking fault fringe profiles suggest in
the same manner that the bright field
image will be similar to the dark field
image close to the front surface, but quasi-
complementary close to the exit surface.
As a second example, we consider the
image associated with the displacement
field around a spherical inclusion with
e > 0, as described by Eq. (46) [40-42].
Also in this case we can deduce from

—-————
: E { E
R []
sina>0 1 sina<0
L]
I —_—
gR>0 ' _gR<0
<—__

Figure 49. Strain field associated with a spherical
inclusion. D, dark; B, Bright.

intuitive considerations the areas in
which sina >0 and those in which
sin o < 0, and hence conclude for a defect
close to the surface (within the first extinc-
tion distance) which area will be bright
and which will be dark. We consider, in
particular, the spherically symmetrical
displacement or strain field represented in
Fig. 49. A line (or plane) of no contrast,
along which g.-R =0 separates two
regions, one in which g-R > 0 and one
in which g- R < 0. Since |R| is small com-
pared to a lattice vector, if g- R > 0 then
sina > 0 and if g- R < 0 then sina < 0.
That this is so can be deduced from the
consideration that, if g - R is positive for all
z values along the column, the integrated
phase difference between top and bottom
of the column is positive but smaller than
n and hence sina > 0, the fastest phase
change occurring at the level of the
inclusion. The brightness at the exit end
of the column is then the same as that of a
stacking fault, assuming the effective phase
shift, a.gr, to occur at the level of the defect.



The value of a4 decreases with increasing
distance from the inclusion and changes
sign along the line of no contrast. The
image characteristics of stacking faults in
sufficiently thick foils, close to the surface,
allows us to deduce the dark field image
of this kind of defect when close to the
back surface. The last fringe in the dark
field image of a stacking fault for which
sina > 0 is dark. We can thus conclude
that g points towards the dark lobe for an
inclusion with ¢ > 0 situated close to the
back surface. Black and dark are reversed
for ¢ < 0. The model also accounts for the
periodic interchange with period 7, of
bright and dark lobes with the depth
position of the spherical inclusion.

Kinematical Theory of Dislocation Contrast

Within the framework of the kinematical
diffraction theory, image profiles of dis-
locations are obtained by inserting the
adequate expression for the displacement
field R(r) in Eq. (50) and integrating along
columns situated on lines normal to the
dislocation line. Due to the symmetry of
the displacement field of a dislocation, the
profile so obtained is independent of the
chosen line of columns for dislocations
parallel to the surfaces of the foil.

For example, for a screw dislocation
oriented along the y axis parallel to the
foil plane and situated at a depth, d, behind
the entrance face the displacement field is
described, according to the isotropic linear
elasticity theory by the expressions

R, =0 (159a)
bo
=== 159b
R) on ( )
R.=0 (159¢)
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with ¢ = arctg[(z — d)/x], that is all the
displacements are parallel to b. The image
profile is then obtained by performing the
integration

Ag) = FgL; exp(2mis,z)

x exp(in) arctg (Z%d> dz (160)

where n = g b for various values of the
parameter x, and zy is the foil thickness.
After a number of approximations, the
integrals can be obtained analytically in
terms of Bessel functions,

In their discussion of image profiles of
dislocations, Hirsch et al. [10,11] and
Gevers [12] made extensive use of ampli-
tude—phase (A-P) diagrams. We shall
follow the same type of reasoning, since
this allows us to identify more clearly the
approximations and limitations of the
theory. The integration along a column is
represented graphically by the vector sum
of the elementary contributions due to the
slices dz along the column. In a perfect
crystal we have seen that the vectors
representing the amplitudes scattered by
successive slices enclose a constant angle
df = 2nsdz, as a result of the constant
phase difference between successive slices
dz. These small vectors form a regular
polygon, which in the limit for dz — 0
becomes an arc of a circle with radius #
The length of the circular arc is equal to
the column length, and the amplitude scat-
tered by the column is given by the length
of the vector joining the two end-points of
the circular arc.

When a stacking fault is present, a
discontinuous phase change o =2ng-R
occurs in each column at the level of the
stacking fault. This is reflected in the A-P
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Figure 50. Amplitude—phase diagram for a column
intersecting a stacking fault. The thickness of the two
crystal parts are ) = z; and 1, = z, [13, 14].

diagram by a relative rotation over an
angle « of the two circles representing the
A-P diagrams of the perfect parts, the
tangents enclosing an angle « (Fig. 50).
The amplitude diffracted by the faulted
crystal is then given by the vector joining
the end-points P, and P,. If we choose the
origin of the diagram at the position of the
stacking fault, the two circular arcs have
lengths equal to the front (z,) and rear part
(z,) of the foil: z; + z, = z,, where z; is the
foil thickness. For an inclined stacking
fault the end-points P, and P, correspond-
ing to successive columns along a profile
shift continuously over the same arc length
in the same sense. The resulting amplitude
thus varies periodically with a depth per-
iod 1/s, describing the stacking fault
fringes, and is represented analytically by
Eq. (52).

The A-P diagram for a column inter-
secting a domain boundary also consists of
two circular arcs with lengths equal to the
thicknesses of front and rear parts; they
join smoothly with a common tangent at
the level of the boundary, but they have
different radii, 2—7%7 and 2;—52, since the s
values are different in the two perfect
parts. In addition, in this case an inclined
domain boundary will produce a fringe

pattern with a depth quasiperiod, which
is somewhat variable over the width of the
fringe pattern between 1/s, and 1/s,. The
A-P diagram is the geometrical represen-
tation of the analytical expression Eq. (53).

In the AP diagram for a foil contain-
ing a dislocation the phase difference
between successive slices of the column at
levels z and z + dz is no longer a constant
d¢ = 2nsdz, since a supplementary phase
difference results from the displacements
described by a(x,y,z). Depending on the
signs of x, s, and z, this additional phase
shift will either be added or subtracted; its
magnitude depends on x and z and is given
in the simple case of the screw dislocation
by n-dlarctg(z/x)]. For z > x, this addi-
tional shift becomes zero and the final
shape becomes again a circle with radius
2#“ as for the perfect crystal. Close to the
dislocation and for s and nx having the
same sign, that is for nB3 >0 (with
B = 2msx), the quantity narctg(z/x) has
the same sign as 2msz and the angle
between two successive vectors is now
larger than 2nsdz, at least near the depth
position of the dislocation, which is chosen
as the origin of the diagram (i.e., of the z
axis). As z becomes larger the angle again
approaches 2ns dz. The resulting curve will
be a wound-up spiral which gradually
tends to a circle, approaching it from the
interior, the circle being the limiting curve
(Fig. 51b). If, on the other hand, s and nx
have opposite signs (i.e., for n83 < 0),
arctg(z/x) and 2msz have opposite signs
and the resulting angle between successive
vectors will be smaller than the value
2nsdz in the perfect crystal by

n-dlarctg(z/x)] = n[x/(x* + )] dz.

Again, as z becomes large, the additional
phase difference tends to zero and the



(a)

curve approaches a circle with radius %ns.
The A-P diagram is now an unwound
spiral approaching the limiting circles
from the outside, as shown in Fig. 5la.
The scattered amplitude is again obtained
by taking an arc proportional to z; on this
curve, in the negative sense leading to P,
and an arc proportional to z; in thmsi-
tive sense leading to P,. The vector P, P is
then proportional to the scattered ampli-
tude for the given column, that is for a
given x value. Since x has different signs on
the two sides of the dislocation, the A-P
diagram will be an unwound spiral on one
side and a wound-up spiral on the other.
The vector representing the diffracted
amplitude will clearly be larger for those
columns for which the distance between
the centers of the two limiting circles will
be the largest, that is the amplitude will be
largest on that side of the dislocation
where the A-P diagram is an unwound
spiral. This is the side where in the bright
field image a dark line will be observed,
called the image side (see Sec. 1.1.18.2 of
this Chapter). We note that the A-P dia-
gram depends only on # = g - b and on the
product 3 = 2msx, but not on s and x
separately. This is consistent with the fact
that changing the sign of s changes the
image side. In principle, constructing a
sufficient number of A—P diagrams allows
one to deduce the image profiles. It is clear
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Figure 51. Amplitude—phase
diagram for a column
passing close to a
dislocation core (n = 2)
[13,14]: (a) unwound spiral;
(b) (b) wound-up spiral.

that for an inclined dislocation line the
length of the arcs to be taken along the
spiral-shaped A-P diagrams will vary
continuously with the position along the
dislocation, one increasing, the other one
decreasing. Hereby the end-points of the
A-P diagram, which determine the
scattered amplitude, will in general vary
periodically as the end-points describe the
limiting circles. This oscillatory behavior
was suppressed in the approximation
introduced by Hirsch et al. [11]. The
assumption was made that the square of
the separation of the centers of the limiting
circles is a convenient measure of the
scattered intensity. This is a reasonable
assumption if s is sufficiently large so that
the limiting circles acquire a small radius
compared to the separation of their cen-
ters. For screw dislocations Hirsch et al.
[11] obtained the computed profiles shown
in Fig. 24 for different values of ». Similar
calculations, using the same approxima-
tions, have been performed by Gevers [12]
for perfect as well as partial dislocations of
edge and mixed character. The results for
pure edge dislocations are shown in Fig,. 25.

The Weak-Beam Method

The limitations of kinematical theory
apply to the results of the preceding
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chapter and we therefore conclude that the
computed image profiles are only valid for
very thin foils and for large s values.

From the image profiles shown in
Figs. 24 and 25, we can deduce that when
s is large the same J(= 2msx) value is
reached for small x. This implies that for
large s values the peak shift and the
peak width will be small. This effect,
which is consistent with the observations,
is systematically exploited in the weak-
beam method [43]. It allows one to obtain
very well localized and sharp images of
the partial dislocations in narrow ribbons,
as required for the measurement of stack-
ing fault energies. Unfortunately, with
increasing s value the image contrast
decreases and long exposure times are
needed to record the image. In practice,
a reasonable trade-off between image
resolution and exposure time seems to be
achieved for s values of the order of
0.2nm™"' for 100kV electrons.

Usually a high order reflection of 3g or
4g is brought in the exact Bragg position
and a dark field image is made in the
reflection g. Alternatively, a low order
reflection, g or 2g, may be excited and —g
be used for imaging. These imaging con-
ditions are represented in Fig. 52. In order
to realize these diffraction conditions

(a)

exactly, the Kikuchi pattern is of great
help; moreover, it allows the measurement
of s. In weak-beam images the depth
period of extinction contours and of
stacking fault fringes is given approxi-
mately by its kinematical value 1/s,.
Using such large s values it is possible to
image, for instance, antiphase boundaries
in alloys as fringe patterns, even though
the extinction distance of the superlattice
reflection used is larger than the foil
thickness.

The kinematical theory allows us to
derive approximate expressions for the
peak width and peak positions of weak-
beam dislocation images [43—45]. The
columns close to the dislocation core can
be considered as consisting of three parts
(Fig. 53). The central part contains the
dislocation, and the two other parts are
perfect. In the central part the lattice
planes of interest are inclined with respect
to their orientation in the perfect parts, in
such a way that somewhere close to the
dislocation core the local deviation para-
meter is much smaller than in the perfect
part. The scattered intensity will then
mainly originate from this region, produ-
cing a bright peak on a darker background
in the dark field, weak-beam image. The
amplitude scattered by a column at x is

- K _ =
ko % , ko ks
’ ’
SN _ /1’/ N _ //’
;\\‘\ ] ‘22’,’ . \\\\ ?? 2"9 3’9///

Figure 52. Imaging conditions used in the weak-beam method: (a} s = 0 for 2g, image is made in —g; (b) s =0

for 3g, image is made in g [44].
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Figure 53. Foil containing an edge dislocation. Model used in discussing dislocation contrast according to the
weak-beam method. The foil is assumed to consist of three lamellae: 1 [0<z<(z; —a)] and 3
[(z 4+ a) < = < 70] are perfect; part 2 [(z; — a) < z < (z; + a)] contains the dislocation [45].

given by
A x J-U exp [2ni[s,z + g R(x,z)]dz  (161)
0

This integral can be split in three parts
corresponding to the three lamellae in the
model shown in Fig. 53:

o —a
A x J exp(2mis,z) dz
0

o+ a
+ J exp[2mi(s,z + g+ R)]dz

oy —da

<o
+ J exp(2mis,z) dz (162)

I1+a
The first and third integral refer to the
perfect parts; they do not depend on the
presence of the defect. Since s is large in
these parts their contribution is small.
Their A-P diagrams consist of small
circles with a radius ms. These two circles
are connected by a circular arc with a
much larger radius, 1/se, which is the
A-P diagram of the central part. The
amplitude scattered by the column is then
given, to a good approximation, by the
length of the segment joining the centers of
the two small circles. This length is well
approximated by the second integral,
which we now consider (Fig. 54).

We can write the displacement function
R(x,z) as a Taylor expansion in the
vicinity of the core position z = z;:

R=R(z)) + (2—"1)(80_5>:l

R
+l(z—z,)2< > 4+
2 Oz .

Retaining only the first two terms, the
second integral can be written as

. OR
exp {21t1 [R(zl) -z (E) } -g}
+a
X J exp{2ni[sg+g- %}z} dz

(163)

(164)
radius 1/Seft.
1/sg 1sq
Mz
o}

Figure 54. Amplitude—-phase diagram for a column
close to the dislocation core according to the weak-
beam method [43].
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This expression will be a maximum if the
modulus of the integrandum is unity, that
is for the value of x given by
sg+((;—l;-g:0 (165)
This condition is equivalent to the state-
ment s = 0 [see Eq. (61)].

Introducing the displacement field for
edge and screw dislocations, adopting the
FS/RH convention (see Sec. 1.1.18.2 of
this Chapter) leads to the peak position
X = Xx,, with

we (o) () 000

The parameter is K = 1 for an edge dis-
location and K = 0 for a screw dislocation;
v is Poisson’s ratio. In this approximation
the peak position does not depend on the
foil thickness or on the depth position of
the dislocation. The image side, that is the
sign of x,,, is clearly determined by the sign
of the product (g - b)s,.

Using the same model, the peak width
at half maximum can be deduced from the
kinematical approximation. For g-b =2
one finds

0.28
el + K/2(1 —v)]

With v =1 and |s,| = 0.2nm™", one finds
that Ax ~ 2.5nm for an edge dislocation.

With increasing value of g - b the image
peak moves away from the core position.
The larger the value of g b the larger the
values of s, needed in order to achieve the
same precision in the image position. In
practice, this limits the values of g-b to
<2

An example of a weak-beam image in
the layered crystal RuSe, is reproduced in
Fig. 55.

(167)

all oo

i S

Figure 55. Weak-beam image of four-fold dislocation
ribbons in RuSe,. (Courtesy of J. Van Landuyt.)

The dynamical theory, neglecting anom-
alous absorption for simplicity, leads to
essentially the same qualitative results. In
terms of this theory the scattered beam, in
the first part along a column close to the
dislocation on the image side, oscillates
with a small amplitude and with a depth
period given to a good approximation by
the kinematical value 1/s (Fig. 56). In the
second part of this column, where sq =~ 0,
the Pendellésung oscillations acquire a
large amplitude and a depth period
approximated by 7,. As this second part is
thin, only a fraction of an oscillation can
develop, and in part three the amplitude of
the oscillation and its depth period again
become the same as in part one. However,
the average intensity level has now become
larger in part three, in particular for the
column along which s, becomes zero at the
level of the dislocation core. Hence the
observed intensity at the exit face of that
column will be larger than that for columns
which are farther away from the disloca-
tion, and will thus show up as a bright line.
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1.1.1.18 Dislocation Contrast:
Dynamical Theory

Image Simulation

One-dimensional profiles and two-dimen-
sional maps which describe quantitatively
the experimentally observed images are
only obtained by applying the dynamical
theory including anomalous absorption.
Equations (116) or Egs. (114) have to be
integrated, with « being, in general, a
function of x and z. For a screw disloca-
tion located a distance d behind the
entrance face this function becomes, for
example,

a = narctg[(z — d)/x] (168)

with n =g b; n is an integer for perfect
dislocations, but it may be a fraction for
partial dislocations. If d is considered to
be a constant, a profile along x is sufficient
to describe the image. For inclined dis-
locations d becomes an additional para-
meter and a two-dimensional map is
desirable for comparison with experi-
mental images.

Analytical solutions are difficult, if not
impossible, to obtain in most cases.
Numerically computed image profiles are
available for a number of representative
dislocation  configurations and are

i

¢) Tilt to s=0 at BC
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Figure 56. Weak-beam image
formation at a dislocation
according to the dynamical theory
[43]. & = 1,: T, transmitted beam
amplitude; R, scattered beam
amplitude. (a) s = 0; (b) s < 0; (c)
tilt to s = 0 at BC.

O w

reviewed below. A semiquantitative analy-
tical discussion of the most striking image
properties is possible [15, 45].

In principle, the computation proce-
dure for profiles is a multislice method. It
consists in considering a row of columns
situated along the x axis. The integration
is performed along a column (i.e., for a
fixed x value) by further dividing this
column in thin slices dz, each slice being
considered as perfect with an s value
[Setr = s, + (g-dR/dz), ] which depends
on z. The amplitudes of the scattered and
transmitted beams can be obtained by the
multiplication of a succession of response
matrices of the type M(dz,s.r) (see Sec.
1.1.10 of this Chapter). This procedure is
the implementation of the ‘column
approximation’.

The linear character of the Howie-
Whelan system of equations [Egs. (67)
and (69)] and the fact that the displace-
ment field of a dislocation is invariant for a
translation along lines parallel to the
dislocation line have been exploited by
Head [47] and Humble [48] to speed up
the computation procedures in order to
make it possible to generate rapidly two-
dimensional maps which can be compared
directly with observed images (Fig. 57).

The different computer programs and
subroutines required to generate two-
dimensional intensity maps representing
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Figure 57. Examples of the quantitative
agreement that can be achieved between

observed and computed dislocation M
images: (a) observed images for different \ »

diffraction vectors; (b) corresponding
computer-generated images [48].

bright and dark field images for a wide
variety of single and complex defects are
described in full detail by Head et al. [48].
The displacement fields of the defects are
computed numerically using anisotropic
linear elasticity theory. Subroutines allow
one to determine the geometry of the foil,
the diffraction conditions, etc., using the
Kikuchi line pattern as input data. The
defect identification procedure is essen-
tially a trial-and-error method based on
the inspired guess of a model based on
symmetry considerations and on qualita-
tive geometrical characteristics of the type
described in previous sections in this
Chapter. The model is then tested and,
where necessary, further refined by quan-
titative comparison of the observed and
computer-generated images in which a
small number of parameters is varied. As
the computing time is short, a comparison
exercise does not require an excessive
computer effort. Complete listings of the
software statements are provided by Head
et al. [48].

Remarkable agreement between com-
puted and observed images can be
achieved, even for complex defect con-
figurations such as the one illustrated in
Fig. 57. One of the important conclusions
that has emerged from such simulations is
that the extinction criterion for disloca-
tions g - b = 0 is only a first approximation
and can lead to incorrect conclusions,
especially in strongly anisotropic materials
where the displacements around a disloca-
tion are, in general, not parallel to b, as
implied in the analytical expressions based
on isotropic linear elasticity.

Survey of Results of the Two-Beam
Dynamical Theory [12, 13, 3§]

Images of Screw Dislocations

The images for n = 1 and s = 0 for a screw
dislocation parallel to the foil surfaces and
located in the central plane of the foil,
exhibit a single dark peak very close to
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Figure 58. Image for screw
dislocations in the central
plane of the foil with
thickness 8t,: (a)n =1,
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the position of the dislocation core, in both
the bright field image and the dark field
image (Fig. 58a). This is clearly in con-
tradiction with the results of kinematical
theory which predict complementary
images; it is a result of anomalous absorp-
tion in thick crystals (57, to 10z,). The peak
width is of the order of 0.3¢, to 0.4,.

For screw dislocations close to the
surface (Fig. 59) the image becomes clearly
one-sided, the image side changing peri-
odically with depth in the crystal.

For s# 0 and sufficiently large, the
dark line is displaced away from the core
position in the sense predicted by the
intuitive reasoning given in Sec. 1.1.1.17
of this Chapter for the bright field image.
The sense of the image shift does not
depend on the depth position of the dis-
location, but changes with the sign of 5. As
a result, the image will shift continuously
sideways on crossing an inclination extinc-
tion contour in the manner represented in
Fig. 60.

For s = 0 as well as for small values of s,
the image shift does depend on the depth
positions z,. Close to the surfaces the sense
of the image shift alternates with a depth

s=0;(b) s =0.3.( )
Bright field image; (— - - —),
b} dark field image [13, 14].

period 1, but in the central part of a thick
foil the image shift is small. Inclined dis-
locations in thick foils will thus exhibit
oscillating or alternating contrast close to
the foil surfaces, but not in the central part
(Fig. 61). The oscillations will be in ‘phase’

{a)

il I 4
-06 -04 -02 0

(b)

L
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02 04 06

-06 -04 -02 O

Figure 59. Bright field images for screw dislocations
in foil with thickness 81, at a distance 4 from entrance
face (n=1; zo = 81,; s = 0) [13, 14]. (a) 1, d = 41,;
2, d=4251,; 3, d=4501,. (b) 1, d=725t;
2,d =750ty 3, d =7.751,.
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Figure 60. Image behavior on crossing an inclination
extinction contour [13, 14]: (a) n = 1; (b) n = 2.

close to the entrance face in bright and
dark field, but in ‘antiphase’ close to the
exit face. The effect is a consequence of
anomalous absorption and it applies to all
defect images. In thick foils the bright and

h

Figure 61. Dislocations in SnS; exhibiting oscillating
contrast on approaching the surface: (a) bright field
image; (b) dark field image. (Courtesy of P. Delavig-
nette.)

dark field images of defects are similar
when situated close to the entrance face,
but quasi-complementary close to the exit
face. This has, in fact, already been
pointed out for planar interfaces.

This oscillating contrast can be
exploited to provide a depth scale, since
for s = 0 the oscillation period is exactly ¢,.
In particular, it allows a determination of
the foil thickness in units of #,, and it
makes it possible to determine which end
of the dislocation image corresponds to the
vicinity of which foil surface (front or
rear).

The occurrence of ‘dotted’ images at
inclined dislocations can be understood
intuitively, as pointed out above (see Sec.
1.1.1.17 of this Chapter) by noting that top
and bottom parts of a column passing
through the dislocation core are related
by a phase jump of 7 which occurs at the
level of the core. Along such columns the
intensity profile for n = 1 will be the same
as that for a stacking fault with o =m.
Whether predominantly ‘dotted’ or ‘alter-
nating’ contrast occurs depends on the
thickness of the foil, as does the contrast
for a fault with o = 7. This is illustrated in
Fig. 62 which shows computed bright and
dark field profiles for a screw dislocation
with n = 1 and s = 0 in foils with a thick-
ness of 37, and 3.5t,, respectively. In the
foil with a thickness of 3¢, the bright field
image is dotted and the dark field image is
alternating, whereas for a foil with a thick-
ness of 3.51, the reverse is true.

When n=2 and s=0, the image
exhibits two dark peaks, one on each side
of the dislocation core. The two peaks are
different in strength, their relative strength
alternates with a period ¢, with the depth
in the foil. These features are illustrated in
Fig. 63a; they again lead to ‘oscillating’
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Figure 62. Image profiles of a screw dislocation
(s = 0, n = 1) at different depths below the entrance
face of the foil in two foils of different total thickness:
(a) 31,; (b) 3.5¢,. The traces on the left-hand side are
bright field images and those on the right are dark
field images [13, 14].

contrast at inclined dislocations for s =~ 0.
If 5 # 0 the two peaks become strongly
asymmetrical, as shown in Fig. 63b, the
sense of the asymmetry depending on
the sign of s. Except for s =0, usually
only one dark peak is observed as a con-
sequence of the asymmetry. On intersect-
ing an equi-inclination contour with s =0
the dislocation image will therefore behave
as represented in Fig. 60. It is thus poss-
ible to deduce the value of » from the
behavior of the image on intersecting an
inclination contour. The value of n gives
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Figure 63. Image profile of a screw dislocation; foil

thickness 8z, [13, 14]. (a) s =0, n = 2; curves 1-3

correspond to depths of 4t,, 4.25¢, and 4.5t, behind

the entrance face, respectively. (b) s#0, n=2
(sty = 0.3). (—) bright field; (- — — ~) dark field.

the projection of b on the active diffraction
vector g, and hence allows one to deter-
mine the length of & once its direction is
known. For columns passing through the
dislocation core the phase shift at the level
of the core when n = 2 is now 2x, that is
such columns will exhibit the same inten-
sities as the perfect crystal.

Images of Edge and Mixed Dislocations

The displacement field of a mixed dis-
location with a direction defined by its
unit vector u, parallel to the foil plane
(Fig. 64) is given, according to isotropic
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Figure 64. Reference system used to describe the
displacement field due to mixed dislocations.

linear elasticity theory, by the expression

1 b, .
R=—{dbo+—" sin(2y
Zn{b 4(1—1/)Sl (2¢)

+{21;2L +M](b><u)}

) In|r] 41 - v)

(169)

where v is Poisson’s ratio (v =1) and b is
the Burgers vector, of which b is the edge
component; ¢ = o — v; r = (x° + 22)1/2.

For a pure screw b x u = 0 and b, = 0,
and the expression reduces to R =
(b/2m)p. The term in b x u describes a
displacement perpendicular to the slip
plane towards the supplementary half-
plane. The slip plane is determined by b
and u; it forms an angle ~ with the foil
plane. The character of the dislocation
can be quantified by the parameter
p=1(g-b.)/(g-b), which is 0 for a pure
screw and 1 for a pure edge.

Computed images (Fig. 65) for a mixed
dislocation with its slip plane parallel to
the foil plane (y =0), for the following
values of the parameters n=1, s=0,
t =8t,, zy = 4t,, and for a number of
values for p, show that the image of a
pure edge (p = 1) is wider than that of a
pure screw (p = 0). The narrowest image
is obtained for p = —1 and the widest for
p =1, that is, for 45° mixed dislocations.
The full width varies between 0.3z, and
0.9¢,.

X/,

Figure 65. Computed images for mixed dislocations
with slip plane parallel to the foil plane (v = 0) and
for various values of the parameter p = (g- b.)/(g - b)
[13, 14].

Even for g-b =0 a pure edge disloca-
tion may produce contrast because of the
term & x u in the displacement function.
For a closed prismatic Frank loop parallel
to the foil plane and for the imaging g
vectors parallel to the loop plane g-b =0,
but nevertheless complete extinction only
occurs if moreover (b x u) - g = 0, which is
only the case if u is parallel to the g vector.
As a result, only those dislocation seg-
ments which are parallel to the acting g
vector will be out of contrast. The line
connecting these two segments, called the
line of no contrast, is perpendicular to the g
vector (Fig. 66). In a pure Frank loop (i.e.,
with its Burgers vector perpendicular to
the loop plane) a line of no contrast will
thus form for all g vectors parallel to the
loop plane.

If the Burgers vector b is inclined with
respect to the loop plane there will only be
one vector g (as well as —g) parallel to the
loop plane, for which a line of no contrast
occurs; this is the g vector perpendicular to
the projection of b on the loop plane. The
argument can be reversed; if among all g
vectors parallel to the loop plane only one



Figure 66. Images of prismatic dislocation loops with
their Burgers vector parallel to the incident beam in
zinc. Note the lines of no contrast perpendicular to
the g vector.

produces a line of no contrast, the loop
cannot be a pure Frank loop.

Changing the sign of x in Eq. (169) for
the displacement field changes the sign of
©, but since all terms in Eq. (169) are even
functions of either ¢ or x, we conclude that
the image profile must be symmetrical in x.
In the computed profiles shown in Fig. 67,
only the half corresponding to x >0 is
represented; they show that for certain
depth positions the image may exhibit
two broad dark lines, as for instance in
Fig. 66.

Images of Partial Dislocations

Since the Burgers vectors of partial dislo-
cations are not lattice vectors, the image
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Figure 67. Computed image profiles (B.F.) for edge
dislocations with their Burgers vector parallel to the
incident beam. Only half of the profile is shown; it is
symmetrical in x [13, 14].

order n = g - b may become fractional. For
instance, for Shockley partials in face-
centered-cubic crystals the Burgers vector
is ¢ [112] and the value of n becomes a
multiple of 1.

Partial dislocations form the border
of stacking faults. The image profile is
therefore complicated by the fact that it
separates two areas, one of which has the
brightness of a perfect region and the other
has the contrast of a faulted area at the
depth level of the partial dislocation; these
brightnesses are, in general, different.

Image profiles have been computed for
n==£1% +3 and £3 For n = £4 no visi-
ble line image is formed since the profile
constitutes a continuous transition
between the two brightness levels. How-
ever, for n = £2 the image consists of a
dark line with a small visibility. Images
with n = +% are expected to consist of a
dark line comparable to that of an ordin-
ary dislocation (Fig. 68). Partial disloca-
tions of the Frank type have pure edge
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Figure 68. Image profiles (B.F.) for partial disloca-
tions. The » values are indicated [13, 14].

character; their behavior was discussed in
Sec. 1.1.1.18 of this Chapter.

Images of Dislocation Ribbons

The images of ribbons of partial disloca-
tions [49] deserve some special considera-
tion. Since the ribbon width is a measure of’
the energy of the enclosed stacking fault,
the exact separation of the partial disloca-
tions needs to be known accurately in
order to make possible precise measure-
ments of the stacking fault energy.

The image of a ribbon is not the super-
position of the images of the separate
partial dislocations; it is caused by the
strain field of the ribbon, which is obtained
in the framework of linear elasticity as the
superposition of the strain fields of the two

xw

Figure 69. Reference system used in describing the
displacement field of a dislocation ribbon [39].

partial dislocations. For a screw ribbon
consisting of two Shockley partial disloca-
tions, enclosing an angle of 60°, and for an
active diffraction vector oriented along
the bisector of the acute angle between
Burgers vectors b; and b,, the ribbon
behaves to a good approximation, as far
as the contrast is concerned, as if it con-
sisted of two screws with n values
(n=b-g) which are either both +1 or
both —1. This is due to the fact that the
edge components are perpendicular to g
and, therefore, produce residual contrast
only.

For the geometry shown in Fig. 69 the
phase shift « caused by the ribbon can be
formulated as

a = noy + oy (170)
with
Z— 2y
= arct 171
o) = arc g(x—d) (171a)
arctg( = (171b)
Oy —
2 g xid
and
n=g-b and nm=g-b (171¢)

Such a ribbon will produce a symmetrical
image when n; = £1 and n, = F1, since
changing x into —x leads to changing «;
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into —c,, and vice versa, and thus «a(x)
into a(—x). Integrating along columns at
—x and at +x leads to the same result, and
the image is thus symmetrical.

If we change simultaneously n, = n, =
+1 into n; =n, = —1 and x into —x the
expression for o remains unchanged. We
conclude from this that the profile for
ny = n, = —1 is the mirror image of that
for ny =n, = +1. Tt is thus sufficient to
discuss one of these two cases. Bright and
dark field image profiles for screw ribbons
are reproduced in Fig. 70 for various sign
combinations of n =g-b =+1 and
n, =g-b, = +1. In all cases the foil had
a thickness of 81,; the ribbon was at a

arrows [39].

depth 3.5¢, behind the entrance foil and
sty = 0.2

When 7, and n, are opposite in sign, as
in Fig. 70a, the profiles are symmetrical;
only one-half is therefore shown; the com-
plete profile is obtained by a mirror opera-
tion. The positions of the dislocations are
indicated by arrows. The ribbon widths
are clearly different from the peak separa-
tions, due to the fact that the image
displacements are in the opposite sense
for the two dislocations as a result of the
sign difference of n. For the sign combina-
tion ny = +1 and n, = —1 the apparent
(observed) width of the ribbon is smaller
than the real width; the opposite is true for
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n; = —1 and n, = +1. This width differ-
ence is also found to increase with increas-
ing s,, since the image displacements
increase with s,. The effect of a decreasing
separation, 2d, on the contrast in the
central part of the ribbon is clearly visible;
the background intensity being represented
by a horizontal dotted line. The center of
the image corresponds to a column for
which the phase shift is given by

ag = (1 +ny)¢ — kn (172)

where ¢ = arctg[(z — z)/d]. The bright-
ness in the center is thus the same as for
a stacking fault at z = z;, with oy as a
phase shift.

If, on the other hand, #; and n, have the
same sign the image sides are the same for
the two partial dislocations and the peak
separation in the image is more represen-
tative of the real width of the ribbon
(Fig. 71b). However, the two partial dis-
locations are now imaged as lines of
different width and brightness for s # 0.
This can be understood by noting that the

displacements associated with the two
partial dislocations are additive outside
of the ribbon, but subtractive in the region
between the two partials (i.e., inside the
ribbon). The strongest line image is formed
outside the ribbon on the image side of the
first partial dislocation. For the second
partial dislocation the image side is the
same as for the first one, but this is now
inside the ribbon where the displacements
are subtractive and hence the peak is
smaller. Changing the sign of s changes
the image side for both partial disloca-
tions. The strongest image will again be
outside the ribbon but on the other side,
since this is now where the displacements
are again additive, albeit in the opposite
sense. The brightness in the central column
is now the same as the background, since
a(x = 0) = kn. Some of these features can
be observed in the computed profiles
shown in Fig. 71b.

The symmetrical triple ribbons in
graphite are formed by three partial dis-
locations with the same Burgers vector,

] z+1
ngs+l

BF. DF

2d-01251g
x =04

N T
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2d=0,25tg
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Figure 71. (a) Bright and (b) dark field image
profiles for dislocation ribbons. Foil thickness
1o X = 8ty; 29 = 3.5t m = ny = £1 [39].

o e
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x:0,8
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Figure 72. Image of triple ribbons in graphite under different diffraction conditions (i.e. for different s values):

(a) s > 0; (b) s < 0 [39].

separating two fault ribbons (Fig. 72). As
a result, the # values are always the same
and hence the image sides for the three
partial dislocations, which are determined
by the sign of ns, are also the same. If the
displacements are, for instance, additive
outside the three-fold ribbon and to the
left of it, they are partly additive inside the
left fault ribbon, partly subtractive inside
the right fault ribbon, and completely
subtractive (i.e., additive in the opposite
sense) outside the triple ribbon and on the
right of it. As a result the peaks marking
the three partial dislocations will decrease
in magnitude from left to right if the image
side is on the left. Changing the sign of s or
changing the image side for the three
partial dislocations will invert the sense
in which the magnitudes of the peaks
decrease. This feature can be observed in
the sequence of images shown in Fig. 72.

Dislocation Dipoles

Dislocation dipoles [48] consist of two
parallel dislocations with opposite Burgers
vector. If the dislocations are restrained
to remain in their respective glide planes
they take up a stable configuration which

minimizes the elastic energy. For two edge
dislocations the regions of expansion in
one dislocation tend to overlap the regions
of compression in the other one. The con-
figuration is such that the plane formed by
the two parallel dislocations encloses an
angle ¢ with their slip planes. In the case of
two pure edges ¢ = 45°.

As in the case of dislocation ribbons,
the image of a dipole is not the super-
position of the images of the two separate
dislocations. The superposition must be
carried out at the level of the strain fields
in the framework of the linear elasticity
theory. It has been shown by Head et al.
[48] that the bright field image of an
inclined dipole has a center of symmetry.
This symmetry property allows one to
distinguish between an image of a narrow
dipole and an image of a single dislocation.

The Image Side of Dislocations

From the dynamical image simulations
discussed in Sec. 1.1.1.18 of this Chapter,
we concluded that the black line image of a
dislocation in the bright field image is
systematically one-sided provided that s
is large enough. This is true for g-b =1
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Figure 73. Illustration of the FS/RH
convention for defining the sense of the
Burgers vector of a dislocation: (a) real
crystal; (b) perfect reference crystal; (c)
relative position of image and dislocation:;
(d) diffraction conditions.

as well as for g-b = 2. This behavior is
different for n=1and n=2 if s >0, as
discussed in Sec. 1.1.1.18 of this Chapter.

The image side (i.e., the position of the
black line in the bright field image on a
positive print with respect to the disloca-
tion position) is correctly given by the
intuitive kinematical considerations dis-
cussed in Sec. 1.1.1.17 of this Chapter.
According to this theory the image side is
on that side of the dislocation core where
locally the lattice planes normal to g are
rotated towards the exact Bragg orienta-
tion; in Fig. 73 this is in the sense S.
Finding S requires a knowledge of the
sign of s; this can be determined by
means of the Kikuchi line pattern, as
shown in Sec. 1.1.1.3 of this Chapter. For
the edge dislocation shown in Fig. 73 the
positive sense (i.e., the unit vector u) was
chosen as entering the plane of the draw-
ing. The Burgers vector b is determined
according to the FS/RH convention as
follows. A right-handed closed Burgers
circuit when looking along # is constructed
in the real crystal. In the perfect reference

(@ (o)

@

!

(© {d)

crystal the corresponding circuit is con-
structed and the Burgers vector b is
found as the closure failure of this circuit,
joining the final point to the starting point
b = FS. For the concrete situation shown
in Fig. 73,5 > 0 and (g - b)s < 0; the image
is indicated by a solid line and the disloca-
tion line by a dotted line. The rule can be
formulated as follows: the image side is to
the right looking along the positive sense if
(g-b)s < 0. Changing the sign of one of
the three parameters g, b, or s changes the
image side.

It should be noted that the descriptions
given in different reviews are sometimes
confusing and do not always agree because
some authors refer to the image as seen
along the incident electron beam, whereas
other formulations refer to the image as
seen from below. The sense of # depends
on whether the first or the second view-
point is adopted, but this changes the sign
of p = (g-b)s. The most direct way is to
apply intuitive reasoning, correctly taking
into account possible e¢lectron optical
image rotations.



Characterizing Dislocations

A full description of a dislocation line
requires a determination of its core geo-
metry and its Burgers vector, that is of the
direction, magnitude and sense of b [13,
40]. Methods are available to obtain all
these elements. The precise position of the
dislocation can be found by making two
images leading to opposite image sides
either for active diffraction vectors +g
and —g for the same sign of s, or for +s
and —s for the same g vector. The true
position of the dislocation is then between
the two images.

The direction of the Burgers vector is
determined by looking for two diffraction
vectors g, and g, for which the dislocation
is out of contrast or for which a residual
contrast characteristic of g-b =0 is pro-
duced. The Burgers vector then has a
direction parallel to g, x g,. An example
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Figure 74. Dislocation network in graphite
imaged under four different diffraction
conditions leading to stacking fault contrast
in (a) and to extinctions in (b)—(d). Note that
the triple ribbon loses contrast completely

s in (c) [56].

of the application of this method to a
hexagonal network of dislocations in
graphite is shown in Fig. 74. In this parti-
cular case a single ‘extinction’ is in fact
sufficient since the dislocations were
known to be glide dislocations and thus
have their Burgers vector in the ¢ plane.
As the foil is prepared by cleavage it is also
limited by ¢ planes. The three families of
partial dislocations are seen to be succes-
sively brought to extinction using the g
vectors indicated. Note also the simulta-
neous extinction of the three partial dis-
locations in the triple ribbon, showing that
they have the same Burgers vector. Their
contrast is nevertheless different for the
different partials, as discussed in Sec.
1.1.1.18 of this Chapter.

It should be remembered that in highly
anisotropic materials the simple extinction
criterion g-bh=0 is no longer strictly
valid, as discussed in Sec. 1.1.1.18 of this
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Chapter. In the case of graphite, just men-
tioned, the extinctions can be observed
unambiguously, even though graphite is
highly anisotropic. However, due to the
presence of the six-fold symmetry axis
along ¢, the ¢ plane behaves effectively as
elastically isotropic. This is also the case
for dislocations in the (111) planes of face-
centered-cubic crystals, due to the three-
fold symmetry.

If complete extinction cannot be
achieved, one should look for the weakest
contrast conditions and deduce from these
a plausible Burgers vector, taking the
crystal structure into account. Image
simulations for various g vectors, based
on this Burgers vector, can then be
compared with the observed images.

The magnitude of the Burgers vector for
a perfect dislocation can be determined
once its direction is known, by looking
for diffraction vectors for which g-b = 2.
Use is made of the typical contrast effect
that occurs where the dislocation crosses
a bent extinction contour (see Sec. 1.1.1.18
of this Chapter). If such a diffraction
vector is identified we know the length
of the projection of b on g. With a know-
ledge of the direction of b and of its
projected length on g, the length of b can
be found.

Figure 75. Image contrast of
dislocation loops: (a) image
inside the loop; (b) image
outside the loop.

Finally, the sense of b is found from the
image side which defines the sign of
(g-b)s. Knowing the sign of s from the
Kikuchi pattern, the image side allows one
to find the sign of g-b. Knowledge of g
then leads to the sense of b.

