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Preface

One of the aims of this book is to bring the subjects of continuum mechanics
and plasticity together so that students will learn about the principles of
continuum mechanics and how they are applied to the formulation of plas-
ticity theory. Continuum Mechanics and Plasticity were traditionally two
separate courses, and students had to make extra efforts to relate the two
subjects in order to read the modern literature on plasticity. Another aim of
this book is to include sufficient background material about the experimental
aspect of plasticity. Experiments are presented and discussed with reference
to the verification of theories. With knowledge of the experiments, the reader
can make better judgments when realistic constitutive equations of plasti-
city are used. A third aim is to include anisotropic plasticity in this book.
This important topic has not been fully discussed in most plasticity books on
engineering mechanics. The final aim of the book is to incorporate research
results obtained by me and my coworkers related to the endochronic theory
of plasticity, so that these results can be systematically presented and better
understood by readers.

Although physically based polycrystal plasticity is emerging as a feasible
method, the phenomenological (continuum) approach is still the practical
approach for use in the simulation of engineering problems. Most current
computations use a theory of plasticity for isotropic material and work with
theCauchy stress. However, material anisotropyhas long existed in real struc-
tural components and machine parts. Its effect has mostly been neglected for
the sake of computational simplicity, but material anisotropy does play a
significant role in the manufacturing process. A realistic description of mater-
ial anisotropy may help reduce scraps in the manufacturing processes and
reduce the amount of energy wasted. Also, components may be designed to
possess certain predesigned anisotropy to enhance their performance.

This book addresses the issue of material anisotropy by using the contra-
variant true stress that is defined based on convected coordinates. A
material element should be followed during anisotropic plastic deformation,
where a square material element will no longer be square, and convected
(curvilinear) coordinates should be used together with general tensors. The
popular Cauchy stress is not useful in defining the yield criterion, because it is
defined with respect to a rectangular Cartesian element. Even though recent
works in computational mechanics have mostly been based on the Cartesian
coordinate system, an understanding of the curvilinear coordinate system by
computational mechanists and engineers will help develop computational
algorithms suitable to addressing the issue ofmaterial anisotropy.Most books

xiii

© 2005 by Chapman & Hall/CRC Press



xiv Preface

that cover general tensors in curvilinear coordinates were published in the
early 1960s and treat mainly elastic deformations. In this book, I devote a sig-
nificant number of pages to discussing a modern theory of plasticity using
curvilinear coordinates.

Recently published books address mainly computational methods and
algorithms, neglecting the significance of experimental study and mater-
ial anisotropy. Their purpose is to discuss efficient and stable methods
and algorithms for analysis and design. In doing so, simple constitutive
models are used for computational simplicity. Sometimes, unrealistic condi-
tions, such as a nonsmooth yield function, have been discussed at length. A
nonsmooth yield function has never been experimentally observed.

Owing to tremendous advances in computer technologies and methods,
computational power doubles and redoubles in a short time. Consequently,
there will shortly be a demand for refinements of constitutive models of
plasticity. What is acceptable today will no longer be acceptable in the near
future. At that time, an acceptable model will, among other things, be able to
account for material anisotropy and produce results that compare well with
experimental data. This book will help readers in meeting this challenge.

I taught the subjects of continuum mechanics, elasticity, and plasticity in
four separate semester-long courses at the University of Iowa from 1970
to 1986. During this period, the contents of these courses were constantly
updated. Since 1987, I have been teaching a two-course series to replace these
four courses. This new series essentially narrows down the coverage of con-
tinuum mechanics to solids (in the sense that no special treatment of fluids
and gases is included). However, it provides a more systematic and compre-
hensive coverage of the subject of the mechanics of solids. This book grew
out of my lecture notes for the two-course series.

There were three reasons for this change at the time, and these are still
valid today. (1) A modern trend: Owing to recent advances in plasticity, the
methods of continuum mechanics have been used to develop new theories
of plasticity or to reformulate the existing theories. Therefore, in modern lit-
erature, continuum mechanics is essential to the understanding of plasticity.
(2) Reduction of the number of courses offered: The original four courses
have been reduced to two. Owing to budget constraints, it has been neces-
sary for many engineering colleges, including the College of Engineering
at the University of Iowa, to reduce the number of courses offered to stu-
dents. (3) Suitability for students of computational solid mechanics: Owing
to advances in computing technologies and methods, students of computa-
tional solid mechanics must use modern continuum mechanics and plasticity
to obtain realistic numerical solutions to their engineering problems. These
students need not only courses in continuum mechanics and plasticity but
also courses that are oriented toward computation and data handling. The
students are limited in terms of the number of courses that they can take but
still need to learn the subjects well. The two-course series based on this book
fits the needs of this student group to integrate subject matter by the most
efficient means possible.
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Preface xv

The book is divided into two parts: — Fundamentals of

for aerospace engineering, civil engineering, engineering mechanics, mater-
ials engineering, and mechanical engineering students. It is also suitable for
use by advanced undergraduate students of applied mathematics. A second
course may be taught to advanced graduate students from selected topics

it may also be used by researchers and engineers as a reference book. The
chapters are divided into sections and subsections. Technical terms are writ-
ten in italic font when they first appear. Examples are given within the text
when further clarification is called for, and exercise problems are given at the
end of each chapter.

Mathematical fundamentals andCartesian tensors are covered inChapter 1;
the concepts of the stress vector, the stress tensor, and stress invariants are

and Chapter 4 discusses the conservation laws, the constitutive equations,
and elasticity. In this chapter, examples related to different stress measures
are given. I have written Chapter 5 — Fundamentals of Continuum Plasti-
city from the viewpoint of an experimentalist with constitutive modeling in
mind. The reader will acquire a general knowledge about different types of
mechanical tests and the resulting material behavior in the small and large
strain ranges. Potential sources of data uncertainty have been pointed out
and discussed. In particular, I have discussed the hydrostatic pressure effect
of yield stress and the assumption of plastic incompressibility. The reader

particular, I include finite plastic deformations with various objective rates
and a discussion of yield surfaces determined using different stress meas-

tropic plasticity, finite strain, porous and granular materials, and a plastically

general tensors and then the stress and strain with reference to the convected
material element are discussed. Next different stress tensors and the stress
rates are discussed. At the end of the chapter, a general theory of aniso-
tropic plasticity is presented. Finally, in Chapter 12, the theory of Chapter 11
is applied to investigate the path-dependent evolution of the yield surface in
the case of the combined axial-torsion of thin-walled tubes.

I learned plasticity from the late Professor Aris Phillips of Yale University,
who is well known for his life-time effort to determine yield surfaces. I then
had the honor and privilege of working with Professor Kirk C. Valanis, who
was a senior professor and departmental chair at Iowa during the 1970s. Pro-
fessor Valanis is well known for his endochronic theory of plasticity, which

© 2005 by Chapman & Hall/CRC Press

(Chapters 1 to 4) is suitable for use as a textbook at the first-year graduate level

discussed in Chapter 2; Chapter 3 discusses the kinematics of deformation;

will learn the classical flow theory of plasticity in Chapter 6. I discuss recent

deformed damaged continuum. Anisotropic plasticity is discussed further

advances in plasticity in Chapter 7, both experimentally and theoretically. In

ures. The fundamentals of endochronic theory are given in Chapter 8 and,

in Chapters 10 to 12. In Chapter 10, the discussion is of sheet metals. In
Chapter 11, first the fundamentals of the curvilinear coordinate system and

Part I
Continuum Mechanics and Part II — Continuum Theory of Plasticity. Part I

from Part II (Chapters 5 to 12). Since the book contains up-to-date materials,

in Chapter 9, I present topics of endochronic theory, which include aniso-



xvi Preface

at the time advocated a theory of plasticity without a yield surface. The
years of working and having discussions with Kirk were most stimulating
and inspiring, and he turned me into a disciple of his theory. As a result, I
have spent most of my academic life in experimentally verifying and further
developing the endochronic theory. During the same time, I have continued
Professor Phillips’s efforts in the experimental determination of yield sur-
face, and extended them into the large strain range. There is no doubt that
yield surfaces can be experimentally determined, with some data scatter. It
may be more appropriate to talk about a yield band with certain amounts of
uncertainty than of a yield locus. The direction of plastic strain increment is,
therefore, also associated with certain amounts of uncertainty. Kirk has since
shown that yield surface can be derived from the endochronic theory in a
limit case. I now view yield surface as a means of getting to an approximate
solution of the problem at hand. Indeed, in many cases, a theory without
a yield surface can have advantages in computation since all equations are
continuous.

I am indebted to the late Dr. Owen Richmond and to Dr. Paul T. Wang of
Alcoa Laboratories for their continuing support of my research. The research
support from the NSF, NASA, and the U.S. Army is also appreciated. I wish
to expressmy sincere gratitude to theUniversity of Iowa for theCareerDevel-
opment Award for the fall semester of the academic year 2001–2002. The
award enabledme to plan for the book and start the initial part of mywriting.
My appreciation also extends to Professor David Y. Gao for his invitation to
write this book and to Mr. Robert B. Stern, acquisitions editor and executive
editor of CRC Press, for his assistance in publishing this book. Finally, I am
thankful tomywife Yumi, whose love, encouragement, and patience enabled
me to complete the writing of this book.

Han-Chin Wu
Iowa City, April 2004
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Part I

Fundamentals of Continuum
Mechanics

Continuum mechanics is a branch of mechanics concerned with stresses
in solids, fluids, and gas and the deformation or motion of these materials.
A major assumption is that mass is continuous in a continuous medium and
that the density can be defined.

© 2005 by Chapman & Hall/CRC Press



1
Cartesian Tensors

1.1 Introduction

In this chapter, we discuss the basics of Cartesian tensors with the purpose
of preparing the reader for subsequent chapters on continuum mechanics
and plasticity. Curvilinear coordinates and general tensors as well as more
advanced topics are discussed in Chapters 11 and 12.
First, we discuss the notations in detail: both symbolic and index notations

are used in this book. The symbolic notations simplify the equations and
will help the reader in understanding the structure of the equations as the
subscripts may be confusing. However, when a set of coordinate systems has
been assigned, we utilize the index notation.
We first discuss the tensor algebra, and then the differentiation and integra-

tion of tensors, which are standardmaterials. Some references [1–5] are given
at the end of the chapter for additional reading.

1.1.1 Notations

In the symbolic notation, a vector is expressed by a bold-faced lowercase letter,
say a, or by notations such as �a,�a, a˜ , etc.; a tensor is expressed by a bold-facedcapital letter, sayA, or by notations such as �A, �A,A˜ , etc. In the index notation,the components of a vector (the meaning of components will be discussed in
Section 1.2.1) are denoted by ai, and the components of a second-rank tensor
(discussed in Section 1.3.1) are denoted by Aij, or Tijk for a third-rank tensor.
We note that a second-rank tensor has two subscripts, a third-rank tensor has
three subscripts, and an nth-rank tensor has n subscripts.
Summation and range conventions are used in the index notation. In the

summation convention, a repeated index means summation of the term over
the range of the index. For example, Akk = A11+A22+A33, if the range of the
index is from 1 to 3. On the other hand, if the range of the index is from 1 to
n, then Akk = A11+A22+· · ·+Ann, a sum of n terms. We note that the under-
scored n does not imply summation, and the index should not repeat more
than once. The notation Akkk , for instance, is not defined. The repeated index

3
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4 Continuum Mechanics and Plasticity

k is called a dummy index because it can be replaced by another index with
no difference in its outcome. For example, Akk = Aii = Ajj = A11+A22+A33.
The range convention applies when there is a free (not repeated) index in a

term. The free index takes a value of 1, 2, or 3 for a three-dimensional space.
Equation yi = Cijxj is actually a set of three equations, and i is the free index.
You may apply the range convention as follows:

For i = 1, y1 = C1jxj = C11x1 + C12x2 + C13x3

For i = 2, y2 = C2jxj = C21x1 + C22x2 + C23x3

For i = 3, y3 = C3jxj = C31x1 + C32x2 + C33x3

(1.1)

Note that the summation convention has been applied in the last equality of
each of the above equations.

1.1.2 Cartesian Coordinate System

We use (x1, x2, x3) instead of (x, y, z) to denote the axes of the Cartesian
coordinate system. Sometimes, the coordinate axes may simply be denoted
by 1, 2, and 3 in a figure. Using the index notation, the axes are xi. Throughout
this book, the right-handed coordinate system will be used.

1.1.3 Special Tensors

There are two special tensors, δij and eijk , which are often used to simplify
mathematical expressions. Kronecker’s delta δij is defined as

δij = 1 when i = j

= 0 when i �= j
(1.2)

Examples are δ11 = δ22 = δ33 = 1 and δ12 = δ21 = δ13 = δ23 = 0, etc.
Using the summation convention, we find δii = δ11 + δ22 + δ33 = 3. In the
symbolic notation, Kronecker’s delta is a unit tensor 1, or it may be written
as δ. A useful feature of Kronecker’s delta is its substitution property. We can
then write δij aikp = ajkp, replacing i by j in the expression aikp.
The permutation symbol eijk is also known as the alternating tensor, and it is

defined by

eijk =



+1 even permutation of 1, 2, 3
0 two or more subscripts are the same
−1 odd permutation of 1, 2, 3

(1.3)

Examples are e123 = e231 = e312 = 1, e321 = e132 = e213 = −1, and e112 =
e133 = e111 = 0, etc.
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1.2 Vectors

1.2.1 Base Vectors and Components

In three-dimensional Euclidean space, the base vectors are e1, e2, and e3.
The base vectors are unit vectors in the Cartesian coordinate system and are
not necessarily unit vectors in the curvilinear coordinate system (curvilinear
coordinates are discussed in Chapter 11). In the Cartesian system, the
base vectors are mutually perpendicular to each other. A vector a may be
expressed as

a = apep = a1e1 + a2e2 + a3e3 (1.4)

where ap are the components of a relative to the basis ep.

1.2.2 Vector Addition and Multiplication

Vectors a and bmay be added as follows:

a+ b = apep + bpep = (ap + bp)ep (1.5)

There are two kinds of multiplication, the scalar product and the vector
product. The scalar product, also known as the dot product, of two base vectors
ei and ej is

ei · ej = δij (1.6)

Examples are, when i = 1 and j = 2, e1 · e2 = 0, that is, e1 is perpendicular to
e2; when i = 1 and j = 3, e1 · e3 = 0, which means that e1 is perpendicular to
e3. Generally, ei is perpendicular to ej for anypermutationof i and j. The scalar
product of vectors a and b is expressed by

a · b = (apep) · (bqeq) = apbqep · eq = apbqδpq = apbp (1.7)

The outcome of the scalarmultiplication is also a scalar. Using this expression,
the norm or the magnitude of vector a is given by

|a| = [a · a]1/2 = [apap]1/2 (1.8)

Thus, by use of (1.8), the norm of ei is one.
The vector product is also known as the cross product. The outcome of a cross

product is a vector. The cross products between Cartesian base vectors are
e2 × e3 = e1, e3 × e1 = e2, e1 × e2 = e3, which may be summarized by the
following expression:

ei × ej = ±eijpep (1.9)
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6 Continuum Mechanics and Plasticity

where the “+” sign applies for the right-handed coordinate system and the
“−” sign applies for the left-handed coordinate system. Since the right-
handed coordinate system will be used throughout this book, we will
disregard the “−” sign fromnowon. By use of this notation, the cross product
between vectors a and b becomes

a× b = (apep)× (bqeq) = apbqep × eq = epqrapbqer (1.10)

Using the dot product, the components of a vector may be found as

a · ei = apep · ei = apδpi = ai (1.11)

Therefore, vector amay be expressed as

a = (a · ep)ep (1.12)

The scalar triple product of vectors a, b, and c is

a · (b× c) = aiei · epqrbpcqer = epqraibpcqδir = epqrarbpcq = epqrapbqcr (1.13)

The last expression of (1.13) was obtained by permutation of indices.
The scalar triple product represents the volume of an element formed by
vectors a, b, and c as its sides.

1.2.3 The e–δ Identity

The following identity is known as the e–δ identity. This identity has been
frequently applied to provide simplified expressions in vector calculus.
The identity is

eijkeiqr = δjqδkr − δjrδkq =
∣∣∣∣δjq δjr
δkq δkr

∣∣∣∣ (1.14)

Note that i is summed.

EXAMPLE 1.1 Prove the e–δ identity.

Proof

We first establish the identity

epqsemnr =
∣∣∣∣∣∣
δmp δmq δms
δnp δnq δns
δrp δrq δrs

∣∣∣∣∣∣ (a)
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To this end, we let

det T =
∣∣∣∣∣∣
T11 T12 T13
T21 T22 T23
T31 T32 T33

∣∣∣∣∣∣ (b)

Since an interchange of two rows in the determinant causes a sign change,
we have

emnr det T =
∣∣∣∣∣∣
Tm1 Tm2 Tm3
Tn1 Tn2 Tn3
Tr1 Tr2 Tr3

∣∣∣∣∣∣ (c)

An interchange of columns causes a sign change too, and we also write

epqs det T =
∣∣∣∣∣∣
T1p T1q T1s
T2p T2q T2s
T3p T3q T3s

∣∣∣∣∣∣ (d)

For an arbitrary row and column interchange sequence, we can, therefore,
write

emnrepqs det T =
∣∣∣∣∣∣
Tmp Tmq Tms
Tnp Tnq Tns
Trp Trq Trs

∣∣∣∣∣∣ (e)

When Tij = δij and det T = 1, the above equation is reduced to

emnrepqs =
∣∣∣∣∣∣
δmp δmq δms
δnp δnq δns
δrp δrq δrs

∣∣∣∣∣∣ (f)

which is the same as (a). The e–δ identity may then be obtained by setting
m = p in (f). Expanding the resulting determinant on the right-hand side of
the equation, this leads to

emnremqs = δmm(δnqδrs − δrqδns)− δmq(δnmδrs − δrmδns)+ δms(δnmδrq − δrmδnq)
= δmm(δnqδrs − δrqδns)− 2(δnqδrs − δrqδns)

= δnqδrs − δrqδns =
∣∣∣∣δnq δns
δrq δrs

∣∣∣∣ (g)

which is the e–δ identity given by (1.14).
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8 Continuum Mechanics and Plasticity

EXAMPLE 1.2 The e–δ identity may be applied to prove other identities.
An example is to prove the following identity:

a× (b× c) = b(a · c)− c(a · b)

Proof

LHS = aiei × (bjej × ckek) = aiei × (erjkbjcker) = erjkaibjck(ei × er)
= erjkesiraibjckes = erjkersiaibjckes = (δjsδki − δjiδks)aibjckes
= δjsδkiaibjckes − δjiδksaibjckes = aibjciej − aibickek

= (aici)bjej − ckek(aibi) = RHS

Similarly, the following identities may be proven:

a · (b× c) = (a× b) · c
(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c)
(a× b)× (c× d) = b[a · (c× d)] − a[b · (c× d)]

1.3 The Transformation of Axes

Consider the rectangular Cartesian coordinate system x1, x2, and x3 shown in
Figure 1.1. If we rotate the coordinate system through some angle about its
origin O, the new coordinate axes become x′1, x

′
2, and x′3. The direction cosines

between xi and x′j are

Qij = cos(xi, x′j) (1.15)

where the first subscript denotes the unprimed axes and the second subscript
the primed axes. In general,

Qij �= Qji, e.g., Q23 �= Q32, or cos(x2, x′3) �= cos(x3, x′2).

In the matrix form, we write Qij as

[Q] =

Q11 Q12 Q13
Q21 Q22 Q23
Q31 Q32 Q33


 (1.16)
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x3

O

A

e�1
e1

x ′3

x′2

x′1
x1

x2

e′3
e′2

e2

e3

FIGURE 1.1
Transformation of coordinate systems.

Wenowdiscuss thepropertiesof the transformationmatrix [Q]. Fromvector
analysis and referring to Figure 1.1, the unit vector

−→
OA is expressed as

−→
OA = cos(x1,

−→
OA)e1 + cos(x2,−→OA)e2 + cos(x3,−→OA)e3 (1.17)

If we take
−→
OA along the x′1 direction, and denote the vector by e

′
1, then (1.17)

becomes

e′1 = cos(x1, x′1)e1 + cos(x2, x′1)e2 + cos(x3, x′1)e3
= Q11e1 +Q21e2 +Q31e3 = Qj1ej (1.18)

Equation (1.18) shows that Qj1 are direction cosines for the unit vector e′1.
Since the magnitude of

−→
OA is one, we write

Q2
11 +Q2

21 +Q2
31 = 1 or Qi1Qi1 = 1 (1.19)

Similarly, if we take
−→
OA along the x′2 direction and denote the vector by e′2,

we obtain

Q2
12 +Q2

22 +Q2
32 = 1 or Qi2Qi2 = 1 (1.20)
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10 Continuum Mechanics and Plasticity

Again, ifwe take
−→
OAalong the x′3 direction anddenote the vector by e

′
3, we get

Q2
13 +Q2

23 +Q2
33 = 1 or Qi3Qi3 = 1 (1.21)

A general form of equation (1.18) is

e′i = Qjiej (1.22)

Since e′i and e
′
j (i �= j) are perpendicular to each other, their dot products are

zero. Therefore, from (1.22),

e′i · e′j = (Q1ie1 +Q2ie2 +Q3ie3) · (Q1je1 +Q2je2 +Q3je3)

= Q1iQ1j +Q2iQ2j +Q3iQ3j = 0 (1.23)

and we obtain

QkiQkj = 0 for i �= j (1.24)

Summarizing (1.19)–(1.21) and (1.24), we write

QkiQkj = δij (1.25)

When i = j, (1.25) reduces to (1.19)–(1.21); and when i �= j, (1.25) reduces to
(1.24). In the matrix notation, we then have

[Qik]T[Qkj] = [δij] or simply [Q]T[Q] = [1] (1.26)

Note that [Qik]T = [Qki] is the transpose of matrix [Qik]. When performing
matrix multiplication, the summation convention is used adjacently, that is,
a dummy index is used for two adjacent subscripts in matrix multiplication.
Equation (1.26) is an important relationship. The matrix [Q] is orthogonal,
which will be discussed further in Section 1.6.1.
In a similar manner, we can show that

QikQjk = δij or [Q][Q]T = [1] (1.27)

This is accomplished by taking unit vector
−→
OA along x1, x2, and x3,

respectively, and finding projections of ei on the x′i axes. Thus,

ei = Qi1e′1 +Qi2e′2 +Qi3e′3 = Qije′j (1.28)

and the magnitude of the vector is

QikQik = 1 for i = 1, 2, 3 (1.29)
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If we consider the dot products between ei and ej, we obtain

QikQjk = 0 for i �= j (1.30)

The above two equations lead to (1.27).
We rewrite (1.22) and (1.28) here to emphasize their importance in the

transformation of axes:

e′i = Qjiej (1.22)

and

ei = Qije′j (1.28)

These are equations relating the base vectors of the primed and unprimed
coordinate systems. In (1.22),QT

ij transformsaunit vectorei into theunit vector
e′i and, in (1.28), Qij transforms the unit vector e′i back into ei. The direction
cosines Qki may also be obtained from

ek · e′i = ek ·Qjiej = δkjQji = Qki (1.29)

The transformation formula for vector a is

a = a′ie
′
i = ajej = aj Qjie′i or a′i = Qji aj (1.30)

or, in the matrix form,

[a′] = [Q]T[a] (1.31)

The inverse relation of (1.31) is obtained by writing

a = ajej = a′ie
′
i = a′iQjiej or ai = Qija′j (1.32)

or, in the matrix form,

[a] = [Q][a′] (1.33)

Note that the same Qij is used in both relations (1.31) and (1.33).
Finally, we note that the scalar product of vectors a and b is

a · b = a′ib
′
i = QjiajQkibk = δjkajbk = ajbj = aibi (1.34)

We see from (1.34) that the value of a · b is independent of the coordinate
system towhich the components are referred.Aquantitywith such a property
is called an invariant.
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12 Continuum Mechanics and Plasticity

1.4 The Dyadic Product (The Tensor Product)

Some physical quantities require the specification of two vectors for their
description. Quantities of this kind can be described by a dyadic product.
The dyadic product of two vectors u and v is written as u ⊗ v. It has the
associative and distributive properties given by

(αu)⊗ v = u⊗ (αv) = α(u⊗ v)
u⊗ (v +w) = u⊗ v + u⊗w, (v +w)⊗ u = v ⊗ u+w ⊗ u (1.35)

where α is a scalar. In terms of the components of u and v, u ⊗ v may be
written as

u⊗ v = (uiei)⊗ (vjej) = uivjei ⊗ ej
= u1v1e1 ⊗ e1 + u1v2e1 ⊗ e2 + u1v3e1 ⊗ e3
+ u2v1e2 ⊗ e1 + u2v2e2 ⊗ e2 + u2v3e2 ⊗ e3
+ u3v1e3 ⊗ e1 + u3v2e3 ⊗ e2 + u3v3e3 ⊗ e3 (1.36)

The components of u⊗ v are uivj, which can be displayed in a matrix:

[u⊗ v] =

u1v1 u1v2 u1v3
u2v1 u2v2 u2v3
u3v1 u3v2 u3v3


 (1.37)

The dyadic products ei ⊗ ej of the base vectors ei are called unit dyads. Thus,
the dyadic product u⊗v is expressed in (1.36) in terms of its components uivj
and its bases ei ⊗ ej.
The form of (1.36) is independent of the choice of the coordinate system.

Using (1.22, 1.27, 1.30), we obtain

u′iv
′
je
′
i ⊗ e′j = QpiupQqjvqQrier ⊗ (Qsjes) = QpiQriQqjQsjupvqer ⊗ es

= δprδqsupvqer ⊗ es = urvser ⊗ es = uivjei ⊗ ej (1.38)

In general, the commutative law is not valid, that is, u⊗ v �= v⊗ u. An addi-
tional property of a dyadic product is that it forms an inner product with a
vector. We may take the following relations as definitions:

(u⊗ v) ·w = u(v ·w), u · (v ⊗w) = (u · v)w (1.39)

These relations may also be written as

u⊗ v ·w = u(v ·w), u · v ⊗w = (u · v)w (1.40)
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since there is no possibility of ambiguity. We see in (1.39) and (1.40) that an
inner product of a dyadic product with a vector yields another vector.
The concept of a dyadic product can be extended to products of three or

more vectors. Thus, the product of three vectors u, v, and w is a triad and is
written u ⊗ v ⊗ w. Similarly, we can define tetrads or higher-order polyads.
The triad u⊗ v ⊗w in its component form is written as uivjwkei ⊗ ej ⊗ ek .

1.5 Cartesian Tensors

1.5.1 General Properties

We define a second-rank (order) Cartesian tensor as a linear combination of
dyadic products. Since, from (1.36), a dyadic product is itself a linear com-
bination of unit dyads, a second-rank Cartesian tensor T can be expressed
as a linear combination of unit dyads. This definition of a Cartesian tensor is
equivalent to defining the tensor as a linear transformation that transforms a
vector into another vector. We see from (1.39) that u⊗ v transforms a vector
into another vector and, from (1.35), that it obeys the associative and dis-
tributive properties of a linear transformation. Therefore, u ⊗ v is a tensor.
In the component form, tensor T is written as

T = Tijei ⊗ ej = T11e1 ⊗ e2 + T12e1 ⊗ e2 + T13e1 ⊗ e3 + T21e2 ⊗ e1 + · · ·
(1.41)

The coefficients Tij are called the components of T. We will denote tensor com-
ponents by the same letter that we use to denote the tensor itself and remark
that a tensor exists independently of any coordinate system. Its components
can only be specified after a coordinate system has been chosen, and the
values of the components depend on the choice of the coordinate system. If,
in a new coordinate systemwith base vectors e′i, tensor T has components T

′
ij,

then from (1.41)

T = Tijei ⊗ ej = T′pqe′p ⊗ e′q (1.42)

But, by use of (1.28),

Tijei ⊗ ej = TijQipQjqe′p ⊗ e′q (1.43)

Therefore, by equating the above two equations, their coefficients are
related by

T′pq = QipQjqTij or T′pq = QT
piTijQjq (1.44)
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14 Continuum Mechanics and Plasticity

This is the transformation formula for components of second-rank tensors.
Equation (1.44)mayalsobe consideredasanalternativedefinitionof a second-
rank tensor. In order to identify a second-rank tensor as such, we may show
that its components transformaccording to (1.44) fromone coordinate system,
xi, to another, x′i. The nine components ofTijmaybedisplayed in a 3×3 square
matrix [T], so that the above equation may be written in a matrix equation as

[T′] = [Q]T[T][Q]. (1.45)

The matrix form is often convenient for algebraic manipulation.
We now extend the relation (1.41) to express a Cartesian tensor of rank

(order) n in terms of components as

T = Tij···mei ⊗ ej ⊗ · · · ⊗ em (1.46)

Note that the components Tij...m have n indices and the tensor product has
n factors. The components of this nth-rank tensor transform according to
the rule

T′pq...t = QipQjq · · ·QmtTij...m (1.47)

From this more general viewpoint, a scalar can be interpreted as a tensor of
rank zero, since it has a single component which is unchanged in a coordi-
nate transformation; a vector is considered as a tensor of rank one. Most of the
tensors we encounter in this book will be of rank zero (scalars), one (vectors),
or two.Wewill also discuss some fourth-rank tensors due to their importance
in continuum mechanics.
The inverse relation to (1.44) is

Tij = QipQjqT′pq or Tij = QipT′pqQT
qj (1.48)

Or, in the matrix form, it is written as

[T] = [Q][T′][Q]T (1.49)

We also note that the inverse of (1.47) is

Tij...m = QipQjq · · ·QmtT′pq...t (1.50)

For a second-rank tensor T, the transpose of T is defined as

TT = Tijej ⊗ ei = Tjiei ⊗ ej (1.51)
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TensorT is symmetric ifT = TT. Thus, from (1.41) and (1.51), we findTij = Tji
for a symmetric T. With reference to the x′i system, we have, from (1.44),

T′qp = QiqQjpTij = QjpQiqTji = T′pq (1.52)

which proves the symmetrywith respect to the primed coordinate system.We
may conclude that if a tensor is symmetric with reference to one Cartesian
system, then it has symmetric components with reference to all Cartesian
coordinate systems. Similarly, if T = −TT, then Tij = −Tji, and T is an
antisymmetric second-rank tensor. An antisymmetric tensor has components


 0 T12 T13
−T12 0 T23
−T13 −T23 0


 (1.53)

Finally, we remark that any second-rank tensor can be decomposed into the
sumof a symmetric and an antisymmetric tensor, and that this decomposition
is unique. We write

T = 1
2 (T + TT)+ 1

2 (T − TT) (1.54)

The tensor (T + TT) is symmetric and the tensor (T − TT) is antisymmetric.
We also mention that an identity tensor I is a special case, where Tij = δij.
Thus, the identity tensor is written as

I = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 (1.55)

with

T · I = T (1.56)

EXAMPLE 1.3 Show that an arbitrary tensor A can be expressed as the sum
of a spherical tensor (i.e., a scalar times the identity tensor) and a tensor with
zero trace (trace A = Aii). Prove that this decomposition is unique, and that
A′, the traceless part of A, is given by A′ = A − 1

3 (trA)I, where A
′ is the

deviator of A.

Solution

Define

B = A− 1
3 (trA)I and C = 1

3 (trA)I (a)

then

A = B+ C (b)
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and C is a spherical tensor. We now take the trace of the first equation of (a)
and get

trB = tr{A− 1
3 (trA)I} = trA− tr 13 (trA)I = tr A− 1

3 (trA)(3) = 0 (c)

Therefore, B is traceless, and from (b) A is the sum of a spherical tensor and
a traceless tensor.
To prove the uniqueness, we first assume that this decomposition is not

unique. Then, there exists a spherical tensor D and a traceless tensor E
such that

A = D+ E (d)

We take the trace of (d) and (b) to find

trA = trD+ trE = trD = trC (e)

because E and B are traceless. Since both D and C are spherical tensors,
we write

D = DI and C = CI (f)

where both D and C are scalars. Using (e) and taking the trace of (f), we
find D = C, that is, D = C. This leads to E = B, which proves that the
decomposition is unique.

1.5.2 Multiplication of Tensors

Consider a vector s = siei and a second-rank tensor T = Tijei ⊗ ej in a
coordinate system with base vectors ei. In a new system with base vectors
e′i = Qjiej, vector s and tensor T have components s′i and T′ij, respectively,
so that

s′i = Qmism, T′ij = QriQsjTrs (1.57)

The outer product of the vector s and the tensor T is defined by

W = s⊗ T = siei ⊗ Tjkej ⊗ ek = siTjkei ⊗ ej ⊗ ek =Wijkei ⊗ ej ⊗ ek (1.58)

Therefore, the outer product is a third-rank tensor with components given by
Wijk = siTjk . Referring to the new coordinate system, we write

W = s⊗ T = s′iT
′
jke
′
i ⊗ e′j ⊗ e′k =W ′ijke

′
i ⊗ e′j ⊗ e′k (1.59)
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Hence, W ′ijk = s′iT
′
jk . If we substitute e

′
i = Qjiej into the above equation, we

can establish the following transformation formula for the componentsWijk :

W ′ijk = QpiQrjQskWprs (1.60)

We note that the order of multiplication is important and that s⊗ T �= T⊗ s.
Similarly, the outer product of second-rank tensors P and S is

R = P⊗ S = Pijei ⊗ ej ⊗ Skmek ⊗ em = PijSkmei ⊗ ej ⊗ ek ⊗ em
= Rijkmei ⊗ ej ⊗ ek ⊗ em (1.61)

and the components are Rijkm = PijSkm. R is a fourth-rank tensor. In a similar
manner, we may form the outer products of three or more tensors or vectors.
The outer product of a tensor of rank p with a tensor of rank q is a tensor of
rank p + q. We note that the dyadic product of two vectors is a special case,
because vectors are tensors of rank one.
If we equate the last two indices of third-rank tensorWijk , we obtain

W ′ijj =W ′i11 +W ′i22 +W ′i33 (1.62)

in which i is a free index and can take values of i = 1, 2, 3. Using the
components transformation formula, we have

W ′ijj = QpiQrjQsjWprs = QpiδrsWprs = QpiWprr (1.63)

Thus, the components Wprr transform as the components of a vector. This
operation of reducing the rank of tensor by two by summing on two indices
is called contraction of the tensor. In (1.63), a third-rank tensor is reduced to
a vector by contraction. In the case of a tensor of rank n with components
Wijkm...rs, if we sum on any pair of its indices such as k = r, then the resulting
quantitiesWijrm...rs, are the components of a tensor of rank n−2. In particular,
contraction of a second-rank tensor Tij leads to Tii, a scalar.
The outer product followed by a contraction leads to an inner product.

The inner product of vector s and tensor T is

s · T = siTikem ⊗ em ⊗ ek = siTikek (1.64)

where the relation em ⊗ em = I is applied, in which I is the identity tensor.
The inner product formed by a different order is

T · s = Tijsjei ⊗ em ⊗ em = Tijsjei = siTkiek (1.65)

Comparing the two equations given above, we see that s · T = T · s only if
T is a symmetric tensor. A similar procedure may be applied to form inner
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products of second- and higher-rank tensors. From second-rank tensors U
and V, various inner products can be formed, such as

U ·V = UijVjkei ⊗ ek , UT ·V = UjiVjkei ⊗ ek (1.66)

These inner products are second-rank tensors. Auseful relation involving the
inner product is

(U ·V)T = VT ·UT (1.67)

Using the concept of inner product, we may derive an expression for the
components Tij of a second-rank tensor T. Based on (1.41), we may form the
following inner product

ei · T · ej = ei · Tpqep ⊗ eq · ej = Tpqei · ep ⊗ eq · ej
= Tpqei · ep(eq · ej) = Tpqei · epδqj = Tpqδipδqj = Tij (1.68)

Therefore, the component Tij of tensor T is given by

Tij = ei · T · ej (1.69)

It can be further shown that, from (1.69), we can obtain the following
expression

T · ej = Tpjep (1.70)

1.5.3 The Component Form and Matrices

Matrix operation can be conveniently used to perform transformation of
tensor components from one coordinate system to another. For this purpose,
we express a tensor equation in terms of a matrix equation in this section.
Consider

w = T · v (1.71)

where T transforms vector v into vector w. This equation may be written as

wiei = T · vjej = vjTijei (1.72)

Thus, the components of (1.72) may be arranged in a matrix equation as

[wi] = [Tij][vj] (1.73)
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where wi and vi may be arranged as the elements of two 3 × 1 column
matrices [wi] = [w1,w2,w3]T, [vi] = [v1, v2, v3]T, whereas [Tij] is a 3×3 square
matrix. In the case of equation

R = S · T (1.74)

where R, S, and T are second-rank tensors, we write

R · ei = S · T · ei (1.75)

By use of (1.70), we have

Rjiej = S · (Tjiej) = Tji(S · ej) = TjiSkjek or Rkiek = TjiSkjek (1.76)

The component form is now

Rki = SkjTji (1.77)

and the matrix form is

[Rik] = [Sij][Tjk] (1.78)

1.5.4 Quotient Law

The quotient lawmay be used to testwhether the elements of a set of quantities
A(i, j, k) are components of a tensor. If the inner product (summation over i)
between A(i, j, k) and an arbitrary tensor, say bi, is known to yield a tensor
Cjk , that is,

A(i, j, k)bi = Cjk (1.79)

thenA(i, j, k) is a tensor of typeAijk . Referring to the x′i coordinate system, the
above equation is written as

A′(i, j, k)b′i = C′jk (1.80)

Since b′i and C′jk are both tensors, they obey tensor transformation rules given
by (1.30) and (1.44), respectively. By substitution, we obtain

A′(i, j, k)b′i = QpjQqkCpq = QpjQqkA(r, p, q)br = QpjQqkA(r, p, q)Qrib′i (1.81)

or

[A′(i, j, k)−QriQpjQqkA(r, p, q)]b′i = 0 (1.82)
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Since b′i is an arbitrary tensor and is generally not zero, we conclude that the
quantity within the brackets must vanish. Therefore,

A′(i, j, k) = QriQpjQqkA(r, p, q) (1.83)

which is the transformation rule for a tensor of type Aijk . This method may
be used to test higher rank tensors.

1.6 Rotation of a Tensor

1.6.1 Orthogonal Tensor

The inverse to tensor T is denoted by T−1, so that

T · T−1 = I and T−1 · T = I (1.84)

In the case that the transpose of T is equal to the inverse of T, that is,

TT = T−1 (1.85)

then T is said to be an orthogonal tensor. Therefore, for an orthogonal tensor,
we have

T · TT = I and TT · T = I with det T = ±1 (1.86)

where the “+” sign denotes a proper orthogonal transformation (right-
handed coordinate system) and the “−” sign denotes an improper orthogonal
transformation (left-handed coordinate system).
Wenowconsider the transformation tensorQdiscussed in Section 1.3. Since

Q satisfies (1.86), it is an orthogonal tensor. For the purpose of investigating
physical properties of Q, consider two vectors u and v transformed by Q:

ū = Q · u, v̄ = Q · v (1.87)

The inner products Q · u and Q · vmay be viewed as linear transformations
of vectors u and v by tensor Q. The scalar product of u and v is

ū · v̄ = (Q · u) · (Q · v) = v ·QT · (Q · u) = u · v (1.88)

which is unchanged under an orthogonal transformation Q. The second
equality in (1.88) was a result obtained from the definition of the transpose of
a tensor given by a · (AT · b) = b · (A · a).
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A special case of the above discussion is u = v and ū = v̄. Here, (1.88)
reduces to

v̄ · v̄ = (Q · v) · (Q · v) = v · v (1.89)

or

|v̄| = |v| (1.90)

Therefore, the magnitude of a vector is unchanged by an orthogonal trans-
formation. Furthermore, the angle φ between the two vectors is expressed by

cosφ = u · v
|u||v| =

ū · v̄
|ū||v̄| (1.91)

which means that the angle between the vectors is also unchanged. Thus, an
orthogonal transformation rotates a vector and the components Qij are the
direction cosines.

EXAMPLE 1.4 Show that (Q · u) · (Q · v) = u · v.

LHS = (Qijei ⊗ ej · ukek) · (Qmnem ⊗ en · vpep) = QijQmnukvpeiδjkemδnp

= QijujQmnvnδim = QijQinujvn = δjnujvn = ujvj = u · v = RHS

EXAMPLE 1.5 Define the transpose of tensor A by a · (AT · b) = b · (A · a)
and shows that it leads to

(AT)T = A.

By use of (1.65), we have

LHS = a · (AT
ij bjei) = akek · AT

ij bjei = akAT
ij bjδki = aiAT

ij bj

RHS = b · (Aijajei) = bkek · Aijajei = bkAijajδki = biAijaj

= ajAijbi = aiAjibj

Since the two sides are equal, we obtain AT
ij = Aji, that is, the transpose of

a matrix is the same as the interchange of the two indices. We then have
(AT

ij)
T = Aij and we can write

AT = AT
ijei ⊗ ej = Ajiei ⊗ ej and (AT)T = Aijei ⊗ ej = A
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1.6.2 Component Form of Rotation of a Tensor

In this section, we derive the component form that describes the rotation of
a tensor, and we point out that this transformation equation is different from
the one which describes the change of bases. In the case of transformation
of bases, it has been shown in Sections 1.2.3 and 1.2.5 that the components
transform by

[v′i] = [Qij]T[vj] and [vi] = [Qij][v′j] (1.92)

for a vector vi, and by

[T′ij] = [Qip]T[Tpq][Qqj] and [Tij] = [Qip][T′pq][Qqj]T (1.93)

for a tensor Tij.
By applying rotation Q to vector v, we write

v̄ = Q · v (1.94)

Thus, vector v is rotated by Q into v̄. If the same Q has rotated the bases ei
into e′i, we can write

v̄ = v̄′ie
′
i = Q · v = Q · viei = vi(Q · ei) = vie′i (1.95)

Therefore,

v̄′i = vi (1.96)

Equation (1.96) shows that the components of v̄ in e′i are the same as those
of v in ei. This result is obvious, because both the vector and the coordinate
system have been rotated by the same amount and their relative positions
remain the same. Consider next the components of v̄ in ei:

v̄ = v̄iei = Q · v = Q · viei = viQjiej = vjQijei (1.97)

Thus,

[v̄i] = [Qij][vj] (1.98)

Note that this equation is different from (1.92). Equation (1.92) describes the
components of v in the e′i system, while (1.98) describes the components of
the rotated vector v̄ in the ei system. The inverse relation of (1.98) is

[vi] = [Qij]T[v̄j] (1.99)
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We now apply Q to tensor T and write

T̄ = Q · T ·QT (1.100)

that is, T̄ is the tensor after rotation. Then,

T̄ · e′i = T̄′jie
′
j = Q · T ·QT · e′i = Q · T · ei = Q · Tjiej = Tjie′j (1.101)

Thus,

T̄′ji = Tji (1.102)

that is, the components of T̄ in e′i are the same as those of T in ei, when e
′
i and

ei are related by Q. To find the component of T̄ with respect to ei, we write

T̄ · e′i = Q · T ·QT · e′i = Q · T · ei = Q · Tjiej = TjiQkjek (1.103)

On the other hand, we have

T̄ · e′i T̄ ·Q · ei = T̄ ·Qji · ej = QjiT̄ · ej = QjiT̄kjek (1.104)

Equating (1.103) to (1.104), we find

QjiT̄kj = TjiQkj (1.105)

Multiplying both sides of the equation by Qmi, the resulting equation
reduces to

T̄ij = QimQjnTmn (1.106)

which, in the matrix form, may be written as

[T̄] = [Q][T][Q]T (1.107)

Note that this equation (1.107) is different from (1.93) in that the latter
describes the components of T in the e′i system, while the former describes
the components of the rotated tensor T̄ in the ei system.

1.6.3 Some Remarks

1.6.3.1 Remark 1 — definition of Qij
In this book, we define the components of the transformation matrix by
Qij = cos(xi, x′j), in which the first subscript refers to the unprimed axis and
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the second subscript to the primed axis. The transformation rule for a
second-rank tensor T is

T′ij = QkiQmjTkm (1.108)

In some books, the following equations are used,

T′ij = QikQjmTkm (1.109)

where the transformation matrix is defined by Qij = cos(x′i, xj). In this case,
the first subscript refers to the primed axis and the second subscript to the
unprimed axis. Make a note of this difference.

1.6.3.2 Remark 2 — transformation of bases versus rotation of a tensor

Note thedifference in the transformation equations betweena tensorT subjec-
ted to the transformation of bases and the tensor T itself undergoing rotation.
In the transformation of bases

T′ij = QkiQljTkl or [T′] = [Q]T[T][Q] (1.110)

and in the rotation of a tensor

[T̄] = [Q][T][Q]T (1.111)

For rotation of tensor T in the reversed direction, we substitute [Q] by [Q]T
and (1.111) reduces to [T̄] = [Q]T[T][Q] which is the same as the result
obtained from the rotation of bases. Therefore, rotation of the tensor itself
in the opposite direction has the same effect as the rotation of bases. This
point is illustrated by Example 1.6.

EXAMPLE 1.6 Consider the rotation of a vector v through an angle α into v̄.
Observing that the magnitude of the vector remains the same in the rotation,
that is, |v̄| = |v| and, from Figure 1.2, referring to ei, we can write

v̄1 = |v| cos(α + β) = |v|(cosα cosβ − sin α sin β)

= |v|
(
cosα

v1
|v| − sin α

v2
|v|
)
= v1 cosα − v2 sin α

(a)

v̄2 = |v| sin(α + β) = |v|(sin α cosβ + cosα sin β)

= |v|
(
sin α

v1
|v| + cosα

v2
|v|
)
= v1 sin α + v2 cosα

(b)
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FIGURE 1.2
Components of a vector.

We may then use equations (a) and (b) in a matrix equation as

[
v̄1
v̄2

]
=
[
cosα − sin α
sin α cosα

] [
v1
v2

]
(c)

The component form of this rotation is from (1.98)

v̄i = Qijvj (1.98)

Comparing (c) and (1.98), we find

Qij =
[
cosα − sin α
sin α cosα

]
(d)

However, a rotation of coordinate axes through an angle α in the opposite
direction leads to

Q∗ij =
[
cosα sin α
− sin α cosα

]
(e)

Therefore, from equations (d) and (e), we obtain

[Q∗]T = [Q] (f)

The transformation formula in this case is, from (1.92),

v′i = Q∗jivj = Q∗Tij vj (g)

Hence, [
v′1
v′2

]
=
[
cosα − sin α
sin α cosα

] [
v1
v2

]
(h)
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Comparing (c) and (h), we conclude that rotation of a vector through an
angle α has the same effect as rotation of axes through the same angle α in the
opposite direction. Note that in using (1.98) to obtain v̄i, the rotation matrix
[Q] is obtained by rotating the coordinate axes through angle α in the same
direction as the rotation of vector v.

1.6.3.3 Remark 3 — rotation of a vector about an arbitrary direction

We now consider the rotation of a vector v about an arbitrary direction with
unit vector n and denoted by OA (Figure 1.3(a)). The angle of rotation is α in
the sense of the rotation of a right-handed screw advancing in the direction
of n. In the rotation, vector v is rotated into v̄ and particle P is rotated into P̄.
Hence, P and P̄ lie in a plane normal to line OA, and the plane intersects OA
at B. The vector of OB is bn and the length BP = BP = s. From the figure, we
obtain

b = n · v = n · v̄ (1.112)

We denote vectors BP and BP by s and s̄, respectively. Thus,

v = bn+ s and v̄ = bn+ s̄ (1.113)

In the plane of BPP̄, the unit vectors u = s/s and ū = s̄/s are related by
ū = u cosα + n× u sin α (1.114)

which can be easily justified from Figure 1.3(b). Equation (1.114), when
multiplied by s, is

s̄ = s cosα + n× s sin α (1.115)

O

A

x1

x3

x2

P

P

(a) (b)

_

bn

v_ v

s
_

�
B

s

cos �

u

_
u
�

sin
�

FIGURE 1.3
Rotation of (a) a vector about a direction; (b) a unit vector.
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Substituting (1.115) into (1.113), we obtain

v̄ = bn+ s cosα + n× s sin α
= bn+ (v − bn) cosα + n× (v − bn) sin α
= v cosα + n× v sin α + b(1− cosα)n
= v cosα + n× v sin α + (n · v)(1− cosα)n (1.116)

This equation may be written as follows in the component form:

v̄i = vi cosα + eikjnkvj sin α + (1− cosα)vjnjni (1.117)

By comparing with (1.98), we find that

Qij = δij cosα + eikjnk sin α + (1− cosα)ninj (1.118)

which is the rotation matrix describing the rotation of α about the line OA.
In a special case, a rotation about the x3-axis is obtained by setting n3 = 1 and
n1 = n2 = 0 in (1.118) and we obtain

Qij =

cosα − sin α 0
sin α cosα 0
0 0 1


 (1.119)

A rotation in a reverse sense is denoted by a rotation of −α. In this case,
(1.118) gives

Q∗ij = δij cos(−α)+ eikjnk sin(−α)+ (1− cos(−α))ninj
= δij cosα − eikjnk sin α + (1− cosα)ninj = Qji = QT

ij (1.120)

Thus, we have shown that a rotation in the reverse sense (−α) can be
represented by the transpose of the orthogonal tensor Q, which describes
the original rotation (+α).
Finally, we note that if the angle α is small, cosα ≈ 1 and sin α ≈ α. Then,

equation (1.118) reduces to

Qij = δij + αnkekji (1.121)

1.6.3.4 Remark 4 — symbolic versus component form

Relations between tensor quantitiesmay be expressed either in symbolic or in
component form. The former are relations between scalars α,β, . . ., vectors u,
v, . . ., and tensorsR,S, . . ., and the latter are relations between scalars α, β, . . .,
vector components ui, vi, . . ., and tensor componentsRij,Sij, . . .. The symbolic
notation has the advantage that it emphasizes that the relations are physical
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statements and that they are independent of the choice of the coordinate
system. On the other hand, the component form is often convenient for carry-
ing out algebraic manipulations. In solving problems, it is always necessary
at some stage to introduce a coordinate system and components.

1.7 The Isotropic Tensors

A tensor is isotropic if it has the same components with respect to a Cartesian
coordinate system of any orientation. Isotropic tensors of various ranks are
given below:

Scalar: Every scalar is an isotropic tensor, because the scalar does not
have a direction.

Vector: There is no nontrivial isotropic vector.
Second-rank tensor: The general expression for an isotropic second-rank

tensor is

Tij = λδij (1.122)

where λ is a constant.
Third-rank tensor: The isotropic third-rank tensor is

Tijk = λeijk (1.123)

Fourth-rank tensor: The most general expression for an isotropic fourth-
rank tensor is

Tijkm = αδijδkm + βδikδjm + γ δimδjk (1.124)

where α,β, and γ are constants. If Tijkm has the symmetry properties
that Tijkm = Tjikm and Tijkm = Tijmk , then from (1.124)

Tijkm = Tjikm = αδijδkm + βδjkδim + γ δjmδik
= αδijδkm + βδikδjm + γ δimδjk (1.125)

By subtracting the two expressions in (1.125), and multiplying the
resulting equation by δimδjk , we obtain

δimδjkγ (δjmδik − δimδjk) = β(δikδjm − δjkδim)δimδjk (1.126)
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which may be further simplified to yield

γ (δii − δiiδjj) = β(δii − δjjδii) (1.127)

or

γ = β (1.128)

Hence, (1.124) may be further reduced to

Tijkm = αδijδkm + β(δikδjm + δimδjk) (1.129)

and we see that the independent constants are now reduced to
α and β.

EXAMPLE 1.7 Show that there are no nontrivial isotropic vectors.

Proof

Introduce a 180◦ rotation of the coordinate system about the x1-axis as
shown in Figure 1.4(a). The transformation matrix for this rotation of axes is

[Q] =

1 0 0
0 −1 0
0 0 −1


 (a)

The transformation equation for a vector a is a′i = Qjiaj. By applying (a),
this equation becomes



a′1
a′2
a′3


 =


1 0 0
0 −1 0
0 0 −1



T 
a1a2
a3


 =


 a1
−a2
−a3


 (b)

x3�
x3�

x2�

x2�

x1�

x1�

x2

x2
x1

x1

x3 x3

x1, x1�

x2, x2�

x3, x3�
(a) (b) (c)

O O
O

d�
d�

FIGURE 1.4
An 180◦ rotation of coordinate system about (a) the x1-axis, (b) the x2-axis, and (c) rotation of a
small angle dθ about the x3-axis.
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But, if a vector is isotropic, then a′i = ai by definition. To satisfy this require-
ment and equation (b), we must have a2 = a3 = 0. However, coordinate axes
may be labeled in an arbitrary order. Therefore, a1 = 0 as well. We conclude
that there are no nontrivial isotropic vectors.

EXAMPLE 1.8 Show that the isotropic second-rank tensor is given by
Tij = λδij.

Proof

Consider a 180◦ rotation of the coordinate system about the x1-axis
(see Figure 1.4(a)). The transformation equation for a second-rank tensor
T is T′pq = QipQjqTij. By applying (a) of Example 1.7, this equation becomes

[T′] =

 T11 −T12 −T13
−T21 T22 T23
−T31 T32 T33


 = [T] =


T11 T12 T13
T21 T22 T23
T31 T32 T33


 (a)

The last equality of the above equation is written based on the definition of an
isotropic tensor so that T′ij = Tij . Therefore, we conclude that T12 = T21 = 0
and T13 = T31 = 0.
We next introduce a 180◦ rotation of the coordinate system about the x2-axis

as shown in Figure 1.4(b). The transformation matrix is

[Q] =

−1 0 0
0 1 0
0 0 −1


 (b)

Substituting (b) into the transformation equation for Tij and considering the
definition of an isotropic tensor, we write

[T′] =

 T11 −T12 T13
−T21 T22 −T23
T31 −T32 T33


 isotropic≡ [T] (c)

From (c), we conclude that T12 = T21 = 0 and T23 = T32 = 0. Thus, only
T11, T22, T33 are nonzero. But, since coordinate axis may be labeled in any
arbitrary order, we have T11 = T22 = T33 = λ. Therefore, the second-rank
isotropic tensor is written as

Tij = λδij
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EXAMPLE 1.9 Show that the most general fourth-order isotropic tensor has
the form

Tijkm = αδijδkm + βδikδjm + γ δimδjk
where α, β, γ are constants.

Proof

A fourth-order tensor transforms as

T′ijkm = QriQsjQtkQnmTrstn (a)

There are 34 = 81 components altogether. First, consider any component
which contains the index 1 only once. For the coordinate transformation asso-
ciated with a 180◦ rotation about the x1-axis and illustrated by Figure 1.4(a),
the transformation matrix is given by (a) of Example 1.7.
Let i = 1 and use the Qij of Figure 1.4(a), equation (a) becomes

T′1jkm = Qr1QsjQtkQnmTrstn = Q11QsjQtkQnmT1stn (b)

But j �= 1, so the only nonzero terms of Qsj are Q22 = Q33 = −1, in which
j = s; k �= 1, so the only nonzero terms of Qtk are Q22 = Q33 = −1, in which
k = t; and m �= 1, so the only nonzero terms of Qnm are Q22 = Q33 = −1, in
which m = n. Thus, (b) becomes

T′1jkm = Q11(−1)(−1)(−1)T1stn = −T1stn = −T1jkm (c)

If the tensor is isotropic, then T′1jkm = T1jkm, which contradicts the expres-
sion in (c). Therefore, all the components which contain the index 1 only
once are zero, in order to satisfy this requirement. Similarly, all the compon-
ents that contain the index 2 only once are zero and all the components that
contain the index 3 only once are zero. Thus, from the above special trans-
formation, we see that the components of Tijkm are reduced to the following
four groups: T1122,T2211,T1133, . . . ;T1212,T2323, . . . ;T1221,T2112,T2332, . . . ; and
T1111,T2222,T3333.
Furthermore, we remark that the coordinate axes may be labeled in an

arbitrary order. Thus, a permutation of the indices 1, 2, 3 cannot affect the
values of the components of an isotropic tensor. Therefore,

T1122 = T2211 = T1133 = T3311 = T2233 = T3322 = α, say
T1212 = T2121 = T1313 = T3131 = T2323 = T3232 = β, say
T1221 = T2112 = T1331 = T3113 = T2332 = T3223 = γ , say
T1111 = T2222 = T3333 = δ, say

(d)
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Consider now a rotation shown in Figure 1.4(c) about the x3-axis with a
very small angle of rotation dθ . The transformation matrix for this case is

Qij =

cos dθ − sin dθ 0
sin dθ cos dθ 0
0 0 1


 ≈


 1 −dθ 0
dθ 1 0
0 0 1


 (e)

Equation (e) can be rewritten as

Qij =

1 0 0
0 1 0
0 0 1


+


 0 −dθ 0
dθ 0 0
0 0 0




or

Qij = δij + dθe3ji (f)

Only e321 and e312 are not zero in the expressions of e3ji. Note that (f) can also
be obtained from (1.121) by letting ni = (0, 0, 1) and α = dθ .
Substituting (f) into (a), we have

T′ijkm = (δri + dθe3ir)(δsj + dθe3js)(δtk + dθe3kt)(δnm + dθe3mn)Trstn

= (δriδsj + δri dθe3js + dθe3irδsj)(δtkδnm + δtk dθe3nm + dθe3ktδnm)Trstn

= (δriδsjδtkδnm + δriδsjδtk dθε3mn + δriδsj dθe3ktδnm + δri dθe3jsδtkδnm
+ dθe3irδsjδtkδnm)Trstn

= Tijkm + dθe3mnTijkn + dθe3ktTijtm + dθe3jsTiskm + dθe3irTrjkm

= Tijkm + dθ{e3mnTijkn + e3ktTijtm + e3jsTiskm + e3irTrjkm} (g)

In the above derivation higher order terms in dθ have been neglected since
dθ is infinitesimal. If the tensor Tijkm is isotropic, then T′ijkm = Tijkm. Using this
information in the last expression of (g), the quantity within the brackets has
to be zero. Therefore,

e3mnTijkn + e3ktTijtm + e3jsTiskm + e3irTrjkm = 0 (h)

We now investigate the implication of (h). By choosing i = 1, j = k = m = 2,
(h) becomes

e321T1221 + e321T1212 + e321T1122 + e312T2222 = 0

or

T2222 = T1221 + T1212 + T1122 (i)
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Substituting (d) into (i), we get

δ = α + β + γ (j)

Other choices of indices i, j, k,m in (h) gives either the same relation (j) or
relations that are identically satisfied, if we use the isotropy conditions pre-
viously obtained. Thus, we have shown that there are only three distinct
components of an isotropic fourth-rank tensor, namely α, β and γ ; and Tijkm
can be written as

Tijkm = αδijδkm + βδikδjm + γ δimδjk (k)

All components of isotropic Tijkm can be found from (k). Examples are

T1122 = αδ11δ22 + βδ12δ12 + γ δ12δ12 = α
T2233 = αδ22δ33 + βδ23δ23 + γ δ23δ23 = α
T1221 = αδ12δ21 + βδ12δ21 + γ δ11δ22 = γ

and so on.

EXAMPLE 1.10 Using the expression of an isotropic fourth-rank tensor,
reduce the generalized Hooke’s law to an isotropic relation.
Linearly elastic materials are governed by the generalized Hooke’s law as

σij = Cijkmεkm (a)

where σij and εij are second-rank tensors andCijkm is a fourth-rank tensor. Due
to the symmetric property of σij and εij, wefindCijkm = Cjikm andCijkm = Cijmk .
If the material is isotropic, tensor Cijkm should be an isotropic tensor. Thus,
from (1.130),

Cijkm = λδijδkm + µ(δikδjm + δimδjk) (b)

Substituting (b) into (a), we obtain

σij = λδijδkmεkm + µδikδjmεkm + µδimδjkεkm
= λεkkδij + µεij + µεji
= λδijεkk + 2µεij (c)

In the derivation, the symmetric property of εij = εji was used. λ and µ are
known as Lamé constants.
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1.8 Vector and Tensor Calculus

1.8.1 Tensor Field

If to every point xi of region R there corresponds a scalar φ, then we have a
scalar field φ(xi) defined over R. An example of the scalar field is the temper-
ature field, where the temperature in the region R of a continuum is known
and may vary from point to point. Similarly, we can define a vector field. If
to every point xi of region R corresponds a vector vi, then we have a vector
field vi(xj) defined over R. Force field, displacement field, and velocity field
are examples of vector field. A tensor field can be similarly defined. Stress field
and strain field are tensor fields of rank two.

1.8.2 Gradient, Divergence, Curl

We consider differentiation and integration in the study of vector calculus.
Differentiation is discussed in this section and integration in a later section.
There are three kinds of differentiation: the gradient, the divergence, and the
curl. The gradient of a scalar field φ, denoted by Grad φ, is a vector whose
components are

Grad φ =
[
∂φ

∂x1
,
∂φ

∂x2
,
∂φ

∂x3

]T
= a vector (1.130)

In other notations, Grad φ may be denoted by

−−−−→
Grad φ = ∂φ

∂xk
�ek = φ,i�ek = �∇φ (1.131)

Thedifferential operator �∇ “del” is used in the last expressionof (1.131). In our
notation �∇ is

�∇ = ek ∂

∂xk
(1.132)

The operator �∇ is not commutative with respect to the quantity which it
operated in the sense that

�∇φ �= φ �∇ (1.133)

1.8.2.1 Geometric significance of the gradient

The value of the scalar field φ(xk) defined over the region R varies in general
with xi. The expression, φ(xk) = constant, defines a set of surfaces onwhich φ
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FIGURE 1.5
A constant φ surface.

is constant. Consider a point P(xi) and a neighboring point P′(xi+�xi) on the
surface S, and denote the vector from P to P′ by �xi as shown in Figure 1.5.
Since both points are on the same surface, φ evaluated at the two points are
the same, and we write

φ(P′)− φ(P) = 0 or φ(xi +�xi)− φ(xi) = 0 (1.134)

Expanding the function φ(xi +�xi) in Taylor’s series, we have

φ(xi +�xi) = φ(xi)+ φ,i�xi + 0(�xi)2 (1.135)

But,�xi has a small value andwemay take it as small as possible in the sense
of calculus. In this way, we may neglect the higher order terms in �xi and
keep only the first-order term in (1.135). Therefore, (1.134) becomes

φ(P′)− φ(P) = φ,i�xi = 0 (1.136)

and this is true for any vector �xi through P lying on the surface S. Hence,
the gradient φ,i is normal to the surface S.

1.8.2.2 Differential operators on vectors

There are two differential operators on vector vi which are well known. They
are the divergence and the curl. The divergence of vector v is written as

Divv ≡ vi,i = ∂vi
∂xi
=
(
∂v1
∂x1
+ ∂v2
∂x2
+ ∂v3
∂x3

)
(1.137)

In terms of �∇, the divergence is

Div v = �∇ · v = ek ∂

∂xk
· (vmem) = ek · em ∂vm

∂xk
= δkmvm,k = vk,k (1.138)
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The curl of vector v, denoted by vector w, is

w = Curl v = �∇ × v = ek ∂

∂xk
× (vmem) = ek × ejvj,k = ekjmemvj,k (1.139)

and its components are

Wm = (Curl v)m = ekjmvj,k = emkjvj,k (1.140)

inwhich vj,k is the velocity gradient if vi is the velocity. The velocity gradient is
an important kinematic quantity and is discussed in Chapter 3. From (1.140),
we have w1 = v3,2 − v2,3. Vector wm is the dual vector of tensor vj,k except for
a constant multiple factor. Dual vectors are discussed in Chapter 3.
Some operations using the operator �∇ are given below:

(a) �∇ · ( �∇φ) = ej ∂
∂xj
· (ekφ,k) = ej · ekφ,kj= δjkφ,kj=φ,kk =∇2φ (1.141)

(b) �∇ × ( �∇φ) = Curl Grad φ = ej ∂
∂xj
× (ekφ,k) = ej × ekφ,kj

= ejkmemφ,kj = ejk1e1φ,kj + ejk2e2φ,kj + ejk3e3φ,kj

= e231e1φ,32 + e321e1φ,23 + · · · = 0 (1.142)

We note that ejk1 is antisymmetric and φ,kj is symmetric such that their inner
product is zero. For the same reason the other two terms involvingm = 2 and
m = 3 are also zero. The above result can also be seen easily by expanding
out each term as in the last equality. Since e231 = 1 and e321 = −1, the terms
of the last equality cancel out in pairs.

(c) �∇ · ( �∇ × v) = ej ∂
∂xj
·
[
ek

∂

∂xk
× (ervr)

]

= ej ∂
∂xj
· [ek × ervr,k] = ej ∂

∂xj
· [ekrsvr,kes]

= ej · �ekrsesvr,kj� = δjsekrsvr,kj = ekrjvr,kj = 0 (1.143)

The last equality is again obtained by observing that the inner product of an
antisymmetric tensor with a symmetric tensor is zero.

(d) �∇ × ( �∇ × v) = es ∂
∂xs
× [ekjmvm,jek] = es × ekekjmvm,js

= −eksrerekjmvm,js = −{δsjδrm − δsmδrj}vm,jser
= −vm,ssem + vs,jsej = −vm,ssem + (vs,s),jej
= −∇2v + �∇( �∇ · v) (1.144)
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Note that ∇2 v is written as:

( �∇ · �∇)v =
(
ei
∂

∂xi
· ej ∂
∂xj

)
(vkek) = ∂2vk

∂xi∂xj
(ei · ej)ek

= ∂2vk
∂xj∂xj

ek = vk,jjek (1.145)

By use of (1.39), we have

( �∇ · �∇)v = (v ⊗ �∇)· �∇ (1.146)

Therefore, ∇2v can be written in either of the following two forms

∇2v = (v ⊗ �∇)· �∇ = ( �∇ · �∇)v (1.147)

(e) There are two forms of the divergence of tensor T. They are:

�∇ · T = ∂

∂xk
ek ·(Tpqep ⊗ eq) = ∂Tpq

∂xk
(ek · ep)eq =

∂Tpq
∂xp

eq (1.148)

T · �∇ = ∂Tqp
∂xp

eq (1.149)

The two divergences are in general different, but they are the same if the
tensorT is symmetric.We can furtherwriteTT · �∇ = �∇·T, and this relationship
is similar to that of the inner product between a vector and a second-rank
tensor presented in (1.64) and (1.65).

1.8.3 The Theorem of Gauss

In continuum mechanics, an important application of the theorem of Gauss
is to change an area integral into a volume integral and vice versa. Consider a
bodyof surfaceS andvolumeV, with surface element dS andvolume element
dV shown in Figure 1.6, the Gauss theorem is written as

∫
S
φni dS =

∫
V
φ,i dV for scalar φ (1.150)

∫
S
vjni dS =

∫
V
vj,i dV for vector vj (1.151)

∫
S
ai1i2...iN nj dS =

∫
V
ai1i2 ... iN ,j dV for tensor ai1...iN (1.152)
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FIGURE 1.6
Surface and volume elements in a deformable body.

Proof

We prove (1.150) here. The proofs of (1.151) and (1.152) can be similarly
obtained.Ascalarfieldφ is defined inV andwedivide thebody intoan infinite
number of parallel infinitesimal cylinders. A generic infinitesimal cylinder is
shown in theFigure1.6with endsAandB.EndsAandBareparts of the surface
area S of the body and has unit outward normal nAi or nBi , respectively. We
nowconsider twoneighboring points P(xi) andP′(xi+dxi) in the infinitesimal
cylinder. The unit vector along the generator of the cylinder is denoted by ui
as shown in the Figure 1.6 and is a constant. The differential dφ is given by

dφ = ∂φ

∂x1
dx1 + ∂φ

∂x2
dx2 + ∂φ

∂x3
dx3 = φ,i dxi = uiφ,i ds (1.153)

where ds is the length of dxi. If this expression is integrated over the
infinitesimal cylinder, we find

φB − φA = ui

∫ B

A
φ,i ds (1.154)

The cross-section of the cylinder is

dT = (−niui dS)A = (niui dS)B (1.155)
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Note that niui is negative at A and positive at B. Multiplying both sides
of (1.154) by (1.155), we obtain

φB(niui dS)B − φA(−niui dS)A = ui

∫ B

A
φ,i dsdT (1.156)

which may be rewritten as

(φniui dS)B + (φniui dS)A = ui

∫ B

A
φ,i dV (1.157)

or

ui

∫
dSA+dSB

φni dS = ui

∫
Vcylinder

φ,i dV (1.158)

In deriving (1.158), we observe that because dSA and dSB are small surface
areas, we assume that φ and ni are constants in dS, then

ui

∫
dSA+dSB

φni dS = ui

∫
dSA

φni dS+ ui

∫
dSB

φni dS

∼= ui(φni)A

∫
dSA

dS+ ui(φni)B

∫
dSB

dS

= (φniui dS)A + (φniui dS)B = LHS of (1.157) (1.159)

Equation (1.158) is valid for the infinitesimal cylinder considered. For the
whole body, we sum over all infinitesimal cylinders and obtain

∫
Sall
φni dS =

∫
Vall

φ,i dV (1.160)

which proves equation (1.150). We remark that the theorem of Gauss is still
valid for multiply connected region. In that case, we have to make branch
cuts to prove the theorem.
Some special cases of the theorem are listed below:

1. Expressions in 3-D:

∫
V
Div v dV =

∫
S
n · v dS (divergence theorem) (1.161)
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L

S n

FIGURE 1.7
Contour and surface.

This equation can be obtained by putting i = j in (1.151).

∫
V
Curl v dV =

∫
S
n× v dS (1.162)

This equation can be obtained by multiplying both sides of (1.152) by ekij.

2. Expressions in 2-D:

∫
S
Div v dS =

∫
L
n · v dL (1.163)∫

S
Curl v dS =

∫
L
n× v dL (1.164)∫

L
v · dL =

∫
S
n · Curl v dS (Stoke’s theorem) (1.165)

In the two-dimensional case, the theorem changes the surface integral into the
line integral and vice versa. Figure 1.7 shows the contour L and the surface S.
In (1.165), the left integral is the circulation of v along the contour L and n is
the unit outward normal on the surface S.
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Problems

(1) The equations of motion are

∂Tsr
∂xs
+ ρbr = ρar

Write out the equations in conventional notations, that is, use x = x1, y = x2
and z = x3.

(2) Prove that

δijδij = 3

eijkAjAk = 0

δijeijk = 0

(3) If Tij is symmetric, evaluate the expressions (a) eijkTjk and (b) eijkeistTkt.

(4) Given that

[Sij] =

 1 0 0
−1 2 3
2 1 −1




evaluate (a) Sii, (b) Sjj, (c) SijSij, (d) SjkSkj, (e) SmnSnm

(5) Using the e–δ identity, show that

eikmejkm = 2δij and eijkeijk = 6

(6) Given vectorsu = uiei and v = vie, show that the components ofw = u×v are

w1 = u2v3 − u3v2, w2 = u3v1 − u1v3, w3 = u1v2 − u2v1

(7) If ui = eijkvjwk and vi = eijksjtk , show that ui = skwkti − tkwksi.

(8) Find the transformation matrix [Q] if the coordinate system is rotated through
a positive 90◦ about the positive x3-axis.

(9) Can the matrices


1 0 0
0 2 0
0 0 3


 and


1 0 0
0 1 0
0 0 3




be matrices of the same tensor? Why?
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(10) The components of a second-rank tensor with respect to the xi coordinate
system are

[A] =

4 3 0
3 −1 0
0 0 1




Find the components of the same tensor with respect to the x′i, coordinate
system, if x′3 = x3 and x′1 is making a 30◦ counterclockwise angle with the
x1-axis.

(11) Prove that the decomposition of a tensor into a symmetric and an antisymmet-
ric part is unique.

(12) Show that the value of Aijxixj is unchanged if Aij is replaced by its
symmetric part.

(13) If Aij is a tensor and Bij is a symmetric tensor, show that the product AijBij is
independent of antisymmetric part of Aij.

(14) In the coordinate transformation from xi to x′i, the transformation rule for the
components of a second-rank tensor is T′pq = QipQjqTij, whereQij is the trans-
formation matrix. Derive the reversed expression of this equation, that is,
express Tij in terms of T′ij and Qij.

(15) Investigate the influence of the coordinate transformation x′1 = −x1, x′2 = x2,
x′3 = x3 on the components of a tensor T.

(16) Prove that ei ⊗ ei = Iwhere I is the identity tensor.
(17) Show that det(ei ⊗ ei) = 1 and det(e1 ⊗ e1) = 0.

(18) Show that (a⊗ b) · (c⊗ d) = (b · c)(a⊗ d).
(19) Show that if the components of tensor T are Tij = δij in the xi coordinate

system, then the components are T′ij = δij in the x′i coordinate system.
(20) A rigid body is rotated through positive 90◦ about x2-axis by the right-handed

screw rule. Find a matrix representing this rotation.

(21) Suppose that the body of the previous problem is subsequently given a
90◦ rotation about the x1-axis by the right-hand screw rule, find the matrix
representation of the resultant rotation. If the position of a particle P on the
rigid body was (0, 1, 1), what is its position after two rotations?

(22) Reverse the order of above two rotations and find the final position of P.

(23) Arigid body undergoes two rotations. The first is a rotation through a positive
30◦ angle about a direction specified by the unit vector n = 0.286e1+0.857e2+
0.429e3 with respect to a fixed Cartesian coordinate system with origin at O.
This rotation is followedby a second rotationwhich rotates a positive 90◦ angle
about adirection specifiedby theunit vectorm = −0.667e1−0.667e2+0.333e3.
Both axes of rotation pass through the origin O. If the position of a point P on
the rigid body is (1, 1, 0), what is its position after the two rotations?
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(24) The velocity field vi(x) of a rigid body can be written as vi = bi + eijkcjxk ,
where the vectors bi and cj do not depend on the position of the considered
particle. Show that the curl of this velocity field is 2ci while the divergence of
the velocity field vanishes.

(25) In the vector field v(x), let there exist a surface onwhich v = 0. Show that, at an
arbitrary point of this surface, Curl v is tangential to the surface or vanishes,
while Div v is given by the rate of change of the normal component of v in the
direction of the normal of the surface.

(26) A tensor M transforms every vector into its mirror image with respect to the
plane whose normal is

n =
√
2
2
(e1 + e2)

(a) Find the matrix ofM.

(b) Use this linear transformation to find the mirror image of a vector
a = e1 + 2e2.

(Note that this is not a case of rotation. This case is known as reflection.)

(27) Let φ(x, y, z) andψ(x, y, z) be scalar functions of positions, and let v(x, y, z) and
w(x, y, z) be vector functions of position. By writing in the component form,
verify the following identities:

(a) �∇(φ + ψ) = �∇φ + �∇ψ
(b) Div(v +w) = Div v +Div w
(c) Div(φw) = ( �∇φ) · v + φ(Div v)

(28) Consider the integral
∫
L e3ijnivj dL, where L is the closed boundary of a plane

surface S with normal (0, 0, 1); vi is a vector; ni is the outward normal of the
contour L. Show that this integral is the circulation of vector vi along Ldenoted
by
∫
L v · dL.
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2
Stress

2.1 Introduction

When forces are applied to a body, they cause the body to deform. In this
chapter, we study about the forces and the intensity of forces, and in the
next chapter, we study the deformation of the body. The intensity of forces is
known as stress, and it is the stress, not the force, that plays an important role
in the quantification of effect due to forces. A force may be applied to a small
area, and a distributed load of the same resulting magnitude may be applied
to a larger area. The effects of the two cases are different locally because the
stresses are not the same. The concept of stress needs to be defined, and it can
be represented by a second-rank tensor.We investigate the properties of stress
in this chapter and we also list some references [1–6] for additional reading.

2.2 Forces

Consider a body of volume V and surface S as shown in Figure 2.1. A generic
material element of the body has a volume dV, and a generic surface element
has area dS and an outward normal n. There are four types of “forces” that act
on a body. The “forces” include, in a broad sense, the forces and moments.
The four types of “forces” are:

1. Body forces: These are forceswhosemagnitudes areproportional to the
mass contained in the material element of the body. The body forces
may either be definedper unitmass or per unit volume.An important
example of body force is the gravity force, which is expressed as
ρg dV, where ρ is the density; and g is the gravitational acceleration.

2. Surface forces: These forces act on the surface element dS of the body.
Externally applied loads, contact forces between bodies, and reac-
tions are examples of surface forces, out of which surface tractions or
stress vectors may be defined. The stress vector is the stress force per
unit area.

45
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FIGURE 2.1
Body force and surface traction.

3. Body moments: These are moments applied to the volumetric
element dV. It is usually expressed in terms of moment per unit
volume, or moment per unit mass.

4. Couple stress: The couple stress is the moment per unit area applied
on a surface.

In this chapter, we consider only the first two types of forces — body and
surface forces. These are the most common forces that appear in the study
of thermo-mechanical behavior of engineering materials. The remaining two
types of “forces” are not important in the case of mechanical behavior of
materials, but they play an important role in the case of a polarized dielectric
solid under the action of an electric field. They also could be significant in
the study of bones or materials with microstructures, and/or from the action
of an external magnetic field. Even without external couples, couple stress
can arise from interactions between adjacent parts of the material other than
central-force interaction. In this chapter, we study the basic principles and
methods of continuum mechanics.

2.3 Stress Vector

The stress vector is also known as the surface traction. Consider the sur-
face element dS shown in Figure 2.1, where the surface force applied to the
element is p. We write

p = t(n) dS (2.1)
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where

t(n)(xk) = lim
dS→0

p
dS

(2.2)

where t(n) is the stress vector, which is the intensity of surface force and
has a unit of force per unit area. The stress vector is a function of position,
a function of xi, and in general it is different from one point on the surface of
the body to another point. The outward normal of dS is denoted by n, and t(n)

and n are not in the same direction.

2.4 The Stress Tensor

We now consider the stress inside the body, let us cut out a tetrahedron of
infinitesimal size from a body, as shown in Figure 2.2. The triangular surface
dS(n), with outward normal n, is inclined to the coordinate axes. The remain-
ing three sides of the tetrahedron, dS1, dS2, and dS3, lie on the coordinate
surfaces, and their outward normals are −e1, −e2, and −e3, respectively.
The stress vectors acting on these surfaces are−t1,−t2, and−t3, respectively.
The negative sign indicates that these forces act on the surfaces with negative
normals. Let us now consider the force equilibrium of the tetrahedron. For
this we need to sum the surface forces acting on all faces of the tetrahedron
and the body force ρbdV acting on the mass of the tetrahedron and then set
the result to zero. We obtain

−t1 dS1 − t2 dS2 − t3 dS3 + ρbdV + dS(n)t(n) = 0 (2.3)

∆S1

∆S2

∆S 3

∆S(n)

–t3

�∆V b

–t2

–t1
t(n)

n

x1

x2

x3

O

FIGURE 2.2
Stress vectors.
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On applying a limiting process, the volume dV tends to zero, but successive
smaller elements retain their surfaces parallel. Since the volume and the area
are of the third order and the second order of smallness in length, respectively,
in the limit, the term ρbdV becomes a higher order of smallness relative to
the other terms and can be ignored. Thus, (2.3) becomes

t1 dS1 + t2 dS2 + t3 dS3 = dS(n)t(n) (2.4)

Since dSi are projections of the inclined surface dS(n) onto the coordinate
surfaces, we have

dSi

dS(n)
= ni = cos(xi,n) (2.5)

By use of (2.5), (2.4) reduces to

t(n) = tini (2.6)

Referring to (2.6), we emphasize that t(n) is a vector acting on the inclined
surface dS(n), and ti are vectors acting on the surfaces dSi. Each of these
vectors can be expressed by its components referred to the coordinate axes xi.
To do this, we write

t(n) = t(n)k ek and ti = σikek (2.7)

where t(n)k are the components of t(n); and σik are the components of ti in the
coordinate directions. Substituting (2.7) in (2.6), we obtain

t(n)k ek = σikek ni or t(n)k = σik ni (2.8)

which, in the matrix form, is written as

[t(n)] = [σ ]T[n] (2.9)

The quantities σik are also components of a second-rank tensor from the quo-
tient law discussed in Section 1.5.4. Comparing (2.8) with (1.80), we infer that
ni is an arbitrary tensor (It is arbitrary, since we may choose the direction of
the inclined surface.) and t(n)k is a tensor. Therefore, we conclude that σik is
a tensor.
The importance of (2.8) is that it relates the stress vector t(n) acting on aplane

with unit normal n to the stress tensor σ in the material element. Knowing
n and t(n), σ may be found from the equation. The stress tensor is expressed
using the tensor bases as

σ = σijei ⊗ ej (2.10)
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FIGURE 2.3
Stress tensor components.

and in the symbolic notation, (2.8) is written as

t(n) = σT · n (2.11)

We now discuss the meaning of the stress components σij. These are
intensity of forces (force per unit area) along the coordinate directions. They
varywith the location in thebodyand theirmagnitudesandspecific character-
istics depend on the geometrical shape of the body and the loading condition
(surface traction). To determine the distribution of stress in the body, we
need to solve a boundary-value problem, by specifying the boundary condi-
tions. However, this problem will not be discussed in this chapter. Instead,
we concentrate on understanding the nature of stress at a given point, and
consider the stress at a point. To visualize the stress at a point, we consider
a parallelepiped cut out from the body. The size of the parallelepiped is not
important as long as it is infinitesimal. This is so, because, in the sense of
calculus, we consider the stress at a point by taking the limit with the size of
the parallelepiped of approaching zero. Figure 2.3 shows the components σij
applied on the faces of the parallelepiped. The first subscript denotes the dir-
ection of the normal to the considered plane and the second subscript denotes
the direction in which the stress component acts. σ11, σ22, σ33 are the normal
stresses and σ12, σ21, σ23, σ32, σ13, σ31 are the shear stresses.

EXAMPLE 2.1 For given n and t(n) on an inclined plane, show by coordinate
transformation that σij are components of a tensor.
With the orientation of the inclined surfacefixed, let us vary the choice of the

coordinate system, so that we have xi and x′i coordinate systems. In this exer-
cise, n and t(n) remain fixed. Using (2.6) and referring to the two coordinate
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systems, we have

tini = t(n) = t′in
′
i (a)

Referring ti to the xi axes and t′i to the x′i axes, we write

σijejni = σ ′ike′kn′i (b)

But, from (1.28) and (1.32),

ej = Qjke
′
k and ni = Qipn′p (c)

So, by substitution

σijQjke
′
kQipn′p = σ ′ike′kn′i or σijQjkQipn′p = σ ′ikn′i (d)

Since this relation is true for all n, the above equation reduces to

σ ′ij = QkiQmjσkm or [σ ′] = [Q]T[σ ][Q] (e)

Therefore, we can conclude that σij are components of a second-rank tensor
because they obey the transformation rule of a second-rank tensor.

EXAMPLE 2.2 Show that the components of tensor equation (2.11) is (2.8).

LHS of (2.11) = t(n)i ei (a)

RHS of (2.11) = σjiei ⊗ ej · nkek = σjinkeiδlk = σjinjei (b)

Equating (a) with (b), we obtain (2.8).

2.5 Equations of Equilibrium

We derive the equations of equilibrium by summing all the forces applied
to a body and reducing it to the local form. Refer to the body of Figure 2.1,
and note that every portion of this body is in equilibrium. Consider that only
surface tractions and body force apply to this body. The “global form” of the
equations of equilibrium is then

∫
V
ρbi dV +

∫
S

t(n)i dS = 0 (2.12)
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By use of (2.8), (2.12) becomes

∫
V
ρbi dV +

∫
S
σjinj dS = 0 (2.13)

We now use the Gauss theorem to change the second integral of (2.13) into
a volume integral. Then, we obtain

∫
V
(ρbi + σji,j)dV = 0 (2.14)

Since the region of integration V is arbitrary and every part of the medium
is in equilibrium, we conclude that the integrand must be zero to make the
integral zero. Thus,

ρbi + σji,j = 0 or
∂σji

∂xj
+ ρbi = 0 (2.15)

Equations (2.15) are the equations of equilibrium in the local form, and theymay
be expanded into a familiar form as

∂σ11

∂x1
+ ∂σ21
∂x2
+ ∂σ31
∂x3
+ ρb1 = 0

∂σ12

∂x1
+ ∂σ22
∂x2
+ ∂σ32
∂x3
+ ρb2 = 0

∂σ13

∂x1
+ ∂σ23
∂x2
+ ∂σ33
∂x3
+ ρb3 = 0

(2.16)

EXAMPLE 2.3 Show that the mean value theoremmay be used to reduce the
“global form” of the equations of equilibrium to the “local form.”
The mean value theorem is

∫ b

a
f (x)dx = (b− a)f (ξ), with a ≤ ξ ≤ b (a)

On the right-hand side of (a), the function f (ξ) is evaluated at some point in
the range of a and b. In the case of equation (2.14), the function f is ρbi + σji,j,
which is evaluated at some interior point in �V. Thus, (2.14) becomes

∫
V
(ρbi + σji,j)dV = �V(ρbi + σji,j) = 0 (b)

Since �V �= 0, we obtain

ρbi + σji,j = 0 (c)
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2.6 Symmetry of the Stress Tensor

The stress tensor is symmetric, that is, σ12 = σ21, σ23 = σ32, and σ31 = σ13,
so that the nine components of σij reduce to six independent components. This
is not an assumption, but is the result of conservation of angular momentum.
A simple way to show this is to project the stresses on the parallelepiped
of Figure 2.3 onto a coordinate plane, say the (x1 − x2) plane, as shown in
Figure 2.4. By summing moment about O, we get

σ12 = σ21 (2.17a)

Similarly, by projecting the stresses and the parallelepiped onto the other two
coordinate planes and summing moments about O, we find

σ23 = σ32 and σ31 = σ13 (2.17b)

A rigorous proof of the symmetry of the stress tensor may be obtained by
considering the conservation of angularmomentum.We consider the general
case that the body moment per unit volume Mi is included in the derivation.
The effect of Mi will then be discussed. Referring to Figure 2.1, we have

ρ(r × b)i = ρeijkxjbk = moment of ρbk about the origin (2.18)

(r × t(n))i = eijkxjt
(n)
k = moment of t(n)k about the origin (2.19)

Summing moment about the origin O, we write

∫
V
ρeijkxjbk dV +

∫
S

eijkxjt
(n)
k dS+

∫
V

Mi dV = 0 (2.20)
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FIGURE 2.4
2 D stress components.
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The second integral in (2.20) may be transformed into a volume integral by
use of the Gauss theorem. Thus, (2.20) becomes∫

V

[
ρeijkxjbk + ∂

∂xr
(eijkxjσrk)+Mi

]
dV = 0 (2.21)

The second term in (2.21) is

eijk

[
∂xj

∂xr
σrk + xj

∂σrk

∂xr

]
= eijk(σjk + xjσrk,r) = eijkσjk + eijkxj(−ρbk)

(2.22)

where the last expression was obtained from the equations of equilibrium.
Hence, (2.21) becomes∫

V
[ρeijkxjbk + eijkσjk − ρeijkxjbk +Mi]dV = 0 (2.23)

which leads to ∫
V
(eijkσjk +Mi)dV = 0 (2.24)

Since the integrand is continuous and the volume V is arbitrary, we obtain

eijkσjk +Mi = 0 (2.25)

We now discuss the meaning of (2.25) in two different cases as follows:

1. If the body moment is absent, that is, Mi = 0, then (2.25) reduces to

eijkσjk = 0 (2.26)

For i= 1, (2.26) gives e123σ23+e132σ32= 0. Since e123= 1 and e132 = −1,
we obtain σ23 = σ32. For i = 2, (2.26) leads to σ13 = σ31; and for
i = 3, (2.26) leads to σ21 = σ12. Therefore, we write

σij = σji (2.27)

2. If Mi �= 0, then σij �= σji, and the stress tensor is not symmetric.

2.7 Principal Stresses

Ifwe pass a plane through the parallelepiped of Figure 2.3 and cut the element
into two parts, then one of the two parts may be viewed as a tetrahedron
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FIGURE 2.5
Stress vector on an inclined plane.

shown in Figure 2.5. Within the tetrahedron the stress is σij as defined in
Figure 2.3. The unit normal to the plane is n, and the associated stress vector
t(n)may be found from (2.8) or (2.11). Generally, the two vectors n and t(n)

have different directions as shown in Figure 2.5. We now inquire whether we
can cut the parallelepiped in a specific direction (find an n), such that n and
t(n) have the same direction. If such an n exists, then t(n) = λn, where λ is the
magnitude of vector t(n). In this event, using (2.6), we obtain

tini = λn (2.28)

Substituting (2.7) into (2.28), we have

σijejni = λnjej and σijni = λnj (2.29)

which may be written as

(σij − λδij)ni = 0 (2.30)

The solution of this set of equations would make t(n) lie in the direction
of n. The solution includes finding the direction n and the magnitude λ.
Mathematically speaking, (2.30) is a statement of the eigenvalue problem.
The trivial solution ni = 0 of the homogeneous equations (2.30) does not

satisfy the unit vector condition n21 + n22 + n23 = 1, so it cannot be our answer.
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The condition that a nontrivial solution exists for ni is that

|σij − λδij| =
∣∣∣∣∣∣
σ11 − λ σ12 σ13
σ21 σ22 − λ σ23
σ31 σ32 σ33 − λ

∣∣∣∣∣∣ = 0 (2.31)

Expanding the determinant in (2.31), we obtain

λ3 − J1λ2 + J2λ− J3 = 0 (2.32)

where

J1 = tr(σij) = σii

J2 = tr cofactor(σij) =
∣∣∣∣σ22 σ23
σ32 σ33

∣∣∣∣+
∣∣∣∣σ11 σ13
σ31 σ33

∣∣∣∣+
∣∣∣∣σ11 σ12
σ21 σ22

∣∣∣∣ (2.33)

J3 = det σij

The quantities J1, J2, and J3 are called the principal invariants of σij, because
they remain invariant with a rotation of the coordinate system. Referring to
two coordinate systems xi and x′i, the invariants transform as

σii = σ ′ii, tr cofactor(σij) = tr cofactor(σ ′ij), det σij = det σ ′ij (2.34)

Therefore, J1 = J′1, J2 = J′2 and J3 = J′3. The stress invariants are further
discussed in Section 2.11. Note that stresses (λ1, λ2, λ3) found by solving
the characteristic equation (2.32) are called principal stresses and are often
denoted by (σ1, σ2, σ3). In the mathematical language, λr (r = 1, 2, 3) are
eigenvalues and the three correspondingn(r)i are eigenvectors. The eigenvalue
problem is discussed in Section 2.8.

2.8 Properties of Eigenvalues and Eigenvectors

The eigenvalue problem is governed by equation (2.30). It is the governing
equation of many engineering problems. The properties of the eigenvalues
and eigenvectors for a symmetric tensor σij are summarized below:

1. Eigenvalues are real.
2. Eigenvectors are real.
3. Eigenvectors are orthogonal.
4. If eigenvalues are distinct, eigenvectors can be determined uniquely.
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5. If two eigenvalues are identical, one eigenvector corresponding to the
distinct eigenvalue is unique, other two eigenvectors lie in a plane
normal to the unique eigenvector.

6. If all three eigenvalues are identical, then all directions in the space
xi are eigen directions. In this case σij = λδij.

7. The principal stress components σ̄ij and the stress components σij

are related by [σ̄ ] = [Q]T[σ ][Q], where the transformation matrix
[Q] is defined by the eigenvectors (direction cosines between the
eigenvectors and coordinate axes) and this subject is discussed in
Section 2.12.

EXAMPLE 2.4 Show that if σij is symmetric, then three real roots λ1, λ2, λ3
exist in (2.30).
This is provenby contradiction. First, we letλbe complex, that is, λ = α+iβ.

For the sake of generality, let ni be complex too, that is, ni = µi + iξi. Then,
α, β, µi, and ξi are real. By substitution, (2.30) becomes

σij(µi + iξi)− (α + iβ)(µj + iξj) = 0 (a)

By equating real and imaginary parts in (a), we obtain

σijµi = αµj − βξj
σijξi = βµj + αξj

(b)

Multiplying the first equation of (b) by ξj and the second equation of (b) by µj
and subtracting the two resulting equations, we get

β(ξjξj + µjµj) = 0 (c)

Since the quantity within the parenthesis is nonnegative, we have

β = 0 (d)

Hence, all eigenvalues are real.

EXAMPLE 2.5 Show that if σij is symmetric, then all eigenvectors of (2.30)
are real.

Proof

Equation (2.30) may be written as

(σ11 − λ)n1 + σ21n2 + σ31n3 = 0

σ12n1 + (σ22 − λ)n2 + σ32n3 = 0

σ13n1 + σ23n2 + (σ33 − λ)n3 = 0

(a)
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Because the determinant of (a) is zero, the rank is at most two (the rank of
amatrix is the dimension of the largest square submatrixwith a nonvanishing
determinant that is contained in thematrix); therefore, the three equations are
linearly dependent and the third equation can be expressed in terms of the
former two. If we delete the last equation, then the number of equation is less
than the number of unknown. Hence, a real solution for n1,n2, and n3 always
exists. If the 3× 2 matrix has rank two, then we can solve for n1 and n2 (say)
in terms of n3, that is,

n1 = N1n3 and n2 = N2n3 (b)

where N1 and N2 are proportional factors determined by the two equations.
But n is a unit vector and it must satisfy

n21 + n22 + n23 = 1 (c)

Substituting (b) into (c), we obtain

(N2
1 +N2

2 + 1)n23 = 1 (d)

which may be solved to yield

n3 = (1+N2
1 +N2

2 )
−1/2 (d)

Expressions in (b) and (e) form the solution of (a). In this case, n can be found
uniquely. If the rank is less than two, then n cannot be determined uniquely,
the physical significance being that there may exist more than one n such that

t(n) = λn (f)

An example is, when σ11 = σ22, then n cannot be determined uniquely.

EXAMPLE 2.6 Show that eigenvectors are mutually orthogonal.

Case 1: All λ’s are distinct

In this case λ1 �= λ2 �= λ3. Choose two such directions n(r)i and n(s)i , r �= s,
then (2.30) becomes

σijn
(r)
i − λrn

(r)
j = 0 (a)

σijn
(s)
i − λsn

(s)
j = 0 (b)
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Multiplying (a) by n(s)j and (b) by n(r)j , and subtracting the two resulting
equations, we find

(λr − λs)n
(r)
i n(s)i = 0 (c)

But since λr �= λs, it follows that n(r)i n(s)i = 0, or n(r) · n(s) = 0, for r �= s.
Therefore, n(r) and n(s) are mutually orthogonal. In general, we may write

n(r)i n(s)i = δrs (d)

Case 2: Two λ’s are not distinct

Assume that λ1 �= λ2 and λ2 = λ3. Choose one characteristic direction n(1)

and let x′1 coincide with n(1) then σ ′ij will have the form



σ ′11 0 0
0 σ ′22 σ ′23
0 σ ′32 σ ′33


 (e)

We then examine the characteristic direction in the x′i system. The character-
istic equation is (for λ = λ2)



σ ′11 − λ2 0 0

0 σ ′22 − λ2 σ ′23
0 σ ′32 σ ′33 − λ2



T



n(2)1

n(2)2

n(2)3


 = 0 (f)

Evidently, n(2)1 = 0, since the first equation of (f) is
(
σ ′11 − λ2

)
n(2)1 = 0 and

σ ′11 = λ1 �= λ2. This implies that x′1⊥n(2) or n(1)⊥n(2). The remaining two
equations are

(σ ′22 − λ2)n(2)2 + σ ′23n(2)3 = 0

σ32n
(2)
2 + (σ ′33 − λ2)n(2)3 = 0

(g)

The determinant of (g) vanishes for nontrivial solution of n(2)2 and n(2)3 . Thus,

∣∣∣∣(σ ′22 − λ2) σ ′23
σ ′32 (σ ′33 − λ2)

∣∣∣∣ = 0 (h)

or

λ22 − λ2(σ ′22 + σ ′33)− σ ′23σ ′32 + σ ′22σ ′33 = 0 (i)
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The two roots are

λ2,3 = σ ′22 + σ ′33
2

± 1
2

√
(σ ′22 + σ ′33)2 − 4(σ ′22σ

′
33 − σ ′32σ ′23)

= σ ′22 + σ ′33
2

± 1
2

√
(σ ′22 − σ ′33)2 + 4(σ ′32σ

′
23) (j)

The only condition which makes λ2 and λ3 not be distinct is for the
discriminant to vanish, that is,

σ ′23 = σ ′32 = 0 and σ ′22 = σ ′33 = λ2 (k)

Substituting these results in (g), we see that any values of n(2)2 and n(2)3 and,
similarly n(3)2 and n(3)3 , will satisfy the characteristic equation.

2.9 Normal and Shear Components

We observed in Section 2.7 that on an inclined plane with unit normal n, the
stress vector t(n) and n generally have different directions. The two vectors
have the same direction only when n is the principal direction of σij. In the
general case, t(n)maybedecomposed into two components: one in the normal
direction denoted by σN and the other in the tangential direction denoted by
σ S as shown in Figure 2.6. σN is called the normal component and σ S the shear
component of the stress vector. The normal component is expressed by

σN = t(n) · n = σjinjni (2.35)

and the shear component is obtained from

|t(n)|2 = (σN)2 + (σ S)2 (2.36)

t(n)

n

� S

�
N

FIGURE 2.6
Normal and shear stress components.

© 2005 by Chapman & Hall/CRC Press



60 Continuum Mechanics and Plasticity

2.9.1 Directions Along which Normal Components of σij
are Maximized or Minimized

We like to find an n such that σN is maximized or minimized. It is noted that
n is subject to the condition nini = 1. The method of Lagrangian multiplier
denoted by λ is used, so that we maximize or minimize the expression

F = σjininj − λnini (2.37)

The differentiation of (2.37) yields

∂F
∂ni
= 0 or σjinj − λni = 0 (2.38)

But, (2.38) is the condition that ni be a principal direction. Hence, the principal
directions make σN either maximum or minimum, and the max. (or min.)
normal component is equal to the max. (or min.) principal value of σij.

2.9.2 The Maximum Shear Stress

We use (2.36) to obtain the expression of the shear component σ S. We find
first from (2.8) and (2.35) the following expressions:

|t(n)|2 = σjinjσkink (2.39)

(σN)2 = σjininjσmknknm (2.40)

For simplicity, we let xi coincide with principal axes, then we have only the
principal stresses σ1, σ2, σ3 and the shear stresses are zero. In this case, (2.35)
reduces to

σN = σ1n21 + σ2n22 + σ3n23 (2.41)

and (2.39) becomes

|t(n)|2 = σ 21 n21 + σ 22 n22 + σ 23 n23 (2.42)

Substituting (2.41) and (2.42) into (2.36), we obtain

(σ S)2 = σ 21 n21 + σ 22 n22 + σ 23 n23 −
(
σ1n21 + σ2n22 + σ3n23

)2 (2.43)

or

(σ S)2 + [(σ1n21)+ (σ2n22)+ σ3(1− n21 − n22)]2 = σ 21 n21 + σ 22 n22 + σ 23 (1− n21 − n22)
(2.44)
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To find the maximum σ S, we set the derivatives to zero:

∂(σ S)2

∂n1
= 0,

∂(σ S)2

∂n2
= 0 (2.45)

and we find

2[σ1n21 + σ2n22 + σ3(1− n21 − n22)]n1(σ1 − σ3) = n1(σ 21 − σ 23 ) (2.46)

2[σ1n21 + σ2n22 + σ3(1− n21 − n22)]n2(σ2 − σ3) = n2(σ 22 − σ 23 ) (2.47)

We now discuss three cases depending on whether the principal stresses are
distinct or not.

Case 1: The three principal stresses are distinct, that is, σ1 �= σ2 �= σ3
Common factors of (σ1 − σ3) and (σ2 − σ3) can be cancelled out from (2.46)

and (2.47), respectively, so that the two equations become

2[σ1n21 + σ2n22 + σ3(1− n21 − n22)]n1 = n1(σ1 + σ3) (2.48)

2[σ1n21 + σ2n22 + σ3(1− n21 − n22)]n2 = n2(σ2 + σ3) (2.49)

It follows that n1 and n2 cannot both be different from zero, because otherwise
n1 can be cancelled out from (2.48) and n2 cancelled out from (2.49) to obtain
the following two equations:

σ1n21 + σ2n22 + σ3(1− n21 − n22)−
σ1 + σ3

2
= 0 (2.50)

σ1n21 + σ2n22 + σ3(1− n21 − n22)−
σ2 + σ3

2
= 0 (2.51)

If these two equations are to be satisfied, we must have σ1 = σ2, in contradic-
tion with the hypothesis that σ1 �= σ2. Either n1 or n2, therefore, must be zero.
Let n1 = 0, then from (2.49) we obtain

2[σ2n22 + σ3(1− n22)]n2 = n2(σ2 + σ3) (2.52)

which may be simplified to

n22(σ2 − σ3) =
σ2 − σ3

2
or n2 = ±

√
1
2
= ± cos 45◦ (2.53)

Therefore, the solution is

n1 = 0, n2 = ±
√
1
2
, n3 = ±

√
1
2

(2.54a)
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FIGURE 2.7
Maximum shear stresses.

The other two cases are

n1 = ±
√
1
2
, n2 = 0, n3 = ±

√
1
2

(2.54b)

n1 = ±
√
1
2
, n2 = ±

√
1
2
, n3 = 0 (2.54c)

The shear stresses σ S active in the planes of n1 = 0, n2 = 0, or n3 = 0 are
shown in Figure 2.7. In the insert, we show the plane of n3 = 0. It is seen that
themaximumshear stresses aremaking±45◦ angleswith the coordinate axes.

Finally, we note that in all cases of (2.54)

σ S = σ2 − σ3
2

or
σ1 − σ3

2
or

σ1 − σ2
2

(2.55)

which may be obtained by substituting, respectively, the planes of (2.54a,b,c)
into equation (2.44) for σ S.

Case 2: Two principal stresses are not distinct and we consider the case of
σ2 = σ3 �= σ1
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FIGURE 2.8
Maximum shear stress in the case of σ2 = σ3 �= σ1.

This is a case of rotational symmetry about the x1-axis. In this case, n2 is
arbitrary; since σ3 �= σ1, we may use (2.48) to obtain

n21(σ1 − σ3) =
σ1 − σ3

2
(2.56)

We note that n1 �= 0, because, if n1 = 0, then upon choosing n2 = 0, we obtain
n3 = 1. Using (2.44), the case of n1 = 0 leads to σ S = 0, which is theminimum
shear stress, in contradiction with the goal of finding the maximum shear
stress. Simplifying (2.56), we find

n1 = ±
√
1
2
, n2 = arbitrary, n3 = arbitrary (2.57)

In this discussion, special attention is given to the relation n21 + n22 + n23 = 1.
Figure 2.8 shows a cone with generator in the x1 direction. The maximum
shear stress σ S lies on the surface of the cone and its magnitude is given by
σ S = 1

2 (σ1 − σ2) found on substitution of (2.57) into (2.44).

Case 3: All principal stresses are equal, that is, σ1 = σ2 = σ3 = σ
This is a case of hydrostatic pressure.
In this case, we found from (2.43) that

(σ S)2 = σ 2(n21 + n22 + n23)− σ 2(n21 + n22 + n23)
2 = 0 (2.58)

with arbitrary n1,n2,n3, that is, the shear stress is zero in all directions.

Finally, the following conclusionmaybe stated: themaximumshear stress is
equal to one-half the difference between the greatest and least normal stresses
andacts on theplane that bisects the anglebetween thedirectionsof the largest
and smallest principal stresses.
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2.10 Mean and Deviatoric Stresses

Any tensor of rank two can be written as

Cij = αδij + Bij = (C11 + C22 + C33)

3
δij

+




{C11 − 1
3 (C11

+C22 + C33)}
C12 C13

C21 {C22 − 1
3 (C11

+C22 + C33)}
C23

C31 C32 {C33 − 1
3 (C11

+C22 + C33)}




(2.59)

In a similar manner, the stress tensor σij can be written as

σij = (σ11 + σ22 + σ33)
3

δij

+




{σ11 − 1
3 (σ11+σ22 + σ33)}

σ12 σ13

σ21 {σ22 − 1
3 (σ11+σ22 + σ33)}

σ23

σ31 σ32 {σ33 − 1
3 (σ11+σ22 + σ33)}




(2.60)

or

σij = 1
3σkkδij + σ ′ij (2.61)

where 1
3σkk is the mean stress; and

σ ′ij =




{σ11 − 1
3 (σ11+σ22 + σ33)}

σ12 σ13

σ21 {σ22 − 1
3 (σ11+σ22 + σ33)}

σ23

σ31 σ32 {σ33 − 1
3 (σ11+σ22 + σ33)}




(2.62)

is the deviatoric stress tensor. Thus, the stress may be decomposed into the
hydrostatic (mean stress) and deviatoric parts. This property of stress is par-
ticularly useful in the study of plasticitywhich is discussed further in the later
chapters of this book. Plastic yielding and plastic deformation of metals are
known to be independent of the hydrostatic stress but are dependent on the
deviatoric stress.
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2.11 Octahedral Shearing Stress

The concept of octahedral shearing stress is useful in plasticity as well.
Consider principal stress axes. If the normal ni of a plane in this stress space
makes equal angleswith the three axes, there are eightdirectionswhich satisfy
n21 = n22 = n23 = 1

3 . The eight planes associated with these eight directions are
called the octahedral planes. The planes form equal angles with the principal
directions and form a diamond shaped region around the zero stress point.
The shearing stress σ So that acts on the octahedral planes is called the

octahedral shearing stress. From (2.43), in the principal stress space, we can
show that the align reduces to

(σ S)2 = (σ1 − σ2)2n21n22 + (σ2 − σ3)2n22n23 + (σ3 − σ1)2n23n21 (2.63)

If n21 = n22 = n23 = 1
3 , then (2.63) reduces to

9(σ So )
2 = (σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 (2.64)

This is the expression for octahedral shearing stress. On the other hand, the
normal component acting on the octahedral plane is given from (2.41) by

σNo = 1
3 (σ1 + σ2 + σ3) = mean stress (2.65)

We now show that the octahedral shearing stress may be expressed in
terms of the stress invariants. To this end, we observe that align (2.64) can
be rewritten as:

9(σ So )
2 = 2(σ 21 + σ 22 + σ 23 )− 2(σ1σ2 + σ2σ3 + σ3σ1)
= 2[(σ1 + σ2 + σ3)2 − 2(σ1σ2 + σ1σ3 + σ2σ3)] − 2(σ1σ2 + σ2σ3 + σ3σ1)
= 2[J21 − 2J2] − 2J2 = 2J21 − 6J2 (2.66)

where (2.33) was used in the principal coordinate system. It is seen that the
octahedral shearing stress σ So is invariant with rotation of coordinate axes.
If J1 and J2 are expressed in terms of stress components taken relative to
arbitrary (x1, x2, x3) axes— not principal axes as above—, equation (2.66), on
the substitution of (2.33), becomes

9(σ So )
2 = (σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6σ 212 + 6σ 213 + 6σ 223

(2.67)

This expression forms the basis for von Mises yield criterion discussed in
Chapter 6 .
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2.12 The Stress Invariants

We would like to see now that the stress invariants defined in (2.33) remain
unchanged under rotation of the coordinate system. Let us assume that
coordinates xi rotate into x′i. The first stress invariant is

J1 = σii (2.68)

In the coordinate system x′i, we denote the components of σij by σ ′ij, then the
first invariant in the x′i system is J′1 = σ ′ii. Using the transformation align of
the second-rank tensor (1.46), we have

σ ′ii = QriQsiσrs = δrsσrs = σss = σii (2.69)

Comparing (2.68) and (2.69), we find

J1 = J′1 (2.70)

which shows that J1 indeed remains unchanged with rotation of the
coordinate system.
The third invariant is

J3 = det σ = 1
6 eijkerstσirσjsσkt (2.71)

In the primed coordinate system,

J′3 = 1
6 eijkerstσ

′
irσ
′
jsσ
′
kt

= 1
6 eijkerstQaiQbrσabQcjQdsσcdQekQftσef

= 1
6 (eijkQaiQcjQek)(erstQbrQdsQft)σabσcdσef

= 1
6 eaceebdfσabσcdσef = J3 (2.72)

It is seen from (2.72) that J3 is an invariant. In the derivation of (2.72), we
used the relation e′ijk = eijk , which indicates that the permutation symbol is a
third-rank isotropic tensor.
The second invariant is

J2 = tr cofactor σ =Mii (2.73)

Note that we use Mij to denote the matrix of the cofactors and not the minors.
We now find the expressions for the minors. To do this, we first expand the
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determinant of the stress matrix as∣∣∣∣∣∣
σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

∣∣∣∣∣∣ = σ11
∣∣∣∣σ22 σ23
σ32 σ33

∣∣∣∣− σ12
∣∣∣∣σ21 σ23
σ31 σ33

∣∣∣∣+ σ13
∣∣∣∣σ21 σ22
σ31 σ32

∣∣∣∣ (2.74)

We then differentiate (2.74) to obtain the minors as

M11 = ∂|σ|
∂σ11

, etc. (2.75)

Generally, we write

Mij = ∂|σ|
∂σij

(2.76)

Using (2.76) and (2.71), and observing the notations

∂σir

∂σpq
= δipδrq (2.77)

We find

Mpq = 1
6 {epjkeqstσjsσkt + eipkerqtσirσkt + eijpersqσirσjs} (2.78)

The second and third terms on the right-hand side are equal to the first term,
and (2.78) may be simplified to obtain

Mpq = 1
2 epjkeqstσjsσkt (2.79)

Hence, we find

J2 =Mii = 1
2 eijkeistσjsσkt = 1

2 (δjsδkt − δjtδks)σjsσkt = 1
2 {σjjσkk − σjkσkj}

= 1
2 {[tr σ]2 − tr(σ)2} = 1

2 {J21 − tr(σ2)} (2.80)

Since J1 and tr(σ2) are invariant, we may conclude that J2 remains invariant
with rotation of the coordinate system.
Another representation of J2 may be obtained as follows. Using (2.79), we

write

Mpqσrq = 1
2 epjkeqstσjsσktσrq (2.81)

By use of the identity proven in Example 2.7, (2.81) reduces to

σrqMpq = 1
2 epjkerjk|σ| = δpr|σ| (2.82)
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Note that the identity eirsejrs = 2δij has been used in the derivation of (2.82).
In the symbolic notation, (2.82) may be written as

σ ·MT = 1 · |σ| (2.83)

If we multiply (2.83) from the left by σ−1, we obtain

MT = σ−1|σ| or σ−1 = MT

|σ| (2.84)

This indicates that the inverse of the matrix σ is the transpose of its cofactors
divided by the determinant of the matrix. Using (2.84), we find the following
expression for the second invariant

J2 = tr(M) = trMT = tr(σ−1)|σ| (2.85)

EXAMPLE 2.7 Prove the identity empq detA = eijkAimAjpAkq.

Proof

The determinant of matrix [A] is

detA =
∣∣∣∣∣∣
A11 A12 A13
A21 A22 A23
A31 A32 A33

∣∣∣∣∣∣ =
∣∣∣∣∣∣
A11 A21 A31
A12 A22 A32
A13 A23 A33

∣∣∣∣∣∣ (a)

An interchange of column or row of the determinant causes a sign change,
and this may be expressed by

empq detA =
∣∣∣∣∣∣
A1m A1p A1q
A2m A2p A2q
A3m A3p A3q

∣∣∣∣∣∣ =
∣∣∣∣∣∣
A1m A2m A3m
A1p A2p A3p
A1q A2q A3q

∣∣∣∣∣∣ (b)

A triple product of three vectors is

a · (b× c) = eijkaibjck =
∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ (c)

When we let ai = Aim, bi = Aip, and ci = Aiq, (b) and (c) combine to give

empq detA = eijkAimAjpAkq (d)
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which proves the identity. Finally, we note that

a× b =
∣∣∣∣∣∣
i j k
ax ay az
bx by bz

∣∣∣∣∣∣ =
∣∣∣∣∣∣
i ax bx
j ay by
k az bz

∣∣∣∣∣∣ (e)

2.13 Spectral Decomposition of a Symmetric Tensor of
Rank Two

In this section, we discuss a representation of a symmetric second rank tensor
by its eigenvalues and eigenvectors. To this end, we derive the following
relation first

n(r)i n(r)j = δij (r summed) (2.86)

If we denote the directions of the normalized eigenvectors n(1)i , n(2)i , n(3)i by
x′1, x′2, x′3, respectively, we can then make use of (1.22), which relates the
base vectors of the two coordinate systems. Thus, unit vectors n(r) may be
represented by

n(r) = n(r)k ek = Qkrek (2.87)

where n(r)k are direction cosines of n(r) with respect to the ek system and

n(r)k = Qkr (2.88)

The inverse of (2.87) is

ek = n(r)k n(r) (2.89)

On the other hand, following the same procedure and using a different
normalized eigenvector, we obtain

em = n(s)m n(s) (2.90)

We then form the dot product from (2.89) and (2.90) as,

ek · em = n(r)k n(r) · n(s)m n(s) = n(r)k n(s)m δrs = n(r)k n(r)m (2.91)

In the derivation, we note that eigenvectors are orthogonal expressed by

n(r)i n(s)i = δrs (2.92)
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Hence (2.91) reduces to

n(r)k n(r)m = δkm (2.86)

We now use this result to derive a representation of a symmetric tensor by
its eigenvalues and eigenvectors. To this end, we start with

σijn
(r)
i = λrn

(r)
j (r not summed) (2.93)

Then, bymultiplying both sides of (2.93) by n(r)k and summing over r, we have

σij n(r)i n(r)k =
∑

r

λrn
(r)
j n(r)k (2.94)

Using (2.86), (2.94) reduces to

σij =
∑

r

λrn
(r)
i n(r)j (2.95)

Equation (2.95) is the spectral decomposition of σij.
Aremark is in order. In the study of coordinate transformation in Chapter 1,

we have

QkiQkj = δij (1.25)

QikQjk = δij (1.27)

where Qij is the transformation matrix between coordinate systems xi and x′i.
In this section, we obtain the relations

n(r)i n(s)i = δrs (2.92)

n(r)i n(r)j = δij (2.86)

where n(r)i are normalized eigenvectors. Since from (2.88) n(r)k = Qkr, then
upon substitution, (2.92) and (2.86) reduce to (1.25) and (1.27), respectively.
Also, the [Q] matrix may be written as

[Q] = [n(1) n(2) n(3)] =




n(1)1 n(2)1 n(3)1

n(1)2 n(2)2 n(3)2

n(1)3 n(2)3 n(3)3


 (2.96)
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2.14 Powers of a Tensor

Powers of a tensor σij is usually written as

Square of σij = σipσpj = σ2 (2.97)

Cube of σij = σipσpqσqj = σ3, etc. (2.98)

For a second-rank symmetric tensor, we have the representation

σij =
∑

r

λrn
(r)
i n(r)j (2.99)

If n is a positive integer, the nth power of a tensor σ defined to be the positive
tensor σn whose components are

σ n
ij =

∑
r

λn
r n(r)i n(r)j (2.100)

This expression may be proven as follows: from (2.30), we have σijni = λnj,
so that

(σijσjp)ni = λσjpnj = λ2np (2.101)

which shows that the square of σij has the eigenvalue ofλ2 and the eigenvector
of ni. The same method may continue for the third power of σij and for the
general case of nth power.
If n is a fraction number, then all eigenvalues need be positive. A tensor

σ is said to be positive, if it has positive principal values and three linearly
independent principal vectors (eigenvectors). A tensor σ is said to be positive
definite if it is coefficients of a positive definite quadratic form. It may be easily
shown that a positive symmetric tensor is also positive definite. Knowing
a positive σ, we can find the square root of this tensor σ1/2 = √σ by first
finding the principal directions and the principal values σ1, σ2, and σ3 of σ;
and then, in theprincipal space, we take the square root of theprincipal values
so that the matrix is

σ̄1/2 =

σ

1/2
1 0 0
0 σ

1/2
2 0

0 0 σ
1/2
3


 (2.102)

Finally, we apply the transformation equation to obtain σ1/2 referred to the xi
axes. The equation used in the axes transformation is

[σ ]1/2 = [Q][σ̄ ]1/2[Q]T (2.103)
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EXAMPLE 2.8 Show that a positive symmetric tensor is also positive definite.
If a tensor is positive, its eigenvalues are all positive, that is, λ1 > 0, λ2 > 0,

λ3 > 0. In the principal coordinate system, the expression of quadratic form
σijninj is λ1n21 + λ2n22 + λ3n23. If λ1 > 0, λ2 > 0, and λ3 > 0, then λ1n21 +
λ2n22+λ3n23 > 0, which shows that the quadratic form is positive definite. On
the other hand, it may be shown that a positive definite (symmetric) tensor
is positive. To this end, we consider σijninj > 0. In the principal coordinate
system, the quadratic form is reduced to

λ1n21 + λ2n22 + λ3n23 > 0 (a)

We note that ni is one of the eigenvectors, so that if n1 �= 0 and n2 = n3 = 0,
(a) reduces to λ1n21 > 0, which leads to λ1 > 0. Similarly, λ2 > 0, λ3 > 0 and,
therefore, σ is a positive tensor.

2.15 Cayley–Hamilton Theorem

The aim of this section is to indicate that, by use of the Cayley–Hamilton
theorem, a high-order matrix polynomial may be reduced to a lower order
one. In this manner, a nonlinear expression can be reduced to an expression
with second-order term as its highest power term, and thus simplifying the
mathematics involved. According to this theorem, a square matrix satisfies
its own characteristic align, that is,

σ3 − J1σ2 + J2σ− J3δ = 0 (2.104)

In the principal space, (2.104) is written as

λ3r − J1λ2r + J2λr − J3 = 0 where r = 1, 2, 3 (2.105)

and, in the matrix form, (2.105) is


σ 31 0 0
0 σ 32 0
0 0 σ 33


− J1


σ 21 0 0
0 σ 22 0
0 0 σ 23


+ J2


σ1 0 0
0 σ2 0
0 0 σ3


− J3


1 0 0
0 1 0
0 0 1


 = 0

(2.106)

where σ1, σ2, σ3 are the three principal values. In the index notation, (2.104) is
written as

σimσmnσnj − J1σimσmj + J2σij − J3σij = 0 (2.107)
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This equation is valid in the general case and not necessarily in the principal
directions. But the formal proof is lengthy and is to be found in a textbook on
linear algebra. The proof will not be discussed here.
We show next that the expression of J2 may be found by using this theorem.

Multiplying (2.104) by σ−1, we find

σ2 − J1σ+ J2δJ3σ−1 = 0 (2.108)

Taking the trace of all terms in the above equation, we obtain

tr σ2 − J21 + 3J2 − J3 tr(σ−1) = 0 (2.109)

Since the last term is, from (2.85), −J2, (2.109) may be solved to yield

J2 = 1
2 (J

2
1 − tr σ2) (2.110)

This expression is similar to that derived earlier in (2.80).
By use of the Cayley–Hamilton theorem, we can reduce the nth (positive

integer) power of a matrix to a linear combination of the second, first, and
zeroth powers. For example, if we multiply (2.104) by σ, we obtain

σ4 − J1σ3 + J2σ2 − J3σ = 0 (2.111)

By applying (2.104) again, (2.111) becomes

σ4 − J1{J1σ2 − J2σ+ J3δ} + J2σ2 − J3σ = 0 (2.112)

which leads to

σ4 = σ2{J21 − J2} − σ{J1J2 − J3} + J1J3δ (2.113)

It is seen that σ4 may be expressed in terms of σ2, σ, and δ. It is important
to note that the coefficients of the second, first, and zeroth-power terms are
functions of the invariants of σ. In a similar manner, a matrix of any power
higher than two may be expressed in terms of σ2, σ, and δ.
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Problems

(1) A specimen used for uniaxial tensile testing of material has a middle section
(thegauge section) of reduced cross-section. The stress is uniformlydistributed
within this section. You may consider this section as a circular cylinder. When
the specimen is pulled, what stress boundary conditions (stress vectors) apply
in the middle section of the specimen?

(2) An infinitesimal material element is subjected to hydrostatic pressure p as
shown in Figure 2.9. Determine the stress vector acting on surface a–a′ of the
element.

p

p

�

p

p

a

a�

FIGURE 2.9

(3) The bar shown in Figure 2.10 has a cross-sectional area A and is subjected to
the axial load P. Determine the stress vector acting on the inclined surface a–a′.

a�

a

�P P

FIGURE 2.10
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(4) The state of stress for the infinitesimal tetrahedron OABC shown in
Figure 2.11 is

[σ ] =

 20 −60 40
−60 0 80
40 80 −20


 MPa

Determine the stress vector acting on the inclined plane ABC.

x1

x2

x3

O B(0,1,0)

C(0,0,1)

A(2,0,0)

FIGURE 2.11

(5) Let the components of the stress tensor at point P be given in matrix form by

[σ ] =

 21 −63 42
−63 0 84
42 84 −21


 MPa

Determine the stress vector on a plane passing through P, parallel to the x3-axis
and making a 30◦ counterclockwise angle from the x1-axis.

(6) If the components of the stress tensor is given by

σij =

 1 0.5 0
0.5 −1 −0.2
0 −0.2 0


MPa

determine the stress vector acting on a surface whose normal is n = 0.2e1 +
0.3e2 +

√
0.87e3. What are the normal and shear components acting on the

surface?

(7) In the principal stress space, determine the expression of stress vector (in terms
of stress components) acting on the octahedral plane in the first quadrant of
the stress space.
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(8) Stress is a second-rank tensor. If the stress components referring to the
xi coordinate system are

[σij] =

6 2 0
2 −1 0
0 0 1


 MPa

find the stress components of the same tensor with respect to the x′i system if
x′3 = x3 and x′1 is making a 30◦ angle counterclockwise with the x1-axis.

(9) The stress tensor at point P has the following components with respect to the
xi coordinate system

[σ ] =

 20 0 −10

0 8 0
−10 0 24


MPa

Referring to Figure 2.12, if the x′1-axis makes equal angles θ with the three xi
axes and the x′2-axis lies in the x1x2 plane, determine the components of the
stress tensor referred to the right-handed x′i coordinate system.

x1

x2

x3

x�1

x�2

P
�

�

�

FIGURE 2.12

(10) The stress tensor is σij = α(νiν
′
j + νjν

′
i), where α is a scalar and ν and ν′ are

unit vectors. Determine the principal stresses and axes. (Hint: to simplify the
computation, choose thex1-axisparallel to ν and thex3-axisnormal toνandν′).
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(11) Let t1, t2, and t3 be the stress vectors acting on surface elements that are normal
to the coordinate axes. Show that the sum of the squares of the magnitudes of
these vectors is independent of the orientation of the coordinate axes.

(12) Consider the following stress distribution

σ =

ax2 b 0

b 0 0
0 0 0




where a and b are constants. Determine and sketch the distribution of the
stress vector acting on the square in the x1 = 0 plane, with vertices located at
(0, 1, 1), (0, −1, 1), (0, 1, −1), (0, −1, −1).

(13) A block of unit thickness is subjected to forces shown in Figure 2.13. The
area of face (1) is A1 and the area of face (2) is A2. (a) Determine the stress
vectors acting on these two surfaces; (b) find the conditions which must
be satisfied by the forces and areas for the block to be in equilibrium; (c) if
the stress is uniformly distributed in the block, determine the components
of the stress tensor; (d) if principal stresses apply on the material element
shown with orientation specified by φ, find the second stress invariant J2 at
this configuration.

�

Face 2

Face 1

F1

F2

F3

F4

x2

x1

FIGURE 2.13

(14) For the state of stress given by

[σ ] =

 10 30 −50

30 0 0
−50 0 0


 MPa

find the components of the deviatoric stress σ ′ij and determine the principal
invariants of the deviatoric stress.
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(15) Cut out a tetrahedron of infinitesimal size from a body. The normal of the
inclined facemakes equal angles with the three coordinate axes. Find the force
that must be applied on the inclined face so that it will produce a state of stress
given by the following matrix

[σ ] =

 30 −10 20
−10 0 10
20 10 10


MPa

For equilibrium, what forces must be applied to the faces normal to the
coordinate axes?

(16) The second invariant of the deviatoric part of σ is denoted by J′2. Show that
∂J′2/∂σpq = −σ ′qp. Note that the differentiation is taken with respect to σpq and
not σ ′pq.

(17) If [Q] = [n(1) n(2) n(3)] and [Q]T[Q] = [δ], show that by use of
(σij − λδij)ni = 0, it may be shown that

[Q]T[σ ][Q] =

λ1 0 0
0 λ2 0
0 0 λ3




that is, [σ ] may be diagonalized by use of [Q]. Show also that trQTσQ =
λ1 + λ2 + λ3.

(18) A stress field is given by the matrix

[σ ] =



(1+ x21)x2 + 1

2x22 (1− x22)x1 0

(1− x22)x1 − 1
2 (x

2
2 − 4x2) 0

0 0 (4− x21)x2




Find the expression for the second invariant of the deviatoric stress.

(19) If J1, J2, and J3 denote the principal invariants of the stress tensor σij and J′1, J′2,
and J′3 denote the principal invariants of the deviatoric stress σ ′ij, show that

J1 = J′1 + 3σm = 3σm

J2 = J′2 +
1
3

J21

J3 = J′3 +
2
9

J1 J′2 +
1
27

J31
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3
Motion and Deformation

3.1 Introduction

In this chapter, we consider the motion of a body and, in particular, we
concentrate on the study of deformation and the rate of change of a material
element on or within the body. We assume the reader has familiarized
himself with the concepts of strain and strain-rate in the study of elementary
mechanics of deformable bodies. Strain describes the change in the geometry
of an element in a body. But strain and strain-rate need to be defined. There
are several measures of strain that people use. Deformation is a more gen-
eral terminology to use than strain in describing the geometrical change of a
material element (see [1–4] for further reading).
The particles of the body may occupy various positions in a three-

dimensional space. The complete specification of the positions of the particles
of a body is called the configuration of a body. The configuration of the body
at the reference time (or initial or undeformed state) and at the current time
(or deformed state) is the reference configuration denoted byR0, and the current
configuration denoted by Rt, respectively. To fix the concept of deformation,
let us consider a material point P within a neighborhood N0 at the reference
configuration. Referred to in Figure 3.1, point P moves to point p within
a neighborhood Nt at the current configuration due to load applied to the
body. The concept of deformation may be understood by taking two pho-
tographs of the material element, one at the reference configuration and the
other at the current configuration. We then compare and characterize the size
and shape of the material element in the two photographs. The change in
the size and shape of the material element is called the deformation of the
material element and it indicates its need to be quantified. We also observe
that time is not a factor in the study of deformation.
Todescribe the two configurations, amaterial (Lagrangian) coordinate system,

denoted by XR, and a spatial (Eulerian) coordinate system, denoted by xi, is
introduced. The position of the material point P at the reference configura-
tion is specified by the material coordinates XR and that of p at the current
configuration is specified by the spatial coordinates xi. For convenience,
the undeformed configuration of a material element is often chosen as the

79
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FIGURE 3.1
Reference and current configurations.

reference configuration. But, any other configuration may also be chosen as
the reference configuration, if needed. Once a reference configuration has
been chosen, all the material points of a body can be described by the mate-
rial coordinates XR. In the general case, the axes of XR and xi do not have
the same origin and orientation as shown in Figure 3.1. But, in many cases,
it is convenient to select the two coordinate systems such that they have the
same origin and orientation. This selection leads to simplicity and is used
in most of the topics discussed in this book.
Motionmay be viewed as a family of deformations continuously varying in

time, and the deformations between two configurations have been discussed
in the previous paragraph. When a continuum is in motion, physical quanti-
ties associatedwith amaterial element of the body (such as density ρ, velocity
v, etc.) change with location and time. The motion of a continuous body
may be described in two ways: material and spatial descriptions. The material
description has been used mostly in solid mechanics and the spatial descrip-
tion in fluid mechanics. Some recent works have used a mixed description.
We now discuss the two descriptions in the light of time-dependent motions.

3.2 Material and Spatial Descriptions

3.2.1 Material Description

The material description is also known as the Lagrangian description. In this
description, a material element is followed. The observer sits on top of
the body and moves with the body. He observes changes in the physical
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quantities of the body as functions of the material element identified by the
material coordinates XR and time t. Therefore, we write

ρ = ρ(XR, t), v = v(XR, t), etc. (3.1)

3.2.2 Spatial Description

The spatial description is also known as the Eulerian description. Here, the
observer observes the changes in physical quantities at a fixed location in
the laboratory. Hence, the quantities are described in terms of the location
in space denoted by the spatial coordinates xi and time t. In effect, we
describe andmeasure the quantities at a fixed location and they are functions
of time. Spatial positions are occupied by different particles at different times.
Therefore, the spatial description does not provide direct information related
to changes in the properties of thematerial element as the bodymoves. In this
description, we write

ρ = ρ(xi, t), v = v(xi, t), etc. (3.2)

If we know the motion of the body, then the two descriptions are related and
are equivalent. One description can be obtained from the other.
The correlation between the two descriptions is now discussed. During the

motion of the body, particle P with position vector X moves to point p with
position vector x and the displacement is

u = x − X (3.3)

In the material description, the above equation is written as

u(X, t) = x(X, t)− X (3.4)

and, in the spatial description, it is written as

u(x, t) = x − X(x, t) (3.5)

The velocity v of a particle is the rate of change of its displacement, and,
in the material description, it is written as

v(X, t) = ∂u(X, t)
∂t

= ∂[x(X, t)− X]
∂t

= ∂x(X, t)
∂t

≡ Dx
Dt

(3.6)

where D/Dt is called the material derivative. The motion of the particle is
followed and material coordinate X is fixed during this motion. In the index
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notation, (3.6) is written as

vi(XR, t) = ∂xi(XR, t)
∂t

(3.7)

Note that the expression in (3.7) is different from the spatial description,
which is vi(xj, t) for the particle velocity. The relationship between the two
descriptions is illustrated in Example 3.1.

EXAMPLE 3.1 Abody undergoes the motion defined by

x1 = X1(1+ a1t+ a2t2), x2 = X2, x3 = X3 (a)

where a1 and a2 are constants. Find the displacement and velocity in both
the material and spatial descriptions.

Solution

In the material description, we have from (3.4),

ui(XR, t) = xi(XR, t)− Xi (b)

When equation (a) is substituted into (b), we obtain

u1 = x1 − X1 = X1(a1t+ a2t2)

u2 = x2 − X2 = 0

u3 = x3 − X3 = 0

(c)

Equations (c) represent the components of the displacement vector at time t in
thematerial description. To obtain the displacement in the spatial description,
we substitute for X1 by use of (a) and obtain

u1 = x1(a1t+ a2t2)
1+ a1t+ a2t2

, u2 = 0, u3 = 0 (d)

Equations (d) are the displacement components in the spatial description. For
the velocity, we differentiate (a) with respect to t, keeping XR fixed, to obtain

v1 = X1(a1 + 2a2t), v2 = 0, v3 = 0 (e)

Equation (e) is in the material description and, for the spatial description,
we eliminate X1 from (e) to obtain

v1 = x1(a1 + 2a2t)
1+ a1t+ a2t2

, v2 = 0, v3 = 0 (f)

We see that (f) is in the spatial description.
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3.3 Description of Deformation

We refer to the motion of a continuum when a body is undergoing change in
geometry due to applied forces. The motion is generally described by the set
of equations

xi = xi(XR, t) i = 1, 2, 3 (3.8)

These equations describe the change in position of a generic particle P with
coordinates XR into p with coordinates xi. The functional relationship in (3.8)
is generally nonlinear and its dependence on time t is discussed later in this
chapter associated with material rate of change and rate of deformation. In
this section, we study the deformation, that is, we set t to a constant time in
(3.8). It is assumed that the mapping between XR and xi is one-to-one and
onto; that is, for every particle in R0 there corresponds one point only in Rt
and to every point in Rt there corresponds one particle only in R0. Thus, the
relation can be inverted to yield

XR = XR(xi, t) (3.9)

This assumption automatically satisfies the physical principle of conserva-
tion of mass and is a property of continuity. Motion described by (3.8) is the
material description, where the variables are thematerial coordinatesXR and
time t; motion described by (3.9) is a spatial description, where the variables
are xi and t. In this section, we study the deformation that has taken place at
a specified time t.
A special case of (3.8) is that xi is a linear function of XR such that

xi = QiR(t)XR (3.10)

If QiR is an orthogonal tensor, then QiR rotates vector XR into vector xi,
which has been discussed in Section 1.6.2.

3.4 Deformation of a Neighborhood

Consider the deformation of a small material vector dX, which maps into
vector dx in the deformed configuration. Vector dX connects two neigh-
boring points in neighborhood N0 and it may be considered as a line element
between the two points. Due to deformation, the initial line element dX
deforms into the current (deformed) line element dx and they are related by

dx = ∂x
∂X
· dX = F · dX (3.11)
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where F = ∂x/∂X is called the deformation gradient, which plays an impor-
tant role in modern continuum mechanics. In the component form, the
deformation gradient F is written as

F = ∂xi
∂XR

ei ⊗ eR = FiRei ⊗ eR (3.12)

where eR and ei are base vectors of the material and special coordinate
systems, respectively. Substituting (3.12) into (3.11), we have

dxiei = ∂xi
∂XR

ei ⊗ eR · dXSeS = ∂xi
∂XR

dXSeiδRS = ∂xi
∂XR

dXRei (3.13)

Thus, the component form is obtained as

dxi = ∂xi
∂XR

dXR = FiRdXR (3.14)

Note that the derivative ∂xi/∂XR is evaluated at point P and is common to
all vectors dXR emanated from P within the neighborhood N0. (In the math-
ematical expression f (x) = f0 + f ′(0)x + O(x2), the first derivative f ′(0) is
independent of x.) In the matrix form, (3.14) is written as


dx1dx2
dx3


 =


x1,1 x1,2 x1,3
x2,1 x2,2 x2,3
x3,1 x3,2 x3,3




dX1
dX2
dX3


 (3.15)

and the Jacobian of the transformation is

J =
∣∣∣∣ ∂xi∂XR

∣∣∣∣ = det[F] 
= 0 (3.16)

If both xi and XR systems are right (or left) handed for all t, then det[F] > 0.
This means that an infinitesimal volume element (with finite value) cannot
be deformed into a point. The volume change is discussed further later in
this chapter.
Some simple examples of finite deformation is considered in the conclud-

ing part of this section. We use finite versus infinitesimal to distinguish large
deformation from small deformation. In this chapter, most of our discussions
are aimed at finite deformations. But, at the end of the chapter, we consider
infinitesimal deformation as a special case.
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3.4.1 Homogeneous Deformations

Deformations of the form

xi = ci + AiRXR (3.17)

are homogeneous deformations. In (3.17), ci and AiR are constants or functions
of time, but not functions of position XR. In this case, the deformation is the
same for all points throughout the body being studied. We note that (3.17) is
a linear form of the deformation equation (3.8).

3.4.1.1 Uniform extensions

We consider a cube undergoing extensions in all three directions, so that

x1 = λ1X1, x2 = λ2X2, x3 = λ3X3 (3.18)

where λi specify the deformation and are constants or functions of time t.
Note that (3.18) is a special case of (3.17). The deformation gradient of (3.18)
may be found from (3.12) as

[F] =

λ1 0 0
0 λ2 0
0 0 λ3


 (3.19)

If λ1 = λ2 = λ3, the cube undergoes a uniform expansion or contraction
in all directions and is referred to as a uniform dilatation. The volume of
a material element in the cube was initially dV = dX1dX2dX3 and is now
dv = dx1dx2dx3 = λ1λ2λ3dX1dX2dX3. Therefore, when there is no volume
change, we write λ1λ2λ3 = 1. The volume change of an element is discussed
further in a later section.
In the case of an extension in the x1 direction of a long bar of uniform

cross-section, λ2 = λ3. When λ1 > 1, that is, stretching, it is usually observed
that λ2 < 1. Note that λi > 0, because the length of a line element cannot
become negative.