An important application of the sign
determination of the Burgers vector con-
sists in determining whether a Frank loop
is due to the precipitation of vacancy or
interstitial loops, that is whether b is either
+1[111] or —1[111]. Applying the relation
determining the image side to the loop
represented in Fig. 75 it follows that for a
loop the image is either completely inside
or completely outside the dislocation ring,
depending on the sign of (g - b)s, and since
b is different for a vacancy loop and an
interstitial loop, so will be the image side
for the same g and s. The type of contrast
experiment required for an analysis of the
nature of loops is illustrated in Fig. 76. A
difficulty arises because of the need to
know the sense of inclination of the loop
plane. If the loops are known to be parallel
to the foil surface a known slope can be
imposed by mounting the sample on a
wedge. However, this method is not always
possible.

Assuming the sense of the slope to be as
represented in Fig. 75 and g and s to be as

s>0
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Figure 76. Contrast experiment for determining the nature of dislocation loops. Diffraction vector g = n. The

foil is tilted in the sense indicated.

there shown, it is evident that the image is
inside for interstitial loops, whereas it is
outside for vacancy loops. Changing the
sign of s by tilting allows one to find the
image side and hence to distinguish
between the two cases.

An alternative application of the same
principle consists in rotating the specimen
through the exact Bragg orientation from
s> 0tos <0 fora given g (Fig. 76). It is
then found that an interstitial loop will
grow in size because of two effects: (i) the
projected size increases and (ii) the image
goes from inside for s > 0 to outside for
s < 0. A vacancy loop will grow as long as
s > 0 because of the geometrical effect; but
beyond s = 0 the image side changes and
the image size shrinks. The experiment

must clearly be performed starting with
loops which are steeply inclined. One can
also make use of the asymmetrical image
contrast, consisting of a line of no con-
trast; separating a bright and a dark lobe
(or crescent), characteristic of Frank loops
seen end-on, which moreover are close to
the surface. In the dark field image the
asymmetry is the same at the top and
bottom of the foil, due to anomalous
absorption. If the diffraction vector g is
parallel to b and points from the bright to
the dark lobe in the image, the loop has
interstitial character. If g points from the
dark to the bright lobe, the loop is a
vacancy loop. A restriction is that the
loop must be close to the surface (i.e.,
within 17,). To demonstrate that the latter
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condition is satisfied, sterco images are
required.

1.1.1.19 Moire Patterns [50—52]

Intuitive Considerations

Electron microscopic specimens consisting
of two similar thin films superimposed
with a small orientation difference produce
interference patterns consisting of parallel
fringes when a g vector parallel to the film
plane is excited in the two components of
the sandwich. In the bright field image this
fringe pattern results from the interference
between the doubly transmitted and the
doubly scattered beams, which enclose a
small angle. This angle is usually revealed
in the diffraction pattern by a doubling of
the spots. A ‘doubly transmitted beam’ is a
beam which is transmitted through the
first thin film and subsequently through
the second; the doubly scattered beam is
formed in a similar way.

In a number of cases the geometrical
features of such fringes provide useful

B
K

Figure 77. Geometrical analog
illustrating the formation of
moiré patterns: (a) parallel
moire; (b) rotation moiré. One
of the two superimposed foils
contains a dislocation.

information. A geometrical analog, con-
sisting of the superposition of two line
patterns (the lines representing lattice
planes), one of them containing a disloca-
tion, is shown in Fig. 77. In (a) the direc-
tions of the lines are the same, but their
spacing is slightly different. In (b) the two
patterns have the same line spacing, but
the directions of the lines enclose a small
angle. The moiré pattern or the superposi-
tion pattern shows a magnified representa-
tion of a dislocation [51]. Moiré patterns
can thus provide ‘geometrical’ magnifica-
tion, which was especially useful at a time
when atomic resolution was not possible.
With the development of atomic resolu-
tion microscopy, moiré imaging lost most
of its importance; however, the geometri-
cal features are still useful [52].

Theoretical Considerations

Consider a composite crystal consisting of
two plan parallel slabs 1 and H [50]. Let
part 11 of a column be derived from part I
by the displacement field u(r). The phase
shift between the waves diffracted locally
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by the two parts of the crystal is then
a=2n(g+s) u~2n(g-u). This expres-
sion is of the same form as the phase
shift introduced by a stacking fault, the
main difference being that u is nor a con-
stant vector R but now depends on r, and
hence « is also a function of r. The trans-
mitted and scattered amplitudes are then
given by Eqgs. (113a) and (113b), in which
« enters through the periodic factor
exp(ica). Without solving the system of
equations it is clear that the loci of the
points of equal intensity (i.e., the fringes)
are given by exp(ia) = Constant, that is
by « = Constant + k2n (where k is an
integer).

Assuming r to be a lattice vector
g -r = Integer, for small difference vectors

Agr+g-Ar=0

with  Ar = u(r) (173)
and thus
a=2ng-u= -2nAg-r (174)

Provided u(r) is such that Ag does not
depend on r, which is true for moiré
patterns, the lines of equal intensity are
given by Ag -r = Constant + k, where £ is
an integer. This equation represents a set
of parallel straight lines perpendicular to
K = —Ag, where K can be considered as
the wavevector of the moiré fringe system,
with wavelength A = 1/K.

In the case of a rotation moire,
K =2gsin(8/2) ~ gf (for small 6); or,
expressed in terms of the interplanar
spacing d, of the active reflection

A =4, /0 (175)

The fringes are parallel to g for small 4.
For parallel moiré patterns, Ag=
g, — g, with g, parallel to g, or, in terms
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of interplanar spacings,

l 1 dl—dz
Ag=———= 176
A (176)
and

d\dy
A, = =
A (177)

The fringes are again perpendicular to Ag,
that is they are also perpendicular to g,
and g-.

If an orientation difference as well as a
spacing difference is present, mixed moiré
patterns are formed. One can always
decompose Ag into components perpendi-
cular and parallel to g:

Ag:AgH —l—Agl (178)

As the fringes are still perpendicular to Ag,
they enclose an angle 3 with the direction
of g given by tg 3 = Ag, /Ag) and

|Agl = |Ag, P +]Ag) (179)
and hence
1/A> = 1/A] + 1/A7 (180)

The intensity variation of the fringe system
can be found in a similar way as for
stacking faults. For a quantitative theory
of the intensity profiles, see [50].

From the theory one can conclude that
the positions of the moiré fringes depend
on the total thickness of the sandwich, and
hence the fringe positions are influenced by
surface steps. Furthermore, the fringe
positions depend on the specimen tilt.

We have seen that for coherent domain
boundaries Ag is perpendicular to the
interface. When such an interface is per-
pendicular to the incident beam, which is
the usual geometry for moiré patterns, the
projection of Ag onto the interface thus
vanishes and no moiré fringes are formed.
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Fringe patterns imaging this type of inter-
face therefore have a different origin. The
image for an inclined domain boundary
consists of the é fringes described above,
which are perpendicular to the projection
of Ag onto the foil plane (see Sec. 1.1.1.13
of this Chapter), that is onto the inter-
section lines of the interface with the foil
surfaces.

If Ag has an arbitrary orientation with
respect to the contact plane between the
two crystal parts, it has a perpendicular
component as well as a parallel component
with respect to the interface and the
image can be a complicated mixture of
both types of image. The parallel compo-
nent gives rise to moiré type fringes, and
the perpendicular component to é-type
fringes.

Applications of Moiré Patterns

An important application of parallel moiré¢
fringes is the determination of the lattice
parameter of one of the two components in
a sandwich, the lattice parameter of the
other being known. This can be of interest
for the identification of plate-like coherent
precipitates in a matrix with a known
lattice parameter. Moiré fringes formed
at the interface between voidite and dia-
mond are shown in Fig. 78, and Fig. 79
shows the moiré fringes at the interface
between silicon and silicon carbide (SiC)
precipitate particles.

Moir¢ fringes have also been used as a
tool in the study of dislocations. Ending
moiré fringes reveal the emergence points
of dislocations in one of the two compo-
nents of the sandwich. The number, N, of
supplementary half-fringes depends on the
reflection used to produce the dislocation

Figure 78. Moiré pattern formed at the interface
between voidite and the diamond matrix. Note the
extinction contours revealing the strain field. (Cour-
tesy of G. Van Tendeloo.)

image; it is given by N =g-b. This
number is independent of the character
of the dislocation. Supplementary half-
fringes cannot therefore be interpreted as
necessarily meaning that the correspond-
ing dislocation has edge character. Partial
dislocations bordering stacking faults are
revealed by a ‘fractional’ number of

Figure 79. Moiré pattern at the interface between
silicon and a silicon carbide precipitate. (Courtesy of
A. De Veirman.)



supplementary half-fringes; that is, along
the trace of the stacking fault the moiré
fringes are shifted discontinuously over a
fraction g - b such as % or % of the interfringe
distance.

The moiré fringes are also shifted by a
surface step in one of the components. The
fringe shift is not only a function of the
step height but also of the deviation
parameter and hence of the specimen
orientation.

If two or more diffraction vectors are
active in both components of the sandwich
a crossed grid of moiré fringes is formed,
which has the rotation symmetry of the
two films.

1.1.1.20 Applications of
Diffraction Contrast

Diffraction contrast images do not reveal
the crystal structure but they do image
defects such as dislocations, planar inter-
faces (stacking faults, coherent domain
boundaries, and out-of-phase boundaries),
discommensurations, point defect clusters.
Applications of diffraction contrast to
specific classes of materials are described
in Vol. TI of this handbook. Here we
discuss only a few characteristic examples
illustrating different types of defect study.
The interpretation of the images is only
meaningful in terms of the underlying
materials problem. Therefore, for each
application we sketch as briefly as possible
the framework in which the images
acquire their significance and interpreta-
tion. The choice of the examples, which
is admittedly subjective, is mainly moti-
vated by the availability of suitable
photographs.
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The Fine Structure of Dislocations

Measuring the Stacking Fault Energy

In most materials the dislocations are not
simple line defects but consist in fact of
two or more partial dislocations connected
by strips of stacking fault or of out-of-
phase boundary. The simplest situation
arises when glide takes place between two
close-packed layers of identical ‘spherical’
atoms in an elemental face-centered-cubic
crystal. The glide motion along the (111)
plane in the [110] direction then follows the
valleys, that is it takes place in two steps,
each performed by the motion of a partial
dislocation, the first with a Burgers vector
b, =1 [211] and the second with a burgers
vector b, =1 [121], enclosing an angle of
60° and leading to a symmetry translation
11110] along the (111) glide plane. Between
the two partial dislocations a stacking
fault ribbon with a displacement vector,
equal to one of the Burgers vectors of the
partial dislocations, is present [53].

The two partial dislocations repel one
another, since their Burgers vectors
enclose an acute angle. In an infinite solid
this repulsion is proportional with 1/d
(where d is the partial dislocation separa-
tion) and its magnitude is a function of the
orientation of the partial dislocations that
is a function of their character (screw or
edge). The presence of the stacking fault
ribbon causes an effective attractive force
per unit length between the two disloca-
tions, which is independent of their separa-
tion and numerically equal to the stacking
fault energy, v. An equilibrium separation
is thus established. Assuming the repulsive
force law to be known, it is then possible to
deduce the stacking fault energy from the
measured equilibrium separation of the
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Figure 80. Curved dislocation
ribbon in the (0001) plane of
graphite. Several segments are
reproduced as magnified insets.
The direction b of the total Burgers
vector, as determined by extinction
experiments, is indicated. Note the
systematic change in width with
orientation [56].
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partial dislocations. Dislocation ribbons
are thus sensitive probes for measuring
the stacking fault energy, a quantity
which is difficult to access in any other
direct way. The following relations apply
in an infinite isotropic solid:

d:do{l— (%)cos(&b)} (181)
with
b2 -v)

where ¢ is the angle between the total
Burgers vector and the ribbon direction;
4 18 the shear modulus and v is Poisson’s
ratio.

The orientation dependence of the rib-
bon width can be verified on an image such

as the one shown in Fig. 80, which repre-
sents a curved dislocation in a graphite
foil. The Burgers vectors were determined
using the method described in Sec. 1.1.1.18
of this Chapter. Plotting d as a function of
cos(2¢) the slope of the straight line so
obtained gives the effective value of the
Poisson ratio as well as the intercept d; to
be used in the second relation, which then
yields a value for the stacking fault energy
(Fig. 81).

Using this method it is implicitly
assumed that the repulsive force between
dislocations is proportional to 1/d, which
is only the case in an infinite solid. In a thin
foil the repulsive force between disloca-
tions parallel to the foil surfaces decreases
with decreasing distance to the specimen
surfaces. This behavior can be observed, as
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Figure 81. Plot of ribbon width  as a function of cos 2¢ [56].

shown in Fig. 82, where a ribbon gradually
approaching the surface in a wedge-shaped
lamella of tin disulphide, closes as it
emerges at the surface [53, 54].

The energy of a dislocation ribbon
depends on its distance to the surface. As
a result, the shape of minimum energy of a
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Figure 82. A wide ribbon in SnS, gradually approach-
ing the surface. As the ribbon crosses surface steps
it becomes discontinuously narrower. The ribbon
closes where it emerges in the surface [54].

dislocation ribbon crossing a surface step
is not a straight line; ‘refraction’ of the
ribbon as well as a change in width occur
on passing underneath the surface step
(Fig. 83). The index of refraction is the
ratio of the total energies of the ribbon in

Figure 83. Dislocation ribbon in SnS,. Refraction,
accompanied by a width change, occurs on passing
underneath a surface step [54].
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Figure 84. (a) Widely extended dislocation
node of partial dislocations in graphite.
At A a triple ribbon is present; the three
partials have the same Burgers vector as
follows from the contrast experiment in (b)
where the three partials are simultaneously
out of contrast. Nevertheless, the contrast
at the three partial dislocations is different
in (a) [56].

the two parts of the foil on either side of
the surface step.

These images prove that such surface
effects are not negligible. Therefore, when
measuring stacking fault energies care
should be taken to use foils of maximum
thickness compatible with the visibility of
the dislocations and, moreover, take the
widest ribbon as the most representative
one. The width of narrow stacking fault
ribbons can best be determined by imaging
in the weak-beam mode (see Sec. 1.1.1.17
of this Chapter).

Other geometrical configurations invol-
ving stacking faults can be used, such as
the separation of partial dislocations in
triple ribbons in graphite (Fig. 84a) and
in close-packed structures, or the radius of
curvature of single partial dislocations in a
network of extended—contracted nodes
(Fig. 84b). In the latter case one has,
approximately,

_ub’
TTIR
where R is the radius of curvature and b is
the Burgers vector of the partial disloca-
tion. Isolated extended nodes such as the
one shown in Fig. 85 (observed in AIN)
are particularly suitable. More accurate
relations are discussed by Nabarro [53]
and Siems et al. [55].

(183)

Multiribbons

Ordering in alloys based on close-packed
structures [eads to long symmetry transla-
tions along the glide directions in the close-
packed glide planes. This results in ribbons
consisting of several partial dislocations,
separated either by stacking faults or by
out-of-phase boundaries. The equilibrium
separation of superdislocations (i.e.,
perfect dislocations with respect to the
basic lattice, but partial dislocations with
respect to the ordered structure) can be
used to derive values of the antiphase
boundary energy in the same way as
described above for stacking faults. In
NiyMo, as many as ten partial dislocations
are connected by faults and antiphase
boundaries [53].

The dislocations involved in glide
between the close-packed layers of anions
(X) in layered ionic sandwich crystals of
Cdl, of the type AX, (XAXXAX...) or
AXj; are of particular interest. The glide
motion takes place between the two
weakly van der Waals bonded close-
packed anion layers. Dislocations can
thus dissociate into two or more Shockley
partial dislocations. Although in the close-
packed layers, between which glide takes
place, all X atoms seem equivalent, the A
cations in the adjacent central layers of the



Figure 85. Isolated extended node in the (0001) plan
of AIN. (Courtesy of P. Delavignette.)

sandwiches may form configurations
which impose a large unit mesh in the
glide plane, either because not all octa-
hedral cations sites are occupied (e.g., in
CrCl; and CrBr;) or because the cations
form metal-metal bonded clusters leading
to a slight deformation of the close-packed
layers (e.g., in NbTe, and TaTe,) and the
creation of a superperiod.

In the chromium trihalides [53, 56]
multiribbons containing either four or six
partial dislocations are observed. Assum-
ing glide along the close-packed anion
layers to take place by the propagation of
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Shockley partial dislocations, two types of
stacking fault ribbons can be distin-
guished:

(i) faults violating only the chromium
stacking (i.e., involving only third
neighbors), and

(ii) faults violating the stacking of the
chromium ions as well as that of the
anions (i.e., involving next-nearest
neighbors).

Intuitively, it is clear that the type (ii)
faults will have a larger energy than those
of type (i). The six-fold ribbons corre-
spond to a ‘straight’ zigzag glide path
along the close-packed directions in the
(0001) glide plane of the anion sublattice;
they contain the two types of fault in an
alternating fashion, the outer ribbons
corresponding to high energy faults. Dif-
fraction contrast images of such ribbons
are shown in Fig. 86. The outer ribbons are
clearly the narrowest ones. The structure
of the four-fold ribbons can similarly be
related to the structure.

Also in NbTe, [57, 58], which has a
deformed CdI, structure, six-fold ribbons

:"'-;"_..: _r A

Figure 86. Six-fold ribbons of partial dislocations in
the (0001) plane of CrCl;. The Burgers vectors of the
partial dislocations form a zigzag glide path [53, 56].
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occur. In this structure the niobium ions
form clusters of three parallel close-packed
rows, having a somewhat smaller separa-
tion than in the ideal hexagonal structure
which probably occurs only in the tem-
perature range in which the crystal is
grown. The resulting structure then
becomes monoclinic on cooling. The unit
mesh in the glide plane is a centered
rectangle, which can adopt three different
but equally probable orientations differing
by 60°. As a consequence, the room tem-
perature structure is fragmented into
domains corresponding to the three possi-
ble orientations of the clustered niobium
rows. The monoclinic symmetry causes the
glide paths along the three close-packed
directions within the same domain to
become non-equivalent. |

The zigzag glide paths in ‘the direction
enclosing an angle of 30° with the long side
of the rectangular mesh consist of six
partial dislocations, whereas the glide
path along the other close-packed direc-
tion (i.e., along the short side ,of the
rectangle) repeats after two partial disloca-
tions. The Burgers vector is conserved all
the way along the dislocation lines. Hence
when a six-fold ribbon passes through a
domain wall the glide path changes its
orientation relative to the underlying
structure. A six-fold ribbon in one domain
is thus transformed into three separate
two-fold ribbons in the adjacent domain.
Whereas in the six-fold ribbon the six
partial dislocations are held together by
stacking faults, this is no longer the case
with the three two-fold ribbons which
repel one another and hence develop
‘bulges’. The image shown in Fig. 87 illus-
trates the behavior of a six-fold ribbon
intersecting a set of parallel domain
boundaries in NbTe, [58].

Figure 87. Six-fold ribbon of partial dislocations in
NbTe, intersecting domain boundaries along which
the underlying structure changes by 60° in orienta-
tion. In half of the domains the six-fold ribbons
separate into three two-fold ribbons which form
bulges as a result of repulsive forces [58].

Plastic Deformation: Glide Dislocations

Plastic deformation is a subject which was
studied intensely in its early stages by
means of diffraction contrast. High vol-
tage (about 1000kV) electron microscopy
has been of considerable interest in this
respect because it can be used to study
thicker foils, which are more representa-
tive of a bulk material than the thin foils
required at 100kV. Figure 88 shows a
procession of glide dislocations in face-
centered cubic stainless steel, confined to
their (111) glide plane, as observed in high
voltage electron microscopy. The strictly
planar arrangement implies that the dis-
locations are dissociated and that, for this
reason, the cross-glide is a difficult process.
The dissociation is too small to be directly
observable at this resolution, but it has
been found from other images that the
stacking fault energy is rather low in stain-
less steel. Note the periodic contrast of the
dislocations in the vicinity of their emer-
gence points in the foil surfaces and the
absence of such contrast in the central part
of the foil. Figure 89 is an image of a low
stacking fault energy alloy (Cu-Ga); the
dissociation is clearly visible and stacking
fault fringes can be observed between the
partial dislocations.



Figure 88. High voltage electron micrograph showing
a procession of dislocations confined to a glide plane
in stainless steel. Note the wavy contrast close to the
surfaces and its absence in the central part of the foil.

Figure 90 shows a network of intersect-
ing glide dislocations confined to the (111)
glide plane in a face-centered cubic copper
alloy (Cu-Ga) with a low stacking fault
energy. One set of dislocation nodes is
dissociated and gives rise to the dark
triangular areas; the other set is con-
tracted. Such nodes allow one to deduce
the stacking fault energy from the curva-
ture of the partial dislocations forming the
extended nodes.

Figure 91 shows glide dislocations in
the layer plane (001) of NbTe,, which is
parallel to the foil plane, the specimen
having been obtained by cleavage [58].
In every other domain the dislocation
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Figure 89. Ribbons dissociated in Shockley partials
observed in a Cu-Ga alloy. (Courtesy of A. Art.)

multiribbons consist of six partial disloca-
tions; in the remaining domains the dis-
locations are simple ribbons, as described
above. The image illustrates the strong
interactions of the glide dislocations with
the domain walls. On entering a domain
in which the six-fold ribbons would have
to be formed, the single ribbons line up
with the domain wall, in this way minimiz-
ing the generation of stacking faults. This
leads to an effective interaction between
the dislocation ribbons and the domain
walls.

The Structure of Subgrain Boundaries

Small-angle grain boundaries can be
described in terms of arrays of dislocation
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m. 14

Figure 90. Network of dissociated dislocations in a
Cu-Ga alloy with a low stacking fault energy. (Cour-
tesy of A. Art.)

lines. Diffraction contrast electron micros-
copy has contributed significantly to firmly
establishing dislocation models for such
boundaries.

A general subgrain boundary is charac-
terized by five parameters describing its

Figure 91. Glide dislocations in the layer plane of
NbTe,. Note the interaction between dislocations
and twin domain walls [58].

geometry: the rotation axis, the rotation
angle, and the normal to the contact plane.
These parameters can be determined by
the combined use of the spot diffraction
pattern and of the Kikuchi line pattern.
The diffraction contrast image then
allows one to visualize the geometry of
the dislocation lines and, using the extinc-
tion criterion, to determine their Burgers
vectors. If the rotation axis is parallel to
the contact plane the boundary is a tilt
boundary and the dislocation config-
uration consists of parallel lines. If, on
the other hand, the rotation axis is
perpendicular to the contact plane the
boundary consists of a network of inter-
secting dislocations. Depending on the
symmetry of the contact plane this net-
work may ideally consist of square meshes
in (100) planes or of hexagonal meshes in
(111) planes.

Figure 92 shows two tilt boundaries
in body-centered niobium consisting of
parallel dislocation lines. Some of the
dislocations are decorated by small preci-
pitate particles.

The image of the twist boundaries in
platinum [59] shown in Fig. 93a illustrates
a hexagonal network containing three
intersecting families of dislocations with
Burgers vectors enclosing angles of
120°. Figures 93b and 93c represent
square networks, consisting of dislocations
with mutually perpendicular Burgers
vectors.

Figure 94 shows a well-developed hex-
agonal network of undissociated disloca-
tions in the (0001) plane of hexagonal
zinc [60]. All dislocations are mobile in
the plane of the boundary. The right
part of the boundary moved along the
(0001) glide plane during the exposure,
leading to blurring of the image. In the



left part of the image some of the disloca-
tions, leaving the network and terminating
in the foil surfaces, have become sessile,
and they thus pinned the network in that
part.

Figure 21 shows a hexagonal network
of widely extended dislocations in the
basal plane of graphite [56, 61]. The net-
work is, in fact, a glissile twist boundary.
From the curvature of the partial disloca-
tions in the extended nodes one can deduce
the stacking fault energy.

X
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Figure 92. Tilt boundary consisting of

sets of parallel dislocations in niobium.
Some of the dislocations are decorated
by small particles. (Courtesy of

A. Fourdeux and A. Berghezan.)

Point Defect Clusters

Vacancies in quenched metals form disc-
shaped agglomerates in (111) face-centered-
cubic or (0001) hexagonal-close-packed
layers, limited by Frank-type dislocation
loops. If the stacking fault energy is large
enough the loop is ‘unfaulted’, since energy
is gained by nucleating a Shockley partial
dislocation and sweeping the loop, trans-
forming the sessile Frank loop into a
perfect glissile loop. Such unfaulted loops

Figure 93. Twist boundaries
in platinum [59]:

(a) hexagonal network;

(b, ¢) square networks.
(Courtesy of E. Ruedl).
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Figure 94. Hexagonal network of
undissociated dislocations in the
(0001) plane of zinc [60].

in quenched aluminum are shown in Fig. 95
[62, 63].

If the stacking fault energy is small
enough, which is true in, for instance,
gold and Ni-Co alloys, the Frank loop is
transformed into a stacking fault tetrahe-
dron consisting of four intersecting trian-
gular stacking faults in {111} planes,
limited along their intersection lines by
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quenched aluminum {62, 63].
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edge-type stair-rod dislocations with a
Burgers vector of the type [110]. For
intermediate values of the stacking fault
energy the Frank loops may remain
faulted. Figure 96 shows stacking fault
tetrahedra in gold imaged in diffraction
contrast [62, 64].

Faulted Frank loops in silicon are
shown imaged in diffraction contrast in




Fig. 97. The presence of the stacking fault
causes contrast inside the loop. Figure 98
shows a contrast experiment on an extrin-
sic Frank-type dislocation loop in silicon.
Note the presence of a line of no contrast
perpendicular to the active g vector and
the deformation of the extinction contours
where they cross the dislocation loop. For
g = [111] the loop exhibits stacking fault
contrast, as do the loops in Fig. 97.

Figure 97. Faulted Frank loops in silicon due to
interstitials. The loops exhibit stacking fault contrast.
(Courtesy of H. Bender.)
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Figure 96. Diffraction
contrast image of stacking
fault tetrahedra in quenched
gold. The inset shows a
magnified image [62, 64].

Planar Interfaces
It is well known that two simple types of

stacking fault can occur in the face-
centered-cubic structure. The intrinsic

fault, formed either by the extraction of

a layer or by glide of a Shockley partial,
is represented by the stacking symbol

Figure 98. Contrast experiment on a faulted loop in
silicon.
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Figure 99. Network of extended dislocations in sili-
con; all nodes are dissociated. (Courtesy of E. Aerts.)

abcabcacabc.... The extrinsic fault,
formed for instance by the precipitation of
interstitials in a Frank loop, corresponds to
the stacking symbol abcabacabe.... The
two types of fault have comparable energies
in certain materials. In a network of dis-
sociated dislocations all nodes are then
dissociated; this is, for instance, the case
in silicon (Fig. 99) and in certain alloys
(e.g., Ag-Sn). The two kinds of fault have
opposite displacement vectors of the type
a/3 [111] and can thus be distinguished by
the characteristic fringe pattern which they
produce when situated in inclined planes
(see Sec. 1.1.1.13 and Sec. 1.1.1.20 of this
Chapter) [65-67].

Domain Structures

Phase transformations are usually accom-
panied by a decrease in symmetry with

decreasing temperature. As a result, a
single crystal of a higher symmetric phase
becomes fragmented into domains of
which the structures are related by the
symmetry elements lost in the transition
to the lower symmetry phase [68]. The lost
rotation symmetry elements give rise to
orientation variants of the low tempera-
ture phase of which the number is given by
the ratio of the order of the point group of
the high temperature phase and the order
of the point group of the low temperature
phase. The loss of translation symmetry
gives rise to translation variants related by
displacement vectors given by the lost
lattice translations. Their number is deter-
mined by the ratio of the volumes of the
primitive unit cells of the low and high
temperature phases.

Orientation variants are separated by
domain boundaries, whereas translation
variants are separated by out-of-phase
boundaries. The orientation of the domain
boundaries is determined by the require-
ment that the strain energy should be a
minimum. This will be the case for strain-
free interfaces. As a result, the orientation
of certain interfaces (W) follows entirely
from symmetry, whereas others (W') have
orientations which depend on the lattice
parameters of the two phases involved, at
the transition temperature [69—71].

For example, in the a—g transition of
quartz, referred to above, the « phase has
the point group 32 (order 6) and the §
phase has the point group 622 (order 12).
The number of orientation variants in the
o phase is thus 12/6 =2 (a; and «y;
Dauphiné twins) and they are related by
the lost 180° rotation about the three-fold
axis. There is no change in translation
symmetry. Images of domain fragmented
« phase are shown in Fig. 100. In the case
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of quartz the situation is actually some-
what more complicated by the occurrence
of an intermediate incommensurate phase
between the o and 3 phases and which is
only stable within a narrow temperature
range (=1.5K). This phase was discovered
using diffraction contrast electron micros-
copy [30]. It consists of a regular texture of
triangular prisms parallel to the ¢ axis, of
oy and a» structure. The size of the trian-
gular prisms decreases with increasing
temperature in the vicinity of the transition
temperature (Fig. 100).

Quite striking domain structures were
studied using diffraction contrast in the
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Figure 100. Domain
fragmentation in quartz as a
function of temperature. A
temperature gradient is
present across the specimen.
At the highest temperature
the incommensurately
modulated phase is
observed [28].

monoclinic room temperature phase
of ferroelastic lead orthovanadate
[Pb3(VOy),] [70, 71]. The structure is
rhombohedral at high temperature (v
phase), but on cooling it transforms at
120°C into a monoclinic structure (3
phase) which is stable at room tempera-
ture. The rhombohedral parent phase is
fragmented into domain patterns which
minimize the strain energy. They consist
of combinations of completely symmetry
determined walls (W) and walls (W'), the
strain-free orientation of which depends
on the lattice parameters below and
above the v < ( transition temperature
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Figure 101. Domain pattern
in lead orthovanadate
[Pb3(VO,),] resulting from
the v — 3 phase transition.
The central triangle of the
star pattern is still in the v
phase. The two images refer
to the same area; in (b) the
temperature was somewhat
lower than that in (a) [71].

(i.e., on the spontancous strain tensor).
The most striking configuration is the
pattern shown in Fig. 101; it contains
three concentric ‘stars’ of decreasing size.
The pattern in Fig. 101la shows a central
triangle of metastable v phase surrounded
by areas consisting of three different
variants of the § phase. On cooling this
triangle transforms further ‘in situ” into the
configuration shown in Fig. 101b; the ~
triangle becomes smaller and is rotated by
180°. Similar patterns occur in other
domain textures resulting from a phase
transformation between the parent and
product phases belonging to the same
point groups as v and 3 lead orthovana-
date, respectively.

The compound YBa,Cu,O; is tetra-
gonal at high temperature where the
-+-0-Cu-0O-Cu--- chains in the CuO
layers are disordered. Below the transition
temperature, which depends on the oxygen
content, the chains order in any given area
along one out of two mutually perpendi-
cular, equally probable, orientations,
which then becomes the b, direction of
the orthorhombic structure. The dis-
order—order transition thus produces two
structural variants with their b, axes
roughly perpendicular and which are
twin related by a mirror operation with

respect to (110) or (110). These two orien-
tation variants are revealed, using different
imaging modes, in Fig. 102 [72].

The ordering of magnetic moments
below the Néel temperature in antiferro-
magnetic materials is usually accompanied
by a structural phase transition. This leads
to the formation of an antiferromagnetic
domain structure of which the domain
walls coincide with those due to the struc-
tural phase transition [73]. Such a com-
bined transition occurs, for instance, in
NiO, which has the sodium chloride struc-
ture above the Néel point (525K). Below
this temperature the nickel spins order in
such a way that the spins in one of the
families of (111) planes order ferromagne-
tically, the spin direction being parallel to
these (111) planes, whereas successive
(111) sheets contain oppositely oriented
spins. As a consequence of magneto-
striction, the structure contracts along
the (111) direction perpendicular to these
sheets, and the lattice becomes rhombo-
hedral (o =90°4'). The rhombohedral
structures in adjacent antiferromagnetic
domains contract along different (111)
directions, and as a result such domains
are separated by coherent twin boundaries
with a very small twinning vector, which
are imaged as é-fringe patterns. Two such



Figure 103. Two domain
walls with opposite 6 in
antiferromagnetic nickel
oxide; they are imaged as
é-fringe patterns {73].
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Figure 102. Orthorhombic twins in YBa,Cu;05_,
revealed using three different contrast modes: (a)
domain contrast; (b) interface contrast; (c¢) high
resolution imaging. Note the strain at the twin tips
in (b) [72].

domain walls are shown in Fig. 103 which
is a bright-field image of two parallel
domain walls for which the é values are
opposite in sign. This is reflected in the
opposite nature of the edge fringes for the
two boundaries.

The Structure of Ordered Alloys

Observations of ‘discommensurations’ and
of ‘discommensuration nodes’ [74] were
performed on the alloy Ni;,Mo [75],
using diffraction contrast, at a time when
the term ‘discommensuration’ had not yet
been introduced. The interfaces shown in
Fig. 104 were described as ‘out-of-phase
boundaries” with a displacement vector
equal to one-quarter of a lattice vector.
Although in alloys there is no essential
difference between out-of-phase bound-
aries and ‘discommensuration walls’, the
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Figure 104. Four-fold
discommensuration nodes in
NizMo, revealed by diffraction
contrast [75].

defects shown in Fig. 104 would, at pre-
sent, presumably be termed ‘discommen-
surations’ by most authors.

Conservative antiphase boundaries in
the alloy Cu;Pd with L1, structure revealed
by diffraction contrast are shown in Fig.
105. These boundaries represent the first
stage in the formation of a one-dimensional
long period antiphase boundary structure
from the disordered phase. A number of
nonconservative antiphase  boundaries
become unstable and start ‘meandering’,
forming parallel sets of conservative anti-
phase boundaries [76, 77].

Minerals

Anorthite (CaAl,Si,0g) is a complicated
silicate which has a primitive triclinic
Bravais lattice (space group P1) at room
temperature. Above T, = 514K the same
unit cell becomes body centered (71). This
can be concluded from the diffraction
pattern since the spots of the type

h+k+1=0dd gradually disappear
above T,. On cooling the crystal from the
high temperature phase to room tempera-
ture, it breaks up into two translation
variants separated by very ‘ragged’ anti-
phase boundaries with a [111] displace-
ment vector. No orlentatlon variants are
formed. The domain boundaries are

Figure 105. Diffraction contrast image of the first
stage in the formation of a one-dimensional long
period structure in Cu;Pd. Note the ‘meandering’ of
the antiphase boundaries {77].



revealed by diffraction contrast dark field
imaging in reflections for which
h+k + 1= 0dd. On heating above 514K

Figure 107. Evolution of the diffraction pattern dur-
ing the same heating—cooling cycle as in Fig. 106: (a)
T<T; M) T2T;0©T>»T.
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Figure 106. Evolution of antiphase
boundaries in anorthite (CaAl,;Si;,Og)
during a heating—cooling cycle from room
temperature up to above 514 K. All images
refer to the same area. Note the memory
effect [78].

the boundaries disappear, but on cooling
they reappear at exactly the same place
and with the same shape as before (i.e.,
there is a pronounced memory effect,
presumably due to impurity pinning).
This is illustrated by the heating—cooling
cycle shown in Fig. 106; the corresponding
diffraction patterns along [101] are shown
in Fig. 107 [78].

Fabrication-induced Defects
in Semiconductors

Semiconductor single-crystal ‘chips’ often
undergo a long sequence of fabrication
steps (thermal treatment, oxidation, etch-
ing, etc.) some of which can be accompa-
nied by a deterioration of the crystal’s
physical properties and hence affect the
performance of the final device. The
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Figure 108. TEM image of a cross-
section of a field-effect device.
Dislocations are emitted from the
edges of the constriction in the
silicon oxide layer; the dislocations
are seen end-on [79].

micro-miniaturization of electron devices
makes detailed control of the crystal per-
fection strongly dependent on electron
microscope techniques; both on high reso-
lution images of cross-section specimens of
devices, and on high voltage electron
microscopy for the study of ‘thick’ speci-
mens at low resolution and small magnifi-
cation.

Figure 108 shows a transmission elec-
tron microscopy (TEM) image of proces-
sions of dislocations observed end-on in a
cross-sectional view of a field-effect device.
At the edge of the constriction in the
silicon oxide layer sources have generated
dislocations along the glide planes of maxi-
mum resolved shear stress, in order to
relieve the stresses generated by the oxida-
tion process. The dislocations apparently
form ‘inverse’ pile-ups, their spacing being
smallest close to the source [79].

field oxide

Figure 109. Finger-shaped
gate areas in a field oxide.
Dislocations are generated
along the edges; they are
observed in a plane view.
(Courtesy of
Vanhellemont.)

Figure 109 shows ‘finger’-shaped gate
areas formed in a field oxide layer on a
silicon chip. They have similarly generated
stresses (see above) which are relieved by
dislocation generation. In this case the
dislocations are imaged in a plane view.

Oxide or other precipitate particles may
put the surrounding silicon matrix under a
compressive stress. This stress is often
large enough to give rise to ‘prismatic
punching’ whereby discs of self-inter-
stitials surrounded by a loop of perfect
dislocation are emitted. Such loops are
glissite on a cylindrical surface of which
the cross-section is determined by the
precipitate’s shape and the direction of
the generators by the Burgers vector of
the dislocations (i.e., $(110)) (Fig. 110).

Interfacial dislocations are often
formed at the interface between the silicon
substrate and metallic layers used as




Figure 110. Prismatic punching around a precipitate
particle in a silicon matrix imaged by six different
diffraction vectors. (Courtesy of H. Bender.)

electrical contacts. Figure 111 shows the
networks of misfit dislocations between
silicon and aluminum; the image was
obtained in a plane view using diffraction
contrast.

Figure 111. Network of interfacial dislocations in the
contact plane between silicon and aluminum.
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Various Applications

In Situ Studies

The availability of cooling and heating
specimen holders allows in situ study of
the phenomena accompanying phase tran-
sitions. When going through a disorder—
order transition, different phases of the
domain fragmentation can be followed.
The creation and elimination of discom-
mensuration walls is directly observable in
dark field images made in clusters of
incommensurate reflections [80, 81].

When performing such observations
one should be aware of the effect of the
electron beam on the specimen, which
results in an increase in temperature
(depending on the thermal conductivity
of the foil) and may also cause some
radiation effects (which may interfere
with the transition).

Radiation Damage

Electron microscopy, in particular high
voltage electron microscopy, has been
used extensively to study in situ radiation
effects as well as postirradiation defect
configurations. The point defects, precipi-
tates, and small dislocation loops can be
characterized using the methods described
above (see Sec. 1.1.1.18 of this Chapter).

Radiation Ordering

Some surprising results were obtained
from in situ studies of ordering alloys
that exhibit a short-range order state
(e.g., NiyMo). When irradiated with
I MV electrons at low temperature,
ordered NiyMo becomes completely dis-
ordered. When irradiating in a tem-
perature range below, but close to, the
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order—disorder transition temperature, the
irradiation causes the alloy to assume
order up to a certain degree. The order
parameters can be determined by follow-
ing the evolution of the intensity of the
order diffraction spots. These phenomena
result from the competition between the
ordering effect due to radiation-enhanced
diffusion at the irradiation temperature
and the disordering effect of the irradiation
as a result of atomic collisions. Over a
certain temperature range the short-range
order state is produced by irradiation.
Certain alloy phases which could not be
ordered by thermal treatment (e.g., NiyW),
were found to assume order under electron
irradiation.

Determination of the Type of Stacking Fault

Close-packed layers of atoms can be
stacked in an infinite number of ways,
all of which have nearly the same free
energy. Two essentially different types of
stacking mode are usually distinguished:
the face-centered-cubic stacking mode
(...ABCABC...) and the hexagonal-
close-packed mode (...ABAB..., or
...ACAC...,or...BCBC..)).

In face-centered stacking two different
types of stacking fault are often distin-
guished. If a single atomic layer is
extracted and the gap so created is closed
by a displacement over a vector
Ry = 1{111], the resulting sequence is

...BCA | CABCABC ...

This is called an intrinsic stacking fault. It
is formed, for instance, by the precipita-
tion of a layer of vacancies, but it is also
generated in the wake of a glissile Shockley
partial dislocation with Burgers vector
L[112] on a (111) glide plane.

If a single atomic layer is inserted, when
for instance a layer of interstitials precipi-
tates, the resulting sequence is

...ABC ' BABCABC ...

This is called an extrinsic stacking fault.
The displacement vector is now
Ry =—1[111] (ie., the opposite of the
previous one). A single glide dislocation
cannot generate such a fault. In both faults
two triplets in the hexagonal configuration
occur, but in a different configuration.