3.4.1.2 Simple shear

In this deformation, parallel planes are displaced relative to each other with
the distance between the planes unchanged. A square element is deformed
into a parallelepiped. Thus, particle P with position vector X moves to p
with position vector x as shown in Figure 3.2. The following set of equations
describes a simple shear deformation:

x1 = X1 + X2 tan γ , x2 = X2, x3 = X3 (3.20)
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FIGURE 3.2
Simple shear deformation.

where angle γ measures the amount of shear; the X2= constant planes are
the shear planes; and X1 is the shear direction. The deformation gradient of
simple shear is found from (3.20) as

[F] =

1 tan γ 0
0 1 0
0 0 1


 (3.21)

3.4.2 Nonhomogeneous Deformations

Equation (3.17) of homogeneous deformation leads to a deformation
gradient F, which is not a function of position XR. Examples are (3.19) and
(3.21). In the case of nonhomogeneous deformations, F is a function of position,
that is, the deformation will be different from point to point. We consider
torsion of a circular cylinder as an example of nonhomogeneous deforma-
tion. Referring to Figure 3.3, we choose the X3 axis to coincide with the
axis of the cylinder. If the cylinder is twisted about the X3 axis, then plane
cross-sections remain plane but are rotated rigidly through an angle τX3
about the X3 axis. It is seen that this angle is proportional to the coordin-
ate X3, that is, the angle is zero at the base of the cylinder where X3 = 0
and increases its value as X3 increases. The quantity τ denotes the angle
of twist per unit length and is a constant if the torque is applied at the
two ends of the cylinder. In order to find the equations of transforma-
tion that govern the deformation due to torsion, let us consider a typical
cross-section shown in the insert of Figure 3.3. In the action of torsion,
particle P(X1,X2,X3) with a radial distance R from the center of the circular
section is rotated into p(x1, x2, x3), also with a radial distance R. At the initial
position P, we have

X1 = R cosα, X2 = R sin α, with R = (X2
1 + X2

2
)1/2 (3.22)
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FIGURE 3.3
Torsion of a circular cylinder.

After deformation at p, we write

x1 = R cos(τX3 + α), x2 = R sin(τX3 + α) (3.23)

We then expand the cosine and sine functions in (3.23) and, by use of (3.22),
obtain

x1 = X1 cos τX3 − X2 sin τX3, x2 = X1 sin τX3 + X2 cos τX3, x2 = X3

(3.24)

Note that the equation in the 3-direction has been added due to the fact that
the cross-section at a distance X3 from the base of the cylinder has merely
undergone a rigid-body rotation. We conclude that (3.24) are the transforma-
tion equations that describe the deformation of a circular cylinder subjected
to torsion. Differentiating (3.24), the deformation gradient F is found as

[F] =


cos τX3 − sin τX3 −τ(X1 sin τX3 + X2 cos τX3)

sin τX3 cos τX3 τ(X1 cos τX3 − X2 sin τX3)

0 0 1


 (3.25)

It is seen that the deformation gradient depends on position for this non-
homogeneous problem. We have assumed in this discussion that the cylinder
is undergoing a fixed-end torsion. In this case, there is no length change in
the cylinder and the radius R of the cylinder does not change. The free-end
torsion is discussed in a later chapter related to plastic deformation.
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3.5 The Deformation Gradient

The deformation gradient plays an important role in modern continuum
mechanics and is discussed in detail here. The deformation gradient F is a
second-rank tensor; according to the polar decomposition theorem, a second-
rank tensor can be expressed as a product of a positive symmetric tensor with
an orthogonal tensor. There are two decompositions: the right and the left
decompositions. They are expressed as

F = R ·U right decomposition (3.26)

F = V · R left decomposition (3.27)

whereU andV are positive symmetric tensors, andR is an orthogonal tensor.

3.5.1 The Polar Decomposition Theorem

This theoremapplies to any second-rank tensor, and there are the right and left
decompositions as shown in (3.26) and (3.27). In this subsection, we consider a
second-rank tensor Fij. This tensor acquires the physicalmeaning of deforma-
tion gradient in later sections. We now derive the right decomposition and
consider tensor Fij transforms vector vi into vector v′i; the relation is

v′i = Fijvj (3.28)

If the transformation (or mapping) is one-to-one, then the magnitude of
vector v′i is

|v′|2 = v′iv
′
i = FijFikvjvk = FTkiFijvjvk > 0 (3.29)

This is a positive definite quadratic form. The coefficient Ckj = FTkiFij is a pos-
itive definite tensor. It is obvious that Ckj = Cjk . Since C is positive, a tensor
U ≡ √C is well defined and it has the same eigenvectors as C. Thus,

U2 = FT · F ≡ C (3.30)

Since C is symmetric, U is symmetric too. Now let R ≡ F ·U−1 and it is seen
that if we define R in this manner, then R is an orthogonal tensor. Using this
expression for R, we have

RT · R = (F ·U−1)T · (F ·U−1) = (U−1)T · FT · F ·U−1
= U−1 · FT · F ·U−1 = U−1 · C ·U−1 = 1 (3.31)
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Equation (3.30) is used in the last identity of (3.31). We see from (3.31) that R
is an orthogonal tensor. In the above derivation, we also used the symmetric
property of U and the relation (U−1)T = U−1. We have thus shown that
F = R ·U in which R is orthogonal and U is positive and symmetric.
Following an analogous procedure, we derive the left decomposition.

The resulting equations are

F = V · R∗ and V2 = F · FT ≡ B (3.32)

We now show that the orthogonal tensor R∗ of the left decomposition in the
first equation of (3.32) is indeed equal to the orthogonal tensor R of the right
decomposition. From (3.32), we write

F = V · R∗ = R∗ · (R∗T ·V · R∗) (3.33)

and view the last expression in (3.33) as the right decomposition. Since the
right decomposition is unique (see Example 3.2), we compare (3.33) with
(3.26) to obtain

R∗ = R and U = RT ·V · R (3.34)

We see that U and V are related through equation (3.34). This relation can
also be written as

V = R ·U · RT (3.35)

Tensor B defined in (3.32) can be shown to be related to tensor C defined
in (3.30). From the definition of B, we have

B = F · FT = R ·U ·UT · RT = R ·U2 · RT = R · C · RT (3.36)

Hence,

B = R · C · RT or C = RT · B · R (3.37)

EXAMPLE 3.2 Show that the right decomposition (3.26) is unique.

Proof

Assume two decompositions exist:

F = R ·U = R̄ · Ū (a)

Then, the transpose of (a) is

FT = UT · RT = ŪT · R̄T (b)
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Multiplying (a) and (b), we get

FT · F = UT · RT · R ·U = ŪT · R̄T · R̄ · Ū
= UT ·U = ŪT · ŪT

= U2 = Ū2 (c)

From (c), we conclude that U = Ū and is positive. The uniqueness of R
follows from (a). Since U = Ū, we conclude that R = R̄.

3.5.2 Polar Decompositions of the Deformation Gradient

If the tensor F in the previous subsection is assigned a physical mean-
ing, then all the derived quantities have physical significance. The polar
decompositions of the deformation gradient F are

F = R ·U = V · R FiR = RiSUSR = VijRjR (3.38)

where

F = deformation gradient = FiRei ⊗ eR (3.39a)

U = right stretch tensor = URSeR ⊗ eS (3.39b)

V = left stretch tensor = Vijei ⊗ ej (3.39c)

R = rotation tensor (orthogonal tensor) = RiRei ⊗ eR (3.39d)

C = FT · F = U2 = right Cauchy–Green deformation tensor,

CRS = (∂xi/∂XR)(∂xi/∂XS) (3.40)

B = F · FT = V2 = left Cauchy–Green deformation tensor,

Bij = (∂xi/∂XR)(∂xj/∂XR) (3.41)

where eR and ei are base vectors for the material and spatial system,
respectively.
We now discuss the physical meaning of the polar decompositions.

The deformation gradient F deforms an element in two parts. In the right
decomposition, the element is first purely deformed to a quantity U. A rota-
tion R then follows the deformation. This rotation represents the rotation
of the principal axis of the stretch tensor U, which will be illustrated by
Example 3.3. The above statement may be understood by applying F to a
line element dX. Thus,

dx = F · dX = R · (U · dX) (3.42)
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In the left decomposition, the element is first rotated through R and then
deformed by V. This statement may be verified by

dx = F · dX = V · (R · dX) (3.43)

The two modes of decomposition are fully equivalent. We obtain the same
final result.

EXAMPLE 3.3 Consider a simple shear problem defined by

x1 = X1 + kX2, x2 = X2, x3 = X3 where k = 2√
3

(a)

(a) Find F, U, V, and R.
(b) Use the right decomposition to draw figures showing the deformed state

of the initially rectangular element at each stage of deformation.
(c) Use the left decomposition to draw figures showing the deformed state

of the initially rectangular element at each stage of deformation.
(d) Study the deformation of a diagonal of the initially rectangular element.
(e) Study the deformation of a circle in the initially rectangular element.

Solution

(a) Using (a), (3.39), and (3.40), we obtain

[F] =

1 k 0
0 1 0
0 0 1


 , [F]T =


1 0 0
k 1 0
0 0 1


 , (b)

[C] = [F]T[F] =

1 k 0
k (k2 + 1) 0
0 0 1


 =




1
2√
3

0

2√
3

7
3

0

0 0 1




(c)

To determine the principal values and directions of [C], we consider the
characteristic equation



1− λ 2√

3
0

2√
3

7
3
− λ 0

0 0 1− λ




n1n2
n3


 = 0 (d)
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Bysetting thedeterminant of the coefficientmatrix to 0,weobtainλ(i) = 3, 13 , 1.
The corresponding eigenvectors are found to be

n(1)
T

u =
[
1
2
,

√
3
2
, 0

]
, n(2)

T

u =
[
−
√
3
2
,
1
2
, 0

]
, n(3)

T

u = [0, 0, 1] (e)

with the following transformation matrix between xi and x′i (see (2.96)):

[Qu] =
[
n(1)u n(2)u n(3)u

]
=




1
2
−√3
2

0
√
3
2

1
2

0

0 0 1




(f)

These eigenvectors are shown in Figure 3.4 with φ = 60◦. Referring to the
principal axes x′i, tensors C and U have components

[C′] =



3 0 0

0
1
3

0

0 0 1


 and [U ′] = [√C′] =




√
3 0 0

0
1√
3

0

0 0 1


 (g)

Itmay also be verified thatC′ is obtainable from the following transformation:

[C′] = [QT
u ][C][Qu] =




1
2

√
3
2

0

−√3
2

1
2

0

0 0 1







1
2√
3

0

2√
3

7
3

0

0 0 1







1
2
−√3
2

0
√
3
2

1
2

0

0 0 1




=



3 0 0

0
1
3

0

0 0 1


 (h)

In addition, U can be determined by the following transformation:

[U] = [Qu][U ′][QT
u ] =




√
3
2

1
2

0

1
2

5

2
√
3

0

0 0 1


 (i)
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FIGURE 3.4
Eigenvectors of C in simple shear deformation.

Since det[U] = 1, we find

[U−1] = (cof[U])T
det[U] =




5

2
√
3

−1
2

0

−1
2

√
3
2

0

0 0 1


 (j)

and [R] to be

[R] = [F][U−1] =




√
3
2

1
2

0

−1
2

√
3
2

0

0 0 1


 (k)

The matrix in (k) describes a clockwise rotation of 30◦ of the continuum
about the x3 axis. Note that

[R][R]T =




√
3
2

1
2

0

−1
2

√
3
2

0

0 0 1







√
3
2
−1
2

0

1
2

√
3
2

0

0 0 1


 =


1 0 0
0 1 0
0 0 1


 (m)

which shows that RT = R−1 and R is therefore an orthogonal tensor.
On the other hand, we may find from the left decomposition

[V] = [F][R−1] =




5

2
√
3

1
2

0

1
2

√
3
2

0

0 0 1


 (n)
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It may be easily shown that

[V′] = [U ′] =



√
3 0 0

0
1√
3

0

0 0 1


 (o)

and the principal directions of V are

n(1)
T

v =
[√

3
2
,
1
2
, 0

]
, n(2)

T

v =
[
−1
2
,

√
3
2
, 0

]
, n(3)

T

v = [0, 0, 1]

(p)

with the transformation matrix given by

[Qv] =
[
n(1)v n(2)v n(3)v

]
(q)

By use of (3.35), R rotates U into V. It also rotates vectors nu into nv. Putting
all eigenvectors together in a matrix form, we may write

[Qv] = [R][Qu] =




√
3
2

1
2

0

−1
2

√
3
2

0

0 0 1







1
2
−√3
2

0
√
3
2

1
2

0

0 0 1


 =




√
3
2
−1
2

0

1
2

√
3
2

0

0 0 1



(r)

All nu vectors that form Qu are rotated clockwise at a 30◦ angle into the nv
vectors. This rotation is shown in Figure 3.5.
(b) Consider a square element ABCD with unit side length, as shown in

Figure 3.6. Using (3.42), the squareABCD is first deformed byU intoA′B′C′D′,
which is subsequently rotated by R into A′′B′′C′′D′′. Thus, in the application

1

2

60°

30°

nu
(2)

nu
(1)nv

(2)

nv
(1)

O

FIGURE 3.5
Rotation of nu into nv.
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FIGURE 3.6
Right polar decomposition.

of U, line element AB is deformed into A’B’, AC into A′C′, etc. The deformed
line elements are

A′B′ =




√
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in which AP is a principal direction of U. Note that this method of finding
the deformed shape of an element is valid only when F is not a function
of position. If F is a function of position, then the line elements must be
divided into small increments, and this method is applied to each increment.
Alternatively, the set of transformation equations (3.8) may be used to find
the deformed shape of the element point by point.
The rotation of A′B′C′D′ into A′′B′′C′′D′′ is obtained by applying R to the

deformed line element A′B′, A′P′, etc. given by (s1 to s4). The resulting line
elements are
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√
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The two stages of deformation and rotation are shown in Figure 3.6.
(c) Using (4.43), the square ABCD is first rotated into A′B′C′D′ by R.
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Note that the first matrix is R, the second matrix is formed by the column
vectors AB, AP, AC, and AD, and the third matrix is a collection of column
vectors A′B′, A′P′, A′C′, and A′D′. In the second step, the square A′B′C′D′ is
deformed into A′′B′′C′′D′′ by V, given by the following equation
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 (t2)

In equation (t2), the first matrix is V, the second matrix consists of column
vectorsA′B′, A′P′, A′C′, andA′D′, and the thirdmatrix is a collection of column
vectors A′′B′′, A′′P′′, A′′C′′, and A′′D′′. The two stages of rotation and deform-
ation are shown in Figure 3.7. Comparing (s5 to s8) with (t2), we see that the
results obtained from the left decomposition is the same as those from the
right decomposition.

A D

B C

B�

C�

B� C�

30°

P�

R

x1

x2

nv
(1)

D�

FIGURE 3.7
Left polar decomposition.
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(d) A straight line passing through the origin is given by

X2 = X1 tan θ (u)

where θ is the angle between the line and the X1 axis. Substituting (a) into
(u), this line is deformed into

x1 =
(

1
tan θ

+ k
)
x2 (v)

The diagonal of the initial square element has θ = 45◦. This angle is deformed
into α where

tan α = x2
x1
= 1

1+ k
(w)

(e) A circle in the initial element is given by

X2
1 + X2

2 = a2 (x)

where a is the radius. Substituting (a) into (x), this circle is deformed into

x21 − 2kx1x2 + (1+ k2)x22 = a2 (y)

It is observed that a circle is deformed into an ellipse with the semimajor
axis making an angle of β with the positive x1 axis. It can be shown that
tan 2β = 2/k. Thus, when k = 2/

√
3, β = 30◦.

3.6 The Right Cauchy–Green Deformation Tensor

Wenowdiscuss some popular strainmeasures.Any strainmeasure is as good
as the other as long as its definition is clear and correctly used. It is a matter
of convenience to choose one measure over another for the description of
the problem at hand. We discuss in this section a popular strain measure
called the right Cauchy–Green tensor. Other popular measures are discussed
in sections 3.9 and 3.10.

3.6.1 The Physical Meaning

Consider a line element dXR with length dS deforming into dxi with
length ds. We have

dxi = ∂xi
∂XR

dXR (3.44)
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Dividing both sides of (3.44) by (ds dS), we obtain

λni = ∂xi
∂XR

NR (3.45)

where

NR = dXR

dS
and ni = dxi

ds
(3.46)

specify the directions (unit vectors) of the line element before and after
deformation, respectively. The extension ratio (or stretch ratio) λ is defined by

λ = ds
dS

(3.47)

The notation λ is a popular notation for stretch ratio and should not be
confusedwith the eigenvalues used in Chapter 2. Because of many notations,
symbols, and quantities, the same notation may be used to mean differ-
ent quantities. You should pay special attention to the definition of each
notation used.
Using (3.45), we form

λ2 = (λni)(λni) = ∂xi
∂XR

∂xi
∂XS

NRNS = CRSNRNS (3.48)

or

λ2 = CRSNRNS (3.49)

Note that CRS is a symmetric tensor and is positive definite. Given a
deformation (3.8), F and C may be found. If we specify the initial direction
NR of a line element, then the direction and magnitude of the deformed line
element may be found using (3.45) and (3.49), respectively.
In order to visualize themeaning of the diagonal termsC11, C22, C33 and the

off diagonal termsC12,C23, etc., ofCRS, let us consider two line elements dX(1)R
and dX(2)R , which deform into dx(1)i and dx(2)i , respectively. The angle between
the two line elements is � in the initial configuration and φ in the current
configuration as shown in Figure 3.8. The initial and deformed line elements
are related by

dx(1)i =
∂xi
∂XR

dX(1)R (3.50)

dx(2)i =
∂xi
∂XR

dX(2)R (3.51)
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Then, we form the inner product of the two line elements

dx(1)i dx(2)i =
∂xi
∂XR

∂xi
∂XS

dX(1)R dX(2)S = CRSdX
(1)
R dX(2)S (3.52)

On the other hand, the inner product may be expressed in terms of the
lengths of the line elements and the angle φ as

dx(1)i dx(2)i = ds1ds2 cosφ12 (3.53)

where ds1 and ds2 are the lengths of the two line elements after deformation
and φ12 is the inclusion angle. Let dS1 and dS2 be the lengths of the two line
elements before deformation, then

dX(1)R
dS1

= N(1)
R

dX(2)R
dS2

= N(2)
R (3.54)

Using (3.54) and equating (3.52) to (3.53), we obtain

ds1
dS1

ds2
dS2

cosφ12 = CRSN
(1)
R N(2)

S (3.55)

From (3.55), we obtain information for C11, C22, C33. Let us consider a line
element oriented initially along X1, then N(1)

1 = 1, N(1)
2 = 0, N(1)

3 = 0. In this
case, (3.55) reduces to

(
ds1
dS1

)2
= C11 = λ(2)1 (3.56a)

We note that C11 is related to the extension ratio λ1 along X1. Similarly,
if we consider line elements oriented initially along X2 and X3, respectively,
we obtain

C22 =
(
ds2
dS2

)2
and C33 =

(
ds3
dS3

)2
(3.56b,c)

We now consider the angle changes between the two line elements
as shown in Figure 3.8. In a special case, the two line elements are initially 90◦
to each other. Let dX(1)i be along the X1 direction and dX(2)i be along the
X2 direction, then the unit normals are N(1)

R ∼ [1, 0, 0] and N(2)
S ∼ [0, 1, 0].

Equation (3.55) now reduces to

ds1
dS1

ds2
dS2

cosφ12 = C12 (3.57)
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FIGURE 3.8
Deformation of two line elements.

Making use of (3.56), (3.57) becomes

cosφ12 = C12√
C11
√
C22

(3.58)

Note that (3.58) relates C12 to φ12, which is the angle after deformation.
The angle φ12 may no longer be 90◦ and the two line elements are in gen-
eral not oriented along the coordinate axes after deformation. Using a
similar procedure, we relate C23 to φ23 and C31 to φ31. These equations are
summarized and we write

cosφRS = CRS√
CRR
√
CSS

(R,S not summed) (3.59)

It may be concluded that the diagonal terms C11, C22, C33 are related to the
extension ratios λ1, λ2, λ3, respectively; they represent the stretching along the
coordinate directions; the off-diagonal terms C12, C23, C31 are related to the
current angles φRS, respectively; they are different from the initial angles�RS
and, therefore, represent shearing deformation. Finally, we remark that, if
the triad formed by the three initial line elements are along the principal
directions of CRS, then C12 = C23 = C31 = 0. From (3.59), we find φ12 =
φ23 = φ31 = 90◦, that is, the triad remains mutually perpendicular to each
other after deformation. Furthermore, in the undeformed state, CRS does not
vanish, that is, C11 = 1, C22 = 1, C33 = 1, and C12 = cosφ12 = 0, etc., or we
may write CRS = δRS in the undeformed configuration.

3.6.2 Transformation Properties of CRS

In this subsection, we consider the transformation properties of CRS with
respect to the rotation and translation of either thematerial coordinate system
or the spatial coordinate system. Let X̄R be an alternative material system,
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which is related to XR by

X̄R =MSRXS + aR (3.60)

whereMRS is a rotation matrix, that is,

MTRMTS = δRS =MRTMST with |MRS| = 1 (3.61)

Both M and a are independent of XR. Also, let x̄i be an alternative spatial
system such that

x̄i = Qji(t)xj + bi(t) (3.62)

where

QijQik = δjk = QjiQki with |Qij| = 1 (3.63)

Note that each of X̄R and x̄i differs from the original system by a rigid-body
rotation plus a translation.

3.6.2.1 Rotation and translation of material system

Referring to XR and X̄R, the expressions of CRS are, respectively,

CRS = ∂xi
∂XR

∂xi
∂XS

and C̄RS = ∂xi
∂X̄R

∂xi
∂X̄R

(3.64)

By the chain rule of differentiation, we have

CRS = ∂xi
∂X̄T

∂X̄T

∂XR

∂xi
∂X̄V

∂X̄V

∂XS
= ∂xi
∂X̄T

MRT
∂xi
∂X̄V

MSV =MRTMSVC̄TV (3.65)

or

C̄RS =MTRMVSCTV (3.66)

Therefore, CRS transforms as a second-order tensor with rotation of the
material system but it remains invariant with translation of the material sys-
tem. This result is expectedbecause both subscripts ofCRS refer to thematerial
system. We note that C̄RS in this subsection should not be confused with
the C̄RS matrix referring to the principal coordinate system and used in most
other sections.
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3.6.2.2 Rotation and translation of the spatial system

Referring to xi and x̄i, the expressions of CRS are, respectively,

CRS = ∂xi
∂XR

∂xi
∂XS

and CRS =
∂ x̄i
∂XR

∂ x̄i
∂XR

(3.67)

The second equation in (3.67), by use of (3.62), is further written as

CRS =
∂ x̄i
∂xj

∂xj
∂XR

∂ x̄i
∂xk

∂xk
∂XS
= Qji

∂xj
∂XR

Qki
∂xk
∂XS

= δjk
∂xj
∂XR

∂xk
∂XS
= ∂xk
∂XR

∂xk
∂XS
= CRS (3.68)

We conclude that CRS remains invariant with rotation and translation of the
spatial system. This is also expected, because both subscripts of CRS refer to
the material system and it does not matter which spatial coordinate system
we use.

3.6.3 Eigenvalues and Eigenvectors of CRS

CRS is a symmetric matrix and it has three real eigenvalues and three real
eigenvectors. The properties of eigenvalues and eigenvectors are discussed
in Section 2.7. We use X̄R to denote the principal coordinate system of CRS.
The principal values (eigenvalues) C̄RS are related to CRS by

C̄RS = QPRQQSCPQ =




(
ds1
dS1

)2
0 0

0
(
ds2
dS2

)2
0

0 0
(
ds3
dS3

)2



=


λ21 0 0

0 λ22 0

0 0 λ23




(3.69)

We see that, when CRS are expressed in the principal frame, it becomes a
diagonal matrix. The eigenvectors, or the principal directions, are n(R)C with
R = 1, 2, and 3. Figure 3.9 shows the eigenvectors in the neighborhood N0 of
an undeformed body. Whatever the deformation ofN0, there exists one set of
three line elements, which are mutually orthogonal. The three line elements
may extend during deformation and the triad may rotate, but the angles
between them will always be right angles.
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FIGURE 3.9
Eigenvectors in the neighborhood N0.

3.6.4 Principal Invariants of CRS

Similar to the stress invariants discussed in Section 2.12, we define the
invariants for CRS as

I1 = CRR = C11 + C22 + C33 (3.70)

I2 = tr(cof.C) = I3tr(C−1) (3.71)

I3 = detC (3.72)

We now discuss the geometric significance of I1, I2, and I3.
In principal axes, the invariants I1, I2, and I3 may be associated with the

geometric properties of a material element. The matrix of C is a diagonal
matrix as shown in (3.69). In this system, the expressions for the invariants
are

I1 = λ21 + λ22 + λ23 (3.73)

I2 = λ22λ23 + λ21λ23 + λ21λ22

= λ21λ22λ23
(
1
λ21

+ 1
λ22

+ 1
λ23

)
= I3

(
1
λ21

+ 1
λ22

+ 1
λ23

)
= I3 tr(C−1) (3.74)

I3 = λ21λ22λ23 (3.75)

In the case that the initial lengths are dS1 = 1, dS2 = 1, and dS3 = 1,
(3.69) reduces to

C =

ds21 0 0

0 ds22 0
0 0 ds22


 (3.76)
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FIGURE 3.10
Deformed cuboid for geometric interpretations of strain invariants.

and

I1 = |OP|2 = ds21 + ds22 + ds23 (3.77)

I2 = sum of squares of areas of three mutually perpendicular

faces of deformed cuboid

=
∣∣∣∣∣
ds22 0

0 ds23

∣∣∣∣∣+
∣∣∣∣∣
ds21 0

0 ds23

∣∣∣∣∣+
∣∣∣∣∣
ds21 0

0 ds22

∣∣∣∣∣ = ds22 ds
2
3 + ds21 ds

2
3 + ds21 ds

2
2

(3.78)

I3 = square of volumes of deformed unit cuboid = (ds1 ds2 ds3)2 (3.79)

The above geometric interpretations are clear when we refer to Figure 3.10.

3.7 Deformation of Volume and Area of a Material Element

We investigate first the deformation of a volumetric element within the
neighborhood N0 and then investigate how an area element deforms
during deformation. The initial volume of an infinitesimal parallelepiped
within N0 is dV0, which is the scalar triple product of the three vectors
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forming the sides of the parallelepiped. The deformed volume is denoted
by dV. We have

dV0 = dX(1) · (dX(2) × dX(3)
) = ePQRdX

(1)
P dX(2)Q dX(3)R (3.80)

dV = eijk dx
(1)
i dx(2)j dx(3)k = eijk

∂xi
∂XP

dX(1)P
∂xj
∂XQ

dX(2)Q
∂xk
∂XR

dX(3)R

= eijk
∂xi
∂XP

∂xj
∂XQ

∂xk
∂XR

dX(1)P dX(2)Q dX(3)R = ePQR

∣∣∣∣ ∂xi∂XP

∣∣∣∣dX(1)P dX(2)Q dX(3)R

(3.81)

From (3.80) and (3.81), we obtain

dV =
∣∣∣∣ ∂xi∂XP

∣∣∣∣dV0 or
dV
dV0
=
∣∣∣∣ ∂xi∂XP

∣∣∣∣ = det F (3.82)

Let dm be the mass of the volumes dV and dV0 and ρ and ρ0 be the densities
of dV and dV0, respectively. Equation (3.82) may be rewritten as

ρ0

ρ
=
∣∣∣∣ ∂xi∂XP

∣∣∣∣ = det F = J (3.83)

Now that

I3 = |CRS| =
∣∣∣∣ ∂xi∂XR

∂xi
∂XS

∣∣∣∣ = |FT · F| = |FT| |F| = |F|2 (3.84)

we find from (3.83) and (3.84) that

I3 =
(
dV
dV0

)2
=
(
ρ0

ρ

)2
(3.85)

We consider next the deformation of an area element. Referring to Figure 3.11,
line elements dX(1)R and dX(2)R form the initial area dA, which has a unit
normal ofNR. The two line elements deform into dx(1)i and dx(2)i , and area dA
deforms intodawithunit normalni. The two areas can be expressed as vectors
given by

dAR = NRdA and dai = nida (3.86)
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FIGURE 3.11
Deformation of area element.

In addition, the undeformed area is

dAR = eRSTdX
(1)
S dX(2)T with (dA)2 = dARdAR (3.87)

and the deformed area is

dai = eijkdx
(1)
j dx(2)k with (da)2 = daidai (3.88)

We now proceed to find the relation between the two areas. By way of the
chain rule of differentiation, (3.87) can be written as

dAR = eRST
∂XS

∂xm

∂XT

∂xn
dx(1)m dx(2)n (3.89)

Multiplying (3.89) by ∂XR/∂xk , we obtain

∂XR

∂xk
dAR = eRST

∂XS

∂xm

∂XT

∂xn

∂XR

∂xk
dx(1)m dx(2)n =

∣∣∣∣∂XM

∂xr

∣∣∣∣ ekmndx(1)m dx(2)n

=
∣∣∣∣∂XM

∂xr

∣∣∣∣dak (3.90)

Equation (3.88) and the identity discussed in Example 2.7 have been used in
the above derivation. Thus, we may conclude that

∂XR

∂xk
dAR =

∣∣∣∣∂XM

∂xr

∣∣∣∣dak (3.91)

or using (3.83),

dai = J
∂XR

∂xi
dAR or da = J(F−1)T · dA (3.92)

Equation (3.92) relating dAR to dai is called Nanson’s formula.
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3.8 The Left Cauchy–Green Deformation Tensor

The left Cauchy–Green tensor B is defined in (3.41). It is seen that both sub-
scripts of Bij refer to the spatial coordinate system. B is invariant with rotation
of the material system and transforms as a second-rank tensor with rotation
of the spatial system. We now show that the invariants of B, denoted by IB,
IIB, and IIIB, coincide with those of C, denoted by IC = I1, IIC = I2, and
IIIC = I3. From (3.70), we have

IC = CRR = ∂xi
∂XR

∂xi
∂XR

= Bii = IB (3.93)

and from (2.79), the second invariant is

IIB = 1
2

(
I2B − trB2) (3.94)

where B2 = BipBpj and the trace of this expression is

trB2 = BipBpi = ∂xi
∂XR

∂xp
∂XR

∂xp
∂XS

∂xi
∂XS
=
(
∂xi
∂XR

∂xi
∂XS

)(
∂xp
∂XR

∂xp
∂XS

)

= CRSCRS = trC2 (3.95)

Substituting (3.93) and (3.95) into (3.94), we obtain

IIB = IIC (3.96)

For the third invariant, we have from (3.72) and (3.84)

IIIC = |C| = |FT · F| = |FT||F| = |F|2 (3.97)

On the other hand,

IIIB = |F · FT| = |F||FT| = |F|2 (3.98)

Comparing (3.97) and (3.98), we find

IIIB = IIIC (3.99)

3.9 The Lagrangian and Eulerian Strain Tensors

3.9.1 Definitions

The two classical strain measures discussed in this section are widely used
in mechanics literature. Usually, they are derived from a different approach
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FIGURE 3.12
The displacement vector.

than the one given here. Having discussed the right and left Cauchy–Green
deformation tensors, we may define the Lagrangian and Eulerian strains as

2E = C− 1 (3.100)

2e = 1− B−1 (3.101)

where E is the Lagrangian strain tensor (also known as Green’s tensor) and
e is the Eulerian strain tensor. We point out, from (3.100), that C is positive for
E > − 1

2 . In this discussion, we observe that deformation of a continuummay
be described by different strainmeasures. In fact, there are several alternative
measures of deformation that are being used in the literature. The displace-
ment vector u introduced in (3.3) is now considered. Refer to Figure 3.12 and
let the material and spatial coordinate systems coincide for simplicity. If a
material point P moves to p during deformation, the vector from P to p is the
displacement vector u. We may write

x = X + u or xi = δiRXR + ui (3.102)

Using (3.102), (3.100) becomes

2ERS = CRS − δRS = ∂xm
∂XR

∂xm
∂XS
− δRS

= ∂ (δmMXM + um)
∂XR

∂ (δmNXN + um)
∂XS

− δRS

=
(
δmR + ∂um

∂XR

)(
δmS + ∂um

∂XS

)
− δRS

= δmRδmS + δmR
∂um
∂XS
+ δmS

∂um
∂XR
+ ∂um
∂XR

∂um
∂XS
− δRS (3.103)
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Note that we choose to have the origin of the material and spatial coordinate
systems coincide. In general, they may not coincide, but since the vector
connecting the two origins is a constant, it drops out in the differentiation.
Thus, (3.103) may be simplified to yield

ERS = 1
2

(
∂uR
∂XS
+ ∂uS
∂XR
+ ∂uk
∂XR

∂uk
∂XS

)
(3.104)

Equation (3.104) is known as the strain–displacement relation.
Similarly, from (3.101), we obtain

eij = 1
2

(
∂ui
∂xj
+ ∂uj
∂xi
− ∂uR
∂xi

∂uR
∂xj

)
(3.105)

where uR and ui are respectively components of the displacement vector u in
the material and spatial coordinate systems. Since both coordinate systems
are Cartesian and coincide in this consideration, uR is the same as ui. Also,
XR is the same as Xi.
Some remarks are in order.

1. Both ERS and eij are symmetric tensors.
2. A line element dXR with length dS in the neighborhood of N0

deforms into dxi with length ds in the neighborhood of Nt. It is
possible to show that

ds2 − dS2 = 2ERSdXRdXS = 2eijdxidxj (3.106)

3. For small deformation, that is, ∂ui/∂XR � 1, and ∂uR/∂xj � 1, but ui
may not be small, we can approximately write

Eij ∼= 1
2

(
∂ui
∂Xj
+ ∂uj
∂Xi

)
∼= eij ∼= 1

2

(
∂ui
∂xj
+ ∂uj
∂xi

)
= εij (3.107)

It is not necessary to distinguish the material coordinates XR from
the spatial coordinates xi (see Example 3.4). The tensor εij is called
the infinitesimal strain tensor or the engineering strain. Both E and e
reduce to εwhen an approximation is made such that the second and
the higher powers of the displacement gradients are neglected.

4. On the other hand, the infinitesimal strain tensor may be mathemat-
ically defined by

εij = 1
2

(
∂ui
∂xj
+ ∂uj
∂xi

)
(3.108)
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Physically, ε cannot be an exact measure of deformation, because it
does not remain constant in a rigid-body rotation. In a counterclock-
wise rigid-body rotation through an angle α about the positive X3
axis, the transformation of the position vector of a material point is
given by (see Example 1.6)

x1 = X1 cosα − X2 sin α, x2 = X1 sin α + X2 cosα, x3 = X3

(3.109)

and the displacement components are

u1 = −X1(1− cosα)− X2 sin α,

u2 = X1 sin α − X2(1− cosα), u3 = 0 (3.110)

Using (3.108), the infinitesimal strain ε is determined to be

εij =

−(1− cosα) 0 0

0 −(1− cosα) 0
0 0 0


 (3.111)

It is seen that ε11 and ε22 are not 0. However, if α is small, then these
quantities are small andmay be neglected.Although the infinitesimal
strain tensor is not an exact measure of deformation, it is convenient
for use in the applications involving small strains. An advantage of
this strain tensor is its linear relationwith respect to the displacement
gradient. This allows for the application of the techniques of linear
analysis in solving boundary-value problems in the linear theory of
elasticity, and also helps keep the equations of the theory of plasticity
simple. Nevertheless, in using (3.108), wemust keep inmind that the
rigid-body rotation has to be small.

EXAMPLE 3.4 Show that, in the case of small displacement gradient,
we may write ∂ui/∂xj ∼= ∂ui/∂Xj and it is not necessary to distinguish the
material coordinates XR from the spatial coordinates xi.

Solution

From (3.102), we have

xi = Xi + ui (a)

By differentiating (a), we obtain

∂ui
∂xj
= δij − ∂Xi

∂xj
(b)

© 2005 by Chapman & Hall/CRC Press



112 Continuum Mechanics and Plasticity

In the symbolic notation, (b) can be written as

∂u
∂x
= 1− F−1 = 1− {1+ (F − 1)}−1

= 1− {1− (F − 1)+ (F − 1)2 − (F − 1)3 + · · · }
= (F − 1)− (F − 1)2 + (F − 1)3 − · · · (c)

in which the binomial expansion was used. In the index notation, the factor
(F − 1) is

∂xi
∂Xj
− δij = ∂ui

∂Xj
(d)

By substitution, (c) becomes

∂ui
∂xj
= ∂ui
∂Xj
− ∂ui
∂XR

∂uR
∂Xj
+ ∂ui
∂XR

∂uR
∂XS

∂uS
∂Xj
− · · · (e)

Hence, by neglecting the higher-order terms in the displacement gradient,
we may write

∂ui
∂xj
∼= ∂ui
∂Xj

(f)

and it is not necessary to distinguish the material coordinates XR from the
spatial coordinates xi.

3.9.2 Geometric Interpretation of the Strain Components

We consider here as in Section 3.6.1 a line element dXR with length dS
deforming into dxi with length ds. We relate the stretching of this line element
to the components of E rather than to the components of C. From the usual
definition of strain, we define the relative elongation of the line element as

ε = ds− dS
dS

= ds
dS
− 1 = λ− 1 (3.112)

This definition of relative elongation is valid for large deformation as well.
From (3.106), we have

ds2 = dS2 + 2ERSdXRdXS (3.113)

Dividing (3.113) by dS2, we obtain

λ2 = ds2

dS2
= 1+ 2ERS

dXR

dS
dXS

dS
= 1+ 2ERSNRNS (3.114)
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or

λ = [1+ 2ERSNRNS]1/2 (3.115)

whereNR denotes the initial direction of the line element. We have discarded
the “−” solution in (3.115), sinceλ = ds/dS ≥ 0 always. Therefore, the relative
elongation is from (3.112) given by

ε = λ− 1 = [1+ 2ERSNRNS]1/2 − 1 (3.116)

If we know ERS and specify a direction NR, then from (3.116) we obtain
the elongation of this line element. Equation (3.115) may be compared
with (3.49), in which the components of C are used. These expressions show
that the extension ratio can be obtained by the use of two different strain
measures. The two equations are related by

λ2 = 1+ 2ERSNRNS = NRNR + 2ERSNRNS

= (δRS + 2ERS)NRNS = CRSNRNS (3.117)

We now consider the meaning of the diagonal and off-diagonal compo-
nents of the ERS matrix. To discuss the diagonal component E11, let us
consider a line element in the X1 direction before deformation. We then have
N1 = 1, N2 = 0, and N3 = 0; and, from (3.114), we obtain

λ211 = 1+ 2E11 and ε11 = λ11 − 1 = √1+ 2E11 − 1 (3.118)

Equation (3.118) shows that E11 is related to the stretching of the line element,
which is initially in the X1 direction. Similarly, if we consider line elements
initially along X2 and X3 directions, respectively, we get

ε22 =
√
1+ 2E22 − 1 and ε33 =

√
1+ 2E33 − 1 (3.119)

Starting with the Eulerian strain components eij, we can also obtain expres-
sions for the relative elongations for fibers, which after deformation are in the
directions of the x1, x2, and x3 axes. However, the interpretation of e11, e22, and
e33 as the relative elongations of fibers can only be justified for small strain.
If we choose a line element, which is in the x1 direction after deformation,
then (3.106) leads to

(ds− dS)(ds+ dS) = 2eijdxidxj = 2e11n1n1ds2 = 2e11ds2 (3.120)

By use of the definition of relative elongation, (3.120) may be written as

ds− dS
dS

= e11

[
ds
dS

2ds
ds+ dS

]
≈ e11 (3.121)
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The last expression of (3.121) is true only for small deformation that ds ≈ dS.
In this case, e11 may be interpreted as the relative elongation for fibers in the
x1 direction, and we note that for small deformation x1 ≈ X1. However, in
large deformation, no simple correlation between e11 and relative elongation
can be found from (3.121).
To investigate the off-diagonal terms of ERS, let us consider two line

elements dX(1)R and dX(2)R , which deform into dx(1)i and dx(2)i , respectively.
The angle between the two line elements is � in the initial configuration and
φ in the current configuration as shown in Figure 3.8. The dot product of dX(1)R
and dX(2)R is

dS1dS2 cos� = dX(1)R dX(2)R (3.122)

and the dot product of dx(1)i and dx(2)i is

ds1ds2 cosφ = dx(1)i dx(2)i (3.123)

Subtracting (3.122) from (3.123), we obtain

ds1ds2 cosφ − dS1dS2 cos� = dx(1)i dx(2)i − dX(1)R dX(2)R

=
[
∂xi
∂XR

∂xi
∂XS
− δRS

]
dX(1)R dX(2)S

=
[(

∂ui
∂XR
+ δiR

)(
∂ui
∂XS
+ δiS

)
− δRS

]
dX(1)R dX(2)S

= 2ERSdX
(1)
R dX(2)S (3.124)

The relations in (3.103) are used in the derivation of (3.124). Dividing the
above expression by dS1dS2, we obtain

ds1
dS1

ds2
dS2

cosφ − cos� = 2ERS
dX(1)R
dS1

dX(2)S
dS2

= 2ERSN
(1)
R N(2)

S (3.125)

This relation may be further simplified by use of (3.112), which, for the two
line elements, are

ds1
dS1
= λ1 and

ds2
dS2
= λ2 (3.126)

Using (3.126), (3.125) may be solved to yield

cosφ = 2ERSN
(1)
R N(2)

S + cos�
λ1λ2

(3.127)
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where � is the angle between the two line elements before deformation
and φ is the angle after deformation. Given �, ERS, N

(1)
R , and N(2)

S , the
deformed angle φ may be determined. Note that the stretch ratios λ1 and
λ2 are determined from (3.115).
To investigate the meaning of E12, E23, E31, let us consider some special

cases. If� = 90◦, that is, the two line elements are perpendicular to each other
before deformation, then cos� = 0. In addition, let cosφ = cos(90◦ − θ) =
sin θ , where θ is the angle change due to deformation, then (3.127) reduces to

sin θ = 2ERSN
(1)
R N(2)

S
λ1λ2

(3.128)

Since θ is generally not 0 from (3.128), we may conclude that two initially
perpendicular line elements (not along the coordinate axes) do not remain
perpendicular after deformation. If the two line elements are respectively
lying along the X1 and X2 axes initially, then N(1)

1 = 1, N(1)
2 = N(1)

3 = 0 and
N(2)
2 = 1, N(2)

1 = N(2)
3 = 0, and from (3.128) E12 is related to θ12. Similarly, we

find the expressions for other off-diagonal terms of ERS (R 
= S). The relations
are summarized as

sin θ12 = 2E12
λ1λ2

, sin θ23 = 2E23
λ2λ3

, sin θ13 = 2E13
λ1λ3

(3.129)

We observe from (3.129) that the off-diagonal terms of ERS are related to the
shearing deformations and that an initially orthogonal triad with elements
along the XR directions will no longer be orthogonal after deformation.
We consider a special case, where X1, X2, and X3 are principal directions.

Then, E12 = E23 = E31 = 0 and E11 = E1,E22 = E2,E33 = E3. If the two
line elements are respectively lying along X1 and X2 initially, then from
(3.129) we obtain θ12 = 0, which means that there is no angle change, that
is, φ = � = 90◦. Similarly, we show that θ23 = θ31 = 0. This finding has
the implication that a rectangular triad having elements in the three prin-
cipal directions before deformation remains rectangular (does not have angle
changes) afterdeformation. Thevolumeelement formedby the triad is rotated
and may be stretched. However, if, before deformation, the triad is in direc-
tions other than the principal directions, then there are angle changes after
deformation even if ERS refers to the principal directions. The angle changes
for this case are calculated from (3.128).

3.9.3 The Volumetric Strain

Using (3.82) and (3.100), we have

(
dV
dV0

)2
= |FT · F| = |C| = |δRS + 2ERS| (3.130)
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Since the above expression is the third invariant of C, a simplified expression
is obtained by using the principal coordinate system. Thus,

(
dV
dV0

)2
= (1+ 2E1)+ (1+ 2E2)(1+ 2E3)

= 1+ 2(E1 + E2 + E3)+ 4(E1E2 + E1E3 + E2E3)+ 8E1E2E3

(3.131)

or

(
dV
dV0

)2
= 1+ 2IE + 4IIE + 8IIIE (3.132)

where IE, IIE, and IIIE are the principal invariants of E. But, from (3.116),
we note that

1+ ε1 =
√
1+ 2E1 (3.133)

inwhich ε1 is the relative elongation alongprincipal direction 1. Using (3.133),
(3.131) becomes

dV
dV0
= (1+ ε1)(1+ ε2)(1+ ε3) = λ1λ2λ3 (3.134)

We note that the volumetric strain for small deformation is

dV − dV0

dV0
= dV

dV0
− 1 = (1+ ε1)(1+ ε2)(1+ ε3)− 1≈ ε1 + ε2 + ε3 (3.135)

by neglecting the high-power terms in ε1, ε2, or ε3. In the finite deformation,
the volumetric strain can be defined by (dV − dV0)/dV, which leads to the
logarithmic volumetric strain of ln(dV).

EXAMPLE 3.5 Consider the deformation governed by

x1 = α1X1, x2 = α2X2, x3 = α3X3 (a)

where αi are constants. In a one-dimensional stretching along the 1 direction,
determine the values of E11, e11, the relative elongation ε, and the true strain
εlog, if α1 takes the values of 1.01, 1.02, 1.05, 1.10, and 1.20. Compare these
values with the engineering strain εeng.

© 2005 by Chapman & Hall/CRC Press



Motion and Deformation 117

Solution

Using (a), we find

[C] = [F]T[F] =

α21 0 0
0 α22 0
0 0 α23


 and [B]−1 =




1
α21

0 0

0
1
α22

0

0 0
1
α23




(b)

Substituting (b) into (3.100) and (3.101), we obtain

E11 = 1
2 (C11 − 1) = 1

2 (α
2
1 − 1) (c)

e11 = 1
2
(1− B−111 ) =

1
2

(
1− 1

α21

)
(d)

Since N1 = 1,N2 = N3 = 0, the relative elongation ε may be found from
(3.116) and (c) as

ε = α1 − 1 (e)

Note that this result is the same as that obtained from the definition of
engineering strain, where

εeng = x − X
X
= α1 − 1 (f)

The true strain is definedbydεlog = dx/x. If the initial strain is 0 and the initial
length of the specimen is X, this expression may be integrated to find

εlog = ln
( x
X

)
= ln α1 (g)

Expressions (c) to (g) are plotted in Figure 3.13 against α1. The curve for
the engineering strain εeng is a straight line. The curve for E11 lies above
the straight line and the curves for εlog and e11 lie below the straight line.
We note that, at a strain of εeng = 0.05, the corresponding logarithmic strain
is εlog = 0.0488, which is 2.4% smaller than εeng; at εeng = 0.1, εlog = 0.0953,
which is 4.9% smaller than εeng; and at εeng = 0.2, εlog = 0.1823, which is
9.7% smaller than εeng.
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FIGURE 3.13
Comparison of strain measures in one-dimensional stretching.

3.10 Other Strain Measures

Several other strain measures have been used in the literature. We mention
in this section two families of strains, which are defined based on the stretch
tensorsU andVdiscussed inSection3.5. BothU andV arepositive, symmetric
tensors, they share the same eigenvalues λi and their eigenvectors are related
by the transformation given by equation (r) of Example 3.3. In the proposed
strain measures, the eigenvalues are a function of λi such that

εi = f (λi) (3.136)

A useful form for function f is given by

f (λi) = λκi − 1
κ

, κ 
= 0

= ln λi, κ = 0
(3.137)

The two families of strains are written using either n(i)u or n(i)v as their
eigenvectors. Thus,

E = f(U) =
∑
i

f (λi)n(i)u ⊗ n(i)u or e = f(V) =
∑
i

f (λi)n(i)v ⊗ n(i)v

(3.138)

where E may be called the generalized Lagrangian strain and e the
generalized Eulerian strain. Some commonly used strain measures may be
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obtained from (3.138). They are

Engineering strain (κ = 1): εeng = λ− 1

Logarithmic strain (κ = 0): εlog = ln λ

Lagrangian strain (κ = 2): E = 1
2 (λ

2 − 1)

Eulerian strain (κ = −2): e = 1
2

(
1− 1

λ2

) (3.139)

The last two strain measures are written in the spectral form as

E =
∑
i

1
2
(λ2 − 1)n(i)u ⊗ n(i)u and e =

∑
i

1
2

(
1− 1

λ2

)
n(i)v ⊗ n(i)v (3.140)

A disadvantage of strain measures defined by (3.138) is the necessity of
calculating the principal components first and then performing axes trans-
formation to the actual axes. Apopular method to avoid axes transformation
is to use strain measures with κ = 2 or −2 so that the strain tensors may be
directly calculated from either the stretch tensors U and V or the right and
left Cauchy–Green tensors C and B.

3.11 Material Rate of Change

We discussed the concept of deformation and its measures in the earlier
sections. As mentioned earlier, the deformation describes the geometrical
change of a material element between the current and the reference config-
urations corresponding to twodifferent fixed times. The studynowextends to
the motion of the body, which is a family of deformations continuously vary-
ing in time. The material rate of change (or material derivative) is an important
concept used in the description of the motion and we discuss it in this
section. The material rate of change of a physical quantity φ is the rate of
change of φwith respect to a particle. This rate is also known as the substantial
derivative in fluid mechanics. There are material and spatial descriptions for
the material rate of change and we discuss them in this section.

3.11.1 Material Description of the Material Derivative

In the material description, X is held constant, and the material derivative is
the same as the partial derivative with respect to time t. Therefore, we write

D
Dt
φ(X, t) = ∂φ(X, t)

∂t
(3.141)
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or in the index notation

D
Dt
φ(XR, t) = ∂φ(XR, t)

∂t
(3.142)

3.11.2 Spatial Description of the Material Derivative

In the spatial description, φ is a function of x and t. The material deriva-
tive of φ is the total derivative of φ, differentiating with respect to both
variables. Thus,

D
Dt
φ(x, t) = ∂φ(x, t)

∂t
+ ∂φ
∂x

∣∣∣∣
t
· ∂x
∂t

∣∣∣∣
X

(3.143)

Note that the last differentiation is carried out by keeping X constant. This is
so because we are considering the material derivative. The particle velocity
has been discussed in (3.6), and using the expression, (3.143) becomes

D
Dt
φ(x, t) = ∂φ(x, t)

∂t
+−−−−→Gradφ · v(x, t) (3.144)

In the last expression of (3.144), notation v represents v(x, t). The same
notation vmay be used to represent v(X, t) in the material description. These
are actually two different functions denoting the same velocity. But for the
sake of simplicity in notations, we use the same notation v. The independent
variables of the function should be specified in case confusion arises.
In a similar manner, we discuss the material differentiation of a vector.

Acceleration, which is the material derivative of the velocity vector, is a good
example and is given by

f = Dv
Dt
= ∂v
∂t
+ (Grad v) · v (3.145)

The last expression of (3.145) may be derived by writing

Grad v ≡
(
∂vi
∂xj

ei ⊗ ej

)
= ∇ ⊗ v (3.146)

Thus,

(Grad v) · v =
(
∂vi
∂xj

ei ⊗ ej

)
· vkek = ∂vi

∂xj
vkei(ej · ek)

= ∂vi
∂xj

vkeiδjk = ∂vi
∂xk

vkei (3.147)
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Using (3.147), the index form of (3.145) is

fi = Dvi
Dt
= ∂vi
∂t
+ ∂vi
∂xk

vk (3.148)

Generally, the material derivative in the spatial description is represented
by the following operator

D
Dt
= ∂

∂t
+ vk

∂

∂xk
(3.149)

If this operator is applied to a function φ(x, t), then the first term indicates
the local rate of change, which is the contribution of the time dependence
of φ. This term may also be called the transient term. The second term is
the convective term, which is the contribution by the motion of the particle.
To illustrate this point, let us consider fluid flowing in a tube and we
assume that the flow is steady and is one-dimensional along the x direc-
tion (see Figure 3.14). In a steady flow, the velocity at any location x does not
changewith time. The observer sitting at a location x does not see any change
of v, so that ∂v/∂t = 0. However, the velocity may differ from one location to
the other. The acceleration of the particle is then given by

Acceleration = change of velocity
time increment

= (∂v/∂x)�x
�t

= (∂v/∂x)v�t
�t

= v
∂v
∂x
(3.150)

This acceleration is known as the convective acceleration and is due to the
motion of the fluid.
In a nonsteady flow, the velocity changes with time at a fixed station x.

It changes from v to v + (∂v/∂t)�t in time interval �t and the acceleration
at this station x is given by

Acceleration = change of velocity
time increment

= (∂v/∂t)�t
�t

= ∂v
∂t

(3.151)

∆x = v∆t

t = t + ∆t
velocity = v +

∆v
∆x

∆x

x x + ∆x
t = t

velocity v = v

FIGURE 3.14
Fluid flowing in a tube.
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This is the transient term of acceleration and there is no convective acceler-
ation because we consider the acceleration at a fixed station. In the general
case, that is, the station is not fixed at x and the flow is nonsteady, the total
acceleration is therefore

f = ∂v
∂t
+ v

∂v
∂x

(3.152)

In summary, the material rate of change, which is the rate of change of
a physical quantity with respect to a specified particle, can be specified either
byusingamaterialdescriptionora spatialdescription. In thematerialdescrip-
tion, XR is specified and the particle is colored red. The material rate for a
physical quantity is seen by an observer sitting on top of the particle and
moving with the particle. Thus, the material rate changes with respect to t
only. In the spatial description, the spatial coordinate changes (convects) with
the particle, and thematerial rate of change has two parts, the convective and
the transient. Thus, the acceleration of a specified (red) particle is what an
observer who stands still in the laboratory sees.

3.12 Dual Vectors and Dual Tensors

The concept of dual vector and dual tensor is useful in the subsequent
sections of this chapter. Given a tensor of the second-rank Tij, let us form
the following vector

ti = − 1
2 eijkTjk (3.153)

Vector ti is called the dual vector (or axial vector) of tensor Tij. We can show that
the dual vector depends only on the antisymmetric part of tensor Tij. Thus,

ti = − 1
2 eijkTjk = − 1

2 eijk
(
TS
jk + TA

jk
) = − 1

2 eijkT
A
jk (3.154)

in which the superscripts S and A denote the symmetric and the antisym-
metric parts, respectively. We note that the dual vector of a symmetric tensor
vanishes and it has the components given below

t = −1
2


T23 − T32
T31 − T13
T12 − T21


 (3.155)

which forms a column vector. If we multiply both sides of (3.153) by eijk ,
we obtain

eijkti = − 1
2 eijkeirsTrs = − 1

2 (δjrδks − δjsδkr)Trs = − 1
2 (Tjk − Tkj) (3.156)
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Therefore, if Tij is symmetric, then from (3.156), ti = 0; and if Tij is
antisymmetric, eijkti = −Tjk , that is,

Tjk = −eijkti (3.157)

Tjk is called the dual tensor of a given vector ti and the dual tensor is
antisymmetric with components given by

T =

 0 −t3 t2

t3 0 −t1
−t2 t1 0


 (3.158)

EXAMPLE 3.6 Use the dual vector–dual tensor concept to describe the
angular velocity of rigid-body rotation of a continuum.

Solution

Let us consider a rigid body that instantaneously rotates about an axis
passing through point P in the body, and P has position vector r0 (see
Figure 3.15). Note that for an infinitesimal rotation, we consider the incre-
ments of angular and linear displacements dθ and dx, respectively, instead
of angular and linear velocities ω = dθ/dt and v = dx/dt and similar results
may be obtained. The vector ω shown specifies the magnitude of angular
velocity ω, the direction of the axis of rotation, and the sense of rotation.
The velocity of point A specified by position vector r is then

v = ω× (r − r0) (a)

�

ω

r0 r

r – r0

v

A
P

O

FIGURE 3.15
Angular velocity in rigid-body rotation.
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In the index notation, (a) is written as

vi = eijkωj(xk − x(0)k ) (b)

From vector ω we define its dual tensor as

�jk = −eijkωi (c)

Substituting (c) into (b), we obtain

vi = �ik(xk − x(0)k ) or v = � · (r − r0) (d)

We see that the angular velocity can be represented either by vector ω or
tensor �.

3.13 Velocity of a Particle Relative to a Neighboring Particle

We consider two particles P and P′ in a continuum in motion. The coordinate
of P is XR initially, and xi at time t. For the sake of simplicity, the origins and
axes of the material and spatial coordinate systems coincide. The coordinate
of P′ is XR + �XR initially, and xi + �xi at time t. The line element between
the two particles is dXR initially and dxi at time t. The initial and deformed
line element are related by

dxi = ∂xi
∂XR

dXR (3.159)

The relative velocity of P′ with respect to P is

dvi ≡ vi(P′, t)− vi(P, t) = vi(XR + dXR, t)− vi(XR, t)

= ṽi(xj + dxj, t)− ṽi(xj, t) (3.160)

inwhich the particle velocity is either expressed in thematerial description by
the use of function vi(XR, t) or in the spatial description by the use of function
ṽi(xi, t). From the material description, (3.160) may be further written as

dvi = D
Dt
[xi(XR + dXR, t)− xi(XR, t)] (3.161)

Observing that dxi denotes the line element connecting two adjacent material
particles, (3.161) reduces to

dvi = D
Dt
(dxi) (3.162)
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It is seen from (3.162) that the order of differentiation between d and D/Dt is
interchangeable.
Using the spatial description, from (3.160), we write

dvi = ṽi(xj + dxj, t)− ṽi(xj, t) (3.163)

The first term on the right-hand side may be expanded in Taylor’s series and,
by retaining only the first-order term, (3.163) becomes

dvi = ṽi(xj, t)+ ∂ ṽi
∂xk

dxk − ṽi(xj, t) = ∂ ṽi
∂xk

dxk = vi,jdxj (3.164)

Combining (3.162) and (3.164), we obtain

dvi = D(dxi)
Dt

= vi,jdxj (3.165)

where vi,j = Lij is known as the velocity gradient tensor. This tensor is generally
not symmetric and so it can be split into symmetric and antisymmetric parts.
Therefore, we write

Lij = vi,j = 1
2 (vi,j + vj,i)+ 1

2 (vi,j − vj,i) = Dij +Wij (3.166)

where

Dij = 1
2 (vi,j + vj,i) or D = 1

2 (L+ LT) (3.167)

and

Wij = 1
2 (vi,j − vj,i) or W = 1

2 (L− LT) (3.168)

inwhichDij is the rate of deformation tensor andWij is the spin tensor. Therefore,
(3.165) may be rewritten as

dvi = Dijdxj +Wijdxj (3.169)

3.14 Physical Significance of the Rate of Deformation Tensor

In order to see the physical significance of the rate of deformation tensor Dij,
let us consider two material line elements, dx(1)i and dx(2)i , at the current
configuration in the spatial system. Let φ be the angle formed by the two line
elements, with unit vectors n(1)i and n(2)i and lengths ds1 and ds2, respectively.
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We then differentiate the inner product dx(1)i dx(2)i of the two line elements
to yield

D
Dt

[
dx(1)i dx(2)i

] = vi,jdx
(1)
j dx(2)i + dx(1)i vi,jdx

(2)
j = dx(1)i dx(2)j [vi,j + vj,i]

(3.170)

or

D
Dt

[
dx(1)i dx(2)i

] = 2Dijdx
(1)
i dx(2)j (3.171)

On the other hand, since dx(1)i dx(2)i = ds1ds2 cosφ, we obtain the following
equation by differentiation,

D
Dt

[
dx(1)i dx(2)i

] = D
Dt
(ds1)ds2 cosφ + ds1

D
Dt
(ds2) cosφ − ds1ds2 sin φ

Dφ
Dt

(3.172)

Equating (3.171) and (3.172), and dividing the resulting equation by ds1ds2,
we obtain

1
ds1

D
Dt
(ds1) cosφ + 1

ds2

D
Dt
(ds2) cosφ − sin φ

Dφ
Dt
= 2Dijn

(1)
i n(2)j (3.173)

Note that ni = dxi/ds in the above equation.
Special cases may be deduced from (3.173). If the two line elements

coincide, then φ = 0 and ds1 = ds2 = ds. In this case, (3.173) reduces to

1
ds

D
Dt
(ds) = Dijninj (3.174)

The expression on the left-hand side of (3.174) is precisely the definition
of true strain-rate, which is the rate of length change per unit length at the
current configuration. Knowing Dij and specifying a direction ni, the strain-
rate along this direction may be found from (3.174). Using the concept of
stretch ratio λ = ds/dS, where dS does not change with time, (3.174) may be
expressed as

λ̇

λ
= Dijninj (3.175)

In particular, let ni = (1, 0, 0), then (1/ds1)((D/Dt)ds1) = λ̇1/λ1 = D11, where
D11 is time rate of change (extension or contraction) per unit length of an
element, which at time t is oriented along the x1 axis. A similar interpretation
applies to D22 and D33.
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To see the physical meaning of the off-diagonal terms of the Dij matrix, let
φ = 90◦ in (3.173). Then, the two line elements are perpendicular to each other
at time t. In this case, (3.173) reduces to

−Dφ
Dt
= 2Dijn

(1)
i n(2)j (3.176)

In particular let n(1)i be along the x1 axis and n(2)i be along x2, then

−Dφ
Dt
= 2D12 (3.177)

It is seen that D12 is the shear rate. The quantity −Dφ/Dt is the rate of change
of the right angle between the two elements dx(1)i and dx(2)i . The negat-
ive sign means that the angle φ is decreasing. If we let θ = 90◦ − φ, then
Dθ/Dt = −Dφ/Dt, that is, θ is increasing. A similar interpretation applies to
D13 and D23.

EXAMPLE 3.7 Show that the necessary and sufficient condition for rigid-
body motion of a continuum is Dij = 0.

Proof

The length ds of a deformed line element is

ds2 = dxidxi (a)

Material differentiation of (a) yields

D
Dt
(ds2) = D

Dt
(dxidxi) = 2

D
Dt
(dxi)dxi = 2vi,jdxjdxi (b)

wherewe used (3.165). We observe that the last expression of (b) is symmetric
in i and j and it may be further written as

D
Dt
(ds2) = (vi,j + vj,i)dxidxj = 2Dijdxidxj (c)

In (c), dxi is a vector connecting two neighboring points and it is arbitrary and
nonzero. The quantityD(ds2)/Dt is 0, if and only ifDij = 0. ButD(ds2)/Dt = 0
implies that the length of an arbitrary line element in a body does not change,
which precisely is the definition for a rigid body.
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3.15 Physical Significance of the Spin Tensor

Consider a pure rigid-body rotation, which is a special case of motion of a
continuum. Let the motion be described by

xi = QiR(t)XR (3.178)

where QiR is a function of time t and is orthogonal such that

QiR(t)QjR(t) = δij, QiR(t)QiS(t) = δRS, and |QiR| = 1 (3.179)

Differentiating (3.178) with respect to time, we obtain

vi = Q̇iRXR where Q̇iR = d
dt

QiR (3.180)

In the above expression, the velocity is expressed in the material system XR
that does not change with time.
On the other hand, the velocitymay be expressed in the spatial description.

To show this, we invert (3.178) to yield

XR = QjRxj (3.181)

By substitution, we obtain from (3.180) and (3.181)

vi = Q̇iRQjRxj (3.182)

We see that the velocity is in the spatial description in (3.182).
If we differentiate the first equation of (3.179), we find

�ij = Q̇iRQjR = −QiRQ̇jR (3.183)

From (3.183), we see that the quantity �ij is antisymmetric. Substituting
this result back into (3.182), we find that rigid-body rotation of a continuum
is governed by the following velocity field

vi = �ij(t)xj (3.184)

At any instant of time t, the increment of (3.184) can be comparedwith (3.165)
and (3.169). This can be seen in the case of rigid-body rotation Lij =Wij = �ij
andDij = 0, where the spin tensor can be identified with the angular velocity
of the rigid-body motion. The angular velocity tensor�ij is further related to
the velocity gradient through (3.168). Since �ij is antisymmetric, it has only

© 2005 by Chapman & Hall/CRC Press



Motion and Deformation 129

three nonzero independent components in the off-diagonal terms. In terms
of the dual vector ωk as in (3.158), the matrix of �ij is

�ij =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0


 (3.185)

Also, using (3.157), we form

eijm�ij = −eijmeijkωk = −2δmkωk (3.186)

or

ωk = − 1
2 eijk�ij (3.187)

Substituting (3.157) into (3.184), the particle velocity is now given by

vi = −eijkωkxj = ekjiωkxj or v = ω× x (3.188)

where ω is the angular velocity vector of the rigid-body rotation.
We note that in a general motion of a continuum, W is not equal to � and

is determined by (3.168), expressed in terms of velocity gradients. The dual
vector ofW is given by

wk = − 1
2 eijk

1
2 (vi,j − vj,i) = − 1

2 eijkvi,j = 1
2 ejikvi,j (3.189)

or

w = 1
2 Curl v (3.190)

This is the vorticity vector, which is frequently used in fluid mechanics.

3.16 Expressions for D and W in Terms of F

Although (3.167) and (3.168)maybeused todescribe a continuumundergoing
general motions, we derive here the expressions of D andW in terms of the
deformation gradient F. We do this because F has been used extensively in
the description of deformation. The velocity gradient Lmay be written as

L = ∂v
∂x
= ∂v
∂X
· ∂X
∂x
= Ḟ · F−1 = −F · (F−1)· (3.191)
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where the last equality has been obtained from the differentiation of
F · F−1 = 1. If we use the right polar decomposition of F given by (3.26),
then (3.191) becomes

L = −(R ·U) · ((R ·U)−1)· = −R ·U · (U−1 · R−1)·
= −R ·U · [(U−1)· · R−1 +U−1 · (R−1)·] = −R ·U · (U−1)· · RT − R · ṘT

= R · U̇ ·U−1 · RT + Ṙ · RT (3.192)

In the derivation of (3.192), we recognized the relation R−1 = RT and
used the results obtained from the differentiation of relations U · U−1 = 1
and R · RT = 1. We now take the transpose of (3.192) to yield

LT = R · (R · U̇ ·U−1)T + (Ṙ · RT)T (3.193)

Therefore, from (3.192) and (3.193), we obtain

D = 1
2 (L+ LT) = 1

2R · (U̇ ·U−1 +U−1 · U̇) · RT (3.194)

and

W = 1
2 (L− LT) = 1

2R · (U̇ ·U−1 −U−1 · U̇) · RT + Ṙ · RT (3.195)

Similarly, by use of the left polar decomposition (3.27), we may show that

D = 1
2 (V̇ ·V−1 +V−1 · V̇ +V · Ṙ · RT ·V−1 −V−1 · Ṙ · RT ·V) (3.196)

and

W = 1
2 (V̇ ·V−1 −V−1 · V̇ +V · Ṙ · RT ·V−1 +V−1 · Ṙ · RT ·V) (3.197)

EXAMPLE 3.8 Show that the spin tensorW describes the angular velocity of
the principal axes of the rate of deformation tensor D.

Proof

Let ni be a normalized eigenvector of Dij and ni = dxi/ds. We take the
material derivative of ni and write

ṅi = D
Dt

(
dxi
ds

)
= 1

ds
D
Dt
(dxi)− 1

ds2
D
Dt
(ds)dxi = 1

ds
vi,jdxj − 1

ds
D
Dt
(ds)

dxi
ds

= vi,jnj − λ̇
λ
ni = vi,jnj −Djknjnkni = (Dij +Wij)nj −Djknjnkni (a)
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Note that, in the derivation of (a), we used λ = ds/dS, λ̇ = D
Dt
(ds)/dS and

(3.175). Denoting by n(p)i (for p = 1, 2, 3) the eigenvectors of Dij, we write

(Dij −D(p)δij)n
(p)
j = 0 (b)

where D(p) is the corresponding principal value of Dij. Using (b), we replace

Dijn
(p)
j byD(p)n

(p)
i , andusing relationn(p)i n(p)j = δij given by (2.86), equation (a)

may be written as

ṅ(p)i = D(p)n
(p)
i +Wijn

(p)
j −D(p)n

(p)
k n(p)k n(p)i =Wijn

(p)
j

= −eijmwmn
(p)
j = eijkwjn

(p)
k (c)

In the symbolic notation, (c) is written as

ṅ(p) = w × n(p) (d)

This expression shows that w is the angular velocity of n(p), which is a
principal direction of the rate of deformation tensor D.

3.17 Material Derivative of Strain Measures

We introduced several strain measures in earlier sections of this chapter.
In this section, we explore the relationships between thematerial derivatives,
denoted by adot, ofC andE and the rate of deformationD. Let us differentiate
(3.40) first to obtain

ĊRS = ∂xi
∂XR

∂vi
∂XS
+ ∂vi
∂XR

∂xi
∂XS
= ∂xi
∂XR

∂vi
∂xk

∂xk
∂XS
+ ∂vi
∂xk

∂xk
∂XR

∂xi
∂XS

=
(
∂vi
∂xk
+ ∂vk
∂xi

)
∂xi
∂XR

∂xk
∂XS
= 2Dik

∂xi
∂XR

∂xk
∂XS

(3.198)

We then differentiate (3.100) and find

2ĖRS = ĊRS (3.199)

Summarizing (3.198) and (3.199), we have

ĖRS = 1
2
ĊRS = Dik

∂xi
∂XR

∂xk
∂XS

(3.200)

Equation (3.200) relates the material derivatives ĖRS and ĊRS to the rate of
deformation Dij.
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EXAMPLE 3.9 Show that the material derivative of the Jacobian is given by

DJ
Dt
= J

∂vk
∂xk

(a)

Proof

DJ
Dt
= D|∂xi/∂XR|

Dt
= ∂J
∂(∂xk/∂XS)

D(∂xk/∂XS)

Dt
= ∂J
∂(∂xk/∂XS)

∂vk
∂xm

∂xm
∂XS

(b)

Using (2.76), the expression ∂J/∂
(
∂xk
∂XS

)
in (b) is the cofactor of matrix ∂xk

∂XS
,

and according to (2.84), we write

∂J
∂(∂xk/∂XS)

= J
∂XS

∂xk
(c)

Substituting (c) into (b), we obtain (a).

3.18 Material Derivative of Area and Volume Elements

We first find the material derivative of an area element. The deformed and
initial areas are related by Nanson’s formula (3.92), and the differentiation
of (3.92) leads to

D
Dt
(dai) = D

Dt

(
J
∂XR

∂xi
dAR

)
=
(
DJ
Dt
∂XR

∂xi
+ J

D
Dt

(
∂XR

∂xi

))
dAR (3.201)

Deriving an expression to represent the last term of (3.201), we differentiate
the expression

∂xi
∂XR

∂XR

∂xj
= δij (3.202)

to obtain

D
Dt

(
∂xi
∂XR

)
∂XR

∂xj
+ ∂xi
∂XR

D
Dt

(
∂XR

∂xj

)
= 0 (3.203)

This equation may be further simplified to yield

∂vi
∂xj
+ ∂xi
∂XR

D
Dt

(
∂XR

∂xj

)
= 0 (3.204)
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which reduces to

D
Dt

(
∂XR

∂xj

)
= −∂vi

∂xj

∂XR

∂xi
(3.205)

Substituting (3.205) and the expression of Example 3.9 into (3.201) to obtain

D
Dt
(dai) =

(
DJ
Dt
∂XR

∂xi
+ J

D
Dt

(
∂XR

∂xi

))
dAR

= J
∂vk
∂xk

∂XR

∂xi
dAR − J

∂vk
∂xi

∂XR

∂xk
dAR = ∂vk

∂xk
dai − ∂vk

∂xi
dak (3.206)

we may conclude that the material rate of an area element is

D
Dt
(dai) = ∂vk

∂xk
dai − ∂vk

∂xi
dak (3.207)

Finally, let us consider the material derivative of the volume element.
Since dV = J dV0, we can differentiate the equation to obtain

D(dV)
Dt

= D
Dt
(JdV0) = DJ

Dt
dV0 = J

∂vk
∂xk

dV0 = ∂vk
∂xk

dV = DkkdV (3.208)

The material derivative of the logarithmic volumetric strain is then

D
Dt
[ln(dV)] = 1

dV
D(dV)
Dt

= vk,k = Div v = Dkk (3.209)

All of the last three forms in (3.209) have been used in the continuum
mechanics literature. When there is no volume change, we have from (3.208)
or (3.209), vk,k = Dkk = Div v = 0. This is a necessary and sufficient condition
for the material element to undergo no volume change. We note that a mate-
rial element undergoing no volume change ismerely a geometrical condition.
It has no implication as to whether the material is compressible or not. But,
when a material element does not suffer any volume change in all loading
conditions, the material is then incompressible.
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Problems

(1) In the deformation defined by

x1 = λ1X1, x2 = λ2X2, x3 = λ3X3

find the expressions for the following tensors: F,C,U,R,whereλi are constants.
If λ1 = 1.2, λ2 = 0.8, and λ3 = 1, sketch the deformed shape of a unit cube.

(2) In the deformation of problem 1with λ1 = 1.2, λ2 = 0.8, and λ3 = 1, determine
thedeformed length of adiagonal connectingpointO (0, 0, 0) to pointC (1, 1, 1).
Determine also the final orientation of this diagonal.

(3) Consider the following deformation and refer to Figure 3.16

x1 = λ1X1 + X2 tan γ , x2 = λ2X2, x3 = λ3X3

where λi and γ are constants. Sketch the deformed shape of square OABC
in the X1 − X2 plane. The sides are initially of unit length.

X3

X1

X2

B

A
O

C

FIGURE 3.16

(4) For the simple shearingdeformationgivenby x1 = X1+kX2, x2 = X2, x3 = X3,
where k is a constant, find the components ofC in terms of k and determine the
eigenvalues and eigenvectors of C. Discuss the eigenvalues and eigenvectors
of C as k varies from negative to positive and from small to large values.

(5) For the simple shearingdeformationgivenby x1 = X1+kX2, x2 = X2, x3 = X3,
where k is a constant, represent by a sketch the deformed area to which the
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(0,1,0)
X2

A

B

O

C (0, 0, 1)

(1, 0, 0)

X1

X3

FIGURE 3.17

original area OABC transforms (see Figure 3.17). Obtain an expression to
describe the direction of the line element OA after deformation.

(6) Consider the following deformation

x1 =
√
2X1 + 3

4X2, x2 = X1 − 3
4X2 + 1

4X3, x3 =
√
2X3

Find (a) the direction after the deformation of a line element, which is initially
oriented with a direction ratio 1:1:1; (b) the stretch ratio of this line element.

(7) By use of the imaging-basedmethod, the locations of the four corners of a two-
dimensional, initially square, material element have been determined after
deformation. The initial and deformed elements are shown in Figure 3.18.
Using the property that F transforms undeformed line elements into deformed
line elements, determine the components of F and C.

(1, 1)
(0.5, 0.9)

(1.3, 1.1)

(0.8, 0.2)

C

C�

B�

D�
(0, 1)

D

A
(0, 0) (1, 0)

B

FIGURE 3.18
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A

O

C
B

D

X1

X2

X3

FIGURE 3.19
Figure for Problem 11.

(8) Show that

FiR =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1




describes a rigid-body rotation.

(9) A square element is subjected to a uniaxial extension in the 1 direction,
and is then rotated about the positive 3 direction through an angle of 90◦.
Determine the deformation gradient F.

(10) In the case of plane strain, experimental measurements give stretch ratios λ
of 0.8 and 1.2 in the X1 and X2 directions, respectively, and 0.6 in the direction
making a 45◦ angle with the X1 axis. Determine the components of C and E.

(11) Consider theunit cube shown inFigure 3.19, whichundergoes thedeformation

x1 = α
(
X1 − 1

2X2

)
, x2 = βX2, x3 = γX3

where α,β, and γ are constants. Determine

(a) the deformed length of diagonal OA

(b) the angle between OB and OD after deformation

(c) the condition that constants α,β, and γ must satisfy if the material is
incompressible.

(12) For the deformation of Problem (11), determine the expressions for compo-
nents of tensors F, C, U, V, R, B, E, and e. Use α = 1.2, β = γ = 0.9.
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(13) In the case of simple shear deformation of a square block governed by

x1 = X1 + kX2, x2 = X2, x3 = X3

where k is constant, determine the extension ratios for the sides and the
diagonals. Find the volume of the block before and after deformation.

(14) The most general two-dimensional homogeneous deformation is defined by
the following linear transformation

x1 = aX1 + bX2, x2 = cX1 + dX2, x3 = X3

Find components of C, B, and E in terms of constants a, b, c, and d.

(15) Consider the following deformation and refer to Figure 3.16

x1 = X1 + 1
2X

2
2, x2 = X2, x3 = X3

(a) Sketch the deformed shape of square OABC in the X1 − X2 plane. The
sides are initially of unit length.

(b) Consider at point O two line elements: dX(1) = dX(1)e1 and
dX(2) = dX(2)e2. Find the deformed line elements dx(1) and dx(2), and
calculate thedot product dx(1) · dx(2). Determine the change in the original
right angle between dX(1) and dX(2) due to deformation.

(c) Do the same thing as in (b) for two line elements dX(1) = dX(1)e1 and
dX(2) = dX(2)e2 located at point C.

(16) In the initial configuration, a circular cylinderwith radiusR has its axis aligned
with the X3 direction. If the cylinder undergoes the deformation

x1 = α{X1 cos(τX3)+ X2 sin(τX3)}
x2 = α{−X1 sin(τX3)+ X2 cos(τX3)}
x3 = βX3

determine the conditions that need to be satisfied by constants α,β, and τ
so that the volume is preserved during deformation. Determine the length of
a line element in the deformed configuration, which initially has unit length
and lies on the surface of the cylinder along the X3 direction. Determine
also the initial length of a line element on the surface of the cylinder that,
in the deformed configuration, has unit length and lies in the X3 direction.

(17) For an isotropic material, the coefficient of thermal expansion is αij = αδij,
where α is a constant. A line element of length L elongates an amount
dL if the temperature is raised by dT, so that dL = αdTL. For a block of
L1 × L2 × L3 subjected to this change in temperature, write down the set
of three transformation equations that describes this deformation. Find the
components of F and determine the current length of a diagonal of the block,
which had an initial length of L.
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(18) If the eigenvalues for U are λ(i)• = 3, 13 , 1 and the corresponding eigen-
vectors are

n(1)
T

u =
[
1
2
,

√
3
2
, 0

]
, n(2)

T

u =
[
−
√
3
2
,
1
2
, 0

]
, n(3)

T

u = (0, 0, 1)

use E = f(U) = ∑
i
f (λi)n

(i)
u ⊗ n(i)u with f (λi) = λκi −1

κ to determine the

components of E with respect to the XR system when κ = 2 and −2.
(19) If the eigenvalues for V are λ(i) = 3, 13 , 1 and the corresponding eigen-

vectors are

n(1)
T

v =
[√

3
2
,
1
2
, 0

]
, n(2)

T

v =
[
−1
2
,

√
3
2
, 0

]
, n(3)

T

v = [0, 0, 1]

use e = f(V) =∑i f (λi)n
(i)
v ⊗n(i)v with f (λi) = (λκi −1)/κ to determine the com-

ponents of e with respect to the xi system when κ = 2 and −2. Assume that
XR and xi coincide for simplicity.

(20) Consider a rectangular triad before deformation. Discuss what would
happen to this triad after deformation. Would it remain rectangular? Under
what condition?

(21) Let the displacement field be given by

u1 = 1
4 (X3 − X2), u2 = 1

4 (X1 − X3), u3 = 1
4 (X2 − X1)

Determine the volume ratio dV/dV0.

(22) Show that the velocity field

v1 = 2x3 − 3x2, v2 = 3x1 − x3, v3 = x2 − 2x1

corresponds to a rigid-body rotation. Determine this rotationbyavector so that
we know the axis of rotation.

(23) Consider the motion

x1 = X1 + 1
2X

2
2t, x2 = X2, x3 = X3

At t = 0, the corners of a unit square are at O (0, 0, 0), A (1, 0, 0), B (1, 1, 0), and
C (0, 1, 0). Sketch the deformed shape of square OABC in the X1 − X2 plane
when t = 1 and when t = 2.

(24) For the motion of Problem (23), determine the velocity and acceleration of
a particle in both material and spatial descriptions.

(25) For the motion of Problem (23), determine the expressions for L, D, andW.

(26) For thevelocityfield v1 = −αx2, v2 = αx1, v3 = β, whereα andβ are constants,
find the components of tensors L, D, andW.
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(27) Let a velocity field be described by vi = αxjµivj, where the scalar α and the
orthogonal unit vectors µ and ν are independent of the coordinate xi. Show
that this velocity field represents simple shearing. Find the principal values
and directions of the rate of deformationDwith respect to the directions of µ
and ν.

(28) Prove that, if the Dij components of a velocity field are independent of
the coordinates and the principal invariants ID and IIID are both 0, the
velocity field represents simple shearing.

(29) Consider the motion

x1 = X1 + kX2
2t
2, x2 = (1+ kt)X2, and x3 = X3

where k is a constant and the material coordinate XR designates the position
of a particle at t = 0.

(a) At t = 0 the corners of a unit square are at O (0, 0, 0), A (0, 1, 0), B (1, 1, 0),
and C (1, 0, 0). Sketch the shape of the square at t = 1.5.

(b) Obtain the spatial description of the velocity and acceleration fields.

(c) Obtain the expressions for the rate of deformationD and the spin tensorW.

(d) What happens to the volume of an infinitesimal element located initially
at (0.6, 0.5, 1)?

(30) In the motion of a continuum, the velocity of a particle is given by

v1 = (x21 + x1x2)e
−kt, v2 = (x22 − x1x2)e

−kt, v3 = 0

where k is a constant and t is time. Determine the following properties at point
(1, 1, 1) when t = 0:

(a) the principal values of the rate of deformationD,

(b) the maximum shear rate.

(31) For the motion of Problem (30), determine the volumetric strain-rate defined
by (1/dV)((D(dV))/Dt), where dV is the current volume of an element.

(32) The velocity field of a continuum is prescribed by

v1 = f (x2)− x2g(r), v2 = x1g(r), v3 = 0 with r = (x21 + x22)
1/2

Determine the rate of deformation D and the vorticity vector w, which is the
dual vector of the spin tensorW. Discuss the type ofmotion that the continuum
is undergoing.

(33) Let the components ofD be

[D] =

α β β

β α β

β β α
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Consider a line element with direction denoted by the unit vector n. If the
rate of extensionof the line element isα, find the condition that the components
of nmust fulfill.

(34) Consider the motion of a deformable element. Do all line elements in
Figure 3.20 spinwith the sameangular velocity? The spin ofwhich line element
does the spin tensorW describe?

A

B C
F

G

D
x1

x2

FIGURE 3.20
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4
Conservation Laws and Constitutive
Equation

4.1 Introduction

This chapter discusses the governing equations of a body undergoing
deformation. The equations include the conservation laws of physics and the
constitutive equations. The conservation laws of physics are the conservation of
mass, linearmomentum, angularmomentum, andenergy. These laws arefirst
developed in the global form and then reduced to the local form. The global form
considers forces, momentum, or energy acted on the whole deformable body,
whereas the local form refers to a generic infinitesimal element of the body.
The conservation laws are applicable to a body of any material. To distin-

guish between deformation of a body made of different materials, we need
constitute equations. As an example, let us consider applying a tensile force
to a long bar. The conservation laws for the problem are the same no matter
what material the bar is made of. However, experiments show that long bars
made of wood or steel will undergo different amounts of deformation when
subjected to the same tensile force. Therefore, in order to accurately describe
the elongation of the bars, we need to introduce constitutive equations, which
accurately represent the two different materials of the bars, that is, we need a
constitutive equation of for wood and another for steel.
Constitutive equations are a set of equations, which describe the thermo-

mechanical properties of amaterial. Depending on the simplicity/complexity
of the material behavior that we wish to describe, we may need one con-
stitutive equation or a set of constitutive equations. Hooke’s law is the most
well-known constitutive equation for solids, and it is also the simplest form
that a constitutive equation for solid can have. However, there is a limitation
to the validity of Hooke’s law. It is usually applicable when the deformation
is small and linearly elastic at room temperature. The equation needs to be
modified or extended to a set of (nonlinear) equations when the deformation
is large and nonelastic and not at constant temperature.
Hooke’s law is also known as the stress–strain relation, because the equation

relates the stress to the strain; for isotropic linearly elastic solid, it is

141
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written as

σ = 2µε+ λIεkk (4.1)

where σ and ε are the engineering stress and strain, respectively, and µ and λ
are the Lamé constants.‘
The effect of temperature on the material behavior is not discussed in this

chapter. Even at constant temperature, thematerial behavior of a realmaterial
can be quite complex. Realistic constitutive equations should be used in
order to obtain useful solutions of engineering problems. In addition to the
elastic behavior, some materials exhibit strong viscous behaviors and some
are significantly influenced by plastic deformation. The viscous behaviors
are observable in the formsof the strain-rate effect, creep and stress relaxation.
These behaviors are usually discussed within the contest of viscoelasticity
and viscoplasticity. The viscoplastic behavior is discussed in Chapter 5. The
subject of plastic deformation is one of the main topics of this book and is
thoroughly discussed in the later part of the book.
In this chapter, wefirst derive the conservation equations. Thebulkmaterial

rate of change is discussed. This is useful in the derivation of the conserva-
tion laws in the global form. In the local form, we derive the conservation
equations for an infinitesimal material element at the deformed configura-
tion. This is a spatial description. We then discuss the material description
of the conservation laws, which leads to the discussion of several stress-
measures, referring to the deformed or undeformed configurations. In the
topics related to constitutive equations, we first discuss the general prin-
ciples, including the principle of material objectivity. We then derive the
constitutive equation for large elastic deformation, which include different
types of formulations. Emphasis is placed upon hyperelasticity and some
examples are given. Finally, the generalized Hooke’s law for infinitesimal
elastic deformation is discussed.

4.2 Bulk Material Rate of Change

We discuss the bulk material rate here, because it is useful when we consider
the global form of the conservation laws in the next section. The bulk material
rate is thematerial rate of changeof aphysical propertydefinedover amaterial
body. Referring toFigure 4.1, we let thematerial bodyoccupy the space shown
by the solid line at time t and let the body occupy the space shown by the
dashed line at time t+�t. The volume and surface of the body at t and t+�t
are (V,S) and (V′, S′), respectively. Let φ(xi, t) be a property of the continuum,
which is a tensor quantity. Considering the volume integral

I =
∫
V
φ dV (4.2)
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�

∆V2

∆V1

dS

dS
xi

xi + vidt = xi + ∆xiS2

S1

n
vdt

V, S (at t)

V �, S� (at t + ∆t)

n

vdt

x1

x2

x3

FIGURE 4.1
Bulk material rate of change.

we are then interested in finding the derivative DI/Dt. To fix ideas, let us
assume that φ = ρ(xi, t) is the density of the continuum, then the integral
I = ∫V ρ dV is the total mass of the body. The derivative of (4.2) is

DI
Dt
= lim
�t→0

[∫V′ φ(xi +�xi, t+�t)dV′ − ∫V φ(xi, t)dV]
�t

= lim
�t→0

[∫V φ(xi, t+�t)dV − ∫V φ(xi, t)dV]
�t

+ lim
�t→0

[∫V′ φ(xi +�xi, t+�t)dV′ − ∫V φ(xi, t+�t)dV]
�t

(4.3)

In the second equality of (4.3), the term
∫
V φ(xi, t + �t)dV has been added

and subtracted. We now find physical interpretations for the terms of (4.3).
Letting V = υ +�V1, V′ = υ +�V2, then υ is the common volume of V and
V′ and is denoted by the shaded area in Figure 4.1; �V1 is the volume in V
and �V2 is the volume in V′ both of which are denoted by the moon-shaped
area. Equation (4.3) may be interpreted as

DI
Dt
= lim
�t→0

(Total mass in V at t+�t− Total mass in V at t)
�t

+ lim
�t→0

(Total mass in V′ at t+�t− Total mass in V at t+�t)
�t

= (Rate of increase of mass in fixed region V)

+ lim
�t→0

(Total mass in �V2 at t+�t− that in �V1 at t+�t)
�t

(4.4)
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where the last term is the net amount of mass increased in V per unit time.
Equation (4.3) may then be written as

DI
Dt
=
∫
V

∂φ

∂t
dV + lim

�t→0

(
∫
�V2

φ dV − ∫
�V1

φ dV)

�t

=
∫
V

∂φ

∂t
dV + lim

�t→0

[∫S2 φv�t · ndS+ ∫S1 φv�t · (ndS)]
�t

(4.5)

Note that the surface S of the body at time t is seen in Figure 4.1 to be divided
into S1 and S2 so that S = S1+S2. Aparticle on the surface S2 has coordinates
xi with velocity v, and the particle moves to a new position xi + �xi during
the time interval �t, and we write xi + vi�t = xi + �xi. Denoting the area
element at this particle by dS and its unit normal by n, we observe that this
area element sweeps through a volume �V = v�t · ndS during the time
interval�t, and area S2 sweeps through volume�V2. The same thingmay be
said of particles on surface S1, except that the scalar product�V = v�t ·ndS
is negative. This may be seen from Figure 4.1, because vectors n and v form
an obtuse angle. Thus, during time interval �t, surface S1 sweeps through
volume �V1. The two integrals within the parenthesis in (4.5) can then be
added to form one integral and the equation becomes

DI
Dt
=
∫
V

∂φ

∂t
dV +

∫
S
φvini dS =

∫
V

∂φ

∂t
dV +

∫
V
(φvi),i dV

=
∫
V

(
∂φ

∂t
+ φ,ivi + φvi,i

)
dV (4.6)

The Gauss theorem discussed in Section 1.8.3 was used in the derivation
of (4.6), which may be further written as

D
Dt

∫
V
φ dV =

∫
V

(
Dφ
Dt
+ φvi,i

)
dV (4.7)

This is the material derivative of the integral of a property φ defined over
volume V. We used φ = ρ in the above derivation for easy interpretation,
but (4.7) is valid for any scalar property of the material.
We now consider an alternative derivation of (4.7). Let I = I(t) which,

in general, is a function of time and we write

I =
∫
V
φ dV =

∫
V0

φ(XR, t)det FdV0 (4.8)

In arriving at the last equality of (4.8), (3.82) and the coordinate transformation
XR = XR(xi, t) was applied. Noting that V0 is time independent, we
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differentiate (4.8) to obtain

DI
Dt
=
∫
V0

[
Dφ
Dt

det F + φ D
Dt
(det F)

]
dV0 (4.9)

To further reduce equation (4.9) to a simple form, we apply the following
expression that was deduced in Example 3.9

DJ
Dt
= J

∂vk
∂xk

(4.10)

Note that J = det F. Using (4.10), (4.9) becomes

DI
Dt
=
∫
V0

[
Dφ
Dt

det F + φ det F vi,i

]
dV0 =

∫
V0

[
Dφ
Dt
+ φvi,i

]
det FdV0 (4.11)

Therefore, we may conclude that

DI
Dt
=
∫
V

[
Dφ
Dt
+ φvi,i

]
dV (4.12)

which is the same as (4.7).

4.3 Conservation Laws

There are three conservation laws from physics, and they are valid for all
materials. They are: (i) the conservation of mass, (ii) the conservation of
momentum, and (iii) the conservation of energy. These laws are discussed
individually and written in mathematical expressions in this section.

4.3.1 The Conservation of Mass

The mass of a body is preserved when only thermo-mechanical behavior is
being considered. In this case, the rate of change of mass is zero. Setting
φ = ρ in (4.2), the integral I is the mass of the body. The global form of the
conservation of mass is written as

D
Dt

∫
V
ρ dV = 0 (4.13)

Using (4.7), (4.13) may be further written as

D
Dt

∫
V
ρ dV = 0 =

∫
V

(
Dρ
Dt
+ ρvi,i

)
dV (4.14)
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whichmust be true for all volume elements. Thus, the local form (or differential
form) of the conservation of mass is

Dρ
Dt
+ ρvi,i = 0 (4.15)

But, since

Dρ
Dt
= ∂ρ(xi, t)

∂t
+ ∂ρ

∂xj
vj (4.16)

we obtain from (4.15)

∂ρ

∂t
+ ∂(ρvi)

∂xi
= 0 (4.17)

Equation (4.17) is known as the continuity equation in fluid mechanics.

4.3.2 The Conservation of Momentum

We need to consider both the conservation of linear momentum and angular
momentum. The rate of change of linear momentum is equal to the resultant
force and the conservation equation is

D
Dt

∫
V
ρvi dV =

∫
V
bi dV +

∫
S
t(n)i dS (4.18)

Equation (4.18) is the conservation of linear momentum in the global form. The
left-hand side of (4.18) is the rate of change of linear momentum. The first
term on the right-hand side is the total body force and the second term is
the total surface traction. Using (2.8) and an identity proven in Example 4.1,
(4.18) may be written as

∫
V
bi dV +

∫
S
σkink dS = D

Dt

∫
V
ρvi dV =

∫
V
ρ
Dvi
Dt

dV (4.19)

or, by use of the Gauss theorem, we obtain

∫
V

(
bi + σki,k − ρDviDt

)
dV = 0 (4.20)

In the local form, (4.20) reduces to

σki,k + bi = ρDviDt
(4.21)

which is known as the equation of motion.
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The conservation of angularmomentum states that the rate of change of the
angular momentum is equal to the sum of moments of forces acting on the
body. This law leads to the symmetry of stress tensor and has been discussed
in Section 2.6 for the case whenmaterial element is in equilibrium. In the case
of material element in motion, we have∫

V
ρeijkxibj dV +

∫
S
eijkxit

(n)
j dS = D

Dt

∫
V
ρeijkxivj dV (4.22)

The first term on the left-hand side of (4.22) denotes the moment due to the
body force, the second term denotes the moment due to surface traction, and
the term on the right-hand side denotes the rate of change of the angular
momentum. Using (2.8) and the Gauss theorem, (4.22) is written as

∫
V

[
ρeijkxibj + ∂

∂xm
(eijkxiσmj)

]
dV =

∫
V
ρeijk

D
Dt
(xivj)dV

=
∫
V
ρeijk

(
vivj + xi

Dvj
Dt

)
dV (4.23)

in which ρeijkvivj = 0. Hence,

∫
V
eijkxi

{
σmj,m + bj − ρ

Dvj
Dt

}
dV +

∫
V
eijkσji dV = 0 (4.24)

By use of the equation of motion (4.21), the first integral of (4.24) vanishes,
and therefore,

eijkσij = 0 (4.25)

which leads to

σij = σji (4.26)

using an argument similar to that used in Section 2.6. Thus, we have shown
that the conservation of angular momentum leads to the symmetry of the
stress tensor for a body in motion.

EXAMPLE 4.1 Show that D/Dt
∫
V ρφ dV =

∫
V ρ(Dφ/Dt)dV, where φ is

a physical property defined in V.

Proof

From (5.7), we have

D
Dt

∫
(ρφ)dV =

∫ (
D
Dt
(φρ)+ φρvi,i

)
dV =

∫
V

{
φ

(
Dρ
Dt
+ ρvi,i

)
+ ρDφ

Dt

}
dV

(a)
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In the last equality, Dρ/Dt + ρvi,i = 0 due to conservation of mass. Hence,
(a) reduces to

D
Dt

∫
V
ρφ dV =

∫
V
ρ
Dφ
Dt

dV (b)

4.3.3 The Conservation of Energy

The law of conservation of energy is the first law of thermodynamics.
According to this law, the sum of material derivatives of the internal and
kinetic energies is equal to the sum of the rate of work of body and surface
forces plus all other energies that enter the body per unit time. Other ener-
gies may include thermal, electrical, magnetic, or chemical energies. In this
elementary text, we consider only the thermal energies and write

DE
Dt
+ DK

Dt
= DW

Dt
+ DQ

Dt
(4.27)

The equation is now explained term by term. E denotes the internal energy
of the material element and is an extensive quantity, that is, an internal energy
density εmay be defined either per unit volume or per unit mass. In the case
that ε is defined per unit mass, we write

E =
∫
V
ρε dV (4.28)

An extensive quantity is doubled if the mass or volume is doubled. On the
other hand, the density cannot be defined for an intensive quantity. Examples
of intensive quantities are temperature and pressure. The internal energy
includesall formsof energy ina systemother thankinetic energyandpotential
energy. It represents energy modes on the microscopic level such as energy
associated with nuclear spin, molecular binding, molecular translation and
rotation, and molecular vibration, etc.
The kinetic energy is related to the motion of the macroscopic element and

is written as

K = 1
2

∫
V
ρvivi dV (4.29)

The second term in (4.27) is the rate of change of the kinetic energy and the
third term is the rate of work due to external forces and is written as

DW
Dt
=
∫
V
bivi dV +

∫
S
t(n)i vi dS (4.30)

and the last term of (4.27) is the rate of heat supply.
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There are two categories of heat supply: the heat flowing across the
boundary and the heat source. The heat flowing through area element dS is
−hinidS, where hi is the heat flux vector and the direction of hi is the direction
of the heat flow. The magnitude of hi is the amount of heat per unit time per
unit area normal to the direction of heat flow. Therefore, the part of DQ/Dt
due to conduction is −∫S hini dS. We note that heat flowing into the volume
element is considered positive. Since the angle between hi and ni is obtuse,
the negative sign is needed tomake the heat flow positive. The part of DQ/Dt
due to distributed heat sources is D/Dt

∫
V ρqdV; where q is the heat supply

per unit mass. Hence, the equation of conservation of energy in the global
form, (4.27), may be written as

D
Dt

∫
V
ρε dV + D

Dt

∫
V

1
2
ρvivi dV

=
∫
V
bivi dV +

∫
S
t(n)i vi dS−

∫
S
hini dS+ D

Dt

∫
V
ρqdV (4.31)

Using the result of Example 4.1, (4.31) becomes

∫
V
ρ
Dε
Dt

dV +
∫
V
ρvi

Dvi
Dt

dV

=
∫
V
(σkivi),k dV +

∫
V
bivi dV −

∫
V
hi,i dV +

∫
V
ρ
Dq
Dt

dV (4.32)

The first integral on the right-hand side of (4.32) is

∫
V
(σkivi),k dV =

∫
V
(σki,kvi + σkivi,k)dV (4.33)

Then, by use of the equation of motion (4.21), the energy balance equation
may be simplified. Hence, (4.32) reduces to

ρ
Dε
Dt
= σkivi,k − hi,i + ρDqDt = σkiDik − hi,i + ρDqDt (4.34)

This is the local form of the first law of thermodynamics for a continuous
medium. Note that no kinetic energy term appears in the local form of the
first law, since it gets canceled out by the rate of work done.
Some remarks are in order. The conservation laws derived in this section

apply to all materials whether they are fluid or solid, dissipative or elastic
(conservative). In particular, the first law as derived applies to all materials
as well as processes reversible or irreversible. The validity of these equations
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is subject to the constraint of a one-to-one and onto transformation which
excludes: (a) diffusion processes; (b) chemical effects such as reactions and
phase changes; (c) electromagnetic phenomena; and (d) polar media, that is,
materials with distributed surface and body moments whose deformation
requires account of local rotation and higher order deformation gradients.
To address these sophisticated behaviors, the equations would have to be
modified. Nevertheless, the equations in this section provide the foundations
for further studies.

4.4 The Constitutive Laws in the Material Description

The local form of conservation laws of Section 4.3 is written based on an
infinitesimal material element at the deformed configuration. In particular,
the forces are applied to the element at the deformed configuration. In the
study of continuummechanics undergoing large deformation, it is necessary
to distinguish between quantities that have been defined with reference to
the deformed configuration and those that have been defined with reference
to the reference configuration. The former is used in the spatial description of
the conservation laws and the latter the material description. It is preferable
by some investigators to use one description for solving certain problems
and use the other description for other types of problems. The decision is
based on the material properties and boundary conditions of the problems.
We like to emphasize that, in the material description of conservation laws,
the forces are still applied to the element at the deformed configuration, but
some quantities as defined are referred to the reference configuration. In this
section, we discuss the material description of the constitutive laws.

4.4.1 The Conservation of Mass

The conservation of mass is expressed as

dm = ρ0 dV0 = ρ dV (4.35)

which, from (3.82), may also be written as

dV
dV0
= det(F) = J = ρ0

ρ
(4.36)

or

ρ0 = ρ det(F) (4.37)
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This is a form of the conservation of mass and it may also be written as

D
Dt
(ρ det F) = 0 (4.38)

4.4.2 The Conservation of Momentum

We first discuss different stress measures referred to either deformed or
undeformed configurations and then express the conservation of momentum
using these stress measures.

4.4.2.1 The Piola–Kirchhoff stress tensors

The stress tensor σij that we have been using so far is called the Cauchy stress
and it is defined based on a deformed element using the spatial description.
The components of σ refer to a Cartesian coordinate system. Sometimes it is
desirable to define stress measures that refer to the undeformed or reference
configuration. In this section, we discuss two such stress measures known as
the first and second Piola–Kirchhoff stresses (or the 1st P–K and 2nd P–K stresses
for short).
In the instantaneous state (at time t), the infinitesimal force dPi transmitted

in the surface element dai is given by

dpi = t(n)i da = σjinj da = σji daj or dp = σT · nda (4.39)

For the same infinitesimal force, wemay define a stress vector t(0)i and a stress
tensor T(0)Ri as in the following expressions. Both new stress vector and stress
tensor refer to the initial state. Thus,

dpi = t(0)i dA = T(0)Ri NR dA = T(0)Ri dAR or dp = (T(0))T ·NdA (4.40)

By comparing (4.39) and (4.40), we see that t(n)i and t(0)i act in the samedirection
but are different in magnitude. T(0)Ri is called the Lagrangian stress, or the 1st
P–K stress, and it is also known as the nominal stress. By use of the Nanson’s
formula (3.92), we may combine (4.39) and (4.40) to obtain

dpi = σji daj = σjiJ ∂XR

∂xj
dAR = T(0)Ri dAR (4.41)

From the last two expressions of (4.41), we find the relation between T(0)

and σ as

T(0)Ri = Jσji
∂XR

∂xj
or T(0) = JF−1 · σ (4.42)
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ti
(0) ti

(n)

ni

da

dA

NR(1, 0, 0)

1

2

3

T11
(0)

T12
(0)

T13
(0)

FIGURE 4.2
First P–K stresses.

With the help of tensor bases, (4.42) may be written as

T(0)Ri eR ⊗ ei = J
∂XR

∂xi
eR ⊗ ei · (σmnem ⊗ en)

= J
∂XR

∂xi
σmn(eR ⊗ ei) · (em ⊗ en) = J

∂XR

∂xi
σmn(ei · em) · (eR ⊗ en)

= J
∂XR

∂xi
σineR ⊗ en = Jσji

∂XR

∂xj
eR ⊗ ei (4.43)

The components of (4.43) lead to the first expression of (4.42). It is useful
at this point to illustrate the physical significance of the components T(0)Ri of
the 1st P–K stress. Consider area element dA with a normal NR = [1, 0, 0].
This area is deformed into da with a normal ni. The stress vectors t

(n)
i and

t(0)i for this case are shown in Figure 4.2. They have the same direction but dif-
ferentmagnitudes. The stress vector t(0)i is then decomposed into components
T(0)11 , T

(0)
12 , and T(0)13 with respect to the xi coordinate system. Using a similar

procedure, we can consider an area with normal NR[0, 1, 0] to define T(0)21 ,
T(0)22 , and T(0)23 ; and a similar approach is used to define T(0)31 , T

(0)
32 , and T(0)33 .

Note that σij is symmetric, but, from (4.42), T(0)Ri is not. Since T(0)Ri is not
symmetric, this tensor is difficult to use in constitutive equations that are to
represent the stress components in terms of the components of the symmetric
strain tensor. This difficulty can be avoided by defining a symmetric stress
called thePiola–Kirchhoff stress (or the 2ndP–Kstress), which isnowexplained.
Before the infinitesimal force dpj transmitted in the deformed configuration
is referred to the surface element in the reference configuration, let it be sub-
jected to the same transformation that changes the deformed side dxi of the
surface element da into the corresponding initial side dXR of dA. That is, we
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�
�
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NR
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~
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FIGURE 4.3
The fictitious force dp̃R.

introduce a fictitious force (or the pseudo-force) dp̃R such that

dp̃R = ∂XR

∂xj
dpj (4.44)

which follows the same transformation as in

dXR = ∂XR

∂xj
dxj (4.45)

In this operation, the external loading is transformed back to the material
description first, and the 2nd P–K stress is then defined per unit undeformed
area. The fictitious force dp̃R and the initial area dAR have been stretched and
rotated the same amount relative to the final position dpi anddai, respectively.
This definition of dp̃R is illustrated in Figure 4.3. Using this fictitious force we
now define the 2nd P–K stress tensorRS which refers to the initial area dAR
and the relation is

dp̃R = SRNS dA = SR dAS or dp̃ = � ·NdA (4.46)

Note that the form of (4.46) is similar to that of (4.40). We now proceed to
determine the relation between RS and σij. Substituting (4.39) into (4.44),
we have

dp̃R = ∂XR

∂xj
σkj dak = ∂XR

∂xj
σkjJ

∂XS

∂xk
dAS (4.47)

Comparing (4.46) and (4.47), we obtain

RS = Jσjk
∂XR

∂xj

∂XS

∂xk
or RS = T(0)Ri

∂XS

∂xi
(4.48)
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It is then easy to show that

T(0)Ri = RS
∂xi
∂XS

(4.49)

which is the relationbetweenT(0)Ri andRS. In the symbolicnotation, theabove
relations may be written as

� = JF−1 · σ · F−T and � = T(0) · F−T where F−T = (F−1)T (4.50)

Using the tensor bases, the 2nd P–K stress is written as

� = RSeR ⊗ eS (4.51)

Various stress measures are further discussed in Chapter 11 referring to
curvilinear coordinates.

EXAMPLE4.2 For theproblemof simple shearing, if theXR and thexi systems
coincide, that is, the 1-axis is horizontal and the 2-axis vertical, discuss the
directions of T(0)Ri and find the equations relating T(0)Ri to the Cauchy stress σij
(note that both σij and T(0)Ri are Cartesian components).

Solution

Figure 4.4 shows that a square element is deformed into a parallelogram by
simple shearing. The initial areas for Face 1 and Face 2 of the square element
are dA(1) and dA(2) and they are deformed into da(1) and da(2), respectively.
The unit normal to the areas are N(1)

R and N(2)
R and they are deformed into

n(1)i and n(2)i , respectively. We now consider the forces and stress components
acting on the two faces of the element.

On face 1: The unit normals are N(1)
R = [1, 0] and n(1)i = [cos γ ,− sin γ ],

where γ is the shearing angle of the element shown in Figure 4.4. The initial
and deformed areas are related by

da(1) cos γ = dA(1) (a)

Using (4.39), the infinitesimal force acting on this face is

dp(1)i = t(n)1i da(1) = σjin(1)j da(1) = (σ1in(1)1 + σ2in(1)2 )da(1) (b)

On the other hand, the same force may be expressed in terms of (4.40) as

dp(1)i = t(0)1i dA(1) = T(0)Ri N
(1)
R dA(1) = T(0)1i dA(1) (c)
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FIGURE 4.4
Stress components in simple shearing.

By comparing (b) and (c), we obtain

(σ1in
(1)
1 + σ2in(1)2 )da(1) = T(0)1i dA(1) (d)

which, by use of (a), may be simplified to yield

σ1i cos γ + σ2i(− sin γ ) = T(0)1i cos γ (e)

From (e), we obtain

T(0)11 = σ11 − σ21 tan γ and T(0)12 = σ12 − σ22 tan γ (f)

On face 2: The unit normals are N(2)
R = [0, 1] and n(2)R = [0, 1], and the area

does not change, so that da(2) = dA(2). Following the same procedure as in
Face 1, we find

dp(2)i = t(n)2i da(2) = σjin(2)j da(2) = σ2in(2)2 da(2) = σ2i da(2) (g)

dp(2)i = t(0)2i dA(2) = T(0)Ri N
(2)
R dA(2) = T(0)2i N

(2)
2 dA(2) = T(0)2i dA(2) (h)

From (g) and (h), we obtain

σ2i da(2) = T(0)2i dA(2) = T(0)2i da(2) with dA(2) = da(2) (i)

Therefore, we find

σ2i = T(0)2i , σ21 = T(0)21 , σ22 = T(0)22 (j)
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We now summarize the stress components found from (f) and (j) as

T(0)11 = σ11 − σ21 tan γ , T(0)22 = σ22, T(0)12 = σ12 − σ22 tan γ

T(0)21 = σ21 = σ12 and T(0)12 �= T(0)21 (k)

We remark that on Face 1, the normal n(1) is not in the direction of any xi axis.
The stress vector t(n)1 is further related to vectors ti, by use of (2.6), acting
on cross-sections of the material element that are parallel to the coordinate
planes of the xi system, and the vectors ti further define the components of
the Cauchy stress. On the other hand, sinceN(1) is in the direction of X1, t(0)1

is already acting on a plane parallel to a coordinate plane, and, therefore, its
components with respect to the xi system define the T(0)Ri stress.

EXAMPLE 4.3 Find the stress components of Example 4.2 using (4.42).

Solution

From (3.20), the simple shear may be described by

x1 = X1 + X2 tan γ , x2 = X2 (a)

The deformation gradient is

[F] =
[
1 tan γ
0 1

]
with J = |F| = 1 (b)

From (4.42), we write

σij = J−1 ∂xi
∂XR

T(0)Rj = FiRT
(0)
Rj (c)

The components are

σ11 = F1RT
(0)
R1 = F11T

(0)
11 + F12T

(0)
21 = T(0)11 + T(0)21 tan γ (d)

σ12 = F1RT
(0)
R2 = F11T

(0)
12 + F12T

(0)
22 = T(0)12 + T(0)22 tan γ (e)

σ21 = F2RT
(0)
R1 = F21T

(0)
11 + F22T

(0)
21 = T(0)21 (f)

σ22 = F2RT
(0)
R2 = F21T

(0)
12 + F22T

(0)
22 = T(0)22 (g)

These results are the same as those obtained in Example 4.2.
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EXAMPLE 4.4 For the problem of simple shearing discussed in Example 4.2,
find the components of the 2nd P–K stress RS.

Solution

Using the expression for F found in Example 4.3 and noting that J = |F| = 1,
we find

[F]−1 = ∂XS

∂xk
=
[
1 − tan γ
0 1

]
(a)

From (4.50) we have

RS = T(0)Ri
∂XS

∂xi
(b)

Using (a), (b) reduces to

[] =

T(0)11 − T(0)12 tan γ T(0)12

T(0)21 − T(0)22 tan γ T(0)22


 (c)

Using (k) of Example 4.2, we obtain from (c)

11 = T(0)11 − T(0)12 tan γ = σ11 − 2σ12 tan γ + σ22 tan2 γ

12 = T(0)12 = σ12 − σ22 tan γ

21 = T(0)21 − T(0)22 tan γ = σ12 − σ22 tan γ = 12

22 = T(0)22 = σ22

(d)

EXAMPLE 4.5 In the case of uniform extension along the 1-direction, the
applied tensile force is P, shown in Figure 4.5(a); the initial dimensions of the
rectangular bar are X1 ×X2 ×X3 with cross-sectional area A; and the current
dimensions are x1 × x2 × x3 with cross-sectional area a. Find the components
of σ, T(0), and�.

Solution

Consider the deformation

x1 = λ1X1, x2 = λ2X2, x3 = λ3X3 (a)
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FIGURE 4.5
Effect of rotation on stress components.

The deformation gradient is

[F] =

λ1 0 0
0 λ2 0
0 0 λ3


 [F−1] =




1
λ1

0 0

0
1
λ2

0

0 0
1
λ3


 (b)

and J = det F = λ1λ2λ3. The components of the Cauchy stress are

σ11 = P
a
, other components = 0 (c)

The components of the 1st P–K stress may be found from (4.42) in the matrix
form as

[T(0)] = J[F−1][σ ] (d)
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and the components of the 2nd P–K stress may be found from (4.50) in the
matrix form as

[] = J[F−1][σ ][F−T] (e)

Substituting the above information into (d) and (e) and performing thematrix
multiplications, we obtain

T(0)Ri = (λ1λ2λ3)



σ11

λ1
0 0

0 0 0
0 0 0


 , RS = (λ1λ2λ3)



σ11

λ21

0 0

0 0 0
0 0 0


 (f)

The nonzero term of T(0) is

T(0)11 = λ2λ3σ11 =
x2
X2

x3
X3
σ11 = a

A
σ11 = a

A

(
P
a

)
= P

A

It is seen that T(0)11 is the nominal stress, that is, force over initial area, but
σ11 is the true stress. This physical interpretation of T(0) is good only for
deformation that does not involve rotation. In the case of simple shear, as
discussed in Example 4.2, no such assertion can be made about the 1st P–K
stress.
The nonzero component of RS is

11 = (λ1λ2λ3)σ11
λ21

= λ2λ3

λ1
σ11 = a

A
σ11

λ1
= a

A
P
a
1
λ1
= 1
λ1

(
P
A

)
(g)

We see from (g) that no clear physical meaning can be associated with 11.
However, from (4.44), the fictitious force is

[dp̃] = [F−1][dp] =




1
λ1

0 0

0
1
λ2

0

0 0
1
λ3




P0
0


 =



P
λ1
0
0


 (h)

Thus, (g) may be written as

11 = dp̃11
A

(i)

It is the component of the fictitious force [dp̃] in the X1 direction divided by
the initial cross-sectional area A.
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EXAMPLE 4.6 Referring to Example 4.5 and Figure 4.5(b), if, after the stretch,
the specimen is rotated 90◦ counterclockwise and the traction P also rotates
with it, determine the expressions for the Cauchy stress, the 1st P–K stress,
and the 2nd P–K stress components after rotation and thereafter discuss the
physical meaning of the three stress tensors.

Solution

Let us call the initial stretching of the specimen discussed in Example 4.5
stage 1, and the quantities of this stage are denoted by

[F(1)] =

λ1 0 0
0 λ2 0
0 0 λ3


 [σ (1)] =



P
a

0 0

0 0 0
0 0 0




[T0(1)] = (λ1λ2λ3)



σ11

λ1
0 0

0 0 0
0 0 0


 =



P
A

0 0

0 0 0
0 0 0




[(1)] = (λ1λ2λ3)



σ11

λ21

0 0

0 0 0
0 0 0


 =




P
Aλ1

0 0

0 0 0
0 0 0




(a)

We now apply a rotation Q to various tensors to obtain the quantities of the
second stage denoted by

F(2) = Q · F(1), σ(2) = Q · σ(1) ·QT

T0(2) = J[F(2)]−1 · σ(2) = J[F(1)]−1 ·Q−1 ·Q · σ(1) ·QT

= J[F(1)]−1 · σ(1) = T0(1) ·QT

�(2) = T0(2) · [F(2)]−T = T0(1) ·QT · [[F(1)]−1 ·Q−1]T
= T0(1) ·QT · [Q−1]T · [F(1)]−T
= T0(1) · [Q−1 ·Q]T · [F(1)]−T = T0(1) · [F(1)]−T = �(1) (b)

It is seen from (b) that under a rotationQ, the Cauchy stress σ transforms like
a second-rank tensor; the 1st P–K stress transforms like a first-rank tensor;
and the 2nd P–K stress transforms like a tensor of rank zero.
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For this example, the rotation is

[Q] =

0 −1 0
1 0 0
0 0 1


 (c)

Using (c) in (b), the stresses in stage 2 are

[σ (2)] = [Q][σ (1)][Q]T

=

0 −1 0
1 0 0
0 0 1





P
a

0 0

0 0 0
0 0 0




 0 1 0
−1 0 0
0 0 1


 =



0 0 0

0
P
a

0

0 0 0


 (d)

[T0(2)] = [T0(1)][Q]T =



P
A

0 0

0 0 0
0 0 0




 0 1 0
−1 0 0
0 0 1


 =



0

P
A

0

0 0 0
0 0 0


 (e)

[(2)] = [(1)] =




P
Aλ1

0 0

0 0 0
0 0 0


 (f)

We see from (d) that the Cauchy stress has a nonzero component in

σ
(2)
22 =

P
a

(g)

which still lives up to the interpretation of true stress even after the rotation.
From (e), we see that the 1st P–K stress has only one nonzero component in

T0(2)12 =
P
A
, other T0(2)Ri = 0 (h)

The second subscript i = 2 indicates that the forceP is in the 2-direction, while
the first subscript R = 1 indicates that this 1st P–K stress component lies on
an undeformed area with normal N = [1, 0, 0]. This nonzero component is,
therefore, a shear stress and it indicates that the interpretation of nominal
stress is no longer appropriate, since a normal stress turns into a shear stress
due to rotation.
We see from (f) that the 2nd P–K stress does not change due to the imposed

rotation. A normal stress before rotation remains a normal stress and a shear
stress before rotation remains a shear stress. It is useful from computational
viewpoint to define the 2nd P–K stress, because it is symmetric, it does not
change due to imposed rotation, and it is the energy conjugate of Lagrangian
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strain E (the concept of work conjugate will be discussed in Section 4.4.3). We
note, however, that the physical meaning of the 2nd P–K stress is not clear.
In equation (i) of Example 4.5, the 11 component of this stress is the fictitious
force divided by initial areaA. The fictitious force dp̃R involves stretching and
rotation of dpi and, therefore, the 2nd P–K stress does not have the physical
meaning of a pure stress. For this reason the 2nd P–K stress should not be
used to define the yield criterion, the fracture criterion, or to set up material
instability conditions.

4.4.2.2 Conservation of momentum

From (4.39) and (4.40) we have

t(n)i da = σjinj da = T(0)Ri NR dA (4.52)

Integrating (4.52) over the surface of the body, we write

∫
S
σijni da =

∫
S0
T(0)Ri NR dA =

∫
V0

∂T(0)Ri
∂XR

dV0 (4.53)

Let Bi be the body force per unit volume of the undeformed body, we then
write

Bi dV0 = bi dV or Bi = bi
dV
dV0
= biJ (4.54)

Integrating (4.54) over the undeformed volume of the body, the resulting total
body force is

∫
V0

Bi dV0 (4.55)

We note that in the above equations, the forces are applied to the deformed
body, although the integrals are over the undeformed body V0. The
momentum is also referred to the deformed body V at time t, and the rate of
change of linear momentum is

D
Dt

∫
V
ρvi dV = D

Dt

∫
V0

ρ0vi dV0 =
∫
V0

ρ0
Dvi
Dt

dV0 (4.56)

Using (4.53), (4.55) and (4.56), the conservation of linear momentum is now

∫
V0

ρ0
Dvi
Dt

dV0 =
∫
V0

∂T(0)Ri
∂XR

dV0 +
∫
V0

Bi dV0 (4.57)
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which leads to the following equation of motion in the material description

∂T(0)Ri
∂XR

+ Bi = ρ0DviDt
(4.58)

In terms of the 2nd P–K stress, the equation of motion becomes

∂

∂XR

(
RS

∂xi
∂XS

)
+ Bi = ρ0DviDt

(4.59)

4.4.3 The Conservation of Energy

The spatial description for the conservation of energy is given in (4.31).
Referring to the undeformed state, this equation can be written as

D
Dt

∫
V0

ρ0ε dV0 + D
Dt

∫
V0

1
2
ρ0vivi dV0

=
∫
V0

Bivi dV0 +
∫
S0
T(0)Ri NRvi dS0 −

∫
S0
hRNR dS0 + D

Dt

∫
V0

ρ0qdV0

(4.60)

where hR is the component of the heat flux vector referring to the material
coordinates, so that hR = (∂XR/∂xi)hi. The energy balance equation (4.60)
further becomes∫

V0

ρ0
Dε
Dt

dV0 +
∫
V0

ρ0vi
Dvi
Dt

dV0

=
∫
V0

Bivi dV0 +
∫
V0

(
vi
∂T(0)Ri
∂XR

+ T(0)Ri
∂vi
∂XR

)
dV0

−
∫
V0

∂hR
∂XR

dV0 +
∫
V0

ρ0
Dq
Dt

dV0 (4.61)

Three terms in the above equation cancel out due to the equation of motion
(4.58). We then obtain

∫
V0

(
ρ0
Dε
Dt
− T(0)Ri

∂vi
∂XR
+ ∂hR
∂XR
− ρ0DqDt

)
dV0 = 0 (4.62)

which leads to the conservation of energy in the local form as

ρ0
Dε
Dt
= T(0)Ri

∂vi
∂XR
− ∂hR
∂XR
+ ρ0DqDt (4.63)
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The rate of work term on the right-hand side of (4.63) should be discussed
further. This term represents part of work rate that affects the strain energy of
a material element (the idea of strain energy is discussed in the later sections
of this chapter). This term is sometimes called the specific rate of work per
unit mass or the stress power. In this term, the rate of work ẇ is obtained
using the 1st P–K stress, which may be expressed in terms of the 2nd P–K
stress using (4.49). Thus,

T(0)Ri
∂vi
∂XR

= T(0)Ri
∂

∂XR

(
Dxi
Dt

)
= T(0)Ri

D
Dt

(
∂xi
∂XR

)
= T(0)Ri

DFiR
Dt

(4.64)

T(0)Ri
∂vi
∂XR

= RS
∂xi
∂XS

∂vi
∂XR

= RS
∂xi
∂XS

∂vi
∂xr

∂xr
∂XR

= 1
2

(
∂vi
∂xr
+ ∂vr
∂xi

)
RS

∂xi
∂XS

∂xr
∂XR

= RS

(
Dir

∂xi
∂XS

∂xr
∂XR

)
= RS

DERS
Dt

(4.65)

Equation (3.200) was used in the last expression of (4.65). In addition, ẇmay
also be expressed in terms of the Cauchy stress. Using (4.42), we write

T(0)Ri
∂vi
∂XR

= ρ0

ρ
σji
∂XR

∂xj

∂vi
∂XR

= ρ0

ρ
σji
∂vi
∂xj
= ρ0

ρ
σjiDij (4.66)

We conclude from (4.64 to 4.66) that the specific rate of work per unit mass
may be written as

ẇ = 1
ρ
σijDij = 1

ρ0
T(0)Ri

DFiR
Dt
= 1
ρ0
RS

DERS
Dt

(4.67)

We have thus found three pairs of work (or energy) conjugates. They are σ and
D, T(0) and F, and� and E. The conjugate stress and strain should be used in
any formulation of continuum mechanics problems.
Using (4.67), the energy balance equation can also be written as

ρ0
Dε
Dt
= RS

DERS
Dt
− ∂hR
∂XR
+ ρ0DqDt (4.68)

4.5 Objective Tensors

Only objective tensors are used to formulate the constitutive equations.
Objectivity is also known as reference frame indifference. Tensor quantities that
depend only on the orientation of the spatial reference frame, which is given
by Q, and not on the other aspects of the motion of the reference frame
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(e.g., translation, velocity and acceleration, angular velocity and angular
acceleration) are said to be indifferent, or objective. Consider two observers
each having his/her own reference frame. Components of a tensor observed
by two different observers are different. This difference is due to the dif-
ferent orientations of the observers but not to relative motions between the
observers. In this contest, we are not talking about the change of coordinate
system (each observer is free to choose a coordinate system), but are con-
cerned with the change of observer positions and orientations, or the change
of reference frame. Therefore, in the discussion of objectivity, transformation
of coordinate system does not play any part.
The reference frame of an observer may be conveniently denoted by (o, x),

where x is a spatial coordinate system with origin O. We may imagine that
one observer is attached to the continuous body and moves with the body
and the other observer is stationary. Then, the two reference frames attached
to the two observers are differed by a translation of the origin and a rotation
of orientation. In the general case, both observers may not be stationary. Let
us introduce two reference frames (o, x) and (ō, x̄) as shown in Figure 4.6.
Consider a particle P in the body. The position vector of the particle in (ō, x̄)
at time t is x̄ and that of the same particle in (o, x) at time t is x. The latter
vector is seen by an observer sitting in (ō, x̄) asQT · x. These position vectors
are thus related by

x̄ = c(t)+QT · x or x̄i = ci +Qjixj (4.69)

where c is the position vector of o in (ō, x̄) andQ is an orthogonal tensor that
gives the orientation of (o, x) relative to (ō, x̄). Thus, (o, x) is different from
(ō, x̄) by a rigid-body translation c and a rotation Q.

Definiton of objective tensors

Ascalar f , a vector v, and a second-rank tensor T are objective, if for reference
frames (ō, x̄) and (o, x), related by (4.69), the corresponding scalar f̄ , vector v̄,

RP

2
–

1
–

3
–

o–

3

1

2
o

x–

c

QT  x.

FIGURE 4.6
Rotation of reference frames.
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and tensor T̄ are related by

f̄ = f (scalar) (4.70)

v̄ = QT · v or v̄i = Qjivj (vector) (4.71)

T̄ = QT · T ·Q or T̄ij = QriQsjTrs (tensor) (4.72)

We note that a rotation of the body is equivalent to the rotation of the refer-
ence frame of the same magnitude but in opposite direction (see Section 1.6).
Therefore, if we consider a rigid rotation of the body with fixed reference
frame, then (4.69) to (4.72) become

x̄ = c(t)+Q · x (4.73)

f̄ = f (scalar) (4.74)

v̄ = Q · v (vector) (4.75)

T̄ = Q · T ·QT (tensor) (4.76)

Either (4.69)–(4.72) or (4.73)–(4.76) may be used to define objectivity. Since
the objectivity should be valid for any rotation Q, we shall make no effort
to specify the sense of rotation, when the objectivity of a quantity is being
investigated.

4.6 Property of Deformation and Motion Tensors Under
Reference Frame Transformation

We investigate the transformation property of tensors F,C, B, v, L,D, andW.
Using (4.69), the transformation equation for FiR is

F̄iR = ∂ x̄i
∂XR

= ∂ x̄i
∂xk

∂xk
∂XR

= Qki(t)
∂xk
∂XR

= QkiFkR (4.77)

which may be written in the matrix form as

[F̄] = [Q]T[F] (4.78)

that is, F behaves like a vector in a rotationQT of the body or a rotation Q of
the spatial reference frame. Note that since Q is arbitrary, we can use either
Q orQT in thediscussion of objectivity. Even though F is a second-rank tensor,
it transforms as a vector in the reference frame transformation (also referred to
as the observer transformation). This rule of transformation should be expected,
because only subscript i in FiR refers to the spatial reference frame.
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In the case of C, the expression is

C̄RS = ∂ x̄m
∂XR

∂ x̄m
∂XS
= Qkm

∂xk
∂XR

Qnm
∂xn
∂XS
= QkmQnm

∂xk
∂XR

∂xn
∂XS

= δkn ∂xk
∂XR

∂xn
∂XS
= ∂xk
∂XR

∂xk
∂XS
= CRS (4.79)

Thus, C transforms like a scalar in the observer transformation. The left
Cauchy–Green deformation tensor B transforms like

B̄ij = ∂ x̄i
∂XR

∂ x̄j
∂XR

= Qki
∂xk
∂XR

Qmj
∂xm
∂XR

= QkiQmjBkm (4.80)

which may be written in the matrix form as

[B̄] = [Q]T[B][Q] (4.81)

Thus, B transforms like a second-order tensor in the observer transformation.
Consider now the observer transformation of velocity vi. Differentiating

(4.69), we have

Dx̄i
Dt
= v̄i = Qjivj + Q̇jixj (4.82)

Inverting the relation (4.69) and letting ci = 0, (4.82) becomes

v̄i = Qjivj + Q̇jiQjkx̄k (4.83)

We see from (4.83) that vi is a first-rank tensor, but under the observer trans-
formation, it is not objective. If it were objective, we would have v̄i = Qji vj
for any Qij. Note that in the rigid rotation of the spatial reference frame, the
spin of the frame is related to Qij through (3.184), (3.187), and (3.188), and
given by Q̇ijQkj = �ik = ekijωj. Therefore,

v̄ = QT · v + ω× r (4.84)

The velocity gradient is now investigated by differentiating (4.83). We obtain

v̄i,r = ∂ v̄i
∂ x̄r
= Qji

∂vj
∂xs

∂xs
∂ x̄r
+ Q̇jiQjr = QjiQsrvj,s + Q̇jiQjr (4.85)

This shows that the velocity gradient tensor is not an objective tensor either
because of the presence of the second term on the right-hand side of (4.85).
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Weshowthat the symmetricpart ofvi,j is objective, whereas the antisymmetric
part of vi,j is not. To this end, we interchange i and r to obtain

∂ v̄r
∂ x̄i
= QjrQsivj,s + Q̇jrQji (4.86)

Adding (4.85) and (4.86), we find

D̄ir = 1
2

(
∂ v̄i
∂ x̄r
+ ∂ v̄r
∂ x̄i

)
= 1

2
{QjiQsrvj,s +QjrQsivj,s} + 1

2
{Q̇jiQjr + Q̇jrQji}

(4.87)

We note that since

D
Dt
(QjiQjr) = Q̇jiQjr + Q̇jrQji = D

Dt
(δir) = 0 (4.88)

Equation (4.87) becomes

D̄ir = QjiQsrDjs (4.89)

Therefore, Dij is an objective tensor. It is not surprising that Dij is objective,
becauseDij represents the rateofdeformation thatdescribes the rateof stretch-
ing of line elements, and this stretching may be measured by a ruler and
is independent of the orientation of the observer. Now, let us consider the
antisymmetric part of vi,j. From (4.85) and (4.86), we obtain

W̄ir = 1
2

(
∂ v̄i
∂ x̄r
− ∂ v̄r
∂ x̄i

)
= QjiQsrWjs + 1

2
(Q̇jiQjr − Q̇jrQji)

= QjiQsrWjs + Q̇jiQjr (4.90)

Because of the presence of the second term, the spin tensor is not objective.
The last expression has been obtained by observing that Q̇jrQji = −Q̇jiQjr. In
the case of rigid-body motion, Lij =Wij = �ij, and (4.90) is reduced to

�̄ir = QjiQsr�js +�ir (4.91)

In the symbolic notation, equations (4.85), (4.89), and (4.90) are written as

L̄ = QT · L ·Q+ Q̇T ·Q, (4.92a)

D̄ = QT ·D ·Q, (4.92b)

W̄ = QT ·W ·Q+ Q̇T ·Q (4.92c)

It is seen that L and W depend on the spin of the rotating system, but D
depends only on the orientation of the reference (spatial) frame. Note that
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for two chosen coordinate systems, L transforms like a second-rank tensor if
Q̇ = 0.

4.7 Objective Rates

In the small strainmechanics, constitutive equations of the rate formhave been
widely used. Investigators have used the stress, stress rate, and higher-order
stress rateson theonehandand the strain, strain-rate, andhigher-order strain-
rates on the other to propose constitutive equations of the following form

f (σ , σ̇ , σ̈ , . . .) = g(ε, ε̇, ε̈, . . .) (4.93)

where f and g are nonlinear functions generally. When themechanics of finite
strain is of interest, we ask the question regarding the appropriate rates to use
in the constitutive equations. We emphasize here that only objective tensors
and objective rates can be used.

4.7.1 Some Objective Rates

Supposing that a symmetric tensor T is an objective tensor, such that

T̄ = QT · T ·Q (4.94)

then, we inquire whether the rate DT/Dt is objective. If this rate is not
objective, then we cannot interpret the physical significance using it. To
answer the above question, we differentiate (4.94) to obtain

DT̄
Dt
= D

Dt
(QT · T ·Q) = Q̇T · T ·Q+QT · Ṫ ·Q+QT · T · Q̇ (4.95)

The superposed “dot” denotes the material derivative. The presence of
Q̇T · T ·Q and QT · T · Q̇ in (4.95) shows that Ṫ is not objective.
To determine an objective derivative, we eliminate Q̇ and Q̇T from (4.95),

since these terms cannot appear in a reference frame transformation. From
equation (4.92a), we obtain

L̄ ·QT = QT · L ·Q ·QT + Q̇T or Q̇T = L̄ ·QT −QT · L (4.96)

By taking the transpose of (4.96), we obtain

Q̇ = Q · L̄T − LT ·Q (4.97)

© 2005 by Chapman & Hall/CRC Press



170 Continuum Mechanics and Plasticity

By substitution, we then have from (4.95)

DT̄
Dt
= (L̄ ·QT −QT · L) · T ·Q+QT · Ṫ ·Q+QT · T · (Q · L̄T − LT ·Q)
= L̄ ·QT · T ·Q−QT · L · T ·Q+QT · Ṫ ·Q+QT · T ·Q · L̄T
−QT · T · LT ·Q

= L̄ · T̄ −QT · L · T ·Q+QT · Ṫ ·Q+ T̄ · L̄T −QT · T · LT ·Q (4.98)

Equation (4.98) can be rearranged into the following form

DT̄
Dt
− L̄ · T̄ − T̄ · L̄T = QT ·

(
DT
Dt
− L · T − T · LT

)
·Q (4.99)

It follows that thederivative ((DT/Dt)−L·T−T·LT) is an objective derivative.
This derivative may also be expressed in the index notation as

DTij
Dt
− vi,k Tkj − Tikvj,k (4.100)

Similarly, we can show that the following rates are objective rates. The
Jaumann rate is given by

T∇ = DT
Dt
−W · T + T ·W and T̄∇ = QT · T∇ ·Q (4.101)

and the convected rate is given by

T∗ = DT
Dt
+ LT · T + T · L and T̄∗ = QT · T∗ ·Q (4.102)

The Jaumann rate defined in (4.101) is based on the spin tensor W. We may
use another tensor ω, which represents the rate of rotation of some physical
quantity to define the same objective rate. In this case, (DT/Dt)−ω·T+T ·ω is
called the co-rotational rate. Thephysical significance andapplication of these
rates will be discussed later in connection with some constitutive models.
Finally, we note that, if T is stress, then these are objective stress rates.

EXAMPLE 4.7 Derive the convected rate.

Solution

We have from (4.92a)

L̄ = QT · L ·Q+ Q̇T ·Q = QT · L ·Q−QT · Q̇ (a)
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Multiplying (a) from the left by Q, we obtain

Q · L̄ = L ·Q− Q̇ or Q̇ = L ·Q−Q · L̄ (b)

Taking the transpose of (b), we have

Q̇T = QT · LT − L̄T ·QT (c)

Hence, after substitution of (b) and (c), (4.95) becomes

DT̄
Dt
= (QT · LT − L̄T ·QT) · T ·Q+QT · Ṫ ·Q+QT · T · (L ·Q−Q · L̄)
= QT · LT · T ·Q− L̄T · T̄ +QT · Ṫ ·Q+QT · T · L ·Q− T̄ · L̄
= QT · (Ṫ + LT · T + T · L) ·Q− L̄T · T̄ − T̄ · L̄ (d)

From (d), we write

DT̄
Dt
+ L̄T · T̄ + T̄ · L̄ = QT ·

(
DT
Dt
+ LT · T + T · L

)
·Q (e)

which shows that (DT/Dt + LT · T + T · L) is an objective rate. In the index
notation, the convected rate is written as

DTij
Dt
+ Timvm,j + Tmjvm,i (f)

EXAMPLE 4.8 Derive the Jaumann rate.

Solution

From (4.92), we have

W̄ = QT ·W ·Q+ Q̇T ·Q = QT ·W ·Q−QT · Q̇ (a)

Multiplying (a) by Q from the left, we have

Q · W̄ =W ·Q− Q̇ or Q̇ =W ·Q−Q · W̄ (b)

Taking the transpose of (b), we obtain

Q̇T = QT ·WT − W̄T ·QT (c)
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Substituting (b) and (c) into (4.95), we find

DT̄
Dt
= (QT ·WT − W̄T ·QT) · T ·Q+QT · Ṫ ·Q+QT · T · (W ·Q−Q · W̄)
= QT ·WT · T ·Q− W̄T · T̄ +QT · Ṫ ·Q+QT · T ·W ·Q− T̄ · W̄
= QT · (Ṫ +WT · T + T ·W) ·Q− W̄T · T̄ − T̄ · W̄ (d)

From (d) we conclude that

DT̄
Dt
+ W̄T · T̄ + T̄ · W̄ = QT ·

(
DT
Dt
+WT · T + T ·W

)
·Q (e)

ButWT = −W, (e) then becomes

DT̄
Dt
− W̄ · T̄ + T̄ · W̄ = QT ·

(
DT
Dt
−W · T + T ·W

)
·Q (f)

Therefore,

T∇ = DT
Dt
−W · T + T ·W (g)

is an objective rate.

4.7.2 Physical Meaning of the Jaumann Stress Rate

Let a body spin with an angular velocity w with reference frame at time t
denoted by xi. Let x̄i be another reference framewhich is attached to the body
and spins with it. Let x̄i coincide with xi at time t, when the stress at a generic
point P in the body is σ̄ij(t) = σij(t). At time t + dt, the stress at particle P is
σ̄ij(t + dt) referred to the rotating axes x̄i. Then, according to Jaumann, the
stress rate may be defined as

σ∇ij = lim
�t→0

1
�t
[σ̄ij(t+�t)− σ̄ij(t)] (4.103)

The relationQij between the two reference frames may be found by consider-
ing the spin of the reference frame (see Figure 4.7)which rotates base vectors ei
into ēi. From (1.22), the relation is

ēi = Qjiej (4.104)
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� dt

ei

dei
e i

–

FIGURE 4.7
Spin of the reference frame.