To make a detailed interpretation of
partial dislocation—fault configurations in
face-centered-cubic metals, it is important
to distinguish between intrinsic and extrin-
sic stacking faults. It has been shown that
this information can be obtained from the
nature of the edge fringes in stacking fault
images [82—84]. In particular [85], it has
been demonstrated how this information
can be obtained from a single dark field
image made in a well-defined reflection.

One can distinguish three classes of
reflections in the face-centered-cubic struc-
ture, depending on whether or not
h + k + 1 = Three-fold, Three-fold + 1, or
Three-fold — 1. The reflections for which
h+k + | = Three-fold lead to a =k-2n
and, therefore, do not give rise to a fringe
pattern. Reflections such as {200}, {220},
and {440}, for which /& + k + [/ = Three-
fold — 1, will be called type A, whereas
reflections such as {111}, {220}, and
{400}, for which h+k+ /= Three-
fold + 1, will be called type-B reflections.

The edge fringes in bright and dark field
images for all possible combinations of the
type of active reflection (A or B), the sense
of inclination of the fault planes, and the
nature of the fault (E or I) are represented
schematically in Table 2 where the diffrac-
tion vector is assumed to point to the right.
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Table 2. Determination of the type of stacking fault in the face-centered-cubic

structure.
Bright field Dark field
A B A B

\ i \

D D B B B D D B
| | | \
| | : \ :

B B D D B D D B
| H | \ i \
| ! ‘ |

B B D D D B B D
1 | | |
| : \ |

D B B D

Figure 112. Bright (a) and dark field (b) image pair of a stacking fault in a small
stacking fault energy alloy. From Table 2 it can be concluded that the fault is
intrinsic.

Note that for a given type of fault and a
given type of vector the nature of the edge
fringes in the dark field image is indepen-
dent of the sense of inclination of the fault
plane. A simple rule can thus be formu-
lated: if in the dark field image the g vector,
its origin being put in the center of the

fringe pattern, points towards a bright
fringe and the operating reflection g is of
type A, then the fault is intrinsic. If one of
the parameters (the nature of the edge
fringes or the class of the operating reflec-
tion) changes, the conclusion also changes.
The nature of the edge fringes in the bright
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field image also allows one to determine
the sense of inclination of the fault plane.
In applying the present method one must
be aware of the fact that the nature of the
edge fringes is only well defined in suffi-
ciently thick foils, where anomalous
absorption is important.

Figure 112 shows a bright and dark
field image pair which allows us to con-
clude that the fault being imaged is an
intrinsic fault.
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1.1.2 High-Resolution Electron Microscopy

1.1.2.1 Introduction

Among all the techniques used to obtain
structural information of materials, high-
resolution electron microscopy (HREM)
has the great advantage that it yields
information about the bulk structure,
projected along the direction of electron
incidence at a resolution comparable to the
interatomic distances. This enables the
study of complicated and artificial struc-
tures, crystal defects, precipitates and so
forth, down to the atomic level. It is our
belief that in the future to come, when
materials research will gradually evolve
into materials design and microstructures
into nanostructures, the disposal of a high-
resolution electron microscope yielding
quantitative structural information at the
subangstrom level will be indispensable.

By combining the information from
different projections one can in principle
obtain three-dimensional structural infor-
mation. For instance, in the case of
silicium, a resolution of 0.1nm allows
observation of the crystal along seven
different zone axes.

Recent technological improvements
allow one to obtain a resolution of about
0.1 nm, so that it will become possible to
‘see” the individual atomic columns of
which matter is constituted. However, the

potential power of the technique is still
severely limited by the problem of quanti-
tative interpretation of the images. For
instance, the use of computer simulation
images requires much a priori knowledge,
which makes HREM very dependent on
other techniques. The situation can be
compared with the early days of X-ray
diffraction when the power of the tech-
nique became obvious but the applications
were limited by lack of interpretation.
Recent developments make it possible to
retrieve the object structure directly from
the electron micrographs. In this way
HREM becomes much more powerful
and independent. We will discuss future
prospects in this direction and we will also
show that the ultimate resolution is finally
limited by the object itself.

1.1.2.2 Principles of Image
Formation

Basic Principles

Let us first consider, as an illustrative
example, the simplest imaging device: the
camera obscura. This is a black box with a
pinhole (Fig. 1). The object, represented by
the function f'(x), is projected through the
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Figure 1. The simplest imaging device: the projection
box.

pinhole (aperture) to the image (for sim-
plicity we take the function and the camera
to be one-dimensional). A point x in the
image gets contributions from an area of
the object as seen through the window.
This can be mathematically expressed as

Sim() = Ja(x’ _f() dy’ (1)

where a(x) is the aperture function, which
is equal to one in the aperture and zero
elsewhere. Equation (1) is the definition of
a convolution product

Jim = a(x) x f(x) (2)

If we take the Fourier transform of Eq. (2),
we obtain

fim(8) = alg)f(g) (3)
i.e. the Fourier transform of a convolution
product is the product of the Fourier trans-
forms. g is the spatial frequency. This is
illustrated on the right-hand side of Fig. 2.
a(g) is usually called the (modulation)
transfer function or MFT of the imaging
device. It is shown schematically in Fig. 3.

Every imaging device can be character-
ized by its transfer function (band filter),
which describes the magnitude with which
a spatial frequency g is transferred through
the device. The noise, N, is also indicated.

Resolution

Usually, the resolution of the instrument p
is defined from the cut-off 1/p between the
signal and noise beyond which no spatial
information is transferred. This is the type
of resolution in the sense as defined by
Rayleigh. The Fourier transform of the
transfer function to real space is usually
called the impulse response function (IRF).
It is the generalization of the aperture func-
tion of the camera obscura. It is a sharply
peaked function which represents the image
of a point object. The width of the IRF is
also related to the Rayleigh resolution. The
sharper the IRF, the better the resolution.
This is demonstrated in Fig. 4. If the trans-
fer function is known, the original image
can be restored up to the resolution p by
dividing by a(g). This is called image
restoration or deblurring. If an imaging
device consists of a series of subdevices,
the total transfer function is the product
of the transfer functions of the subdevices.

1.1.2.3 The Electron
Microscope [1]

Transfer Function

The image formation in an electron micro-
scope is a coherent process, so that the
object function as well as the transfer
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Figure 2. Mathematical formulation of the image formation in a projection box in real space (left) and

reciprocal space (right).

functions are complex functions with an
amplitude and a phase component. The
transfer function now has a particular
physical meaning.

The wavefunction ¥ (R) at the exit face
of the object can be considered as a planar
source of spherical waves (Huyghens

principle) (R is taken in the plane of the
exit face). It thus acts as a diffraction
grating. According to Fraunhofer’s dif-
fraction theory the complex amplitude of
the diffracted wave in the direction given
by the reciprocal vector g (or spatial fre-
quency) is given by the Fourier transform
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1/ p g

Figure 3. Transfer function.

of the object function, i.e.
P(g) = Fep(R) (4)

Now the objective lens is placed behind the
object. Hence it focuses each parallel dif-
fracted beam into another point of the
focal plane, whose position is given by the
reciprocal vector g characterizing the dif-
fracted beam. Thus the back focal plane of
the objective lens contains the Fourier
transform of the object. In an electron
microscope it is possible to change the lens
settings so as to image the focal plane
directly. In this way one can see the diffrac-
tion pattern, given by |1p(g)]?. If the object
is periodic, such as a crystal, the diffraction
pattern will consist of sharp spots. A con-
tinuous object will give rise to a continuous
diffraction pattern. In the second stage of
the imaging process, the back focal plane
acts, in its turn, as a set of Huyghens
sources of spherical waves which interfere,
through a system of lenses, in the image
plane. This stage in the imaging process is
described by an inverse Fourier transform
which reconstructs the object function
¥(R) (usually enlarged) in the image
plane (Fig. 5). The intensity in the image
plane is then given by |[¢(R)?].

In practice, by inserting an aperture in
the focal plane of the objective lens, it is
possible to obtain an image in which only
selected beams contribute (see Sec.
1.1.2.5). By selecting only one beam, all
interference disappears and the image
shows only contrast proportional to the
local intensity of that particular diffraction
beam. This mode of imaging is called
diffraction contrast (see Sect. 1.1.1 of this
Chapter).

The electron microscope however is not
a perfect imaging device. On passing
through the objective lens, each electron
beam g (i.e. the spatial frequency g)
undergoes a phase shift and an amplitude
reduction (damping). Hence the transfer
function takes the form

T(g) = A(g) exp[—ix(g)]|D(e, 4.8)  (5)
x(g) is the phase shift. 4(g) describes the
effect of the beam selecting aperture and
the damping. For a derivation of the exact
expression, see Appendix A. The wave-
function at the image plane is now given by

B(R) = Fp'T(g)y/(g) (6)
and the image intensity by
I(R) = |o(R) (7)

Equation (5) is called the coherent
approximation; it is valid for thin objects.
For thicker objects one uses the concept
of transmission cross-coefficient (TCC).
Here, the Fourier components of the
image intensity are given by

1(g) = Fy(I(R))

= Jw(g +&) (g +¢ .8 (g)dg
(8)

with 7 the TCC which describes how the
beams g’ and g+ g’ are coupled in the
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Figure 4. Image formation through a pinhole (impulse response function). From top to bottom: original image
(Centre for Electron Microscopy, Antwerp); Gaussian pinholes with different sizes; blurred image, deblurred
image.
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Figure 5. Schematic representation of the image
formation by the objective lens in a transmission
electron microscope. The corresponding mathematical
operations are indicated (see text with R = (x,y) and
G = (u,v)).

Fourier component /(g). For a derivation
of Eq. (8) see Appendix A.

The total image formation process is
shown schematically in Fig. 6.

Impulse Response Function
As explained in Sec. 1.1.2.2 the image

transfer can also be described in real

Object ®(R)

ILRF. t(R)

Figure 6. Schematic
representation of the whole
image formation process in the
electron microscope.

Image | ®(R)*t(R) IZ

space as a convolution product
»(R) * 1(R) )

where 1)(R) is the object wave in real space
and ¢(R) is the Fourier transform of the
transfer function. For a hypothetical ideal
pointlike object, ¥(R) would be a delta
function or ‘impulse’ so that #(R) = #(R),
that is, the microscope would reveal 1(R),
which is therefore called the impulse
response function. This is the equivalent
of the window function in Fig. 2. If the
transfer function was constant (i.e., per-
fectly flat) over the whole spatial frequency
range, the impulse response would be a
delta function so that ¢(R) = ¢(R), that
is, the wavefunction in the image plane
represents exactly the wavefunction of
the object. In a sense the microscope is
perfect. However, in practice the transfer
function cannot be made arbitrarily flat as
is shown in Fig. 7. The impulse response
function is still peaked as shown in Fig. 8.

Hence, as follows from Eq. (9), the
object wavefunction @(R) is then smeared
out (blurred) over the width of the peak.
This width can then be considered as a
measure for the resolution in the sense as
originally defined by Rayleigh. The width
of this peak is the inverse of the width
of the constant plateau of the transfer

BN
A

®(R)
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Figure 8. Impulse response function (imaginary part)
corresponding to the transfer function of Fig. 6.
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function in Fig. 7. From another point of
view one can argue that if all the spatial
frequencies have the same phase shift, the
information is transferred forward and
keeps a point-to-point relation to the
object.

However, the information beyond this
plateau is still contributing to the image
but with a wrong phase. It is scattered
outside the peak of the impulse response
function and thus redistributed over a
larger area in the image plane.

Imaging at Optimum Focus:
Phase Contrast Microscopy

In an ideal microscope, the image wave-
function would exactly represent the object
wavefunction, and the image intensity for
a pure phase object function would be

= W(R)|* = |explig(R)]]* = 1

(10)

that is, the image would show no contrast.
This can be compared with imaging a glass
plate with variable thickness in an ideal
light microscope.

Assuming a weak phase object (WPO)
one has ¢(R) < 1 so that

Y(R) =~ | +ip(R) (1)

The constant term 1 contributes to the
central beam (zeroth Fourier component)
whereas the term i mainly contributes to
the diffracted beams. If the phases of the
diffracted beams can be shifted over n/2
with respect to the central beam, the ampli-
tudes of the diffracted beams are multi-
plied by exp(in/2) =i. Hence the image
term ip(R) becomes —p(R). It is as if the

[B(R)|*
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object function had the form
P(R) = 1 — ¢(R) ~ exp[—¢(R)]

that is, the phase object now acts as an
amplitude object. The image intensity is
then

|B(R)I* = 1 — 2¢(R) (12)

which is a direct representation of the
phase of the object. In light microscopy,
this has been achieved by F. Zernike using
a quarter-wavelength plate.

In electron microscopy, phase contrast
imaging can be achieved by making the
transfer function as constant as possible.
From Eq. (37) it is clear that oscillations
occur due to spherical aberration and
defocus. However, the effect of spherical
aberration which, in a sense, makes the
objective lens too strong for the most
inclined beams, can be compensated some-
what by slightly underfocusing the lens.
The optimum defocus value (also called
Scherzer* defocus) for which the plateau
width is maximal, is given by

e = —1.2(\C,)"/* = 1.2 Sch (13)

with 1Sch = (ACS)'/ 2 the Scherzer unit,
with )\ the electron wavelength and C,
the spherical aberration. Typical values
are A =2pm (300keV) and C; =l mm,
yielding e, = —54 mm.

The transfer function for this situation
is depicted in Fig. 7. The phase shift x(g) is
nearly equal to —n/2 for a large range of
spatial coordinates g. The Scherzer plateau
extends nearly to the first zero at a spatial
frequency

g~ 1507 AN (14)

*Named after Otto Scherzer who was the first to
describe the image formation in the electron micro-
scope in this way [1].

In this mode one can image directly the
phase of the object. Now a thin material
object acts as a phase object (see Appendix
B) in which the phase is proportional to the
electrostatic potential of the atoms pro-
jected along the viewing direction. Hence,
if the object was very thin, optimum focus
imaging would directly reveal atoms as
dark areas, and empty spaces as light.
The details are explained in Sec. 1.1.2.6.
However, this argument only holds for
distances which are well above the point
resolution of the microscope. Further-
more, the thickness up to which an object
can be considered as WPO is unrealisti-
cally small (e.g., 1 nm) and is rarely met in
practice.

Resolution of the Electron
Microscope

In principle the characteristics of the
electron microscope can be completely
defined by its transfer function, that is,
by the instrumental aberrations. However,
a clear definition of resolution is not
easily given for an electron microscope.
For instance, for thick specimens, there
is not necessarily a one-to-one corre-
spondence between the projected struc-
ture of the object and the wavefunction
at the exit face of the object, so that
the image does not show a simple
relationship.

If one wants to determine a ‘resolution’
number, this can only be meaningful for
thin objects. Furthermore one has to dis-
tinguish between point resolution (or struc-
tural resolution), as the finest detail that
can be interpreted in terms of the structure,
and the information limit, which is the



finest detail that can be resolved by the
instrument, irrespective of a possible
interpretation.

As explained in Sec. 1.1.2.6, the electron
microscope in the phase contrast mode
at optimum focus directly reveals the
projected potential, that is, the structure,
of the object, provided the object is very
thin. All spatial frequencies g with a
nearly constant phase shift are transferred
forward from object to image. Hence
the point resolution can be obtained
from the first zero of the transfer function
(14) as
D, = é ~ 0.65C*AY* = 0.65Gl (15)
Gl = C§/4)\3/4 is called the Glaser unit. The
point resolution is also equal to the ‘width’
of the impulse response function. The
information beyond p; is transferred with
a non-constant phase and, as a conse-
quence, is redistributed over a larger
image area.

The information limit can be defined
as the finest detail that can be resolved by
the instrument. It corresponds to the
maximal diffracted beam angle that is
still transmitted with appreciable intensity,
that is, the transfer function of the micro-
scope is a spatial band filter which cuts
all information beyond the information
limit, For a thin specimen, this limit is
mainly determined by the envelope of
chromatic aberration (temporal incoher-
ence) and beam convergence (spatial
incoherence) (see Appendix A). In princi-
ple, beam convergence can be reduced
using a smaller illuminating aperture and
a larger exposure time. If chromatic
aberration is predominant, the damping
envelope function is given by Eq. (40),
from which the information limit can be
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estimated as

1 maanN!?
/)l—g— 5

The information limit is usually smaller
than the point resolution. Typical values
are A=2pm (300keV), C,=lmm,
A =5nm, p; = 0.2nm, and p; = 0.13nm.
The point resolution can be improved by
reducing C, and reducing A (i.¢., increasing
the voltage). The information limit can be
improved by improving the coherence and
reducing A.

(16)

1.1.2.4 Resolution Limits [2]

The electron microscope can be considered
as an information channel that transfers
information from the object to the obser-
ver. The channel can be considered as
consisting of four subchannels, each of
which has a transfer function that limits
the resolution.

These are schematically represented in
Fig. 9. We will discuss each of the four
different subchannels in more detail.

The Atom

The electron interacts with the electrostatic
potential of the atom. A typical electro-
static potential of an atom has a Gaussian-
like shape. The average width is of the
order of 0.05-0.1 nm. The Fourier trans-
form of the potential is also Gaussian
shaped, and is called the scattering factor.
The atom itself can be considered as the
ultimate probe with which the object can
be sampled. So the final resolution in the



118

High-Resolution Electron Microscopy

atom

object

electron
|/ Y

detector

]

Figure 9. Transfer functions of the subchannels in the
electron microscope.

sense of Rayleigh will always be of the
order of 0.1 nm. Furthermore, the thermal
atom motion causes the scattering factor
to decrease by the so-called Debye—Waller
factor, which even reduces the resolution.

The Object

In practice the imaging in the electron
microscope is two-dimensional whereas
the object itself is three-dimensional. In a
sense the three-dimensional structure is
forced into a two-dimensional imaging
process. This also has an effect on the
resolution. The conservation of energy
requires that the wave vector of the elec-
trons should be on the Ewald sphere.
Hence the scattered intensity is reduced
with increasing distance from the origin.

Figure 10. Schematic representation of electron
scattering at a configuration of two atoms connected
by a spring.

The ultimate resolution limit imposed by
the object can be estimated as follows. By
studying an object one is in fact interested
in knowing the configuration of atoms.
However, in order to get information with
sufficient detail, the incident electron has to
approach the atoms closely so that it can
transmit energy, change the configuration,
and destroy the coherence. This poses ulti-
mate intrinsic limits to the resolution. We
will demonstrate it in a very simplified way.

Consider two neighboring atoms con-
nected by a spring (Fig. 10). The energy
transferred by the incident electron is given
by the formula

_A£_4_msin2 4
E M 2

with M the mass of the target atom. The
diffraction angle is related to the resolution
by the Bragg formula

A

p:sinH

(17)

(18)

The energy of the spring considered as a
harmonic oscillator is given by

h k
=5\ (19)



with
dK
T dr
K is the Coulomb force and
2m

k (20)

(21)

Finally one obtains, using Egs. (17)—(21),
for the ultimate resolution

€R

p= ?% (22)
with Rp the Bohr radius, Z the atomic
number, and ¢ a configuration constant
approximately equal to 1.5. Hence, the
electrons that carry out information
beyond p will transfer energy to the system
and are lost for coherent imaging. The
ultimate resolution for coherent imaging
is thus of the order of 0.1nm for light
atoms and 0.05nm for heavy atoms.
Note also that this limit is independent of
the type of the imaging particles.

The Electron Microscope

The ultimate resolution is determined by
the subchannel with the worst resolution.
Thus far, the weakest part has been the
electron microscope itself.

As shown in Sec. 1.1.2.3 the point reso-
lution pg of the electron microscope can be
improved by reducing the spherical aber-
ration constant C, and/or by increasing the
voltage. However, since C; depends mainly
on the pole piece dimension and the mag-
netic materials used, not much improve-
ment can be expected. Hence, at present,
all high-resolution electron microscopes
yield comparable values for C; for com-
parable designs. Furthermore, the effect of
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C, on the resolution is rather limited. In
the far future, a major improvement can be
expected by using superconducting lenses
or microlenses.

Another way of increasing the resolution
is by correcting the third-order spherical
aberration by means of a system of quad-
rupole, hexapole, and/or octupole lenses [3].

Increasing the voltage is another way of
increasing the resolution. However, apart
from the increased cost, increasing the
voltage might increase the displacive radia-
tion damage of the object, especially for
light atoms.

A promising way of increasing the reso-
lution is by restoring the information that
is present between pg and p; and that is still
present in the image, albeit with the wrong
phase. For this purpose, holography com-
bined with image processing will be indis-
pensable. In that case, the resolution will
be determined by py. p can be improved
drastically by using a field emission gun
(FEG) which reduces the spatial as well as
the temporal incoherence. Taking all these
considerations into account, an ultimate
resolution of the electron microscope of
0.1 nm is within reach even at intermediate
voltages.

Since resolution is a trade-off between
signal and noise, some improvement can
still be expected by reducing the noise.
Specimen noise (inelastic scattering) can
be reduced by energy filtering and the
recording noise can be improved by using
slowscan CCD cameras. However, if we
assume that the total transfer function is
Gaussian, an improvement in the signal-
to-noise ratio from 20 to 100 only results in
an improvement of the resolution with
25%. Ultimately, one cannot avoid the
Poisson noise due to the counting statistics
(quantum noise or shot noise) which is
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limited by the radiation dose. One cannot
arbitrarily increase the dose without
increasing the recording time and/or
damaging the object. Hence, it can be
expected that the ultimate resolution
attainable with this technique will not
exceed 0.05nm. At that resolution level it
will not be the microscope that will limit
resolution but rather the object itself. It is
worth noticing that when testing the reso-
lution capabilities of an electron micro-
scope close to 0.1nm, it is hard to find
objects with which this resolution can be
demonstrated. Conversely, only suitable
objects can benefit from a further resolu-
tion improvement. Hence we believe that
more effort has to be done to optimize the
specimen preparation technique.

The Recording Device

If one wants to record information up to
the information limit, special requirements
have to be met by the recording device.
First in real space one needs at least three
pixels per resolution unit. In reciprocal
space the finest oscillations of the transfer
functions (Fig. 7) have to be sampled
sufficiently, which means about eight
pixels per oscillation. The oscillations can
be reduced over the whole spatial fre-
quency range by using an optimum focus
called the Lichte focus (see Sec. 1.9 of this
Chapter). Totally this gives a minimum
number of pixels given by the formula

4
N> 30<@>
P1

One now has N > 500 for pg = 0.2 nm and
pr=0.1nm. This requires a very good
recording system. If one uses off-axis

(23)

holography (see Sec. 1.9 of this Chapter)
then this number has to be multiplied by
three. The newest generation of slow-scan
CCD cameras with fiber-coupled scintilla-
tors might be a solution to this problem.
Furthermore, when cooled, these cameras
are able to detect nearly all single electrons.

‘Seeing” Atoms: A New Situation

It is clear that with the recent technological
improvements the resolution approaches
the physical limits, which is comparable
to the size of the atoms (strictly speaking
one does not ‘see’ individual atoms but
rather individual columns in projection).
If atoms, the building blocks of matter,
can be seen individually, one can introduce
a new concept of resolution, based on the
information theory of Shannon. In 1965,
Gabor argued that one could not use
information theory for microscopy since
this theory was devised to establish com-
munication between a sender and a recei-
ver which communicated with a common
vocabulary of messages. However, in the
microscope one communicates between an
unknown object and an observer. Since the
object is unknown one cannot define a set
of messages. However, when it is possible
to see the atoms, they can be considered as
messages in the original sense of Shannon
and hence we can use communication
theory. Consider for example the simpli-
fied case depicted in Fig. 11. d is a one-
dimensional periodicity containing atoms.
For each atom the position has to be
determined. The right-hand side shows
the transfer function. It is sampled in
distances 1/d. The total number of degrees
of freedom is equal to the total number of
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Figure 11. Schematic representation of the information content.

spatial frequencies in the transfer function,
given by

l/p d
=r_Z 4
n jd~ (24)
from which
n_1
d p

Hence each unit of length p carries one
degree of freedom. The average informa-
tion of each degree expressed in bits can be
calculated as follows: calling S the signal
and N the noise (Fig. 11), if we consider
the noise as the smallest piece of informa-
tion. The number of bits needed to
describe the signal is then

N+S S
log, V = log, 1+ﬁ

REAL SPACE

Strictly speaking this means that a micro-
scope has an information capacity of one
number per resolution unit. Each number
has on the average log,(1 + S/N) bits of
information (precision). In two dimensions
one can use the same arguments (Fig. 12).
For a resolution p the number of degrees
of freedom per unit area is equal to about
three per p*, which in fact means for an
electron microscope with a resolution of
0.1 nm that one can determine approxi-
mately the coordinates of one atom per
0.01nm?. If one investigates a crystal
viewed along a simple zone axis and the
number of columns in projection is less
than one per pz, the complete structure in
projection can be solved. If, however, the
number of atom columns in projection
exceeds the capacity of the microscope,
as when one investigates a complex zone

RECIPROCAL SPACE

Figure 12. Information content in
two-dimensional images.
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axis or when the object is disordered, then
the capacity of the microscope is exceeded
and the information channel is blocked. In
such a situation a structure cannot be
solved completely and only limited infor-
mation can be obtained from the images. It
is thus more appropriate to regard the
resolution capacity of the electron micro-
scope as the number of data points per unit
area. The situation is comparable to the
case of X-ray diffraction. If the number of
beams exceeds the number of atom coor-
dinates to be determined (usually by a
factor of two to three) then the structure
can in principle be solved completely.

1.1.2.5 High-Resolution
Electron Microscopy
in Practice

The Electron Microscope

The resolution capability of an electron
microscope is related to the size of the
objective pole piece gap and thus also to
the tilting possibilities. In cases where tilt-
ing is not necessary, as often is the case for
the study of biological specimens, one can
use a high-resolution stage with a very
small bore, but without tilting possibilities.
Generally, for materials research, a gonio-
meter stage is indispensable. This can
either be a double tilt or a rotation-tilt
stage, although the former is easier to
use. Moreover, one has to make a com-
promise between the maximal tilt angle
and the resolution. The higher the resolu-
tion, the smaller the tilt angle and the more
patience is required from the operator to
find a suitable orientation. However, at

high voltages (=300keV) it is possible to
combine high resolution with large tilt
possibilities. One can usually choose
between a top entry and a side entry
goniometer stage. The top entry stage
normally yields a higher resolution and
better mechanical stability (less thermal
specimen drift). The side entry stage has
much better possibilities for tilting, heat-
ing, strain experiments, and so on, usually
at the expense of resolution. However,
recently designed side entry stages seem
to compete with top entry stages with
respect to resolution and stability.

For high-resolution work many advan-
tages are offered if the electron microscope
is equipped with an image-intensifying
camera mounted below the photographic
plate holder. This facilitates the observa-
tion of the high-resolution images and the
adjustment of the microscope. A suitable
rule of thumb for making good use of the
camera is that the resolution of the camera,
divided by the primary magnification of the
electron microscope, should be much smal-
ler than the resolution of the electron
microscope. For instance for 300 keV elec-
trons the resolution of the best CCD
camera is of the order of 50 um (mainly
determined by the resolution of the trans-
mission fluorescent screen). Therefore, a
primary magnification of 10° is required
in order that 50pm x 10°% = 0.05nm
should be much less than the resolution of
the electron microscope.

Before starting high-resolution work,
it is necessary to determine the most
important optical parameters of the
instrument for later use in image simula-
tion and reconstruction. For very high
resolution (below 0.2nm) the standard
correction procedure for the aberrations
1s not sufficient, and methods have been



developed for automatic alignment.
Furthermore, the spherical aberration
constant depends on the position of the
specimen in the objective lens. For this
purpose the microscope should be
equipped with a CCD camera and on-line
image-processing capabilities. A series of
images is taken from a thin amorphous
film at different focus values. Each of the
images is then digitized and numerically
Fourier transformed so as to obtain the so-
called diffractogram. Originally, diffracto-
grams were obtained by diffraction with a
laser beam in an optical bench, but due to
the disposal of good CCD cameras and
fast computers this method is not much in
use anymore. The diffractogram represents
the contrast transfer function correspond-
ing with the particular focus. Accurate
values for the spherical aberration con-
stant C, and for the defocus values can
be derived by curve fitting. In this way the
defocus steps can be calibrated. The point
resolution can be measured from the first
zero of the transfer function and from the
damping function. The instrumental reso-
lution, the chromatic aberration, and the
beam convergence can also be determined.

A review of aberrations and their deter-
mination is given by Saxton [4]. Recently,
it has been discovered [5] that third-order
astigmatism, which is usually believed to be
unimportant, may become very important
for very high resolution. The effect of this
astigmatism is not visible in the diffracto-
gram. Recently it has been shown how it
can be measured and corrected [4]. It is
also interesting to note that when holo-
graphic reconstruction methods are used
(see Sec. 1.1.2.6) the microscope has not to
be tuned perfectly since the residual aber-
rations can be corrected for afterwards.
One of the major problems encountered
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in obtaining high-resolution images is the
mechanical stability. During the exposure
(of the order of seconds) the drift of the
specimen has to be much less than the
resolution of the instrument. This can be
overcome somewhat by decreasing the pri-
mary magnification so that the intensity is
increased and the recording time reduced.
The resolution and sensitivity of the
photographic plate or the camera then
are the limiting factors.

The Specimen

Specimens for HREM are prepared using
the same techniques as for usual transmis-
sion electron microscopy, that is, ion beam
milling, chemical and electrolytical thin-
ning, cleavage, crushing, and so forth. The
only requirements are that the specimen
should be sufficiently thin, that is, less than
about 10nm. Furthermore, the specimen
should be sufficiently clean and free of con-
tamination. For instance, when a specimen
such as an alloy is thinned using ion milling,
it can be recommended to finish with a
chemical polishing or plasma cleaning, in
order to remove the amorphous layer.

For brittle specimens, the crushing
method is usually applied. Here the speci-
mens are ground in an agate mortar after
which the powder is suspended in metha-
nol and some drops of this suspension are
deposited on a thin perforated supporting
film.

In cases where cleavage along a required
plane does not occur easily, it might be
worthwhile to grind the specimens at liquid
nitrogen temperature where the material
is more brittle and the cleavage more
isotropic. In cases where the required
cleavage is almost impossible, for example
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when hair-grown crystals have to be
cleaved perpendicular to the hair filaments,
one can try to embed the crystals in an
epoxy resin and to cut them by microtomy.

For details of specimen preparation we
refer the reader to Robards and Wilson [6].

Crystalline specimens with a unit cell
with two large and one small lattice para-
meter are most ideal for HREM. In that
case the reciprocal lattice consists of dense
planes (Laue zones) which are largely
separated. Such crystals can be oriented
with their short axis parallel to the incident
beam so that the nearly flat Ewald sphere
touches the Laue =zone through the
origin (Fig. 13). Hence a large number of
diffracted beams are excited simultaneously
and maximal information is present in the
image. This is shown in Fig. 14. In this
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Figure 13. Formation of the diffraction pattern. The
simultaneously excited electron beams can be used
for image formation.

Figure 14. Typical diffraction pattern as used for
structure imaging. The aperture selecting the contri-
buting beams is also indicated.

situation, the electrons propagate parallel
to a zone axis, that is, parallel to the atom
rows. Only in this way can a possible inter-
pretation of the images in terms of the
projected structure be meaningful. The
same argument holds also for crystals
with defects.

As an example, Fig. 15 shows a sche-
matized model of a dislocation viewed
along the atomic columns.

It is also possible, using an aperture
placed in the focal plane of the objective
lens, to select a particular set of beams
so that the images contain specific

Figure 15. Structure model of a crystal containing a
dislocation viewed along the atomic columns.



information. If the central beam is not
included, these images are called dark field
images. Examples are given in Sec. 1.1.2.7.

When the periodicity along the incident
beam direction is not small, the Laue zones
are not distant from each other so that more
Laue zones are excited at the same time. In
this case, the diffraction pattern also shows
the intersection of the Ewald sphere with
the higher-order Laue zones (HOLZs),
which consist of concentric circles. In that
case the three lattice parameters can be
deduced from one diffraction pattern.

When dealing with a crushed specimen
suspended on holey support film, one has
to search for thin, wedge-shaped flakes,
partly covering a hole of the film. Then
the specimen has to be oriented with the
required zone axis parallel to the incident
beam. However, when the tilt possibilities
are not large (e.g., 10°) the majority of the
specimens cannot be properly oriented,
except when the cleavage is preferentially
perpendicular to the zone axis. It can then
be tried to search for a suitable crystal
particle in diffraction mode. A crystal
with a nearly good orientation can easily
be recognized since in that case the inter-
section of the Ewald sphere with the zeroth
Laue zone is an arc of a circle through the
origin, which, with some experience, can
easily be recognized. The smaller the
radius of curvature of the arc, the closer
to the exact zone orientation. After finding
a suitably thin part with the proper orien-
tation, one has to adjust the focus. When
the specimen is very thin, the zero focus
corresponds to minimal contrast (see Sec.
1.1.2.6). By underfocusing, a bright fringe
appears at the border of the specimen.
Maximal contrast appears close to the
optimum defocus. On going through
focus, the contrast reverses.
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In practice, since the focus is not exactly
known, especially in the case of thicker
specimens, one has to take a series of
images at gradually different focus settings,
recorded approximately around the opti-
mum defocus. This is called a through-
focus series (Fig. 16). When a CCD camera
is available, the number of recorded
through-focus images can usually be
reduced. When dealing with a specimen
that is unstable in the electron beam, the
specimen can be completely destroyed
within a period of seconds. Here a minimal
exposure technique has to be used. In some
cases, only one picture can be taken. Here
also the availability of an image intensifier
allows use of a much smaller beam intensity
and an increase in the time of observation.

A parameter that is difficult to deter-
mine is the specimen thickness. In the case
of a crystalline specimen with a small unit
cell, an estimate of the thickness in thicker
areas can sometimes be obtained from
thickness contours in a two-beam case.
Tilt experiments can also provide some
information. However, in general the
thickness of the foil in thin areas cannot
be measured accurately.

1.1.2.6 Interpretation of
the Images

Intuitively Interpretable Images

Images of Thin Objects

(i) Optimum focus

When the phase change in the phase object
is very small (weak phase object) we can
use expression (56) derived in Appendix B,
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Figure 16. Comparison of
experimental images (top
row) (courtesy of S. lijima)
and computer-simulated
images (bottom row) for
Ting]()Ozg as a function
of defocus.

which can be expanded up to the first

power as
W(R) = 1 +iaV,(R) — u(R) (25)
|4

»(R) is the projected potential of the
object, u(R) is the absorption function.
The Fourier transform, yielding the
amplitude in the back focal plane now
becomes

(g) = b(g) +ioV,(g) — M(g)

with the Dirac function é(g) representing
the transmitted beam.

From Equation (5) the image amplitude
(without aperture) is now

P(R) = Fri(g) ¢

= Fgl6(g) + oV, (g) sin x(g)

— M(g)cos x(g)

+ioV,(g) cos x(g)
+iM(g) sin x(g)]

(26)

i
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At the optimum defocus the transfer func-
tion shows a nearly flat region for which
sin x(g) ~ —1 and cosx(g) =0 for all
contributing beams.

Now Eq. (27) becomes

P(R) = Fglb(g) — oVp(g) —iM(g)]
=1—-0V,(R)—iu(R)

and the image intensity to the first order is
I(R)~ 1 -20V,(R) (28)
At the optimum focus, the electron micro-
scope acts as a phase contrast microscope
so that the image contrast of a thin object
is proportional to its electrostatic potential
Vo(R) projected along the direction of

incidence. This theory can be generalized
for larger phase changes [7].

(i1) Small Defocus

In the absence of apertures and spher-
ical aberration, the image amplitude is



given by
6(R) = Fgexp|-ineA(g))]v(g) (29)

which can be expanded for small defocus
values as

S(R) = Fg[1 — ineA(g”)]e(g)
= P(R) — ineX Fp(g*)U(g)
or explicitly
(R) = P(R) — imeA
« [explomile - RI&)uie) dg

This expression can be transformed ele-
gantly as

1meN
4n?

x [exp[znicg R)ilg) dg

$(R) = Y(R) +——(V?)

- (1 + (7)) ulR)

which for a phase object, where

»(R) = expliocV(R)], becomes
B eATAV,(x,y)
H(R) = (1 LIt
ieo?
4n
x explioV,(R)]

(r®))

So that the image density |¢(R)|* is given
to the first order by

eAaAV,(R)
2n

with A the Laplacean operator. Since the
projected V,(R) is of electrostatic origin, it
obeys the Poisson equation,

AV,(R) = —4np,(R)

I(R) =1 (30)
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so that finally

I(R) = 1 + 2edap,(R) (31)

The image contrast is thus proportional to
the projected charge density; it disappears
in the Gaussian image plane (¢ = 0) and
reverses with the sign of the defocus. This
effect can be used to find approximately
the zero focus. Expression (31) is the
projected charge density (PCD) approxi-
mation [8]. Its validity is restricted to
resolutions for which the spherical
aberration is not too important. It is
interesting to note that exactly at zero
focus the image of the phase object shows
no contrast. The only contrast observed
stems from absorption, by which electrons
are removed from the image formation.
The use of a small objective aperture
which eliminates electrons from the
imaging process also gives rise to a kind
of absorption contrast. This is the case for
biological samples, ‘colored’ with heavy
atoms.

For phase objects at small underfocus,
neglecting the spherical aberration, the
image contrast shows the projected charge
density. For WPOs at optimum defocus,
including the spherical aberration, the
image contrast represents the projected
potential. Although both results are in
fact approximations, it can be concluded
that between zero focus and optimum
defocus, the details of the high-resolution
images of very thin objects which are
larger than the point resolution can be
interpreted intuitively in terms of the pro-
jected specimen structure. For instance,
groups of atoms are imaged with black
contrast, and holes are imaged with white
contrast. Examples are given in Sec.
1.1.2.7. However, these cases are rarely.
met in practice.
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Interpretation Using Channeling

The wavefunction in the image plane can
be written as the convolution product of
the wavefunction at the exit face of the
crystal with the impulse response function
1(R) of the electron microscope, Eq. (9).
When we now use the expression derived
for the wavefunction using the channeling
theory (Eq. (89)), we obtain

w(R):1+Z[exp<:—iE£i %)-1]

x Ci¢;(R — R;) x 1(R) (32)

The summation runs over the columns 7 of
the object, parallel to the electron beam
with position R;. Each column contributes
with a localized wavefunction ¢; multiplied
with a factor which varies with depth. The
periodicity is inversely proportional to E;
which is related to the mass density of the
column.

If the microscope is operated close to
optimum focus and in axial mode, the
impulse response function is sharply
peaked (see Fig. 8). If also the localized
wavefunction ¢, is highly peaked and if the
distance between the columns is larger
than the width of the impulse response
function 7(R), the overlap between convo-
lution products ¢; = t(R) of adjacent sites
can be assumed to be small so that the
image intensity is

I(R) = [(R)?
. El'Z
~ Z 4¢? sin’ (2E/\)

x |¢(R — R;))  t(R)|? (33)

Each column is thus imaged separately.
The contrast of a particular column
varies periodically with thickness. The

periodicity can be different for different
types of columns. It is interesting to note
that the functions ¢; as well as #(R) are
symmetrical around the origin, provided
the objective aperture is centered around
the optical axis. Hence, the image of a
column is rotationally symmetric around
the position R; of the columns. The inten-
sity at R; is a maximum or a minimum. The
positions of the columns can thus be deter-
mined from the positions of the intensity
extrema.

When the resolution of the microscope
is insufficient to discriminate the individual
columns, or the focus is not close to opti-
mum, the overlap between the convolution
products of adjacent columns cannot be
avoided and the interpretation of the con-
trast is not straightforward. In that case
image simulation or object wave recon-
struction is required.

Building Block Structures

It often happens that a family of crystal
structures exists, all members of which
consist of a stacking of simple building
blocks but with a different stacking
sequence. This is for instance the case in
mixed-layer compounds, polytypes, peri-
odical twins, and substitutional columnar
binary alloys. In a broader sense also
periodic interfaces such as antiphase
boundaries and crystallographic shear
planes can be considered as building
block systems.

In order to characterize the stacking
sequence of unknown members of the
family, one can search for a member with
a known stacking sequence. Often, this will
be a simple member, the structure of which
has been determined by X-ray diffraction.



From this system, high-resolution micro-
graphs are taken. The image characteris-
tics of each type of building block in these
images are then called the imaging code:
since the high-energy electrons are scat-
tered forward, it can be expected that the
image of a building block will not be
severely affected by its surroundings, pro-
vided the crystal is not too thick and the
focus is close to the optimum focus. Now
the building blocks of the unknown
members are imaged with the same code,
provided the experimental conditions
(thickness, focus) are the same, so that
the stacking sequence can be read directly
from the high-resolution micrographs. In
general, the technique of the imaging code
is applicable up to crystal thicknesses of a
few tens of nanometers, and also to other
imaging modes.