The angle of rotation isω dt, whereω is the angular velocity. Using n to denote
the unit normal to the plane formed by ei and ēi, the angular velocity vector is

w = ωn = ωniei = wiei (4.105)

Therefore, wi = ωni. Referring to Figure 4.7, we write

ēi = ei + dei = ei +w dt× ei (4.106)

Using (4.104), (4.106) becomes

Qjiej = ei + ωnj dtej × ei = ei + ωnk dt eijkej (4.107)

The components of (4.107) are

Qji = δij + ωnk dteijk (4.108)

which may be rewritten as

Qij = δij − ωnk dteijk (4.109)

Equation (4.109) describes the rotation of the reference frame. This equation
maybe comparedwith (1.118) and the same result canbeobtained from(1.118)
by setting cosα = 1, sin α = α, α = ω dt, and wk = ωnk .
The stress tensor at P at time t+ dt referred to the reference frame xi is

σij(t+ dt) = σij(t)+
Dσij
Dt

dt (4.110)
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The stresses σ̄ij(t+dt)andσij(t+dt), referring to x̄i andxi systems, respectively,
are related by σ̄ij = QpiQqjσpq, so that by use of (4.109), we write

σ̄ij(t+ dt) = QpiQqjσpq(t+ dt)

= (δpi − epimwmdt)(δqj − eqjnwn dt)
{
σpq(t)+ Dσpq

Dt
dt
}

= σij(t)+
{
Dσij
Dt
− epimwmσpj − eqjnwnσiq

}
dt+O(dt2)

(4.111)

Hence, by neglecting the higher order terms in dt and using (4.103), we obtain

σ∇ij =
Dσij
Dt
− epimwmσpj − eqjnwnσiq (4.112)

Noting that

Wjk = −eijkwi and −Wjq =Wqj (4.113)

we then have

σ∇ij =
D
Dt
σij −Wipσpj + σiqWqj (4.114)

This is the Jaumann stress rate and is the same as the expression in (4.101).

4.8 Finite Elasticity

We study the topic of elasticity in the remaining part of this chapter. Elasticity
investigates the specific material behavior which is reversible, that is, if a
material is elastic, then upon the removal of loading, thematerial will recover
its original state. Elastic material is an ideal material and it is a good approx-
imation for most materials in the small strain range. In the finite strain range,
rubber is known to exhibit an elastic behavior to a good approximation. There
are several approaches to formulating the constitutive equation for an elastic
material. The Cauchy elasticity is discussed first and then the hyperelasti-
city. Emphasis is given to hyperelasticity and provide several examples in
the application. Finally, in the last section of this chapter, hypo-elasticity is
discussed, which, strictly speaking, is not elasticity.
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4.8.1 The Cauchy Elasticity

In the investigation of a constitutive equation, we consider the stress and
deformationof an infinitesimalmaterial element. If thematerial is elastic, then
the stress σ is, by definition, a function of the current deformation written as

σ = g(F) (4.115)

where g is a tensor-valued function of F and is in general a nonlinear function.
We use the deformation gradient F to denote deformation for the purpose of
generality, andwe shownext byuse of objectivity that the deformation cannot
be represented by F. Under observer transformation of (4.69), an arbitraryQT,
(4.115) is written in the barred frame as

σ̄ = g(F̄) (4.116)

which by use of (4.71) and (4.72) is

QT · σ ·Q = g(QT · F) (4.117)

or

QT · g(F) ·Q = g(QT · F) (4.118)

for an arbitrary orthogonal Q. Equation (4.118) gives the restriction on the
form of g in (4.115). In particular, if we choose Q = R and, by applying
F = R ·U from the polar decomposition theorem, we obtain

QT · F = RT · F = RT · R ·U = U (4.119)

Note that the observer transformation is valid for any Q, but if we make a
special choice of it, we can observe useful information from this orientation
of the observer. The information is still there, but it cannot be visualized from
another orientation Q. Making use of (4.119), (4.118) becomes

RT · g(F) · R = g(U) (4.120)

Combining (4.115) and (4.120), we obtain

σ = R · g(U) · RT (4.121)

We see from (4.121) that σ depends on a nonlinear function of U and depends
on R explicitly. But, since U is related to C from (3.40) and C is related to E
from (3.100), equivalent forms of (4.121) are

σ = R · f(C) · RT (4.122)
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and

σ = R · h(E) · RT (4.123)

where f is a tensor-valued function of C and h is a tensor-valued function of
E. One of (4.121), (4.122), or (4.123) may be used as the constitutive equation
for anisotropic elastic materials. For a given deformation, R, U, C, and E can
be determined. If explicit functions g, f, or h are known, then by use of one
of the above constitutive equations the stress σ may be determined.
In the case that the material is isotropic, (4.122) may be rewritten as

σ̂ ≡ RT · σ · R = f(C) (4.124)

Following a representation theorem of Rivlin and Ericksen [1] for an isotropic
tensor function of a tensor, (4.124) is written as

σ̂ = ϕ01+ ϕ1C+ ϕ2C2 (4.125)

whereϕ0,ϕ1, andϕ2 are scalar invariant functions of the three principal invari-
ants of C. Equation (4.125) can also be derived by expressing the function f
in (4.124) as a polynomial of C and applying the Cayley–Hamilton theorem
(Section 2.15) successively. From (2.104), we write

C3 = I1C2 − I2C+ I3I (4.126)

where I1, I2, and I3 are principal invariants of C. By successive applications
of (4.126), (4.124) reduces to (4.125). From (4.125), we have

σ = R · σ̂ · RT = R · (ϕ01+ ϕ1C+ ϕ2C2) · RT
= ϕ0R · RT + ϕ1R · C · RT + ϕ2R · C · CT · RT (4.127)

The last term of (4.127), using (3.37), is

R · C · CT · RT = R · C · (RT · R) · CT · RT = (R · C · RT) · (R · C · RT)T = B · BT
(4.128)

Substituting (3.37) and (4.128) into (4.127), we obtain

σ = ϕ01+ ϕ1B+ ϕ2B2 (4.129)

where ϕk = ϕk(I1, I2, I3) and we note that the principal invariants of C and B
are the same. By use of the Cayley–Hamilton theorem, (4.129) may be written
in a slightly different form. From (2.104), we write

B3 − I1B2 + I2B− I31 = 0 (4.130)
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Multiplying (4.130) by B−1, we get

B2 = I1B− I21+ I3B−1 (4.131)

Finally, we substitute (4.131) into (4.129) to obtain

σ = α01+ α1B+ α−1B−1 (4.132)

where

α0 = ϕ0 − ϕ2I2, α1 = ϕ1 + ϕ2I1, α−1 = ϕ2I3 (4.133)

Either (4.129) or (4.132) canbeusedas the constitutive equation for an isotropic
elastic material.

4.8.2 Hyperelasticity

Amaterial is called hyperelastic or Green-elastic if there exists an elastic poten-
tial function, widely known as the strain-energy density functionW , which is
a scalar function of one of the strain or deformation tensors. Hyperelasticity
uses the conservation of energy principle, leaving out the thermal effect. We
postulate that the elasticmaterial is capable of storing strain-energy andwrite

Rate of work
done on body R = Rate of change of

strain-energy in R (4.134)

It may be shown that the strain-energy density is equal to the Helmholz free
energy for isothermal process and is equal to the internal energy for isentropic
process. This is further discussed in a later chapter. But, we mention for now
that the free energy is the portion of internal energy available for doing work
at constant temperature.
If the strain-energy densityW is defined per unit undeformed volume, then

Total strain-energy =
∫

W dV0 =
∫

W
dV0

dV
dV =

∫
ρ

ρ0
W dV (4.135)

The rate of change of the strain-energy is then

D
Dt

∫
ρ

ρ0
W dV =

∫
ρ

ρ0

DW
Dt

dV (4.136)

and the rate of work done is∫
S
t(n)i vi dS =

∫
S
σkinkvi dS =

∫
V
(σkivi),k dV =

∫
V
(σki,kvi + σkivi,k)dV

(4.137)
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But the term
∫
V (σki,kvi)dV in (4.137) cancels out with the kinetic energy term

and the body force term by use of the equation of motion as discussed in
Section 4.3.3. Therefore, the rate of work done that affects the rate of change
of strain-energy is

∫
V
σkivi,k dV (4.138)

Substituting (4.136) and (4.138) into (4.134), this balance of energy in the local
form, is given by

ρ

ρ0

DW
Dt
= σjivi,j = σji ∂vi

∂XR

∂XR

∂xj
(4.139)

or by use of (4.42)

DW
Dt
= ρ0

ρ
σji
∂XR

∂xj

∂vi
∂XR

= T(0)Ri
∂vi
∂XR

= T(0)Ri
∂

∂XR

(
Dxi
Dt

)

= T(0)Ri
D
Dt

(
∂xi
∂XR

)
= T(0)Ri

DFiR
Dt

(4.140)

where T(0)Ri is the 1st P–K stress.
In the case of elasticmaterial, the stress is a function of current deformation.

If the deformation is expressed by the deformation gradient FiR, the strain-
energy densityW is a function of FiR. Thus,

DW(FiR)
Dt

= ∂W
∂FiR

DFiR
Dt

(4.141)

By the substitution of (4.141) into (4.140), we then obtain

(
∂W
∂FiR

− T(0)Ri

)
DFiR
Dt
= 0 (4.142)

Since this equation should hold for all DFiR/Dt and since W and T(0)Ri are
functions of FiR, but independent of DFiR/Dt, the left-hand side of the above
equation must vanish for all arbitrary value of DFiR/Dt. It follows that

T(0)Ri =
∂W
∂FiR

(4.143)

or, by use of (4.42),

σij = ρ

ρ0

∂xi
∂XR

∂W(F)
∂FjR

= ρ

ρ0
FiR

∂W
∂FjR

(4.144)
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This is the most general constitutive equation of an elastic material
undergoing finite deformation if we make use of the strain-energy density
function. In the last step, the symmetric property of σij is invoked.
We now consider the effect of objectivity on the form of strain-energy

functionW . By applying objectivity, we have in the barred reference frame

σij = ρ

ρ0
F̄iR

∂W̄

∂F̄jR
= ρ

ρ0
F̄iR

∂W̄
∂FrS

∂FrS
∂F̄jR

(4.145)

But, from (4.78),

F̄iR = QkiFkR, FrS = QrmF̄mS,
∂FrS
∂F̄jR

= QrmδmjδSR = QrjδSR (4.146)

Hence, after substitution, (4.145) becomes

σ̄ij = ρ

ρ0
QkiFkR

∂W̄
∂FrS

QrjδSR = QkiQrj
ρ

ρ0
FkR

∂W̄
∂FrR

(4.147)

Therefore, by comparing (4.147) with (4.144), we conclude that

σ̄ij = QkiQrjσkr or σ̄ = QT · σ ·Q if W(F) = W̄(F̄) (4.148)

which states that objectivity of the stress tensor is satisfied if the strain-energy
density W is form-invariant with rotation of the spatial reference frame.
Hence,

W̄(F̄) =W(F̄) =W(F) (4.149)

The last equality is equivalent to the condition that

W(QT · F) =W(F) for any orthogonal Q (4.150)

In particular, if we choose Q = R and, by applying F = R ·U from the polar
decomposition theorem, we obtain

QT · F = RT · F = RT · R ·U = U (4.119)

as in the discussion of the Cauchy elasticity. Therefore, by substituting
(4.119) into (4.150), we obtain

W(F) =W(U) (4.151)
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which means that W depends on F only through its dependence on U. But,
since U is related to C by (3.40), the strain-energy density may also be
expressed in terms of C as

W(U) =W(
√
C) = W̃(C) =W(C) (4.152)

The tilde in the last expression has been dropped for simplicity. We may do
this, since the function is as yet unspecified. We have thus shown from the
application of objectivity that the strain-energy density function is a function
of the right Cauchy–Green deformation tensor C. Using this property, we
now have

∂W
∂FjR

= ∂W
∂CST

∂CST
∂FjR

= ∂W
∂CST

∂((∂xi/∂XS)(∂xi/∂XT))

∂(∂xj/∂XR)

= ∂W
∂CST

{
δijδSR

∂xi
∂XT
+ δijδTR ∂xi

∂XS

}

= ∂W
∂CRT

∂xj
∂XT
+ ∂W
∂CSR

∂xj
∂XS
= 2

∂W
∂CSR

∂xj
∂XS

(4.153)

Note that the last equality is obtained by observing the symmetric property
of CRS. Therefore, the stress of equation (4.144) can be written as

σij = 2
ρ

ρ0

∂xi
∂XR

∂xj
∂XS

∂W
∂CRS

(4.154)

In termsof the 2ndP–Kstress tensor, the constitutive equation for hyperelastic
material is given from (4.48) and (4.154) by

RS = Jσjk
∂XR

∂xj

∂XS

∂xk
= 2

∂xj
∂XP

∂xk
∂XQ

∂W
∂CPQ

∂XR

∂xj

∂XS

∂xk

= 2
∂W
∂CPQ

δPRδQS = 2
∂W
∂CRS

(4.155)

Hence,

RS = 2
∂W(C)
∂CRS

= ∂W(E)
∂ERS

(4.156)

where ERS is the Lagrangian strain tensor defined by (3.100). It is seen that
by use of the 2nd P–K stress, the stress is the partial derivative of the strain-
energy density functionwith respect to a deformation tensor. The constitutive
equation is thus greatly simplified. We note that this equation applies to fully
anisotropic elastic materials.
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4.8.3 Isotropic Hyperelastic Materials

A material is said to be isotropic, if its constitutive equation remains form-
invariant with rotation of the material coordinate system XR. This statement
is similar to that of material objectivity. The difference is that we rotate the
material coordinate systemhere. The isotropic statement imposes a constraint
on the constitutive equations (4.154) and (4.156), and, since in hyperelasticity
the stress is expressed in terms of the strain-energy density function, the con-
straint of isotropy is imposed on the strain-energy density W(C). Therefore,
we state that an elasticmaterial is isotropic if its strain-energydensity function
is form-invariant with rotation of the material coordinate system.

THEOREM Anecessary and sufficient condition thatW(C)be form-invariant
with rotation of the material coordinate system is thatW is a function only of
the invariants of CRS, and not a function of the components of CRS.

Proof

From the spectral representation (2.95) of a symmetric second-rank tensor
by its eigenvalues and eigenvectors, we write

CRS =
∑
Q

CQN
(Q)
R N(Q)

S = C1N
(1)
R N(1)

S + C2N
(2)
R N(2)

S + C3N
(3)
R N(3)

S (4.157)

Then, the strain-energy density function is given by

W =W(C1,C2,C3;N
(1)
R ,N(2)

R ,N(3)
R (4.158)

where the eigenvaluesCQ remain invariant on the rotation ofXR; andN
(Q)
R are

the eigenvectors. We nowmake use of a theoremon invariants (seeGreen and
(1),α(2), . . . ,α(m))

ofm vectors α(1),α(2), . . . ,α(m) is invariant under all proper orthogonal trans-
formations if and only if it can be expressed as a function of all possible inner
products α(r) · α(s)(r, s = 1, 2, . . . ,m) and the determinant |α(r)|, that is,

φ = φ(α(r) · α(s), |α(r)|) (4.159)

In the case of (4.158), the eigenvectors are orthogonal so that

N(P)
R N(Q)

R = δPQ and |N(P)
R | = 1 (4.160)

Therefore, the strain-energy function is

W =W(C1,C2,C3) (4.161)
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In the above expression, the indices 1, 2, and 3 are arbitrarily chosen depend-
ing on the designation of the coordinate axes. SinceW must be a symmetric
function of C1,C2, and C3, it must be form-invariant with permutation of the
indices, that is,

W(C1,C2,C3) =W(C1 + C2 + C3,C1C2 + C2C3 + C3C1,C1C2C3) (4.162)

or

W =W(I1, I2, I3) (4.163)

where I1, I2, and I3 are the three principal invariants of CRS defined in
Section 3.6.4 and this concludes the proof of the theorem.

To obtain the constitutive equation for isotropic hyperelastic material, we
consider

∂W
∂CRS

= ∂W
∂I1

∂I1
∂CRS

+ ∂W
∂I2

∂I2
∂CRS

+ ∂W
∂I3

∂I3
∂CRS

(4.164)

where

∂I1
∂CRS

= δRS, ∂I2
∂CRS

= I1δRS − CRS,
∂I3
∂CRS

= cofactor(CRS) = I3C−1RS
(4.165)

The expressions for the three invariants are given in Sections 2.12 and 3.6.4.
In particular, we mention here that

I2 = 1
2 (I

2
1 − CRSCRS) (4.166)

By substitution, we then obtain from (4.156)

RS = 2
∂W
∂CRS

= 2
{
∂W
∂I1

∂I1
∂CRS

+ ∂W
∂I2

∂I2
∂CRS

+ ∂W
∂I3

∂I3
∂CRS

}
(4.167)

or

RS = 2
{
∂W
∂I1

δRS + ∂W
∂I2

(I1δRS − CRS)+ I3
∂W
∂I3

C−1RS
}

(4.168)

To express the above equation in terms of the Cauchy stress, we obtain
from (4.50)

σij = ρ

ρ0

∂xi
∂XR

∂xj
∂XS

RS (4.169)
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Using (4.168), each term in (4.169) needs to bemultiplied by a factor and these
terms are

∂xi
∂XR

∂xj
∂XS

δRS = ∂xi
∂XR

∂xj
∂XR

= Bij = left Cauchy–Green tensor (4.170)

∂xi
∂XR

∂xj
∂XS

CRS = ∂xi
∂XR

∂xj
∂XS

(
∂xk
∂XR

∂xk
∂XS

)
=
(
∂xi
∂XR

∂xk
∂XR

)(
∂xk
∂XS

∂xj
∂XS

)
= BikBkj

(4.171)

∂xi
∂XR

∂xj
∂XS

C−1RS =
∂xi
∂XR

∂xj
∂XS

(
∂XR

∂xk

∂XS

∂xk

)

=
(
∂xi
∂XR

∂XR

∂xk

)(
∂xj
∂XS

∂XS

∂xk

)
= δikδjk = δij (4.172)

By substituting these expressions into (4.168) and (4.169), we obtain

σij = 2√
I3

{
∂W
∂I1

Bij + ∂W
∂I2

(I1Bij − BikBkj)+ I3
∂W
∂I3

δij

}
(4.173)

or

σij = 2√
I3

{(
∂W
∂I1
+ I1

∂W
∂I2

)
Bij − ∂W

∂I2
BikBkj + I3

∂W
∂I3

δij

}
with I3 =

(
ρ0

ρ

)2
(4.174)

Equation (4.174) is the constitutive equation for isotropic hyperelasticity
and we observe that the scalar coefficients of (4.174) are derived from
a single scalar functionW(I1, I2, I3). Equation (4.174) has the same form as the
constitutive equation (4.129) of Cauchy elasticity. But, in the case of Cauchy
elasticity, there are three scalar functions ϕk(I1, I2, I3) which need to be
determined from experiments.
We now discuss the constraints due to incompressibility. Under moderate

stress 10,000 psi (68.9 MPa), the assumption of incompressibility is valid for
rubber. When the material is incompressible, we can write

I3 =
(
ρ0

ρ

)2
= 1 (4.175)

In this case ∂W/∂I3|I3=1 is indeterminate and is no longer a material prop-
erty. Incompressibility is a kinematic constraint expressed by vi,i = Dii = 0.
Themechanical effect of such a constraint is to give rise to an arbitrary hydro-
static pressure −p1 which does no work. From the energy equation (4.34),

© 2005 by Chapman & Hall/CRC Press



184 Continuum Mechanics and Plasticity

the term σkivi,k = σkiDik is not affected by superimposed hydrostatic pressure,
that is,

(σki − pδki)Dik = σkiDik − pδkiDik = σkiDik − pDii = σkiDik (4.176)

Incompressible materials are capable only of isochoric deformations. The
arbitrary hydrostatic pressure is not given by a constitutive equation but is
determined by the equations of motion (or equilibrium) and boundary con-
ditions. In this case, the strain-energy density function is written asW(I1, I2)
and from (4.173) the hyperelastic constitutive equation for incompressible
material is written as

σij = 2{W1Bij +W2(I1Bij − BikBkj)− pδij} (4.177)

where Wi = ∂W/∂Ii. By use of the Cayley–Hamilton theorem (4.177) may
also be written as

σij = −pδij + 2W1Bij − 2W2B−1ij (4.178)

EXAMPLE 4.9 The hydrostatic pressure is expressed in the form of Cauchy
stress by σij = −pδij. Find corresponding expressions using the 1st and
2nd P–K stresses and discuss the physical meanings of these expressions,
if any. Consider cases where the deformation gradient F has or does not have
a diagonal form.

Solution

From (4.42) and (4.48), we have

T(0)Ri = −Jpδji
∂XR

∂xj
= −Jp∂XR

∂xi
(a)

RS = −Jpδjk ∂XR

∂xj

∂XS

∂xk
= −Jp∂XR

∂xk

∂XS

∂xk
= −JpC−1RS (b)

If F has a diagonal form such as

[F] =

λ1 0 0
0 λ2 0
0 0 λ3


 [F−1] =




1
λ1

0 0

0
1
λ2

0

0 0
1
λ3




(c)
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then (a) and (b) become

T(0)Ri = −Jp




1
λ1

0 0

0
1
λ2

0

0 0
1
λ3


 RS = −Jp




1
λ21

0 0

0
1
λ22

0

0 0
1
λ23




(d)

There are only normal components in both stress tensors and the sum of the
diagonal terms for both cases are

trT(0) = −Jp
(
1
λ1
+ 1
λ2
+ 1
λ3

)
tr� = −Jp

(
1
λ21

+ 1
λ22

+ 1
λ23

)
(e)

We see from (e) that both trT(0) and tr� are multiples of the hydrostatic
stress p, but affected by the stretching or contraction of the material element
through λi.
If F does not have the diagonal form, then both T(0)Ri and RS do not have

the diagonal form. In other words, even though we can still find trT(0) and
tr� and both are multiples of the hydrostatic stress p, shear stresses arise in
both T(0)Ri andRS so that it is fair to say that the 1st and 2nd P–K stresses are
hydrostatic pressure sensitive, while the Cauchy stress is not. The shear com-
ponents of theCauchy stress are not affected by the superimposedhydrostatic
pressure.

4.8.4 Applications of Isotropic Hyperelasticity

This section discusses some simple applications of the constitutive equation
for isotropic hyperelasticity. If the strain-energy functionW is known for an
incompressible material, then the stress is determined by (4.177) or (4.178)
up to a hydrostatic pressure, which is in turn determined from the boundary
condition. The complexity of the governing equations usually calls for numer-
ical means to solve them. However, some simple problems may be solved by
the inverse method. In this method, we first assume a suitable form for the
deformation and then use the constitutive equations to find the associated
stresses and consider the restrictions imposed by the equations of equilib-
rium. Finally, we determine the surface tractions necessary to maintain the
deformation.
These simple problems serve to illustrate the method of solution in finite

elasticity, and some of these problems have added importance in that they
may be experimentally investigated. They are then used to determine the
form of the strain-energy function of a given elastic material. The following
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two forms of the strain-energy function are well known. They are

W = C(I1 − 3) (4.179)

and

W = C1(I1 − 3)+ C2(I2 − 3) (4.180)

in which C, C1, and C2 are constants. Form (4.179) is known as the
Neo-Hookean form which was derived from kinetic theory of rubber by
Treloar. Form (4.180) is known as the Mooney form or the Mooney–Rivlin
form. Following Rivlin [3], the strain-energy functionW = W(I1, I2, I3) of an
isotropic material, which is normally expressed in a polynomial of I1, I2, and
I3, may be equally expressed as a polynomial function of (I1 − 3), (I2 − 3),
and (I3 − 1). Thus,

W =
∑
α,β,γ

Aαβγ (I1 − 3)α(I2 − 3)β(I3 − 1)γ (4.181)

where Aαβγ are constants. When the material is undeformed, C11 = C22 =
C33 = 1, and I1 − 3 = 0, I2 − 3 = 0, I3 − 1 = 0. Following this approach, the
strain-energy function for incompressible material is given by

W =
∑
α,β

Aαβ(I1 − 3)α(I2 − 3)β (4.182)

4.8.4.1 Uniaxial extension

In the case of uniform extensions, the deformation is given by (3.18).
Using (3.18), we find

[B] =


λ21 0 0

0 λ22 0

0 0 λ23


 , [B2] =



λ41 0 0

0 λ42 0

0 0 λ43


 (4.183)

Substituting (4.183) into (4.177), we obtain

σ11 = 2{W1λ
2
1 +W2(I1λ21 − λ41)− p} (4.184a)

σ22 = 2{W1λ
2
2 +W2(I1λ22 − λ42)− p} (4.184b)

σ33 = 2{W1λ
2
3 +W2(I1λ23 − λ43)− p} (4.184c)
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For uniaxial test, σ22 = σ33 = 0. Using these conditions and subtract-
ing (4.184b) from (4.184a), we obtain

σ11 = 2{W1(λ
2
1 − λ22)+W2[I1(λ21 − λ22)− (λ41 − λ42)]} (4.185)

which reduces to

σ11 = 2(λ21 − λ22){W1 +W2(I1 − λ21 − λ22)} (4.186)

or

σ11 = 2(λ21 − λ22){W1 + λ23W2} (4.187)

The expression I1 = λ21 + λ22 + λ23 was used to arrive at this equation. In
addition, by subtracting (4.184c) from (4.184b), we obtain

0 = 2(λ22 − λ23){W1 − λ21W2} (4.188)

This quantity must vanish for all λ1 and, therefore, λ2 = λ3. If the material is
incompressible, then det F = 1, so that

λ1λ
2
2 = 1 with λ2 = λ3 (4.189)

Hence, by substituting (4.189) into (4.187), we obtain

σ11

λ21 − (1/λ1)
= 2

{
W1 + 1

λ1
W2

}
(4.190)

In the experiments of uniaxial tension and compression, σ11 and λ1 may be
measuredand the left-handsideof (4.190)maybe calculated. Thedetails of the
experiments are reported in Rivlin and Saunders [4] from vulcanized rubber
test-pieces. The experimental results show thatwhen σ11/(λ21 − λ−11 ) is plotted
against 1/λ1, the material response for the case of 1/λ1 < 1 (tension) is quite
different from that for the case of 1/λ1 > 1 (compression). The experimental
data in the tension zone and in the compression zone can be best fitted by
the Mooney form (4.180) and the Neo-Hookean form (4.179), respectively.
Figure 4.8 shows a schematic plot of the two models each applied in the
recommended zone.

4.8.4.2 Simple shear

The simple shear deformationhas beenpreviously discussed in Section 3.4.1.2
and Example 3.3. The transformation equations for this deformation are

x1 = X1 + kX2, x2 = X2, x3 = X3 (4.191)

© 2005 by Chapman & Hall/CRC Press



188 Continuum Mechanics and Plasticity

Tension Compression

1.0 1/�1

� 1
1

�2 1
–

�–1 1

Neo-Hookean
form

Mooney

form

FIGURE 4.8
Uniaxial tension and compression.

where k is a nonzero constant, and, based on (4.191), we find

[B] =

1+ k2 k 0

k 1 0
0 0 1


 [B−1] =


 1 −k 0
−k 1+ k2 0
0 0 1


 (4.192)

with

I1 = 3+ k2, I2 = 3+ k2 and I3 = 1 (4.193)

Thus, there is no change in volume during simple shearing. Using the
hyperelastic constitutive equation (4.178), we find

σ11 = −p+ 2(1+ k2)W1 − 2W2 (4.194a)

σ22 = −p+ 2W1 − 2(1+ k2)W2 (4.194b)

σ33 = −p+ 2W1 − 2W2 (4.194c)

σ12 = kµ(k2) σ23 = σ31 = 0 (4.194d)

in which the hydrostatic pressure p is to be determined by the prescribed
boundary conditions and

µ(k2) = 2(W1 +W2) (4.194e)

where µ(k2) is usually referred to as the generalized shear modulus. We note
that k is the shear strain, and when we reverse the direction of shear, we
change the sign of the shear stress. This is satisfied only when µ(k2) > 0.
In the case of small deformations, it is known that the simple shear deforma-

tion can be maintained by applying only shear stresses without normal
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stresses on the faces of the specimen. In a finite deformation, we inquire
whether this is still true, for shear strain k �= 0. By setting σ11 = σ22 = σ33 = 0,
we obtain from (4.194) that

−p+ 2(1+ k2)W1 − 2W2 = 0

−p+ 2W1 − 2(1+ k2)W2 = 0

−p+ 2W1 − 2W2 = 0

(4.195)

Solving the set of equations in (4.195) for a nontrivial solution for −p, 2W1,
and −2W2, the determinant of the coefficient matrix has to be zero. Thus,

∣∣∣∣∣∣
1 1+ k2 1
1 1 1+ k2

1 1 1

∣∣∣∣∣∣ = k4 = 0 (4.196)

We obtain from (4.196) that k = 0, which corresponds to no shear deformation
and is in contradiction with the assumption that k �= 0. On the other hand,
the trivial solution of p = W1 = W2 = 0, from (4.194a–e), leads to µ(k2) = 0
and σ12 = σ11 = σ22 = σ33 = 0, that is, the shear strain k �= 0 gives rise
to no stresses, in contradiction with experimental observations. We therefore
conclude that the simple sheardeformation cannot bemaintainedbyapplying
only shear stresses on the faces of the specimen. Generally, normal stresses
must also be applied. From (4.194), the mean stress is

1
3σkk = (−p+ 2W1 − 2W2)+ 2

3k
2(W1 −W2) (4.197)

When k, −p,W1, andW2 are all nonzero, then (4.197) gives rise to a nonzero
mean stress. If normal stresses are not applied, then the material element will
either expand or contract in volume according to the sign of the mean stress.
However, this deformation is not a simple shear deformation.
From (4.194a–e), we may also obtain

σ11 − σ22 = kσ12 (4.198)

This relation does not depend on the form of the strain-energy function. An
implication of this equation is that during shearing, the normal stresses σ11
and σ22 cannot be equal. The existence of these unequal normal stresses is
called the Poynting effect. This effect was first investigated by Poynting [5]
who performed a series of torsion experiments on metal wires and observed
the lengthening of wires when no axial force was applied. This effect is
also known as the axial effect and is discussed later related to plastic
deformation.
In order to maintain the simple shear deformation, normal stress σN

and shear stress σ S must be applied on the inclined faces of the deformed
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Simple shear.

specimen. These stresses are now calculated. Referring to Figure 4.9, the
outward normal n to the inclined surface BC has components

[n] = [cos γ ,− sin γ , 0] (4.199)

where the angle γ is defined by k = tan γ , with sin γ = k/
√
1+ k2 and

cos γ = 1/
√
1+ k2. The unit tangential vector s has components

[s] = [sin γ , cos γ , 0] (4.200)

The normal and shear components are then

σN = σijnjni = [cos γ − sin γ 0]

σ11 σ12 0
σ12 σ22 0
0 0 σ33




 cos γ
− sin γ

0




= σ11 cos2 γ + σ22 sin2 γ − σ12 sin 2γ (4.201)

σ S = σijnjsi = (σ11 − σ22)
2

sin 2γ + σ12 cos 2γ (4.202)

Since sin 2γ = 2k/(1+ k2), cos 2γ = (1− k2)/(1+ k2), and σ11− σ22 = kσ12, it
is easily shown that

σN = σ22 − kσ S and σ S = σ12

1+ k2
(4.203)

We now see that σ S<σ12 and σN <σ22. This assures that if σ22 is in
compression and is negative, so is σN in compression.
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FIGURE 4.10
Biaxial compression of a cubic block.

EXAMPLE 4.10 Find the state of stress in the biaxial compression of a cubic
block.

Solution

This test is sometimes referred toas the confinedcompression test. Referring
to Figure 4.10, the block is confined in the 2-direction, while a compressive
force F is applied in the 1-direction. The 3-direction is free. The deformation
is governed by

x1 = λ1X1, x2 = λ2X2, x3 = λ3X3 (a)

and we find from (a)

[F] =

λ1 0 0
0 λ2 0
0 0 λ3


 , [B] =



λ21 0 0

0 λ22 0

0 0 λ23


 , [B2] =



λ41 0 0

0 λ42 0

0 0 λ43



(b)

with |F| = λ1λ2λ3 = λ1λ3 = 1. We used λ2 = 1, since the block cannot deform
along the 2-direction. The stresses are found by putting (b) into (4.177), which
leads to (4.184a–c). Because the 3-direction is free, we write σ33 = 0. Using
this constraint, (4.184c) becomes

p =W1λ
2
3 +W2(I1λ31 − λ43) (c)

Substituting (c) into (4.184a), we then obtain

σ11 = 2{W1λ
2
1 +W2(I1λ21 − λ41)−W1λ

2
3 −W2(I1λ23 − λ43)} (d)
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The first invariant of B is

I1 = λ21 + λ22 + λ23 = λ21 + 1+ 1
λ21

(e)

Applying (e), (d) may be further reduced to

σ11 = 2

(
λ21 −

1
λ21

)
{W1 +W2} (f)

Similarly, we obtain the following equation from (4.184b)

σ22 = 2

(
1− 1

λ21

)
{W1 +W2λ

2
1} (g)

For theNeo-Hookean formgiven by (4.179),W1 = C andW2 = 0. The stresses
are found from (f) and (g) as

σ11 = 2

(
λ21 −

1
λ21

)
C, σ22 = 2

(
1− 1

λ21

)
C, C = constant (h)

From (h), we find the following stress ratio which indicates a confined stress
in the 2-direction

ξ = σ22

σ11
= 1

1+ λ21
(i)

Equation (i) is plotted against λ1 in Figure 4.11. We note that ξ = 1.0 when
λ1 = 0; ξ = 0.5 when λ1 = 1; and ξ = 0 when λ1→∞.
For the Mooney form given by (4.180),W1 = C1 andW2 = C2. The stresses

are found from (f) and (g) as

σ11 = 2

(
λ21 −

1
λ21

)
{C1 + C2}, σ22 = 2

(
1− 1

λ21

){
C1 + C2λ21

}
,

C1, C2 = constants (j)

From (j), we find the following stress ratio

ξ = σ22

σ11
= C1 + C2λ21
(1+ λ21)(C1 + C2)

(k)

We see from (k) that ξ = C1/(C1 + C2)when λ1 = 0; ξ = 0.5when λ1 = 1; and
ξ = C2/(C1 + C2) when λ1 → ∞. The exact shape of the curve depends on
the values of C1 and C2. In a special case when C1 = C2, we obtain ξ = 0.5 for
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FIGURE 4.11
The ξ ratio plotted against λ1.

all λ1. According to Rivlin and Saunders [4],W1 >W2 for vulcanized natural
rubber, and, therefore, C1 > C2. Equation (k) is plotted in Figure 4.11 for the
case of C1 = 2.5C2 (C1 > C2). We note that the confining stress σ22 is always
smaller than σ11 for both models. They are equal only in the Neo-Hookean
model when λ1 = 0, which is a limiting case and cannot realistically happen.

4.9 Infinitesimal Theory of Elasticity

4.9.1 Constitutive Equation

We showed in Section 3.9.1 that, in the case of small displacement gradient,
it is not necessary to distinguish the material coordinates XR from the spatial
coordinates xi. Thus, the infinitesimal strain tensor

εij = 1
2 (ui,j + uj,i) (4.204)

can and will be used. In this case, both Lagrangian strain E and Enlerian
strain e reduce to ε. There are no distinctions among different stressmeasures
and σij is used to denote the stress which is also known as the engineering
stress. To show that this is indeed the case, we denote the magnitude of the
displacement gradient by

ε = (ui,R · ui,R)1/2 (4.205)

We use the notation ε to indicate that this is a small quantity, and it should
not be confused with the strain ε used in Chapter 3.
The deformation gradient is

FiR = δiR + ui,R = δiR +O(ε) (4.206)
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where O(ε) indicates that the magnitude of this term has the order of ε. The
determinant is

|FiR| = det(δiR + ui,R) = 1+O(ε)+O(ε2)+O(ε3) (4.207)

Thus,

ρ0 = ρ|FiR| = ρ(1+O(ε)+O(ε2)+O(ε3)) (4.208)

On the other hand the inverse deformation gradient F−1 is

XR,i = δRi − uR,i = δRi −O(ε) (4.209)

so that from (4.42) and (4.48) the Piola–Kirchhoff stresses are related to σij by

T(0)Ri =
ρ0

ρ
σji
∂XR

∂xj
= (1+O(ε)+ · · · )(δRj −O(ε))σji (4.210)

and

RS = ρ0

ρ
σjk
∂XR

∂xj

∂XS

∂xk
= (1+O(ε)+ · · · )(δRj −O(ε))(δSk −O(ε))σjk (4.211)

In the limit, when ε→ 0, we have

T(0)Ri ≈ (δRj −O(ε))σji ≈ σRi (4.212)

RS ≈ (δRjδSk +O(ε))σjk ≈ σRS (4.213)

which show that the 1st and 2nd P–K stresses are indistinguishable from σij.
The constitutive equation for infinitesimal theory of elasticity at room

temperature may be obtained by taking the strain-energy function W(εij)

in a quadratic form, that is,

W = 1
2Cijklεijεkl (4.214)

By differentiation of (4.214) with respect to εij, we obtain

σij = ∂W
∂εij
= Cijklεkl (4.215)

Equation (4.215) is known as the generalized Hooke’s law, where Cijkl is
a fourth-rank tensor. If the material is isotropic, then Cijkl should be an
isotropic tensor, that is, from (1.129)

Cijkl = λδijδkl + µ(δikδjl + δilδjk) (4.216)

© 2005 by Chapman & Hall/CRC Press



Conservation Laws and Constitutive Equation 195

By combining (4.215) and (4.216), we then obtain

σij = λδijεkk + 2µεij (4.217)

where λ andµ are Lamé constants. Note that the number ofmaterial constants
has been reduced from 81 to 2.
Equation (4.217) may be inverted to express strain in terms of stress. To this

end, we make a contraction of (4.217) to get

σii = 3λεii + 2µεii = (2µ+ 3λ)εii (4.218)

so that (4.218) may be solved for εii and substituted into (4.217) to obtain

σij = λσkk

2µ+ 2λ
δij + 2µεij (4.219)

Finally, we rewrite (4.219) as

2µεij = σij − λ

3λ+ 2µ
σkkδij (4.220)

This is the equation that we wanted to derive.

4.9.2 Homogeneous Deformations

4.9.2.1 Hydrostatic stress

Consider the strain

εij =

ε11 0 0
0 ε22 0
0 0 ε33


 (4.221)

In the case of hydrostatic stress, ε11 = ε22 = ε33 = α. Substituting into (4.217),
the stress is

σij = (2µ+ 3λ)αδij = −pδij (4.222)

Therefore,

P = −(2µ+ 3λ)α (4.223)

and the volumetric strain is

εkk = 3α = σkk

3K
= −3p

3K
= −p

K
(4.224)
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where K is the bulk modulus and σkk/3 is the mean stress. Thus, by use
of (4.223),

K = −p
3α
= −p
(−3p)/(2µ+ 3λ)

= λ+ 2
3
µ (4.225)

Note that since a hydrostatic pressure always causes the volume to decrease
(α < 0), we have K > 0. In the case that p < 0, the volume expands and it is
known as dilation.

4.9.2.2 Uniaxial tension

When σ11 = σ22 = 0 and σ33 �= 0, Hooke’s law reduces to

σ11 = 2µε11 + λ(ε11 + ε22 + ε33) = 0

σ22 = 2µε22 + λ(ε11 + ε22 + ε33) = 0 (4.226)

σ33 = 2µε33 + λ(ε11 + ε22 + ε33)

Comparing the first two equations of (4.226), we find

ε11 = ε22 = − λ

2µ
(ε33 + 2ε22) (4.227)

which may be solved to obtain

ε11 = ε22 = − λ

2(λ+ µ)ε33 = −νε33 (4.228)

where

ν = 1
2

λ

λ+ µ (4.229)

is Poisson’s ratio. By substituting these expressions into the third equation
of (4.226), we obtain

σ33 = 2µε33 + λ(1− 2ν)ε33 = (2µ+ λ− 2νλ)ε33

=
(
2µ+ λ− λ2

λ+ µ

)
ε33 = µ(3λ+ 2µ)

λ+ µ ε33 = E ε33 (4.230)

where E = µ(3λ+ 2µ)/(λ+ µ) is known as Young’s modulus. In an elastic
material, E > 0 and ν > 0.

© 2005 by Chapman & Hall/CRC Press



Conservation Laws and Constitutive Equation 197

4.9.2.3 Simple shear

In the infinitesimal deformation, simple shear does not give rise to normal
stresses. The nonzero strain components are ε12 = ε21 only. From (4.217),
the shear stress is

σ12 = 2µε12 (4.231)

where µ > 0 is the shear modulus. The engineering shear strain is 2ε12.

4.9.3 Boundary-Value Problems

In solving boundary-value problems of isothermal infinitesimal elasticity, the
fundamental equations are the equations of motion,

σki,k + bi = ρD
2ui
Dt2

(4.232)

the constitutive equations,

σij = λδijεkk + 2µεij (4.233)

and the strain–displacement relation,

εij = 1
2 (ui,j = +uj,i) (4.234)

There are three equations in (4.232), six equations in (4.233) and six equa-
tions in (4.234), and the unknowns are σij, εij,ui. We have 15 equations to
solve for 15 unknowns. In finding the solution, the boundary conditions
should be used. There are three types of boundary-value problems: the dis-
placement boundary-value problems have ui specified on the boundary S;
the traction boundary-value problems have the stress vector t(n)i specified on
S; and the mixed boundary-value problems have ui specified on part of S
and t(n)i specified on the remaining part of S. The surface traction is given,
from (2.8), by

t(n)i = σjinj (2.8)

4.10 Hypoelasticity

Hypoelasticity is not elasticity, because the stress in hypoelasticity depends
on the strain-path. This type of constitutive equation is popular in compu-
tational mechanics as it is of the rate-type. The rate-type equations have
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advantages over other types of equations due to the ease in numerical compu-
tation. We first write the generalized Hooke’s law (4.217) of the infinitesimal
elasticity in the rate form as

σ̇ij = 2µε̇j + λδijε̇kk (4.235)

and then inquire what the corresponding constitutive equation should be for
finite deformation. We learned at the beginning of this chapter that objective
rates need to be used in a constitutive equation. The Jaumann stress-rate is a
popular objective stress rate and is used togetherwith the rate of deformation
tensor, so that an appropriate hypoelastic constitutive equation is written as

σ∇ij = 2µDij + λδijDkk (4.236)

Adiscussion using other objective stress-rates is given in Chapter 7 in connec-
tion with the study of plastic deformation. We discuss now a simple example
using (4.236). Let us consider simple shear having the following equations

x1 = X1 + 2ωt X2, x2 = X2, x3 = X3 (4.237)

u1 = 2ωt X2, u2 = u3 = 0, ω = constant (4.238)

[L] =

0 2ω 0
0 0 0
0 0 0


 , [D] =


0 ω 0
ω 0 0
0 0 0


 , [W ] =


 0 ω 0
−ω 0 0
0 0 0




(4.239)
Substituting (4.239) into (4.236), we find

σ∇ij = 2µDij and Dkk = 0 (4.240)

But the Jaumann rate is

σ∇ = Dσ
Dt
−W · σ+ σ ·W = 2µD (4.241)

For the stress given by

[σ ] =

σ11 σ12 0
σ12 σ22 0
0 0 0


 (4.242)
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we can compute the following matrices

[σ ][W ] =

−ωσ12 ωσ11 0
−ωσ22 ωσ12 0

0 0 0


 ,

−[W ][σ ] = ([σ ][W ])T =

−ωσ12 −ωσ22 0
ωσ11 ωσ12 0
0 0 0




(4.243)

Substituting (4.242) and (4.243) into (4.241), the component equations are

dσ11
dt
= 2ωσ12,

dσ22
dt
= −2ωσ12, dσ12

dt
= 2µω − ω(σ11 − σ22) (4.244)

Note that D/Dt = d/dt in this homogeneous deformation. By differentiat-
ing (4.244c) with respect to t and making use of (4.244a,b), we obtain the
ordinary differential equation

d2σ12
dt2

= −4ω2σ12 (4.245)

The general solution of (4.245) is

σ12 = A sin(2ωt)+ B cos(2ωt) (4.246)

whereAand B are constants. We define the shear strain by γ = ∫ t0 D12 dt, and,
during loading, the shear strain is

γ = 2ωt (4.247)

Note that γ is not a component of a strain tensor. By taking the initial shear
stress to be σ12(t = 0) = 0, we find from (4.246) that B = 0. Therefore, we
obtain the following stress components

σ12 = µ sin γ , σ11 = −σ22 = µ(1− cos γ ), other σij = 0 (4.248)

It can be seen from (4.248) that the shear and axial stresses oscillate with the
increasing shear strain, and these are physically unacceptable with any real
material. Nagtegall and de Jong [6] discussed this oscillatory behavior of the
shear stress in his application of a plasticitymodel. Thework triggered a long-
lasting investigation of objective stress rates by various investigators, and the
subject is discussed further in Chapter 7 in connection with finite plasticity.
Equations of (4.248) are plotted in Figure 4.12 with µ = 26.2 GPa, which is a
typical value for cast high-purity aluminum.
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FIGURE 4.12
Hypoelastic stress–strain curves by use of Jaumann stress rate.
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Problems

(1) Consider uniform extension of a material element followed by simple shear-
ing. In the uniform extension along the X2 direction, a particle at X is
displaced to X′ by

X′1 = β(t)X1,X′2 = α(t)X2,X′3 = β(t)X3
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The subsequent simple shearing is expressed as

x1 = X′1 + 2η(t)X′2, x2 = X′2, x3 = X′3

where2η(t) is the shear strainafter theuniformextension. Find the components
of the 1st and 2nd P–K stresses expressed in terms of the Cauchy stress
components.

(2) For isotropic hyperelasticmaterials, show that the principal axes of theCauchy
stress and the left Cauchy–Green tensor coincide.

(3) Consider a compressible isotropic hyperelastic material. For the deformation
given by

x1 = α(t)X1, x2 = α(t)X2, x3 = α(t)X3

discuss the corresponding state of stress. Obtain an expression for the stress
vector and discuss the volume change of the material element.

(4) Discuss the simple shear problem by means of Cauchy elasticity, that is,

σij = χ0δij + χ1Bij + χ−1B−1ij

where χ0, χ1, and χ−1 are functions of I1, I2, and I3.

(5) Find the state of stress in the biaxial compression of a cubic block discussed in
Example 4.10, if the strain-energy function is given by

W =
∑
i

C1(λ
2
i − 1)+ C2

(
1

λ2i
− 1

)

where C1 and C2 are constants and λi are the stretch ratios.

(6) Find the state of stress in the simple torsion of a circular cylinder of incom-
pressible hyperelastic material with length l and radius a. The deformation of
this problem is expressed by

x1 = (cos τX3)X1 − (sin τX3)X2,
x2 = (sin τX3)X1 + (cos τX3)X2,
x3 = X3

where τ is the angle of twist per unit length and is a constant.
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Part II

Continuum Theory of
Plasticity

Although physically based polycrystal plasticity is emerging as a feasible
method, the phenomenological (continuum) approach is still the practical
approach for use in the simulation of engineering problems.
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5
Fundamentals of Continuum Plasticity

5.1 Introduction

A general description of plasticity is given in this chapter. Plastic deforma-
tion can be easily observed by stretching a thin copper wire. If we stretch
a piece of copper wire beyond its elastic limit, then we observe a perman-
ent change in length of the copper wire after the release of the load. This
is because the wire is permanently elongated and has undergone a plastic
deformation. The copper wire is very soft and easily stretched by a small force.
The elastic limit of the material (copper) can be easily exceeded. In this one-
dimensional case, the experimental stress–strain curve for copper is sketched
in Figure 5.1. We use this figure to illustrate properties and terminologies of
plasticdeformation.When the stress increases fromOtoA, the strainalsohasa
proportional increase. The process of increasing the stress is known as loading.
The initial yielding of the material occurs at A and the stress at this point is
known as the yield stress and is denoted by σy. The yield stress is generally
regarded as equal to the elastic limit, but the elastic limit and the proportional
limit are experimentally indistinguishable for metals. Several definitions of
yield stress have been proposed and they are discussed in Chapter 6. Should
the stress be reduced fromAback toO,we have an unloading process. OAis the
elastic region and theHooke’s law applies in this region.All strainswithin the
elastic region are recovered upon unloading and are elastic strains. Point A is
the first point beyond which nonrecoverable strain occurs. This strain is per-
manent and is known as the plastic strain, which is either time-independent
or time-dependent. In plasticity, we are interested in the time-independent
nonrecoverable strain. The time-dependent nonrecoverable strain is related
to creep.
The curve OABE is the stress–strain curve for monotonic loading. The initial

yielding of material occurs at A and yielding continues as the curve ABE is
traversed. The strain at B is ε, which can be divided into the elastic εe and
plastic εp parts, where

ε = εe + εp (5.1)

205
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FIGURE 5.1
Schematic stress–strain curve for Cu and Al.

The elastic and plastic strains for point B are shown in Figure 5.1. Curves BCD
and EFG are unloading stress–strain curves. The initial part of the unloading
curves is straight and the curves gradually bend over. In the figure, sections
BCandEFare straightwith slopes similar to thatof sectionOA.Generally, for a
good approximation, these slopes are assumed to be equal. But, experimental
data show that the unloading slope depends on the strain level where the
unloading begins to take place. Thus, EOA > ECB > EFE, that is, the slope
is smaller if unloading occurs at a higher strain level. C and F are points of
reverse yielding. Usually, the reverse yielding can occur on the compressive
stress side as in point C, but as the strain at which unloading takes place gets
higher, the reverse yielding occur on the tension side as in point F. The effect
of the decrease in the yield stress in the reverse loading, that is, |σyC| < |σyB|,
is known as the Bauschinger effect and it is an anisotropic hardening.
Thedescriptionof the stress–strain curvepresentedabove is basedonexper-

imental observations and data. An enormous challenge in plasticity is to
formulate a realisticmathematicalmodel for describing the observedmaterial
behavior. The task is known as constitutive modeling and the end product is a
constitutive model or a set of constitutive equations. Various theories using
different approaches and points of views have been proposed to formulate
constitutive equations for metallic materials. Theories have also been formu-
lated based on dislocations and slips. Although physically based polycrystal
plasticity is emerging as a feasible method, the phenomenological (or con-
tinuum) approach is still the practical approach for use in the computational
mechanics. Presently, there are great research efforts aiming to bridge the gap
betweenmechanics atmicroscopic andcontinuumlevel. Someexciting results
have already been reported and they provide input to the continuum theory
of plasticity. Some of these inputs are discussed in Chapter 7 in connection
with finite plasticity. In spite of the interest in plasticity at the microscopic
level, the continuum theory is still the backbone for the study of plasticity.
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In this book, we discuss the continuum approach of plasticity. Most of
our discussions are related to the plastic deformation of metals, although
some may be applicable to other materials as well. In the study of plasticity,
theories and experiments havegonehand-in-hand. Experimental results have
led to thedevelopment of theories and theoretical studies have suggestednew
experiments. The ultimate goal is to develop a theory of plasticity that can be
experimentally verified.
Experimental results have been greatly influenced by the loading equip-

ment and measuring technology. Problems associated with the loading
equipment are the stiffness of the loadingmachine and the kind of the loading
machine. Is it a dead-weight machine or is it a servo-controlled hydraulic testing
system? Older data were gathered by use of dead-weight machine. Dead-
weightmachines have an advantage in providing steady, well-controlled load
increments and it can be used to obtain creep strains, but it cannot be used to
execute a strain-controlled test program. Some dead-weight machines have
cross-talks, that is, the axial load is influenced by the torsion load and vice
versa in an axial–torsion test machine, resulting in inaccurate experimental
results. Most commercially available servo-hydraulic machines have accept-
able cross-talk level.An important advantageof the servo-hydraulicmachines
is that it is fully automated and it can execute either a strain-controlled or a
stress-controlled test program. Due to the nature of the closed-loop servo-
controlled machine, the data scatter to an extent which depends on the time
interval of data acquisition. This data scatter may affect the accuracy of the
data collected. Someexamples that are sensitive to thisdata scatter areYoung’s
modulus of the stress–strain curve and yield stresses. These effects are further
discussed in a later section.
The strain can be measured by measuring the motion (displacement and

rotation) of the cross-heads of the test machine. This method of measurement
is, however, influenced by the stiffness of the machine and the shape of the
specimens. Let �L and �φ, respectively, be the displacement and rotation of
the cross-heads, r be the radius of a cylindrical specimen and L be the length
of the specimen between the grips, then the axial strain ε and shear strain
γ , respectively, are written as ε = �L/L and γ = r�φL. Since L includes
the lengths of the enlarged gripping sections and the uniform gauge section
of the specimen, the strains determined by use of the above expressions
represent the average strains of the specimen and do not accurately represent
the strains of the gauge section. It is the strains of the gauge section that are
meaningful.
The stiffness of the machine is not a factor, if we directly measure the

strains in the gauge section of the specimen. Extensometers or strain gauges
may be used to accomplish the job. Extensometers may be self-designed and
is also available commercially. The resolution of extensometers is around 10−3
strain, but it can measure strains of up to about 15%. Extensometer for larger
strains needs to be self-designed. Wu and Xu [1] built an axial–torsion exten-
someter that may be installed and clipped on the uniform gauge section of
the specimen. Shear strains of up to 200%have beenmeasured byWu et al. [2]
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using this extensometer. Electrical-resistance strain gauges and strain rosettes
are commercially available and they are easy to use. The resolution for this
type of strain gauges is around 10−6 and it therefore provides much more
accurate strain measurements than the extensometers. But, these gauges are
limited to a strain of around2%andeither peel off or brokenbeyond2%strain.
A post-yield type strain gauge is available and it can measure axial strains of up
toaround15%.Nopost-yield strain-rosettes are asyet commercially available.
To design an experiment and collect valid data is a challenge and must

be carefully pursued. The extension of one-dimensional plasticity into a
multi-dimensional plasticity provides an even greater challenge both exper-
imentally and theoretically. In the early development, two major schools
of thought were developed; the flow theory and the deformation theory. The
deformation theory was proposed by Hencky in 1924 and the approach was
used thereafter by Russian researchers. The Hencky equation is

εij = kσkk
3
δij + ψsij (5.2)

where k andψ are scalars.We note that the total strain εij rather than the strain
increment dεij is found from (5.2) and, therefore, the deformation theory is
also known as the total strain theory. On the other hand, the flow theory
emphasizing the strain increment is also known as the incremental theory.
The deformation theory is convenient for use, due tomathematical simplicity,
in solving problems with proportional loading. The final state of strain is
determinedby thefinal state of stress. However, it is known that the equations
of deformation theory are not suitable for nonproportional loading condition
and the deformation theory will not be further pursued in this book.
In this chapter we describe the fundamentals of plasticity from an experi-

mentalist’s view point. The concepts of flow theory is discussed in Chapter 6.
The major concepts of flow plasticity are: the yield surface, the flow rule,
the strain-hardening rule, and the loading–unloading conditions. Experimental
evidence is presented together with the mathematical representations and
assumptions of the theory are discussed. One of the major assumptions is the
plastic incompressibility of metallic materials.
Recent developments in plasticity are given in Chapter 7. It includes

experimental and theoretical developments both for infinitesimal and finite
plasticity. Other developments, such as the endochronic theory, are discussed

verification of this theory, and a detailed account of the theory is given.
The thermo-mechanical theory of internal state variables is first presented

endochronic theory is an internal variables theory.
Material anisotropy is an important topic of plasticity. The anisotropic

properties of metal sheets are discussed in Chapter 10 and, in Chapters 11
and 12, we present a general theory of anisotropic plasticity. Since a square
material element in the reference configuration gets distorted bydeformation,
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curvilinear coordinates must be used and the stress and strain refer to this
distorted element. In this way, we investigate the change in properties of the
same material mass.

5.2 Some Basic Mechanical Tests

In this section, we discuss some basic experiments used to characterize the
mechanical behavior of a material. They include the uniaxial tension test,
uniaxial compression test, torsion test, and the creep test. These are one-
dimensional tests and aimed to produce axial and shear stress–strain curves
and creep curves. They are very simple theoretically, but it is not so simple
experimentally to obtain valid data. We refer to Bell [3] for a detailed account
of experiments carried out during the first half of the 20th century.

5.2.1 The Uniaxial Tension Test

Uniaxial tensile testing can be carried out quickly and easily and is used to
measure the strength and ductility of materials. The specimens for tension
test can be round or flat specimens and they consist of enlarged end sections
and a reduced gauge section. The round specimens can have threaded ends
for gripping and the flat specimens can either be with or without a pin-hole
for connection to the load-train. The longer the gauge section is the more
accurate the test results will be.
The general shape of the loading stress–strain curve shown in Figure 5.1

is typical of those for aluminum, copper, brass, 304 stainless steel, and high-
strength steels such as AISI 4142 steel in the small strain range, that is, when
the strain is <5%. The curve does not show a definite yield point. However,
the stress–strain curve for low-carbon steel shows a definite upper and lower
yield point. After the initial yielding, the stress–strain curve remains flat,
during which Lüder’s band propagates and plastic strain accumulates. Strain-
hardening begins when the strain is about 1.5 to 2.0%.
Uniaxial tension test is limited to relatively small strains due to necking

(a plastic instability) of the specimen. Few metals can stretch >50% before
necking. Thinning of a sheet specimen can occur at a strain <10%. Diametral
extensometers have been used at the neck of cylindrical specimens to control
tensile test with diametral strain. However, this is not a direct test, because
assumptions have to bemade to perform the area and triaxiality corrections in
order to reconstruct a tensile stress–strain curve. Indirect tests have been used
to construct the tensile stress–strain curve at large strain. For instance, sheet
rolling, which is relatively insensitive to plastic instability, may be performed
to various amounts of thickness reduction and tension specimens cut from the
prestrained specimens. These specimens are then tested in uniaxial tension
to determine the flow stress.
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Even in the small strain range, one important aspect of the tension test-
ing is the large range of data scatter. It is important to know how much
confidence we can put in the experimental stress–strain curve. Data scatter
associatedwith tensile testing has been traditionally attributed to thematerial
inhomogeneities. Only recently have researchers suspected that a significant
percentage of the data scatter is caused by test systemmisalignment. In a tensile
testing system, schematically shown inFigure 5.2, the load-train is an assembly
of universal joints, pull rods each of length L, grips, and specimen of length
l. Some systems have a universal joint at the upper end of the upper pull rod
and another at the lower end of the lower pull rod, but some systems have a
universal joint only at the upper end of the upper pull rod. Several types of
grips have been used: wedge grips, grips with threaded ends, and grips with
pinned connections. The former two types are considered to be fixed grips
and the latter allows the specimen to rotate about the pins. The fixed grips
are one extreme and can sustain moments; while the pin-grips are the other
extreme and cannot sustain any significant moment at the pins.
Penny and Leckie [4], using a bi-linear stress–strain curve, investigated

the effect of test system misalignment on the stress–strain curve. The numer-
ical results show that for a moderately low value of eccentricity (e/d = 10%,
where e is eccentricity and d is half-width of specimen) the yield stress shows
a 10% drop. More importantly, the results indicate a reduction in the ultimate
load that the specimen can sustain. Wu and Rummler [5] pointed out that

L

L

Universal
Joint

Grips

Specimen

Pull-
Rod

Frame

�

FIGURE 5.2
A tensile testing machine.
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the analysis of Penny and Leckie [4] did not correctly predict the effect of
test system misalignment, because these authors did not include the effect of
pull rods in their analysis even though they mention it as a factor contribut-
ing to bending of the specimen. Furthermore, they assumed that the neutral
axis (N.A.) of the rectangular cross-sectioned bar remained at the geometrical
centerline of the specimen during testing. Due to this assumption, the force P
and endmomentM acting on the specimenwere linearly related. The analysis
ofWu andRummler [5] considered the effect of the pull rods and showed that
the neutral axis would move as loading was applied and did not remain at
the geometrical centerline of the specimen during testing. Due to the motion
of N.A., the relation between P andM was nonlinear.
Three cases of misalignment were considered by Wu and Rummler [5] to

be critical andwere analyzed separately and their results compared: the sym-
metric case, the cantilever case, and the case of the pinned specimen with
eccentricity. The symmetric case was found to be the most critical one among
the three cases and its formulation is given here. The formulation of the other
two cases is identical to the onedescribed except for the expressions of the end
momentM. The load-train of the symmetric case is shown in Figure 5.3. The
offsets anddisplacements, although exaggerated in the figure, are assumed to
be small compared to the width of the specimen. BC represents the misalign-
ment at the upper grip and is denoted by δ∗. This is an overall misalignment
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FIGURE 5.3
(a) The load-train, (b) effect of pull-rod (FromWu,H.C. andRummler, D.R., J. Eng.Mater. Technol.,
101, 68, 1979. With permission fromASME).
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FIGURE 5.4
(a) Deflection, (b) moment and force on a specimen (From Wu, H.C. and Rummler, D.R., J. Eng.
Mater. Technol., 101, 68, 1979. With permission fromASME).

effect including the misalignments between the pull rod and the grip and
between the grip and the specimen. It is to be noted that δ∗ changes as the
load increases and its value at zero load is δ. Let point C denote the N.A.
at the upper end of the specimen. At zero load, the N.A. coincides with the
geometrical centerline of the specimen at end C, but, as the load increases,
the N.A. moves away from the geometrical centerline and δ changes to δ∗.
Force P andmomentM acting at C are shown in Figure 5.3(b). The coordinate
system is chosen as follows: the x-axis is fixed to the N.A. of the specimen
at the ends (grips), see Figure 5.4(a). Since the N.A. for the whole specimen
moves when load is applied, the x-axis also moves (rigid body motion) with
it. The deflection u is measured from the x-axis and the y-axis is measured
from the N.A. A cross-section of the specimen is also shown, in which d(x)
specifies the location of the N.A. ε1(x), ε2(x), and ε̄ are, respectively, the lon-
gitudinal strain at the right fiber, left fiber, and the N.A. of the specimen. That
ε̄ is constant for all x is to be noted. Figure 5.4(b) shows the moment M(x) at
an arbitrary point of the specimen.
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Under the assumption of plane cross-sections remaining plane during
deformation, the strain at a point in the specimen is given by

ε(x, y) = ε̄ − y
ρ(x)

(5.3)

where ρ(x) is the radius of curvature of the N.A. It is then easy to show that

1
ρ
= 1

h
(ε2 − ε1) (5.4)

and

d = ρ(ε2 − ε̄) (5.5)

Note that ε̄ and ρ remain constant with varying y.
Force acting on the specimenmust be balanced to satisfy equilibrium. Thus,

P =
∫
A
σ dA = b

∫ h−d

−d
σ dy (5.6)

in which b is the thickness and A is the cross-sectional area of the specimen.
Any nonlinear stress–strain relation can be used to express P in terms of
the strain by use of (5.6). We will use an equation that is fully discussed in
Chapter 8 and has been shown to closely describe the stress–strain curves of
metallic materials. The equation is

σ = A1(1+ β1ε)[1− (1+ β1ε)−n] (5.7)

where A1, β1, and n are material constants and the stress on the N.A. is

P
A
= σ(ε̄) = A1(1+ β1ε̄)[1− (1+ β1ε̄)−n] (5.8)

Upon the application of constitutive equations (5.7) and (5.6) reduces to

P = bA1

β1
ρ

{
1
2
(m2

2 −m2
1)−

1
2− n

(m2−n
2 −m2−n

1 )

}
(5.9)

where

m1 = 1+ β1ε1 and m2 = 1+ β1ε2 (5.10)

The balance of moment in the specimen is given by

M(x) = −
∫
A
σy dA (5.11)
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Using (5.3), which relates y to ε(x), (5.11) is written as

M(x) = −Pε̄ρ(x)+ bρ2
∫ ε2

ε1

σε dε =M + Pu (5.12)

The last equality of (5.12) is found from the equilibrium of a segment of the
specimen shown in Figure 5.4(b). Referring to Figure 5.3(b), we can establish
the following relation

M = P(δ∗ cosα − L sin α) (5.13)

which reduces in the case of small α to

M = P(δ∗ − Lα) (5.14)

Combining (5.12) and (5.14), and using (5.7), we obtain

P(δ∗ + u− Lα)

= −Pε̄ρ + bρ2A1

β21

{
1
3
(m3

2 −m3
1)−

1
3− n

(m3−n
2 −m3−n

1 )

}

− bρ2A1

β21

{
1
2
(m2

2 −m2
1)−

1
2− n

(m2−n
2 −m2−n

1 )

}
(5.15)

The curvature relation is

1
ρ
= d2u

dx2
(5.16)

Substituting (5.4), (5.10) into (5.16), we obtain

d2u
dx2
= 1

hβ1
(m2 −m1) (5.17)

Equations (5.9), (5.15), and (5.17) form a system of equations with three vari-
able functions m1(x), m2(x), and u(x) subjected to the following boundary
conditions

du
dx
= 0 at x = 0 and u = 0 at x = l

2
(5.18)

Because of symmetry only half of the specimen is considered. To solve the
equation set, it is necessary to specify ε̄ and δ in addition to the constants asso-
ciated with the load-train, specimen geometry, and the constitutive equation.
The eccentricity δ is related to δ∗ by δ∗ = δ + (ds − (h/2)), where ds specifies
the location of the N.A. of the specimen at the grip end. This relation may be
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visualized from Figure 5.4(a). At zero load, ds = h/2 and δ∗ = δ. The tensile
force P is calculated using (5.8). After the solutions for m1(x), m2(x), and u(x)
have been found, it is easy then to calculate ε1(x), ε2(x), ρ(x), and d(x).
A numerical example was presented in Wu and Rummler [5] for annealed

aluminum. The symmetrical case is presented here. The constants for the con-
stitutive model (5.7) are A1 = 37.9 MPa, n = 33.33, and β1 = 54.55. ASTM
standard sheet-type rectangular specimen is used in this calculation. The
dimensions are 63.5 mm (length), 12.7 mm (width), and 3.2 mm (thickness).
For the analysis the specimens are assumed to have constant cross-section
between grips. In the calculation, the eccentricity is normalized with respect
to the width δ/h and is taken as 0.05. The eccentricity of 10% is considered
by Penny and Leckie [4] to be moderate. Three different lengths L (127, 254,
and 381 mm) of the pull rod were considered in the symmetric case. These
are within the range of the commercial testing machines. The effect of pull
rod length with respect to specimen length L/l has been found to be signific-
ant. The larger the ratio L/l the smaller the percentage of misalignment error.
Figure 5.5 shows the four calculated stress–strain curves. The solid curve is
the σ versus ε̄ curve, which is obtained from (5.8). This curve is the ideal
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FIGURE 5.5
Effect of misalignment on stress–strain curve (FromWu, H.C. and Rummler, D.R., J. Eng. Mater.
Technol., 101, 68, 1979. With permission fromASME).
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1979. With permission fromASME).

stress–strain curve and should be the same as that obtained in the case of a
perfect test system alignment. The dashed curve is the σ versus εcent curve,
which would be obtained by use of an average-type extensometer, where
εcent is the strain at the geometric centerline. It is seen that the two curves
almost coincide except for the knee portion of the curve. The remaining two
curves are obtained from the left and right fibers of the cross-section (see
Figure 5.4(b)). The results indicate that the error band for these two curves is
quite large for themoderate eccentricity considered.We therefore recommend
that, if electrical-resistance strain gauges are used to measure the strain, two
gauges are required, one at each side of theflat specimen. The average reading
of the two gauges will then provide the strain on the geometrical centerline
εcent, which is very close to the real strain on the N.A. as shown in Figure 5.5.
The end momentM is plotted (solid curve) against the load P in Figure 5.6.

Several strain levels are identified in the figure. The comparison of these
strain levels with the stress–strain curve of Figure 5.5 shows that the sudden
change of theM–P curve is indeed related to the development of plastic strain
in the specimen. The effect of plastic deformation is such that the N.A. of the
specimen moves according to the amount of plastic strain. The N.A. moves
drasticallywhen the strain levels arewithin the knee portion of the σ–ε curve.
In thefigure, the linear relationshipassumedbyPennyandLeckie [4] is shown
in dashed line.