Examples are given in Sec. 1.1.2.7.

A particular type of building block
structure is the substitutional binary alloys
with a column structure. In a substitu-
tional binary alloy, the two types of
atoms occupy positions on a regular lat-
tice, usually face-centered cubic (f.c.c)).
Since the lattice, as well as the types of
the atoms and the average composition, is
known, the problem of structure determi-
nation is then reduced to a binary problem
of determining which atom is located at
which lattice site.

Particularly interesting are the alloys in
which columns are found parallel to a
given direction and which consist of
atoms of the same type. Examples are the
gold—manganese system and other f.c.c.
alloys [9]. If viewed along the column
direction, which is usually [00 1], the
high-resolution images contain sufficient
information to determine unambiguously
the type and position of the individual
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columns. Even if the resolution of the
microscope is insufficient to resolve the
individual lattice positions, which have a
separation of about 0.2 nm, it is possible to
reveal the minority columns only, which is
sufficient to resolve the complete structure.
This can be done using dark field super-
lattice imaging, which is explained in the
next section.

Selective Beam Imaging

In some cases it is possible to reveal only
specific information by selecting the
appropriate beams for contributing to the
image function. For this one uses an aper-
ture in the focal plane of the objective lens.
An illustrative example is the imaging of
binary f.c.c. alloys with a column structure
as described above.

Let us consider a binary system consist-
ing of columns of A atoms, which are the
majority atoms, and columns of B atoms.
We call the fraction of columns respec-
tively my and mp; ms +mg =1 with
ma > mp.

Using the channeling theory (see
Appendix D), it can then be shown that,
when the structure is imaged without the
f.c.c., reflections and overlap between
images of adjacent columns can be
neglected, the image intensity is given by

(BRI ~ Y _ailAG(R ~ R) + 1(R)]* (34)

where A¢ = ¢y — pa With ¢4 (respectively
¢g) the wavefunctions of the columns A
(respectively B), and o; the Flynn occupa-
tion parameters defined as o; = my fora B
column and o; = —mg for an A column.
The interpretation of Eq. (34) is now as
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follows. The atom columns are imaged as
bright peaks, the shape of the peaks being
given by |Aé(R)  t(R)|* and the height of
the peaks being proportional to m3 for the
B-atom columns and n73 for the A-atom
columns.

As a consequence, the minority atoms B
are imaged as brighter dots than the
majority atoms A, the ratio of brightness
being equal to (ma/mg)’. When this
ratio is large (e.g., >10), the minority
atoms will be visible as bright dots on a
dark background. An example of this
high-resolution dark field imaging
applied to the AusMn alloy is given in
Sec. 1.1.2.7. A nice example of selective
beam imaging is the quantitem technique
developed by Ourmadz and co-workers
in which they use reflections that are
sensitive to the composition of atom
columns so as to obtain images from
which the composition can be deduced by
pattern recognition techniques [10]. A
survey of selective imaging methods
and applications is given by Amelinckx
et al. [11].

Image Simulation

When no obvious imaging code is avail-
able, the interpretation of high-resolution
images often becomes a precarious prob-
lem since, especially at very high resolu-
tion, the image contrast can vary
drastically with focus. As a typical and

historical example, high-resolution images

obtained by lijima for the complex oxide
Ti,Nb;,O,s with a point resolution of
approximately 0.35am (100keV) are
shown in Fig. 16 (top row). The structure
as reproduced in Fig. 17 consists of a

Figure 17. Schematic representation of the unit cell
of Ti;Nb;;Oy consisting of corner-sharing NbOy
octahedra with the titanium atoms in tetrahedral
sites.

stacking of corner- or face-sharing NbOQyq
octahedrons with the titanium atoms in
tetrahedral positions. High-resolution
images are taken at different focus values,
causing the contrast to change drastically.
The best resemblance to the structure can
be obtained near the optimum Scherzer
defocus, which is —90 nm in this particular
case. However, the interpretation of such
high-resolution images never appears to be
trivial. The only way out remains in the
comparison of the experimental images
with those calculated for various trial
structures. During the imaging process,
the electrons undergo three distinct inter-
actions, as shown schematically in Fig. 6.
Each of these interactions is known and
can be calculated by the computer. First,
the electron scatters dynamically in the
crystal. This interaction can be simulated
using the multislice methods explained in
Appendix C. However, as an input to the
program one has to specify all the object
parameters such as the unit cell, position
and type of cell atoms, thermal atom
factors (Debye—Waller factors), object
orientation, and thickness. The result of
this calculation yields the wavefunction at



the exit face of the crystal. In a second step,
the formation of the image in the electron
microscope is simulated using the expres-
sions of Appendix A. Here all the instru-
mental parameters have to be specified.
Finally, the electron intensity in the
image plane is calculated by squaring the
wavefunction, and is displayed as a half-
tone image on a high-resolution screen or
printer. Different commercial software
packages exist for high-resolution image
simulations. References are given in
Ref. [12].

In practice, the image simulation
requires a number of input parameters
that are not accurately known such as
specimen thickness and focus value. For
this reason one often compares whole
series of images simulated for various
focus values and/or specimen thicknesses
which are compared with experimental
through-focus and/or through-thickness
series, which makes the method more
sensitive. As an example, the series of
images simulated using the model of
Fig. 17 for different focus values are
shown in Fig. 16 (bottom row) and reveal
a close resemblance to the experimental
images. Other examples are given in Sec.
1.1.2.7.

A drawback of the present use of
image simulation is that the image com-
parison is usually done visually and not
quantitatively or in a recursive refinement.
As a consequence, the technique can only
be used if the number of plausible
models is very limited. This makes
HREM, despite its potential power for
structure investigation, very dependent
on other techniques. Direct methods,
which extract the information from the
images in a direct way, are much more
promising.

131

High-Resolution Electron Microscopy

Quantitative Interpretation

In principle one is usually not interested in
high-resolution images as such but rather in
the structure of object under study. High-
resolution images are then to be considered
as data planes from which the structural
information has to be extracted in a quan-
titative way. Ideally this should be done as
follows. One has a model for the object and
for the imaging process, including electron
object interaction, microscope transfer, and
image detection (see Fig. 6). The model
contains parameters that have to be deter-
mined by the experiment. The parameters
can be estimated from the fit between the
theoretical images and the experimental
images. The goodness of the fit is evaluated
using a matching criterion (fitness function)
such as likelihood, least squares, or the R
factor (cf. X-ray crystallography). This
fitness function can be calculated for
each set of parameters. The optimal fit
then yields the best estimates for the para-
meters of the model that can be derived
from the experiment. In a sense one is
searching for a maximum (or minimum)
depending on the criterion) of the fitness
function in the parameter space, the dimen-
sion of which is equal to the number of
parameters. The object model that
describes the interaction with the electrons
consists of the assembly of the electrostatic
potentials of the constituent atoms. Since
for each atom type the electrostatic poten-
tial is known, the model parameters then
reduce to atom numbers and coordinates,
thermal atom factors, object thickness, and
orientation (if inelastic scattering is
neglected).

The imaging process is characterized by
a small number of parameters such as
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defocus, spherical aberration etc, that are
not accurately known.

A major problem is now that the struc-
tural information of the object can be
strongly delocalized by the image transfer
in the electron microscope (see Figs. 6 and
8), so that the influence of the model para-
meters is completely scrambled in the high-
resolution images. Due to this coupling, one
has to refine all parameters simultaneously.
As a consequence, the dimension of the
parameter space is so high that one cannot
use advanced optimization techniques such
as genetic algorithms, simulating annealing,
tabu search, and so forth, without the risk of
ending in local maxima. Furthermore, for
each new model trial one has to perform a
tedious image calculation so that the proce-
dure is very cumbersome. The problem is
only manageable if the object is a crystal
with a very small unit cell and hence a small
number of object parameters [13], or if
sufficient prior information is available to
reduce the number of parameters drastically.

In X-ray crystallography, this problem
can be solved by using direct methods
which provide a pathway towards the
global maximum. In HREM, this problem
can be solved by deblurring the informa-
tion, so as to unscramble the influence of
the different object parameters of the
image, and thus reduce the dimension of
the parameter space. As described in Sec.
1.1.2.4 this can be achieved by high-voltage
microscopy, by correcting the microscopic
aberrations, or by holographic techniques.

Holographic techniques have the parti-
cular advantage that they first retrieve the
whole wavefunction in the image plane,
that is, amplitude and phase. In this way,
they use all possible information. In the
other two methods, one starts from the
image intensity only, and the information

that is predominantly present in the phase
is inevitably missed. Ideally, high-voltage
microscopy or aberration correction is
combined with holography, which leads
to the advantage of holography but with
a broader field of view. However, this has
not yet been done in practice.

As explained above, the whole purpose
is to unscramble the object information in
the images, that is, to undo the image
formation process, so as to uncouple the
object parameters and to reduce the size of
the parameter space. In this way it is
possible to reach the global maximum
(i.e., best fit) which leads to an approxi-
mate structure model.

This structure model then provides a
starting point for a final refinement by
fitting with the original images (i.e., in
the high-dimensional parameter space)
that is sufficiently close to the global max-
imum so as to guarantee fast convergence.

It has to be noticed that, in the case of
perfect crystals, one can combine the infor-
mation in the high-resolution images with
that of the electron diffraction pattern,
which in principle can also be recorded
by the CCD camera. Since the diffraction
patterns usually yield information up to
higher spatial frequencies than the images,
one can in this way extend the resolution to
beyond 0.1 nm. Recently [14] very accurate
structure refinements for unknown struc-
tures have been achieved with R factors
below 5% (which is comparable to X-ray
results). Here one starts with a first esti-
mate of the structure as obtained from exit
wave reconstruction (see further) which is
then refined iteratively by using the elec-
tron diffraction data.

We will now focus attention mainly on
the holographic reconstruction methods.
Undoing the scrambling from object to



image consists of three stages. First, one has
to reconstruct the wavefunction in the image
plane (phase retrieval). Then one has to re-
construct the exit wave of the object. Finally,
one has to ‘invert’ the scattering in the object
so as to retrieve the object structure,

Phase Retrieval

The phase problem can be solved by holo-
graphic methods. Two methods exist for
this purpose: off-axis holography and focus
variation, which is a kind of in-line holo-
graphy. In off-axis holography, the beam is
split by an electrostatic biprism into a
reference beam and a beam that traverses
the object. Interference of both beams in the
image plane then yields fringes, the posi-
tions of which yield the phase information.

/ POTENTIAL
. map

High-Resolution Electron Microscopy 133
In order to retrieve this information, a very
high-resolution camera (CCD), a powerful
image processor, and a field emission
source to provide the necessary spatial
coherence are needed. Details are given in
Sec. 1.9 of this Chapter. In the focus varia-
tion method, the focus is used as a control-
lable parameter so as to yield focus values
from which both amplitude and phase
information can be extracted [15, 16].
Images are captured at very close focus
values so as to collect all the information
in the three-dimensional image space. Each
image contains linear information and non-
linear information. By Fourier transform-
ing the whole three-dimensional image
space, the linear information of all images
is superimposed onto a sphere in reciprocal
space, which can be considered as an Ewald
sphere (Fig. 18). By filtering out this linear

MICROSCOPE

RECONSTRUCTION

(elimination microscope)

A reciprocal
defocus series

Figure 18. Schematic

representation of the phase
retrieval procedure. The
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paraboloid which contains the
linear information in reciprocal

space is also shown.
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information the phase can be retrieved (for
details, see Appendix E).

The results indicate that focus variation
is more accurate for high spatial frequen-
cies whereas off-axis holography is more
accurate for lower spatial frequencies but
puts higher demands on the number of
pixels in order to detect the high spatial
frequencies.

The choice of focal values can also be
optimized using a criterion that is cur-
rently used for experiment design [17]. It
turns out that the choice of equidistant
focus values is close to optimal.

Exit Wave Reconstruction

The wavefunction at the exit face of the
object can be calculated from the wave-
function in the image plane by applying
the inverse phase transfer function of the
microscope. This procedure is straight-
forward, provided the proper parameters
describing the transfer function (such as
the spherical aberration constant C,). Asis
clear from Fig. 7, the retrieval of infor-
mation up to the information limit
requires that the transfer function should
be known with high accuracy. This
requires an accuracy of less than 0.0l nm
for Ci and 5nm for e. Two remarks have to
be made:

(i) In principle the alignment of the
microscope has not to be perfect pro-
vided the amount of misalignment is
known so that it can be corrected for
in the reconstruction procedure.

An accurate measurement of C; and e
can only be performed if sufficient
information is known about the object
(e.g., a thin amorphous object can be

(i)

considered as a white noise object)
from which the transfer function can
be derived from the diffractogram.

We are thus faced with an intrinsic
problem. An accurate determination of
the instrumental parameters requires
knowledge of the object. On the other
hand, the most interesting objects under
investigation are not fully known. Hence,
the fine tuning of the residual aberrations
has to be done on the object under study,
based on some general assumptions that
do not require a knowledge of the speci-
men structure such as the crystal potential
is real, the structure is atomic, and so
forth.

For instance, if the object is thin, the
phase of the exit wave would show the
projected potential which is sharply
peaked at the atom columns. If the exit
face is reconstructed with a slight residual
defocus, these peaks would be blurred.
Hence it can be expected that the peakiness
of the phase is maximal at the proper
defocus. The peakiness can be evaluated
by means of an entropy using the Shannon
formula. If the object is thicker, it can be
expected from the channeling theory (see
Eq. (89)) that the amplitude of ¥ — 1 is
peaked, and thus also its entropy. Hence, a
weighted entropy criterion may be used for
fine tuning the residual defocus. This is
shown in Fig. 19. Details are given by
Tang et al. [18].

Figure 20 shows the exit wave of an
object of YBa,CuyOy4 (high T, super-
conductor), which was historically the
first experimental result obtained with the
focus variation method. The microscope
used was a Philips CM20 ST equipped
with field emission source and (1024)
slow-scan CCD camera developed in the
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Figure 19. Global exit wave entropy as a function of
residual defocus for TiO;.

framework of a Brite—Euram project. In
this case, the object is very thin so that
the phase of the wavefunction directly
reveals the projected potential of the
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atom columns. The oxygen columns adja-
cent to the yttrium columns could just be
observed, proving a resolution of 0.13 nm.
However, when the object is thicker, the
one-to-one correspondence between the
wavefunction and the projected structure
is not so straightforward due to the
dynamic diffraction. This is shown in
Fig. 21 for Ba,NaNbsO,s where the
heavy columns (barium and niobium) are
revealed in the amplitude and the bright
columns (sodium and oxygen) in the phase.
In this case it is necessary to invert in a
sense the electron scattering in the object
so as to retrieve the projected structure.
It should be noted that, once the exit
wave is reconstructed, it is in principle
possible to recalculate all the images of

Figure 20. Experimentally
reconstructed exit wave for
YBa,CuOq. Top,
reconstructed phase; center,
structure model; bottom,
experimental image.
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Figure 21. Experimentally
reconstructed exit wave
for BazNaNbSOIS.

(a) Amplitude. (b) Phase.
The structure model is
shown at the top.

the Fourier series which perfectly fit in the
experimental images within the noise level.
Hence, the reconstructed exit wave con-
tains all experimentally attainable object
information. In practice, one thus will not
have to store the original images but only
the reconstructed wave.

Structure Retrieval

The final step consists of retrieving the
projected structure of the object from the
wavefunction at the exit face. If the object
is thin enough to act as a phase object, the
phase is proportional to the electrostatic
potential of the structure, projected along
the beam direction so that the retrieval is

straightforward. If the object is thicker, the
problem is much more complicated. In
principle one can retrieve the projected
structure of the object by an iterative
refinement based on fitting the calculated
and the experimental exit wave. As
explained earlier, this is basically a search
procedure in a parameter space. However,
since the exit wave is much more locally
related to the structure of the object than
the original images the dimension of the
parameter space is much smaller. Never-
theless it is possible to end in a local
maximum [19]. However, an approximate
structure can be obtained in a more direct
way. If the object is a crystal viewed along
a zone axis, the incident beam is parallel to
the atom columns. It can be shown that in



such a case the electrons are trapped in
the positive electrostatic potential of
the atom columns, which then act as
channels, This effect is known as electron
channeling, and is explained in detail in
Appendix D.

If the distance between the columns is
not too small, a one-to-one correspon-
dence between the wavefunction at the
exit face and the column structure of the
crystal is maintained. Within the columns,
the electrons oscillate as a function of
depth without, however, leaving the col-
umn. Hence the classical picture of elec-
trons traversing the crystal as plane-like
waves in the direction of the Bragg beams,
which historically stems from X-ray
diffraction, is in fact misleading. It is
important to note that channeling is not
a property of a crystal, but occurs even
in an isolated column and is not much
affected by the neighboring columns, pro-
vided the columns do not overlap. Hence
the one-to-one relationship is still present
in the case of defects such as translation
interfaces or dislocations provided they are
oriented with the atom columns parallel to
the incident beam.

The basic result is that the wavefunction
at the exit fact of a column is expressed as
Eq. (88):

W(R,2) = 1 + [exp (—inEEOkz)~l] 5(R)
(35)

This result holds for each isolated column.
In a sense, the whole wavefunction is
uniquely determined by the eigenstate
¢(R) of the Hamiltonian of the projected
columns and its energy F, which are both
functions of the ‘density’ of the column
and the crystal thickness z. It is clear from
Eq. (35) that the exit wave is peaked at the
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centre of the column and varies periodi-
cally with depth. The periodicity is inver-
sely related to the ‘density’ of the column.
In this way the exit wave still retains a one-
to-one correspondence with the projected
structure. Furthermore, it is possible (see
Eq. (82)) to parameterize the exit wave in
terms of the atomic number Z and the
interatomic distance d of the atoms con-
stituting the column. This enables the
projected structure of the object to be
retrieved from matching with the exit
wave.

In practice it is possible to retrieve the
positions of the columns with high
accuracy (0.01 nm) and to obtain a rough
estimate of the density of the columns.
Figure 22 shows a map of the projected
potential Ba,NaNbs;O s retrieved from the
exit wave of Fig. 21. Here all atoms are
imaged as white dots with an intensity
roughly proportional to the weight of the
columns.

In principle, the three-dimensional
structure can be retrieved by combining
the information from different zone
orientations. However, the number of
‘visible’ zone orientations is limited
by the resolution of the electron micro-
scope.

Intrinsic Limitations

It should be noticed that HREM, even
combined with quantitative reconstruction
methods, has its intrinsic limitations.
Although the positions of the projected
atom columns can be determined with high
accuracy (0.01 nm), the technique is less
sensitive for determining the mass density
of the columns and to get information
about the bonds between atoms. Besides,
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-
Figure 22, Experimentally é

retrieved structure for | ®)
BazNaNbsols.

c :

due to the high speed of the electrons, they
only sense a projected potential so that
no information can be obtained about the
distribution of this potential along the
columns. Three-dimensional information
can be obtained though, by investigating
the same object along different zone axes.
Furthermore, as shown above, for some
object thicknesses, atom columns can
become extinct so that they cannot be
retrieved from the exit wave.

1.1.2.7 Case Studies

Alloys

As shown in Sec. 1.1.2.6, substitutional
alloys with a column structure are parti-
cularly interesting subjects for HREM
studies. If the alloys are oriented with the
columns parallel to the electron beam, one
can directly visualize the minority columns
by imaging without the reflections of
the basic f.c.c. structure. The diffraction

pattern and the beam selecting aperture
are shown in Fig. 23,

Figure 24 shows a historical experimen-
tal high-resolution micrograph of Auy;Mn
viewed along the (100) zone using this
dark field superlattice imaging mode

Figure 23. Diffraction pattern and beam selecting
apertures for f.c.c.-based substitutional alloys. For
high-resolution dark field imaging, the f.c.c. reflec-
tions are excluded and only the superstructure reflec-
tions of one reciprocal unit cell are included.



Figure 24. Dark field superlattice image of the alloy
AuyMn viewed along the column direction [001].
The manganese columns are selectively imaged as
bright dots [9].

using a 200 keV electron microscope with
only 0.25nm point resolution. The bright
dots correspond to the configuration of
manganese columns. Two orientation
variants are present, as well as a number
of antiphase boundaries.

The imaging characteristics in which the
manganese atoms are revealed as bright
dots are preserved even close to the inter-
faces. This allows deduction of the dis-
placement vectors and the orientations
directly from the images.

([ 1! o !t
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Figure 25 shows a large period anti-
phase boundary superstructure 2223
(Fig. 25b). Discommensurations can be
seen in a dark field line resolution image
(Fig. 25c). Figure 26 shows different
models of superstructures in the alioy
NbsGa,;. Figure 27 shows high-resolution
images of NbsGa;; viewed along [110].
From the high-resolution images it can
be concluded that the actual structure
is that corresponding to the model in
Fig. 26a.

Crystal Defects
Grain Boundaries

In non-coherent interfaces the atom col-
umns can still be imaged by white dots but
the exact positions of the dots do not
necessarily correspond with the exact posi-
tions of the columns so that comparison
with simulated images is necessary. An
example is given in Fig. 28 showing a
(310) X = 5 grain boundary in germanium
viewed along [00 1] which contains many
dislocations. In agreement with the

Figure 25. [100] zone of the
f.c.c.-based ordered alloy AusMn [20].
The long period antiphase boundary
superstructure 2223 is revealed in the
high-resolution image (b). A dark field
line resolution image is used to

reveal the discommensurations

(i.e., the 3-strips).
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Figure 26. Models of very long period superstructures
in the alloy NbsGa,;; it contains two types of anti-
phase boundaries [21}].

channeling theory (see Appendix D) the
intensity at the column positions varies
periodically with depth. Figure 28a shows
an image revealing black columns. Figure
28b shows white columns. The point reso-
lution of the microscope in this case is
about 0.15nm (400keV). If possible it is
preferable to search for a thickness for
which the columns are imaged as white
dots.

Stacking Faults

A stacking fault tetrahedron (SFT) is
a defect which is limited by (111)

Figure 27. High-resolution images of NbsGas
viewed along the [110] zone {21]. The types of
antiphase boundaries as well as their stacking
sequences can be read directly from the image.
The actual structure corresponds to the model in
Fig. 26a [21].

stacking fault planes intersecting stair red
dislocations, and have been observed in
low stacking fault energy metals and
alloys.

In ion-implanted and annealed silicon,
the sizes of the SFTs are suitable to be
studied the HREM. When the images are
taken with the incident beam along the
[110] zone axis, the images show a ‘V’-
shaped discontinuity in the rows of bright
dots. Within the ‘V’ zone, the dots are
displaced due to the fact that the atom
columns are intersected by two stacking
faults. The displacement of the dots is
related to the length of the displaced
column, that is, the displacement is largest
near the point of the ‘V’ and dissipates
gradually with increasing distance from
this point. Image calculations were
performed with the real space method
for tetrahedra of different sizes using
atom positions derived from models in
the literature, for the vacancy type of
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Figure 28. X = 5 grain boundary in germanium. (Courtesy of J. L. Rouviére.)

tetrahedron as well as for the interstitial
type. Approximately 10° atoms are
involved in the calculations. By carefully
looking along a glancing incidence (Fig.
29), it is clear that the displacement of the
bright dots in the interstitial type is direc-
ted towards the point, whereas in the
vacancy type the displacement is in the
opposite sense, in agreement with experi-
ment. Hence it can be concluded that the
stacking fault tetrahedra in silicon are of
the vacancy type.

This is a very fortunate case where only
two different atomic models are possible
which are so different that discrimination
can be made on the basis of only a few
image simulations.

Dislocations

When edge dislocations are parallel to the
zone axis of observation and when the
resolution of the microscope is sufficient
to discriminate the individual atoms the
dislocation structure can be unravelled.
Figure 30a represents the high-resolution
image of a 60° dissociated dislocation in
silicon. The dislocation is dissociated in
two Schockley partials, one 90°D and
one 30°D enclosing an intrinsic stacking
fault. From the high-resolution image one
can estimate the dissociation energy. The
main feature is that the partials consist of
well-defined structural units (Fig. 30b) that
also occur in the dislocation cores. Figure
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EXPERIMENTAL

INTERSTITIAL TYPE

Figure 29. SFT in silicon, viewed under glancing
angle. Top: experimental image. Middle: simulated
image for a vacancy-type SFT. Bottom: simulated
image for an interstitial-type SFT. From this is can be
concluded that the SFT is of the vacancy type.
(Courtesy of W. Coene and H. Bender.)

30c shows the dislocation structures occur-
ring at a X’ = 9 grain boundary in silicon.
Here also the same structural units can be
observed.

Figure 31 shows an image of a 60°
dislocation in silicon dissociated into a
30° and a 90° partial. In Fig. 31 one can
observe, in between the partials, different
sets of 0.33nm fringes. What is particu-
larly interesting is that these fringes are
caused by (42 3)/3 reflections that are for-
bidden in the bulk crystal. Hence they
reveal detailed information about the dis-
location cores at the subnanometer level.
For details the reader is referred to Alex-
ander et al. [22].
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Figure 30. A 60° dissociated dislocation in silicon.
(Courtesy of J. Thibault-Desseaux.)

Figure 31. Image of a dissociated 60° dislocation in
silicon. In between the 30° and 90° partials, different
sets of 0.33nm fringes are visible. These fringes are
caused by forbidden (42 2)/3 reflections and contain
high-resolution information about the dislocation
cores. (Courtesy of J. C. H. Spence.)



Figure 32. Mixed-layer compounds As,Te;(GeTe),
with (a) n = Sand (b) n = 9{23]. The image forn = $§
is compared with a structure model in the inset. The
As,Te; layer can clearly be distinguished from the
(GeTe) block.

Mixed-Layer Compounds

Mixed-layer compounds can generally be
defined as an alternation of stackings of
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blocks of different types in which the
number of blocks and the stacking sequence
can be altered by changes in composition
and so forth. In a sense, a system with
periodical translation interfaces or twin
planes can also be considered as a mixed-
layer compound. In the literature a more
restricted definition can be found in which
each type of the basic block has to occur as
an existing member of the series.

Figure 32 reveals a mixed layer com-
pound of the series As,Te;(GeTe), with
n =5 (Fig. 32a) and n = 9 (Fig. 32b). The
systems consist of a regular stacking of
As,Tey layers with (GeTe) blocks. A struc-
ture model is shown in the inset.

Figure 33 shows an example of an
incommensurate stacking in the mixed-
layer compound SnTaS;. This is a com-
pound of the type MTS;, which in this case
consists of a stacking of hexagonal Ta$§,
and tetragonal SnS layers. The image
simulations which confirm the model are
shown in Fig. 34. Figure 35 shows the
images of a homologous series of poly-
typoids of the type La,Ti,_s0Os,. The
layer sequences can be deduced directly
from the images.

Figure 33. Incommensurate mixed layer compound of the type MTS;(SnTaS;) consisting of the juxtaposition
of hexagonal TaS, and tetragonal SnS layers [24]. (a) The diffraction pattern is the superposition of the
diffraction patterns of the separate layers, supplemented with double diffraction spots. (b) High-resolution

image along the normal to the layer plane.
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Figure 34. Image simulation corresponding with the experimental situation of Fig. 33 (24]. Images are
simulated for various focus values Af and crystal thickness H (in nm). The best match is obtained for

Af = —60nm and ¢ = 10.6 nm.

High- T, Superconductors

Figure 36 shows a high-resolution image

of superconducting BiSrCaO viewed along
[100],. From this it can be seen that the
cleavage of the crystal has taken place in
between two adjacent BiO layers.

Figure 37 shows a high-resolution
image of superconducting YBa,Cu;07 .
(CuQ), double layers as well as CuO single
layers can be identified. Cleavage has
taken place at the CuO layer.

From these images it is clear that if the
electron beam is nearly parallel to the sur-
faces of the crystal, the profile of the surface
can be visualized directly. This enables one to
characterize the surface layers and to detect
surface relaxation or modification effects.

Minerals

Figure 38 shows the image of the mineral
hollandite (Ba,MngO,s) viewed along
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Figure 35. High-resolution
image along the [1 120]*
zone of a homologous series
of polytypoids with
composition La,Ti,_ 03,
[25]. The layer sequences in
the different polytypoids, as
deduced from the image and
from the diffraction pattern,
are indicated.

Figure 36. Superconducting BiSrCaO
compound exhibiting a cleaved surface
[26]. The high-resolution image along
{100], proves that cleavage took place
between the two adjacent BiO layers in
the structure.
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Figure 37. Superconducting Y Ba,Cu;04. The (CuO),
double layer as well as (CuO) single layers can
be identified. Cleavage has taken place at the CuO
layer [27].

[010]. In this case the images can be inter-
preted intuitively in terms of the projected
potential (see Sec. 1.1.2.6). As can be
judged by comparing with the structure
model in Fig. 39, a planar defect can be
identified. The image matches with the
computer simulation (inset).

SR S £ £F £X & ] i

Figure 38. [0 1 0] zone image of the mineral hollandite
(Ba,MngO,,). The barium ions in the channels of the
MnO- framework are revealed as dark dots. A planar
defect consisting of double channels is present. In the
top right corner a computer simulated image is
superposed on the actual image [28].

Carbon Structures

Figure 40 shows the image of a Cy crystal
(‘bucky balls’) containing intersecting
intrinsic stacking faults. A model for the
intersection is shown in the inset.

Figure 41 shows an image of a rubidium
intercalated Cg, crystal (RbgCgg). Also in
this case the contrast can be explained
intuitively in terms of the projected
structure (Fig. 42). Figure 43 shows a
high-resolution image of straight and
helix-shaped nanotubes in which the
(000 1) graphite planes are resolved.

Cage Structures

Figures 44 and 45 show images of the cage
structure of NagSiy, and Na,Sijz viewed
along (001), respectively (011). Since
these structures are very open, the images
can be directly interpreted in terms of the
projected structure viewed along these
directions (Fig. 46, respectively Fig. 47).

1.1.2.8 Appendices

Appendix A: Image Formation [1]

The wavefunction in the image plane is
given by
$(R) = F' A(g) exp[—ix(¢)]

x D(a, A, g)Fyth(R) (36)
A(g) represents the physical aperture with
radius g4 selecting the imaging beams, thus

I forlgl<g

Ag) = { !
0 for gl > g4
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Figure 40. [1 10] zone image of a Cg, crystal contain-
ing intersecting intrinsic stacking faults. Along the
intersection line a row of partial vacancies is formed
as represented schematically in the inset [29).

Figure 39. Schematic
representation of the hollandite
structure along the [0 1 0] zone. A
double row planar defect as seen in
Fig. 38 is generated by removing
the slice indicated by dotted lines
and closing the gap [28].

The total phase shift due to spherical
aberration and defocus is

x(g) =3inC N g + meg® (37)

with C the spherical aberration coeffi-
cient, e the defocus, and X the wavelength.
The imaging process is also influenced by
spatial and temporal incoherence effects.
Spatial incoherence is caused by the fact
that the illuminating beam is not parallel
but can be considered as a cone of
incoherent plane waves (beam conver-
gence). The image then results from a
superposition of the respective image
intensities. Temporal incoherence results
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Figure 41. (a) Rubidium intercalated Cgy crystal
(RbgCeg). The circular bright areas image the Cgqy
molecules: the dark areas represent the Rb ions. The
structure is imaged along the [1 1 1] zone; (b) different
defocus [30}].

from fluctuations in the energy of the
thermally emitted electrons, in the fluctua-
tion of the lens currents, and of the accel-
erating voltage. All these effects cause the
focus € to fluctuate. The final image is then

Figure 42. Structure model,
projected along the {111]
of the intercalate RbsCe.
This model can be
compared with the image
of Fig. 41b [30].

Figure 43. High-resolution images of carbon nano-
tubes [31]. (a) Straight tube; only the (000 1) planes
are resolved. (b) Helix-shaped nanotubes; (0001)
planes are resolved.

the superposition (integration) of the
images corresponding with the different
incident beam directions K and focus
values e, that is,

I(R) = [ jK I6(R, K, ) 1, (K)fr(e) K de
(38)

denotes that the

where (R, K, ¢)
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Figure 44. High-resolution image of the cage struc-
ture NagSigg [32]. The bright dots correspond to open
channels in the structure. The inset is an averaged
image.

wavefunction in the image plane also
depends on the incident wavevector K
and on the defocus e. f;(K) and f.(¢) are
the probability distribution functions of
K, respectively e. Expressions (36), (37),
and (38) are the basic expressions describ-
ing the whole real imaging process. They
are also used for the computer simulation
of high-resolution images. However, the
computation of Eq. (38) requires the
computation of ¢(R) for a large number
of defocus values and beam directions,
which in practice is a horrible task. For
this reason, Eq. (38) has often been
approximated. In order to study the
effect of chromatic aberration and beam
convergence (on a more intuitive basis)

rm ={
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Figure 45. High-resolution image of the cage struc-
ture Na,Sijz, [32]. The bright dots correspond to
open channels in the structure. The inset is an
averaged image.

we assume a disk-like effective source
function

for K| < /A
0 for |K|>a/A

Figure 46. Model for the structure of NagSiy as
viewed along the same zone as the image of Fig. 44
[32].
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Figure 47. Model for the cage structure Na,Sijs
which can be compared with the image of Fig. 45[32].

with « the apex angle of the illumination
cone. We assume further that the integra-
tions over defocus and beam convergence
can be performed coherently, that is, over
the amplitudes rather than the intensities.
This latter assumption is justified when the
intensity of the central beam is much larger
than the intensities of the diffracted beams
so that cross-products between diffracted
beam amplitudes can be neglected. We
assume that the defocus spread fr(e) is a
Gaussian centered on ¢ with a half-width
A. Assuming the object function (R) to
be independent of the inclination K, which
is only valid for thin objects, one then
finally finds that the effect of the chromatic
aberration, combined with beam conver-
gence, can be incorporated by multiplying
the transfer function with an effective aper-
ture function

D(a, A,g) = B(A, g)C{a, A, g) (39)
where
B(A,g) = exp(— 1 A° A%g?) (40)

representing the effect of the defocus

spread, and

C(OL, Aag) = 2J1(|q|)/|q|

with J; the Bessel function and |g| =
(g - ¢)'/?, which may be a complex function
for a complex ¢

(41)

g = 2nagle + A&’ (\C, — inA?)] (42)

C(wo, A, g) represents the combined effect

of beam convergence and defocus spread.
The total image transfer can now be

described from Eqs. (5) and (6) as

¢(R) = Fr' A(g) exp[—ix(g)]

x D(a, A, g)Fp(R) (43)

that is, the effective aperture yields a
damping envelope function for the phase
transfer function. Other approximations
for including the effects of beam conver-
gence and chromatic aberrations [33] using
a Gaussian effective source lead to a simi-
lar damping envelope function. Experi-
mentally obtained transfer functions
confirm this behavior.

In Eq. (43) the incoherent effects are
approximated by a coherent envelope
function. Hence it is called the coherent
approximation. It is usually valid for thin
objects. A full treatment of incoherent
effects requires the calculation of the
double integral in Eq. (38). Another
approximation which is valid for thicker
objects is based on the concept of the TCC
[34]. Here it is assumed that beam conver-
gence and defocus spread do not influence
the diffraction in the object. Hence in Eq.
(5) they do not appear in the object wave-
function but only in the phase transfer
function. Now the wavefunction in the
image plane (Eq. (5)) can be written as

®(R,K,c) = Fg'T(g,K,e)v(g) (45)



with
T(g7 Kv 6) = A(g) exp[_iX(g7 K’E)] (46)

Substituting Eq. (8) into Eq. (38) then
yields, after Fourier transforming,

I(g) = F[I(R)]
= Jw(g +&) (g +4. &)W () dg

(47)
with

jf@+g9ma

x T(g K,e)dK de

T(g+8.¢) = J

(48)

7 is the transmission cross-coeflicient. It
describes how the beams g’ and g + g’ are
coupled to yield the Fourier component g
of the image intensity.

Appendix B: Scattering of an
Electron in a Thin Object

We will now follow a classical approach.

The non-relativistic expression for the
wavelength of an electron accelerated by
an electrostatic potential E is given by

h
A V2meE (49)
with /4 the Planck constant, m the electron
mass, and e the electron charge.

During the motion through an object
with local potential V(x,y,z) the wave-
length will vary with the position of the
electron as

N (x,p,2)

h
B V2melE + V(x,y,z)]

For thin phase objects and large accelerat-
ing potentials the assumption can be made

(50)
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that the electron keeps traveling along the
z direction so that by propagation through
a slice dz the electron suffers a phase shift:

dx(x,y,2)
dz dz
= 2157 — 2T[T
dz E+V(x,y,z) )
A ( VE

~oV(x,y,z)dz (51)

with
oc=n/\E
so that the total phase shift is given by

nmwzaij%nwzanum)
(52)

where V(x,y) represents the potential
of the specimen projected along the z
direction,

Under this assumption the specimen
acts as a pure phase object with transmis-
sion function

P(x,y) = explioV,(x, y)] (53)
When the object is very thin, one has
P(x,y) = 1 +ioVy(x,y) (54)

This is the weak phase approximation.
The effect of all processes, prohibiting
the electrons from contributing to the
image contrast, including the use of a finite
aperture can in a first approximation be
represented by a projected absorption
function in the exponent of Eq. (53), so that

w(x7Y) = exp[iUVp(xvy) - /J'(xay)] (55)
or
Y(R) = explioV},(R) — p(R)] (56)

with R = (x,y) the vector in the plane
perpendicular to z.
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Appendix C: Scattering of an
Electron in a Thick Object [35]

Optical Approach:
The Multislice Method [36]

Although the multislice formula can be
derived from quantum mechanical princi-
ples, we follow a simplified version of the
more intuitive original optical approach. A
more rigorous treatment is given in the
next section.

Consider a plane wave, incident on a
thin specimen foil and nearly perpendicu-
lar to the incident beam direction z. If the
specimen is sufficiently thin, we can assume
the electron to move approximately paral-
lel to = so that the specimen acts as a pure
phase object with transmission function
Eq. (53):

Y(x,y) = explioVy(x, p)]

A thick specimen can now be subdivided
into thin slices, perpendicular to the
incident beam direction. The potential
of each slice is projected into a plane
which acts as a two-dimensional phase
object. Each point (x,y) of the exit
plane of the first slice can be considered
as a Huyghens source for a secondary
spherical wave with amplitude ¥(x,y)
(Fig. 48).

Now the amplitude (x’,y’') at the
point (x’,y’) of the next slice can be
found by the superposition of all spherical
waves of the first slice, that is, by integra-
tion over x and y, yielding

P(x',y") = jexp[iavp<x, Ml

« M dx dy
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Figure 48. Schematic representation of the propaga-
tion effect of electrons between successive slices of
thickness e.

When |x — x| € e |y — ¥'| < ¢, with ¢ the
slice thickness, the Fresnel approximation
can be used, that is,
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x J explioV,(x, y)]
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which, apart from constant factors, can be
written as a convolution product:

¢(X7 _}’) = E[iUVp(x’ y)]

x explink(x* + y?) /€] (57)



where the convolution product of two
functions is defined as (in one dimension)

F(x) * g(x) = jf(x’)g(x —x)dy’

If the wavefunction at the entrance face is
¥(x,y,0), instead of a plane wave one has
for the wavefunction at the exit face

’(/)(X,y, 6) :{W«’Ca Vs 0) CXp[iO' Vp(X7 y)]}

% explink(x* 4+ y)/€] (58)

This is the Fresnel approximation in which
the emerging spherical wavefront is
approximated by a paraboloidal wavefront.

The propagation through the vacuum
gap from one slice to the next is thus
described by a convolution product in
which each point source of the previous
slice contributes to the wavefunction In
each point of the next slice. The motion
of an electron through the whole specimen
can now be described by an alternating of
phase object transmissions (multiplica-
tions) and vacuum propagations (convolu-
tions). In the limit of the slice thickness
tending to zero, this multislice expression
converges to the exact solution of the non-
relativistic Schrédinger equation in the
forward-scattering approximation.

In the original multislice method one
used the Fourier transform of Eq. (58)
where the real space points (x, v) are trans-
formed into diffracted beams g and where
convolution and normal products are
interchanged, that is,

V(g €) = {¥(g,0) xexplioV,]}

x expling’e/k] (59)

where V, are the structure factors (Fourier
transforms of the unit cell potential).

The wavefunction at the exit face of the
crystal can now be obtained by successive
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application of Eq. (58) or (59). This can
either be done in real space (Eq. (58)) or in
reciprocal space (Eq. (5§9)). The major part
of the computing time is required for the
calculation of the convolution product,
which is proportional to N> (N is the
number of sampling points (real space) or
beams (reciprocal space)).

Since the Fourier transform of a con-
volution product yields a normal product
(with calculation time proportional to N),
a large gain in speed can be obtained by
alternatively performing the propagation
in reciprocal space and the phase object
transmission in real space [37]. In this
way the computing time is devoted to the
Fourier transforms and is proportional to
Nlog, N.

Another way of increasing the speed is
in the so-called real space method [38].
Here the whole calculation is done in real
space using Eq. (58) but the forward scat-
tering of the electrons is exploited so as
to calculate the convolution effect of the
propagation only in a limited number of
adjacent sampling points. In this way, the
calculation time is proportional to N. This
method does not require a periodic crystal
and is thus suitable for calculation of
crystal defects.

Quantum Mechanical Approach [35]

As is clear from Eq. (5) the calculation of
the image wavefunction ¢(R) requires the
knowledge of #(R), that is, the wavefunc-
tion at the exit face of the object. This can
be obtained by numerically solving the
Schrédinger equation in the object. For
convenience we will now follow a simpli-
fied more intuitive approach, which leads
to the correct results.
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If we assume that the fast electron, in
the direction of propagation (z axis)
behaves as a classical particle with velocity
v = hk/m we can consider the z axis as a
time axis with

mz
hk (60)
Hence we can start from the time-depen-

dent Schrodinger equation

%R 1) = Hy(R.1) 1)
with

hZ
H === Ag = eU(R,1) (62)

with U(R, ) the electrostatic crystal poten-
tial, m and k the relativistic electron mass
and wavelength, and Ay the Laplacian
operator acting in the plane (R) perpendi-
cular to z.

Using Eq. (60) we then have

% _ 4;_]{ (Ag + V(R,2)¥(R, )
(63)

with

V(R,z) = 272 U(R,z) (64)

This is the well-known high-energy equa-
tion in real space which can also be derived
from the stationary Schrédinger equation
in the forward-scattering approximation
{35].

In HREM of crystalline objects, the
object is usually oriented along a zone
axis, so that the electrons are traveling
parallel to the atom columns. If the
periodicity along the column direction is
not too large (less than 1-2nm), the fast
electron does not feel this variation. In fact

it sees the potential as constant along z. In
other words, the effect of higher-order
Laue zones or upper layer lines is negligi-
ble. This is the projection approximation,
which is usually valid for most high-

resolution conditions, Now Eq. (63)
becomes
QAR (et VIRUR,Z) (69)
with

2me 1 [*
V(R) = 5 EL U(R,z)dz (66)

the potential, averaged (projected) along z.
In the time-dependent Schrodinger picture
(Eq. (61)) the electron walks as a function
of time in a two-dimensional potential of
projected atom columns.

Equation (65) can also be transformed
to reciprocal space.

Assuming V(R) to be periodic in two
dimensions, we can expand it in Fourier
series,

V(R)=>_ V,exp2nig-R (67)
g

with g in the zone plane. V, are structure
factors. Similarly we have

=2 %l)

1,(z) represents the amplitude of the beam
g ata depth z. Substitution in Eq. (65) then
yields

exp 2nig - R (68)

wg =in [ZS wg z

+Z _ely(z ]

(69)
with
S = g /2k (70)

the excitation error, which is approxi-
mately equal to the distance between the



reciprocal node g and the Ewald sphere,
measured along z. This system of coupled
first-order differential equations was
derived in the early 1960s (for references,
see Van Dyck [35]). Most of the image
simulation programs are based on a
numerical solution of the dynamical
equation in real space (Eq. (65)) or
reciprocal space (Eq. (69)), or a combina-
tion of both.

The dynamic relation (63) or (65) is a
mixture of two equations, each represent-
ing a different physical process.
O(R, z) i )

oz amk SRVR2)
is a complex diffusion-type of equation,
which represent the free electron propaga-
tion and whose solution can be represented
formally as

(71)

1Apz
uR:) =ew (P Juro) ()
It can also be written as a convolution

product:

ink R’

(R, z) = exp . * (R, 0) (73)

The other part of Eq. (65) is a differ-
ential equation,
OY(R, z) i

5 —ameV RW(R,2)

which represents the scattering of the
electron by the crystal potential. It can be
readily integrated in real space, yielding

Y(R,z) = exp (L V(R)z) Y(R,0) (79)

(74)

4nk

with V(R) the projected potential as
defined in Eq. (66).

The wavefunction in real space is
multiplied with a phase factor which is
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proportional to the electrostatic potential
of the object projected along z and which
is called the phase object function. The
solution of the complete dynamic equation
(65) can be written formally as

oA+ VRIE (R0

(76)

iRz exp

For the explicit calculation, slice methods
are the most appropriate. Here the crystal
is cut into thin slices with thickness ¢
perpendicular to the incident beam.

If the slice thickness is sufficiently small,
the solution within one slice is approxi-
mated by

1
w(R,Z + E) =CXp (ﬁ ARE>

X exp (ﬁ V(R)e) (R, z)

or explicitly

YR,z +¢€)

. [exp(;‘;i; V(R)e)wm,m] (77)

This expression is essentially the same as
Eq. (58), which was derived from an opti-
cal approach. In practice the wavefunction
is sampled in a network of closely spaced
points. At each point the wavefunction
is multiplied with the phase object func-
tion. Then the wavefunction is propagated
to the next slice, and so on. Calling N
the number of sampling points, the
phase object requires a calculation time
proportional to N?. In reciprocal space,
direct and convolution products are
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interchanged, yielding
Yoz +€)

x [zz <expﬁ V(R)e)*wg(z)] (78)

This expression is the same as Eq. (59).
Now the calculation time of the propaga-
tion is proportional to N, the number of
beams, whereas the scattering in the phase
object gives a calculation time propor-
tional to N2,

In order to speed up the calculation, the
phase object is calculated in real space, and
the propagator in reciprocal space [37].
Between each a fast Fourier transform is
performed, the calculation time of which
is only proportional to Nlog, N. In the
standard slice programs the object is
assumed to be a perfect crystal. Defects
are treated by the periodic continuation
method in which the defect is artificially
repeated so as to create an artificial super-
crystal.

In the real space method, proposed in
[38], the whole calculation is performed in
real space, but due to the forward scatter-
ing of the electrons the propagation effect
is limited to a local area so that the calcu-
lation time remains proportional to N.
This is particularly interesting for treating
extended or aperiodic structures.

Appendix D: Electron Channeling

Principle

Although the slice methods are valuable
for numerical purposes, they do not

provide much physical insight into the
diffraction process. There is need for a
simple intuitive theory that is valid for
larger crystal thicknesses. In our view, a
channeling theory fulfills this need. Indeed,
it is well known that, when a crystal is
viewed along a zone axis, that is, parallel to
the atom columns, the high-resolution
images often show a one-to-one corre-
spondence with the configuration of col-
umns provided the distance between the
columns is large enough and the resolution
of the instrument is sufficient. This is for
instance the case in ordered alloys with a
column structure (see Secs. 1.1.2.6 and
1.1.2.7). From this, it can be suggested
that, for a crystal viewed along a zone
axis with sufficient separation between
the columns, the wavefunction at the exit
face mainly depends on the projected
structure, that is, on the type of atom
columns. Hence, the classical picture of
electrons traversing the crystal as plane-
like waves in the directions of the Bragg
beams which stems from the X-ray
diffraction picture and upon which most
of the simulation programs are based is, in
fact, misleading. The physical reason for
this ‘local’ dynamic diffraction is the
channeling of the electrons along the
atom columns parallel to the beam direc-
tion. Due to the positive electrostatic
potential of the atoms, a column acts as a
guide or channel for the electron [39, 40]
within which the electron can scatter
dynamically without leaving the column
(Fig. 49).

The importance of channeling for
interpreting high-resolution images has
often been ignored or underestimated,
probably because of the fact that, for
historical reasons, dynamic electron dif-
fraction is often described in reciprocal
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Figure 49. Schematic representation of electron
channeling.

space. However, since most of the high-
resolution images of crystals are taken in a
zone axis orientation, in which the pro-
jected structure is the simplest, but in
which the number of diffracted beams are
the largest, a simple real-space channeling
theory yields a much more useful and
intuitive, albeit approximate, description
of the dynamic diffraction, which allows
an intuitive interpretation of high-resolu-
tion images, even for thicker objects.

We will now give a simplified version of
the basic principles of the theory. For more
details the reader is referred to the litera-
ture [40].

Isolated Columns

Consider an isolated column of atoms,
parallel to the electron beam. If we now
consider the depth proportional to the
time, the dynamic equation (65) represents
the walk of an electron in the two-
dimensional projected potential of the
columns.
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The solution can be expanded in eigen-
functions (eigenstates) of the Hamiltonian

. E, z
V(R z) = Z: Cy¢u(R) CXP(—”[E X)
(79)
where
He,(R) = E,6,(R) (80)
with the Hamiltonian
h_z

H=-
2m

Ag — eU(R) (81)

U(R) is the projected potential of the

column,
o B2
2m

(82)

the incident electron energy, and A is the
electron wavelength. For E, < 0 the eigen-
states are bound to the column. We now
rewrite Eq. (79) as

d)(Rv Z) = Z CI’I¢II(R) + Z Cn(/)n(R)

x [exp(—in% ;)—1] (83)

The coefficients C, are determined from
the boundary condition

> Cutu(R) = %(R,0) (84)

In the case of plane wave incidence one
thus has

> Cutn(R) =1 (89)

so that
Y(R,2) =1+ Cytn(R)

ol
x |exp{ —in—

)|

> w
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Only states will appear in the summa-
tion, for which
E)\
|En‘ = T

(87)

These are bound states with deep energy
levels, which are localized near the column
cores. In practice if the atom column is not
too heavy and the distance between
columns not too close (e.g., larger than
0.1nm) only one cigenstate will appear,
which can be compared to the s state of
an atom.
We then have

Y(R,2) = 1+ CH(R)

x [exp(—inEEO ;)—1} (88)

A very interesting consequence of this
description is that, since the state ¢ is
very localized at the atom core, the wave-
function for the total object can be
expressed as a superposition of the indivi-
dual column functions ¢; so that Eq. (88)
in that case becomes

V(R z) =1+ Z Ci¢i(R - R;)

x [exp<—inE£0 §>—1] (89)

where the summation runs over all the
atomic columns of the object, parallel to
the electron beam.

The interpretation of Eq. (89) is simple.
Each column i acts as a channel in which
the wavefunction oscillates periodically
with depth. The periodicity is related to
the ‘weight’ of the column, that is, propor-
tional to the atomic number of the atoms
in the column and inversely proportional
to their distance along the column. The
importance of these results lies in the fact

that they describe the dynamic diffraction
for larger thicknesses than the usual phase
grating approximation and that they
require only the knowledge of one function
¢; per column (which can be tabulated
similar to atom scattering factors or
potentials). Furthermore, even in the
presence of dynamical scattering, the
wavefunction at the exit face still retains
a one-to-one relation with the configura-
tion of columns for perfect crystals as well
as for defective crystals as far as they
consist of columns parallel to the electron
beam. Hence this description is very useful
for interpreting high resolution images.
Equation (89) is valid for light columns,
such as Si(111) or Cu(100) with an accel-
erating voltage up to about 300 keV. When
the atom columns are ‘heavier’ and/or
the accelerating voltage higher or when
the atom columns are very close (0.1 nm),
the basic concept of channeling remains
valid but the expression (89) has to be
modified.

Figure 50 shows the electron density
l(R,1)]* as a function of depth in an
AuyMn alloy crystal for 200keV incident
electrons. The corners represent the
projection of the manganese column. The
square in the center represents the four
gold columns. The distance between adja-
cent columns is 0.2nm. The periodicity
along the direction of the column is
0.4nm. From these results it is clear that
the electron density in each column fluc-
tuates nearly periodically with depth. For
gold this periodicity is about 4 nm, and for
manganese 13nm. These periodicities are
nearly the same as for isolated columns so
that the influence of neighboring columns
in this case is still small. The energies of the
respective s states are respectively about
250 and 80eV.
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It has to be stressed that the derived
results are only valid in a perfect zone axis
orientation. A slight tilt can destroy the
symmetry and excite other, non-symmetric
states, so that the results become much
more complicated. It is interesting to note
that channeling has usually been described
in terms of Bloch waves. However, as
follows from the foregoing, channeling is
not a mere consequence of the periodicity
of the crystal but occurs even in an isolated
column parallel to the beam direction.

In this view, the Bloch wave approach is
only of mathematical importance.

Diffraction Pattern

Fourier transforming the wavefunction
(89) at the exit face of the object yields
the wavefunction in the diffraction plane,
which can be written as

W(g.z) =6(g) + )_exp(-2nig- R)Fi(g, 1)
' (90)

Figure 50. Electron density as a function of

12 nm depth in AuyMn (see text).

In a sense the simple kinematical expres-
sion for the diffraction amplitude holds,
provided the scattering factor for the
atoms is replaced by a dynamical scatter-
ing factor for the columns, in a sense as
obtained in [42] and which is defined by

—inE; =z

z X)—I}Cfﬁ(g)
91

Fi(g.z) = [exr)(

with f;(g) the Fourier transform of ¢;(R).
It is clear that the dynamical scattering
factor varies periodically with depth. This
periodicity may be different for different
columns.

In the case of a monoatomic crystal, all
F; are identical. Hence ¢/(g,z) varies per-
fectly periodically with depth. In a sense
the electrons are periodically transferred
from the central beam to the diffracted
beams and back. The periodicity of this
dynamic oscillation (which can be com-
pared with the Pendeldsung effect) is called
the dynamic extinction distance. It has for
instance been observed in Si(111). An
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important consequence of Eq. (90) is the
fact that the diffraction pattern can still be
described by a kinematical type of expres-
sion so that existing results and techniques
(e.g., extinction rules) that have been based
on the kinematical theory remain valid to
some extent for thicker crystals in zone
orientation.

Parameterization

Suppose all atom potentials would have
the same form multiplied with a constant
proportional to the atomic number Z one
could expect that the eigenstate ¢(r) and
its energy E could scale with Z/d with d
the repeat distance of atoms in the column.
In this way, the wavefunction could be
completely parameterized in terms of
Z/d and Z. Even if Eq. (88) is only qual-
itatively correct, this would allow the posi-
tion of each column to be determined very
accurately, and the ‘weight’ of the column
and the crystal thickness approximately. In
practice it has been found that the bound
state scales with Z'/? for all atoms of the
periodic table (calculated using Smith and
Burge parameters) that £ roughly scales
with Z/d. In this way, a robust parameter-
ization is possible which enables the
retrieval of the projected structure from
matching with the exit wavefunction [43].

Appendix E: Phase Retrieval

Consider an image plane at a particular
focus value for which we want to retrieve
the phase. For convenience we choose
the origin of focus in that plane. Writing
the wavefunction as a Fourier integral,

we have

¥(R,0) = C+J

8#0

#(g) exp(2nig - R) dg

(92)
where ¢(g) are the Fourier components.
We have separated the zeroth-order com-
ponent (constant term).

The wavefunction at a particular focus
value z can be obtained from Eq. (92) by
propagation, that is,

VR = C+ | olg)exp(aris- R)
g

(93)
Three-dimensional Fourier transforming
the image intensity \7,b(R,z)|2 now yields,
using Eq. (93),

2
I(g,€) = CI'8(g) + C*¢(g)6<£ - %)

x exp(—inAg’z) dg

+ ch*(—g)é(HL"z)

2
o
g+g #0

d'ge’(g)o(g + &)

X 6(6 - % (e+g) = g'2]>
(94)

where § are Dirac functionals and g and £
are the conjugates of R and z. The first term
on the right-hand side of Eq. (94) only
yields a contribution in the origin. The
second and third linear terms give
a sharply peaked contribution which is
located on a paraboloid in reciprocal
space which can be considered as the
Ewald sphere in a vacuum (Fig. 18). The
last term gives a contribution which is more
continuously spread through reciprocal
space. It is immediately clear that by select-
ing the information concentrated on the



paraboloid one directly obtains ¢(g) and
¢"(g), so that from Eq. (92) the total wave-
function at focus 0 is retrieved. In principle,
this can be done by taking a nearly contin-
uous series of images at very small focus
intervals, three-dimensional Fourier trans-
forming, and selecting the sphere. However,
this procedure is rather impractical. Hence
we proceed as follows. We take a series of
images at focus values z|,z,,z3,... The
focus interval is of the order of 10nm.
Each of the images /(R,z,) is then trans-
formed into /(g,z,). Finally we calculate
the series

Z I(gv Zn) CXp(-—iTI)\gZZ,,)

In this way, the sphere for £ > 0isin a
sense projected in the plane, apart from a
known weighting factor. We can do the
same for £ < 0. From these data it is easy
to calculate ¢(g). In a sense, all the images
are back propagated to zero focus, where
the linear part of each image superimposes
and increases with respect to the nonlinear
part. However, as seen from Eq. (94), the
integral also gives a contribution to the
sphere which may influence the results.
This contribution can be corrected for by
using Eq. (94) in an iterative way. Another
advantage of this method is that it is
relatively easy to compensate for the effect
of chromatic aberration. It is well known
that chromatic aberration results from a
spread in the focus due to instabilities in
voltage and lens current. Hence the image
intensity is convoluted with a focal spread
function I(R,z) = Ij(R,z) * f(z). In reci-
procal space, the convolution product is a
direct product with the Fourier transform
of £(2)1(g,€) = Io(g, f (€). If the spread
function /" is known, it is easy to compen-
sate for this effect by dividing f(£). Since
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this has to be done only at the sphere,
blowing up effects are largely reduced.
Another advantage of the method is that,
since the contribution of the noise is more
homogeneously distributed in space, the
selection of the sphere automatically
increases the signal-to-noise ratio. In prac-
tice the whole procedure is performed in
two steps. A first approximation of the exit
wave is obtained by the paraboloid
method described above; then this result
is refined using a maximum likelihood
method as proposed by Coene et al. [16].
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1.2 Reflection Electron Microscopy

1.2.1 Introduction

In the early days of electron microscopy,
Ruska [1] attempted to obtain images by
reflecting electrons from the surfaces of
solids, with limited success. The idea was
taken up by several groups in the 1950s
[2, 3] and images of surfaces showing mod-
erately good resolution were obtained.
However, in order to get useful image
intensity, it was necessary to use electrons
scattered at small angles, 5 to 10 degrees,
from the surface so that the images suf-
fered from severe foreshortening. When
SEI (secondary electron imaging) was
developed and gave comparable resolution
with normal beam incidence and no fore-
shortening, the reflection mode fell out of
favor. The reason why it was later revived
was that it was realized that, if the images
were obtained using strong diffracted
beams from crystal surfaces, the image
contrast could be highly sensitive to small
changes in crystal structure, orientation or
composition of the top few atomic layers
of the surface. Thus it could give informa-
tion, not available from SEI, of great value
in surface science.

The first images obtained in 100keV
electron microscopes using strong dif-
fracted beams confirmed the sensitivity of
the method to surface structure [4, 5]. Bulk

crystals were mounted in the usual speci-
men stage of the microscope so that the
electron beam was incident on a flat crystal
surface at a grazing angle of a few degrees.
The refiection high energy electron diffrac-
tion (RHEED) pattern could be observed
in the selected area electron diffraction
(SAED) mode and a strong diffraction
spot (usually the specular beam) could be
chosen to pass through the objective aper-
ture and form the image. The reflection
electron microscopy (REM) imaging mode
could then be likened to that for the so-
called ‘high-resolution’ mode of dark-field
imaging in transmission. For a diffraction
angle of 4, the incident beam is tilted by an
angle of 26 to the axis of the objective lens
and the crystal face is tilted at an angle 8,
so that the diffracted beam passes down the
axis through a centered objective aperture.

Also it was realized that, as in the case
of transmission microscopy, an equivalent
scanning form of imaging (SREM) was
possible. Initially, it was demonstrated
that useful images could be obtained with
medium-energy (5—15keV) electrons in the
scanning mode when the small electron
probe from a field-emission gun was
scanned over a surface and a strong dif-
fracted beam was detected to form the
image [6,7].

For meaningful research in surface
science it is necessary, for most materials,
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to study surfaces prepared and maintained
under ultrahigh vacuum (UHYV) condi-
tions. For imaging with moderate resolu-
tion and medium-energy electrons this
may be achieved by adding a field-emission
gun to an ultrahigh vacuum chamber with
only a simple lens system to focus the
electron probe on the specimen. Standard
specimen manipulators could be used and
the reflection imaging could be combined
with an imaging of the surface using
secondary or Auger electrons or analysis
of the surface composition using AES or
other methods. A number of useful sys-
tems have been developed along these lines
and applied to surface structure problems
[8—10]. However, the spatial resolution
achievable in such systems is limited to
5-10nm. To achieve normal electron
microscope resolutions under clean sur-
face conditions, it is necessary to build a
UHYV specimen environment into a TEM
instrument. By doing this, and providing
a variety of devices for in situ specimen
treatment, Yagi and coworkers [11]
showed that images of clean surfaces
could be obtained with resolutions
approaching 1 nm and other groups have
done likewise [12]. Later it was demon-
strated that a resolution of almost 0.3 nm
could be achieved in a 1MeV electron
microscope [13].

Figure 1. REM image of one-atom high
surface steps on a Pt (11 1) surface.
Arrows indicate the step-down direction.
Circular features, foreshortened to thin
ellipses, are atom-high projections, P, or
depressions, D. Note the intensity changes
across the steps. (Courtesy of T. Hsu.)

The reflection electron microscopy
images obtained in electron microscopes
at 100keV or more make use of diffracted
beams making angles of only a few degrees
with the surface and so are foreshortened
by a factor of 20 to 50 times. The magni-
fication and resolution of the images in the
direction of the incident beam are then
severely limited and the high resolution
of the images is possible only in the direc-
tion across the surface, perpendicular to
the beam. However, the value of the
technique is immediately apparent, in
spite of this disadvantage. Steps on a
crystal surface only one atom high are
clearly visible, as in Fig. 1. Strong contrast
is shown between surface regions that
differ only in the structure of the first one
or two monolayers of atoms, as seen in
Fig. 2. Small bumps, dips, impurities or
projections on the surfaces become
obvious (see Figs. 8 and 10). The changes
in surface structure or composition result-
ing from in situ treatments can be followed
in detail. Also the images may be corre-
lated with RHEED patterns revealing the
crystal structure and with microanalysis
using EELS [14] or EDS to determine the
chemical composition of surfaces with
high spatial resolution.

REM images can be obtained using any
TEM instrument if a bulk specimen is
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Figure 2. REM image of Si (111) face showing the
formation of the 7 x 7 superstructure on the top side
of surface steps. Differences in diffraction conditions
give differences in contrast for the two sides of the
image. (Reprinted with permission of K. Yagi [60].)

mounted so that the flat face of a crystal is
almost parallel to the incident electron
beam [15]. For many specimens such as
noble metals and some refractory oxides
the vacuum of about 107 torr of standard
microscopes is not a serious hindrance
to much research concerned with the
structures of surfaces although, when
chemical or physical surface reactions are
to be studied, extreme precautions must
be taken to avoid complications due to
contamination of the surface. For semi-
conductors, most metals and other
inorganic compounds, UHV is essential
in most cases and access to one of the
few microscopes modified for UHV opera-
tion is required. High voltage microscopes,
operating at up to 1 MeV, can give excel-
lent results [13] even though the fore-
shortening of the images is increased
because of the smaller diffraction angles.
Scanning transmission electron micros-
copy (STEM) instruments, which nor-
mally have a vacuum better than
108 torr, may also be used with the
incident beam scanned over the surface
at grazing incidence to give SREM images
[16].
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The main limitation on the resolution of
REM images comes from the large energy
spread of the diffracted electrons [17]. For
the usual RHEED geometry, the average
distance traveled in the crystal by an
emerging 100keV electron may be
100nm or more; greater than the path-
length for inelastic scattering processes
such as the excitation of plasmons or the
excitation of outer-shell or valence-band
electrons of the solid, with energy losses of
10 to 30¢V. Also it may be noted that the
electron beam traveling almost parallel to
a specimen surface can excite surface
plasmons while it is within | or 2nm of
the surface, on either side, and the energy
losses from this source are in the range of
5to20eV. The strong RHEED diffraction
spots may contain 50 to 80% of electrons
which have lost more than 3eV of energy
[18]. The average energy loss is of the order
of 30eV and the energy spread is about the
same. The chromatic aberration of the
objective lens in a 100keV microscope
then limits the resolution to about 1 nm.
Better resolution can be obtained by use of
higher voltage microscopes (up to 1 MeV)
since the loss of resolution from this cause
depends on the ratio of the energy loss to
the initial electron energy. Otherwise, both
the resolution and the contrast of REM
images may be improved by use of an
energy filter, such as is standard equipment
for STEM instruments and is now avail-
able for some¢ TEM instruments.

1.2.2 Reflection High Energy
Electron Diffraction Patterns

The RHEED pattern produced when a
high-energy electron beam strikes a crystal
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surface at grazing incidence includes sharp
strong diffraction spots lying on a set of
concentric circles known as Laue circles,
corresponding to the Laue zones in which
the Ewald sphere cuts the set of parallel
planes of reciprocal lattice points in
reciprocal space. In practice, the strong
spots do not appear sharp because they
are normally grossly overexposed when
recorded on photographic film and greatly
broadened by halation. Also, with the
overexposure, the diffuse background
around the spots, arising from thermal
diffuse scattering and from the small-
angle energy-loss electron distribution,
blackens the film and makes the spots
seem large. In the background, there is
a pattern of Kikuchi lines (sometimes
referred to simply as K-lines) resulting
from the diffraction of diffusely scattered
electrons by the crystal lattice planes.
The K-line patterns are accompanied in
many cases by sets of parabolas and circles
(Fig. 3).

Figure 3. RHEED pattern from the (1 10)
surface of GaAs showing Bragg spots,
K-lines, parabolas and circles. (Reprinted
with permission of K. Yagi [61].)

The configuration of the sharp Bragg
spots can be derived from a reciprocal
space diagram such as Fig. 4a. Because
the crystal is terminated at a surface, and
most of the diffraction occurs in a thin
surface layer, continuous lines of scatter-
ing power, perpendicular to the surface,
pass through the sharp maxima around the
reciprocal lattice spots. Hence a sharp spot
is generated whenever the Ewald sphere
cuts one of these lines, giving rise to sets of
spots lying on the Laue circles, as sug-
gested in Fig. 4b. The spots are very bright
when the Ewald sphere cuts close to a
reciprocal lattice point. The spot most
commonly used for REM imaging is the
specular reflection, given by the mirror
image of the incident beam in the plane
of the crystal surface. This spot is most
intense when the incident beam is at the
Bragg angle for lattice planes parallel to
the surface. No spots appear below the
‘shadow edge’ which marks the intersec-
tion of the surface plane with the recording




(b)

167

Reflection Electron Microscopy

First Laue zone

(700)
/'Zero Laue

£
1

_Shadow
edge

(000}

First Laue
zone

Horiz.
K - lines

Figure 4. The geometry of

Shadow edge

000)

plate unless, as sometimes happens, there
is transmission diffraction through small
projections or edges of the crystal close to
the termination of the crystal face.
Energy-loss processes involving the
excitation of plasmons and single-clectron
excitations give rise to small-angle scatter-
ing (1073 radians or less). The combina-
tion of such inelastic scattering with the
elastic scattering gives the peaks of diffuse

RHEED patterns. (a) Section of
reciprocal space in the plane of
the incident and diffracted
beams showing the intersection
of the Ewald sphere with the
reciprocal lattice. (b) The
resulting pattern of spots and
K-lines.

scattering around each Bragg reflection
spot. The thermal diffuse scattering,
which involves energy losses of the order
of only 1072 eV, gives high-angle scattering
to 107" radians or more but is also peaked
around the Bragg spots. Multiple scatter-
ing occurs for each process separately and
between processes, so that the RHEED
pattern has a broad diffuse background
of, mainly, inelastically scattered electrons.
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These electrons are diffracted by the
crystal lattice, giving rise to the K-line
patterns. These are analogous to the
Kossel patterns produced when X-rays,
generated inside a crystal, are diffracted
by the lattice planes. However, in the case
of high energy electrons, the wavelengths
and diffraction angles are so small that,
instead of the strongly curved Kossel lines,
the K-lines produced appear as parallel
sets of straight lines. The separation of a
pair of parallel lines is twice the Bragg
angle for diffraction from a set of crystal
lattice planes, since a line is generated
when the electrons are incident on the
lattice planes at the Bragg angle from one
side or the other. Multiple sets of parallel
lines are generated, by several orders of
diffraction from the same planes (see Figs.
3 and 4b). Usually a set of sharp horizontal
K-lines is seen, parallel to the shadow-
edge, corresponding to the diffraction
from planes parallel to the crystal surface.
The relative intensities and detailed
intensity distributions of K-lines have
been described in terms of dynamical dif-
fraction theory for high-energy electrons
by various authors [19].

Sets of K-lines, corresponding to sets of
planes such as those associated with the
reciprocal lattice points on a common
reciprocal lattice plane, may be tangential
to a common asymptotic circle or para-
bola. Strong parabolas and circles are
seen in K-line patterns, close to, but
slightly displaced towards the shadow
edge from, these asymptotic curves.
These parabolas and circles may be
ascribed to a resonance phenomenon in
which the diffusely scattered electrons are
strongly confined to sets of planes or
rows of atoms parallel to the crystal sur-
face [20,21]. When a convergent incident

beam is used, sets of parabolas can also
appear corresponding to channelling of
the incident-beam electrons along planes
perpendicular to the surface [22].

The resonance condition for planes
parallel to the surface corresponds to the
geometry for which a strong specular
beam is produced because the incident
beam is at the Bragg angle for planes
parallel to the surface and also a strong
diffracted beam is produced so that it runs
almost parallel to the surface. This condi-
tion is indicated when the specular beam
sits at the intersection of a horizontal K-
line and either a strong inclined K-line, or,
for diffusely scattered electrons, a strong
parabola. Then the intensity of the spec-
ular reflection, and of the whole diffraction
pattern, is greatly enhanced, so that this
condition is often sought to produce high-
intensity REM images. The resonance
condition sometimes involves a channeling
phenomenon in which the electron wave
is channeled along the top one or two
top surface layers of atoms and penetrates
very little into the bulk of the crystal
[23,24]. Then the REM image becomes
highly sensitive to the structure and
composition of the top surface layers and
the image contrast for surface defects is
modified in ways which will be described
later.

The geometry of the pattern of K-lines
and circles and parabolas depends only on
the orientation of the crystal relative to the
recording film and is independent of the
orientation of the incident beam since the
pattern is derived from diffusely scattered
electrons which may be considered as
generated at points within the crystal. As
a crystal face is rotated in azimuth, the K-
line pattern rotates with it and hence gives
a very sensitive indication of crystal



orientation. However, the incident beam
direction determines the overall pattern
of intensities of the scattered electrons
and so governs the relative intensities
and visibilities of the various lines and
curves.

Because the refractive index of solids
for high-energy electrons is slightly greater
than unity, there is a refractive bending of
all diffracted beams leaving a flat surface at
a small angle, resulting in a displacement
of all RHEED spots and lines toward the
shadow edge. For marginal cases, the dis-
placement may be as great as 1072 radians
but the displacement decreases rapidly for
higher angles of diffraction. This intro-
duces a distortion of the geometry of the
RHEED pattern. The refraction effect also
leads to a total internal reflection of some
diffracted beams directed almost parallel
to the surface, often contributing to the
surface resonance effect.

(a)
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1.2.3 Image Contrast for
Surface Steps and Projections

For steps or projecting particles on an
otherwise perfectly flat crystal face which
are large compared with the resolution
limit of the microscope, the REM image
contrast can be described, to a good
approximation, in terms of simple geo-
metric optics. Fig. 5a, for example, illus-
trates the case for large steps for an
exaggerated angle of incidence. For a
down-step (as seen when looking towards
the electron source) there is no disconti-
nuity in the intensity diffracted from the
crystal surface before the step and from the
top of the step, so that the step is invisible
apart from minor perturbations due to
some transmission through the step edge.
For an up-step, however, no electrons
reach the image from the exit face of the

Image
intensity

image

Pt >intensity

(( Figure 5. Geometric-optics
diagrams of the diffracted
beams from a large
projection (a) and a thin
projection or small particle,
on a crystal surface and

crystal surface

the resulting image
intensities (b).



170

Reflection Electron Microscopy

Figure 6. REM image of
large curved steps and small
intersecting steps (arrowed)
on an oxygen-annealed
rutile (100) surface [62].

step or from a region of the crystal surface
after the step which is shaded from the
incident beam. A black region therefore
appears in the image of width equal to
roughly twice the step height. The appear-
ance of the step varies with the angle that
the step makes with the incident beam
direction. When the step becomes parallel
to the incident beam direction, the width
of the black shadow decreases to zero, and
the form of the step is seen in profile. The
consequent appearance of large curved
steps in the image is as illustrated in Fig. 6.

For a projection from the surface which
1s thin in the beam direction, or for a small
foreign particle sitting on the surface, the
corresponding geometric-optics construc-
tion is as shown in Fig. 5b. The projection
is illuminated by the electrons diffracted
from the surface behind it (as seen when
looking towards the electron source) and
so forms an image as in transmission
microscopy. The projection also prevents
the incident beam from being diffracted
from the surface in front of it. Hence the
image of the projection is accompanied by
an inverted mirror-image, as is evident in
Fig. 7.

A common feature of such double
images for particles on crystal surfaces is
that the particle image and the mirror

image are separated by a bright line. This
effect has been attributed to a channeling
phenomenon. Under the surface resonance
conditions, electrons may be channeled to
flow along the top one or two layers of
atoms on the surface. Under this condition
they may travel for unusually large dis-
tances along the surface before being dif-
fracted out of the surface. The presence
of a particle on the surface may actually
enhance this effect since the presence of
foreign atom layers on the surface may
decrease the probability of the electrons
escaping from the surface layers. Hence
the electrons may pass underneath the

Figure 7. REM image of small transparent foreign
particles on an Si (1 11) surface showing the direct
image and mirror image and the bright line between
them in each case (plus a dislocation strain field).
Scale bar: approx. S0nm. (Courtesy of T. Hsu.)



particle with little decrease of intensity and
give a bright line in the image, as suggested
in Fig. 5b.

For very low steps on a surface, the step
height is often equal to the thickness of one
or two monolayers of atoms, which is less
than the resolution limit for most REM
imaging. Then the geometric-optics pic-
tures used for high steps can no longer
apply and the strong contrast normally
seen must be attributed to a phase-contrast
mechanism. The two beams labeled 1 and
2 in Fig. 5a, coming from before the step
and on top of the step, overlap and give
rise to interference effects depending on
their relative phase. For a step height 4
and with equal angles of incidence and
reflection of the beams with the surface
equal to 63 + A, where 6 is the Bragg
angle (and ignoring refraction effects) the
beams have a phase difference of
(2m/A)-20gh(1 + A/Bg) [25]. This is
equal to 2mn(1 + A/fy) if the step height
is n times the crystal plane spacing. If this
phase difference is small, or close to a
multiple of 27, the contrast given by the
step is the same as that at the edge of a
weak phase object in a TEM image, that is,
the contrast is zero for the objective lens
exactly focused on the step (if the effect
of the spherical aberration of the lens
is ignored) but the out-of-focus images
show a black—white contrast which
reverses from overfocus to underfocus
and gets stronger and broader as the
amount of defocus increases. As for
Fresnel fringes, the width of the dark and
bright lines is proportional to the square
root of the defocus.

Because of the glancing angle of inci-
dence, the amount of defocus occurring
in a normal REM image of an extended
flat crystal face may be very large (many
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micrometers, positive and negative) so that
strong contrast is seen over most of the
field of view. If the step is an up-step rather
than a down-step the same argument
applies except that the sign of the phase
difference is reversed and hence the dark-
light contrast of the step is reversed. Hence
an analysis of the image contrast for a
through-focus series of images gives an
immediate indication of whether the steps
go up or down [11].

It is readily shown that if the incident
beam is at the Bragg angle for the lattice
planes parallel to the surface and the step
height is equal to the lattice plane spacing,
the phase difference of the beams scattered
before and after the step is a multiple of
2w, giving no contrast. However, this can
only occur if it can be assumed that the
refraction effect is negligible, that the inci-
dent beam is exactly at the Bragg angle and
that there is no variation of the lattice
plane spacing at the step due to elastic
strain effects. In most cases, if it is assumed
that the potential function drops sharply
at the crystal surface from the value in
vacuum to the inner-potential value inside
the crystal, the refraction effect at the
surface ensures that the angle of incidence
of the beam in vacuum is less than the
Bragg angle for strong reflection within
the crystal. Then the deviation, A, from
the Bragg angle in the above equation may
be quite large. Also, for many materials, it
is thought that there is a relaxation effect
around a step so that the step height
deviates from the bulk interplanar spacing
by a few percent. In either of these cases,
or if the image is obtained at an incident
angle which is not exactly the Bragg angle,
the step is no longer equivalent to a weak
phase object. A second order approxima-
tion then suggests that a sharp black line
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Figure 8. REM image of a Pt
(1 1 1) surface, plus some small
evaporated Au particles,
showing the doubling of the
images of small steps [63]. Scale
bar: 40 nm.

may appear at the in-focus position, and
for the images of the step with moderate
amounts of defocus the antisymmetric
dark-light contrast may be strongly per-
turbed [25].

In some cases the in-focus images of
small steps appear as pairs of dark or light
lines with a separation, in the image plane,
of about 3nm (Fig. 8). The step image
doubling persists for out-of-focus images
until it is swamped by the usual dark-light
defocus contrast. This effect has been var-
iously attributed to dynamical diffraction
effects [26] or to strain fields due to lattice
relaxation around the step [27]. However,
a systematic investigation has shown that
the effect is associated with the occurrence
of surface resonance [28]. The doubling
has been simulated by Anstis [29] using
many-beam dynamical diffraction calcula-
tions.

1.2.4 Dislocations and
Stacking Faults

Because the contrast in an REM image
derives from the variation of intensity of a

diffracted beam, the small changes of
lattice orientation associated with local
strain fields may be clearly visible. When
a dislocation line emerges from the bulk
and intersects a crystal surface, the asso-
ciated strain fields distort the surface and
so give rise to characteristic patterns of
dark and light lobes which, when fore-
shortened, appear as streaks, extending
across the surface, nearly perpendicular
to the incident beam [30]. The sensitivity
to lattice strain is such that the streaks may
extend for distances of several micro-
meters (Fig. 9).

The nature of the dislocation may be
derived from the configuration of the
streaks and their variation with the diffrac-
tion conditions, in much the same way as
in TEM [31]. For a pure screw dislocation
normal to the surface, the surface distor-
tion is similar to that of the lattice planes in
bulk. When viewed from the incident beam
direction, the surface lattice plains are
tilted up on one side and down on the
other side of the dislocation core. If the
bulk crystal is exactly at the Bragg angle, a
tilt in either direction decreases the inten-
sity and gives a dark streak on each side. If
the incident beam is slightly off the Bragg
angle, the intensity is increased on one



side and decreased on the other so that the
dislocation gives an antisymmetrical,
black—white pair of streaks.

An emerging edge dislocation gives a
more complicated pattern of streaks. The
well-known rule that the contrast vanishes
for g-b =10, where g is the diffraction
vector and b is the Burgers vector, holds
for two-beam conditions, as in TEM, so
that no contrast should be given for an
edge dislocation perpendicular to the sur-
face when imaged with a specular reflec-
tion. Even for this case, contrast may
appear because the strain field varies the
azimuthal rotation of the lattice relative to
the beam and an azimuthal rotation can
strongly influence the amplitudes of non-
specular beams which may, in turn, affect
the specular beam intensities through
many-beam dynamical diffraction effects.
Shuman [30] showed that edge dislocations
can give images with four dark and light
streaks.

When dislocations run parallel to a
surface but below it, as in the case of
dislocation loops which are wholly or
partially buried, their strain fieclds may
extend to the surface and perturb the
orientations of the surface layers. Then
diffuse, curved lines are seen in the REM
image [32].
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Figure 9. REM image of a Pt (111)
surface showing slip trace steps
from moving dislocations
interacting with growth steps.
Contrast from the dislocation
strain fields appears at the
terminations of the slip traces.
Scale bar: approx. 50 nm.
(Courtesy of T. Hsu.)

Frequently the contrast pattern indicat-
ing the emergence of a dislocation is seen at
the termination of a step line. The step
may be a growth step terminating in a
screw dislocation or it may be a slip-
trace, marking the passage of the dis-
location as 1t has migrated through the
crystal or glided along a fault plane
(Fig. 9).