5.2.2 The Uniaxial Compression Test

This test is sometimes called the unconfined compression test. The specimen
is usually a cylinder. The stress–strain curve obtained from the compression
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test is very close to that obtained from the uniaxial tension test in the small
strain range. Lüder’s band has also been observed after initial yielding for
mild steel. However, the strength differential (or S–D) effect has also been a
topic of intense investigation. According to Nadai [6], the compression curve
lies above the tension curve for wrought iron, carbon steel, and nickel steel,
but differs little from the tension curve for copper and aluminum. Spitzig
et al. [7] tested 4310 and 4330 steels to a strain of about 4% and found that the
S–D effect for both steels was 5.5± 1%. The S–D effect was defined by

S–D = 2
|σc| − |σt|
|σc| + |σt| (5.19)

where the subscripts c and t refer to compression and tension, respectively.
For both materials tested the S–D effect occurred in the lower yield region as
well as throughout the remainder of the curves.
In a conventional compression test, the specimen is placed between the

platens of the cross-heads. Due to the frictional restraint on the ends of
the specimen by the platens, the specimen would show a “barreling” effect,
which shows a bulged lateral surface as in Figure 5.7(a). As the compressive
load increases, two “end cones” form. The two end cones remain elastic,
while plastic deformation occurs in the remaining part of the specimen.
According to Nadai [6, p. 341], the angle φ, which specifies the conical sur-
face, depends on the diameter to height ratio of the cylindrical specimen. It
is apparent that the state of stress is not uniform in the specimen and the
stress–strain curve obtained from this test is questionable to some extent.
Investigators have lubricated specimen ends and platens with variousmater-
ials, for example, Taylor and Quinney [8], Bridgman [9], and more recently
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FIGURE 5.7
(a) Barreling effect in compression test, (b) method of Wu [14] to eliminate barreling (From
Wu, H.C. et al., Eng. Fracture Mech., 8, 365, 1976. With permission from Elsevier).
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Armstrong et al. [10]. The barreling effect has been reduced by the lubrica-
tion, but some degrees of barreling still persist. Lubrication was achieved
in the testing of Gunasekera et al. [11] by using a thin PTFE (Hostaflon)
sheet on either side of the specimen. These authors found that the ratio of
PTFE thickness to specimen diameter affects test results. Khan and Liang
[12] tested three BCC metals, using rectangular block specimens, under
uniaxial compression and then, after finite deformation, under biaxial com-
pression. A layer of thin Teflon sheet (0.0762 mm or 0.003 in.) was used as
the lubricant. A small amount of graphite powder lubricant was also put
between the Teflon sheets and the surfaces of the apparatus and the specimen.
These authors found that the specimen underwent fairly large compressive
strain without appreciable barreling. In the testing of brittle materials such
as concrete, brush bearing platens have been used to reduce the frictional
effect [13].
In [14], the author proposed a method to further reduce the frictional

restraint by introducing two heads, one on top and one underneath the
specimen, during compression tests (see Figure 5.7(b)). The two heads should
be of the same material, width, and thickness as the specimen. It was shown
by Coker and Filon [15], using the technique of photoelasticity, that if the
height of each head was greater than 0.4 times the height of the specimen,
the stress distribution was almost uniform throughout the cross-section of
specimen. This method has been proven to be very satisfactory in the test-
ing of ice and cast iron by the author and his coworkers. The advantage of
using thismethodof testing is that, whenunder compression, thematerial just
aboveandbelowthe contact surfacesbetween theheadsand the specimenwill
expand the same amount, since they are of the same composition. The friction
at the contact surfaces will thus be a minimum if not equal to zero. Moreover,
the contact surfaces may be polished and lubricated to allow horizontal slid-
ing motion of material elements that are adjacent to these contact surfaces,
if the elements have a tendency to move. As a result of this arrangement, a
uniform lateral expansion of the specimen can be achieved (Figure 5.7(b)) in
contrast to the bulged lateral surface under conventional method of testing
(Figure 5.7(a)). The strain state as well as the stress state will then be uniform
throughout the specimen.
The author tested columnar grained ice in compression [16] using this

testing arrangement. The specimens were rectangular in shape with dimen-
sions: 8 cm wide, 12 cm high, and 4 cm thick. In the columnar grained ice,
ice grows in the form of columns (along the thickness direction) with the
axis of crystallographic symmetry (c-axis) randomly oriented but parallel to
the face of the specimen. The ice is thus transversely isotropic. The long
direction of the columnar ice crystals was perpendicular to the load direc-
tion and underwent very little deformation when the specimen was tested.
The top and bottom ice blocks were also prepared from the same ice. These
ice blocks (or heads) were of the same crystal orientation, width, thickness
as the specimen, but the height was only 6 cm (half that of the specimen).
With this experimental arrangement, a uniform strain (stress) state was
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achievedwithin the specimen. Thiswas checkedwith strain gauges that were
embedded at three different locations of a cross-section inside the specimen.
No barreling of specimens was observed and the end cones occurred in the
two heads. The specimen and the heads were initially transparent before
load was applied. As the compressive load increased at a small strain rate,
slipswithin the crystals andmicro-cracks, whichwere largely intercrystalline,
formed two families of parallel lines, each making an angle of approximately
45◦ with the loading direction. The specimen became nontransparent due to
these microcracks. The two end cones in the heads remained transparent,
however, since no microcracks formed within those regions. The specimens
remain whole, without macrocracks. When the specimens were tested at
higher strain rates, macroscopic cracks developed parallel to the direction of
loading. Finally, we mention that ice can also be viewed as a model material.
It is polycrystalline and at low strain rate it is ductile under compression.
The author also tested cast iron using the method with two heads (blocks).
Specimens of 2.54 cm cubewere tested to a compressive strain of 20%without
barreling.
Large changes in specimen geometry occur when test is carried out to

the large strain range using conventional method of testing. Remachining
has been practiced due to barreling. Starting with a very large cylindrical
specimen, the diameter is machined down after the test so that we again have
a cylindrical specimen for the second compression.After the second compres-
sion, the specimen is again remachined to reduce the diameter and to have
a favorable length/diameter ratio for the next compression test. According
to Hecker et al. [17], a recommended length/diameter ratio is 1.6. The com-
pression test may continue with additional rounds of remachining. Some
stress–strain curves for tension and compression in the large strain range
may be found in [10] and [17].

5.2.3 The Torsion Test

The shear stress–strain curve of a material is traditionally determined by a
torsion test. The shapeof the shear stress–strain curve is about the sameas that
for a tension stress–strain curve, but themagnitudes of the two curves are not
the same. In a torsion test, the specimens can be either solid cylinders or thin-
walled tubes, and the experimental data is recorded in the form of a torque
versus angle of twist curve. We discuss in this section how the shear stress–
strain curve can be determined from the experimental data. Since the stress
distribution is nonlinear along the radius of a specimen, when plastic strain
develops, a theory is needed to determine the shear stress–strain curve from
the experimental data. Some solutions are first presented that are useful for
obtaining a shear stress–strain curve under loading condition. The determin-
ation of cyclic shear stress–strain curve is then discussed. We consider only
torsion test in the small strain range. The discussion of torsion in the large
strain range is deferred to Section 5.5.
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5.2.3.1 The shear stress–strain curve

Several methods are used by various investigators to determine the shear
stress–strain curve from the torque–twist data [6, Ch. 21], [18,19]. One of
the methods is the quasielastic (QE) approximation [18] which is equivalent
to assuming a linear shear stress distribution with respect to the radius in
the specimen and finding the shear stress–strain relation at the surface of the
specimen. It is clear that thismethod overestimates the shear stress for a given
strain and it gives upper bound of the shear stress–strain curves. The thin-
walled tube approximation is the simplest and most well-known method. It
gives the lower bound of the shear stress–strain curves. Nadai’s surface stress
method [6, Ch. 21] requires some sophisticated data analysis since the shear
stress is nonlinearly distributed along the radius of a solid circular cylinder.
This solution is usually considered as an exact solution for finding the shear
stress–strain curve from a specimen of solid circular cylinder [19]. Brown
[19] and Batdorf and Robert [18] extended Nadai’s solution to the case of
tubular specimens. But these methods require the stresses to be determined
by an iterative procedure. An approximation proposed by Brown [19] can
give an approximated surface stress for a tubular specimen by use of a single
equation.

5.2.3.1.1 The quasielastic solution

Consider a solid circular cylinder inpure torsion, inwhich the twist is θ radian
per unit length. The shear strain is then given by γ = rθ , where r is the radius
of the field point under consideration. The torque applied to a solid circular
cylinder is then given by the integral

M =
∫ r0

0
2πr2τ dr (5.20)

where τ is the shear stress at radius r, and r0 is the external radius. When the
material is linearly elastic, the stress is proportional to strain, and the shear
strain is proportional to radius r. The surface stress is found to be

τ0 = µθr0 = 2M
πr30

(5.21)

where

M =
∫ r0

0
2πr2µrθ dr = π

2
r40µθ (5.22)

and µ is shear modulus. In the case of tubular specimen, (5.20) can be
written as

M =
∫ r0

r1
2πr2τ dr (5.23)
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where r1 is the internal radius of the specimen. Then, the surface stress is
given by

τ0 = 2r0M
π(r40 − r41)

(5.24)

5.2.3.1.2 The thin-walled tube approximation

Byassuming the shear stress, denotedby τ0, tobeuniformlydistributedacross
the wall-thickness, (5.23) may be integrated to yield

τ0 = 3M
2π(r30 − r31)

(5.25)

Equation (5.25)was called the full plastic solution by Brown [19]. On the other
hand, the following expression is usually used for thin-walled tube

τ0 = M
2πr2mt

(5.26)

where rm is the mean radius of the tubular specimen and t = r0 − r1 is the
wall-thickness of the specimen. When t is small, (5.25) and (5.26) give very
close results. As an example, the shear stresses calculated from the above two
equations are comparedbelow for t = 3.17mm(1/8 in.) and6.35mm(1/4 in.):

(τ0)25

(τ0)26
= 0.997 for 3.17 mm tube with rm = 17.46 mm

(τ0)25

(τ0)26
= 0.991 for 6.35 mm tube with rm = 19.05 mm

where (τ0)25 and (τ0)26 are the shear stresses calculated from (5.25) and (5.26),
respectively. Since the difference is small, (5.26) will be used for comparison
later in this section.

5.2.3.1.3 Nadai’s exact solution

By writing (5.20) as

M = 2π
θ3

∫ γ0

0
τ(γ )γ 2 dγ (5.27)

where γ0 = r0θ , Nadai [6, Ch. 21] multiplied both sides of (5.27) by θ3 and
differentiated the equation with respect to θ to obtain

d
dθ
(Mθ3) = d

dθ

(
2π
∫ γ0

0
τ(γ )γ 2 dγ

)
= 2π

∂γ0

∂θ
[τ(γ0)γ 20 ] (5.28)

© 2005 by Chapman & Hall/CRC Press



222 Continuum Mechanics and Plasticity

where the shear stress τ(γ ) is a nonlinear function of γ . In performing the
differentiation in (5.28), we note that in the integral of (5.27), γ may be viewed
as a parameter of integration so that the integrand is not a function of θ , but
the upper limit of integration γ0 is. Equation (5.28) may then be written as

τ0 = 1
2πr30

(
3M + θ dM

dθ

)
(5.29)

Using this expression the shear stress on the outer surface of a solid circular
cylinder can be determined from the torque–twist curve. Nadai’s solution
is considered as exact solution [19] by most investigators. Brown [19] and
Batdorf [18] extended the above equation to the following for the case of
tubular specimens

τ0 = 1
r30

[
τ1r31 +

1
2π

(
3M + θ dM

dθ

)]
(5.30)

where τ1 is the shear stress at the inner surface of the tube. This equationmay
be used to determine the surface shear stress–strain curve froma torque–twist
curve of a tube using an iterative procedure explained in [18,19].

5.2.3.1.4 Brown’s approximation

Brown [19] suggested the following form for the shear stress–strain curve

τ0 = AM(θ)+ Bθ
dM
dθ

(5.31)

where A and B are constants. Equation (5.31) reduces to (5.24) in the special
case of θ(dM/dθ) = M, and reduces to (5.25) when θ(dM/dθ) = 0. Thus,
A and B may be determined by comparing the two special cases with (5.24)
and (5.25), respectively. Therefore, (5.31) may be written as

τ0 = 1
2π

[
3M

r30 − r31
+
(

4r0
r40 − r41

− 3
r30 − r31

)
θ
dM
dθ

]
(5.32)

Equation (5.32) was proposed to provide an approximation for tubular
specimens. But it is exact for the special case of solid cylinder, since it reduces
to (5.29) when r1 is zero. This approximation can lead to good result for small
deformation [19]. The textof this section is extractedwithpermission from[20]
Copyright ASTM International, 100 Barr Harbor Dr., W. Conshohocken, PA.
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5.2.3.2 Cyclic shear stress–strain curve

Nadai’s solution (5.29) gives the shear stress–strain curve on the outer surface
of a solid shaft. The strength of this solution is that it is independent of con-
stitutive equation, and the loading history is accounted for only through the
input of the M versus θ curve. The latter point has not been generally recog-
nized by researchers due to the existence of residual stress during unloading.
The shear stress distribution in a solid shaft subjected to cyclic torsion was
shown to be quite complicated byWu et al. [21]. In spite of this, Wu et al. [22]
have shown that Nadai’s solution can be used to determine the unloading–
reloading–cyclic loading shear stress–strain curve using a solid shaft. This
method greatly simplifies the study of cyclic plasticity and multi-axial plas-
ticity in the infinitesimal strain range, since costly tubular specimens are no
longer needed.
When unloading occurs, each material element along the radius of the

specimen follows a different unloading stress path, resulting in a different
state of stress. Thus, the stress distribution along the radius during unload-
ing is complicated. However, Nadai’s solution shows that the shear stress
on the surface of a solid shaft depends only on the information on the outer
surface of the shaft and not directly on the deformation history in the interior
part of the shaft.
The shear strain is γ = rθ , where γ varies with r for a given θ . On the outer

surface of the shaft, the shear strain is γ0. The shear strain during unloading
is γ = rθ = γ ∗ + γ̄ , where γ ∗ = rθ∗, and θ∗ is the angle of twist correspond-
ing to the state when unloading begins; and γ̄ = r(θ − θ∗) is the additional
shear strain incurred during unloading. The shear stress during unloading
is τ(γ ) = τ(γ ∗) + f (γ̄ ), where τ(γ ∗) denotes the local shear stress when
unloading begins. The function f (γ̄ ) represents the change in shear stress
caused by the unloading. Both τ(γ ∗) and f (γ̄ ) vary along the radius and their
explicit functional forms are not needed in the derivation. Using (5.20), the
torque is

M =
∫ r0

0
2πτ(γ ∗)r2dr +

∫ r0

0
2π f (γ̄ )r2 dr

=M∗ + 2π
(θ − θ∗)3

∫ γ̄0

0
γ̄ 2f (γ̄ )dγ̄ (5.33)

where

M∗ =
∫ r0

0
2πτ(γ ∗)r2 dr (5.34)

We note that at the onset of unloading, the torque is M∗, the correspond-
ing angle of twist is θ∗, and the shear strain is γ ∗. In addition, we have
γ̄0 = r0(θ − θ∗) and dγ̄ = (θ − θ∗)dr. In the last integral of (5.33), γ̄ may
be viewed as the parameter of integration so that only the upper limit of
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the integral is a function of θ . The function f (γ̄ ) evaluated at the outer
surface of the solid shaft, denoted by f (γ̄0), is now determined. This quant-
ity is needed in the unloading stress–strain curve. The lower limit of the
integral is zero because r is zero at the center of the shaft; the upper limit
γ̄0 is evaluated on the outer surface. For unloading after plastic deforma-
tion has occurred, it is not easy to find an analytical expression for f (γ̄ ).
However, it is certain that f (γ̄ ) varies continuously from r = 0 to r =
r0.
Multiplying both side of (5.33) by (θ− θ∗)3 and differentiating the resulting

equation partially with respect to θ , we obtain

3(M −M∗)+ (θ − θ∗)dM
dθ
= 2πr30f (γ̄0) (5.35)

Note thatM∗ is a function of θ∗, but not a function of θ . The function f (γ̄0) is
determined from (5.35) and the shear stress on the outer surface of the shaft
is found from τ(γ ) = τ(γ ∗)+ f (γ̄ ) by setting r = r0 as

τ0(γ )− τ0(γ ∗) = 1
2πr30

{
3(M −M∗)+ (θ − θ∗)dM

dθ

}
(5.36)

This equationhas the same formas (5.29). But, thedifferencesbetween the cur-
rent values and those at first unloading, that is, τ0(γ )−τ0(γ ∗), (M −M∗), and
(θ−θ∗), should be used in the equation. Thus, it has been shown that Nadai’s
solution is also applicable to the unloading case. In fact, this equation can be
shown by a similar procedure to be valid for each segment of a cyclic loading
program. TorqueM(θ) varies continuously with θ during cyclic loading, but
its derivative dM/dθ is piecewise continuous with a jump at each loading
reversal.
Equation (5.36) is nowused to determine the loading–unloading–reloading

shear stress–strain curve in the infinitesimal strain range. A set of experi-
mental data fromWu et al. [21] for 4140 steel is used in the calculation. In the
experiments of [21], a solid shaft of 16.1mm (0.634 in.) diameter and a tubular
specimen of 12.7 mm (0.5 in.) inner diameter and 16.1 mm (0.634 in.) outer
diameter were tested in torsion. By use of the experimentally determined M
versus θ curve of the solid shaft, the shear stress–strain curve for each seg-
ment of the loading–unloading–reloading program is calculated from (5.36).
In the computation, the geometrical change is neglected due to small strain
consideration. The resulting curve is plotted in Figure 5.8 and shown by the
dashed curve. The experimental M curve for the tubular specimen is then
used, together with the thin-walled approximation of (5.26), to determine
another shear stress–strain curve (the solid curve), which is also shown in
the figure. It is seen that the two stress–strain loops agree closely. The curve
determined from the solid shaft is an exact solution, while the other curve is
an approximation.
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FIGURE 5.8
Cyclic shear stress–strain curve determined from torsion of solid shaft.

5.2.4 Strain Rate, Temperature, and Creep

Metallic materials are generally strain-rate sensitive at high temperature,
but not equally sensitive at room temperature. There are exceptions such
as AISI Type 304 stainless steel and others. The 304 stainless steel is strain-
rate sensitive at room temperature even at the low strain-rate range of 10−6
to 10−3 s−1; on the other hand, materials such as aluminum alloys are not
strain-rate sensitive in this range. Metals are generally strain-rate sensitive
under dynamic loading. Aset of constant strain-rate stress–strain curves may
be experimentally determined. The curves for materials such as aluminum
alloys or brass are shown schematically in Figure 5.9(a). Figure 5.9(b) shows
similar curves for mild steel. The stress–strain curve for a higher strain-rate
lies above that for a lower strain-rate. The temperature effect is shown schem-
atically in Figure 5.9(c), in which a stress–strain curve at a higher temperature
lies below that at a lower temperature, that is, the material becomes softer at
higher temperature. It is known that the strain-rate effect and the temperature
effect are related.
Due to low strain-rate sensitivity of most metals at room temperature in the

strain-rate range of 10−6 to 10−3 s−1 (or quasi-static), the permanent deform-
ation of metals has been classified as plastic deformation or rate-independent
plasticdeformation. This is anapproximation, because in reality themetals are
more or less strain-rate dependent. However, it is a reasonable approximation
and it enables the development of theories of plasticity. The strain-rate sens-
itive plasticity is also known as viscoplasticity. Most theories of viscoplasticity
are formulated by adding the strain-rate sensitivity to a theory of plasticity.
The strain-rate effect is especially significant under dynamic loading. Even
within the quasi-static strain-rate range, the present of strain rate leads to
creep and stress relaxation.
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(a) Schematic constant strain-rate stress–strain curves, (b) constant strain-rate stress–strain curves
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FIGURE 5.10
Loading stress–strain curve, creep, and stress relaxation.

Some fundamental concepts of strain-rate effect are constant strain-rate
stress–strain curves as previously discussed, creep, and stress relaxation.
Creep is the deformation developed as time elapses when the applied stress
is kept constant. On the other hand, when the strain is kept constant, the
stress relaxes with time. In Figure 5.10, OA shows the loading stress–strain
curve; AB shows that the strain creeps fromAto Bwhile the stress is kept con-
stant at σA; andAC shows that the stress relaxes fromA to C while the strain
is kept constant at εA. A typical creep curve is a plot of strain against time
and it is divided into three stages: the primary creep, the secondary creep,
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A schematic creep curve with three stages.

and the tertiary creep, as shown in Figure 5.11. The primary creep (also known
as the transient creep) (AB) occurs at the beginning of the creep process.
During this stage, the creep rate decreases continually. The creep rate remains
nearly constant in the secondary (or steady state) creep stage (BC), and the creep
rate increases continually until rupture during the tertiary creep stage (CD).
It is convenient to separate the creep into three stages. However, no obser-
vations are available that show creep to be completely separated into three
independent stages. It takes a long time to reach the tertiary stage; tertiary
stage begins after 1940 h of creep, for instance, for an austenitic stainless steel
tested at 704◦C under a stress of 90.9 MPa (13,200 psi) [23]. The creep curves
are dependent on the hold stresses. The higher the hold stress, the larger is
the creep strain. Creep tests conducted at constant load or constant stress also
give different creep curves.
In the past (before about 1980), plastic deformation and creep were invest-

igated separately. Experiment to determine plastic behavior was performed
by use of screw-driven universal testing machines and creep experiment was
conducted by dead load machines. An accurate control of rate of loading
or rate of straining was difficult in both cases. This method of experimental
investigation gave rise to separate theories for plastic deformation and creep
behavior. In this manner, the inelastic strain consists of a time-independent
plastic strain term and a time-dependent creep strain term; these terms are
calculated using plasticity and creep theories, respectively.
Recently (after about 1980), new type servo-controlled testing equipment

permits an accurate control of rate of loading or straining under quasi-static
condition. It provides the means of recording the nonlinear, inelastic beha-
vior ofmaterials in detail andwith great accuracy. Themachine is so powerful
that interactions between plasticity and creep can also be investigated. In this
connection, we are interested in the primary and secondary creep stages.
It is difficult to draw a line between the two stages as previously mentioned
and we will show continuous creep curves. Some interaction phenomena
that have been reported are: the cyclic hardening or softening with hold time;
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the effect of creep prestrain on the subsequent plastic behavior; and the effect
of plastic strain on the subsequent creep behavior. Corum et al. [24] showed
that the stress amplitude in the cyclic tension–compression tests with a con-
stant strain amplitude was enhanced by the preceding creep for AISI Type
304 stainless steel. Ikegami and Niitsu [25] found that SUS 304 stainless steel
hardens in the direction of the preloading not only by plastic strain but also by
creep strain. The hardening by creep is nearly equal to that by plastic strain.
Wu and Ho [26] investigated strain hardening of 304 stainless steel by creep
and found that the material hardened by creep is the same as that hardened
by plastic deformation. Kujawski et al. [27], Wu andYao [28], Wu andHo [29],
and Xia and Ellyin [30] observed that the creep curves are different even at
the same holding stress but for different strain- or stress-rate loading histories
prior to creep. In order to describe the aforementioned plasticity–creep inter-
action, recent efforts in material constitutive relation lean towards a unified
theory for plasticity and creep.
A fundamental issue of the creep test is the large range of data scatter. Some

of the scatter may be attributed to thematerial inhomogeneities, but there are
two other important factors contributing to the scatter. One factor is the test
systemmisalignment and the other is the negligence of the pre-loading stage
in a creep test by the investigators. These two factors are further explained.
The misalignment in creep was investigated by Penny and Leckie [4] and
Hayhurst [31]. These research workers generally agreed that data scatter
in creep testing could be partially attributed to specimen alignment. Poor
specimen alignment could result in bending stress (or strain) superimposed
on the required mean axial stress (or strain). This bending stress (or strain)
could be high enough to cause premature failure in brittlematerials; in ductile
materials, plastic deformation could occur and reduce the bending stress (or
strain). Analyses of misalignment were presented by these investigators. The
results show that the creep curves scatter due to eccentric loading. More sig-
nificantly, these analyses predicted that the scatter would increase with the
creep time.
The result of Wu and Wang [32] does not support all of the above asser-

tions. Wu andWang [32] considered the effect of pull-rods and the symmetric
case of misalignment shown in Figure 5.3. The symmetric case is the most
severe case of misalignment as discussed in [5]. It was pointed out in [32] that
the following assumptions and/or conditions used by [4] and [31] are not
realistic: (1) the applied load P is linearly related to the end moment M; (2)
dP/dt = dM/dt = 0; (3) the neutral axis of the specimen is fixed; and (4) the
absence of pull-rod effect. The analysis ofWu andWang [32] relaxed all of the
aforementioned assumptions and led to different results as compared with
[4] and [31]. While the numerical results of [32] show that the errors induced
by the test system misalignment are significant in the creep test, these errors
will diminish with time. Thus, the most severe effect of misalignment occurs
at the beginning of the creep test. Creep tests conducted with long pull-rods
and large initial strain level (high creep stress) will tend tominimize the effect
of misalignment.
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Another factor that is contributing to the scatter of creep data is the negli-
gence of the preloading stage in a creep test. Due to the nature of dead load
creep machines, the strain rate of the preloading stage in a traditional creep
test is neither observable nor recordable. The way that the load (weight) is
applied greatly affects the creep strain. Wu andHo [29] conducted creep tests
by use of a servo-controlled materials test system, and investigated the effect
of thepreloading stage on the subsequent creep. Two sets of test historieswere
used. One had a constant strain-rate preloading and the other had a constant
stress-rate preloading. In the case with constant strain-rate preloading, the
specimen was pulled in the strain-control mode while the computer mon-
itored the strain and stress magnitude. The strain-rates were set at 2 × 10−6,
10−5, 10−4, and 10−3 s−1. As soon as the stress magnitude reached the
preset creep holding stress, the loading process stopped. The test system
was programmed to switch to the load-control mode instantaneously and
then kept the stress at this constant magnitude, while the creep strain was
being recorded. In the case with constant stress-rate preloading, the test was
straightforward without control mode switching. The tests were performed
under stress control at constant stress-rates of 2.07 and 20.7 MPa/s. As the
stress reached the preset value, the creep process began.
Each test result to be discussed was the average of two specimens. Most

results were very consistent except for the case of constant strain-rate loading
at 10−5 s−1, where data scatter was apparent. A third test was conducted
for this case and the result shown is the average of three tests. Two remarks
can be made from the strain–time profiles of the whole creep process (the
loading stage and the creep stage) shown in Figure 5.12, in which the starting
point of the creep stage is marked by *. First, the profiles confirm the constant
strain-rate control of each curve prior to reaching the hold stress. Second,
the profiles show that the initial creep strain rates are indeed a continuation
of the preloading strain rates. Therefore, the initial creep strain rate of creep
tests with strain-controlled preloading is known. Figure 5.13 shows the creep
curves of various constant strain-rate preloading at the same holding stress
of 206.7 MPa (30 ksi).
For constant stress-rate preloading, the initial creep strain rate is also

determined at the end of the loading stage. Thus, in the discussion of
the creep stage, the initial creep rate is regarded as a known value. Figure 5.14
shows the strain–time profiles of the creep tests with constant stress-rate pre-
loading. The starting points of the creep stage are marked by ∗ in the figure. It
is seen that, during thepreloading stage, the strain rate is constant in theelastic
range and increases rapidly during elastic–plastic transition. The figure also
shows that the initial creep strain rate is a continuationof thepreloading strain
rate. Figure 5.15 shows the creep curves for two creep testswithpreloadings of
twodifferent constant stress rates. Thehold stress for both testswas 206.7MPa
(30 ksi), same as the hold stress for the creep tests shown in Figure 5.13. In the
elastic region, stress-rates of 2.07 and 20.7 MPa/s correspond to strain-rates
of 1× 10−5 and 1× 10−4 s−1, respectively. Because the initial creep rate of the
creep test with faster stress-rate preloading is large, the corresponding creep
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FIGURE 5.12
Strain–time profiles of creep tests with various constant strain-rate preloading (From Wu, H.C.
and Ho, C.C., J. Eng. Mater. Technol., 117, 260, 1995. With permission fromASME).
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Creep curves of various constant strain-rate preloading at the same hold stress (From Wu, H.C.
and Ho, C.C., J. Eng. Mater. Technol., 117, 260, 1995. With permission fromASME).

strain is larger than that of the creep test with a slower stress-rate preloading.
Comparing creep curves of Figure 5.13 and Figure 5.15 with the same pre-
loading strain-rate in the elastic region and having the same hold stress, the
creep strains of constant stress-rate preloading approximately double those
of constant strain-rate preloading.Wemay conclude that the preloading stage
greatly affects the subsequent creep strain and that the traditional creep test
using a dead load machine is vulnerable to data scatter, because neither the
strain- nor the stress-rate of the loading stage can be controlled.
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5.3 Modeling the Stress–Strain Curve

For the purpose of applications and further theoretical studies, it is useful to
develop a mathematical model for the one-dimensional stress–strain curve
OABE shown in Figure 5.1. This is a generic stress–strain curve, it can be the
curve for tension, compression, or shear. In 1909, Ludwik [33] proposed a
stress–strain relationship to be used when the deformation was sufficiently
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FIGURE 5.16
(a) The Ludwik equation, (b) the Ramberg–Osgood equation.

large so that the elastic strain could be neglected. The Ludwik equation is

σ = Kεn (5.37)

where K is a strength coefficient and n is a strain-hardening exponent usually
lying between 0 and 0.5. The equation predicts a zero initial stress and an
infinite initial slope, except for n = 0which represents a rigid perfectly plastic
material without strain-hardening. The higher the value of n, the more pro-
nounced is the strain-hardening characteristic of the material. The Ludwik
equation is plotted in Figure 5.16(a) for n = 0, 0.1, 0.2, 0.3, 0.4, and 0.5. If this
equation is used to describe the plastic behavior andwe combine the equation
with Hooke’s law, which is used to describe the elastic behavior, the resulting
equation can be used to describe the total material behavior. Writing the total
strain as the sum of elastic and plastic parts, we obtain

ε = εe + εp = σ

E
+
(σ
K

)1/n
(5.38)
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This equation, knownas theRamberg–OsgoodEquation [34], is usedbymany
investigators to express the monotonic loading curve of strain-hardening
materials, especially ones without a sharply defined yield stress. For a large
number of metals, if the true stress is plotted versus the true plastic strain, a
straight line results on a log–log plot and equation (5.38) proves useful. We
rewrite (5.38) as

ε

εy
= σ

σy
+ α

(
σ

σy

)m

(5.39)

where

α = E(σy)m−1

Km and m = 1
n

(5.40)

and σy and εy are the yield stress and yield strain, respectively, and related
by σy = Eεy; m is a hardening exponent; and α is a constant. Equation (5.38)
is plotted in Figure 5.16(b) for α = 3/7 and m = 3, 5, 9, 14, and∞. Note that
(5.39) has three parameters.
Other models have been proposed in the literature, but they will not be

discussed here. Generally, the models describe similar curves using differ-
ent mathematical expressions. Instead, we give some remarks related to the
stress–strain curves in the large strain range. Many investigators specify that
their equations relate the true stress to the true strain. The true strain is well
defined and the definition of true strain or logarithmic strain εlog has been
discussed in Section 3.10. It may be shown from (3.139) that true strain is
related to the engineering strain εeng by

εlog = ln(1+ εeng) (5.41)

The true stress (or the Cauchy stress) is also well defined and it is related to
the nominal stress (or the 1st P–K stress) by (4.42). In the case of uniaxial stress
for isotropic materials, the deformation gradient and stress components are

[F] =

λ 0 0
0 λ2 0
0 0 λ2


 , [σ ] =


σ 0 0
0 0 0
0 0 0


 , [T(0)] =


s 0 0
0 0 0
0 0 0



(5.42)

Assuming that the material is incompressible at large strain, the Jacobian of
the transformation is

J = det F = λλ22 = 1 (5.43)
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Substituting (5.42) and (5.43) into (4.42), we obtain

s = σ

λ
= σ exp(−εlog) (5.44)

where

λ = exp(εlog) (5.45)

Equation (5.44) has been used to convert the stress–strain curve expressed in
terms of the true stress σ into that expressed in terms of the nominal stress
and vice versa.
In the tension test, the nominal stress is easily determined, because the ini-

tial cross-sectional area of the specimen is known. In this case, (5.44) is used
to convert the nominal stress into the true stress. Both stress–strain curves are
shown in Figure 5.17(a). Recently, some investigators have used diametral
extensometers to measure the diametral strains in the cylindrical tension spe-
cimens. These diametral strains are then converted to the longitudinal strains
based on a constant volume assumption. Let the volume be V = A0l0 = Al,
where A denotes the cross-sectional area and l the length of the specimen.
The subscript 0 denotes the undeformed condition. If the volume remains
constant, the differentiation of the above equation leads to

dεlog = dl
l
= −dA

A
or εlog = ln

(
A0

A

)
(5.46)

The diametral strain is related to the change of area. The reduction of area
defined by (A0 − A)/A0 is often used. However, we need to remember that
this approach is based on the constant volume assumption and it is a good
approximation when the strain is large.
In the compression test, the specimen is repeatedly remachined. The stress

thus obtained is close to the true stress. We then use (5.44) to convert the true
stress into the nominal stress. In doing so, we remark that the strain εlog is
negative in compression. The stress–strain curves for compression are shown
in Figure 5.17(b) plotting against the absolute value of the true strain.

5.4 The Effects of Hydrostatic Pressure

The hydrostatic pressure plays a significant role in the formulation of a
modern theory of plasticity. It has been assumed by many researchers that
plastic yielding of metals is independent of superimposed hydrostatic pres-
sure and thatmetals areplastically incompressible. In this section,weexamine
the experimental findings that have been reported in the literature so that the
validity of the aforementioned assumptions can be assessed. We would like
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FIGURE 5.17
Stress–strain curve expressed in two stress measures, (a) tensile and (b) compression.

to mention that the dependence of the yield stress and the compressibility
of material on the hydrostatic pressure are well recognized for such porous
materials as geotechnical materials and is not be discussed in this section (see
Chapter 9 for discussion).
Bridgman published a large volume of papers related to high hydrostatic

pressure. The experiments related to the studies of largeplastic flowunder the
effect of hydrostatic pressure are well summarized in Bridgman [9]. From the
many solids studied, the “absolute compressibility” of the material is given
from [3, p. 493] by

−�V
V0
= a p− b p2 (5.47)

where p is the hydrostatic pressure measured in kgf/cm2(1 kgf/cm2 =
98.1 kPa), �V the volume change, V0 the initial volume at atmospheric pres-
sure, and a and b are constants determined from experiments, for example,
a = 5.826 × 10−7 and b = 0.8 × 10−12 for iron. We note that the absolute
compressibility expressed by (5.47) is a volumetric strain and would like to
mention a special note by Bell [3, p. 494] that Bridgmanmeasured the change
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in length in a single direction from which, assuming isotropy, he computed
the change of volume.
In the tension of steel under hydrostatic pressure, Bridgman [9, p. 49]

measured the change in length of the specimen and by the assumption of
volume constancy he determined the area reduction of the neck in the ten-
sion specimen. He found that the flow stress and the stress at maximum
load increase almost linearly with pressure for pressure up to 2,800 MPa
(400,000 psi) for various heat treatment of a steel, Bridgman [9, p. 69–70].
Bridgman [9, p. 195] conducted uniaxial compression test using specimens

of various metals to determine plastic volume change. No hydrostatic pres-
sure was applied in this series of tests. He used a dilatometer apparatus
for determining the change of volume of the specimen during the test. He
argued for the superiority of a direct measurement (by use of dilatometer) of
the volume change as compared with its indirect determination from meas-
urements of the change of longitudinal and lateral dimensions. Bridgman
considered a cylinder of mild steel plastically shortened to 0.85 its initial
length by an axial load of 689 MPa (100 ksi), and he compared the radius
of the cylinder under two conditions: assuming no change of volume and
assuming the full elastic change of volume corresponding to this stress. He
found that the radius in the two cases differs only by 0.07%, which is a dif-
ficult task for measurement. Bridgman did not compare the circumferential
strain, however. If he did, he would have found that the difference is 0.94%,
and the circumferential strains are 0.08465 and 0.08545, respectively, which is
not a difficult task for today’s measurement technology.
Bridgman immersed the specimen undergoing plastic deformation in a

dilatometer, whichwasfilledwith a liquid andprovidedwith a capillary open
to the atmosphere inwhich the liquidmeniscusmoved in response to changes
in volume of the contents of the dilatometer. Of thematerials examined under
compression, negative plastic volumetric strains were shown by annealed
high-carbon steel, 303 stainless steel, copper, and hard-drawn brass, and the
opposite effect, a positive plastic volumetric strain, was shown by mild steel
and iron. With these differences, the plastic volumetric strains were small,
however, and most volume changes were recoverable on release of stress.
Examples were: the plastic volumetric strain for 1035 steel was 0.0001 for an
axial strain of 0.02; it was 0.00012 for 303 stainless steel for an axial strain of
0.135; and it was 0.00015 for high-carbon steel for an axial strain of 0.14.
Crossland [35] andHu [36] found that the yield stress in torsion was sensit-

ive to the presence of hydrostatic pressure up to 280 MPa (40 ksi). Crossland
found that the upper yield stress of mild steel decreased by 10% and Hu
found that it decreased by 6.5% over the same range of hydrostatic pres-
sure. Permanent volume expansion was observed for 4310 and 4330 steels
by Spitzig et al. [7]. These authors determined the density at the uniform
gauge section of the specimen. Measurements were made both before and
after straining specimens up to 4% plastic strain, and, therefore, these were
permanent volume changes. Additional volume-change measurements were
made during deformation on several tension specimens with rosette strain
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gauges. It was found that tensile and compressive testing under hydrostatic
pressure up to 1100 MPa (160 ksi) raises the stress–strain curve by about
6.5%, but does not significantly affect the work-hardening characteristics.
The plastic volumetric strain increased proportionally with the axial strain,
and it was about 2 × 10−4 when the axial strain was 0.04. Volume-change
measurements made from the strain gauges were similar in magnitude to
those obtained from the density measurements. For the hydrostatic pressure
of 1400MPa (200 ksi) the elastic volumetric strain is 8.78×10−3 and the plastic
volumetric strain is only 2% of this amount.
It may be concluded that the yield stress of metallic materials depends on

superimposed hydrostatic pressure. The yield stress in tension, compression,
or torsion may increase or decrease with pressure depending on material
tested. Further investigation to experimentally quantify this effect is warran-
ted. However, for a first approximation, the assumption that plastic yielding
of metals is independent of superimposed hydrostatic pressure is reason-
able. We are convinced that the plastic volumetric strain is small compared
to the elastic volumetric strain. Therefore, the assumption of plastic incom-
pressibility is well established. The assumption of plastic incompressibility is
expressed in terms of the increments of the plastic strain as

dεpkk = dεp11 + dεp22 + dεp33 = 0 (5.48)

5.5 Torsion Test in the Large Strain Range

5.5.1 Introduction

Torsion tests in the large strain range provide results that are useful in the
developmentandverificationofmicrostructure-basedandphenomenological
constitutive models of crystalline solid. The test is quite complex since, in
addition to shear stress and shear strain, the axial and hoop strains and the
axial stress are also important, making torsion test amulti-axial test. There are
two end-conditions in the torsion test: the fixed-end and the free-end torsion.
In the fixed-end torsion, the length change of the specimen is prevented, and,
because of this, axial stress is developed during torsion. On the other hand,
the length change is permitted in the free-end torsion, but the axial stress is zero
during torsion. The existence of axial stress or axial strain in the torsion test
is generally known as the axial effect. Some torsion tests are cited as: Poynting
[37], Swift [38], Hughes [39], Hodierne [40], Ronay [41,42], Baily et al. [43],
Billington [44], Lindholm et al. [45], Van Arsdale et al. [46], Montheillet et al.
[47], Wu et al. [2,48], Lipkin and Lowe [49], White et al. [50], Weerasooriya
and Swanson [51], Toth et al. [52], and Miller and McDowell [53].
Several problems related to such torsion tests need to be addressed. If these

problems are not carefully considered, then the validity of test results may
be questioned. The problems are associated with the homogeneity of the
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material, the strain measurement, the specimen geometry, and the determ-
ination of the shear stress–strain curve from the experimental torque versus
angle of twist curve. These problems have been discussed in [2] and the
following discussions are based on [2].

(1) The material homogeneity:
If the material is not homogeneous, nonuniform deformation will occur,
leading to regions that remain almost undeformed while plastic deforma-
tion occurs in the remaining part of the specimen. The strain concentration
will lead to an early development of shear band localization in the specimen.
This is a very serious problem, especially when long gauge-length specimens
are used. In the research of [2], well controlled, homogeneous material was
supplied by a material manufacturer and macroscopically uniform plastic
deformation (no apparent regions of strain concentration were observed by
eye inspection after the test) was obtained in all specimens tested.

(2) The strain measurement:
An important problem associated with the torsion test and the combined
axial–torsion test is the strain measurement. A transducer that measures and
controls normal and shear strains in the large strain range is not generally
available. Almost all experimental results reported in the literature use the
relativemotion between the grips to compute the axial and shear strains. This
method does not lead to accurate strain measurements due to the geometry
of the specimen, which has enlarged ends.
An axial–torsional extensometer has been designed and built byWu andXu

[1], see Figure 5.18. This extensometermeasures strains in the gauge section of
the solid shaft or tubular specimens. Specifications of the extensometer have
been determined in terms of the linearity, cross-talk, and hysteresis, and have
been reported inWuandXu [1]. In particular, the cross-talk between axial and
shear channels is<0.1%. The extensometer is capable of providing signals for
feedback control so that both strain- and stress-controlled experiments may
be performed.
This extensometer has been redesigned with the purpose of providing

strain measurements for free- and fixed-end torsion tests and combined
axial–torsion test for test temperature up to 150◦C (300◦F). Heat resist-
ant transducers (LVDT’s and RVDT’s) are used. This is necessary, because
the extensometer is attached to the specimen and enclosed in the furnace
during the test. In addition, most parts of the extensometer use the same
material that has been carefully selected, minimal thermal expansion being
the requirement.
The calibration for elevated temperature testing is difficult. First, there are

no axial and torsional calibrators available for elevated temperature. Second,
the calibration at room temperature cannot be directly used for elevated tem-
perature, since the sensitivity of the transducers (LVDT’s and RVDT’s) used
in the extensometer changeswith temperature. Thus, the calibration has to be
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FIGURE 5.18
Axial–torsion extensometer (FromWu, H.C. et al., Int. J. Plasticity, 13, 873, 1998. With permission
from Elsevier).

carried out at the test condition and it will be discussed in detail in the next
subsection.

(3) The specimen geometry:
Torsion tests have been conducted by use of tubular specimen, solid shaft,
and specimen of Lindholm configuration. Tubular specimens are used through-
out this research. The advantages for this type of specimen are: (a) accurate
shear strain measurement may be obtained because of the long gauge section
that this type of specimen has; (b) accurate strain measurements may be
obtained in axial and hoop strains; (c) the specimen may be used for com-
bined axial–torsional testing; (d) the specimen is suitable for test involving
unloading–reloading–cyclic loading; and (e) the specimen may be used for
investigation of shear band localization. The axial strain mentioned in (b) is
greatly influenced by the specimen geometry, which is discussed at length in
the next section. Since relatively thick-walled tubes are used in this invest-
igation, the integrated effect for axial strain would cause the measured
axial strain to be less than the actual strain. In the following paragraphs,
a discussion is given to solid shaft specimens and Lindholm configuration
specimens.
Solid shafts can achieve very large strain without buckling. They can be

used to determine the loading–unloading–cyclic shear stress–strain curve by
means of the fixed-end torsion test, see Wu et al. [22]. However, the test
requires a specially designed axial–torsion materials test system, which has
the capability of achieving a very large twist angle in one test runwhile keep-
ing the two ends fixed. This option is very expensive and is not generally
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available. In the free-end torsion test, the solid shaft leads to low-length
change compared with a tubular specimen. The axial elongation is a func-
tion of shear strain that varies linearly along the radius of the solid shaft.
The inner core of the shaft has less axial strain than the outer layer and
acts to restrict the axial elongation of the whole shaft, resulting in residual
axial stresses in the specimen. Therefore, solid shafts are not useful for the
determination of the axial effect.
Specimens of Lindholm configuration have been used by many

investigators to conduct torsion tests (see [45,50]). This is a thin-walled tubu-
lar specimen with two ends, two shoulder sections and a very short gauge
section. Avery special feature is that the gauge length is only a small fraction
of the radius of the tube. Due to the short gauge length, a very large shear
strain (say 10.0) may be applied. It is common to insert a plug and sleeve into
the annulus to prevent buckling at large strain level. The plug and sleeve,
together with the relatively rigid ends of the specimen, restrict the develop-
ment of the hoop strain at large shear strains. This is an important drawback
since, with the assumption of plastic incompressibility, the radial strain is
incorrectly inferred. It is known (Taylor and Quinney [54] and also experi-
mental data of [2]) that during torsion the hoop strain is not equal to the radial
strain. In fact, the wall-thickness changes only very slightly during torsion
while the magnitude of hoop strain can be 0.8 to 0.9 times that of the axial
strain when the shear strain is 150%. Another shortcoming of this specimen
is the underdevelopment of the axial strain during free-end torsion, which
is related to the axial stress developed during fixed-end torsion. An addi-
tional drawback of the specimen is the inaccurate strain measurement. Due
to the short gauge length, it is almost necessary to measure the shear and
axial strains by the relative rotation and displacement of the two ends. The
readings thus obtained are not representative of the actual strains in the gauge
section because of the effect of the shoulder section of the specimen. Thus, this
specimen configuration is not recommended for the fixed-end torsion (Lipkin
and Lowe [49]) due to the ambiguity of the constraint of the gauge section
characteristic of fixed-end tests. Furthermore, this specimen cannot be used
for combined axial–torsional testing, nor can it be used for the experimental
investigation of shear band localization.

(4) The determination of shear stress–strain curve:
It takes a theory to convert the torque versus angle of twist curve into
the shear stress–strain curve. Most theories such as Nadai [6] or Canova
et al. [55] do not account for length change of the specimen subjected to
torsion and, therefore, do not lead to accurate results for free-end torsion.
Although the method may be used to obtain accurate shear stress–strain
curve for the fixed-end torsion test (see [22]), the required test system is
generally not available as previously discussed. Therefore, the free-end tor-
sion of tubular specimens is still a practical test for the determination of true
shear stress–strain curve. For this purpose, experimental data for axial and
hoop strains are also needed. Based on the Nadai method, Wu et al. [20,22]
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developed a method which, by accounting for the axial and hoop strains,
provides a true shear stress–strain curve from the free-end torsion test.
This true shear stress–strain curve is consistent with that determined from
the fixed-end torsion test. It should be emphasized that, in this method, the
reduction of shear stress–strain curve from the torque-angle of twist curve is
strictly a consideration of the applied torque and specimen geometry and
no material properties are directly involved. The task is to determine an
experimental shear stress–strain curve so that it may be used for the veri-
fication of any constitutive equation. The method of Wu et al. is presented in
Section 5.5.4.

5.5.2 Experimental Program and Procedures

The experimental program of Wu et al. [2] includes free- and fixed-end tor-
sional testing of extruded and cast high-purity aluminum. (Text of this section
follows [2] with permission from Elsevier.) Tubular specimens were supplied
by Alcoa Technical Center (ATC) and the material had the following chem-
ical compositions by weight: 99.74% Al, 0.15% Fe, 0.08% Si, and 0.03% Ti.
The annealed cast aluminum was initially isotropic and had equiaxed grains
with grain size of 160 microns. The annealed extruded aluminum had an ini-
tial fiber type extrusion texture and the grains were slightly elongated with
the grain size of 250 microns along the extruded direction and 220 microns
along the transverse direction. The experiments were conducted at room
and elevated temperatures. The purposes of the experimental program were
to determine the true shear stress–strain curves, the axial effect, and the
hoop strain at several temperature levels, and to investigate the influence
of specimen gauge length on the axial and hoop strains.

5.5.2.1 Specimen geometry and test conditions

Tubular specimens with three different gauge lengths were used. The
specimen with a long (L = 82.6 mm, 3.25 in.) uniform gauge section is called
the long specimen; the specimen with a medium (L = 38.1 mm, 1.5 in.)
uniform gauge section is called the medium specimen; and the specimen
with a short (L = 19.05 mm, 0.75 in.) uniform gauge section is called the
short specimen in this study. Figure 5.19 shows the dimensions of a long
specimen with L marked on the drawing. For shorter specimens, the total
length of the specimens remains at 177.8 mm or 7.0 in., but the enlarged ends
are longer. Most specimens have the same outer diameter (OD = 38.1 mm,
1.5 in.) and inner diameter (ID = 25.4 mm, 1.0 in.) and a wall-thickness of
6.4 mm (0.25 in.). The L/r0 ratio is 4.34 for long specimen, 2.0 for medium
specimen, and 1.0 for short specimen. The t0/r0 ratio is 0.33 for most speci-
mens. Note that the short specimen here has a much longer gauge section
than the Lindholm-type specimen, which has L/r0 = 0.25 and t0/r0 = 0.5,
see Miller and McDowell [53].
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FIGURE 5.19
Specimen for finite torsion (1 in. = 25.4 mm) (FromWu, H.C. et al., Int. J. Plasticity, 13, 873, 1998.
With permission from Elsevier).

The experiments were conducted by use of an axial–torsion material test
system. An axial–torsion extensometer designed and built by Wu and Xu
[1] was used to control and measure the strains within the gauge section
of the specimen. In order to have maximum relative rotation applied to the
specimen, the piston of the test system was prerotated to the maximum neg-
ative position (−50◦) by the rotation control. Therefore, a maximum rotation
angle of up to 100◦ could be applied to the specimen at each test run. At room
temperature, several test runs were required for long specimens in free-end
torsion in order to reach a large shear strain of over 100%. However, only
one test run was practical for free-end torsion at elevated temperature and
for fixed-end torsion at all temperatures including the room temperature. For
each test run, the shear strain magnitude that could be attained depended
on the gauge length of the specimen. One run of a long specimen produced
about 40% of shear strain and about 110% of shear strain for a short specimen.
The strain rate was 1.732× 10−3 s−1 for all tests.
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The torque versus relative rotation curve and the axial extension or axial
load versus relative rotation were recorded. Specimens of three different
gauge lengths were used to study the influence of gauge length on the axial
effect during torsion.

5.5.2.2 Torsion test at room and elevated temperature

To test the specimens at elevated temperature, the extensometer was
redesigned and rebuilt according to Wu and Xu [1]. Most parts of the new
extensometer used the same material. The material (304 stainless steel) was
carefully selected with minimal thermal expansion being the requirement.
Heat resistant transducers (LVDT’s and RVDT’s) were used, so that strain
measurement or controlled biaxial straining at a temperature up to 150◦C
(300◦F) was possible by use of the new extensometer.
The calibration procedure for room temperature testing is the same as the

one described by Wu and Xu [1]. For elevated temperature, the calibration is
much more difficult. First, there are no axial and torsional calibrators avail-
able for elevated temperature. Second, the calibration at room temperature
cannot be directly used for elevated temperature, since the sensitivities of
the transducers (LVDT’s and RVDT’s) used in the extensometer change with
temperature. Thus, the calibration of the extensometer has to be carried out
at the test condition, that is, at elevated temperatures.
The calibration was accomplished by means of transducers (stroke and

rotation) of the test machine. The procedures of calibration are described as
follows: first, the extensometer was calibrated for both axial and torsion at
room temperature by use of an MTS displacement calibrator and a Klinger
rotation stage. The accuracy is 0.0025 mm (0.0001 in.) and 0.01◦, respectively.
Then the extensometer was attached to the test machine by use of a set of fix-
tures inside the environmental chamber. The fixtures have been designed so
that the extensometermeasures the relativemotion of the grips (no specimens
are used for this part of calibration). Known displacements were applied to
the stroke and rotation control of the test machine. The strokes and rotations
were then recorded and plotted against the output of the extensometer as in
Figure 5.20(a) and (b). It is seen that these are straight lines for both axial
and rotational outputs. The curves of Figure 5.20(a) are independent of units
(SI unit or inches) used in the displacement measurement. Next, the envir-
onmental chamber was heated up to the test conditions at 95◦C (200◦F) and
150◦C (300◦F), respectively. During the heating a water cooling system was
used to cut the heat transfer to the piston and transducers of the test machine.
The same displacement and rotation as before was then applied at the test
system control and the extensometer outputs were recorded. The sensitivity
of the extensometer was reduced due to the high temperature, but the output
curves remained straight lines, so that the linearity of the extensometer held.
It should be mentioned that the ratio of the outputs of the extensometer at
room and elevated temperatures are the calibration factors. At each temperat-
ure, two calibration factors were obtained, one for the axial and the other for
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FIGURE 5.20
(a) Extensometer axial displacement calibration, (b) extensometer relative rotation calibration,
(c) calibration of relative rotation at elevated temperature (FromWu, H.C. et al., Int. J. Plasticity,
13, 873, 1998. With permission from Elsevier).
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rotation. Those factors were used to correct the actual readings of an elevated
temperature test. The heating process was gradual to insure that the temper-
ature in the specimen was uniformly distributed. About 2 h of heating time
was needed for the environmental chamber used.
This procedure of calibration could not be used for temperature >150◦C

(300◦F), which is the upper temperature limit for the LVDTs and RVDTs
of the extensometer. For higher temperature tests, a different method of
calibration must be used and specimens were required in this procedure.
Calibration curves were determined at room and 150◦C temperatures. It was
then assumed that these curveswere still valid at higher temperatures.Atotal
of four short specimens of cast aluminum were used for the calibration tests
in free- and fixed-end torsion conditions.
Figure 5.20(c) shows the calibration curves plotting the grips rotation of the

test machine against the relative rotation within the gauge length, measured
by the extensometer, of a short specimen tested in free-end torsion at two
different temperatures. It is seen that no noticeable differences can be found
between the two curves. This curve describes the geometrical characteristic
of the specimen and shows that the relation has not been affected by tem-
perature. Similar calibration curves for short specimen subjected to fixed-end
torsion have also been obtained. Again, temperature does not have a notice-
able influence on the calibration curve. The calibration curves plotting the
stroke of the test system versus the axial extension within the gauge length of
a specimen have also been determined and it has been found that the curve
is not affected by test temperature either. An assumption is then made that
these curves remain unchanged at higher temperatures at 205◦C (400◦F) and
315◦C (600◦F), so that they may be used to convert the stroke and rotation
readings recordedduring tests at 205◦Cand315◦C into axial and shear strains,
respectively. At these temperatures, due to an added heating element, about
3 to 4 h of heating time were needed for the environmental chamber to reach
a steady uniform temperature.

5.5.2.3 The hoop strain measurement

There are rarely any experimental data reported concerning the hoop strain.
Baily et al. [43], recorded the hoop strain by taking readings of final dia-
meter for nine specimens, whichwere tested at different levels of shear strain.
However, a plug was used during the torsion tests, whichmight have restric-
ted the diametral change. Although the diameter reduction was observed by
many investigators (Swift [38], Freudenthal and Ronay [56], Ronay [41]) no
reliably recorded data were taken either during the tests or after the tests.
Data of diameter can provide important information as much as the axial
extension does.
In [2], thehoopstrainwasdeterminedbyaccuratelymeasuring thediameter

change during torsion. Aringwas attached to themiddle of the gauge section
of the specimen by use of four, equally spaced (90◦ apart), spring-loaded
pins. Two pins located at the opposite side of the diameter of the specimen
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formed a pair. The displacement of each pinwasmeasured by a LVDT and the
readings for eachpair of pinswere averaged. This data and that obtained from
the second pair of pins were then averaged to provide the data for diametral
change during torsion.
In order to confirm the measured diametral change, a micrometer with

0.0025mm (0.0001 in.) accuracywas used tomeasure the diameter. Themeas-
urement was taken at upper, middle, and lower cross-sections within the
gauge section after each test run at room temperature. Several test runs were
conducted, one after the other, so that a shear strain of 200% was obtained.
After the tests, the specimenswere cut in themiddle section and thediameters
were again measured. The data were consistent with the LVDT readings. The
hoop strainwas then computedbydividing thediametral changeby the initial
diameter.
In the tests for measuring the diametral change, the axial and shear strains

were determined by the stroke and rotation, respectively, of the test machine.
These readings were then converted into axial and shear strains by use of a
set of calibration curves, one of which is shown in Figure 5.20(c).

5.5.3 Experimental Results and Discussions

Experimental results of [2]were analyzed andpresented in terms of true shear
stress–strain curve, axial strain, hoop strain, and axial stress. The difference
between the cast and theextrudedaluminumand theeffect of test temperature
are discussed in each item. Finally, the effect of specimen geometry is also
discussed.

5.5.3.1 The true shear stress–strain curve

Raw experimental data in terms of torque versus angle of twist curves were
analyzed by the modified Nadai method presented by Wu et al. [20]. The
method accounts for length change in free-end torsion, and it is a method to
determine the true shear stress–strain curve without measurement of radial
and hoop strains. The true shear stress is defined inWu et al. [20,22] based on
the current cross-section of the specimen. The method of Wu et al. [20,22] is
discussed in Section 5.5.4. The axial strain was computed simply by dividing
the axial extension by the initial gauge length. It was a good approximation,
since the axial extension was a small deformation. In the case of fixed-end
torsion, Nadai’s method [6] was used, since there was no axial length change.
Figure 5.21 shows the shear stress–strain curves for extruded aluminum at

room and 150◦C (300◦F) temperatures. It is seen that the stress is lower at
150◦C and that the shear stress–strain curve of fixed-end torsion is slightly
higher than that for free-end torsion. This difference is due to the analysis
(Wu et al. [20]) which assumes that the hoop strain and axial strain ratio
is 0.5. According to the experimental results to be presented later in this
section, this ratio is much greater than 0.5. An analysis by use of [22] with
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Shear stress–strain curves for extruded aluminum (FromWu, H.C. et al., Int. J. Plasticity, 13, 873,
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Shear stress–strain curves for cast aluminum (FromWu, H.C. et al., Int. J. Plasticity, 13, 873, 1998.
With permission from Elsevier).

the hoop strain and axial strain ratio equal to 0.9 would make the two curves
coincide. This correction has been made for curves in Figure 5.22 which are
for cast aluminum. It suffices to mention that the curves for fixed-end torsion
in Figure 5.21 are the true stress–strain curves.
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The curves of Figure 5.22 were obtained from free- and fixed-end torsion
tests at room, 150◦C (300◦F), 205◦C (400◦F), and 315◦C (600◦F) temperat-
ures using long, medium, or short specimens. It is seen that these curves are
strongly affected by temperature. The higher the temperature is, the lower is
the shear stress–strain curve. Short specimens were tested at all four temper-
atures. The curves of those specimens under fixed- and free-end condition are
indistinguishable at all temperature levels. Long and medium gauge length
specimenswere alsoused in the roomtemperature testingunder free-endcon-
dition. It is seen that the curves at roomtemperature for specimensof all gauge
lengths are very close to each other. Figure 5.23 shows the experimental data
of cast and extruded aluminum from the present torsion tests compared to the
compression tests obtained byWang et al. [57]. Note that there is an interrup-
tion in the compression curve due to unloading and specimen remachining.
The curves are plotted in the form of Mises stress versus effective strain. (The
Mises stress is defined based on the Mises yield criterion, which is discussed
in Chapter 6 in connection with the flow theory of plasticity; and the effective
strain is defined based on the second invariant of the strain tensor.) It is seen
that the torsion curve for extruded aluminum, which has prestrain texture,
lies higher than that for cast aluminum. Furthermore, the figure shows that
the mises stress cannot be used to obtain a unified stress–strain curve for
cast aluminum, because the stress for compression test is higher than that for
torsion test. This is so because the two tests lead to different textures.

5.5.3.2 The axial strain

The axial effect takes the form of length change during free-end torsion.
Figure 5.24 summarizes test data for axial extension versus shear strain for
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Axial strain in free-end torsion for cast and extruded aluminum (From Wu, H.C. et al., Int. J.
Plasticity, 13, 873, 1998. With permission from Elsevier).

cast and extruded aluminum. The effect of specimen geometry is significant
and is discussed in a subsequent section. For extruded aluminum, the axial
extension starts to increase at the early stage of torsion test and continues to
increase thereafter. The notation EAL denotes extruded aluminum with long
specimen and EAS denotes extruded aluminum with short specimen. The
wall-thickness was 6.4 mm for both curves. The slopes of axial strain curves
decrease slightly at large shear strain level. For cast aluminum, the rate of
axial extension is very small when the shear strain is <50%, but it is larger at
larger shear strain and is almost the same as that of the extruded aluminum
when the shear strain is >50%. In the figure, CA1/8 denotes cast aluminum
tubular specimen with 3.2 mm (1/8 in.) wall-thickness and medium gauge
length; CA1/4denotes cast aluminum tubular specimenwith 6.4mm(1/4 in.)
wall-thickness and long gauge length; and CASOL denotes cast aluminum
solid shaft specimen. This figure shows that the development of axial effect
in the cast aluminum was delayed by a shear strain of approximately 50%
when compared with the extruded aluminum.
Figure 5.25 shows that the test temperature does not have a significant

influence on the axial extension for cast aluminum. In the case of extruded
aluminum (not shown in the figure), the axial extension curve at room tem-
perature is slightly higher than that at 150◦C (300◦F), but they almost coincide.
This finding does not agree with the assertion [41] that a higher temperature
would give rise to a larger axial extension, and it is not consistent with the
temperature effect observed in the axial stress developed during fixed-end
torsion test discussed in the next subsection. Different textures are developed
at different test temperatures and they can cause different amounts of length
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Axial strain in free-end torsion at elevated temperature (FromWu, H.C. et al., Int. J. Plasticity, 13,
873, 1998. With permission from Elsevier).

change. It is believed that the specimen geometry effect is responsible for
this inconsistency. The geometry effect is important in the free-end torsion test
and not as important in the fixed-end torsion test. Therefore, it is believed that
the observed dependence of the axial stress on temperature is a true effect.
From this viewpoint, one can then infer that a temperature effect should also
exist in the length change, but it should be further investigated.

5.5.3.3 The hoop strain

For a few specimens where the outer diameter change was measured during
free-end torsion, the hoop strain was computed from the diametral change.
Figure 5.26 shows the axial and hoop strains plotted against the shear strain
for cast and extruded aluminum at room temperature. Two long specimens
of extruded aluminum (marked “textured” in the figure) were tested and the
results are very consistent. The axial strain was about 5.5–6% and the hoop
strain was about 4.0–4.5% when the shear strain was 150%. In the case of cast
aluminum (marked “nontextured”), two medium and one short specimen
were tested. It is seen that the development of the axial and hoop strains was
delayed as compared to the curves of extruded aluminum. In all curves, no
noticeable differences can be observed between specimens for shear strain of
<100%. Some differences can be seen for larger shear strains. However, it is
interesting to note that a specimen of smaller axial strain tends to develop
smaller hoop strain as well. Therefore, the hoop strain is closely related to the
axial strain.
In Figure 5.27, the ratio of the hoop strain increment normalized with

respect to the axial strain increment is plotted against the shear strain for
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an extruded long specimen, a cast medium length specimen and a cast short
specimen. For the extruded specimen, the ratio is over 0.5 at the beginning
and increases almost linearly with the shear strain. When the shear strain is
>150%, the ratio is over 0.9. For the cast specimens, the ratio is hard todeterm-
ine at shear strain of<50%due to the smallness of both hoop and axial strains.
The ratio is over 0.5 when the shear strain is 50% and it increases with the
shear strain thereafter. The ratio is about 0.9 at a shear strain of 200%. The
hoop strain or the aforementioned ratio is rarely reported in the literature. At
large shear strain, the hoop strain increment is about 90% of the axial strain
increment, and if the volume of the material keeps constant during plastic
deformation, the radial strain increment is then only about 10% of the axial
strain increment.
Bailey et al. [43] reported experimental data of 1100 aluminum where the

hoop andaxial strain ratiowas<0.33when calculated from theplot of Bailey’s
experiment. This ratio is very low compared with that found in this invest-
igation. However, Bailey used a very short gauge length, Lindholm-type
specimen and a plug inside the specimen which might have restricted the
development of hoop strain.

5.5.3.4 The axial stress

The axial stress can be observed in a fixed-end torsion test. It is calculated by
dividing the axial load by the initial cross-sectional area of the specimen. The
axial stress is in compression and ismonotonically increasingwith the increas-
ing shear strain for the material tested. The slope of the curves decreases at
large shear strain level.
Figure 5.28 shows the axial stress developed during the fixed-end torsion

test. It is seen that temperature has only a small effect on the axial stress
development when shear strain is <50% but it significantly reduces the axial
compressive stress when shear strain is >50%. It is interesting to note that
at 315◦C (600◦F), the axial stress development is greatly reduced. Even so,
the normal stress was still in compression and it reached the maximum
compressive stress at a shear strain of approximately 100%.
The axial stress starts to develop right away even at small shear strain level

for extruded aluminum (marked “textured” in the figure). On the other hand,
the axial stress does not develop much at small shear strain level for the cast
aluminum (marked “nontextured”). However, a significant increase in the
axial stress occurs starting at a shear strain of about 50%. As the shear strain
increases, the axial stress increases too and it will eventually reach a saturated
value.

5.5.3.5 The geometry effect

The geometry of the specimen has a very significant effect on the results
of free-end torsion. Figure 5.24 shows that the smallest amount of axial
strain is observed if the solid shaft is used. For tubular specimen, the axial
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strain increases when the wall-thickness is reduced. The axial strain actually
varies through the wall-thickness. It is higher at the outside radius and lower
at the interior. Themeasuredvalues reflect the integrated effect for axial strain.
This effect is less for thin-walled tube but its usefulness is limited by buck-
ling. Thus, relatively thick-walled tubes may be used as a compromise. The
influenceofwall-thickness is sogreat that the curve for 3.2mm(0.125 in.) wall-
thickness has larger axial strain than that for the curve for 6.4 mm (0.25 in.)
wall-thickness, even though the former has a medium gauge length and the
latter has a long gauge length. The effect of gauge length on the axial strain
is depicted in Figure 5.29. All tubular specimens in this figure have the same
wall-thickness of 6.4 mm but have different gauge lengths. It is seen that the
specimen with long gauge length has the largest axial strain.
For short gauge length specimens, the shoulder restricted the hoop strain

development which in turn reduced the axial extension. This reasoning leads
to the conclusion that the Lindholm type specimen, which has a very short
gauge section (very short compared with the short specimens in this study),
is not suitable for use in the study of axial effect. The long and thick-walled
specimen may be used, and this has been shown by Wu et al. [20,22] not to
reduce the accuracy of the shear stress–stain curve. The long and thick-walled
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Effect of specimen gauge length on axial strain in free-end torsion (From Wu, H.C. et al., Int. J.
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specimenwill reduce experimental scatter causedby the inhomogeneityof the
material, the machining tolerance and errors of deformation measurement,
since a larger volume of material is involved.
Figure 5.30 shows the axial strain plotted against gauge length for cast

aluminum specimens at different shear strain levels. These data are taken
directly from Figure 5.29. At the 100% shear strain level, the axial strain is
linearly related to the gauge length of the specimen. The longer the specimen
is, themore axial strain is produced.At the 125% and 150% shear strain levels,
the figure shows a gradual trend towards approaching a steady axial strain
as the gauge length increases. It is believed that the axial strain will reach a
steadymagnitude as the gauge length is increased further. More experimental
data are needed using even longer gauge length specimens. However, this
may not be easily accomplished due to inhomogeneity in the material when
the gauge length is even longer.
The gauge length and wall-thickness may have a significant influence on

the axial stress in fixed-end torsion. This effect has not yet been studied by
the author and his coworkers.

5.5.3.6 Conclusions drawn from the torsion test

An axial–torsional extensometer for high temperature testing and its calib-
ration procedures at room and elevated temperatures have been developed.
The extensometer enables an accurate control and determination of strains in
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a combined axial–torsional condition in the large strain range. A procedure
for determining the hoop strain during large strain torsion tests has also been
developed.
Based on torsion experiments on long, medium, and short tubular speci-

mens of extruded and cast high purity aluminum, the following conclusions
may be drawn:

1. Shear stress–strain curves obtained from free- and fixed-end torsion
tests of long, medium, and short specimens are consistent. Only a few
experimental scatter of <1.5% in stress can be observed. This result
is shown systematically for both room and elevated temperatures.

2. Axial extension increases with shear strain in free-end torsion of
extruded and cast aluminum. The axial extension is almost not
affectedby temperature in the rangeof temperature tested. This, how-
ever, is not consistent with the axial stress developed in the fixed-end
torsion tests. The temperature effect should be further investigated.

3. Hoop strain in free-end torsion is of a significant magnitude com-
pared with axial strain at large shear strain level. It is about 80 to 90%
of axial strain. If the volume of the material remains constant during
plastic deformation, then the radial strain is only about 10 to 20% of
the axial strain. This experimental result is different from the usual
assumption (see [58]) made in theoretical studies in which the hoop
and radial strains are assumed to be of equalmagnitude in an initially
isotropic material.
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4. Axial stress is always in compression for the fixed-end torsion and
it is significantly influenced by temperature. Temperature reduces
the magnitude of axial stress. The axial stress of extruded aluminum
tested at 150◦C (300◦F) reached a minimum at a shear strain of about
100%. The axial stress of cast aluminum at 315◦C (600◦F) reached a
minimum at a shear strain of about 100%.

5. The specimen gauge length affects axial extension as well as hoop
strain. Ashort gauge lengthwill limit the development of hoop strain
at large shear strain level and, therefore, reduces the axial strain.

6. Extrusion of material increases the shear flow stress and causes sig-
nificant axial effect to occur right at the beginning of the torsion test.

7. Long and thick-walled tubular specimen is suitable for large strain
torsion test. Important factors associated with this test are: an accur-
ate determination of shear stress–strain curve from the torque–twist
curve, an accurate strainmeasurement, and the understanding of the
effect of specimen geometry.

5.5.4 Determination of Shear Stress–Strain Curve

It takes a theory to convert the torqueversus angle of twist curve into the shear
stress–strain curve. Most theories such as those discussed in Section 5.2.3.1
or Canova et al. [55] do not account for length change of the specimen sub-
jected to torsion and, therefore, do not lead to accurate results for free-end
torsion.Although thesemethodsmay be used to obtain accurate shear stress–
strain curve for the fixed-end torsion test (see [22]), the required test system is
generally not available as previously discussed. Therefore, the free-end tor-
sion of tubular specimens is still a practical test for the determination of true
shear stress–strain curve. For this purpose, experimental data for axial and
hoop strains are also needed. Wu et al. [20,22] developed a method which,
by accounting for the axial and hoop strains, provides a true shear stress–
strain curve from the free-end torsion test. This true shear stress–strain curve
is consistent with that determined from the fixed-end torsion test. It should
be emphasized that, in this method, the reduction of shear stress–strain curve
from the torque-angle of twist curve is strictly a consideration of specimen
geometry and no material properties are directly involved. The task is to
determine an experimental shear stress–strain curve so that it may be used
for the verification of any constitutive equation.
The following derivation is based on [22]. The analysis in [20] by the same

authors assumed that hoop and radial strains are equal during torsion and it
can be considered as a special case of [22]. However, Taylor and Quinney [54]
showed that hoop and radial strains are not equal during torsion of tubes.
This result has also been confirmed experimentally by Wu et al. [2] which
has been discussed in Section 5.5.3. By use of this new solution, the shear
stress–strain curves obtained from free- and fixed-end torsion tests coincide.
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In the present analysis, the hoop and radial strains are not equal, and
the following assumptions are made: (a) plane sections remain plane;
(b) all radii remain straight; and (c) plastic deformation is incompressible.
The axial, hoop, and radial strains are generally in the small strain range, so
that the small strain relations for the normal strain components are used in
this analysis. Furthermore, the normal strains are plastic strains because no
elastic normal strains exist when the specimen is subjected to torsion.
The condition of plastic incompressibility gives

εV = ε11 + ε22 + ε33 = 0 (5.49)

where ε11 is the axial strain, and ε22 and ε33 are the radial strain and the hoop
strain of a specimen, respectively. Since, in torsion, all normal strains are
functions of the twist angle, they may be written as

ε11 = A(θ), ε22 = −R(θ), and ε33 = −H(θ) (5.50)

Therefore, (5.49) becomes

A(θ)−H(θ)− R(θ) = 0 (5.51)

In these expressions, the normal strains are assumed to be uniform over the
wall of the tube.
Consider now the current outer diameter (roc), the current inner diameter

(ric) and the current wall-thickness (tc) of a tubular specimen under free-end
torsion. The hoop strain is defined by considering the change in length of the
circumference of the tube, and it gives

roc = r0(1−H) (5.52)

The current wall-thickness is

tc = t0(1− R) = cri(1− A+H) (5.53)

where t0 is the initial wall-thickness and t0 = cri. Parameter c specifies the
initial wall-thickness. Thus,

ric = roc − tc = roc − t0(1− A+H) = r0(1−H)− t0(1− A+H)

= ri(1−H)+ t0(A− 2H) = ri[1− (1+ 2c)H + cA] (5.54)

From (5.52) and (5.54), the current shear strains at outer (γoc) and inner (γic)
diameters are given as

γoc = θr0(1−H) (5.55)
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γic = θri[1− (1+ 2c)H + cA] (5.56)

The applied torque is

M =
∫ roc

ric
2πr2τ dr (5.57)

or

Mθ3 =
∫ roc

γic

2πγ 2f (γ )dγ (5.58)

where the shear stress is τ = f (γ ). Differentiating (5.58) with respect to θ , it
is found that

d(Mθ3)
dθ

= 2πτocγ 2oc
dγoc
dθ
− 2πτicγ 2ic

dγic
dθ

(5.59)

Considering the right-hand side of (5.59) term by term and using (5.55) and
(5.56), it is found that

γ 2oc
dγoc
dθ
≈ θ2r30

[
1− 3H − θ dH

dθ

]
(5.60)

γ 2ic
dγic
dθ
≈ θ2r3i

[
1− 3

2
(1+ 2c)H + 3c A−

(
1+ 2c
2

)
θ
dH
dθ
+ c θ

dA(θ)
dθ

]

×
[
1− 3

2
(1+ 2c)H −

(
1+ 2c
2

)
θ
dH
dθ

]
(5.61)

In the derivation of (5.60) and (5.61),H, dH/dq, A, and dA/dq are considered
to have the same order of magnitude of smallness; this is experimentally
justified in [20]. When higher order terms of these quantities are neglected,
by use of (5.60) and (5.61), (5.59) becomes

τoc = 1
r30[1−D(H)]

{
τicr3i [1− (1+ 2c)D(H)+ cD(A)] + 1

2π
D(M)

}
(5.62)

where the operator is D( ) = 3( ) + θ d( )/dθ . This equation may be used to
determine the shear stress–strain curve from the experimentally determined
M(θ), A(θ), and H(θ) curves using an iterative procedure like that used in
[20] and explained below. The approximation of H(θ) = 0.9A(θ), justified by
experimental results of Wu et al. [2], may be made. An iterative procedure
is used due to the fact that, for a given θ in (6.62), two unknown stresses τoc
and τ1c need to be evaluated. Let us observe that γ = r1θ2 = r0θ1 and, for a
given angle of twist, say θ1, another twist angle is defined by θ2 = (r0/r1)θ1.
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This constitutes themechanism of iteration, andwe start the iteration proced-
ure at the elastic region. When the shear deformation is small in the elastic
region, the stress at the outer surface is known and given by (5.24). Note
that τ = f (γ ), and τoc for θ1 is equivalent to τ1c for θ2. We then increase
the twist angle, θ , by a factor of (r0/r1) for each step, so that τ1c in the (i)th
step takes the value of τoc in the (i − 1)th step. Suitable choices of the start-
ing value, θ1, will enable any required point on the stress–strain curve to
be obtained. The parameter c, which shows the effect of wall-thickness, is
present in the equation. However, numerical results show that this effect is
very minor and does not show an apparent effect on the curves obtained.
This is expected, since the experimental results of Wu et al. [2] show that
the wall-thickness does not change much during torsion and, therefore, it
may be inferred that the wall-thickness is not an important factor. In the
case of H(θ) = 1/2A(θ), which is assumed by many investigators, (5.62)
reduces to

τoc = 1
r30

[
τicr3i +

D(M)
2π(1− (1/2)D(A))

]
(5.63)

which is the same as (34) of [20]. Note that c drops out of this equation. In the
special case, when ri = 0, (5.63) reduces to

τoc = D(M)

2πr30(1− (1/2)D(A))
(5.64)

which is (26) of [20] for solid shaft. Also, when ri = 0 and A = H = R = 0,
(5.62) reduces to Nadai’s solution (5.29).
To evaluate (5.62), a set of experiments was conducted using tubular speci-

mens of extruded, high purity aluminum. Details of these experiments were
reported in [2]. All specimens had the same inner and outer diameters and
the same wall-thickness, but different uniform gauge sections. Two long spe-
cimens were tested in free-end torsion; one short specimen was tested in
free-end torsion; and one short specimen was tested in fixed-end torsion.
Torque versus shear strain curves were recorded in all cases. In the free-
end torsion test, the axial strain was also recorded. In addition, a measuring
device was built to measure the changes in diameter during the free-end
torsion test of long specimens. The hoop strain was thus determined. The
axial and hoop strains are plotted against the shear strain in Figure 5.26. It
is seen that the hoop strain has a magnitude of approximately 0.9 times the
axial strain, and that the gauge length has a significant effect on the mag-
nitude of the axial strain. The hoop strain of the short specimen was not
measured.
Data for the axial and hoop strain were used to compute the shear stress–

strain curve for the free-end torsion by use of (5.62). Since the hoop strain of
the short specimenwasnotmeasured, a relation similar to the long specimens,
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Shear stress–strain curve determined (Frommethod ofWu, H.C. et al., J. Eng. Mater. Technol., 119,
113, 1997. With permission).

H(θ) = 0.9 A(θ), was assumed. We used (5.30) to analyze the data for fixed-
end torsion using the same iteration procedure. Figure 5.31 shows the shear
stress–strain curves thus obtained. It is seen that no noticeable differences in
the shear stress–strain curves of free- and fixed-end torsions can be found.
In the figure, data of the two long specimens tested in the free-end condition
were averaged to give one curve.
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Problems

(1) Derive equation (5.30).

(2) Derive equation (5.32).

(3) The experimental M (kN m) versus θ (rad/m) relation in the small
deformation range is defined by the following set of data: {M, θ} =
{(0, 0), (0.025, 0.0047), (0.0509, 0.0174), (0.07, 0.06), (0.097, 0.174), (0.116, 0.348),
(0.149, 0.693), (0.181, 1.35)}. The cylindrical specimen has a radius of
0.008052 m. Determine the shear stress–strain curve by use of the Nadai
method.

(4) The shear stress–strain curve is influenced by the axial pretension of the
specimen. Assuming that a cylindrical specimen has been prestrained axially
to a plastic strain of εp in the small strain range, use theNadaimethod toderive
equations which can be used to determine the shear stress–strain curve, if the
torqueM versus angle of twist θ relation has been experimentally recorded.
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(5) For the experimental data of (σ MPa, ε) = {(0, 0), (11, 0.000156), (22.6, 0.0058),
(31.1, 0.02), (43, 0.058), (51.7, 0.116), (66.2, 0.231), (80.3, 0.45)}, determine the
parameters of (a) the Ludwik equation and (b) the Ramberg–Osgood equation.
Show the curves in a graph.

(6) In a simple compression test, if the true stress–strain curve is expressed by
the Ludwik equation, determine the expression relating the load and the
logarithmic strain. The curve plotting the load against the logarithmic strain
shows an inflection point. At what strain does the inflection point occur?

(7) Use the Ramberg–Osgood equation to investigate the error band in the
stress–strain curve, due to test system misalignment similar to Figure 5.5.
Use the same dimensions and constants as in Wu and Rummler [5] for the
symmetrical case.

(8) A 25 mm diameter cylindrical rod is tested in tension to a load of 45 kN. An
identical rod is also tested in tension to the same load but submerged in pres-
surized fluid of 35MPa during the test. Which rod experiences the larger shear
stress, assuming that the deformation is small?

(9) For an isotropic iron rod, the volume change under hydrostatic pressure is
given by (5.47). Denoting the axial strain by ε and the transverse strain by εt,
plot the εt versus ε curves for various constant pressure p. Find the relation
between εt and ε, when the material is assumed to be incompressible.

(10) In the determination of the shear stress–strain curve, at what shear strain-rate
must the specimen be tested, if the corresponding axial stress–strain curve is
obtained at a constant strain rate of 10−4 s−1?
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6
The Flow Theory of Plasticity

6.1 Introduction

Based on the experimental findings mentioned in Chapter 5 and some
additional experiments discussed in this chapter, various theories of plas-
ticity have been proposed in the literature. We present the major concepts
and the formulation of the flow theory of plasticity in this chapter. The flow
theory is the oldest andmost widely known theory of plasticity and can serve
as a basis for discussing improvements of any theory of plasticity or a new
theory. The flow theory is formulated here in the three-dimensional stress
space, but only the original form of the theory is discussed. Discussion of
improvements to the flow theory, the extension of the theory to finite plastic
deformation, and modern theories is deferred to Chapter 7.
According to the flow theory, the constitutive equations of plasticity consist

of (1) a yield criterion, (2) a flow rule, (3) a strain-hardening rule, and (4) the
loading–unloading conditions. The yield criterion determines the stress state
when yielding occurs; the flow rule describes the increment of plastic strain
when yielding occurs; the hardening rule describes how the material is
strain-hardened as the plastic strain increases; and the loading–unloading
conditions specify the next move in the loading program. These are themajor
concepts of the flow theory and are explained in the following sections.

6.2 The Concept of Yield Criterion

The yield stress σy is shown in the one-dimensional stress–strain curve of
Figure 5.1. If we look at Figure 5.1 from the point of view of the stress axis, we
see that if the applied stress is less than σy, the material behaves elastically,
but, as soon as the stress σ reaches σy plastic yielding occurs, which is the
initial yielding. Therefore, the condition σ = σy is the yield criterion. The yield
criterion defines the elastic region in the stress space (the stress axis in this
one-dimensional case). When σ > σy, which corresponds to curve ABE in
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FIGURE 6.1
(a) Yield locus in a two-dimensional stress space and (b) yield surface in the nine-dimensional
stress space.

Figure 5.1, the material is undergoing strain-hardening, and the material is
subjected to subsequent yielding.
In the two-dimensional stress space (τ , σ), which is one of the simplest pos-

siblemultidimensional stress spaces, we consider the case of combined axial–
torsionof a thin-walled tube. σ is the axial stress and τ is the shear stress acting
on an infinitesimal material element on the wall of the tubular specimen.
Figure 6.1(a) shows the (τ , σ) space. Ifwe conduct an experiment startingwith
zero loading at O,we can take different proportional stress-pathsOA,OB, etc.
Following the stress-path OA, the material is initially in the elastic state and
yielding occurs when the stress point reachesA.Asimilar situation applies to
other paths. Thus,A, B, C, andDare pointswhere yielding occurs. Other yield
points canbeobtainedwhenotherpathsare followed, includingpaths inother
quadrants of the two-dimensional stress space. We can then connect all yield
points A, B, C, D, etc. with a smooth closed curve and this curve is known as
the yield locus (or yield surface if multidimensional). It is the two-dimensional
version of the yield criterion of the material in this stress space. All experi-
mentally determined yield loci are convex. The yield locus defines the elastic
region in the stress space. Hooke’s law is applicable within the elastic region,
and the flow rule is used when the stress point is on the yield locus.
Similarly, yield surfaces may be experimentally determined under other

loading conditions. Examples are those in the principal stress space (σ1, σ2)
and in the three-dimensional stress space (σ12, σ11, σ22). The former may be
determined by testing a tubular specimen subjected to axial loading and
internal pressure and the latter by testing a tubular specimen in combined
axial–torsion with internal pressure. Generally, the yield criterion in the
nine-dimensional stress space σij is represented by a hypersurface shown in
Figure 6.1(b). The yield surface is a function f of stress so that the following
conditions apply:

f (σij) = 0 or f (σij) = k2 plastic state
f (σij) < 0 elastic state
f (σij) > 0 impossible

(6.1)
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where k is the shear yield stress, that is, the yield stress at point D in
Figure 6.1(a). In the case of combined axial–torsion, the yield loci for several
initially isotropic metals have been experimentally determined and reported
in the literature. In all cases, the loci are very close to ellipses. These loci are
close to circles if plotted in the (

√
3τ , σ) space. The experimental yield loci

include those for copper, aluminum, and mild steel at room temperature
determined by Taylor and Quinney [1], 6061-T6 aluminum at room temper-
ature by Bertsch and Findley [2], copper at room temperature by Mair and
Pugh [3], pure aluminum at constant temperatures from 21 to 152◦C (70 to
305◦F) by Phillips and Tang [4], AISI 304 stainless steel at room temperature
by Wu and Yeh [5] and Wu and Ho [6], SUS304 stainless steel at room tem-
perature by Ishikawa [7], and many more data that have been reported in
the literature. It is fair to conclude that the experimental results for isotropic
metals lead to initial yield surfaces which can be well represented by a circle
in the (

√
3τ , σ) space.

There are two points of interest related to the yield surface: (1) the defi-
nition of yield and (2) the initial versus subsequent yield surfaces. The yield
stress is easily identifiable for mild steel, because it has an upper yield point.
But, it is not so easily identified for other metals when the stress–strain curve
bends gradually in the elastic–plastic transition zone. The definition of yield
is very important in that the characteristics of the subsequent yield surface
depend on the definition of yield. Three definitions of yield have been used
by investigators, and it is important to know the definition of yield used in
an experiment so that proper interpretation of the experimental yield sur-
face may be made. The three definitions of yield are proportional limit, proof
strain, and backward extrapolation. Figure 6.2 shows the three definitions
of yield, in which the yield stress determined by the proportional limit is
denoted by σpr, that determined by a proof strain is denoted by σpf, and that
determined by backward extrapolation is denoted by σex. The three yield
stresses are generally different. The proportional limit is the point that marks

Proof strain

�

�O

�ex
�pf

�pr

FIGURE 6.2
Three definitions of yield.
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FIGURE 6.3
Subsequent yield surfaces determined by three proof strains.

the end of the proportional elastic straight line. It is an ideal case and is not
practical. The proof strain (also called the offset plastic strain) is the defini-
tion of yield most often used in a modern experiment and it is shown in the
figure. Different magnitudes of offset plastic strains may be used by investig-
ators. A small proof strain such as 5µ (or 5× 10−6)would result in subsequent
yield surfaces not containing the origin of the stress space and showing no or
insignificant cross effect (no increase in size of the subsequent yield surface
normal to the loading direction), see [4] and [5]. The use of 5µ is an attempt to
approximate the proportional limit, which is theoretically the correct one to
use.Aproof strain of 0.001would result in subsequent yield surfaces that con-

shows schematic subsequent yield surfaces determined by small (SurfaceA),
medium (Surface B), and large (Surface C) proof strains. The backward extrapo-
lationmethodwas used in [1], which extrapolates the stress–strain curve back
to the load axis in order to define the yield stress. The subsequent yield surface
determined by this method is an expansion in size of the initial yield surface
with the origin remaining as the center of the yield surface. We note that this
method (and also one that uses a large proof strain) requires an excessive
amount of overstrain to define a yield point and one specimen can be used
for the determination of only one point on a yield surface. Clearly, in order
to determine a yield surface, the method requires a large number of identical
specimens, and it is technically difficult to have two identical specimens. On
the other hand, a small proof strain such as 5µ allows barely enough plastic
strain to define the inception of the yield point. In this manner, material is
only very slightly hardened due to the probing effect necessarily piercing the
yield surface for the determination of the yield point. Thus, one specimen can
be used to determine the whole initial yield surface and the subsequent yield
surfaces. The effect of various definitions of yield on the size and shape of sub-
sequent yield surfaces was not clear until discussions by Mair and Pugh [3]
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and Szczepinski [8]. We discuss the evolution of yield surface (expansion,
motion, distortion, and rotation) in greater detail in Chapter 7.
Thequestionwhether thepathof loading carries apointedvertex (or corner)

with it was a topic of debate in 1950–1960s. The questionwas triggered by the
theories of plasticity of Batdorf and Budiansky [9] and of Lin [10,11], which
are based on polycrystalline models. Modern experiments have shown that
the corners do not exist on the yield surfaces [12]. Rounded corners have been
observed due to distortion of yield surfaces. But they are all smooth, convex
surfaces.

6.2.1 Mathematical Expressions of Yield Surface

In the modeling of the yield criterion, we refer to Section 5.4 concerning
the effect of hydrostatic pressure on yielding. We concluded that, for a first
approximation, the assumption that plastic yielding of metals is independent
of superimposed hydrostatic pressure is reasonable. Based on this assump-
tion, the yield function f is a function of the deviatoric stress, that is, (6.1) may
be written as

f (σ ′ij) = k2 (6.2)

where σ ′ij is the deviatoric stress defined by (2.60). For an isotropic metal, the
yield function f is a function of the principal stress invariants of σ ′ij so that
(6.2) becomes

f ( J′2, J
′
3) = k2 (6.3)

where the invariants are defined in (2.79) and (2.71) as

J′1 = σ ′11 + σ ′22 + σ ′33 = 0

J′2 = − 1
2σ
′
ijσ
′
ij

J′3 = 1
6 eace ebdf σ

′
ab σ

′
cdσ
′
ef

(6.4)

The use of only the second invariant J′2 in the yield function leads to
satisfactory results for most metals. In this case, the yield function is

f (J′2) = k2 (6.5)

Mises [13] used a simple form of (6.5) which is

−J′2 = k2 or 1
2σ
′
ij σ
′
ij = k2 (6.6)
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Equation (6.6) is known as theMises yield criterion and is widely used.Aphys-
ical interpretation of the Mises yield criterion is that yielding begins when
the elastic distortion energy reaches a critical value. This interpretation is
reasonable for isotropic materials.
Using (6.6), an explicit yield function may be obtained for each specified

loading condition. In the case of plane stress condition subjected to principal
stresses, the stress and deviatoric stress components are

[σ ] =

σ1 0 0
0 σ2 0
0 0 0


 , [σ ′] =



2σ1 − σ2

3
0 0

0
2σ2 − σ1

3
0

0 0
−(σ1 + σ2)

3


 (6.7)

Then, (6.6) is reduced to

1
2

{(
2σ1 − σ2

3

)2
+
(
2σ2 − σ1

3

)2
+
(
σ1 + σ2

3

)2}
= k2 (6.8)

or

σ 21 + σ 22 − σ1σ2 = 3k2 (6.9)

In the case of combined axial–torsion of a thin-walled tube, the stresses are

[σ ] =

σ τ 0
τ 0 0
0 0 0


 , [σ ′] =



2σ
3

τ 0

τ
−σ
3

0

0 0
−σ
3


 (6.10)

and (6.6) reduces to

σ 2 + 3τ 2 = 3k2 (6.11)

From (6.11) we see that the Mises yield criterion leads to an ellipse, and it is a
circlewhenplotted in the (

√
3τ , σ) space. This result agreeswith experimental

findings as previously mentioned. Using (6.11), the relationship between the
yield stress in tension and that in shear may be determined. Setting σ = 0,
(6.11) gives τ = k, which is the shear yield stress. On the other hand, by
setting τ = 0, (6.11) gives σy = Y = √3k. Thus, according to the Mises yield
criterion, Y and k are related by Y = √3k.
Some alternative forms of (6.6) are

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 = 6k2 (6.12)
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or

(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6(σ 212 + σ 223 + σ 231) = 6k2 (6.13)

Another well-known yield criterion is the Tresca yield criterion. Tresca [14]
assumed that yielding occurred when the maximum shear stress reached a
certain value, that is,

τmax = τ or 1
2 (σ1 − σ2) = k (6.14)

In this expression, σ3 is the intermediate principal stress. A similar equation
may be written, when another stress is the intermediate stress. In the case of
combined axial–torsion of a thin-walled tube, we have

σ1 = σ

2
+
√(σ

2

)2 + τ 2 and σ2 = σ

2
−
√(σ

2

)2 + τ 2 (6.15)

Substituting (6.15) into (6.14), we obtain

σ 2 + 4τ 2 = 4k2 (6.16)

Setting σ = 0, (6.16) gives τ = k, which is the shear yield stress. On the other
hand, by setting τ = 0, (6.16) yields σ = Y = 2k. Thus, according to Tresca’s
yield criterion, Y and k are related by Y = 2k.
The Mises and Tresca yield criteria may be compared in the axial–torsion

case. Expressing the equations in terms of the tensile yield stress Y, (6.11) and
(6.16) reduce, respectively, to

σ 2 + 3τ 2 = Y2 Mises (6.17)

σ 2 + 4τ 2 = Y2 Tresca (6.18)

We have already mentioned that the Mises yield criterion has been shown to
agree with experimental data. Since there is a difference between (6.17) and
(6.18), Tresca’s yield criterion is not realistic. In addition, Tresca’s yield cri-
terion contains corners on the yield surface that have not been experimentally
observed.

6.2.2 Geometrical Representation of Yield Surface in
the Principal Stress Space

If yielding is assumed to be independent of hydrostatic pressure, the yield
surface is represented by a right cylinder whose axis is equally inclined to
the three principal stress axes, Figure 6.4. In the figure, OH is the hydrostatic
axis along which the pressure increases. For the Mises yield criterion, it is a
circular cylinder and any plane cutting through the cylinder, perpendicular
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Yield surface is represented by a right cylinder in the principal stress space.
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Decomposition of e3 into hydrostatic and deviatoric parts.

to the hydrostatic axis, will result in a circular yield locus. A plane passing
through the origin O and is normal to the OH axis is known as the π -plane.
OD is a radius of the circular locus and is perpendicular to OH. The yield
function can be discussed based on the yield locus on the π -plane, which
represents the deviatoric stress. Any stress vector in this stress space may be
projected onto this plane.
Consider now the transformation of unit vectors. Figure 6.5 shows the

DOH plane. Let eH be the unit vector along OH and ei be the unit vectors
along the stress axes. Then, we have

eH = 1√
3
(e1 + e2 + e3) (6.19)

The length of OA is

e3 · eH = 1√
3

(6.20)
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Thus, the vector
−→
OA is

−→
OA = 1√

3
eH = 1

3
(e1 + e2 + e3) (6.21)

Denoting the deviator of e3 by e′3, we have

e′3 = e3 − 1
3 (e1 + e2 + e3) = 1

3 (2e3 − e1 − e2) (6.22a)

Note that e′3 is not a unit vector. Similarly, we obtain

e′1 = 1
3 (2e1 − e2 − e3) (6.22b)

and

e′2 = 1
3 (2e2 − e3 − e1) (6.22c)

The equation of the π -plane is now obtained by requiring a vector σ =
(σ1, σ2, σ3) lying in the plane normal to the OH axis, that is,

σ · eH = 0 or σ1 + σ2 + σ3 = 0 (6.23)

Figure 6.6 shows the π -plane, where the axes σ ′i are the projections of the
σi axes onto this plane. The circle represents the Mises yield criterion and
the hexagon represents Tresca’s yield criterion. Due to the six-fold symmetry,

�

b ��

� = 0

� = –1

��1

e�1

e�3

e�2

��3

��2

FIGURE 6.6
The π -plane.
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only a 30◦ segment of yield locus needs to be investigated regarding to the
shape of the yield locus. Let σ be a vector with its orientation specified by the
angle θσ , where θσ varies from 0 to 30◦. Let b be a vector defined by

b = 1
2 (−e′1 + e′2) = 1

2 (−e1 + e2) (6.24)

Then,

cos θσ = (1/2)(−σ1 + σ2)
(1/
√
2)
√
σ 21 + σ 22 + σ 23

(6.25)

or

tan θσ = 3σ3√
3(σ2 − σ1)

= 2σ3 − σ1 − σ2√
3(σ2 − σ1)

(6.26)

The last step was obtained by use of (6.23). A Lode parameter νσ [15] is
defined by

νσ = 2σ3 − σ1 − σ2
(σ1 − σ2) (6.27)

so that

tan θσ = − νσ√
3

(6.28)

By use of this parameter, the state of stress may be specified along a 30◦
segment of the yield locus. When θσ = 0 and νσ = 0, this is a case of pure
shear; when θσ = 30◦ and νσ = −1, this is the case of uniaxial tension or
compression depending on the location of the stress point in the π -plane.

6.3 The Flow Rule

The flow rule specifies the increment of plastic strain once the material
has yielded. According to Hill [16], the early work was known as the
Lévy–Mises equation, which specifies the increment of total strain

dεij = dλσ ′ij (6.29)

where dλ is a scalar factor of proportionality. This equation was later
extended to allow for the elastic strain and takes the form

dεij = dεeij + dεpij with dεpij = dλσ ′ij (6.30)
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which is known as the Prandtl–Reuss equation. The total strain increment dε
is the sum of the elastic dεeij and the plastic dεpij increments. An important
assumption has been made in (6.30) that the principal axes of plastic strain
increment and deviatoric stress are coincident. Experimental efforts to val-
idate this assumption are: Taylor and Quinney [1], Lode [15], Hundy and
Green [17], and Lianis and Ford [18]. It is fair to conclude that this assump-
tion holds true at the initial yield surface. If in the principal plastic strain
space, a Lode parameter νε is defined, similar to (6.27) in the stress space,
we write

νε = 2 dεp3 − dεp1 − dεp2
(dεp1 − dεp2 )

= −√3 tan θε (6.31)

where θε specifies the orientation of the plastic-strain-increment vector.
Plotting −νε versus −νσ , the experimental results show a straight-line rela-
tionship, which is schematically shown in Figure 6.7. Therefore, we may
conclude that νε = νσ and θσ = θε. Experimental efforts to validate the
assumption related to subsequent yield surface can be found in Phillips
and Moon [19] and Ohashi et al. [20]. These authors show that the plastic
strain increment is normal to the subsequent yield surfaces. Other efforts
concerning the direction of plastic strain increment are not direct experi-
mental observations. Theoretical interpretations are involved and they are
discussed in Chapter 7.
If the yield function is the Mises yield function given by (6.6), then the

plastic strain increment may be written as

dεpij = dλ
∂f
∂σij
= dλσ ′ij (6.32)

From (6.23), the plastic strain increment is proportional to the gradient of the
yield surface and is, therefore, normal to the yield surface. This is usually
referred to as the normality condition. A flow rule obeying the normality con-
dition is referred to as an associated flow rule. On the other hand, a flow rule in

1.0–��

–��

0

1.0

FIGURE 6.7
Linear relation between Lode parameters for stress and strain.
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which the plastic strain increment is not normal to the yield surface is known
as a nonassociated flow rule. Nonassociated flow rule has been used for geo-
technical materials. A plastic potential ḡ(σij) has also been proposed in the
literature so that the plastic strain increment is

dεpij = dλ
∂ ḡ
∂σij

(6.33)

The equation ḡ(σij) = constant forms the surface of plastic potential in the
stress space.When theplasticpotential is the sameas theyield function, that is,
ḡ = f , then (6.33) reduces to (6.32). In this case, dεpij is normal to the yield
surface. However, when ḡ = f , dεpij is normal to the surface of constant plastic
potential but is not normal to the yield surface and we have a nonassociated
flow rule.

6.4 The Elastic-Perfectly Plastic Material

The elastic-perfectly plastic material is an idealized material. It is a bilinear
stress–strain curve as shown in Figure 6.8. This idealized material is a good
approximation for mild steel, which has a definite yield stress. It can also
be used to describe materials with weak strain-hardening. For this material,
the stress can never be greater than the yield stress σy, and, in the multiaxial
case, the stress point can never go outside of the yield surface, while the yield
surface is fixed in the stress space. Explicit equations for the elastic-perfectly
plastic material are:

Yield surface: If we use the Mises yield criterion, then from (6.6)

f = 1
2σ
′
ij σ
′
ij − k2 = 0 (6.34)

�

�y

�O

FIGURE 6.8
An elastic-perfectly plastic material.
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Flow rule:

dεij = dεeij + dεpij
with dεeij =

1
9K

dσkkδij + 1
2µ

dσ ′ij (The Hooke’s law)

and dεpij = dλ σ ′ij (The flow rule)

Thus, dεij = 1
9K

dσkkδij + 1
2µ

dσ ′ij + dλσ ′ij
(The Prandtl–Reuss equation) (6.35)

in which K is the bulk modulus; µ is the shear modulus; and dλ is an
as yet undetermined factor with the value

dλ = 0 when f < k2 or f = k2, but df < 0 (elastic state or unloading)

= 0 when f = k2 and df = 0 (neutral loading)

> 0 when f = k2 and df = 0 (plastic state) (6.36)

Expression (6.36a) describes the condition when the stress point is either
inside the yield surface or is on the yield surface but is about tomove inward;
(6.36b) describes the condition when the stress point is moving on the yield
surface; and (6.36c) describes the conditionwhen the stress point is stationary
on the yield surface. We make the following remarks for this model:

1. The increments of plastic strain depend on the current values of
deviatoric stress and not on the stress increment.

2. The principal axes of stress and of plastic-strain-increment tensor
coincide. The flow rule satisfies the experimental finding that the
plastic-strain-increment vector is normal to the yield surface if the
Mises yield criterion is used.

3. No plastic volume change during plastic deformation is assumed,
that is, dεpii = dλσ ′ii = 0.

4. Themagnitude of plastic strain increment is determined bydλ, which
in turn is determined by the actual increment of plasticwork given by

dWp = σijdεpij = dλσijσ ′ij = dλ( 13σkkδij + σ ′ij)σ ′ij
= dλ( 13σkkσ

′
ii + σ ′ijσ ′ij) = −2 dλ J′2 = 2 dλ k2 (6.37)

From (6.37), we obtain

dλ =
σijdε

p
ij

2k2
=
((1/3)σkkδij + σ ′ij)dεpij

2k2
=
σ ′ijdε

p
ij

2k2
=
σ ′ijde

p
ij

2k2
(6.38)
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where dεpij = 1
3δijdε

p
kk + de

p
ij = depij . A slightly different form of (6.38)

can be found if we consider the following expressions:

σ ′ijdeij = σ ′ij(deeij + depij), deeij =
dσ ′ij
2µ

,

dJ′2 = −σ ′ijdσ ′ij = 0 (−J′2 = k2 = const)

and σ ′ijdeij =
σ ′ijdσ

′
ij

2µ
+ σ ′ijdepij = σ ′ijdepij

(6.39)

Using the last expression of (6.39), (6.38) becomes

dλ =
σ ′ijdeij
2k2

=
σ ′ij(dεij − 1

3δijdεkk)

2k2
=
σ ′ijdεij
2k2

(6.40)

The Prandtl–Reuss equation may then be written as

dεij = 1
9K

dσkkδij + 1
2µ

dσ ′ij +
σ ′ijσ

′
kmdεkm
2k2

(6.41)

This equation relates dεij to dσij and σij, and it can be written in
the form

[dεij] = [Aijkm][dσkm] (6.42)

whereAijkm is a function ofσij. Note that thismethodof determination
of dλworkswhen f is a function of stress only and is in the formof the
Mises yield criterion. In the more general expressions for f , dλ may
be determined by use of the consistency condition to be discussed
later.

The class of perfectly plastic material is an idealization with the purpose of
keeping the constitutive equation simple. This idealization is reasonable for
materials that do not show significant strain-hardening. The adequacy of this
idealization depends on the purpose and requirement of the specific applica-
tion. If only monotonic loading is of interest and it does not call for a refined
solution, then this idealization may very well lead to a satisfactory solution
with a minimum amount of mathematics. However, due to the progress in
industries, which give rise to problems that are subjected to complex loading
conditions and impose stricter requirements, this idealization is no longer
adequate in many applications. In those cases, refinement of the theory is
called for and strain-hardening should be considered. The refinement of the
flow theory is discussed in Chapter 7.
An example to demonstrate the differences between an elastic material

and an elastic-perfectly plastic material is given by a strain-controlled test
with proportional strain path as shown in Figure 6.9. Assuming that the
experiment begins at point O′ (Figure 6.9(a)), moves to B′, and continues
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FIGURE 6.9
(a) A proportional strain path and (b) corresponding stress trajectories for elastic (OBC) and
elastic-perfectly plastic material (OBD).
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FIGURE 6.10
A controlled linear stress path and its corresponding strain path.

on to point C′ in the strain space. The corresponding trajectories in the stress
space shown in Figure 6.9(b) are OBC for elastic material andOBD for elastic-
perfectly plastic material. It is seen that the two stress paths show drastic
differences for the same strain path. It is a nonlinear path for the latter case.
Details related to stress- and strain-controlled tests for an elastic-perfectly
plastic material are discussed in Examples 6.1 to 6.3.

EXAMPLE 6.1 In a stress-controlled combined tension–torsion test of a
tubular specimen of an elastic-perfectly plastic material, if the stress-path
OB (Figure 6.10) is linear, find the corresponding strain path.

Solution

The states of stress and strain are

σij =

σ τ 0
τ 0 0
0 0 0


 , σ ′ij =




2
3
σ τ 0

τ −σ
3

0

0 0 −σ
3


 , εij =



ε

γ

2
0

γ

2
0 0

0 0 0




(a)
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FIGURE 6.11
(a) A controlled proportional strain path and (b) the corresponding stress path.

Lateral strains have been neglected due to the smallness of their magnitudes,
but theymay be considered for better accuracy. In the elastic state fromO to B
(and also O′B′ in the strain space), the relations are

εe = σ

E
, γ e = τ

µ
(b)

and the slope of the strain path (Figure 6.11(a)) is defined by

tan φ = εe

γ e
= µ

E
σ

τ
= µ

E
tan� (c)

where � is known. The strain path during the elastic state is denoted by
OB’. In the elastic–plastic state, dλ = 0, and the Prandtl–Reuss equation is
from (6.41)

dεij = 1
9K

dσkkδij + 1
2µ

dσ ′ij +
σ ′ijσ

′
kmdεkm
2k2

(d)

Since the test is stress-controlled and follows a straight path, the stress point
will remain at B after yielding has occurred. Thus, dσij = 0. Hence, we have

dεij =
σ ′ijσ

′
kmdεkm
2k2

(e)

The nonzero components of (e) are

dε = σ

3k2

(
2
3
σdε + τdγ

)
, dε12 = τ

3k2

(
2
3
σdε + τdγ

)
(f)
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and the strain increment has the following slope after yielding has occurred

dε12
dε
= 3τ
2σ

or
dγ
dε
= 3τ
σ

(g)

We now show that this direction is parallel to the normal to the yield surface
at B. This is the direction of the strain path after yielding has occurred at B′.
The yield surface is

f = 1
2σ
′
ijσ
′
ij − k2 = 0 (h)

For the stress state of (a), (h) reduces to

f = σ 2 + 3τ 2 − 3k2 = 0 (i)

The gradient of the yield surface is

∂f
∂σij
= ∂f
∂σ ′rs

∂σ ′rs
∂σij
= ∂f
∂σ ′rs

(
δriδsj − 1

3
δrsδij

)
= σ ′rs

(
δriδsj − 1

3
δrsδij

)
= σ ′ij

(j)

So, the components of the normal n are proportional to

nσ ∝ σ ′11 = 2
3σ , nτ ∝ σ ′12 = τ (k)

with a slope

nτ
nσ
= 3τ
2σ

(l)

Note that this slope is the same as that of dε12/dε in (g).
It is wrong to differentiate the yield function (i) in the τ–σ subspace to

obtain the normal as

nσ ∝ ∂f
∂σ
= 2σ , nτ ∝ ∂f

∂τ
= 6τ ,

nτ
nσ
= 3τ
σ

(m)

This slope is different from that in (l). The correct way is to make distinction
between σ12 and σ21 and differentiate the yield function with respect to σ12.
But, the τ–σ stress space is convenient for engineering application and, in this
case, wemustworkwith the engineering shear strain γ insteadof the tensorial
shear strain ε12. Therefore, we use the γ –ε strain space, and observe that the
slope in this strain space given by the second equation of (g) is the same as
the slope in (m).
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EXAMPLE 6.2 In a strain-controlled, combined tension–torsion test of a
tubular specimen of an elastic-perfectly plastic material, if the strain-path
OB′C′ is linear (Figure 6.11(a)), find the corresponding stress path.

Solution

The states of stress and strain are given in (a) of Example 6.1 and the
elastic phase of the problem is the same as in Example 6.1. In this range,
the slope of the strain path is known and is given by

m = tan φ = ε

γ
= dε
dγ
= µ

E
σ

τ
(a)

Yielding can occur when the stress reaches B and the strain reaches B′. The
last relation of (a) is

σ − mE
µ
τ = 0 (b)

The stresses at B may be determined from the intersection of (b) with the
yield locus (6.11). They are

σB =
√
3mkE√

3µ2 +m2E2
and τB =

√
3 kµ√

3µ2 +m2E2
(c)

If yielding would occur at B with a stationary stress point (Figure 6.11(b)),
that is, dσij = 0, then using (6.41), the Prandtl–Reuss equation would have
components

dε = dεp = σ

3k2

(
2
3
σ dε + τ dγ

)
, dγ = dγ p = τ

k2

(
2
3
σ dε + τ dγ

)
(d)

and the direction of the plastic strain increment evaluated at B would be

dγ
dε
= 3τB
σB
= 3µ

mE
= 1

m
(e)

We see that the slope of the strain increment in (e) is not the same as the
controlled slope 1/m, and, therefore, the stress point cannot be stationary at
B, and dλ = 0 at B. The stress point must move away from B in a neutral
loading along the yield locus until it reaches point C, where the normal of the
yield locus is parallel to the controlled strain slope O′B′C′ of Figure 6.11(a).
The Prandtl–Reuss equation applies andwe set the slope in (e) to 1/m, that is,

σ − 3mτ = 0 (f)
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FIGURE 6.12
(a) A controlled strain path and (b) the corresponding stress path.

The intersection between this line and the yield locus (6.11) is found at

σC = 3mk√
1+ 3m2

, τC = k√
1+ 3m2

, with
σC

τC
= 3m = 3 tan φ (g)

Thus, the slope of OC is defined by angle θ as

θ = tan−1(3 tan φ) (h)

The stress point stays at C upon further increase of the strain point beyondC′.

EXAMPLE 6.3 In a strain-controlled, combined tension–torsion test of
a tubular specimen of an elastic-perfectly plastic material, determine
the stress-path that corresponds to the strain-path OB′C′D′ shown in
Figure 6.12(a). Yielding occurs at B′.

Solution

The elastic state is governed by Hooke’s law. Plastic deformation occurs
from B′ to C′, while the stress stays at B. The states of stress and strain during
this stage are

σij =

0 τ 0
τ 0 0
0 0 0


 , σ ′ij =


0 τ 0
τ 0 0
0 0 0


 , εij =



0

γ

2
0

γ

2
0 0

0 0 0


 (a)

The nonzero component of the Prandtl–Reuss equation is

dγ = dτ
µ
+ τ

2dγ
k2

(b)
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or

dτ = µ
(
1− τ

2

k2

)
dγ (c)

But, on the yield locus, using (6.11) and (a), τ 2 = k2. Thus, dτ = 0 and C
stays at B on the yield locus.
Next, we consider the stage from C′ to D′. The strain-path C′D′ has

increment in the axial strain only, while the shear strain is kept constant,
that is, dγ = 0. Due to the effect of elastic strain, dγ p = 0. Therefore, plastic
deformation occurs. The states of stress and strain are the same as that of (a)
of Example 6.1. Putting dγ = 0, the shear component of the Prandtl–Reuss
equation (6.41) is

dτ = − 2στµ
σ 2 + 3τ 2 dε (d)

Substituting (d) into the differential form of yield function (6.11), we obtain

dσ = 6τ 2µ
σ 2 + 3τ 2 dε (e)

It is easy to show that the stress increment (dτ , dσ) is tangential to the yield
locus. This is not a neutral loading, however, because the plastic strain is
taking place. The plastic strain increments are found from (6.41) as

dεp = 2
9
σ 2dε
k2

and dγ p = 2
3
στdε
k2

with dγ = 0 (f)

By use of (d) and (e), both dτ and dσ may be calculated for a given
dε. These equations may be integrated to obtain a closed form solution.
From (d) and (6.11), we have

dτ = −2µτ
√
k2 − τ 2√
3 k2

dε or
dτ

τ
√
k2 − τ 2

= − 2µdε√
3 k2

(g)

This equation may be integrated to obtain

ε =
√
3
2

k
µ
ln

[
1−√1− (τ/k)2

τ/k

]
(h)

where, by use of the boundary condition that τ = k when ε = 0, the integra-
tion constant is zero. Introducing now nondimensional variables X = µε/k
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Nondimensional Axial Strain, X
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FIGURE 6.13
Nondimensional shear (Y) and axial (Z) stresses as axial strain increases.

for strain and Y = τ/k for stress, (h) may be solved for Y to yield

Y = 2e(2X)/
√
3

1+ e(4X)/
√
3

(i)

Figure 6.13 shows the plot of Y versus X. It is seen that the shear stress
gradually reduces as the axial strain increases.
Similarly, (e) may be integrated to yield

Z = σ√
3 k
= −1+ e

(4X)/
√
3

1+ e(4X)/
√
3

(j)

Zmay be plotted against X and the relationship is also shown in Figure 6.13.
Using (i) and (j), X may be eliminated to obtain

Y2 + Z2 = 1 (k)

which is the yield locus (6.11). Thus, the stress pointmoves, generating plastic
deformation, along the yield locus and endup inDas shown in Figure 6.12(b).

EXAMPLE 6.4 Define an equivalent (effective) stress as σ̄ = √3/2{σ ′ijσ ′ij}1/2
and an equivalent (effective) plastic strain increment as dε̄p = √2/3×
{dεpijdεpij }1/2, show that the plastic work increment is dWp = σijdεpij = σ̄dε̄p.

Solution

From (6.37), we have

dWp = σijdεpij = 2dλ k2 (a)
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Using (6.32), (6.34), and (a), the equivalent plastic strain increment is

dε̄p =
√
2
3

{
dεpijdε

p
ij

}1/2 =
√
2
3
dλ
{
σ ′ijσ

′
ij
}1/2 =

√
2
3
dλ(
√
2k)

= 2√
3

dλ
k

k2 = dWp
√
3 k

(b)

Thus,

dWp = √3k dε̄p (c)

On the other hand, the equivalent stress is

σ̄ =
√
3
2

{
σ ′ijσ

′
ij
}1/2 =

√
3
2
(
√
2k) = √3k (d)

Combining (c) and (d), we obtain

dWp = σijdεpij = σ̄dε̄p (e)

Note that equivalent (or effective) quantities such as the equivalent (or
effective) stress, the equivalent (or effective) strain, or the equivalent (or
effective) strain rate are often used in dealing with the multidimensional
behavior of isotropic materials. This equivalent quantity often represents the
magnitude of that quantity.

6.5 Strain-Hardening

There are three classes ofmaterials: the strain-hardeningmaterial, the perfectly-
plastic material, and the strain-softening material. Generally, metals are strain-
hardening (or work-hardening) materials and geotechnical materials may
exhibit strain-softening under certain conditions. Several criteria have been
proposed to classify the materials. Generally, the strain-hardening material
is regarded as a stable material. Drucker [21] proposed to classify materials
by the now well-known Drucker’s postulate, which is not a law of thermody-
namics, but a means of classification. Materials obeying Drucker’s postulate
can then be studied by a theory of plasticity that can be built up based on that
postulate.
In the multiaxial stress state, strain-hardening is considered in the form of

hardening rules for subsequent yield surfaces. Experimental determination
of subsequent yield surfaces is discussed in Chapter 7. It has been observed
that the yield surface, upon application of a deformation history, will undergo
expansion, distortion, translation, and rotation. Aprecise description of these
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characteristics is deferred to Chapter 12. In this section, we discuss a simpli-
fied version of the hardening rules and consider only the expansion (isotropic
hardening) and translation (kinematic hardening) of the yield surface. This
simplified version has been widely used in the mechanics literature.

6.5.1 Drucker’s Postulate

Drucker’s postulate consists of two parts: the stability in the small and the
stability in the large. These are described by the following statements:

1. The stability in the small: Thework done by an external agency, which
slowly applies an additional set of forces to the already stressed
material, over the displacement it produces, is positive.

2. The stability in the large: The net work performed by the external
agency over the cycle of application and removal is positive, if plastic
deformation has occurred in the cycle.

The aforementioned external agency is entirely separate and distinct from the
agency that causes the existing state of stress and that has produced the exist-
ing state of strain. The cycle of application is the stress cycle and is different
from Ilyushin’s strain cycle, which is not as restrictive as the stress cycle.
The meaning of the above statements are now explained. In the

one-dimensional case, let us consider Figure 6.14(a). The stress atA is already
the existed state. The stability in the small says that an external agency
increases the stress fromA to C and the work done represented by area ACE
is positive; the stability in the large says that the work done by the external
agency over the stress cycle of σ ∗ to σA and then to σC and then back down to
σ ∗ and represented by area BACDB is positive. σ ∗ is an arbitrary stress state
in the elastic region.
In the multidimensional case, we consider a stress cycle described in

Figure 6.14(b). At time t = 0, the stress point is at B and denoted by σ ∗ij ,
which is an arbitrary point within or on the current yield surface, so that

f (σ ∗ij , ε
p
ij , κ) ≤ 0 (6.43)

�

�
�

�*

A C
E

B D

B

A

C�ij + d�ij, t2

t = 0, �ij
tf, D

t1, �ij

f (�ij, �
p
ij, 
) = 0

f (�ij +d�ij, �
p
ij +d�

p
ij, 
+ d
) = 0

(a) (b)

*

FIGURE 6.14
Stress cycles: (a) one-dimensional and (b) multiaxial.
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where κ is a strain-hardening parameter. The yield function is expressed in
terms of stress σij, which is possible as in (6.12) or (6.13). Furthermore, for
strain-hardening materials, the yield function f depends on the prestraining
history and we include the plastic strain εpij and a parameter κ in the yield
function for generality. At point A (t = t1), the stress point σij is on the yield
surface so that

f (σ ∗ij , ε
p
ij , κ) = 0 (6.44)

The stress point then pierces the yield surface and carries the yield surface
with it, until at pointC,where t2 = t1+dt, it reaches thedashed curvewhich is
governed by

f (σij + dσij, εpij + dεpij , κ + dκ) = 0 (6.45)

Additional plastic deformation has occurred during this step. Unloading
then follows, which brings the stress point back to σ ∗ij at B. The corresponding
time is t = tf . At this point,

f (σ ∗ij , ε
p
ij + dεpij , κ + dκ) ≤ 0 (6.46)

The work done during this stress cycle is

W =
∫ tf

0
(σij − σ ∗ij )ε̇ijdt =

∫ t2

t1
(σij − σ ∗ij )ε̇pijdt ≥ 0 (6.47)

The last expression has accounted for the fact that thework done by the elastic
strain dεeij for a closed path is zero. In this stress cycle, the plastic deformation
only occurs in the stepAC.We now take Taylor series expansion of the above
integral about t = t1 as

W(t2) =
[
(σij − σ ∗ij )ε̇pij

]
t=t1dt+

1
2 [σ̇ijε̇

p
ij + (σij − σ ∗ij )ε̈pij ]t1(dt)2 + · · · ≥ 0

(6.48)

with W(t1) = 0. For the stability in the small, σ ∗ij and σij coincide at t1, and
the above expression is reduced to

W = 1
2 σ̇ijε̇

p
ij (dt)

2 + · · · ≥ 0 (6.49)

Take the time increment dt small enough that the higher order terms in dt
are negligible, we obtain

σ̇ijε̇
p
ij ≥ 0 or dσijdε

p
ij ≥ 0 (6.50)

which is the expression for the stability in the small.
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In the case of σ ∗ij = σij at t1, by neglecting the second and higher order
terms, we have from (6.48)

W = (σij − σ ∗ij ) ε̇pijdt ≥ 0 or (σij − σ ∗ij )dεpij ≥ 0 (6.51)

This is the expression for the stability in the large.
By theuse ofDrucker’s postulate, it is possible to show that the yield surface

is convex and that the plastic strain increment is normal to the yield surface.
Without the use of this postulate, these two effects would have been two
separate assumptions. We discuss the case that the yield surface is smooth
without corners. Let σij be any regular point on the yield surface and σ ∗ij
be an arbitrary point inside or on the yield surface. Let dεpij be the plastic
strain increment at σij. Then, (6.51) shows that the vectors (σij − σ ∗ij ) and dεpij
are making an acute angle and that the arbitrary σ ∗ij must lie on the side

of the hyperplane opposite to that from which dεpij is directed. dε
p
ij is normal

to the hyperplane as shown in Figure 6.15(a). Since σij is a regular point
of the yield surface, the hyperplane must be tangent to the yield surface, and,
therefore, dεpij is normal to the yield surface at the point of tangency σij. This
also establishes the convexity of the yield surface at point σij.
Next, we show that the direction of dεpij is independent of the direction of

(σij − σ ∗ij ) if the yield surface is regular. Assuming that two different (σij − σ ∗ij )
give rise to two different dεpij . Then, the yield surface f1 = 0, which is per-
pendicular to dεp(1)ij must intersect with the yield surface f2 = 0, which is
perpendicular to dεp(2)ij at an angle (see Figure 6.15(b)). Thus, the yield sur-
face is nonregular at σij, which contradicts with the assumption that it be
regular at σij. Therefore, the two dε

p
ij ’s must not be different and the direction

of dεpij is independent of the direction of (σij − σ ∗ij ).
In the casewhen f = 0 is nonregular at σij, the normality condition cannot be

established. Drucker’s postulate only requires that dεpij lie within a bounded
angle at a pointed vertex of the yield surface. However, nonregular yield

d�ij
p(2)

d�ij
p(1)d�ij

(a) (b)

Hyperplane
normal to

p

d�ij
p

�ij

f 1
=0

f2 =0
*�ij

FIGURE 6.15
Normality of plastic strain increment.
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surfaces have not been experimentally observed as mentioned in Section 6.2.
Therefore, this case will not be pursued.

6.5.2 The Isotropic-Hardening Rule

We call a strain-hardening an isotropic hardening, if the subsequent yield
surface is an isotropic expansion of the initial yield surface as shown in
Figure 6.16(a). The Bauschinger effect is not considered in the isotropic
hardening. The yield function is expressed by

f (σij) = Y2 (6.52)

where Y is the yield stress under uniaxial tension. Y represents the radius
of the yield surface and, when it increases, the yield surface expands in
size. Y can be a function of either one of the two quantities that are used to
measure the degree of hardening: the plasticwork per unit volumedefined by

Wp =
∫
σij dε

p
ij (6.53)

or the equivalent plastic strain with increment defined by

dε̄p =
√
2
3

{
dεpijdε

p
ij

}1/2 (6.54)

An equivalent stress defined by

σ̄ =
√
3
2

{
σ ′ijσ

′
ij
}1/2 (6.55)
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FIGURE 6.16
(a) Isotropic hardening and (b) schematic equivalent stress–plastic strain curve.
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is usually introduced to describe the isotropic hardening. The equivalent
stress can also take the following forms

σ̄ =
√
1
2

{
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6σ 212 + 6σ 223 + 6σ 231

}1/2
=
√
1
2

{
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

}1/2 (6.56)

The equivalent stress is defined based on the Mises yield criterion (6.6),
observing Y = √3 k. Equation (6.6) reduces to Y = √(3/2){σ ′ijσ ′ij}1/2, which is
of the same form as (6.55). Thus, σ̄ = Y and we write either

Y = σ̄ = F(Wp) (6.57)

or

Y = σ̄ = H
(∫

dε̄p
)

(6.58)

where F andH are functions and these functions are to be determined by plot-
ting experimental stress–strain curves in the form of σ̄ versus ε̄p as shown in
Figure 6.16(b).
There are efforts to obtain a universal stress–strain curve, such as (6.57) or

(6.58), which encompasses all states of stress [22]. Using this concept, a shear
stress–strain curve can be deduced from a tensile stress–strain curve. We
invert the function of (6.58) to obtain

∫
dε̄p = H−1(σ̄ ) or dε̄p = F̂(σ̄ )dσ̄ (6.59)

where the function H is known from experiment. Using the flow rule (6.35),
the equivalent plastic strain increment is from (6.54)

dε̄p =
√
2
3

{
dλ2σ ′ijσ

′
ij
}1/2 =

√
2
3
dλ

√
2
3
σ̄ = 2

3
dλσ̄ (6.60)

Equating (6.59) and (6.60), we find

dλ = 3
2
F(σ̄ )dσ̄ where F(σ̄ ) = F̂(σ̄ )

σ̄
(6.61)

Therefore, the flow rule is written as

dεpij = 3
2F(σ̄ )dσ̄ σ

′
ij (6.62)
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In the case of uniaxial tension, (6.62) reduces to

dεp = dεp11 = 3
2F(σ̄ )dσ̄ (

2
3σ) = F(σ̄ )dσ̄ σ (6.63)

and, in the case of pure torsion in a thin tube, (6.62) is

1
2dγ

p = dεp12 = 3
2F(σ̄ )dσ̄ τ (6.64)

The expression of equivalent stress for uniaxial tension is

σ̄ =
√
3
2
{σ ′ijσ ′ij}1/2 =

√
3
2

{(
2
3
σ

)2
+ 2

(
−σ
3

)2}1/2 = σ (6.65)

and for pure torsion is

σ̄ =
√
3
2

{
σ ′ijσ

′
ij
}1/2 =

√
3
2
{2τ 2}1/2 = √3 τ (6.66)

Thus, we find

τ = σ√
3

(6.67)

Substituting (6.67) into (6.63) and (6.64), we obtain

dγ p = √3 dεp (6.68)

We now use (6.67) and (6.68) to deduce a shear stress–strain curve (τ , γ )
from a known tensile stress–strain curve (σ , ε). In a monotonic loading
condition, (6.68) is integrated to yield

γ p = √3εp or (γ − γ e) = √3(ε − εe) or γ − τ

µ
= √3

(
ε − σ

E

)
(6.69)

Using (6.67) and the relations of elastic constants, (6.69) reduces to

γ√
3
= ε −

(
1− 2ν
3E

)
σ (6.70)

where ν is Poisson’s ratio. Knowing (σ , ε) for any point on the tensile curve,
we can use (6.67) and (6.70) to determine the corresponding point (τ , γ ) on
the shear curve. We can also use a graphical method to accomplish the task.
Referring to Figure 6.17, we need to establish first, the two elastic lines with
slopesE andµ.At pointAon the tensile line, the stress isσA. SegmentAB is the
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corresponding plastic strain εp, which is known. Next, locate point C on the
elastic shear line with stress equals to σA/

√
3. The length of line segment CD

is
√
3 εp and, therefore, point D can be located. The process may be repeated

for all points to determine the shear stress–strain curve.

EXAMPLE 6.5 In the case of combined axial–torsion of a thin-walled tube, if
weuse theMises yield function and isotropic hardening, the flow rule is given
by (6.62). (a) Determine the function F(σ̄ ) from a uniaxial tension test. (b) For
the general case of combined tension and torsion, find the expressions for
the axial and shear strain increments. (c) For a stress-controlled proportional
stress-path OBC shown in Figure 6.18, find the corresponding strain path.
(d)For a stress-controlled torsion fromOtoAfollowedby tensionABCDwhile

�

�

�

E

C
D(�, �)

B(�, �)
A

Tensile

Shear

AB = �p

CD = �p

�A

�A

3

3

FIGURE 6.17
Determination of shear stress–strain curve from the tension stress–strain curve.
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FIGURE 6.18
Stress-controlled proportional stress path assuming isotropic hardening.
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FIGURE 6.19
A torsion–tension stress path assuming isotropic hardening.

keeping the shear stress constant at τA (Figure6.19), discuss the corresponding
strain path.

Solution

For a combined axial–torsion test, the states of stress and strain are

σij =

σ τ 0
τ 0 0
0 0 0


 , σ ′ij =




2
3
σ τ 0

τ −σ
3

0

0 0 −σ
3


 , εij =



ε

γ

2
0

γ

2
0 0

0 0 0




(a)

The equivalent stress and its increment are from (6.55) and (a)

σ̄ = {σ 2 + 3τ 2}1/2, dσ̄ = σdσ + 3τdτ
σ̄

(b)

In the case of uniaxial tension, the Prandtl–Reuss equation is

dε = dε11 = dσ
E
+ 3
2
F(σ̄ )dσ̄

(
2
3
σ

)
(c)

and the equivalent stress and its increment are

σ̄ = σ , dσ̄ = σ dσ
σ̄

(d)

Using (d), (c) may be written as

dε
dσ
= 1

Et
= 1

E
+ F(σ̄ )σ 2

σ̄
(e)
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where Et is the slope of the tensile stress–strain curve. Solving (e), we find

F(σ̄ ) = 1
σ̄

[
1
Et
− 1

E

]
(f)

For the general case of combined tension and torsion, by use of the flow
rule (6.62) and the elastic strains, the two components of the Prandtl–Reuss
equation are

dε = dσ
E
+ σ

(σ̄ )2

[
1
Et
− 1

E

]
(σ dσ + 3τ dτ)

dγ = dτ
µ
+ 3τ
(σ̄ )2

[
1
Et
− 1

E

]
(σ dσ + 3τ dτ)

(g)

For the stress-controlled proportional stress-path OBC shown in Figure 6.18,
the elastic state OB′ is the same as that of Example 6.1 and shown previously
in Figure 6.10 with angle φ. At point B of Figure 6.18, yielding first occurs
with corresponding yield locus fB. The normal to the yield locus is denoted
by n. As the stress path proceeds from B to C, the stress point carries the yield
locus with it and the yield locus makes an isotropic expansion. The normal to
the yield locus fC at C is still n. Taking the plastic strain part of (g), we obtain
the following ratio for the plastic strain increments

dγ p

dεp
= 3τ
σ

(h)

It is easily shown that this slope is normal to the yield locus. However,
the strain-path B′D′ is not in the same direction as the normal n because
of the elastic strain. Path B′D′ has to be determined by integrating (g).
We now discuss a stress-controlled torsion fromO toA followed by tension

ABCDwhile keeping the shear stress constant at τA (Figure 6.19). During the
stage of tensile loading ABCD, the strain increments are given by (g) with
dτ = 0. Thus,

dε = dσ
E
+ σ 2

(σ̄ )2

[
1
Et
− 1

E

]
(dσ)

dγ = 3τAσ
(σ̄ )2

[
1
Et
− 1

E

]
(dσ)

(i)

We see from (i) that the plastic strain ratio is

dγ p

dεp
= 3τA

σ
= tan ϕ (j)

The angle ϕ of the plastic strain vector changes from 90◦ at A to smaller
angles as the axial stress σ increases. As σ becomes large, the angle ϕ tends

© 2005 by Chapman & Hall/CRC Press



296 Continuum Mechanics and Plasticity

to zero. We note that this result is merely a prediction of the model with iso-

plastic-strain-increment vectors are shown in Figure 6.19. Finally, wemention
that the strainpath is foundby integrating the expression (k)which is obtained
by eliminating dσ from (i)

dγ
dε
= [3τAσ/(σ̄ )2][(1/Et)− (1/E)]
1/E+ (σ 2/(σ̄ )2)[(1/Et)− (1/E)] (k)

6.5.3 The Kinematic-Hardening Rule

The kinematic-hardening rule assumes that the yield surface translates without
rotation in the stress space. The shape and size of yield surface remain
unchanged during motion of yield surface. This hardening rule has been
introduced by Prager [23] to account for Bauschinger effect. Hodge [24]
pointed out that the concept of kinematic hardening must be applied in the
nine-dimensional stress space. In the nine-dimensional space, the initial yield
surface is given by

f (σij) = 0 (6.71)

and the subsequent yield surface by

f (σij − αij) = 0 (6.72)

where αij is the total translation of center of initial yield surface and is termed
back stress by some investigators. Note that for Mises criterion, we write

(
σ ′ij − αDij

)(
σ ′ij − αDij

) = 2k2 (6.73)

where αDij is the deviatoric part of αij. Hodge [24] further suggested the
concept of combined isotropic–kinematic hardening. In this case, the yield
surface translates, defined by αij, and expands as well, which is defined by
the change in k.
Theevolution ruleofαij in the stress space isof interest. Prager [23]proposed

a linear-hardening rule as

dαij = cdεpij (6.74)

where c is a constant. Ziegler [25] proposed a modified kinematic-hardening
rule as

dαij = dµ(σij − αij) where dµ > 0 (6.75)
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The directions of dαij are different between (6.74) and (6.75) and they are
shown in Figure 6.20. In (6.75), dµ is a parameter and should not be mixed
with the shear modulus. In the figure, O is the origin of the nine-dimensional
stress space andO′ is the center of the current yield surface. The current stress
point is at P. According to (6.74), the center of yield surface would trans-
late in a direction normal to the yield surface at P and this increment of
translation is denoted by dα(P)ij in the figure. On the other hand, according
to (6.75), the increment of translation of the yield surface, denoted by dα(Z)ij , is
along the direction of O′P. We note that the two rules are the same if the cur-
rent yield surface is a hypersphere, which is truewhen theMises yield surface
is considered and a combined isotropic–kinematic hardening is applied.
The linear kinematic hardening can only be applied to a material with

a bilinear stress–strain curve when unloading and reverse loading is con-
sidered. For a nonlinear stress–strain curve, the linear kinematic-hardening
rulewould result inanunloadingcurve,whichbends inanunnaturalwayand
such an unloading curve has never been observed. Figure 6.21(a) shows such

d�ij

�ij
�ij

�ij
O

O� P

f = 0

(z)

d�ij
(p)

FIGURE 6.20
Kinematic-hardening rules by Prager and Ziegler.
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FIGURE 6.21
Linear kinematic-hardening: (a) nonlinear stress–strain curve and (b) bilinear stress–strain curve.
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a behavior in the one-dimensional loading–unloading stress–strain curve.
The linear kinematic hardening rule, applied to a bilinear stress–strain curve
(a special case of (6.58)), is shown in Figure 6.21(b), where the stress σ is
plotted against the plastic strain εp. In the figure, Y is the initial yield stress
and the slope of the linear kinematic hardening is h, that is,

dα = hdεp (6.76)

In the case of uniaxial loading, the increment of the back stress is

dαij =

dα 0 0
0 0 0
0 0 0


 and dαDij =




2
3
dα 0 0

0 −dα
3

0

0 0 −dα
3




(6.77)

Thus, from (6.74), the first element of the linear kinematic hardening rule is

2
3dα = cdεp (6.78)

Comparing (6.76) with (6.78), we obtain

h = 3
2c (6.79)

and the stress–stress curve during loading is given by

σ = Y + h εp (6.80)

Thus, h is also the slope of the stress–strain curve.
In case of nonlinear loading curve, the yield function is

f (σij − αij) = Y2 (6.81)

in which both Y and αij are not constant for combined isotropic–kinematic
hardening. The increment of stress in the uniaxial stress σ versus plastic
strain εp plot consists of two parts, that is,

dσ = dY + dα (6.82)

Introduce an isotropic–kinematic-hardening parameter β, which is a number
0 ≤ β ≤ 1. Then, we may write

dY = βhdεp and dα = (1− β)hdεp (6.83)
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and (6.82) becomes

dσ = hdεp (6.84)

The extreme value β = 1 characterizes isotropic hardening and β = 1
characterizes kinematic hardening. When β has a value between 0 and 1,
then we have a case of combined isotropic–kinematic hardening.
The combined isotropic-linear kinematic-hardening rule cannot lead to a

reasonable unloading curve. Nonlinear kinematic-hardening rules will have
to be used to describe the unloading curve. Anonlinear kinematic-hardening
rule was first used by Armstrong and Frederick [26] and written as

dαij = 2
3cdε

p
ij − καij dε̄p (6.85)

where c and κ are material constants. This rule has gained popularity in
recent literatures. We will see in Chapter 8 that this hardening rule is also

of equivalent plastic strain by the increment of a monotonically increasing
positive parameter z, so that

dz = |dε̄p| (6.86)

then (6.85) may be written as

dαij
dz
+ καij = 2c

3

dεpij
dz

(6.87)

If c and κ are constants, then (6.87) is a linear ordinary differential equation
with constant coefficients and the solution is

αij(z) = 2c
3

∫ z

z0
e−κ(z−z′)

dεpij (z
′)

dz′
dz′ + αij(0) e−κ(z−z0) (6.88)

In (6.88), z is the current value of the parameter; z0 is the initial value of z; and
αij(0) is the initial value of αij(z). In the case of uniaxial loading–unloading,
(6.90) reduces to

α(z) = 2c
3

∫ z

z0
e−κ(z−z′)dε

p(z′)
dz′

dz′ + α(0) e−κ(z−z0) (6.89)

Referring to Figure 6.22, let us consider loading along OA and then unload-
ing to B. The initial conditions are z0 = 0 and α(0) = 0. We note that
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FIGURE 6.22
Loading–unloading curves for nonlinear kinematic-hardening.