Planar stacking faults in the bulk crystal
intersect the surface in straight lines which
may or may not involve a surface step,
depending on whether or not the displace-
ment vector, R, for the fault has a compo-
nent perpendicular to the surface. In either
case, the lattice displacement across the
fault gives dark or light contrast, depend-
ing on the diffraction vector. Shuman [30]
predicted that for a fault intercept with
the surface, running perpendicular to the
incident beam, there would be an oscilla-
tory contrast similar to that seen in TEM
images of faults but with contrast decreas-
ing rapidly with depth of the fault below
the crystal surface. However, no clear
evidence of such contrast has been seen.
If there is a surface step, the phase-contrast
image, as described above, is added to
the fault contrast and can be the predomi-
nant effect. For f.c.c. metals, fault lines
have been seen joining the characteristic



174 Reflection Electron Microscopy
contrast features corresponding to the two
partial dislocations [33].

When f.c.c. metals such as Au and Pt
are crystallized by rapid cooling from high
temperatures, deformation fault lines or
slip traces often appear on the surfaces,
cutting across the curved growth steps
as in Fig. 9. The points of intersection
of the growth and fault steps are highly
unstable and, if the sample has been at
sufficiently high temperatures so that
surface diffusion is possible, the sharp
intersection points are rounded off, giving
characteristic rounded cusps, lying along
the straight line of the fault step, as seen in
the image [34].

1.2.5 Surface Layers,
Superlattices and
Lattice Fringes

The high sensitivity of REM contrast to
surface structure was first illustrated by the
images obtained by Osakabe et al. [35],
showing the growth of regions of the high-
temperature Si (1 1 1) 7 x 7 structure on an
Si(111), 1x1 face. The 7 x 7 structure
appeared as dark or light bands along the
low sides of growth steps (see Fig. 2),
showing, for the first time, the importance
of the steps as growth sites for this surface
superlattice. Even more striking contrast
was given when gold was evaporated on
the Si (111) surface, giving an Au 5 x 1
superlattice structure with one third of a
monolayer of Au. The Au superlattice was
formed in domains in each of the three
possible equivalent orientations and the
different domain orientations gave very
different image intensities [36]. With

medium-energy SREM imaging, a similar
contrast for different domain orienta-
tions was shown for Si (111) 2 x 1 super-
lattices [37].

Since then many such observations of
surface structures and their domain con-
figurations have been made. The notable
advantage of the REM—-RHEED method,
as compared with the diffraction tech-
niques such as LEED or other imaging
methods such as LEEM or SEM is that
the domain structures and their inter-
actions with surface steps or other surface
features may be examined with a spatial
resolution of 1 nm or better.

For some oxide crystal faces, such as
the Al,O5 (01 1) surface imaged in Fig. 10,
areas of very different intensity are sepa-
rated by steps, whereas other, darker steps
separate regions of the same intensity [38].
It is believed that these observations arise
because the surface plane may cut the unit
cell of the crystal at various levels giving
different terminations of the lattice. The
differences in contrast across the steps
depend on whether the height of the steps
is equal to a fraction, or the whole, of the
unit cell repeat distance. In the case of
Fig. 10, the darker areas appear rough,
whereas the lighter areas are smooth. It is
suggested that the difference of intensity is
due not just to the difference in lattice
termination, but to a difference in chemical
reactivity of the exposed surface atom
layers which leads to a reaction with the
remanent gases in the relatively poor
vacuum of a normal TEM for some termi-
nations.

The case is somewhat different for the
(111) faces of noble metals where, again,
there are intensity differences across sur-
face steps [39] (see Fig. 1). Here surfaces
terminated at different levels within a unit



cell are exactly equivalent. The contrast
is explained if there are stacking faults
parallel to the surface in the near-surface
planes; for example, if the top three planes
have an h.c.p. sequence rather than an
f.c.c. sequence. Then, when an atom-high
step occurs, there can be a change from
one sequence to the other and hence a
change of diffraction intensities.

Many cases of surface reconstruction
involve the formation of surface super-
lattices. When the superlattice periodicities
exceed the resolution limit for the REM
imaging, lattice fringes of the correspond-
ing periodicity become visible. For the Si
(111) 7 x 7 structure the fringes corre-
sponding to the 2.3nm periodicity are
clearly seen in such images as Fig. 11,
due to Tanishiro et al. [40]. In later work
with the high voltage UHV microscope,
the basic lattice spacing of 0.34nm was
resolved by Koike et al. [13]. In images like
these it is possible to observe the inter-
actions of the periodic structures with the
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Figure 10. REM image from
the (011) surface of an a-
alumina crystal showing
regions with differences of
intensity corresponding to
different surface
terminations and step
images which are different
for step-heights of whole or
partial unit cells [38].
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Figure 11. Lattice fringes of the 7 x 7 structure on an
Si (111) face crossing surface steps which may, or
may not, be out-of-phase boundaries of the 7 x 7
structure. (Courtesy of K. Yagi [40].)
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surface defects such as steps, emerging
dislocations and impurities. Superlattice
fringes with periodicities in the range of
1-5 nm have also been observed for metals
by Lehmpfuhl and Uchida [41] and for
various oxides by Liu et al. [42].

The observation of surface lattice
fringes in REM, however, is not quite as
straightforward as for the TEM case. The
fringes of Fig. 11 are obtained when the
objective aperature transmits a 1 x 1
reflection from the underlying crystal
plus several closely-spaced spots due to
the surface superlattice, lying in a row
parallel to the shadow-edge of the
RHEED pattern. The superlattice spots
lie on the Laue circle and so are often
not in a line parallel to the shadow edge.
If a group of superlattice spots which are
on a line inclined to the shadow-edge are
used to form the image, complications
arise. The foreshortening factor and there-
fore the magnification in the beam direc-
tion, is different for each spot.

1.2.6 RHEED and REM
Theory: Quantitative
Interpretations

To allow quantitative interpretations of
RHEED or REM intensities, two con-
ditions must be met. Experimentally, the
diffraction conditions must be determined
with high precision. Then calculations
must be made using an adequate many-
beam dynamical diffraction formulation
for the likely models of the structure. The
dynamical diffraction theory is more
complicated for the reflection case than
for transmission of high-energy electrons,

but a number of adequate approaches are
now available.

The original dynamical theory of elec-
tron diffraction was formulated by Bethe
[43] for the LEED case and was adapted in
its simplest two-beam form by Collela
[44] for RHEED and by Shuman {30] to
describe the contrast given by crystal
defects in REM images. However, the
Bethe theory assumes that a perfect crystal
lattice is cut off discontinuously at a planar
boundary. It must be considerably modi-
fied to include the gradual decay of the
crystal potential into the vacuum and the
perturbation of the surface structure by
relaxation, reconstructions or chemically
modified layers. Also a many-beam form is
usually essential.

Current theoretical treatments may be
divided into two types. In one, the crystal
potential distribution is divided into thin
layers, parallel to the surface. Then the
propagation of the electron wave into
and out of the crystal is considered in
terms of its modification by each layer
and its transfer between layers [45-47].
This approach works very well for crystals
which are perfect in the two dimensions of
the flat surface, with relatively small
periodicities. As the surface unit cell
dimensions become larger, the number of
beams involved increases rapidly and the
size of the computation grows even more
rapidly.

For nonperiodic objects, such as surface
steps or boundaries of surface reconstruc-
tions, it is necessary to assume an artificial
periodicity, using the assumption of
periodic continuation. The assumption of

‘large periodicity in real space corresponds

to the sampling at small intervals in
reciprocal space of the diffuse scattering
arising from the nonperiodic object. The



repeat distance along the surface which
must be considered is very large because
of the small angles of incidence in REM,
so that the number of sampling points
in reciprocal space, and so the effective
number of ‘beams’ in the calculation, is
very large. However, even for this case,
some successful calculations have been
made by McCoy and Maksym [48].

In the other type of treatment, thin
slices of the crystal perpendicular to the
surface and almost normal to the incident
beam are considered and transmission
through these slices is simulated using the
same sort of multislice, forward-scattering
theory, as introduced by Goodman and
Moodie [49], and used very successfully for
transmission through thin crystals. The
effect of the potential distribution in each
slice of the specimen is given by a simple
phase-object approximation since for
forward scattering a small-angle approx-
imation may be made. Then the propaga-
tion of the electron wave between slices is
described in terms of Fresnel diffraction

Step Down
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theory by convolution with a propagation
function. The structure within each slice
of the crystal in this case, however, is
essentially non-periodic, since the slice
cuts across the surface, and so an artificial
periodicity must be assumed, as if the
diffraction were from the faces of a set of
parallel crystal slabs [50,51]. A large
number of beams must be considered
even for a sharply terminated perfect
crystal, but then only a small further com-
plication is introduced by modifications
of the surface structure. Also it is easy to
introduce variations of structure in the
incident beam direction, such as surface
steps or projections or crystal faults, by
varying the content of successive slices [24]
(Fig. 12). This approach has been further
modified and extended and applied to the
simulation of REM images of surface steps
and faults by Ma and Marks [52] and
Anstis [29].

The fact that RHEED spots and REM
images normally contain a high propor-
tion of inelastically scattered electrons

Figure 12. Calculations of
the electron intensity
distributions in planes
perpendicular to the (100)
surface of an MgO crystal at
a distance, along the crystal
face, of (A) 180, (B) 240, (C)
300 and (D) 480 slices, for a
slice thickness of 0.2105nm,
after the entry of a narrow
100kV electron beam into
the crystal to give the (400)
specular reflection. For the
right-hand figures, there is a
step-down after slice
number 220. The bottom
figures show the atom

positions. The channeling of
electrons along the surface
planes of atoms is evident.

(Courtesy of Z. L. Wang.)
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introduces a complication which can be
treated theoretically by including the
inelastic scattering processes in the simula-
tions; a difficult process [53]. It can be
treated experimentally by use of an energy
filter to remove the inelastically scattered
electrons, implying that the calculations
can be carried out for elastic scattering
only but modified by the use of appro-
priate absorption functions.

1.2.7 Applications of
Reflection Electron
Microscopy

Of the many successful applications of
REM imaging, a few may be mentioned
as illustrating the scope and potential of
the method. The capability for imaging
surface steps has led to studies of step
movements in the processes of crystal
growth and evaporation, and of the move-
ments of steps under the influence of
applied electric fields by Yagi et al. [54].
When a current flows through a specimen
of Si, the surface steps may be seen to
bunch together or spread apart, depending
on the direction of the current, indicating
that there is an essential asymmetry in the
surface structure. Likewise, the migration
of metal atoms on the Si surfaces may
depend on the current direction. Such
surprising results have important infer-
ences for the understanding of surface
migration processes.

The observation of steps and their
decoration has provided evidence regard-
ing the importance of steps for crystal
growth processes. Steps frequently form
the nuclei for the condensation of impurity

atoms arriving from the ambient atmos-
pheres or by migration from the bulk of
the specimen, as seen by Crozier et al. [55].
Small crystals growing on crystal surfaces
as a result of deposition or chemical reac-
tion are frequently seen to nucleate at steps
or other defects of the surface [12].

The morphology of surfaces, described
in terms of roughness or smoothness on an
atomic scale, the occurrence of large steps
and facets, or the frequency and regularity
of small steps (Figs. 6, 8, and 10), provides
information of importance in relation to
the use of the surfaces as bases for epitaxial
growth of thin films, for example of mag-
netic films or superconductors, for tech-
nical purposes. The REM technique has
the advantage in such assessments, of
allowing rapid surveys of large areas,
plus studies of selected areas with high
spatial resolution. Studies have been
made by Wang and Bentley [56] at quite
high temperatures, in situ, to show the
changes of surface morphology taking
place during the process of annealing of
ceramic surfaces.

It has recently been shown that domain
boundaries intersecting the surfaces of
ferroelectric crystals can be seen and their
movements under applied electric fields
can be observed [57]. In this way it may
be possible to throw light on a number of
questions relating to the relevance of
surface domain structures in relation to
ferroelectric device properties.

A development of great potential
significance has been the application of
electron holography in the REM mode
by Osakabe et al. [58] and Banzhof et al.
[59]. As in transmission off-axis hologra-
phy (Sec. 1.8 of this Chapter), an electro-
static biprism is inserted near to the image
plane of the objective lens of a TEM



instrument. The electron waves reflected
from the area of interest, the region of a
flat crystal surface containing a defect, are
made to interfere with the reference wave
which is the wave reflected from an adja-
cent area of perfect crystal face. Perturba-
tions of the pattern of interference fringes
indicate the differences in phase of the two
waves due to differences of height of the
local surface relative to the ideally perfect
crystal surface. Hence it is possible to map
the local distortions of the surface. It has
been shown that, using this technique,
measurements of step heights or the strain
fields around emerging dislocations may
be made with an accuracy of 0.0l nm or
better.
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1.3 Electron Energy-Loss Spectroscopy

Imaging

1.3.1 Introduction

Electron energy-loss spectroscopy (EELS)
measures the spectral distribution of
energy transferred from a monochromatic
incident electron beam into a specimen.
Two main types of geometry are con-
cerned: low energy primary beams reflected
by solid surfaces, and high energy primary
beams transmitted through thin foils or at
glancing incidence along surfaces. In the
first case, using monochromators, the
investigated excitation spectrum covers
the millielectronvolt to electronvolt range
(which is equivalent to the infra red
domain of the electromagnetic spectrum)
and is largely a vibrational spectroscopy.
In the second case, corresponding to the
electron microscopy situation, the inelastic
scattering events involved encompass a
whole range of excitations from the
electronvolt to the kiloelectronvolt
range, which is equivalent to the visible to
soft X-ray domain. It is, therefore, a
spectroscopy of electron states, related to
the excitation of the valence and con-
duction electrons in the low energy-
loss domain, i.e. from 1 to 50eV, and of
the atomic-core electrons, in the high

energy-loss domain from about 50eV up
to one- or several-thousand of electron-
volts.

When performed in the context of an
electron microscope column, the EELS
technique obviously introduces a new
dimension to electron microscopy. As a
consequence of the elemental specifity of
the signal delivered, EELS is now well
established as an essential component of
analytical microscopy, extending the
accessible spatial resolution to the sub-
nanometer level. Furthermore, it is largely
accepted that the access to the information
stemming from inelastic processes, in
parallel to that contained in the elastic
ones, constitutes an essential step forward
in promoting electron imaging and
diffraction as real quantitative tools. This
chapter describes the present state of
instrumentation and methodology accessi-
ble in the field of EELS imaging and
emphasizes the great diversity of potential
fields of application through a selection
of recent investigations. For a more com-
plete knowledge of the impact of EELS as
a spectroscopy of electron states (com-
pared to photon beam techniques), the
reader is advised to consult other reviews
[1-5].



182 Electron Energy-Loss Spectroscopy Imaging

1.3.2 Instrumentation and
Methods

1.3.2.1 An Historical Survey

One can trace back the origin of the use
of electron energy losses as a micro-
analytical technique to the early work of
Hillier and Baker [6], five decades ago.
However, it only became used practically
in the 1960’s, as a consequence of the
progress achieved in realizing and coup-
ling well-adapted analyzers and filters to
an electron microscope column. Two
major approaches (scanning or fixed
beam) have been explored, leading to

energy-analyzing and energy-selecting
microscopies.
In the energy-analyzing mode, a

spectrometer transforms a point on the
object into &#n EELS spectrum. From the
prototypes designed by Wittry [7] to be
introduced at the bottom of a conven-
tional transmission electron microscope
(CTEM) column, and by Crewe et al. [8]
as an essential part of their first scanning
transmission electron microscope (STEM)
microscope, it has evolved into the present
Gatan commercially available attachment
realized by Krivanek and Swann [9]. It is
basically made of a magnetic sector with
tilted and curved entrance and exit sur-
faces of the pole pieces in order to deliver a
second-order aberration-corrected image
of the spectrometer object function. This
combination of a STEM column with such
an EELS spectrometer is particularly well
suited to recording EELS spectra from
local areas. When governed by the inten-
sity distribution within the probe issued
from a field emission source, the accessible
spatial resolution can be as small as a

fraction of a nanometer. Furthermore,
the upgrading of the initial serial detection
system (which comprised a slit and a
scintillator-photomultiplier device) by a
parallel array of typically 1000 diodes
which measure in parallel all the spectral
channels, has been responsible for a
major breakthrough in terms of detection
efficiency [10]. Such a combination has
demonstrated a routinely accessible energy
resolution of about 0.5eV on core edges
and identification capabilities approaching
the single atom level, when coupled to a
FEG STEM [11, 12]. Figure | shows the
basic configuration and major components

Parallel EELS detector

Quadrupoles

Magnetic spectrometer
Floating potential tube

Small angle ADF
detector

Large angle
ADF detector . &

8o Specimen

Objective aperture

Objective lens

Condenser 2
Condenser 1

Emitting tip

Figure 1. Typical example of the STEM + PEELS
configuration for point analysis. It offers the simul-
taneous capability of visualizing the object topogra-
phy through the annular detectors (small-angle for
diffraction contrast, large-angle for Z-contrast) and
of analyzing with the magnetic spectrometer the
energy-loss distribution of the forwardly transmitted
beam. (ADF = annular dark field.).



of the dedicated STEM equipped with an
EELS spectrometer and a parallel detector
array, in operation in Orsay. Although
the performance of the diode array has
not yet been optimized, it constitutes the
best approach presently available for the
acquisition of single EELS spectra origi-
nating from well-defined areas on the
specimen, and a variety of processing tech-
niques have been developed to extract the
useful information from these spectra [13,
14]. An alternative solution to the mag-
netic sector is the Wien filter. It has been
implemented on a dedicated VG STEM by
Batson [15], and this unique system on an
upgraded microscope provides the best
presently attainable performance in
terms of both energy resolution (of the
order of 0.15eV) and spatial resolution
(down to 0.2nm). However, it is not
suitable for routine use and has not
been duplicated by any other group or
manufacturer.

In the energy-selecting mode, an ima-
ging stage is added to the spectrometer,
transforming the spectrum behind the
energy-selecting slit into an image corre-
sponding to a specific energy loss. This
approach has been pioneered by Castaing
and Henry [16], who produced the first
high-quality energy-filtered images using
a magnetic prism—electrostatic mirror
device incorporated in the imaging part
of a microscope column. Obviously, their
realization has offered quite new possi-
bilities to conventional transmission elec-
tron microscopy (TEM), such as a type of
‘colour’ microscopy, as different images
corresponding to different types of
inelastic interaction can then be obtained
from a selected area. The first micro-
analytical applications followed rather
quickly: El Hili [17] used the change of
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plasmon energy in different metals and
alloys and Colliex and Jouffrey [1§]
showed energy-filtered images with
electrons corresponding to a specific core
loss.

In spite of these promising results, the
first commercial attempt at producing an
energy-filtering microscope using the
Castaing—Henry design, by the French
company Sopelem, has not been a clear
success. It took nearly 20 years before
Zeiss introduced to the market its 902
microscope, using the same concept, then
its fully magnetic substitute, known as the
‘omega filter’, in the 912 machine. As a
matter of fact this second version also
had its origin in Castaing’s group [19],
before being developed by Zanchi et al.
[20] and optimized by Rose and coworkers
[21, 22].

However, these filters are only available
on dedicated instruments and cannot be
retrofitted to existing microscopes. An
alternative possibility, first explored by
Shuman and Somlyo [23], consists of an
imaging spectrometer where a simple
magnetic sector acting as an analyzer is
followed by an electron optics transfer
system which displays the energy filtered
image on a two-dimensional (2D) record-
ing medium. The very sophisticated
system designed, produced and tested
by Krivanek and coworkers [24, 23],
known as the Gatan imaging filter
(GIF), can be adapted to any TEM col-
umn (even on megavolt instruments) and
provides in a quite user-friendly configura-
tion energy-filtered images with atomic
resolution. Figure 2 compares the two
approaches to the fixed-beam energy
filtering presently commercially available,
the Gatan 1-6-6 filter and the Zeiss (2
filter.
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Experimental configurations for EELS

Figure 2. Typical examples
of the incorporation of
filtering devices in a TEM
column for energy selected
imaging (ESI). A change in
the excitation of the first
intermediate lens replaces
the diffraction pattern in the
entrance object plane of
either filter by an image of
the specimen, and replaces
the final energy-filtered
image on the detector by an
energy-filtered diffraction
pattern.
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1.3.2.2 A New Dimension in EELS
Imaging: From Point Analysis and
Energy-Filtered Images to Spectrum
Imaging

The introduction of the energy-loss para-
meter (AE) adds a new dimension of
information to the current 2D spatial infor-
mation provided for a given pixel position
(x,y) by any type of scattering responsible
for the contrast observed in a conventional
electron micrograph. One can then
measure the intensity 7(x, y, AE) within
an elementary volume defined within a
three-dimensional (3D) space with two
axes related to the position and one to the
spectral information. For any of these
elementary volumes, a given dose of
electrons (J x 7) incident on the entrance
surface of the specimen, is required in
order to produce a measurable signal
with a given signal-to-noise ratio, which

depends practically on the physical
parameters (thickness and composition)
of the specimen and of the investigated
spectral channel.

Basically, a spectrometer in a STEM
mode with parallel acquisition provides a
full spectrum /(AE) covering n energy-loss
channels for each probe position, i.e. for
each pixel defined by its coordinates (x, y)
on the specimen within the time interval
At; set by the dose requirements (see
Fig. 3a). On the other hand an energy
filtering microscope (EFTEM) provides a
complete 2D image made up of N x N
pixels, using only the electrons contained
within an energy band defined by the
selection slit (see Fig. 3b). Similar criteria
of signal-to-dose ratio apply for the
evaluation of the image recording time
At,. To obtain the same intensity
I(x,y,AE) on a given area element within
a given energy-loss channel, it implies, as
stated above, that J| x Ar) = J, x A, all
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Figure 3. Definition of: (a) the parallel acquired EELS spectrum in a STEM configuration; (b) the energy
filtered image in an EFTEM configuration; the image-spectrum acquired either as a 2D collection of parallel

EELS spectra (c) or as a sequence of energy filtered images (d).
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other parameters governing the measured
signal being equal. The ratio between the
recording times A¢; and Af, depends on
the ratio of the primary flux of electrons
available to the specimen. Practically, this
is about 10°~10° times higher in a nanop-
robe delivered from a field emission source
in a STEM than in a submicroprobe
delivered from a LaB6 filament in an
EFTEM, and At,/At, = a is of the order
of 10721077,

A few years ago, Jeanguillaume and
Colliex [26] introduced the concept of the
spectrum-image in EELS digital acquisi-
tion and processing. It was originally sti-
mulated by the access to parallel EELS
recording devices in the STEM and by the
availability of computers with rapidly
increasing capacities for data storage and
handling. As a matter of fact, this concept
can be applied to any case where spectra
can be acquired as a function of a probe
location, such as energy-dispersive X-ray
(EDX) or Auger analysis under a primary
electron beam, inelastic tunnelling spec-
troscopy under the scanning tip, and
secondary ion mass spectrometry (SIMS)
by sputtering under an ion probe. A spec-
trum image is a 3D ensemble of numbers
I(x,y, AE): the first two axes correspond
to the (x,y) position on the specimen,
similarly to any image and the third
axis is associated with the energy-loss
dimension (AFE). As shown in Figs. 3c
and d, the spectrum image can be built
with the basic entities provided by the
-STEM +PEELS analyzing microscope
(Fig. 3a) and by the EFTEM filtering
microscope (Fig. 3b). It can be described
either as a collection of N x N spectra
acquired while scanning the STEM probe
over the specimen surface, or as a stack of
n filtered images recorded successively

while ramping the energy-loss value of
the electrons transmitted through the
selection slit. The total time T needed for
recording this amount of N x N xn
values is, in the first case, N x N x Af,
and, in the second case n x At,, but the
total dose D received by the elementary
area Ax Ay is proportional to J; x At for
the STEM and to J, x n x At, for the
EFTEM. This leads to:

T7,/T,=NxNxa/n D{/D,=1/n (1)

Consequently, one can summarize this
comparison between the two approaches,
as follows:

(i) The parallel EELS + STEM mode is
always better in terms of the dose required,
because of the intrinsic superiority of the
technique in recording all energy-loss
channels in parallel, while the EFTEM
technique requires as many images (and
irradiations) as the number of energy-loss
channels required.

(ii) The comparison is not as obvious
when considering the total time required
for the acquisition. For small numbers of
pixels and high numbers of loss channels,
the PEELS + STEM is superior, while for
large N and small »n values the EFTEM
provides better results. Of course, for a
single filtered image, such as the selection
of the elastic image, filtering devices have
to be recommended.

In any case, however it has been
acquired, the great advantage of the spec-
trum-image is that it can be processed
a posteriori, offering access to the exact
relationship between the spatial coordi-
nate and the spectral feature. For instance,
elements in unexpected locations may be
found without any a priort operator



decision regarding where to locate the
beam for data collection. Furthermore,
it allows summation of spectra within
segmented areas, thus improving the
statistical significance of the data. On the
other hand, the major limitation is the
large data capacity required (32 Mbyte
for a 128 x 128 x 1024 x 16 bit spectrum-
image) and the time needed for access and
manipulation of data in any type of off-line
processing. But this difficulty will surely
gradually vanish as faster and cheaper
computers become available.

The hardware and software required
for implementing spectrum-imaging tech-
niques have been used over the last few
years by a number of groups. In particular,
Hunt and Williams [27] have published
the first complete description of a system
installed on a VG HBS501 at NIH,
Bethesda, MD, and on a Philips 430
TEM/STEM at Lehigh University, Penn-
sylvania, USA, illustrated with results
obtained in both life and materials sciences
[28, 29]. On the other hand, the access to
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image-spectra using a fixed-beam filtering
microscope has been demonstrated by
Lavergne et al. [30]. The number of
facilities that have developed their own
equipment has increased during the past
year, and the examples given in the follow-
ing sections of this Handbook have been
acquired and processed using the system
described previously [31]. The system
consists of a combination of a FEG VG
STEM with a Gatan 666 PEELS in
which the array of photodiodes has been
modified to reduce the read-out noise. It
makes profiling and mapping of EELS
spectra achievable with (sub)nanometer

spatial resolution. The experimental
parameters routinely employed are
summarized in Table 1. For reasons

already discussed (limited number of
pixels), the present installation is particu-
larly well suited to the investigation of
line spectra, that is, to one-dimensional
(1D) spatial data acquired when scanning
the probe along a given line on the
specimen.

Table 1. Parameters currently used for the acquisition of spectrum lines and spectrum images with a

PEELS + STEM configuration

Probe Typical extent No. of Pixel step Average
size of the pixels on the recording time
(nm) used signal involved specimen per spectrum
(nm) (nm)
Spectrum-line
Low losses (plasmons, 1-2 >1-2 64-256 0.5-1 25-250 ms
dielectric coeflicients)
Elemental mapping from 0.5 <0.5 32-128 0.3-0.5 ls
core-losses
Fine structures on core- 0.5 <0.5 32-128 0.3-0.5 1-5s
losses
Spectrum image
Elemental mapping from 1-2 <0.5 32x32 0.5-1 0.1-1s
core-losses or 64 x 64
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Another interesting possibility is the
access to time-resolved spectroscopy
(‘chronospectroscopy’ {32]), in which
case the incident beam is maintained
fixed on the specimen and sequences
of spectra are acquired at fixed time
intervals and reflect in particular the
change of the specimen as a function
of the dose. This possibility has proved
to be of great use when investigating
beam-sensitive specimens, in which case
it is possible to estimate the zero-dose
spectrum by techniques of back-extra-
polation.
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1.3.3 Understanding and
Extracting the Information
Contained in an EELS
Spectrum

1.3.3.1 Anatomy of an EELS
Spectrum

A typical EELS spectrum [1-5] exhibits
the characteristic features shown in Fig. 4:
a zero-loss peak; a major contribution

(the low-loss region) extending from
350 ¢ 1
300

2250
8
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& 100
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Figure 4. An EELS spectrum acquired on a thin foil of nominal composition LaBaCo,0s . , (specimen courtesy
of F. Studer, Caen). (a) The whole spectrum extending over 1000eV covers four orders of magnitude in
intensity for comparison with the non-saturated zero-loss peak and the details of the overlapping Co, Ba and
La edges around 800 eV loss. (b) The tail of the zero-loss peak and the onset of inelastic scattering, which can be
used to evaluate the local thickness in terms of the inelastic mean free path (¢/);, is of the order of 0.63 in this
present spectrum). (c) The oxygen K edge after background subtraction and multiple loss deconvolution,
compared with an atomic calculation of the relevant cross-section (using the Sigmak program of Egerton).
Note how the fine structures modulate the calculated cross-section over the ELNES range. (d) The overlapping

white lines and edges for CoL,;, BaMys and LaMy;s.



about 5 to 50eV and corresponding to the
excitation of electrons in the valence band
and low-lying levels; and, superimposed
on a continuously decreasing background,
a succession of element-specific edges at
increasing energy losses. All these features
contain useful information, which in cer-
tain cases can only be reached after some
lengthy procedure. Briefly, the low-loss
structures reflect a mixture of collective
(‘plasmon’) and interband processes, i.e.
some kind of average electron properties.
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For example in a material exhibiting quasi-
free-electron gas behavior, the energy of
the plasmon peak is proportional to the
mean density of electrons.

On the other hand, the core-loss features
that appear between 100 and 1000eV are
chemically representative and constitute
the major route to nano- and micro-
analytical applications. However, it is
obvious that all visible edges do not display
similar shapes, their general behavior being
imposed by atomic considerations. If the

Table 2. Summary of the different types of information accessible through a detailed analysis of an EELS

spectrum

Spectrum domain Information accessible

Required processing
technique

Field of application

Whole spectrum and Thickness, total inelastic
zero loss in scattering
particular

Low-loss region Average electron density

Interband transitions/joint
density of states

Low-loss region

Low-loss region Interface/surface properties

Qualitative and
quantitative elemental
analysis

Core-loss region

Core-loss region Site symmetry; bonding

type; bond lengths

Measurement of
unsaturated zero-loss peak

Measurement of plasmon
line properties

Kramers-Kronig
transformation; calculation
of dielectric constants
(critical-point modeling)

Study of the interface
plasmon modes

Measurement of core-edge
weight

Analysis of core-ELNES;
comparison with
fingerprints; molecular

Very general

Microanalysis in metallic
alloys

Optical and transport
properties; comparison
with VUV spectra;
intergranular van der Waals
forces

Interface and boundary
structure and chemistry

Nanoanalysis of any type of
material

Site-selected valence state;
charge transfer; bonding
and structural environment

orbital, multiple scattering
or band structure
calculations

Radial distribution
function

Core-loss region

Core-loss region Density of holes on local

states

Analysis of core-EXELFS

Measurement of white-line
intensities

Site-selected crystal
coordination

Electron configuration in
intermetallics, insulators,
and superconductors;
magnetic properties

ELNES, energy loss near edge structure; EXELFS, extended electron energy loss fine structure; VUV, vacuum

ultraviolet.
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oxygen K edge exhibits a rather typical
sawtooth profile modulated by fine struc-
tures, the cobalt L,; edge and the Ba and
La My edges appear as sharp lines (‘white
lines’) followed by a step function. These
are due to strong transitions from the
initial levels with p- and d-type symmetry
to unoccupied bound states of 3d and 4f
symmetry, respectively, reflecting (at least
indirectly) the population of d or f holes on
the excited atom. Table 2 summarizes the
different types of information accessible
through an analysis of the different spectral
regions.

1.3.3.2 Methods Available for Data
Processing and Specific Information
Extraction

In parallel with the continuous improve-
ment in understanding the physical con-
tent of EELS spectra, methods have been
elaborated for processing spectra in order
to extract from them the different types of
specific information listed in Table 2 [33—
35]. The most important methods are
those dealing with quantitative elemental
analysis. The first step consists in evaluat-
ing the local thickness and the importance
of multiple scattering events. Assuming a
Poisson distribution for the occurrence of
independent scattering events

1/ t\" t
P;K’)—a(x) eXp(‘x) (2)
one calculates
/A =log(1/1) (3)

where the thickness is scaled to the
inelastic mean free path (\;) correspond-
ing to all possibilities of an inelastic event,

whatever may be the scattering angle 3 or
the energy loss AFE. The information is
then contained in the ratio between the
intensity of the zero-loss peak (I;) com-
pared to that of the total energy loss
spectrum with the zero-loss peak included
(I). As soon as the ratio ¢/, is higher than
about 0.5, deconvolution techniques must
be employed in order to recover the single
scattering signals.

The basic formula for quantitative
elemental analysis with a core-loss relates
the measured signal (S) to the number of
atoms generating it:

S =L, Not 4)

where [, is the incident beam current, N is
the number of atoms per unit specimen
area giving rise to the measured signal, o is
the relevant cross-section, and 7 is the
counting time.

Egerton [34] has shown that a good
approximation, when measuring the signal
for a given angle of collection (3) and
integrated over an energy window (A)
over threshold, is to introduce in the
above formula the low-loss spectrum
[Io(3,A)] and the cross-section [o(53, A)]
measured under the same conditions as the
signal [S(53, A)].

There are two types of problem asso-
ciated with achieving a good quantitative
analysis: the measurement of the charac-
teristic signal S as discriminated from the
background, and accessing reliable cross-
section values. The extraction of the
characteristic edge implies background
modeling over a fitting window below
threshold and extrapolation of this model
curve under the signal before subtraction
(Fig. 5a). The most generally used model is
of the A. AE™® type. It is a simple method
of broad applicability and requires no
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Figure 5. Quantitative
analysis of a BC; thin foil
with ¢/, = 0.87, using the
background extrapolation
technique under the BK and
CK edges: (a) original
spectra, (b) deconvoluted
spectra. Using the Sigmak
cross-sections, one finds in
the first case B/C = 0.32
and in the second case
B/C =0.34.

other information. However, it may fail overlapping edges, and the accuracy of the
because the power-law model is not measurement of the signal depends on the
well adapted in the low-loss regime (i.e. quality of the fit [estimated by an 4 factor
up to 100-150eV). Furthermore, this (following Egerton) or by the reduced

method cannot be used where there are  x’ term].
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The cross-sections are satisfactorily
estimated using a hydrogenic model for
the K and L shells, and the relevant values
of o(8, A, Ey) calculated by Egerton [36]
can be found in the routinely available
quantification procedures such as the
ELP software available from Gatan. For
the outer shells of M, N or O type, the
calculations are much more complex and
require an Hartree—Slater description [37].
The values calculated by Rez are now
available in the latest version of the ELP
software. The reliability of these calculated
values has been tested on reference speci-
mens by many authors, in particular by
Hofer [38]. Hofer has shown that for the
K and L shells the accuracy of the cal-
culations is of the order of £5% for most
light-element edges up to the transition
metal series. However, for heavier ele-
ments the edges involved require the use
of the more complex calculations and
discrepancies up to 40% have been found
when comparing calculated values with
measured ones.

When one is only interested in measur-
ing relative concentrations of different
elements (A and B), the above formula
can be simplified as:

el gl ke

where the ratio of cross-sections corre-
sponds to a scaling k factor (following
the terminology used in EDX analysis of
thin foils), reduced to the ratio of the
probability of occurrence of the edges
involved.

For specimen thicknesses ranging from
about 0.5X; to 1.5),, the same formula
can still be applied, by replacing the
experimental signals with the decon-
voluted ones. Two alternatives can be

(5)

used practically: (i) the Fourier-log
method and (ii) the Fourier-ratio method.
Both methods require a knowledge of an
unsaturated low-loss spectrum from the
same area. The first technique applies to
the whole spectrum from zero loss to core
losses, background included. The second
method only requires independently
recorded core-loss and low-loss spectra.
Although it may introduce more noise,
the first technique is generally recom-
mended. Figure 5b shows the quantitative
analysis applied to the deconvoluted
spectra obtained from the original shown
in Fig. 5a.

1.3.3.3 Alternative Approaches
using Multiple Least-Squares
Techniques

In many situations, the above standard
technique consisting of background
modeling, extrapolation, and subtraction
is not adapted. One can quote the case
of overlapping edges, the need for evaluat-
ing the weight of different components
within an edge, and, in general, the detec-
tion of very small concentrations. In the
latter case, the signal appears only as a
weak modulation over an intense back-
ground and its measurement can be
made more difficult when using a parallel
recording device composed of a collection
of individual detection units due to the
inhomogeneities between the detection
properties of the different detectors. For
these reasons, new tools for recording
and processing EELS data have been
introduced. To reduce the influence of
the variations of read-out and dark-
current noises in the different channels of



a diode array used for parallel recording,
the use of difference spectra (first or
second difference) is a simple approach
which requires a double or triple
exposure of the same spectrum shifted by
a given energy increment (6) and covering

different detector distributions. This
method has proved to be quite efficient
[13, 14].

In order to process all these different
types of EELS spectra, multiple least-
squares (MLS) fitting techniques are
being rapidly developed [39-41]. These
methods search for the combination of
reference signals which best reproduce an
experimental curve, encompassing both
the background and the characteristic
edges. The procedure is quite versatile
and can be used for different purposes. It
implies the use of reference spectra, either
calculated or previously obtained from
standards. The thickness effect and its
associated multiple scattering events can
be accounted for by convolution techni-
ques. The major limitation in using MLS
fitting techniques for EELS spectra, as
compared to the simpler case of processing
EDX data where all characteristic lines
can be fitted with similar profiles, is due
to the fact that the detailed shape of the
edge exhibits variable fine structure,
depending on the local environment of
the atom. For example, one cannot use
cation edges recorded from metals when
the cation is inserted in an ionic com-
pound.

These limitations being kept in mind, its
application for quantitative analysis tech-
nique has been demonstrated successfully
by Leapman [13] on different examples. In
particular, the detection limits have been
improved considerably when the magni-
tude of the derivatives of the cross-section
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is high (in particular when the edge
exhibits intense white lines at threshold).
Figure 6 shows an example from Leapman
and Newbury [42], extracted from a test
experiment performed on a glass specimen
containing 66 elements, and in particular
transition and rare earth elements at trace
concentrations. When considering the
quality of the fit for the La M5—Mj, lines,
one can estimate the detection limit for
such an element under the experimental
conditions used to be of the order of
10 ppm. One further parameter controlling
the detectability limit is then the edge
shape:

(1) 3d transition elements and preceding
alkaline earth L,; edges (from Ca to Ni), as
well as 4f lanthanides and preceding alka-
line earth Mys edges (from Ba to Yb) can
be detected in the 10-100ppm atomic
concentration range;

(ii) light elements identifiable through
their K edge (Li to P) or their L,; edge (Mg
to Cl) and 4d transition elements identi-
fiable through their Mys edge (Sr to Rh)
can usually be detected in the 100-
1000 ppm range; and

(iii) for all elements with no clear dis-
continuity at threshold (Ga, Ge, As,...,
Sb, Te, W,...) it seems reasonable to
estimate a normal detection limit around
an atomic concentration of 1%.

Another important field of application
for these fitting techniques is to obtain
access to quantitative measurements of
the different contributions within the fine
structures of a given edge, i.e. the relative
strength of a pre-peak on an O K edge
such as the one shown in Fig. 4c, or the
weight of the unoccupied d holes as
compared to that of transitions to con-
tinuum states [(/13 + I12)/Icon) ON an Ly
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edge of a transition metal. Figure 7
demonstrates how the MLS fitting tech-
nique described by Manoubi et al. [41] can
be used to evaluate separately the weight
of the two white lines (I;; and 7;,) and
of the transitions to continuum states
when trying to simulate an experimental
Fe L,; edge as a sum of two Lorentzian
curves for the white lines and of a
Hartree—Slater cross-section in order to
account for transitions to continuum
states.

Energy Loss (eV)

1.3.4 Applications of EELS
Imaging

As described above, EELS spectroscopy
and imaging techniques provide a great
variety of approaches, adding a new
dimension to TEM, that is, access to
more refined quantitative or analytical
microscopies (see, for example, Reimer
et al. [43]). In this Section my intention is
to illustrate some recent trends in the use
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of an imaging EELS spectrometer (either
of the filter type or as a STEM + PEELS
combination) in the field of materials
science. Applications cover situations
where the analysis is performed over
many pixels, extending from a line profile
of typically 100 points of analysis, to a full
image comprising typically 1000 x 1000
pixels. As already explained, in the first
case it is easy to record and process many
spectral channels for each pixel, while in
the latter case one can practically record
only a limited number of images.

1.3.4.1 Advances in EELS
Elemental Mapping

In essence, one makes a map of the spatial
origin of chemically significant signals
such as characteristic core edges. It is
demonstrated here how the results are
more quantitative when one has access to
a greater number of energy loss channels

for each pixel. The characteristic signal is
always superimposed on a non-character-
istic background. It is therefore obvious
that with a single energy-loss image it is
impossible to attribute a varying contrast
to a change in chemistry. On the other
hand, when processing a single EELS
spectrum, it has been pointed out that
the highest accuracy can only be obtained
when the whole spectrum is known. In the
case of moderately thick specimens, this
includes the low-loss domain which is
needed for making deconvolution correc-
tions. In intermediate cases, the major
problem is to discriminate changes in
contrast due to compositional changes
from those due to variations in thickness
or orientation.

The first real progress in this direction
was made when Jeanguillaume and co-
workers [44, 45] proposed and realized
the three-window technique in which two
energy-filtered background images are
acquired below the edge and one above
the edge. An extrapolated background
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image is then calculated, independently for
each pixel, and subtracted from the image
above the ionization threshold, thus pro-
viding a net image which can be considered
as an elemental map. This technique
avoids the risk of artifacts but is not
strictly quantitative. In fact, the results
should be scaled to the normal unfiltered
bright field image corresponding to the
term in Eq. (3). Nevertheless, the tech-
nique is a clear improvement on the two-
window method in which a post-edge
image was subtracted from a ‘scaled’ pre-
edge image. However, another type of
two-window method, known as the
‘jump-ratio map’, has been proposed
recently [46]. The elemental map is simply
made by dividing a post-edge by a pre-edge
image. Hofer et al. [47] have demonstrated
(Fig. 8), that this method produces maps
with minimum added noise and which
are only weakly affected by diffraction
contrasts arising in crystalline materials.
However, without denying these successes,
I would not recommend systematic use of
this technique because the interpretation
of the measured contrast in terms of
elemental composition is far from quanti-
tative.

On the contrary, it is clear that any
increase in the amount of information
available and used leads to better quanti-
fication of the data. Crozier [48] has
pointed out that for large-area mapping
of specimens with complex morphology
and varying thickness, inspection of the
t/A map derived from simultaneously
recorded unfiltered and zero-loss images
is a good basis on which to define which
pixels in an image may be strongly affected
by plural scattering. In an effort to assess
the qualities of the different software avail-
able for elemental mapping from a

Figure 8. EELS mapping of nanometer-sized precipi-
tates by processing several energy-filtered images
acquired with an imaging filter attached on a 200-
keV transmission electron microscope. The specimen
was a thin foil of niobium containing TiO precipi-
tates. The Til,; edge was used for Ti mapping, and
the niobium Mys edge was used for Nb mapping (b).
The results obtained using the three-window techni-
que (c, e), and the jump-ratio map (d, ). (a) Normal
unfiltered TEM bright field micrograph showing the
weak contrast of the precipitates close to a bend
contour. (Data courtesy of F. Hofer et al.)

sequence of energy filtered images, Bonnet
et al. [49] have pointed out the advantage
of collecting an increased number of
energy-filtered images both below and
above the threshold in order to improve
the quality of the fit and to enhance the
signal per pixel. Furthermore, the signal-
to-noise ratio (SNR) may benefit from
local smoothing of the experimental data



before processing, as long as it does not
destroy significantly the spatial resolution.
A test specimen consisting of clusters
comprising a small number of rare-carth
or uranide atoms has been investigated in
detail by Mory and Colliex [50] in order to
estimate the limits of detection of the
chemical mapping techniques. Introducing
double exposure during the acquisition
sequence (three pre-edge images and one
post-edge image), these authors have
demonstrated that the elemental identi-
fication of numbers of atoms below 10
can be performed with a good SNR. In
a further step, it has been demonstrated
that the implementation of linear optimal
unbiased filters, such as those provided
by geostatistical techniques (kriging pro-
cedure), could improve the SNR further,
1.e. progressing toward single-atom identi-
fication [51].

The relationship between the different
types of accessible performance (spatial
resolution, minimum detectable number
of atoms, and minimum detectable con-
centration) as a function of the physical
constraints involved (SNR and cross-sec-
tion for the used edge, and local specimen
thickness) and of the experimental par-
ameters used (primary dose and primary
voltage) has been discussed by many
authors, in particular by Colliex [52]. The
examples cited above (concentrations of
approximately 10 [42], and identification
of a single atom [50, 51]) correspond to
well-defined conditions in which the total
current prevails in the first case and the
local dose (need for a field emission
source) in the second case. The inter-
mediate case, where a filtering device on
a TEM is used for the quantitative analysis
of nanostructures, has been discussed
theoretically and practically for typical
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examples (interfaces and nanotubes) by
Berger et al. [53] and by Kurata et al.
[54]. In both cases a subnanometer spatial
resolution and a detection limit of a few
atoms has been demonstrated, the signal-
to-noise ratio being noticeably improved
when summing the data over several
equivalent pixels.

In all these cases, the edge is sufficiently
clear so that the technique of extrapolating
the background is sufficient to discrimi-
nate and measure the characteristic signal.
However, as discussed above, in the case of
single spectrum processing, there are many
situations that deviate from this simple
approach, in particular when the SNR is
so low that the signal cannot be distin-
guished from fine structures on an edge at
lower energy, or for very low concentra-
tion. It is then necessary to use some kind
of MLS technique and the only possible
means of making the calculations is to
have access to a complete ecnergy-loss
spectrum for each pixel. The unique solu-
tion is the STEM +PEELS approach.
Tencé et al. [55] have recently described
some applications, using this type of
routine for fitting the experimental spec-
trum acquired for each pixel with a linear
combination of reference edges. When
these references are recorded during the
acquisition of other parts of the specimen,
the technique is very powerful, as has been
demonstrated by the analysis of an Au—Ni
multilayer (Fig. 9). In this example, the
situation is made very complex by the
superposition of the edges involved (strong
overlap between the AuO,; and Ng; edges
at 54 and 83eV, respectively and the
Ni M,; edge at 68eV, requiring a MLS
fit on the second-difference spectra) and
by the spatial resolution required to
identify a monolayer of Ni. Another highly
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Figure 9. Chemical analysis T
of a transverse section of a 100
Au—Ni multilayer obtained
by processing a sequence of
64 second-difference spectra
(energy-loss range 40—
120eV) acquired with step
increments of 0.6 nm. It is
important that the reference
Au and Ni profiles are
extracted from spectra
recorded in the same
sequence from areas
containing only gold or
nickel. Numbers in
parentheses are
proportional to the summed
signal for each Ni layer; the
other numbers correspond
to the nominal values 0

80

60

40

Concentration (at%)

20

obtained during the
molecular beam epitaxy
deposition process.
(Specimen courtesy of

P. Bayle and J. Thibault.)

impressive study has been performed by
Leapman et al. [56] concerning the map-
ping of Ca at very low concentration (a few
107 at. conc.) in a cryosection of cerebel-
lar cortex. Here again MLS fitting techni-
ques in the second difference mode were
used on spectra summed within segmented
areas defined on maps or images obtained
at higher doses. These two types of result
demonstrate clearly the trends to be
followed for extracting the optimum infor-
mation from EELS elemental analysis in
situations at the limit.

1.3.4.2 Beyond Elemental Analysis:
Mapping of EELS Fine Structures

Having recorded a series of spatially
resolved EELS spectra, either in the spec-
trum-line or the spectrum-image mode, it
is possible to extend the information

T ] T | T I
Gold
4 (4) |
3(3)
2(1.2) N
) 1 anckei
20 30 40
Scale in nm

extracted beyond simple elemental map-
ping or profiling by considering the com-
plete spectral distribution over all relevant
channels. Generally, the main interest is to
identify which spectral feature is changing
and at which probe position it is changing.
Practically, the useful changes concern
only a reduced number of energy-loss
channels and a small number of pixels.
Data-processing tools are being developed
that will be able to answer these questions
in an unbiased fashion.

The first solution is to calculate spatial-
difference spectra, defined as the difference
between spectra recorded at selected posi-
tions on the specimen; for example, on the
matrix on each side of an interface and
on the boundary itself [57]. This approach
has been shown to be quite efficient in
determining the bonding state and electro-
nic structure of atoms at the interface
itself, and thus opening up new avenues
of investigating the atomic bonding



ies across interfaces [38, 59]. How-
s approach must be performed
ly, spectrum after spectrum, and
r tedious and subjective.

ientioned earlier, the present aim is
rove the quantitative aspects of
g or mapping EELS fine structures,
nsequently any associated infor-
such as bonding type, valence
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state, d-state occupancy, and site sym-
metry. The means of achieving this
involves the use of MLS fitting techniques,
the preliminary step being to define or
select templates of the fine structures
which are to be searched along the line
scan. This definition can be achieved
a priori, relying on the knowledge of the
specimen and of the problem (for instance

|

520 540 560
Energy Loss (eV)

w
o
o

c)

@
S5 & ©
: T j T
2
g o

Photomultiplier counts x 0.001
2
(=)

e
il

[

Figure 10. Mapping of the fine
structures on a O K edge along a
spectrum line across a Si0,-TiO,
interface (in collaboration with

N. Brun, K. Yu-Zhang, D. Hurtaud
and J. Rivory). (a) Spectrum line from
the TiO, area into the SiQ, area, made
from 64 spectra (acquisition time 8s,
step increments 0.6 nm). (b) Selected
reference O K edge profiles selected on
both sides of the interface; the doublet
visible on the front side of the edge in
the TiO, case reflects the existence of
unoccupied O p—Tid-orbitals split by
the crystal field effect. (¢) MLS fit
distribution of both references across
the interface; the intensity decrease at
the end of the scan is due to increased
radiation damage on the TiO, side.
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by selecting reference spectra in the
sequence far from the regions where
spectral variations are likely to occur).
The definition can also be realized using
pattern recognition and classification
techniques which sort all the spectra of a
sequence into families exhibiting a certain
degree of similarity. One of these
approaches, the use of artificial neural
networks (ANNSs) has recently been intro-
duced for the analysis of near-edge struc-
ture components across Si—Si0O; interfaces
[60]. The basic idea is to consider any spec-
trum as a vector in a multidimensional
space, the number of dimensions being
equal to the number of energy-loss chan-
nels in the range of interest. Several criteria
(e.g. scalar product and cross-correlation
coefficient) can be used to select the basis
vectors of this space, on which the projec-
tion coefficients of all spectra in the
sequence provides a measurement of their
weight in terms of the basis spectra. Other
methods, such as the factorial analysis of
correspondence, would provide other
routes to classifying in a hierarchical
order the variance of components within
a large data set [61]. In all cases the full
impact of these classification and analysis
tools relies on a satisfactory physical
understanding of the basis vectors or
principal components.

It is obvious that these novel possi-
bilities will open up quite large fields of,
as yet undefined, applications. Interfaces,
multilayers, nano-objects, and clusters
constitute classes of objects particularly
well suited to such subnanometer map-
ping of electronic structures. Among the
many problems under present investi-
gation [62] is the mapping of the p—d
electron-state  hybridization across a
Si0,-Ti0O, interface (Fig. 10).

The future of EELS mapping therefore
relies on several developments in terms of
instrumentation, with access to atomic-
size electron probes such as the one
demonstrated by Batson [63] and theore-
tical interpretation, applying for instance
to the low-loss domain (maps of dielectric
constants, optical coefficients, adhesion
forces, etc.).
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1.4 High Voltage Electron Microscopy

1.4.1 Introduction

Because the behavior of materials is deter-
mined by lattice defects (point defects,
dislocations, etc.), much attention has
been paid to their direct observation, par-
ticularly to individual dislocations [1,2].
Lattice defects, however, have strong
strain fields associated with them in crys-
tals, and thus their behavior is very sensi-
tive to the thickness of the specimen.
Figures 1 and 2 show the thickness effect
on the dislocation density [3] and the cell
formation [4] in aluminum crystals, respec-
tively. The dislocation density decreases
quite remarkably (Fig. 1) when the thick-
ness becomes smaller than a critical value
(i.e., 0.4-0.8 um in cold-worked alumi-
num). This is a function of both the kind
of material and the dislocation density [3].
With no applied stress, the position of each
individual dislocation is determined by the
local internal stress, which is a function of
the dislocation density and the interaction
among different families of dislocations in
the local region, in addition to the image
force. Therefore, to observe the same dis-
tribution of dislocations as that in bulk
materials, the critical thickness increases
more than that required for the dislocation
density [5]. The formation of cell structures
depends on the mutual interaction among

moving dislocations, and thus the speci-
men thickness for this process must be
larger than the mean free path of disloca-
tions. Thus, the critical thickness increases
further to a few micrometers to become
representative for the cell structures of
bulk specimens [5]. For example, the cri-
tical thickness in Fig. 2 is about 3pum.
Additionally, recovery and recrystalliza-
tion, phase transformations, etc. are also
very sensitive to the specimen thickness [3].

The above facts show that not only the
behavior of lattice defects but also their
density markedly changes when the speci-
men thickness is smaller than the critical
value which is a function of the behavior of
related lattice defects.

However, the maximum observable
specimen thickness with the 100kV class
electron microscopes (EMs) is smaller than
these critical thicknesses in general, espe-
cially for the dislocation behavior [5]. For
this reason there is a need for high voltage
electron microscopes (HVEMs) for which
the maximum observable thickness of the
specimens is larger than the critical values.
For such purposes, a few 0.5 MV HVEMs
were constructed despite the technical
difficulties (which are considered to be
roughly proportional to the third power
of the accelerating voltage required to
keep the same mechanical and electrical
stability at higher accelerating voltages).
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Figure 1. Thickness effect on the dislocation density in aluminum [3]. (a) Specimen was finished wedge-shaped
after deformation at room temperature; micrograph was taken at 0.5MV. Equal-thickness fringes appear
clearly near the specimen edge at the left-hand side. Micrograph A shows an enlargement of the framed part A;
(b) shows the relationship between the areal density of dislocations and the specimen thicknesses indicated in

micrograph (a).

In 1965 it was found that the same dis-
location behavior as that in bulk materials
can be observed at 0.5 MV in light metals
whose atomic number is smaller than
about 20, and in situ experiments were
carried out on various phenomena in
such metals [3, 5].

Since 1965, the HVEMs and their
related accessaries have rapidly developed
and widely applied to the natural sciences,
especially materials science. Two ultra-
HVEMs operating at 3MV have been
installed independently in Osaka and Tou-
louse in 1970, and, to date, about 60
HVEMs, whose accelerating voltages are

higher than 0.5MV, have been installed
around the world [6].

This account deals with the usefulness
and the applications of HVEMs, mainly in
the field of materials science.

1.4.2 Voltage Dependence of
Operational Features of
Electron Microscopes

It was shown experimentally [7] that
with increasing accelerating voltage both




Figure 2. Thickness effect on the formation of cell
structures in aluminum [4]. The wedge-shaped speci-
men was deformed by HVEM to form cell structures,
and the micrograph was taken at 0.5MV. Local
thicknesses of the specimen are indicated in the
micrograph.

spherical and chromatic aberrations
decrease remarkably as well as the wave-
length of electrons. Furthermore, the fol-
lowing advantages can be obtained at
higher accelerating voltages: (a) a decrease
in contamination of the specimens during
observation [8]; (b) a decrease in irradia-
tion damage in biological and polymer
specimens [9]; (c) a decrease in temperature
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rise of the specimens during observation
[6]; and (d) an increase in the simultaneous
excitation of many waves. Point (d) is
closely related to a phenomenon called
electron channeling [10] or the Bloch
wave channeling [11,12], as mentioned
below. Increase of the maximum observa-
ble thickness and visibility of lattice defects
in adjacent different crystals at the same
time are also related to this phenomenon
[6]. Additional advantages are: () an easy
determination of the structure factor of
crystals [13,14] and (f) accurate studies
of electron irradiation damage in materials
[15,16]. With regard to (f) electron irra-
diation damage during observation can be
effectively suppressed under suitable con-
ditions, as mentioned below [6]. There are
a number of other applications [6].

1.4.2.1 Electron Channeling at
High Accelerating Voltages

A theoretical estimation was made in 1962
of the voltage dependence on the penetra-
tion power of electrons [17]. The result
showed that the penetration power is
almost saturated at about 500kV, and
that it increases only 3.3 times as com-
pared to that at 100kV even when the
accelerating voltage increases up to
infinity. Many electron microscopists con-
cluded from these results that the pene-
tration power is proportional to the
maximum observable thickness of the
specimens, and this resulted in a pessimis-
tic estimation of the voltage dependence
on the maximum observable thickness.
However, many-beam effects become
very important for the maximum observa-
ble thickness at high voltages. When the
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accelerating voltage increases, a bright
band appears at the symmetry position of
bend contours. This phenomenon is due to
the many-beam effect on the anomalous
transmission of electrons. In the case of
aluminum, the anomalous transmission at
the symmetry position of (1 1 1) systematic
reflections begins to appear clearly at
about 1 MV, and its intensity remarkably
increases with increasing accelerating vol-
tage [6]). Figure 3 shows the bright-field
image (BF) and a dark-field image (DF)
of the (11 1) extinction contour at 3MV.

Figure 3. Anomalous transmission of electrons at the
symmetry position of (1 1 1) reflections in aluminum
at 3MYV [6]. Micrographs at the left- and right-hand
sides show the bright (BF) and dark-field (DF)
images, respectively. An electron diffraction pattern
was taken at the symmetry position.

A bright band appears at the symmetry
position of (1 11) systematic reflections in
the BF, and at both sides of the (111)
contour in the DF,

The axial and planar channeling of
electrons can be estimated from the effec-
tive width of Kikuchi bands [12]. The axial
(cvy) and planar (o) channeling para-
meters are defined as follows:

4”’12122@2
4T TRNS ()
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a, = h 2)
P hzbf1

where Z, =1, and m, Z,,¢,h, N and d in
Eq. (1) are the relativistic mass of an
electron, the atomic number of crystal
atoms, the charge of an electron, Planck’s
constant, the atomic density, and the dis-
tance along the crystal axis, respectively,
and V}, and b, in Eq. (2) are the Fourier
coeflicient of the crystal potential and the
reciprocal vector, respectively. Experimen-
tal results show that the classical model is
adequate when these two parameters are
larger than unity (i.e., a, > 1.1) and that
the degree of anomalous transmission at
the symmetry position of reflections is also
well correlated with the value of «, irre-
spective of both the kind of crystal and the
indices of the reflection [18].

Table 1 shows the calculated «, and «,
by Egs. (1) and (2). The values of both
channeling parameters are proportional to
the electron intensity passing through the
material. Thus it is concluded, from Eqgs.
(1) and (2), that the electron intensity
increases linearly with increasing acceler-
ating voltage, because the relativistic mass
of electrons linearly increases with the
accelerating voltage. This means that the
maximum observable specimen thickness



Table 1. (a) Calculated axial channeling parameter,
ay.

Voltage (MV) Beam direction

(110) (200) (222)
0.5 3.1, 1.5 0.5,
1.0 47, 2.3, 0.7
1.5 6.3, 3.15 1.05
2.0 7.8 3.9, 1.3,
2.5 9.4 4.7, 1.5,
3.0 11.0 5.5, 1.8,

Table 1. (b) Calculated planar channeling parameter,

@p

Voltage (MV) Order of reflection

{111} {200} {220}
0.5 0.8, 0.55 0.1,
1.0 1.3, 0.8, 0.2
1.5 1.7, 1.1, 0.3
2.0 22, 1.3, 0.4,
2.5 2.65 1.6, 0.5
3.0 3.0 1.9, 0.6,

is expected to increase linearly with
increasing accelerating voltage when only
the electron intensity is taken into account.
The electron intensity also increases
with increasing the atomic density along
the electron path, that is, with decreasing d
in Eq. (1) and by, in Eq. (2), respectively.
Two important phenomena, due to
electron channeling, are: (a) the orienta-
tion dependence of electron irradiation
damage and (b) the straight path of elec-
trons along the incident direction in
materials. According to (a), the rate of
electron irradiation damage is propor-
tional to the electron intensity, and thus
the damage rate remarkably decreases
when higher order reflections and/or
higher order directions are used, as men-
tioned above [19]. Furthermore, an image-
intensifier system is always used for the
observation of images with the HVEMs,
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Thus, the intensity of the incident beam
can be decreased by more than three
orders of magnitude. Specimen damage
during observation can therefore be sup-
pressed to an extremely small level.
According to (b), electron channeling
occurs such as the total reflection on
inner surfaces of a fine column on an
atomic scale along the incident electron
beam, as recognized by the electron irra-
diation induced foreign-atom implanta-
tion (below).

1.4.2.2 The Objective Aperture
Effect on the Maximum Observable
Specimen Thickness

As already mentioned, electron intensity,
transmitted through materials by electron
channeling, increases linearly with increas-
ing accelerating voltage. Practically, how-
ever, various aberrations of electron
microscope images must be taken into
account for the determination of the max-
imum observable specimen thickness.
Here, the maximum observable thickness
is discussed under a fixed image resolution.
The total aberration (61) of electron
microscope images consists of the diffrac-
tion (&gifr), spherical (6¢,) and chromatic
(6enr) aberrations. This is expressed as
br = (8 + &pn + 6aue) /2 (3)
where 6diff ~ 0.6 /\/Oé, 6sph = CSOé3, and
by = Ceax AE/E. Here, \ o, Cy and C,
and E and AE are the electron wavelength,
effective aperture angle, spherical and
chromatic aberration coefficients, and
energy and energy fluctuation of electrons,
respectively. In these three terms, by is
divided by «, but the terms &y, and &gy, are
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Figure 4. Voltage dependence of the maximum obser-
vable thickness of specimens [6,20]. The maximum
observable thickness at each voltage (r) is normalized
against that at 100kV (zy,). The hatched curve
corresponds to measurements at a fixed resolution.
Marks in the hatched curve show measured values on
various metals and alloys.

multiplied by o and o, respectively. Thus,
there is an optimum aperture size that
minimizes 61 given by Eq. (3), depending
on the accelerating voltage. Under this
condition, the diffraction contrast of
images clearly results from higher order
excited waves, which are cut off by the
objective aperture, because their intensity
markedly increases at high voltages. Fig-
ure 4 shows the aperture effect on the
image contrast as a function of the accel-
erating voltage [20]. The hatched band
shown in Fig. 4 was obtained experimen-
tally for the dislocation images in various
materials with a fixed image resolution of
0.5nm [6). The lowest curve of & =0 in
Fig. 4 corresponds to a case in which only

one wave is excited, that is, it represents
the voltage dependence of the penetration
power of electrons.

It is noted in Fig. 4 that the maximum
observable thickness of specimens at 3MV
practically increases more than 15 times
compared to that at 100kV. In other
words, t/ty, > 15, even when the image
resolution is fixed, while it deviates from a
linear relation for accelerating voltages
higher than about 0.5 MV [6]. The value
at 3MV corresponds to about 3 pm in
thickness even in high Z materials such
as tungsten and gold. The same behavior
of all lattice defects as that in bulk materi-
als can be observed in situ with 3MV class
HVEMs, even when the atomic number of
the constitutive atoms is extremely high.

1.4.3 In Situ Experiments with
High Voltage Electron
Microscopes

1.4.3.1 Specimen Treatment
Devices for In Situ Experiments

As previously stated, phenomena repre-
sentative for bulk materials can be
investigated dynamically with HVEMs.
Therefore, to carry out in situ experiments,
various specimen treatment devices have
been improved [6,21]. At present, speci-
men manipulations such as stretching,
alternating stressing, constant-load defor-
mation, electron irradiation, treatments in
various environments, and their combina-
tions can be carried out in a wide tempera-
ture range from about 5 to 2300 K. All of
these devices are of top-entry type and
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Figure 5. In situ deformation devices [6]. (a) Stretching devices for deformation at high (right) and low (left)
temperatures, respectively. These devices are placed on a goniometer stage. (b) Cross-sectional view of an
alternating stressing device using an electrostrictive vibrator.

mounted on a universal goniometer stage
whose maximum tilting angle is 10° or
more [6]. Furthermore, most of these spe-
cimen holders can be easily exchanged
using an air-lock system.

Figures 5-8 are some examples of those
specimen treatment devices for in situ
experiments [6]. Since the objective pole
piece of the HVEMs is concave to decrease
the chromatic and spherical aberrations,
the path necessary for the specimen trans-
fer is generally very large. However, the
specimen chamber is so large that the
various devices mentioned above can
easily be mounted on the specimen stage,
also a sufficient thermal and electromag-
netic shielding as well as a long movement
of the specimen holder jaws becomes
possible.

Figures 5a and 5b show deformation
devices for stretching and alternating stres-
sing in fatigue deformation, respectively.
Most of these devices can deform the

specimens up to about 1kg in loading in
a temperature range from about liquid
nitrogen temperature to about 1200K.
Figure 6 shows a sectional diagram of a
deformation stage for use at very high
temperatures. The specimen is set on the
tip of a tantalum cylindrical cone, and
power for heating is supplied to the tanta-
lum cone by electron beam heating with a
tungsten ring-filament. Using this stage,
the specimen can be tilted around any
axis up to 8° during specimen treatment,
and deformed to 50% elongation in a
temperature range from room temperature
to 2300 K. This stage has been effectively
used for studying high temperature char-
acteristics of refractory materials including
various ceramics and their composites, as
will be mentioned in a later section.
Figure 7 shows a sectional diagram and
an outside view of a liquid helium tem-
perature stage, on which the specimen can
be tilted up to 8° around any axis during
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Thermo-couple(W/Re 5%-26%)

Figure 6. A very high
temperature deformation
device [6]. The specimen can
be stretched up to 50%
strain and tilted around any
axisupto 8 ina
temperature range from
room temperature to about
2300K.

the experiment. The stage was improved
further to allow the specimens to stretch
up to about 50% strain in a temperature
range from room temperature to about
10K.

Figure 8a shows a sectional diagram of
a universal environmental cell that can be
used for both biological and physical spe-
cimens [6]. An enlargement of the main
part of the cell that consists of three films
X, y, and z can be seen in Fig. 8b. The cell
films are vapor-deposited aluminum, sili-
con oxide, and carbon films, depending on
the purpose, and they are supported by
metal meshes (300 and 400 mesh in size).
Gases or liquids are circulated through the
capsule by two pipes and the capsule is
pressurized up to 300kPa. The specimen
holder can be exchanged by an air-lock
system. In Fig. 8b, the specimen is set
either directly on the center nickel mesh
(y) or on a vapor-deposited film coated

Specimen Holder

Filament

Jaw Drive Motor

e

Lia.N,

/- Ceramics

Fulcrum

~—Hedat Radiation Shield

Filament Holder

Tontalum Shield

Specime

onto the nickel mesh. The specimen is
heated by directly passing an electric cur-
rent through the nickel mesh, and cooled
by connecting the mesh with a liquid nitro-
gen tank. The specimen also can be heated
to high temperatures (>1300 K) by passing
a current directly through the specimen.
Films x, y, and z are separated 30—50 um
from each other to allow gas exchange
between these gaps. Furthermore, the
specimen drift is less than 0.1nms™~' at
room temperature. The environmental
cell [6] has been effectively used for study-
ing: (a) the sintering process of fine metal
powders which are sensitive to oxidation
and reduction; (b) chemical reactions, such
as oxidation and inner oxidation, among
gases, liquids, and solids; (c) the determi-
nation of the atomistic structure of liquids;
(d) the observation of wet biological and
microbiological specimens and their move-
ment in salt water.
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Figure 7. A sectional diagram of a liquid helium temperature stage [6]. The specimen can be tilted up to 8°

around any axis during cooling.

1.4.3.2 Applications to Materials
Science

As stated, to carry out in situ experiments
the specimen thickness must be larger than
the mean free path of related lattice
defects, otherwise doubtful conclusions
will result. Practically, at least 1.5MV

class HVEMs are necessary for studying
bulk representative dislocation behavior in
materials whose atomic number is larger
than about 25 (i.e., most of industrially
important metals) [6,31]. In the case of
3MV HVEMs, the maximum observable
thickness is always larger than the critical
thickness for various phenomena even in
very high Z materials.
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Deformation [6, 21-31]

In situ deformation studies give valuable
information on the following phenomena:
(a) the behavior of individual dislocations
detected by their slip traces; (b) the shape
of dislocations under stress from which the
magnitude of the local stress can be esti-
mated; and (c) dislocation interactions
and interaction between dislocations and
microstructures. Based on these studies,
new information has been obtained on
the mechanisms of the various phenomena
listed below.

(1) Uniaxial Deformation

At the onset of deformation, long disloca-
tion segments of many slip systems are
activated irrespective of their Schmid’s
factors immediately before the apparent
yield stress. When the applied stress
approaches the apparent yield stress the
number of activated dislocation sources
increases. In this process, the following
facts become evident: (a) The source

dislocation cross-slips so frequently that
the emitted dislocations have many super-
jogs, as seen in Fig. 9 [6]. (b) Since the
shear stress necessary to move the emitted
dislocations rapidly increases as a result
of (a), the pole dislocations are also
moved outwards when the stress slightly
increases, even when their Schmid factors
are very small. Thus, only several disloca-
tions are multiplied from a dislocation
source in metals with a relatively high
stacking fault energy [6]. (c) Aside from
grown-in dislocation sources, dislocation
sources are newly formed not only by
double cross-slip of moving dislocations
but also by the interaction between dis-
locations of different families. They are
also formed by the interaction between a
mobile dislocation and other microstruc-
tures such as small precipitates. These
newly formed dislocation sources increase
in number with increasing stress. Since the
emitted dislocations from the sources have
a large number of super-jogs in general,
the passage through forest dislocations



Figure 9. Activation of a grown-in dislocation source
due to cross slip in aluminum {6]. The micrograph
was taken at 0.5MV. When the dislocation source
(1-2) begins to move, the dislocation becomes zigzag
in shape by cross-slip in (b). Exact shape of the
activated dislocation source can be determined from
a zigzag slip trace in (¢). (d) Slip traces of the
dislocations emitted from single ended dislocation
sources | and 2.

does not present a strong resistance
against mobile dislocations until the
spacing among forest dislocations
becomes smaller than that of the super-
jogs. (d) The formation mechanisms of
various dislocation structures in stages I,
II and III were also verified in detail, and
the work hardening mechanism was inves-
tigated as a function of the type of crystals,
the specimen orientation and the stacking
fault energy. In these results, the role of
conjugate slip in the work hardening pro-
cess was verified using crystals with very
low stacking fault energy [6]. Namely, the
conjugate slip pays an important role in
the work hardening in stage II, but it
contributes to the dynamic recovery in
stage 111I.
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(2) Deformation Under Alternating Stress
The behavior of individual dislocations
is also revealed in this process, and it
was found that the irreversible motion of
screw dislocation plays an important
role in fatigue deformation. In addition,
the formation process and the dislocation
structures of ladder structures were
investigated in detail. These results
provided useful information about the
mechanism of fatigue fracture in
materials [6].

(3) Various Influences on Deformation
Deformation is very sensitive not only to
the specimen orientation but also to both
deformation temperature and impurity
atoms. A typical example of temperature
dependence is the deformation of (I 0 0)
and (1 10) oriented b.c.c. crystals, as
shown in Fig. 10 [6]. The upper figures in
Fig. 10 show the stress-strain curves taken
at temperatures of >0.27,, and <0.1 T,
(where Ty, is the absolute temperature of
the melting point), respectively. The
micrographs in Fig. 10b were taken from
VTR films showing dislocation movement
in the (1 00) oriented tungsten (upper
pair) and iron (lower pair) crystals, respec-
tively. From these micrographs it is con-
cluded that the work hardening rate
markedly decreases when only one slip
system 1s operated in each individual
local region of both crystals. That is,
even in the (1 0 0) crystal, in which four
slip systems are expected to be activated
geometrically, only one slip system is
operative at temperatures higher than
0.2 T,,, as seen at the right hand side of
the micrographs in Fig. 10b. Furthermore,
the temperature dependence of serrated
yielding (the so-called Portevin—Le Chate-
lier effect) in various alloys has been
investigated [6].
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Figure 10. Temperature dependence of the work-hardening rate in the (1 0 0) and (1 1 0} b.c.c. crystals [6] (a).
Micrographs were picked up from VTR films. Upper and lower series of micrographs show dislocation

structures in the (1 0 0) oriented tungsten and iron crystals taken at the same homologous temperatures,
respectively (b).



(4) Other Processes

Processes of the following phenomena
have also been investigated in detail: (a)
dislocation behavior in the vicinity of
boundaries, (b) precipitation hardening,
(¢) deformation processes in various cera-
mics, (d) electron irradiation softening
of b.c.c. metals due to enhancement of
both multiplication and movement of dis-
locations [6], (¢) the effect of hydrogen gas
on the dislocation behavior in b.c.c.
metals, (f) dislocation channeling in parti-
cle irradiated specimens, and so on.
Furthermore, it was shown that so-called
‘super plasticity’ easily and rapidly (with a
strain rate of about 1072) occurs when the
grain diameter is kept in the range of
0.1 pm.

Annealing Phenomena [6, 19, 21-31]

These phenomena are generally deter-
mined by the diffusion of both point
defects and solute atoms. When disloca-
tions are involved in the phenomena as in
the case of recovery and recrystallization,
the specimen thickness must be large
enough to keep the same distribution of
dislocations as that in bulk specimens (i.e.,
a few um) [6]. The critical thickness, how-
ever, remarkably decreases at low tem-
peratures when the phenomena are only
correlated with diffusion of the point
defects and solute atoms, as in the case of
Guinier—Preston (G.P.) zone formation,
because of a remarkable decrease of the
mean free path of these defects.

(1) Recovery and Recrystallization

Various deformed specimens were
annealed in situ, and the rearrangement

High Voltage Electron Microscopy 215

of dislocations, subgrain coalescence and
the nucleation of new grains have been
investigated in detail [6]. The results show
that the misfit angle of boundary, which
determines the boundary energy, increases
with decreasing the dislocation density,
which is directly related to the stored
energy, within a recovered region during
the nucleation process [32].

(2) Sintering Process

This phenomenon is very sensitive to the
size of metal and ceramic powders. The
coalescence among powders plays an
important role when the powder size is
~0.1 pm in diameter or less [6]. Sintering
and successive grain growth of ceramic
composites have been also investigated in
detail [19]. In ceramic composites whose
melting point is higher than 2000 K, their
phase diagrams can be determined by
in situ annealing.

(3) Precipitation Process

The formation processes of G.P. zones [33]
and precipitates have been investigated in
situ in various metals and alloys, and use-
ful information has been obtained for their
formation mechanisms.

(4) Melting Process

The dislocation behavior during melting,
and a peculiar phenomenon at solid-
liquid interfaces [34] are important topics
in the process.

Martensitic Transformations [19, 21-31, 35]

type of
into two

Phenomena related to this
transformation are divided
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groups, spontaneous and strain induced.
Their formation mechanisms have
been extensively investigated in both
metals and ceramics by in situ experi-
ments, especially by in situ deformation
at low temperatures. From this new
mechanisms of fc.c.— hep.  and
f.c.c. — b.c.c. transformations have been
proposed. Furthermore, very toughened
ceramics showing both plastic defor-
mation and superplasticity at room tem-
perature have been investigated from a
view point of martensitic transformation
[19].

Radiation Effects [6, 21-31]

The study of these phenomena is one of the
important applications of in situ experi-
ments, and the behavior of the primary
and secondary defects induced by irradia-
tion with high energy electrons and ions
have been investigated extensively. This
phenomenon is also correlated with both
irradiation softening [6] of b.c.c. crystals
and irradiation hardening of metals and
alloys. Furthermore, the formation of
nonequilibrium phases has also been car-
ried out by the radiation effects, as men-
tioned later.

Environment-Material Interactions
[6, 21-31]

The following subjects have been investi-
gated by using both open- and closed-type
environmental cells: (a) inner oxidation in
metals and alloys, (b) hydrogen embrittle-
ment of iron crystals, (¢) chemical amor-
phization of metals [6], (d) crystallization

of materials with low melting points
and crystal growth of various oxides,
(e) observation of wet biological and
living microbiological specimens [6], and
others. Closed-type environmental cells
have been effectively used in this research
field, because the pressure of atmospheres
can be widely changed up to 300kPa
so that liquid materials can also be
used [6].

Magnetic Domain Measurement [31]

Various sorts of magnetic domain struc-
tures and interaction between domain
walls and microstructures have been
investigated by changing the strength
of the magnetic field during in situ obser-
vation.

Quantitative Studies [21-31, 36]

By using three-dimensional measure-
ments, the distribution of microstruc-
tures such as complex dislocation
structures, radiation induced secondary
defects, small precipitates, and inclusions
have been quantitatively determined.
Furthermore, the strength of applied
and internal stresses in local regions
can be estimated from both the
change in the radius of curvature and
the movement of dislocations when
the applied stress is changed. The dis-
location velocity can also be measured
as a function of the Burgers vector and
the applied stress [36]. Furthermore,
atomistic structures of very fine precipi-
tates can also be accurately estimated
after sufficient growth by in situ
annealing.



1.4.4 New Research Fields
Using High Voltage Electron
Microscopy

The technical difficulty of keeping the
same stability of electron energy at high
accelerating voltages must be resolved in
the construction of HVEMs. As a result,
the functional features of conventional
electron microscopes have been very
much improved. In particular, high resolu-
tion electron microscopes operating at
high voltages from 300kV to 1.5MYV,
compact HVEMSs, high vacuum electron
microscopes, high resolution analytical
microscopes have been developed. Using
a 300kV electron microscope, high quality
many-beam lattice images of diamond and
silicon crystals have been obtained [37].
Furthermore, very stable high energy
electrons can also be used in other studies,
such as the formation of various non-
equilibrium phases, various kinds of
microfabrication, and the generation of
synchrotron orbital radiation induced by
the rosette motion of electrons around the
nucleus of each atom.

One of the most important applications
is the formation of non-equilibrium phases
to cause new properties. Such nonequili-
brium phases are synthesized by changing
(a) the atomic structures and (b) the
chemical composition. Extreme examples
of (a) and (b) are the formation of amor-
phous solids and implantation of foreign
atoms into various solids. Using the high
energy electron irradiation induced (EII)
method, various conditions for the forma-
tion of nonequilibrium solid phases can be
easily and precisely controlled. Further-
more, compared with ion implantation
and ion and neutron mixing methods,
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this method has the following advantages:
(a) small irradiation damage, (b) small
temperature rise (a few degrees) in the
specimens, (¢) deep implantation (more
than 1mm) of foreign atoms, and (d)
very fine-scale implantation (i.e., about
I nm in diameter). Furthermore, the for-
eign atom implantation can be carried out
at any location within the material when
the electron energy is sufficient for the
implantation.

The formation mechanisms of these
nonequilibrium phases can be dynamically
investigated on an atomic scale by in situ
experiments using sufficiently thick speci-
mens. Today, modern electron micro-
scopy, with the aid of HVEMs, forms a
powerful tool for the characterization and
identification of materials as well as find-
ing an indispensable place in the ‘micro-
laboratory’, in which various sorts of
specimen treatments, including the forma-
tion of nonequilibrium phases, can also be
carried out precisely on an atomic scale.

1.4.4.1 Crystalline—Amorphous
Transition

Figure 11 shows a crystalline—amorphous
transition in the aluminum-zirconium sys-
tem [32,38]. Open circles represent the
phases which have shown solid amor-
phization by the EIll-method, and LQ
indicates the composition range in which
amorphization occurs by the liquid
quenching method. From this, it can be
easily recognized that the Ell-method is
superior to the liquid-quenching method
in controlling the conditions of amor-
phization. The EIlI-method has been
applied to examine the possibility of solid
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Figure 11. Crystalline—amorphous transition in the
Al-Zr system [38]. Open circles represent the phases
that have shown solid amorphization by EIl. LQ
indicates the composition range in which amorphiza-
tion by the liquid quenching method takes place.

amorphization for more than 60 interme-
tallic compounds and about 30 ceramics.
Figure 12 shows an example of the amor-
phization induced by electron irradiation
at 2MV in an Ni-50at % Ti shape-mem-
ory alloy [32], which is very difficult to
amorphize by quenching from the liquid
phase. The bright spots in (a) and dark
ones in (b) represent atom chains whose
direction is parallel to the beam direction.
It should be noted in Fig. 12b that periodic
arrays of spots can be observed in very
limited regions. The existence of a critical
size for such a region can be concluded,
because the periodic arrays of atom chains
are only observed in blocks larger than a
critical size. The critical size depends on

c

Figure 12. High resolution electron micrographs
corresponding to start of solid amorphization (a).
(b) Partly amorphitized. (c) completely amorphitized
[32].

the bonding mode and bond strength of
the constitutive atoms (i.e., it decreases
with increasing degree of covalent bonding
and with decreasing coordination number
of the atom) [32]. The critical size for the
Ni-50at% Ti alloy is about 3nm in
diameter, as shown by the white circle in
Fig. 12b. Based on these experimental
results, various factors determining amor-
phization have been clarified, and general
rules for amorphization have been pro-
posed [32,39]. The general rules can be
applied to all methods of amorphization
such as chemical amorphization, liquid



quenching, vapor deposition, mechanical
alloying, sputtering, particle irradiation
and so on.

1.4.4.2 Electron-Irradiation-
Induced Foreign Atom
Implantation

The electron irradiation induced (EII)
method has been used to implant foreign
atoms into solids. A combination of solute
and solvent atoms can be selected depend-
ing on the purpose, such as for the forma-
tion of supersaturated solid solutions,
atom clusters and amorphous solids. For
example, Si, Ge, Sn, and Pb atoms were
implanted into an Al-matrix by the EII-
method using 2MV electrons at 160K
[32]. In these cases, amorphous phases
are formed by mixing both Si and Ge
atoms into the Al matrix. Small clusters
of implanted atoms are also formed by
slight annealing after the electron irradia-
tion. Furthermore, it is concluded that the
implantation speed markedly increases
when amorphization occurs by mixing
foreign atoms, as in the case of Al-Si and
Al-Ge alloys.

Figures 13a and 13b were taken before
and after implantation of Pb atoms into an
Alcrystal at 175K, and Fig. 13c after post-
annealing for 36 ks at 573 K [40]. It can be
noted in Fig. 13b that the diffraction con-
trast does not appear so clearly in spite of
the large difference of more than 20% in
atom size between Pb and Al atoms. These
implanted Pb atoms precipitate as ultra-
fine particles by post-annealing, as shown
in Fig. 13c.

When the foreign atom implantation by
EIl is carried out at slightly higher tem-
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Figure 13. HVEM images taken (a) before and (b)
after implantation of Pb atoms into an Al Crystal at
2MYV and 175K. (c) Image taken after post-anneal-
ing at 573K for 36 ks [40].

peratures (e.g., at 293K in Al-Pb alloys),
the implantation of solute atoms hardly
occurs, even after a large dosage of elec-
trons [40]. It is therefore concluded that
the implantation results from repeated
short displacement of foreign atoms, and
that the mobility of solute atoms is closely
related to the behavior of point defects
induced in the substrate [32]. Implanted
atoms interact with the point defects, in
other words, oversized atoms with vacan-
cies and undersized atoms with intersti-
tials. Hence, they are moved out to the
nearby point defect sinks, such as the sur-
face or interfaces, when the substrate tem-
perature increases sufficiently to move the
related point defects, that is, vacancies for
oversized atoms and interstitials for under-
sized atoms. For example, in the case of
oversized atoms, they are hardly made to
implant when the substrate temperature is
high enough to move the vacancies. From
Fig. 13c it is seen that a number of voids
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appear together with ultrafine Pb particles
in the implanted regions after postanneal-
ing [32]. This means that aluminum vacan-
cies induced by the electron irradiation
tightly interact with implanted Pb atoms
at low temperatures at which the vacancies
do not move. This is the reason why the
lattice distortion of the Al matrix, resulting
from a large atomic size difference, is
markedly relieved by the buffer effect of
the vacancies, as recognized from slight
increase of the diffraction contrast in
implanted regions in Fig. 13b.

Furthermore, it is emphasized in Fig. 13
that the implanted regions are formed
exactly along the incident direction of
electrons so that the implantation occurs
inside a cylinder parallel to the incident
beam direction and having a cross-section
corresponding to the size of preexisting Pb
particle. This is due to electron channeling
occurring in the Al matrix during the
implantation [32].

To reiterate: HVEMs has great advan-
tages when compared with other methods
using ions and neutrons; they are an indis-
pensable tool for making various new
nonequilibrium phases by amorphization
and/or foreign atom implantation.

1.4.5 Conclusions

The present review has emphasized that
electron channeling by simultaneous
reflection becomes very important at high
voltages, and that various specimen treat-
ment devices have also been improved as
well as stabilization of the high accelerat-
ing voltage of the electrons. As a result,
not only in situ experiments of various
phenomena occurring in materials but

also the formation of new functional
materials as nonequilibrium phases have
been carried out precisely by high voltage
electron microscopy. Stable high energy
electrons, obtained with HVEMSs, can
also be applied to various research fields
such as ultrafine fabrication and the gen-
eration of synchrotron orbital radiation as
well as to the construction of compact
HVEMs for high-resolution structure ima-
ging, precise analytical microscopes, etc.

One example in which HVEMs have
shown a great advantage has been in the
recent investigations on the anomalous
behavior of atom clusters in the nanometer
range as a new type of nonequilibrium
phase [39].

Finally, because of the importance of
information on valence electrons in mate-
rials science, there are many advantages to
be accrued by combining HVEMs with
other techniques such as Auger electron
spectroscopy or STS. This will undoubt-
edly provide a fruitful path for the future.
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1.5 Convergent Beam Electron Diffraction

1.5.1 Introduction

Convergent beam clectron diffraction
(CBED) is perhaps best known as a
method for determining crystal point and
space groups, and, when combined with
elemental analysis using X-rays or electron
energy loss spectroscopy, it can be used to
determine the composition and structure
of small crystals. However, CBED has
proved a versatile technique with a much
wider range of applications. In this chapter
we first explain what information is con-
tained in CBED patterns. We then survey
some recent developments including the
quantitative determination of crystal
bonding and atomic coordinates, the phas-
ing of reflections using coherent diffraction
and the analysis of crystal defects and
interfaces. For more in-depth accounts
of the techniques and applications, the
reader is referred to three standard texts
[1-3].

CBED is now widely accessible, owing
to the commercial development of analy-
tical electron microscopes which have
small probe optics and vacuum engineer-
ing to minimize probe contamination, For
a summary of the instrumental require-
ments for CBED and an explanation of
experimental techniques, the reader is

referred to the article by Vincent [3]. In
the following we refer to two techniques.
In conventional CBED, the incident beam
is brought to a focus on the specimen, the
probe size being chosen such as to elim-
inate any variation in sample thickness,
orientation or structure across the probe
diameter. In large angle convergent beam
electron diffraction (LACBED), see Fig. 1,
the probe focus is appreciably above or
below the specimen such that, in the object
plane, the straight-through and diffracted
beams are brought to foci which are
separated laterally. By inserting a small
selected area aperture (usually in the
range [-Spum) a single diffracted beam
can be selected such that the resulting
diffraction pattern has only one disc.
Although this has the apparent disadvan-
tage of almost certainly introducing speci-
men variations across the incident probe,
LACBED has some important advantages
over CBED. First, whereas the total con-
vergence angle in CBED is usually limited
to avoid disc overlap, to a maximum of
about 2 x 1072 rad, the convergence angle
in LACBED may be five to ten times
greater, limited only by electron optics.
Second, the selected areca aperture acts,
like an objective aperture in imaging, to
filter out inelastic background. Jordan
et al. [4] have shown that, by using a
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Figure 1. Schematic diagram of LACBED optics with
the specimen Af above the focus of the incident
probe.

large defocus of the incident probe (Af
in Fig. 1) and a small selected area aper-
ture (2um), the beam acceptance angle
may be reduced to less than 107> rad.
Almost all the thermal diffuse background
and some of the plasmon scattering can
thereby be removed from the resulting
LACBED pattern. Finally, in LACBED,
since any illuminated region of the
specimen sees only a subset of incident
beam directions, a shadow image of the
illuminated region appears on the final
LACBED disk. The spatial resolution of
this image is given by the minimum
probe size in the limit of geometrical
optics. The resulting mixture of real
space and diffraction information has
proved particularly important in under-
standing diffraction from defects such as
dislocations where rapidly varying strain
fields are involved (see Sec. 1.5.7 of this
Chapter).

1.5.2 Geometry and Crystal
Symmetry Determination

The Ewald sphere construction in the
reciprocal lattice is by far the most con-
venient way of understanding the geome-
try of electron diffraction [5]. As a result of
the very short wavelength of high energy
electrons, the radius of the Ewald sphere is
very much greater than the spacing
between the reciprocal lattice points, typi-
cally 50 or 100 times greater. When the
electron beam is incident along a zone axis
direction of a crystal structure, a very flat
Ewald sphere passes very close to a large
patch of reciprocal lattice points surround-
ing the origin of a reciprocal lattice plane
(zero layer plane) perpendicular to direc-
tion of incidence. With increasing scatter-
ing angle, the Ewald sphere eventually
curves away from this zero layer plane
and intersects successive layers of the reci-
procal lattice, parallel to the zero layer
plane, in a series of concentric circles of
increasing radius G. Thus, the diffraction
pattern, viewed at a sufficiently low mag-
nification (camera length) consists of a
central patch of reflections with additional
large angle diffraction arranged in con-
centric circles of increasing radius (Fig. 2).
The successive layers of the reciprocal
lattice, where these reflections appear, are
known as Laue zones; the zero layer is
known as the zero order Laue zone
(ZOLZ) and the others are called higher
order Laue zones (HOLZ). The number
of HOLZ rings visible depends on the
angular view available, the microscope
operating voltage and the spacing H of
the successive layers of the reciprocal
lattice along the zone axis direction. For
electrons with wavenumber k& we have, toa
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Figure 2. Convergent beam electron diffraction pat-
tern of NbSe; taken at 120 kV with the specimen
cooled by liquid helium. The concentric circles of
increasing radius at the center of the pattern are
based on the chosen zone axis of incidence. Two
other secondary zone axes are clearly visible along
the mirror line through the center of the pattern and
other zone axes off the mirror line may also be
discerned.

good approximation
G~ V2kH (1)

In practice, large angle scattering is
strongly affected by the Debye—Waller
factor and so the visibility of the successive
HOLZ rings may be limited by thermal or
static disorder in the sample under inves-
tigation.

The existence of HOLZ diffraction
provides firm evidence of the stacking
sequence along the direction of electron
propagation. The lack of HOLZ diffrac-
tion is an indication of disorder along this
direction [6]. This might be planar-
disorder as in the case of layer-structured
materials with weak interlayer bonding,
line-disorder as from a high dislocation
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density or point-disorder. The relative
weakness of HOLZ diffraction is the
justification for ignoring it, as in the case
of the so-called projection approximation.
Neglect of HOLZ diffraction is equivalent
to projection of the atomic structure along
the zone axis direction. That this is only a
first approximation and sometimes a gross
oversimplification is evident from Fig. 2.
One further point of considerable impor-
tance is that the Bravais lattice may be
obtained by examination of CBED pat-
terns showing HOLZ diffraction without
overlap of diffraction orders [7]. To sim-
plify the analysis it is preferable to perform
the analysis at a high symmetry zone axis if
possible. A mesh of lines is created in the
ZOLZ with nodes at the reflections and a
further mesh is constructed from the first
order Laue zone (FOLZ) reflections. By
the coincidence or not of the nodes of the
two meshes the Bravais lattice may be
determined.

The nature of HOLZ diffraction is gen-
erally rather different from that of ZOLZ
diffraction. To a reasonable first approxi-
mation it can be treated kinematically, a
point that will be discussed in more detail
in Sec. 1.5.5 of this Chapter. In this
approximation, the width of the diffrac-
tion peak, corresponding to a particular
reflection g, will depend on the magnitude
of its associated structure factor F,. For
large values of g as in HOLZ diffraction,
F, is small and so narrow diffraction max-
ima will occur. The locus of all points
within a given cone of electron conver-
gence that satisfy the Bragg condition for
that particular reflection is essentially a
straight line (in fact it is given by the
intersection of two spheres of very large
radius, k, one on the origin and one on the
reciprocal lattice point g from the origin).
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Thus HOLZ diffraction takes electrons
away from the cone of incidence along a
narrow line perpendicular to g and their
Bragg reflection produces a bright line of
the same length, width and orientation in
the appropriate HOLZ ring. The dark line
in the central disk of the CBED pattern is
known as a HOLZ deficiency line and the
associated bright line in the HOLZ ring is
called a HOLZ excess line [8]. Because of
their narrow angular width, the HOLZ
lines have a number of useful applications.
In the case of very fine lines, resulting from
a distant FOLZ ring, computations of
HOLZ line patterns based on kinematic
diffraction theory are likely to be valid
with two important reservations [9].
First, for reasons to be discussed in this
Chapter, Sec. 1.5.5, the microscope oper-
ating voltage must be allowed to vary
within about +£3 % of the apparent value
(we shall use the term pseudokinematic to
describe HOLZ diffraction on account of
this factor). Second, where two lines g and
g intersect at a small angle and Fy g is
large, then strong dynamical coupling of
the HOLZ lines corresponding to g and g’
will occur near their intersection.

The first use of HOLZ lines is in lattice
parameter measurements [10]. One can
avoid zone axis directions to reduce the
dynamical effects that introduce the
pseudokinematic approximation rather
than the true kinematic approximation,
or else concentrate on changes of lattice
parameter caused by temperature or
composition changes so that dynamical
corrections are unlikely to be important.
The second use of HOLZ lines is in strain
measurement [11]. Some words of caution
are necessary in this context. One of the
chief attractions of the technique is the
ease with which HOLZ-line distortion

may be detected. However, accurate
measurements of strains from such obser-
vations are rather hard to achieve for a
variety of reasons. First, the measurements
are being made on thin films where con-
siderable stress relaxation will have
occurred and has to be taken into account.
Second, the process of making the speci-
men may have introduced additional
stresses that are not immediately obvious
(such as are caused by amorphous surface
films or surface oxides.) Third, differential
expansion effects caused by albeit small
beam heating of an interface region
between dissimilar materials may lead to
spurious results. Finally, to obtain fine
HOLZ lines it is generally necessary to
have specimen thicknesses of <100 nm
and the strain to be measured should
remain constant along the column
explored by the electron beam, to within
the accuracy of the measurements. It is
common to achieve measurements of
strain or lattice parameters to about 107>
by the HOLZ line method. Greater accu-
racy down to about 2 x 10™* can be
achieved in favorable cases but energy
loss to plasmon excitation then becomes
a fundamental limitation.

CBED patterns evidently contain a
wealth of symmetry information and this
aspect of the subject is now well-under-
stood and widely exploited [12]. The dyna-
mical nature of electron diffraction far
from being a complication, is the very
strength on which the technique is based.
As a result, the absence of inversion sym-
metry is detectable straightforwardly, the
symmetry of the patterns may be related
directly to the 32 point groups rather than
the 11 Laue groups (created when Friedel’s
law is obeyed, as in normal X-ray diffrac-
tion). The theoretical analysis of symmetry



is based on very general and widely
applicable approximations of high energy
electron diffraction. Tables have been pro-
duced that allow one to go directly from
experimental observations to point group
and space group determinations. In favor-
able cases this is an extremely efficient
process and the information gathered at
one zone axis can be sufficient to perform
an unambiguous space group determina-
tion. More commonly, information has to
be gathered at two or more zone axes to
complete the analysis. Fortunately, the
inclination of the specimen in tilting to a
zone axis has, generally, very little influ-
ence on pattern symmetry.

The nature of electron diffraction sym-
metry is more subtle than may be apparent
at first. The symmetry of the direct beam
may be higher than that of the whole
diffraction pattern; individual orders of
reflection can have internal symmetry
that is important in determining which
of the 31 different diffraction groups a
particular pattern belongs to. The steps
required in identifying the diffraction
group and from that the crystal point
group are discussed in several previous
works [13].

Having determined the crystal point
group, the presence of screw axes or glide
planes may be inferred by the study of X-
ray forbidden reflections in well-oriented
zone axis patterns. These appear in elec-
tron diffraction as a result of multiple
scattering but nevertheless lines of absent
intensity occur within these reflections
because of exact cancellation between the
various contributing diffraction paths. The
individual diffraction paths may be paired
together such that each path contributes
an equal amplitude to the reflection pre-
cisely out of phase with the contribution
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from the other path. The resulting lines of
absence are variously called dynamic
absences, Gjonnes-Moodie lines, or dark
bars. Accounts of their use in space group
determination are given in several refer-
ences [14].

1.5.3 Bloch Wave Theory

To understand the details of CBED pat-
terns it is generally necessary to make
reference to a form of dynamical diffrac-
tion theory. The simplest of these is the so
called two-beam theory where only the
incident beam and one diffracted beam
are considered significant [15]. According
to this theory, ignoring absorption, the
intensity of the direct beam, /;, is given by

2 . oW
I=1-4c"c? sng— 14 w2
4

=11, 2)

where I, is the diffracted beam intensity,
w, = 5.€, is called the deviation parameter
from the g Bragg condition, &, oc 1/F, is
the so-called extinction length, s, ~ gAf
where A6 is the angular deviation from the
g Bragg condition and ¢ is the thickness of
the specimen.
We can also write
eff

. 9
I, — 4CV @ si2 1 _ S0 (M/ET)
4

¢ 1+ wg
(3)
where ¢/ = ¢,/1/1 + w} and ¢ is called

the effective extinction distance. Its value
decreases symmetrically for £ A#6.

The basis of this theory is the Bloch
wave formulation of dynamical diffraction.
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Figure 3. Dispersion surface
for a (nnn) systematic row

of silicon at 300 kV. The
dispersion spheres appear as
parabolas in this diagram
and are asymptotic to the
dispersion surface away
from Brillouin zone
boundaries. These
parabolas are centered on
each of the reflections n. At
the n Bragg position, the
effective extinction distance
is the reciprocal of the gap
labelled as n, n+ 1. This
diagram should be related
directly to the LACBED
result in Fig. 4.

It is particularly convenient for under-
standing many of the diffraction effects
that occur. The results of this form of
diffraction theory are conveniently repre-
sented in terms of a so-called dispersion
surface constructed from dispersion
spheres (of radius proportional to the free
electron energy) centered on ecach of the
reciprocal lattice points. The spheres inter-
sect at Brillouin zone boundaries, where
electron diffraction occurs, causing stand-
ing (Bloch) wave formation and splitting of
the constant energy surfaces near the cir-
cles of intersection of the spheres (Fig. 3)
These effects are the direct equivalent
of Fermi surface and forbidden band for-
mation for conduction electrons. Cél) and
C(()z) in the expressions above are the Bloch
wave amplitudes of the two branches
approaching an intersection point of the
constant energy spheres.

A particular attraction of the Bloch
wave formulation is that only a small
number of excitation amplitudes are sig-
nificant at any given orientation and the
same or an even smaller number show
significant orientation variation within
the angular range of a CBED disk. In the

simplest case, which often applies, only
two branches need to be considered.

Let us consider the application of two
beam theory to the LACBED pattern
formed for silicon (111) systematic dif-
fraction from a wedge shaped crystal
(Fig. 4). The thickness of the specimen
increases vertically up the page and the
position midway between the two sets of
curved fringes is the symmetric position
with the direction of incidence perpendi-
cular to the (111) systematic row. The
series of dark vertical lines indicate the
Bragg positions of higher order reflections
(nnn). They are marked by integers on the
corresponding dispersion surface shown in
Fig. 3. At the 1 Bragg positions the
fringes have a maximum spacing that cor-
responds to the reciprocal of the gap
opened up at the first Brillouin zone
boundary between branches (1) and (2)
of the dispersion surface. At the =£2
Bragg positions, a series of widely-spaced
arrow-like fringes are visible. These corre-
spond to the results of another two branch
theory, this time for the smaller gap
opened up at the second Brillouin zone
boundary between branches (2) and (3) of



the dispersion surface. Because the gap is
smaller, the extinction length is longer and
the angular range over which the local
two-branch theory applies is narrower
than the first case. In the case of the 43,
+4 and 45 Bragg conditions the gaps
opened up between the relevant dispersion
surface branches are so small that very
long extinction lengths occur. Hence the
first maximum is not reached before
absorption takes over, resulting in diffuse
scattering at the top edge of the pattern,
and only dark lines corresponding to the
first extinction minima are observed. The
lines become narrower and fainter as n
increases.

In addition to demonstrating the value
of a series of local two-branch approxima-
tions over local orientation ranges, there
are several further interesting points about
this micrograph. According to kinematical
diffraction theory, for spherical atoms
with harmonic lattice vibrations, there
would be no extinction at the +2 Bragg
positions. The extinction observed is
essentially the result of dynamical diffrac-
tion along the systematic row, with a small
additional contribution from bonding
effects and anharmonicity. According to

229

Convergent Beam Electron Diffraction

Figure 4. Experimental
LACBED wedge/rocking
curve for the (nnn)
systematic row of silicon at
300 kV. Lines inclined to
the vertical are
nonsystematic reflections,
not taken into account in
the calculated results shown
in Fig. 3. They clearly show
the expected lack of vertical
mirror symmetry. Thickness
fringes may be observed
clearly at the +1, and £2
Bragg conditions: they can
also be detected (just) at the
+3 Bragg condition.

many beam dynamical theory, the extinc-
tion length at the +1 Bragg positions is
103.7 nm and at +2 it is 190.0 nm. In fact
the ratio between the two extinctions
obtained from measurements on the
micrograph, is closer to 2.5. This difference
is believed to be the result of nonsyste-
matic interactions that perturb the purely
systematic diffraction assumed in the cal-
culations. The presence of non systematic
reflections may be observed clearly in the
micrograph and they break the mirror
symmetry along the center line of the
pattern as expected. The —6 reflection is
not observed and it is expected to be very
weak because, like the (222) reflection, it
can only appear through systematic dyna-
mical interactions if bonding effects and
anharmonicity are ignored.

This same theory is readily adapted to
making accurate specimen thickness mea-
surements from fringe patterns in CBED
from systematic rows of reflections [16].
The one dimensional example given above
is easily adapted to describe two dimen-
sional (zone axis or cross-grating) diffrac-
tion [17]. Those Bloch states with high
probability density of electrons on the
atom strings have low potential energy
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Figure 5. {111} section through a Si{111) zone axis dispersion surface at 100 kV. The diagram is inverted
relative to Fig. 3 in order that the lowest potential energy state (1s) is at the bottom. (a) Large region of the
dispersion surface centered on the origin for the case of two dimensional (zero layer) diffraction, (b) boxed
region of (a) is shown in greater detail with a single HOLZ (5511) reflection added to the calculation
(g = 1/a[1 12]). The intersections of the HOLZ sphere with the zero layer branches causes local splitting and

hybridization as detailed in (c) for the boxed region in (b).



and high kinetic energy. They represent
electron states bound in the atom-string
potential wells which, in the simplest case,
have cylindrical symmetry. These bound-
states are analogous to atomic bound-
states and have principal and angular
momentum quantum numbers #/ where
[<n-—1 (e.g., 1s, 2p). The states are
ordered in the atom-string potential first
by their principal quantum number, then
by their angular momentum quantum
number, the higher the / value the lower
the energy of the state. It follows that the
two lowest-energy bound-states are 1 s and
2p. However, except in the case of rather
deep atom string potential wells, there is
only one bound state (1s) and the nearly
free states, just above the top of the well,
have a different order, with 2 s below 2p in
energy (Fig. 5). This latter situation is very
common and gives rise to the concentric
ring pattern often observed at zone axes of
simple materials. The rings are produced
by two-branch interference between the
1s and 2s states exactly analogous to the
state of affairs described by Eq. 2. The
wells may be made deeper by a number
of factors and it is possible [18] to
define a string-strength parameter S that
includes these factors to a first approxi-
mation

_ZA
- d

where ~ is the relativistic mass factor, Z is
the mean atomic number in the repeat
distance, d, along the atom string and A
is the area of the Wigner—Seitz cell asso-
ciated with the atomic string. The ~ factor
arises because we can regard the relativistic
effect, on increasing the microscope oper-
ating voltage, as multiplying the potential
that the electron experiences by the

S (4)
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increase of its relativistic mass.

gy —E 5
(G a0 )uto) = Evt) (9
It follows from this argument that an atom
string potential well that is not quite deep
enough to hold two bound states at
100 kV may be able to do so at some
higher operating voltage, in consequence
of the increase of relativistic mass [19]. For
this to happen interchange of the order of
the 2s and 2 p states has to occur and it
does so through a so-called accidental
degeneracy (i.e., not symmetry deter-
mined) just at the point where the 2s
level touches the top of the string potential
well. This accidental degeneracy is known
as the critical voltage effect and the voltage
at which the degeneracy occurs may be
determined experimentally with great
accuracy [20]. At higher voltages the two
n =2 states are bound and reversed in
order, 2p below 2s. There is an exactly
equivalent critical voltage effect in one
dimensional electron diffraction but these
critical voltages tend to occur at rather
high microscope operating voltages [21].
Three-dimensional diffraction involves
a relaxation of the projection (atomic
string) approximation and requires the
addition of free electron dispersion spheres
centered on HOLZ reflections. It is fre-
quently valid to consider the effect of a
particular HOLZ reflection g in isolation
from other HOLZ reflections by adding
just one sphere centered on the particular
HOLZ reciprocal lattice point to the dis-
persion surface construction [22]. Because
of the large distance of g from the zone
axis the g dispersion sphere intersects the
zero layer dispersion surface at an appreci-
able angle and wherever it cuts a particular
zero layer branch splitting occurs [9] and
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a new two-branch situation is created
(Fig. 5). 1t is precisely because the HOLZ
line that results from the intersection
between the HOLZ dispersion sphere and
the branch of the zero layer dispersion
surface is displaced from the kinematical
position that the term pseudokinematical
was adopted earlier and a degree of voltage
variation had to be introduced in compu-
ter matching of HOLZ-line patterns. The
splitting introduced between the zero layer
branch and the HOLZ dispersion sphere
is rather small [9] corresponding to an
extinction length (£4) of several hundred
nanometers. It follows that we can often
make the kinematical approximation to
Eq. (2), that is,

S n 124
in—~ —
En Eu

In this sense, therefore, the HOLZ diffrac-
tion is kinematic and also in the sense that
the splitting that occurs may be calculated
by perturbation theory [22]. However, the
displacement of the zero layer branch from
the dispersion sphere on the origin is a
dynamical effect that depends on the
strength of the atom-string potential. In
this sense HOLZ diffraction is not kine-
matical. Moreover, there may be several
appreciably excited branches of the zero-
layer dispersion surface, each giving a
separate HOLZ line, displaced from, but
approximately parallel to, the others. This
HOLZ line splitting or fine structure is also
a purely dynamical effect, permitting direct
visualization of the strongly excited zero
layer branches. Moreover, the extinction
length £ may be greatly reduced (by
something like a factor of five) from the
value deduced from kinematical theory
(€N o 1/Fy), where Fy is the HOLZ
reflection structure factor) and hence

there is another sense in which HOLZ
diffraction is not kinematical. Indeed, if it
were not for the zone axis reduction of the
HOLZ extinction lengths, HOLZ lines
would probably not be visible in zone
axis CBED patterns.

1.5.4 Crystal Structure
Determination by Convergent
Beam Electron Diffraction

For thin films of crystals which contain
principally light elements, structure deter-
mination by plane wave electron diffrac-
tion has been based upon the techniques
developed for the analysis of kinematic X-
ray data [23]. Recent advances include the
introduction of direct methods and maxi-
mum entropy criteria to phase high order
reflections beyond the point resolution
limit in lattice images [24]. However, this
approach is not reliable for crystals which
contain heavier atoms, where many of the
low order reflections are associated with
extinction distances comparable to the
crystal thickness, even for CBED patterns
acquired with the beam focused onto a
crystal with a local thickness of a few
nanometers. A partial solution, at least
for inorganic crystals of moderate com-
plexity, is offered by analysis of HOLZ
reflections, which intercept the Bragg con-
dition in zone axis CBED patterns, usually
have extinction lengths much larger than
the crystal thickness, are not located
within strong systematic rows, and are
associated with structure factors sensitive
to small changes in the atomic parameters.

The basis for a quantitative analysis of
HOLZ intensities is given by the Bloch



wave formalism for the solution of the
Schrédinger equation in the projection
approximation. Along major zone axes,
the exit wave function is a phased sum
over relatively few excited Bloch states,
often described as molecular combinations
of localized two-dimensional atomic
states. The eigenvalues associated with a
near-degenerate molecular cluster of 1s
type Bloch states localized on a symme-
try-related set of atom strings in the
projected potential may be quite distinct
from the eigenvalues of other localized or
channeling Bloch states. It follows that the
components of the electron wave vector
along the zone axis also differ, and that the
inner excess lines observed within the disks
of HOLZ reflections correspond to diffrac-
tion from Bloch state clusters localized on
subsets of atom strings, with a related shift
of excess and deficiency lines away from
their kinematic positions.

The Bloch wave formalism is equally
useful for constructing a model of the
factors which control the relative intensi-
ties of HOLZ excess lines. In the kinematic
approximation, the amplitude of a HOLZ
reflection is proportional to the relevant
structure factor of a two-dimensional con-
ditional potential, U"(R), constructed by a
Fourier sum over structure factors in layer
n of the reciprocal lattice, where R is a
position vector within the projected cell.
For n=0, U’(R) is the usual projected
potential, which is real by definition, but
the general conditional potentials are com-
plex with phase factors proportional to
atom positions along the projection axis,
being simply an expression in real space of
the information implicit in the structure
factors. The final step is to consider the
effect on the HOLZ amplitudes of diffrac-
tion not from the incident plane wave, but
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from a cluster of Bloch states. It may be
shown [25] that a modified version of the
conditional potential is retained, defined
by multiplication of U"(R) with the rele-
vant Bloch state at every position within
the projected cell. In a quasikinematic
limit, the amplitudes of associated HOLZ
excess lines remain proportional to the
Fourier coefficients of the modified poten-
tial which may include contributions from
only a single subset of atoms.

Provided that an approximate structure
is available for calculation of the zone axis
Bloch states, the intensities of suitable
HOLZ excess lines may be used to refine
the atomic parameters. To improve the
statistical accuracy, it is important to com-
bine data acquired over a wide voltage
range, equivalent to an annulus of HOLZ
reflections. The atomic parameters are
refined by standard X-ray procedures,
which minimize the mean squared differ-
ence between observed and calculated
intensities based upon a kinematic expres-
sion derived from the partial structure fac-
tors. Typical reliability factors for HOLZ
refinements (defined as the mean fractional
difference between observed and calculated
intensities) are larger than equivalent X-ray
values although the standard deviation of
the atomic parameters is impressively small,
often equivalent to an accuracy of
0.001 nm. The explanation for this appar-
ent dichotomy is that only the high order
reflections are refined. The intensities of
individual reflections are very sensitive to
small changes in the atomic parameters but
are also subject to perturbation by coupling
between adjacent HOLZ reflections that is
not included in the quasikinematic approx-
imation described above.

Examples of structure refinement
[26—28] include the analysis of displacive
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superlattices where the symmetry of the
subcell is broken to produce a domain
structure not easily accessible to X-ray or
neutron techniques. A further application
is to metastable crystal structures pro-
duced either by interface reactions or by
rapid quenching of liquid or vapor phases.
For crystals which have no resemblance to
known phases, there remains the basic
problem of deducing the structure. Some
progress has been made by adapting the
arguments outlined above for HOLZ dif-
fraction. If the inner excess lines show
strong variations of their relative intensi-
ties around a major axis, then it is reason-
able to assume that the relevant Bloch
states are localized, and that the diffracted
intensities may be analyzed by X-ray pro-
cedures.

Patterson transtforms of the HOLZ
intensity data were used to deduce intera-
tomic vectors and subsequently refine the
atomic parameters in metastable alloys [29,

Figure 6 . Example of the projected
Fourier transform of a precession pattern
for Er,Ge, O, (space group P4, 32,2)
calculated from the intensities of an
annulus of FOLZ reflections excited
around the ¢ axis. The peaks
corresponding to Er and Ge atoms in
general (8-fold) positions were refined
from the experimental data. The
background ripple around and between
peaks is associated with truncation of the
Fourier series when summed over the
FOLZ reflections. (Courtesy of M. E.
Sleight.)

30]. The correlation peaks were very sharp,
being the transform of a restricted set of
reciprocal lattice vectors with short wave-
lengths. This approach fails when the peaks
are not visible above the background ripple
generated by the truncated data set, com-
bined with the inevitable noise associated
with dynamical coupling between HOLZ
reflections. A further problem common to
all analyses based on localized Bloch states
is that weak atom strings, often corre-
sponding to projections of atoms with low
atomic number, are not detected. An alter-
native approach based upon an electron-
optical equivalent to the X-ray precession
geometry has been explored where the
Ewald sphere is rocked through the Bragg
condition for an annulus of HOLZ reflec-
tions [31]. An example for a rare earth
pyrogermanate is shown in Fig. 6, where
the Er and Ge positions agreed with the X-
ray data, but the oxygen positions were
obscured by nonsystematic perturbations.




1.5.5 Quantitative Convergent
Beam Electron Diffraction

Unlike the analysis of kinematic X-ray and
neutron diffraction data, there exists no
general method for the inverse solution of
the Schrédinger equation to retrieve a
complete set of Fourier coefficients, V, of
the crystal potential. Nevertheless, there
are several strong incentives, both theore-
tical and practical, for the quantitative
comparison of calculated and experimen-
tal CBED intensities. These include the
introduction of field emission sources
with high brightness and also commercial
electron spectrometers to remove the
inelastic component from diffraction pat-
terns. When combined with the absence of
any requirement for perfect crystals larger
than nanometer dimensions, and the con-
tinued decrease in the cost of dedicated
computers, it has become possible to
match many-beam dynamical calculations
with experimental CBED patterns, treat-
ing the structure factors, thermal para-
meters and thickness as free variables
which are adjusted to minimize the dispar-
ity between experiment and theory. In
principle, we may infer the composition,
atom positions, vibrational amplitudes
and the bond charge distribution from a
complete knowledge of the crystal poten-
tial or the equivalent charge distribution
calculated via Poisson’s equation.
However, the time required for each
dynamical refinement cycle increases
rapidly when more beams are included,
and has imposed an effective division
between structure determination by tradi-
tional methods applied to quasikinematic
estimates of intensities for a large number
of high order reflections (see Sec. 1.5.4 of
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this Chapter), and the exact calculations
applied to simple inorganic crystals with
known structures. Even for these crystals,
the majority of structure factors are reli-
ably estimated by calculation from the
form factors for neutral isolated atoms,
and only the phase and amplitude of the
lowest order components in the crystal
potential are varied to seek a global mini-
mum in phase space between observed and
calculated intensities, subject to a statisti-
cal ? criterion for acceptable agreement
between experiment and theory.

As discussed in detail by Spence and
Zuo [2], the purpose of this comparison is
to measure with high accuracy the lowest
order coeflicients of the crystal potential,
which are slightly perturbed by the redis-
tribution of charge associated with bond-
ing between atoms. A further advantage of
using electrons for measurement of bond
charge distributions is that the necessary
conversion from voltage to charge reduces
the statistical error, which is a vital con-
sideration because bonding represents
only a small fraction of the natural overlap
between the valence wave functions when
atoms are assembled into a crystal. The
corresponding maximum change in the
lowest order electron structure factors is
less than 1 %. Problems which are not yet
fully addressed include the treatment of
thermal diffuse scattering which remains
unfiltered from experimental patterns, the
accurate measurement of thermal Debye—
Waller factors, which appear in the con-
version from voltage to charge distribu-
tions, the improvement of models for the
imaginary component of the crystal poten-
tial which simulates the loss of electrons
by inelastic processes, and the accurate
estimation of the local composition in
compounds.
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Measurement of the complex structure
factor for a single reflection is based upon
the two-beam diffraction geometry, where
all other higher order reflections with
significant excitation are included in
calculations.  Alternatively, dynamical
interactions between low order reflections
perturbed by bonding are enhanced within
a single zone axis pattern, and may
represent a more efficient strategy for
refinement of the structure factors [32]
(Fig. 7). As yet, published results have

Figure 7. Charge distribution in crystalline Si at 300
K, calculated by matching calculations to a (110)
CBED pattern, and seen through a (110) planar
section intercepting the nuclei and covalent bonds.
To enhance visibility, the neutral atom charge dis-
tribution has been subtracted, leaving bonds as
regions of excess negative (light tones) charge,
balanced by dark electron-deficient regions, centered
on the atoms and also extended into tetrahedral lobes
in opposition to the bonds.

been confined to a few semiconductors,
alloys and oxides, but the best quality
data agree closely with the extensive X-
ray measurements on Si and Ge, and are
consistent with band structure calcula-
tions. A separate parameter not measured
by pattern matchingis ¥, the mean crystal
potential which is a sensitive measure of
charge redistribution in crystals. For self-
consistency, measurements of structure
factors and thermal parameters must
agree with independent estimates derived
from thickness-independent contrast fea-
tures in CBED patterns, notably local
(three-beam) coupling between nonsyste-
matic reflections and critical voltage con-
trast associated with accidental degeneracy
of Bloch state eigenvalues.

1.5.6 Coherent Convergent
Beam Electron Diffraction

Provided that adjacent disks do not over-
lap, CBED patterns from a perfect crystal
with plane parallel surfaces normal to the
beam are indistinguishable, being indepen-
dent not only of the probe size, position
and defocus, but also of the probe coher-
ence. The latter result follows from the
absence of interference between adjacent
beams within any disk of a CBED pattern.
The situation is entirely different if the
convergence angle is increased so that the
discs overlap. The random phase relations
between beams emitted by the conven-
tional electron source used in most trans-
mission microscopes ensures that only the
intensities of adjacent discs are added in
the overlap regions, whereas the overlap
intensities in the CBED pattern formed by



an ideal coherent source are determined by
the phased addition of the diffracted
amplitudes. Further, the contrast within
overlaps is dependent on the probe posi-
tion within the projected cell. If the probe
is scanned across a set of lattice planes
with spacing ¢ and reciprocal lattice vector
g = 1/d, then the relative phase at any
position in the overlap of a pair of reflec-
tions related by the difference vector g
cycles through 2n in distance 4 with a
corresponding periodic variation of the
interference contrast.

For beam convergence angle 2«, adja-
cent discs overlap if 2o < A/d, equivalent
in real space to the condition that the size
of an ideal, diffraction-limited focused
probe must be comparable with or less
than the planar spacing. This result fol-
lows by application of the Airy criterion,
where A = 0.61)\/«, or A < 1.22d. When
the probe is defocused by Af relative to
the specimen plane, the beam remains
coherent but a regular phase variation of
the beam is introduced across the lattice
planes, and sinusoidal contrast with angu-
lar period d/Af is observed in the over-
laps, equivalent to interference contrast
between virtual diffracted images of the
probe.

For a field emission source imaged onto
the specimen by electron lenses, the probe
size is increased by other factors, including
the physical (incoherent) source size,
instrumental instabilities and spherical
aberration. Until recently, observations
of coherent CBED contrast have been
limited principally to scanning transmis-
sion microscopes equipped with field
emission sources. As discussed by Cowley
[1] and Spence and Zuo [2], there is a
direct relation between the conditions for
observation of coherent diffraction con-
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trast discussed above, and the corres-
ponding resolution of lattice fringes in
the signal collected by a detector when
the probe is scanned across the specimen.
Applications to materials science include
the detection of site-symmetry elements in
nanometer-sized particles and the analysis
of fault vectors on a similar length scale.
More generally, there are prospects for
‘super-resolution” based upon Fourier
analysis of the diffraction contrast from a
scanned coherent probe in the limit of a
thin phase object [33]. In a related devel-
opment, coherent zone axis patterns
(Fig. 8) obtained from conventional trans-
mission microscopes equipped with field
emission sources [34, 35] offer the prospect
of enhanced resolution in the diffraction
plane by stepwise phasing of reflections

Figure 8. Coherent zone axis CBED pattern for
BaCuO; (space group Im3m, ¢ = 1.3 nm), aligned
with the beam parallel to a cube axis. The conver-
gence angle is adjusted so that CBED discs overlap
with first and second nearest neighbors, and the
probe is slightly defocused to show interference
fringes in both sets of overlaps. (Courtesy of Dr. P.
Spellward.)
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beyond the limit on point resolution set by
spherical aberration. The close relation
between coherent diffraction and holog-
raphy is confirmed by the observation of
interference fringes in CBED disks over-
lapped by an electron biprism [36], where
the limits on probe size and coherence are
relaxed.

1.5.7 Studies of Imperfect
Crystals

In the last few years it has become clear
that CBED, and more particularly
LACBED, are powerful methods of study-
ing crystal imperfections. The essential
point is that imperfections influence the
crystal rocking curve. This can be seen
most easily by considering the kinematical
expression for the two-beam diffraction
function,

Pg(s) x J; Fy(z)exp[—2ni(sz + g+ R)]dz
(6)

where F, is the structure factor, assumed
to be depth-dependent, R is any displace-
ment field due to, for example, a disloca-
tion or an interface, s may include any
uniform crystal strain and ¢ is the sample
thickness along the beam direction. CBED
and LACBED allow us to profile the

Figure 9. 200 dark field LACBED pattern
from a 9.5 nm Ing 53Gag 47As/35 nm InP
plan view superlattice sample showing
superlattice sidebands (numbered). (After
R. Vincent et al. [38].)

rocking curve I, = ]q5g|2 for a selected
reflection. Since diffraction angles are
small and the Ewald sphere is nearly flat,
the rocking curve, at least for low order
reflections, is scanned approximately
along the incident beam direction. The
resulting rocking curve is mapped into
the appropriate diffraction dis