[dεp(z′)/dz′] = +1 during loading, and [dεp(z′)/dz′] = −1 during unloading.
Using these conditions, (6.89) may be integrated during loading to yield

y = 1− e−κz = 1− e−κεp with y = 3κ
2c
α (6.90)

where y is a normalized back stress. Unloading occurs at point A and
(6.89) is integrated to obtain the unloading curve as

α(z) = 2c
3

∫ zA

0
e−κ(zA−z′)(+1)dz′ + 2c

3

∫ z

zA
e−κ(z−z′)(−1)dz′ + α(0)e−κ(z−z0)

= α(zA)+ 2c
3

∫ z

zA
e−κ(z−z′)(−1)dz′ = 2c

3κ
[1− e−κzA ] − 2c

3κ
[1− e−κ(z−zA)]

= 2c
3κ
e−κzA [e−κ(z−2zA) − 1] (6.91)

The value of z at A is denoted by zA. Referring to (6.86), during loading,
we have dz = dε̄p = dεp; but during unloading, when z > zA, we have
dz = −dεp. This relation may be integrated starting from point A to obtain

ε = εA + zA − z = 2zA − z (6.92)

Substituting (6.92) into (6.91), we obtain

y = e−κε
p
A [eκεp − 1] (6.93)

Equations (6.90) and (6.93) are plotted in Figure 6.22. We see that the curves
for loading and unloading do not coincide and they are curved. The slopes
for loading and unloading curves starting at any point such asAare different.
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The differential form (6.85) for the uniaxial loading–unloading is

dα = cdεp − κα dε̄p = (c− κα)dεp for loading

= (c+ κα)dεp for unloading
(6.94)

where (6.94) defines the slopes for the two cases. Finally, we mention that
the linear kinematic-hardening rule leads to a straight line applicable to both
loading and unloading.

6.5.4 General Form of Subsequent Yield Function and its Flow Rule

In order to have a more general description of yield surface, let us consider
that the yield function is a function of stress σij, plastic strain ε

p
ij , and a

parameter κ , and write

f (σij · εpij , κ) = 0 or f (σij · εpij , κ1) = κ0 = const (6.95)

where κ0 represents the size of the yield surface. Referring to Figure 6.23,
points A and B have the same εpij and κ0, and, without κ1, we are not able
to distinguish A from B. We have to know dεpij and dκ1 to determine
the subsequent yield surface. The flow rule is from (6.32)

dεpij = dλ
∂f
∂σij

(6.32)

On the other hand, Drucker’s postulate gives

dσijdε
p
ij = dλdσij

∂f
∂σij

> 0 (6.96)

where (∂f/∂σij)dσij > 0 represents the loading condition. Comparing the
above two expressions we found dλ > 0.

�

�O

A

B

FIGURE 6.23
Parameters for yield surface.
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The parameter dλ is determined by use of the consistency condition,
Prager [30]. Since loading from a plastic state must again lead to a plastic
state, the stress and plastic strain that exist after the infinitesimal changes
dσij, dε

p
ij , and dκ have taken place must still satisfy (6.97), which is

f (σij, ε
p
ij , κ) = 0 (6.97)

By use of the consistency condition, the increment of the yield function is
zero, that is,

df = ∂f
∂σij

dσij + ∂f

∂ε
p
ij

dεpij +
∂f
∂κ
+ dκ = 0 (6.98)

In Figure 6.24, the stress at point A is σ (A)ij and it is on the yield surface

f
(
σ
(A)
ij , εp(A)ij , κ(A)

) = 0 (6.99)

An infinitesimal loading has moved the stress point fromA to B and it carries
the yield surface with it, so that the stress at B is σ (B)ij and the yield surface
that B is on is

f
(
σ
(B)
ij , εp(B)ij , κ(B)

) = 0 (6.100)

while

f
(
σ
(B)
ij , εp(A)ij , κ(A)

)
> 0 (6.101)

Substituting (6.32) into (6.98), we have

df = ∂f
∂σij

dσij + dλ ∂f
∂ε

p
ij

∂f
∂σij
+ ∂f
∂κ

dκ = 0 (6.102)

(B)Β, �ij

(A)A, �ij

FIGURE 6.24
The consistency condition.
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which may be solved to obtain dλ as

dλ = − (∂f/∂κ)dκ + (∂f/∂σij)dσij
(∂f/∂σrs)(∂f/∂ε

p
rs)

(6.103)

Therefore, by use of (6.32), the flow rule is

dεpij =
(∂f/∂κ)(∂f/∂σij)dκ + (∂f/∂σkm)(∂f/∂σij)dσkm

−[(∂f/∂σrs)(∂f/∂εprs]
(6.104)

Note that this equation consists of two parts. One part is due to dκ and
the other part is due to dσij; but the stress increments appear in the scalar
form involving summation.
The increment dκ may be assumed to be a linear function of dεpij , such that

dκ = hrs(σmn, ε
p
mn)dε

p
rs = h11dε

p
11 + h12dε

p
12 + · · · (6.105)

Then,

dκ = hkmdλ
∂f
∂σkm

(6.106)

By use of (6.106), (6.102) reduces to

df = ∂f
∂σij

dσij + dλ
[
∂f

∂ε
p
ij

∂f
∂σij
+ ∂f
∂κ

hkm
∂f
∂σkm

]
= 0 (6.107)

We then solve (6.107) for dλ to obtain

dλ = −(∂f/∂σij)dσij
(∂f/∂σrs)(∂f/∂ε

p
rs)+ (∂f/∂κ)(∂f/∂σrs)hrs

(6.108)

Therefore,

dεpij =
(∂f/∂σkm)(∂f/∂σij)dσkm

−[(∂f/∂σrs)(∂f/∂εprs)+ (∂f/∂κ)(∂f/∂σrs)hrs]
(6.109)

This equation shows that dεpij is linearly related to dσkm and (6.109) is in the
following form

dεpij = Aijkm(σrs, ε
p
rs, κ)dσkm (6.110)
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We have thus shown that the linear relation of (6.110) between the plastic
strain and stress increments follows from the normality condition of plastic
strain-rate by assuming a linear relationship for dκ given by (6.105). Aspecial
case of (6.110) is, Hill [16, p. 33],

dεpij = Gij
∂f
∂σkm

dσkm (6.111)

where Gij is a symmetric function of stress and strain history, but is not
a function of dσkm. In addition, Gii = 0. Equation (6.111) has been applied
in [16] to the case of isotropic hardening. If we choose

Gij = h
∂g
∂σij

(6.112)

then, (6.111) becomes

dεpij = h
∂g
∂σij

∂f
∂σkm

dσkm (6.113)

in which h = h( J2, J3) and g = g( J2, J3) is the plastic potential. We see that
(6.113) is in the form of (6.109).
Another special case of (6.112) is

dεpij = G
∂f
∂σij

∂f
∂σkm

dσkm (6.114)

This form was used by Drucker [31]. In the equation, G is any positive
scalar function of stress, strain, and history κ , but is independent of dσkm.
An important special case is the kinematic hardening. Consider the

yield function

f (σij − αij) = 0 (6.115)

in the stress space. Let pij = σij − αij, then

∂f
∂σkm

= ∂f
∂pij

∂pij
∂σkm

= ∂f
∂pij

δikδjm = ∂f
∂pkm

∂f
∂αkm

= ∂f
∂pij

∂pij
∂αkm

= − ∂f
∂pkm

(6.116)

Thus,

∂f
∂σij
= − ∂f

∂αij
(6.117)
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Using the yield function (6.115), the consistency condition is

df = ∂f
∂σij

dσij + ∂f
∂αij

dαij = 0 (6.118)

Using (6.117), we then have

∂f
∂σij

dσij − ∂f
∂σij

dαij = 0 (6.119)

If we apply Prager’s linear-hardening rule, we obtain

∂f
∂σij

dσij − ∂f
∂σij

cdεpij = 0 (6.120)

or

∂f
∂σij

dσij − c
∂f
∂σij

dλ
∂f
∂σij
= 0 (6.121)

Hence,

dλ = (∂f/∂σkm)dσkm
c[(∂f/∂σij)(∂f/∂σij)] (6.122)

and the flow rule is

dεpij =
(∂f/∂σij)(∂f/∂σkm)dσkm
c[(∂f/∂σij)(∂f/∂σij)] (6.123)

This equation may also be derived from (6.106) by setting dκ = 0.
Equation (6.104) becomes

dεpij =
(∂f/∂σij)(∂f/∂σkm)dσkm
−[(∂f/∂σrs)(∂f/∂εprs)]

(6.124)

In this case, the yield function is given by f (σij, ε
p
ij ) = 0, where σij and ε

p
ij are

treated as independent variables. By use of Prager’s linear-hardening rule,
we write

∂f

∂ε
p
rs
= ∂f
∂αrs

c = − ∂f
∂σrs

c (6.125)

Combining (6.124) and (6.125), we obtain (6.123). If we use Ziegler’s
kinematic-hardening rule, then

dαij = dµ(σij − αij) with dµ > 0 (6.126)
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The consistency condition is

df = ∂f
∂σij

dσij − ∂f
∂σij

dµ (σij − αij) = 0 (6.127)

Therefore, we obtain

dµ = (∂f/∂σij)dσij
(σkm − αkm)(∂f/∂σkm) (6.128)

and

dαij =
(∂f/∂σrs)dσrs(σij − αij)
(σkm − αkm)(∂f/∂σkm) (6.129)

We see that the evolution of αij is not directly related to dεpij . But, the flow
rule for this case is still given by (6.32), in which dλ cannot be determined
from the consistency condition. Instead, dλ is determined from the normality
condition as follows: we define a plastic modulus K along the direction of the
outward normaln at the stress point on the yield surface. The stress increment
projected along n is dσ = n · dσ and the following relation holds:

(n · dσ)n = K dεp with K > 0 (6.130)

Therefore, the flow rule is

dεp = 1
K
(n · dσ)n = dσ

K
n (6.131)

6.6 The Return-Mapping Algorithm

We discussed in Section 6.5.4 how the plasticity factor dλ can be deter-
mined by means of the consistency condition of Prager [30]. This method has
been applied extensively in the literature to solve boundary-valued problems
of plastic deformation involving simple states of stress. For multidimen-
sional engineering problems of plasticity, a numerical algorithm has been
developed, which is known as the return-mapping algorithm (or the backward
Euler integration algorithm). For constitutive equations in the rate form, the
numerical procedure calls for the determination of quantities at step (n + 1)
using information at step (n). The return-mapping algorithm assures that
the incremental step from (n) to (n + 1) is consistent with the flow rule and
hardening rule, and the stress point at step (n+ 1) is lying on the subsequent
yield surface.
Referring to Figure 6.25, the current stress σ (n) is at A and the stress at

the next step σ (n+1) is at B. The task is to determine the stress at point B
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B, �(n + 1)
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A, �(n)
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∆ �p

∆�e

FIGURE 6.25
The return-mapping algorithm in one-dimensional stress.

for a strain increment �ε. Starting from A, point C is the trial step known
as the elastic predictor, its stress denoted by σT(n+1). DC is obtained by mul-
tiplying the total strain increment �ε by the elastic modulus E. From the
figure, we see that AE is the plastic strain increment�εp and ED is the elastic
strain increment �εe. BC is equal to EF, which is obtained by multiplying
�εp by the elastic modulus E. BC is known as the plastic corrector. The stress
increment DB = elastic predictor − plastic corrector = DC− BC.
In the multidimensional case, the algorithm is formulated below:

The elastic predictor is

σ
T(n+1)
ij = σ (n)ij + Cijkm�ε

(n+1)
km (6.132)

and the plastic corrector is Cijkm�ε
p(n+1)
km , so that the stress at step (n+ 1) is

σ
(n+1)
ij = σT(n+1)ij − Cijkm�ε

p(n+1)
km = σ (n)ij + Cijkm�ε

(n+1)
km − Cijkm�ε

p(n+1)
km

(6.133)

Similar procedure should be applied to other variables of the model, such
as the back stress to account for the evolution of that variable. Figure 6.26
illustrates this algorithm in the multidimensional stress space.
Let the yield surface at step (n) be

f
(
σ
(n)
ij , κ(n)

) = 0 (6.134)
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�(n)

�(n+1)

�T(n + 1)

f (�(n)) = 0 f (�(n + 1)) = 0

Plastic
Corrector

FIGURE 6.26
The return-mapping algorithm in the multidimensional stress space.

so that σ (n)ij is on the yield surface. If σ (n+1)ij is inside the surface, such that

f
(
σ
(n+1)
ij , κ(n)

)
< 0 (6.135)

then σ (n+1)ij is in an elastic state where Hooke’s law applies and dλ = 0. On
the other hand, if σ (n+1)ij is outside of the yield surface at step (n), such that

f
(
σ
(n+1)
ij , κ(n)

)
> 0 (6.136)

then, the return-mapping algorithm ensures that it is lying on the yield
surface corresponding to step (n+ 1), that is,

f
(
σ
(n+1)
ij , κ(n+1)

) = 0 (6.137)

In this case, dλ > 0, which can be determined by substituting (6.133) and
the flow rule into (6.137) and solving the resulting equation for dλ.
Additional information about the return-mapping algorithmmay be found

in Simo and Hughes [32]. It suffices to mention that, for associative plasticity
with convex yield surfaces, the plastic corrector phase of the algorithm has
the unique property that it yields the so-called closest point projection.

6.7 Combined Axial–Torsion of Strain-Hardening Materials

We consider a thin-walled tube made of strain-hardening metal. The coor-
dinate system is chosen so that the radial direction is denoted by 1, the hoop
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direction is 2, and the axial direction is 3. TheMises yield criterionwill be used
togetherwith three cases of strain-hardening rule: the isotropic hardening, the
kinematic hardening, and the combined isotropic–kinematic hardening. We
will first derive the equations for axial tension and pure torsion, and then
present, in Example 6.6, the case in which the tube is first subjected to torsion
into the plastic range and then subjected to tension while holding the shear
stress constant. This problem will be referred to as the tor–ten stress path in
this book. We would like to find and compare the plastic strains developed
due to this loading history using different strain-hardening rules.
The yield function is

f = ξDij ξDij − 2k2 = 0 with ξDij = σ ′ij − αDij (6.138)

where k is the shear yield stress which is related to the tensile yield stress by
Y = √3k. αDij is the deviatoric part of back stress αij and ξDij is the deviatoric
part of ξij. Using the isotropic–kinematic-hardening parameter β introduced
in (6.83), the isotropic-hardening rule is

dY = βhdε̄p (6.139)

where dε̄p is the equivalent plastic strain increment defined by (6.60).
The linear kinematic-hardening rule is

dαDij = 2
3 (1− β)hdε

p
ij (6.140)

and the flow rule is

dεpij = dλ ξDij (6.141)

In the uniaxial tension, the deviatoric stress, plastic strain increment, and
the deviator of the back stress are

[σ ′] =




−σ
3

0 0

0
−σ
3

0

0 0
2σ
3


 , [dεp] =



−dεp
2

0 0

0
−dεp
2

0

0 0 dεp


 ,

[αD] =




−α
3

0 0

0
−α
3

0

0 0
2α
3


 (6.142)
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Substituting (6.142) into (6.138), we obtain

σ = Y + α (6.143)

In the case of uniaxial tension, we have from (6.60) and (6.142)

dε̄p =
√
2
3

{
(dεp)2 + 2

(−dεp
2

)2}1/2
= dεp (6.144)

Thus,

dY = βhdεp (6.145)

Using (6.140) and (6.142), the 33 component equation is

2
3dα = 2

3 (1− β)hdεp (6.146)

Therefore,

dα = (1− β)hdεp (6.147)

Substituting (6.145) and (6.147) into the differential of (6.143), we obtain

dσ = hdεp (6.148)

This equation describes the tensile stress–strain curve for a linear-hardening
material independent of the hardening rule.
In the torsion of the tube, the deviatoric stress, plastic strain increment,

and the deviator of the back stress are

[σ ′] =

0 0 0
0 0 τ

0 τ 0


 , [dεp] =



0 0 0

0 0
dγ p

2

0
dγ p

2
0


 , [αD] =


0 0 0
0 0 α

0 α 0




(6.149)

Using (6.149), the yield function reduces to

τ = k + α (6.150)

From (6.60) we have

dε̄p = dγ p√
3

(6.151)
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and the isotropic-hardening rule is from (6.139)

dY = βhdγ
p
√
3

or dk = βh
3
dγ p (6.152)

The 23 component equation of (6.140) is now

dα = 1
3 (1− β)hdγ p (6.153)

The differential form of (6.150) is then obtained as

dτ = 1
3hdγ

p (6.154)

This equation describes the shear stress–strain curve. We note that if the
shear stress is

√
3τ and the shear strain is dγ p/

√
3, then (6.154) and (6.148)

have the same slope h.

EXAMPLE 6.6 Study the tor–ten stress path using the Mises yield criterion
with hardening rules given by β = 1, 0, and 0.5.

Solution

We use the return-mapping algorithm in this calculation and consider a
hypothetical material with shear modulus µ = 26.2 GPa and the initial shear
yield stress k = 6.35 MPa. In all three cases, that is, β = 1, 0, and 0.5, we
obtain the same shear stress–strain curve shown in Figure 6.27. The slope
of the tensile stress–strain curve is assumed to be h = µ/40. The first phase
of the tor–ten path is in pure torsion and the phase ends when the shear
strain γ = 0.01 and the corresponding shear stress τ is 8.47 MPa. At this
point, denoted by A in Figure 6.28(a) to (c), the current shear yield stress k
is 8.46 MPa for β = 1, 6.35 MPa for β = 0, and 7.41 MPa for β = 0.5; the
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FIGURE 6.27
The shear stress–strain curve for Example 6.5.
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equivalent plastic strain ε̄p is 0.0056 for all three cases; and the shear back
stress α23 is 0 for β = 1, 2.13 MPa for β = 0, and 1.47 MPa for β = 0.5.
During the second face of the stress path, AB, the shear stress is kept

constant at σ23 = 8.47MPa, while the axial strain ε increases. The correspond-
ing axial stress σ33 will increase as ε increases. Point B in Figure 6.28(a) to (c)
corresponds to ε = 0.012. The quantities σ33,α33,α22,α23, k, ε̄p, and γ need
to be updated, and dγ p and dεp need to be calculated at each step. Several
points along stress-path AB have been chosen for study. The corresponding

O

A B

3 �23 MPa

�33MPa

3 �23 MPa 3 �23 MPa
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a
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c d e
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FIGURE 6.28
Tor–ten path showing evolutions of yield locus and direction of plastic strain increment for three
hardening rules: (a) β = 1, (b) β = 0, and (c) β = 0.5.
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TABLE 6.1

Yield Loci and Direction Angles of Plastic Strain
Increments

β = 1 β = 0 β = 0.5

Yield locus ε θ (◦) ε θ (◦) ε θ (◦)

fb 0 90 0 90 0 90
fc 0.001 37.5 0.001 58.3 0.001 61.4
fd 0.005 32.9 0.0025 47.7 0.0025 51.1
fe 0.01 28.5 0.005 36.9 0.005 43.3
ff 0.012 26.9 0.0075 30.0 0.0075 37.2
fg 0.01 24.8 0.01 32.7
fh 0.012 22.0 0.012 29.5

yield loci fa, fb, fc, etc. passing through these points are shown in the figures
and are denoted by a, b, c, etc. The yield loci denoted by letter a are the
initial yield loci in all three cases. Yield loci with corresponding ε values are
listed in Table 6.1. It is clear from Figure 6.28(a) that the yield locus expands
centering at the origin O for isotropic hardening. In the case of kinematic
hardening, shown in Figure 6.28(b), the yield locus keeps the original size but
moves while the tor–ten stress path is pursued. Figure 6.28(c) shows a case of
combined isotropic–kinematic hardening with β = 0.5. In this case, the yield
locus both expands and moves. The short inclined lines in the figures show
the directions of dεpij with components ((dγ

p/
√
3), dεp). An angle

θ = 180
π

tan−1
[
dγ p/

√
3

dεp

]
(a)

which is the inclined angle of dεpij is defined. At the beginning of the stress
path at A, θ = 90◦ for all three cases. In the case of β = 1, θ decreases to 37.5◦
at ε = 0.001 and continues to decrease as ε increases and θ = 26.9◦ at point B.
In the case of β = 0, θ decreases to 58.3◦ at ε = 0.001 and continues to decrease
as ε increases and θ = 22.0◦ at point B. In the case of β = 0.5, θ decreases
to 61.4◦ at ε = 0.001 and continues to decrease as ε increases and θ = 29.5◦
at point B. These angles are listed in Table 6.1. In all cases the directions are
normal to the corresponding yield loci. It is evident that different hardening
rules lead to different plastic strains.
Figure 6.29 plots σ33 versus ε during the stress-path AB. It is seen that

the three cases of strain-hardening lead to very different stresses. Isotropic
hardening (β = 1) leads to the highest stress of the three cases. This effect can
also been seen directly from Figure 6.28(a). The strain paths corresponding
to stress-path AB are shown in Figure 6.30. The case of β = 0.5 leads to
the highest shear strain. We know that the shear strain has started from the
prestrain value of 0.01 during this tension phase. But, the increase in the shear
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Axial stresses for tor–ten path.
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Strain paths for tor–ten path.

strain is still larger than the increase in the tensile strain for cases involving
kinematic hardening and the increase is about the same as the increase in the
axial strain for the isotropic-hardening case.

6.8 Flow Theory in the Strain Space

The flow theory of plasticity previously presented has been formulated in
the stress space. The state of stress is represented by a point in this space
and is sometimes referred to as the stress point. If this stress point is located
within the yield surface, the material is in the elastic state; and if the stress
point is on the yield surface, the material is in the plastic state. The yield
surface is defined by a function of stress and other parameters, and the yield
surface can expand, distort, or move in the stress space. When the material is
in its plastic state, plastic flow occurs according to a flow rule, which defines
the direction and magnitude of the plastic strain increment. Therefore, in
this formulation, the stress is the independent variable and the plastic strain
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FIGURE 6.31
Stress–strain curve of a strain-softening material.

rate (or increment) is the dependent variable. This formulation of plasticity
workswell formetals andgenerallyworkswell for strain-hardeningmaterials
defined in Drucker’s sense, see Section 6.5.
Some materials, such as geotechnical materials (soils, concretes, rocks, ice,

etc.) are strain-softening materials. The axial stress–strain curve for this type
of materials has a positive slope initially. But, after it reaches a peak, the
slope turns into negative. In the region of negative slope, plastic deformation
continues with decreasing stress. Figure 6.31 shows a schematic stress–strain
curve of a strain-softeningmaterial. The stability of strain-softeningmaterials
is defined by an Ilyushin postulate [33], which states that the work done by
external forces on a material over a closed cycle of strain is positive. In this
postulate, work is done over a cycle of strain rather than a cycle of stress as is
in Drucker’s postulate. Drucker’s postulate ismore restrictive than Ilyushin’s
postulate. Referring to Figure 6.31, Drucker’s postulate says that areaABCDA
is positive, but Ilyushin’s postulate says that area ABCEA is positive.
Ilyushin used strain as an independent variable and stress was a response.

He proposed a yield function in the strain space [34] but much of his effort
was related to characterizing the stress response to a predetermined strain
path. Ilyushin’s work is further discussed in Chapter 7. A flow theory of
plasticity expressed in the strain space was proposed by Naghdi and Trapp
[35]. Casey and Naghdi [36] further showed that the stress space formulation
is a special caseof the strain space formulation. In the strain space formulation,
the stress response is given by the constitutive equation

σij = σij(εrs, εprs, κ) (6.155)

where κ is the work-hardening parameter. At fixed values of εpij and κ ,
(6.155) may be inverted to obtain εij as a function of σij, ε

p
ij , and κ . The yield

function (or loading function) in the strain space is

g(εij, ε
p
ij , κ) = 0 (6.156)
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which corresponds to yield function

f (σij, ε
p
ij , κ) = 0 (6.157)

in the stress space. The flow rule is

ε̇
p
ij = λρij

∂g
∂εrs

ε̇rs, if g = 0 and
∂g
∂εrs

ε̇rs > 0 (6.158)

where λ and ρij are, respectively, a positive scalar-valued function and a
nonzero symmetric tensor-valued function of εij, ε

p
ij , and κ . If the evolution

of κ is

κ̇ = βijε̇pij (6.159)

then, by use of the consistency condition, it may be shown that

(∂f/∂σij)σ̇ij
(∂g/∂εrs)ε̇rs

= 1− λξ ∂f
∂σij

∂g
∂εij

(6.160)

where ξ is anonnegative functionof εij, ε
p
ij , andκ . It is seen from(6.160) that the

loading conditions in the two spaces are not equal during loading. However,
they are equal during unloading and neutral loading. Extensive experimental
work has been carried out to determine yield surfaces in the stress space,
which is discussed in Chapter 7. Little has been reported concerning experi-
mental determination of yield surfaces in the strain space. But, according to
Naghdi and his coworkers [35,36], the yield surface in the stress space can be
transformed into the strain space.

6.9 Remarks

Wehave presented in this chapter the fundamental concept of the flow theory
of plasticity. All main elements of the theory have been presented in their
simplest forms. We have considered no distortion of the yield surface and
the associated flow rule (with normality condition) is used in its simplest
form. The isotropic hardening, the kinematic hardening, and the combined
isotropic–kinematic hardening have beendiscussed togetherwith a nonlinear
rule of kinematic hardening. In a simplest multiaxial case, the case of com-
bined axial–torsion presented in Section 6.7, we compare results of this simple
flow theory using three hardening rules. We have shown that, using this
simple model, all three hardening rules lead to the same results for uni-
axial tension and pure torsion, but the results for combined axial–torsion
vary greatly with the hardening rule assumed. The ultimate question is how
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valid these results are. They show awide range of differences, and apparently
only one of them, ormaybe none of them, are correct. In order to establish the
validity of a model, the results need to be verified by experimental findings.
It is the purpose of Chapter 7 to discuss experiments aiming at providing

experimental facts that can be used to verify, improve, and refine the theory of
plasticity. Wewill discuss some recently formulated theories and also discuss
ideas that extend the theory of plasticity into the finite strain range.
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Problems

(1) Acylindrical specimen is loaded in tension from0 to a stress of 500MPaandhas
undergone a strain of 0.2 at this point. This point is denoted byAin Figure 6.32.
Unloading then occurs following a curve as shown in the figure. Determine
the yield point during unloading, if yield is defined by a proof strain of (a)
0.1%, (b) 0.5%, or (c) 1.0%. Assuming that the yield surface remains circular
after prestrain in the two-dimensional principal stress space, sketch the yield
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Figure for Problem 2.

surfaces corresponding this state of stress using the yield stresses previously
determined based on different amounts of proof strain.

(2) Consider the three-bar truss shown in Figure 6.33. All bars have the same
cross-sectional area A0 and are made of an elastic-perfectly plastic material.
Due to the application of force P, the displacement atAisudownward.Assume
that the deformation is small so that u/L � 1. Determine displacement u, the
stresses σT and σS in bars T and S, respectively, and the corresponding strains
εT and εS, expressed in terms of p = P/A0. Plot the p versus u/L diagram.
(Hint: Consider the elastic phase, the end of the elastic phase when the first
bar yields, the elastic–plastic phase, and the end of this second phase.)
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Figure for Problem 3.

(3) Figure 6.34(a) shows a sketch of uniaxial loading–unloading–reloading curve.
Assume that the material obeys Mises yield criterion with kinematic harden-
ing. Sketch in Figure 6.34(b) the yield surfaces that correspond to the stress
states ofA, B, C, D, and E. Figure 6.34(b) describes the shear versus axial stress
space in the combined axial–torsion of a thin-walled tube.

(4) A long cylindrical pressure vessel is made of a metal with shear yield stress
of k = 560 MPa and the maximum internal pressure during use is limited
to 35MPa. Considering the middle section of the vessel away from the ends,
if no section of the vessel is to yield according to the Mises yield criterion,
determine the required wall thickness if the outer radius is 600mm.

(5) Aclosed-ended thin-walled tube is subjected to an axial tensile forceF, which is
less than F0 necessary to cause yielding. Apply a gradually increasing internal
pressure p and determine p expressed in terms of Fwhen yielding occurs. Use
Mises yield criterion and denote the wall thickness by t and the mean radius
of the tube by r.

(6) A metal of yield stress Y = 300 MPa is subjected to a principal stress state of
(σ1, σ2 = −0.2σ1, σ3 = 0.5σ1). If the stress ratios remain constant as the stresses
increase, determine σ1 at yielding using the Mises yield criterion.

(7) Derive (6.12).

(8) Derive (6.13).

(9) In a biaxial tension–compression test of perfectly-plastic material, (a) sketch
the Mises yield locus, if Y = 250 MPa; find the components of the plastic
strain increment at the loading point specified by (b) σx = 250 MPa and
σy = 250 MPa; and (c) σx = −100 MPa and σy = 184.52 MPa.

(10) Find the expression of equivalent stress σ̄ = √3/2{σ ′ijσ ′ij}1/2 in the case of
uniaxial stress.

(11) Find the expression of equivalent plastic strain increment dε̄p =√
2
3 {dε

p
ijdε

p
ij }1/2 in the case of uniaxial tension.
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(12) What is the definition of a convex function?

(13) If the yield function is f = f (σij − c(κ1)ε
p
ij ) = κ0, where κ0 = constant and

κ̇1 = (ε̇
p
kmε̇

p
km)

1/2, assume that the normality condition holds, show that the
flow rule is

dε
p
ij =

−(∂f/∂σkm)(∂f/∂σij)dσkm
(∂f/∂σrs)(∂f/∂ε

p
rs)+ [(∂f/∂σrs)(∂f/∂σrs)]1/2(∂f/∂κ1)

(14) Using the equations of Problem (13), show that for Mises’s yield criterion,
the flow rule is

dε
p
ij =

(∂f/∂σkm)(∂f/∂σij)dσkm

2cκ0 +
√
2κ0(∂c/∂κ1)ε

p
rs(∂f/∂σrs)

(15) In the case of uniaxial stress, show that the flow rule of Problem (14) reduces
to dσ = Etdεp. Determine the expression of Et.
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7
Advances in Plasticity

7.1 Introduction

We discussed the basic concepts and formulation of plasticity in Chapter 6.
With this knowledge we are ready to explore what other possibilities are
there to improve the theory of plasticity. In fact, a great deal of work has been
done since 1950 aiming to observe and understand plastic deformation and
the mechanics of it. More realistic constitutive models have been proposed.
While significant progress has been made, still more research work is desir-
able if the constitutive modeling of plastic deformation is to keep pace with
the ever advancing technologies, methods, and equipment of computation.
We are currently in a situation where high-powered computational mech-
anics is using concepts of plasticity that are basic and unsophisticated. The
requirement for accuracy of the simulated results will go hand-in-hand with
the requirements for safety, efficiency, and cost reduction such as reducing the
wastes of manufacturing, as various related industries advance. The sophist-
ication of constitutive modeling holds the key to this accuracy requirement.
We would like to emphasize that the task of improving the constitutive mod-
eling depends significantly on experimental findings. The experiments will
guide the development of theories and theoretical investigation will in turn
suggest new experimental conditions. In this chapter, we attempt to describe
the state of the art in termsof the experimentswhichare carriedout to improve
constitutive modeling.

In the theoretical developments, two approaches have been taken by
researchers: the traditional plasticity approach with its improvements and
a plastic strain trajectory approach, in which the stress depends on the plastic
strain trajectory. The traditional plasticity approach is stress-controlled. The
stress is the input and the strain is the response. In this approach, we propose
a yield function in the stress-space, a flow rule which is usually related to
the stress and/or stress increment, and a strain-hardening rule with the back
stress moving in the stress space. We discuss in this chapter some modern
works belonging to this group. In the plastic strain trajectory approach, the
plastic strain path is the input and the stress is found as a response. The
relationship between the plastic strain trajectory and the stress is established
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through a functional or a modulus, depending on whether the constitutive
equation is in an integral form or in a differential form. The two forms are
equivalent if the boundary conditions are specified. This approach, including
the endochronic theory of plasticity by Valanis [1,2], is briefly described in this
chapter. The endochronic theory, which has been derived from the thermo-
mechanical theory of internal state variables, is fully discussed in Chapter 8.

We discuss in this chapter how a constitutive equation may be extended to
the finite deformation range. The concept of material objectivity discussed
in Chapter 4 must be applied. Appropriate stress and strain measures and
their rates should be used. Finally, material texture will develop as plastic
deformation proceeds, resulting in material anisotropy. How can the change of
material texture be described at the phenomenological level? We attempt to
provide research results which address the aforementioned questions.

7.2 Experimenal Determination of Yield Surfaces

The flow theory of plasticity is built upon the concept of yield surface, and
therefore yield surface is by far the most important element of all the elements
of the theory. We have already discounted Tresca’s yield criterion in the
Chapter 6 and concentrated on the Mises yield criterion. But how valid is
the Mises yield criterion? Generally speaking, it is a good approximation
for initial yield surface (see Section 6.2), although some deviations, such as
those shown by Ohashi and Tokuda [3], have been reported. The evolution
of the yield surface is of interest to many researchers. As was mentioned in
Section 6.2, the size and shape of subsequent yield surfaces depend greatly

method of backward extrapolation encloses a large elastic region which lies
outside of Surfaces B andA. If we insist that the region inside the yield surface
is elastic, then the strain is elastic at any point in this region if Surface C is
considered as the yield surface. But the same point is outside Surfaces B and
A, and therefore, referring to Surfaces B and A, plastic deformation would
occur. Apparently, plastic strain is being neglected if Surface C is considered
as the yield surface.

The quest for more accurate descriptions of the plastic behavior calls for a
proportional limit (or small proof strain) definition of yield, and the challenge
is to determine how the yield surface evolves when the material is subjected
to various loading histories. These experiments determine the yield function
and theback stresswhich is the centerof theyield surface. Theseare twopieces
of information that are central to the flow theory of plasticity. The study of
evolution of yield surface has led to the improvements of the theory of plasticity.
The effect of various definitions of yield on the size and shape of subsequent
yield surfaces has been previously mentioned. Other factors that affect the
determination of yield surface have been discussed by Wu and Yeh [4] and
these factors arediscussednext (following [4], withpermission fromElsevier).
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7.2.1 Factors Affecting the Determination of Yield Surface

Due to the availability of closed-loop, servo-controlled hydraulic testing
machines with sophisticated computer-controlled circuits, it is even more
appropriate than ever to discuss some of the factors affecting the deter-
mination of yield surface. In earlier test machines, either deadweight or
mechanical, “experience” of the investigator was often an important factor
in obtaining “reasonable” yield surfaces. With the use of a closed-loop test
machine, the “experience” of an investigator can apply only before the begin-
ning of a test or after a test has been completed and no in-between adjustment
can be made during the test to smooth out the data. Therefore, it is likely that
more data scatter is observed when a closed-loop machine is used, see Phillips

raw form.
The definition of yield by means of a 5µ equivalent plastic strain has gained

popularity in the recent literature. One of the reasons for the popularity is that
the definition of yield of 5µ is close to that based on the proportional limit and,
therefore, one specimenmaybeused todetermine the initial andall of the sub-
sequentyield surfaces.Astrainof 5µ is, however, avery small strainmeasured
by resistance strain gauges, and there are factors that affect the experiment
and may cause a variation of several microstrains. Thus, 5µ is a very sensit-
ive definition of yield and the resulting data scatter is to be expected. Even
though the yield point is based on a proof strain of 5µ, it must be mentioned
that the actual plastic strain incurred before a yield point can be confirmed
is approximately 10µ. This amount depends on the technical details used by
the investigator. The factors presented in the following subsections should be
considered in connection with the determination of yield surfaces.

7.2.1.1 The elastic modulus and the zero offset strain

For an accurate determination of plastic strain, the “zero offset strain” as
shown in Figure 7.1(a) and denoted by εR should be accounted for. In
the figure, the circular dots represent acquired data for a one-dimensional
stress–strain curve and the straight line is an approximation determined by
the least mean-square method, using some selected data in the elastic region.
Accordingly, the axial plastic strain, �εp, can be determined by

�εp = ε − εR − σ
E

(7.1)

where ε is the axial strain; σ is the axial stress; E is Young’s modulus, which
is the slope of the straight line, and εR the zero offset strain. The quantity εR

is measured by intersecting the straight line with the ε-axis and is therefore
related to thevalue ofE. Ideally, εR shouldbe zero. However, due to thenature
of the servo-controlled machine and the time interval of data acquisition,
the data will scatter somewhat (exaggerated to show the effect) as shown in
Figure 7.1(a). Therefore, some amount of εR is bound to be present.
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FIGURE 7.1
(a) Zero offset strain, (b) strain domain Dε , (c) effect of probing path (From Wu, H.C. and
Yeh, W.C., Int. J. Plasticity, 7, 803, 1991. With permission from Elsevier).

The accuracy and the numerical value of the elastic modulus are highly
dependent upon the number of data points used in the least square analysis.
A different number of data points leads to different values for the elastic
modulus, and also leads to different initial zero offset strains. The zero offset
strain is shown in (7.1) to affect the amount of proof strain. This effect is quite
significant, especially when the proof strain is as small as 5µ.

In an effort to estimate the range of variation in the elastic modulus and
the zero offset strain with respect to the number of data points used in the
least square analysis, a strain domain, Dε, is defined in the strain space and
shown as AB in Figure 7.1(b). Data points lying between A and B are used in
the least square analysis. All data points of this domain are within the elastic
region. OP represents a probing path of proportional straining on which a
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yield point Y is to be determined. Point O indicates the point from which the
probe emanates, and it may differ from the strain-free origin in the case when
subsequent yield surfaces are to be determined. Considering a pure torsion
test, Wu and Yeh [4] found that εR varies up to 5µ when Dε is < 0.01%, but
the variation is still 2 to 3µ even with Dε>0.01%. This amount of variation is
large indeed when the definition of yield is set at 5µ.

Adding to the complication is the fact that the slope of elastic loading
associated with probes of different paths may be slightly different from one
another. This was experimentally verified by Ivey [6] and Wu and Yang [7].
Ivey reported that when a specimen of 2024-T4 aluminum was subjected
to prestrain in tension followed by a pure torsion while keeping the tensile
strain constant, the shear modulus varies by an amount depending upon
the magnitude of the prestrain in tension. Wu and Yang found that, for a
one-dimensional tension–compression test, the slope of the unloading curve
at various strain was not quite the same levels for both 6061-T6 aluminum
and 4142 steel. Thus, the elastic modulus and the zero offset strain εR vary
from one probe to the other, and their magnitudes should be determined
for each path. However, this is usually not practical and not accounted for
in the experiments. Therefore, this effect contributes to the data scatter of
yield surfaces.

7.2.1.2 The effect of strain domain on the yield stress

As theelasticmodulusand thezerooffset strainareaffectedbyDε, theequival-
entplastic strain is affected throughanequation similar to (7.1). Consequently,
the yield stress thus determined is also affected. The yield stress determined
in the previously mentioned pure torsion test with variedDε but a constantRε
of 0.01% shows severe fluctuations when the strain domain Dε is very small,
and it becomes steady when Dε is greater than approximately 0.01%.

7.2.1.3 The effect of probing path

In order to minimize the effect of probes, consecutive probes are chosen not
to be on the same side of the yield surface. Yet, the effect of probes is still
significant in that radial and nonradial probing paths do not lead to consistent
yield points. This assertion is substantiated by the results of an experiment
involving strain paths oa, obc, and ode illustrated by Figure 7.1(c). In the
radial probe oa, the yield point was determined at “a” and any point beyond
this point is in the postyielding state. Consequently, the point “p” of the
line “bc” is considered to be in a yielded state. However, as judged by the
probe of nonradial path obc, this particular point “p” was still in the elastic
region. Point “c” was the yield point for this path. The yield point of path ode
was determined to be at e. Figure 7.1(c) has thus demonstrated the probing
path dependence of the yield point when it is determined by a small proof
strain of 5µ.
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7.2.1.4 The effect of strain rate in probing

It is known that some metallic materials exhibit significant strain-rate effect
even at room temperature, as mentioned in Section 5.2.4. The experimental
constant strain-rate stress–strain curves show that stresses at different strain
rates are significantly unequal only in the postyielded range and thus a large
offset strain definition of yield would lead to a yield stress which is quite
strain-rate dependent. However, a rather weak rate sensitivity is evident
when a small proof strain is used. It is thus reasonable to assume that for
a proof strain as small as 5µ, the strain-rate effect in the probing is negligible.
A similar conclusion was drawn by Ellis et al. [8] in connection with their
testing of 316 stainless steel. For the range of probing rate (100 to 500µε/min)
used, the writers concluded that the probing rate had little effect on yield
behavior and that the difference in size and position of the yield surfaces they
determined was more related to the sequence in which the yield surfaces were
determined rather than the probing rate.

7.2.2 A Summary of Experiments Related to the Determination
of Yield Surfaces

Extensive literature is available on the issue of experimental determination
of yield surfaces, with prestrains (i.e., specimen subjected to strain before a
yield surface isdetermined)within the strain range (2%or less) of anelectrical-
resistance strain gauge. The experimental works described here were carried
out at room temperature. Most experiments were conducted using thin-
walled tubes subjected to combined tension and torsion. This group includes
Taylor and Quinney [9], Naghdi et al. [10], and Ivey [6] with prestrain
in torsion; McComb [11] with prestrain in tension; Mair and Pugh [12]
with prestrain in tension, partially unloaded and then strained in tor-
sion; Bertsch and Findley [13] with zigzag paths in small steps; Phillips
and Moon [14], Phillips and Lu [5], Shiratori et al. [15], and Ishikawa
[16] with various prestrain histories; Wu and Yeh [4] with proportional
paths of loading-unloading-reloading-cyclic steady state. Experiments were
conducted by Lode [17] and Hu and Bratt [18] using thin-walled tubes
subjected to tension and internal pressure. Plate specimens were used
by Szczepinski [19], Szczepinski and Miastkowski [20], and Shiratori and
Ikegami [21].

The experimental results generally confirmed that the initial yield surface
is closed to the Mises ellipse and the subsequent yield surfaces are obtained
from the expansion in size, the motion, and distortion of the Mises ellipse.
If the yielding is defined using a small (5 to 10µ) proof strain, then the size
of the ellipse does not change, that is, no cross effect has been observed. The
discussion in this section is devoted to the effect of loading path on the yield
surface, which includes the stress-controlled path and the strain-controlled
path. The path may be linear or nonlinear, and a proportional strain path may
not lead to a proportional stress path depending on material tested.
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Loading paths for combined axial–torsion.

7.2.2.1 Proportional path

Theproportional path includesmonotonic axial loading, path (1) of Figure 7.2,
monotonic torsion loading, path (2), and proportional combined tension and
torsion, path (3). Most early works reported in the literature were conducted
using load-control machines and were therefore controlling the stress path.
Servo-controlled hydraulic test machines have been used in more recent
works and stress- or strain-controlled tests are possible. Both cases (i.e., stress-
or strain-control) lead to the same result for monotonic axial loading and
monotonic torsion in the small strain range. Phillips and Tang [22], Ishikawa
[16], andmost experiments reported in the literatureusedaprestresspath. Wu
and Yeh [4] used prestrain paths for monotonic axial and monotonic torsion
prestrains, but a prestress path for a combined tension and torsion propor-
tional loading. Aconclusion arrived at from all available experimental data is
that the yield surface undergoes kinematic hardening along the direction of
loading and gets distorted with the “flattened rear part” of the yield surface
facing the origin of the stress space. The extent of kinematic hardening and the
amount of isotropic hardening depend upon the material tested and upon the
definitionyield. Thus, if plotted in the

√
3τ versusσ space, where τ is the shear

stress and σ the axial stress, the initial yield surface for an initially isotropic
material is a circle and the subsequent yield surfaces can be approximately
described by flattened ellipses. In a combined tension–torsion proportional
loading, the initial yield surface, which is a circle, will gradually become dis-
torted as the prestrain increases, with the flattened ellipse facing the origin of
the stress space. Note that this flattened ellipse is a result of distortion and not
a rotation of the yield surface. In fact, it is fair to say that no rotation of yield
surface occurs during proportional loading. Subsequent yield surfaces with
proportional prestrains are shown schematically in Figure 7.3. We note that
some subsequent yield surfaces in the literature show a “rounded nose” in
the direction of prestressing but a flat rear on the side opposite to the prestress
(see the solid curves), but some reported experimental yield surfaces do not
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FIGURE 7.3
Subsequent yield surfaces with proportional prestrain.
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FIGURE 7.4
Loading point and yield point.

show these characteristics (see the dashed curves). The reason for differences
is related to the point picked as the yield point when reloading takes place in
the yield surface probing. Referring to Figure 7.4, the material is first loaded
from O toA, which moves the yield surface to its current state. Partial unload-
ing from A to B would put the stress point at the center of the current yield
surface. BCD represents the probing of the current yield surface and C is the
yield point. If point A, which is known as the loading point is considered a
point on the yield surface, then the yield surface will show a rounded nose.
On the other hand, if C is considered a point on the yield surface, then the
yield surface does not show a rounded nose. Some authors [14] distinguish
between these two points and consider the ideas of loading surface and yield
surface. But most experimental results found in the literature do not make
this distinction.

In the case of combined axial–torsion, only three papers have reported
test results on proportional loading into the large strain range and they are
discussed here. Helling et al. [23] conducted stress-controlled tests on several
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materials and obtained data showing the evolution of yield surface up to a
shear prestrain of γ /

√
did not specify whether they were free- or fixed-end torsion tests. But since
the authors did not report the axial stress during the torsion test, one can
assume that the tests were conducted under the free-end torsion condition.
The results are similar to those obtained in the small strain range, except
that isotropic hardening is significant for some materials. The paper did not
discuss path (1) — monotonic axial preloading — but it did report a case
of proportional loading, path (3), with a result similar to those observed in
small strain. The flattened ellipse was facing the origin of the stress space.
However, this case was conducted with an effective prestrain of only 5%,
which is small.

Wu et al. [24] tested annealed 304 stainless steel and determined the initial
and subsequent yield surfaces for two loading paths. Path (1) in axial loading
had an axial prestrain of 20% and path (2) in free-end torsion had a shear
prestrain of 20%. Experimental results showed that both the forward and
rear parts deflated as the loading proceeded. These results contradict what is
known at the small strain level, where the forward part inflates. In addition,
for a prestrain of only 20%, the cross effect is very significant for the material
tested. This cross effect was not apparent in the work of Wu and Yeh [4] for
the same material at small strain level.

The experiments reported in Wu [25] provide another set of test data related
to the evolution of yield surface with large prestrains. In the experimental
determination of subsequent yield surfaces, a major difficulty is that strain
gauges used to probe the previous yield surface are no longer functional
when subsequent prestrain for the next yield surface exceeds 2%. Since the
same specimen is used to determine several subsequent yield surfaces, the
sum of all preloading (or prestrains) is the prestrain before next yield sur-
face probing. The method used to overcome this difficulty was to unload the
specimen after the specimen had been subjected to a predetermined amount
of prestrain. The specimen was then removed from the test machine and new
strain gauges were installed and cured. The specimen was then mounted
againon the testmachineandgradually loaded tomergewith the stress–strain
curve of prestraining, monitoredby an axial–torsional extensometer designed
and built by Wu and Xu [26]. At this point, a subsequent yield surface was
probed using the newly installed strain gauges. The same method was used
to determine other subsequent yield surfaces.

Experiments were conducted for path (1) up to an axial prestrain of ε = 0.45
and for path (2) up to a shear prestrain of γ = 0.4. The test for path (2) was
conducted under the free-end torsion condition. Note remarked that the test
data for both paths (1) and (2) enable the determination of a complete set of
parameters that can be used to calculate the combined axial–torsion response
of the tube.

Owing to prestrains into the finite deformation range, the expansion (or
contraction) of yield surfaces is significant for the materials tested by Helling
et al. [23], Wu et al. [24], and Wu [25], even though yield was determined by
a proof strain of 5µ.
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FIGURE 7.5
Evolution of yield surface for tor–ten path (4).

7.2.2.2 Stress-controlled torsion–tension path

Two stress-controlled torsion–tension paths (tor–ten for short) are meaning-
ful. These paths are illustrated in Figure 7.2. Path (4) denotes a path with
pretorsion from O to A, followed by an elastic unloading to an approximated
center of the current yield surface at B. Axial loading is then applied, keep-
ing the shear stress constant at the value of τB. Path (5) denotes a path with
pretorsion from O to A, followed by an axial loading while keeping the shear
stress constant at the value of τA.

The tor–ten path (4) has been investigated by several investigators, includ-
ing Phillips and Tang [22], Shiratori et al. [15], Ishikawa [16], and Helling
et al. [23]. Figure 7.5 shows schematically the evolution of the yield surface
for tor–ten path (4). Test results show that the yield surface (Surface A) at the
end of the pretorsion stage serves as the basis for the subsequent yield sur-
faces (Surface B) generated by tension. The surface flattens without rotation
as the axial stress increases. All results have been obtained in the small strain
range, including the tests of Helling et al. [23] for this case. No experimental
data for the large strain range has been found in the literature for this test.

Tor–ten path (5) has been investigated by Helling et al. [23]. The data have
been obtained for tests up to a total prestrain (torsion and tension) of only
5%. Test results shows a rotation of yield surface as the axial stress increases.
The yield surfaces of path (5) are shown schematically in Figure 7.6. SurfaceA
denotes the yield surface at the end of the pretorsion stage and Surface B the
yield surface after tensile stressing has been applied.

7.2.2.3 Stress-controlled tension–torsion path

The stress-controlled tension–torsion paths are the counter part of the stress-
controlled tor–tenpaths. Results shouldbe similar innature to thosediscussed
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FIGURE 7.6
Evolution of yield surface for tor–ten path (5) (From Helling, D.E. et al., J. Eng. Mater. Technol.,
108, 313, 1986. With permission from ASME).

in Section 7.2.2.2. There are two cases: path (6) denotes a path with pretension
from O to C (see Figure 7.2), followed by an elastic unloading to an approxi-
mated center of the current yield surface at D. Torsion loading is then applied
while keeping the axial stress constant at the value of σD. Path (7) denotes a
pathwithpretension fromO toC, followedbya torsion loadingwhile keeping
the axial stress constant at the value of σC. Path (6) has been investigated by
several investigators, including Phillips and Tang [22], Shiratori et al. [15],
and Ishikawa [16], and path (7) has been investigated by Helling et al. [23].
These investigations have all been conducted with prestrains in the small
strain range.

7.2.2.4 Other paths

Experiments have been conducted following other stress-controlled paths
and some with unloading and cyclic loading. However, the investigators
were interested in other aspects of plastic behaviors and no information about
the corresponding yield surfaces was reported. The investigations associated
with the variation of plastic strain increment along a stress path will be dis-
cussed in the next section, related to the experimental investigation of the
flow rule.

Strain-controlled loading paths have been used by several investigators
to investigate the stresses arisen from the strain-path. The purpose of these
experiments was to determine the relationship between stress components
and thegivenplastic strain incrementandwasnot related to thedetermination
of yield surface. These experiments will be discussed in Section 7.5.

7.2.3 Yield Surface Versus Loading Surface

Based on experimental observations, Phillips and his coworkers proposed the
idea of loading surface. A description of two-surface theory may be found in
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FIGURE 7.7
Motion of yield surface and the loading surface (From Phillips, A., Int. J. Plasticity, 2, 315, 1986.
With permission from Elsevier).

Phillips [27]. The main concept that is different from the traditional concept
of plasticity is to consider plastic flow as rate dependent. Plastic strain takes
time to develop and the existence of an equilibrium stress is postulated at
which plastic strain is fully developed, see Wu [28], Phillips and Wu [29],
Phillips [30], and Krempl [31].

A loading surface represents the largest state of stress achieved in the load-
ing history, and it expands isotropically upon loading. Figure 7.7 shows the
motion of the yield surface and the loading surface in the stress space. The
yield surface tends to become tangential to the loading surface when it moves
towards the loading surface. But, when the stressingpointpenetrates the load-
ing surface, it will drag the loading surface with it and the loading surface
expands. Referring to Figure 7.7, the initial yield surface which is also the
initial loading surface is denoted by I.A stress path from O toAwill cause the
loading surface to expand to the surface labeled as II, and a stress path AD
will cause the loading surface to expand further to Surface III. On the other
hand, stress path AC does not cause the loading surface to expand because
path AC does not penetrate the corresponding loading surface, Surface II.

Surfaces labeled as a, b, c, and d are yield surfaces. Since plastic strain
takes time to develop, the experimentally determined yield surface after path
OA is Surface a only after the stressing point has stayed at A for a sufficient
length of time. If the prestress point does not stay at A for a sufficient length
of time before the yield surface is probed, then the obtained yield surface will
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FIGURE 7.8
Yield Surface in the stress–temperature space (From Phillips, A., Int. J. Plasticity, 2, 315, 1986.
With permission from Elsevier).

be a distance away from the loading surface and does not touch the loading
surface.

7.2.4 Yield Surface at Elevated Temperature

Phillips and his coworkers [32–35] conducted a series of experiments and
determined yield surfaces at elevated temperatures which were lower than
0.3Tm, where Tm is the absolute melting temperature of the material. Thin-
walled tubes of 1100-0 aluminum were tested. The yield surface in the
stress–temperature space is shown schematically in Figure 7.8, where the
surface is depicted between two constant temperatures T1 and Troom with
T1 > Troom. An isothermal yield surface may be obtained by passing a plane
normal to the temperature axis. The yield surface (the isotherm) shrinks as
the temperature increases. The yield surface is actually a conoid with a ridge
at the top. The length of the ridge depends on the prestrain history, measured
by equivalent plastic strain. The initial yield surface is a cone with an ellipt-
ical base. The length of the ridge is zero because the equivalent plastic strain
is zero. As the equivalent plastic strain increases with the prestraining his-
tory, the length of the ridge also increases with a narrower width for the
corresponding isothermal yield surfaces. A ridge is formed when the width
of the isothermal yield surface at the top is zero. The ridge is perpendicu-
lar to the direction of preloading. For each value of equivalent plastic strain,
there corresponds a temperature Tmax which defines the height of the conoid
with a ridge at the top. The temperature Tmax decreases with the increasing
equivalent plastic strain. Finally, we mention that the distortion and motion
of the yield surface can occur either by an increment of loading history or by a
temperature increment or by a combination of the two. Figure 7.9 shows a case
of initial and subsequent isothermal yield surfacesdeterminedbyPhillips and
Tang [22] at 21, 66, 108, and 152◦C (70, 151, 227, and 305◦F) due to prestress
in tension.
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FIGURE 7.9
A case of initial and subsequent isothermal yield surfaces (From Phillips, A. and Tang, J.L., Int.
J. Solids Struct., 8, 463, 1972. With permission from Elsevier).

7.3 The Direction of the Plastic Strain Increment

It was mentioned in Section 6.3 that an important assumption concerning
the plastic strain increment dεpij is that the principal axes of plastic strain
increment and deviatoric stress are coincident, which is known as the nor-
mality rule and which says that dεpij is normal to the yield surface. It was also
mentioned that this assumption has been experimentally verified. But, it is to
be emphasized here that those verifications were valid for initial yield surface
only. The following question remains: Is dεpij normal to the subsequent yield
surface? A direct answer can be found from the works of Phillips and Moon
[14] and Ohashi et al. [36] who showed that the plastic strain increment is
indeed normal to the subsequent yield surfaces.

Figure 4 of Phillips andMoon [14] is reproduced as Figure 7.10. In thefigure,
the initial yield surface is labeled as 0 and the first prestressing path is OA.
The yield surface corresponding to A is labeled as I. In this discussion, we do
not emphasize the difference between a loading surface and a yield surface as
the writers did. The next stage of stressing went from B to C in tension. Path
BC is nearly tangential to the first subsequent yield Surface I. The second
subsequent yield surface labeled as II was then determined. This surface
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FIGURE 7.10
Plastic strain increment vector (From Phillips, A. and Moon, H., Acta Mech., 27, 91, 1977. With
permission from Springer).

shows further distortion from the previous surface and it translated not only
in the direction of prestressing but also by a small amount in the direction per-
pendicular to the prestressing direction. Owing to the distortion, it is difficult
to judge whether rotation had taken place in yield Surface II. The directions
of dεpij along path BC are also shown in the figure. These directions rotated
from the direction normal to the yield surface from which the prestressing
was initiated to the direction normal to the final yield surface. We note that
this stress path is similar to tor–ten path (5) discussed in Section 7.2.2.2. The
second stage of both paths is tangential to the yield surface. The only dif-
ference is that the path of Phillips and Moon started from the opposite side
of the first subsequent yield surface, while path (5) starts from the prestress
point A. Another stress, similar in nature, is shown in Figure 7.10. Starting
from the yield surface labeled as III, stress path DE was applied. This stress
path was again nearly tangential to the yield surface. At the end of the stress-
ing, a yield surface was determined and labeled as IV. A distortion of yield
surface had taken place and the surface had moved not only in the direction
of prestressing but also in the lateral direction. Owing to the distortion, it is
difficult to judge whether the yield surface had rotated. Small vectors in the
figure show the variations in the direction of dεpij .
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FIGURE 7.11
Plastic strain increment vector (From Ohasi, Y. et al., J. Mech. Phys. Solids, 23, 277, 1975. With
permission from Elsevier).

Ohashi et al. [36] prestressed a tubular specimen in tension (first stress
path) to a tensile stress of σz/σ̄ = 1.0, where σ̄ = 235 MPa. The corresponding
prestrain at this point was 2%. A second stress path was then applied in
combined axial–torsion, emanating from the prestress point making an angle
θ with thefirst stress path. Figure 3 ofOhashi et al. [36] is shownas Figure 7.11,
in which θ = 0, 30, 60, 90, 100, 107, 120, 131, 139, 150, 164, and 180◦. The
strain data along each stress path were recorded and the equi-strain curves
based on Iε = {(εp)2 + (γ p/

√
3)2}1/2 and corresponding to Iε = 0.02%, 0.05%,

0.1%, 0.2%, 0.5%, and 1%, 2%, 3%, and 4% are found and shown in the figure.
These curves are similar to subsequent yield surfaces determinedby theuse of
different amounts of proof strains, and these are yield surfaces corresponding
to the prestress point at σz/σ̄ = 1.0. The short segments on the second stress
path for each θ show the directions of the plastic strain increment vector
(γ p/
√

3, εp). Ohashi et al. [36] found that the plastic strain increment vector
is almost normal to the equi-strain curves, except for the range of Iε ≤ 0.05%
and 139◦ < θ < 164◦.

Other investigations of the plastic strain increment did not report the yield
surfaces along the stress paths and therefore the information provided is not
complete enough to directly benefit the constitutive modeling. Nevertheless,
these works are useful in that they can provide qualitative results for certain
observed behaviors of materials. Phillips and Kaechele [37] conducted stress-
controlled tests on thin-walled tubes of aluminum 2S-O following tor–ten
path (5) and ten–tor path (7). The tests were conducted in a strain range up to
1.5%. The stress paths are shown schematically in Figure 7.12 in the (

√
3τ , σ)

space. The short segments on the stress paths show thedirections of theplastic
strain increment vector (γ p/

√
3, εp). For tor–ten path (5), the plastic strain

increment was along the shear direction before a sudden change of direction
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FIGURE 7.12
Plastic strain increment vector (From Phillips, A. and Kaechele, L., J. Appl. Mech., 23, 43, 1956).
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FIGURE 7.13
Stress paths of Khan and Wang (From Khan, A.S. and Wang, X., J. Mech. Phys. Solids, 36, 519,
1988. With permission).

took place in the stress path. The direction of the plastic strain increment
gradually changes afterward. In the case of ten–tor path (7), the plastic strain
incrementwas initially along the tensiondirection and thedirection gradually
changes after the change in direction of the stress path.

Khan and Wang [38] conducted combined axial–torsion tests on OHFC
copper, following two stress paths shown in Figure 7.13. In path OABC, the
specimen was first stressed in tension to A into the plastic region. Partial
unloading and reverse loading then took place from A to B while keeping the
shear stress zero. Finally, torsion was increased from B to C while keeping
the axial stress constant. In path ODEF, the specimen was subjected to shear
stress from O to D, unloading from D to E, and then loading from E to F. The
two paths are similar in nature. The corresponding strain paths are shown
schematically in Figure 7.14. From the figure we see that during segment
BC of path OABC, the increment of axial strain ε changes from negative to
positive as the shear stress increases while keeping the axial stress σ constant.
Similarly, during segment EF of path ODEF, the increment of shear strain γ
changes from negative to positive as the axial stress increases while keeping
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FIGURE 7.14
The corresponding strain paths of Khan and Wang (From Khan, A.S. and Wang, X., J. Mech. Phys.
Solids, 36, 519, 1988. With permission).

the shear stress τ constant. The curves have been exaggerated to show the
sign change in dε and dγ .

7.4 Multisurface Models of Flow Plasticity

It was mentioned in Section 7.2.3 that Phillips [27] proposed a multisurface
model in which the yield surfaces are bounded by the loading surface.
However, in most of the investigations by Phillips, emphasis was placed on
how to describe the change of the yield surface and the direction of the plastic
strain increment. Little was done to propose and verify the flow rule in terms
of plastic modulus, particularly for complex loading paths including unload-
ing and reloading. With a correctly determined plastic modulus, the flow rule
should describe the nonlinear stress–strain curves. Multisurface models that
attempt to accomplish just that are discussed in this section. These models
emphasize the description of cyclic loading behavior.

7.4.1 The Mroz Kinematic-Hardening Model

The work of Mroz [39] has a large following, particularly in computational
mechanics. Mroz approximated the one-dimensional stress–strain curve
OABCDE by n linear segments of constant tangent moduli E1,E2, . . . ,En, as
in Figure 7.15. The tangent modulus decreases as the strain increases. This is
the idea of a “field of work-hardening moduli.” If the stress–strain curve of
Figure 7.15 is projected onto the stress space, then we have a one-dimensional
stress space in the σ -axis. In the multidimensional stress space, this field
is defined by a configuration of surfaces of constant work-hardening mod-
ulus. Each nodal stress (stress at A, B, C, etc.) is represented by a surface
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FIGURE 7.15
Mroz’s Field of work-hardening moduli concept.

geometrically similar to the initial yield surface but of different size. These
surfaces are expressed by

fm
(
σij − α(m)ij

) = Y2
m (7.2)

where m = 0, 1, 2, …. Using the Mises yield criterion, the surfaces
are concentric circles in the two-dimensional stress space, as shown in
Figure 7.16(a). Thus, surface fA is the initial yield surface passing through
point A of Figure 7.15 and fB is the surface passing through point B, etc.

In Mroz’s hardening rule, the surfaces cannot intersect but consecutively
contact at similar points and push each other. Similar points are stress points
ondifferent surfaceswith the sameoutwardnormal. During loading sequence
OABCDE, surface fA translates so as to touch surface fB at the point of loading;
next, surfaces fA and fB move together until they contact surface fC, and so on.
The surfaces at stress state C are shown in Figure 7.16(b). Since all surfaces
can contact only at the similar points, the active surface translates in the
direction parallel to the vector connecting the current stress point σm to the
corresponding similar point σm+1 of the next surface. This hardening rule is
expressed by

dαm = dµ (σm+1 − σm) (7.3)

where dµ is a scalar to be determined by the consistency condition; dαm
describes the translation of the active surface fm. Figure 7.17 is a sketch of
Mroz’s hardening rule.
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(a) A family of concentric circles, (b) surfaces at stress state C of Figure 7.15, (c) surfaces at stress
state C3 of Figure 7.15.

The discussion of the one-dimensional loading shown in Figure 7.15 is con-
tinued here.After reaching stress state C shown in Figure 7.16(b), if unloading
takes place, then the stress point will move from C to C1 elastically. Reverse
plastic flow occurs at C1 and surface fA translates downwards until it contacts
surface fB at C2. We see from the figure that the stress difference between C1
and C2 is twice that between A and B. Further unloading from C2 to C3 will
induce additional plastic deformation and the stress point carries surfaces fA
and fB with it until it contacts surface fC at C3. This state of stress is shown in
Figure 7.16(c). We mention again that the stress difference between C2 and C3
is twice that between B and C. The reloading from C3 to C4 is again elastic, but
plastic deformation occurs from C4 to C5. The stress point carries surface fA
with it until it contacts surface fB. Further loading from C5 to C translates both

© 2005 by Chapman & Hall/CRC Press



Advances in Plasticity 343

�m + 1
�m

�m
�m + 1

d�

fm

fm + 1Stress
Space

FIGURE 7.17
Mroz’s hardening rule.

fC

fB

fA

P QR
S

T

n

n

n

C

FIGURE 7.18
A case of nonproportional loading (Mroz’s model).

fA and fB and returns the stress state back to C, as shown in Figure 7.16(b). We
have thus completed one cycle of loading–unloading–reloading. Additional
loading cycles follow the same path C–C1–C2–C3–C4–C5–C and this is the
steady loop and no cyclic hardening is possible by use of Mroz’s model. We
also show in Figure 7.15 a steady loop with unloading starting at B and a loop
with unloading starting at E.

Looking at a loop of cyclic loading, we find that the difference in stress for
each piecewise-linear step during unloading or reloading is twice that of the
corresponding step during loading. The difference in the strain for each step
also has the same characteristic. We may conclude that the slopes of E1E2 and
E6E7 are the same as that of AB, and the slopes of E2E3 and E7E8 are the same
as that of BC, etc. In fact, the loading, unloading, and reloading curves are
similar and they satisfy Masing’s formula [40].

Acase of nonproportional loading is now considered. Upon loading to C as
in Figure 7.16(b), the specimen is partially unloaded to a point P, Figure 7.18.
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The stress point then moves along PQ, and when it reaches point R, it will
move along the direction of RS. The normal to surface fB at S is the same as the
normal to surface fA at point R. S is the point at which fA will be tangential to
and not intersecting fB. In the next step the stress point will move from S to T.
Again, the normal to fC at T is parallel to the normal previously mentioned
at R and S. The work-hardening modulus on this loading path decreases and
becomes equal to that at C when the stress path intersects fC at T. Mroz [39]
used this example to illustrate a case of nonproportional loading. We remark
that the stress path after thepartial unloading is PRSTandnotPRQ. In a stress-
controlled tor–ten test, with stress point moving along PQ as in paths (4) and

A and fB takes place at a location other
than S.

7.4.2 The Two-Surface Model of Dafalias and Popov

Dafalias and Popov [41,42] proposed a two-surface model and defined a
continuous variation of the plastic modulus dσ/dεp = Ep between these
two surfaces. This is in contrast to Mroz’s model presented in Section 7.4.1,
which proposes a piecewise constant plastic moduli field and a number n of
associated surfaces. In the two-surface model a bounding surface is proposed
in the stress space in addition to the yield surface (sometimes also called
the loading surface). The loading surface is used interchangeably with the
yield surface in this discussion and does not have the same meaning as that
defined by Phillips, mentioned in Section 7.2.3. The bounding surface always
encloses the yield surface and is a generalization of the bounds observed in
the experimental results for uniaxial random cyclic loading on a grade 60 steel
specimen. The details of the experimental random cyclic loading curve were
presented in [41].

Figure 7.19 shows a simplified schematic cyclic curve with some paramet-
ers of the model indicated. Lines XX′ and YY′ are the bounds for the material
tested. They can be curves for other materials. Curve 0–1–2 is a loading
stress–plastic strain curve and it merges with the bounding line XX′ when the
loading continues. If unloading occurs at point 2, then the unloading curve
would follow 2–3–4 and merge with the bound line YY′. On the other hand,
if reloading starts at A, then AB is elastic and plastic deformation begins to
occur at B. Experimental results indicated that the curve after B is steeper than
curve Section 3–A, that is, the plastic moduli are not of the same magnitude
between the two curve sections. Dafalias and Popov [41,42] suggested that Ep
be a function of two parameters, the distance δ of the stress state under con-
sideration, such as point A, from the corresponding bound Ā, and the value
of δ at the initiation of yielding for each loading process, denoted by δin. The
δin changes at each reversal and is associated with the most recent event of
unloading–reloading. In fact, this is an assumption of fading memory, where
the material remembers only the most recent loading history. Thus, we write

Ep = Ep(δ, δin) (7.4)

© 2005 by Chapman & Hall/CRC Press
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FIGURE 7.19
Bounds and parameters of two-surface model.

with the property that

Ep→∞ when δ→ δin (7.5)

for a smooth transition from the elastic into elasto-plastic range and

Ēp = Ep (0, δin) when δ→ 0 (7.6)

where Ēp is the slope of the bound line and Ep monotonically increases as
δ decreases. Dafalias and Popov [42] recommended the following expression
for Ep:

Ep = Ēp + h
(

δ

δin − δ
)

(7.7)

where h is a function of δin and a nonlinear form for h has been chosen to
model the complex random cyclic loading curve presented in Dafalias and
Popov [41].

Referring to Figure 7.19 again, points A, B, Ā, and B̄ are projected onto the
stress axis and the corresponding points are denoted by a, b, ā, and b̄. a and
b are points on the yield surface, whereas ā and b̄ are points on the bounding
surface. The rates of change of centers of yield and bounding surfaces are
related to the plastic strain rate by

α̇ = Eαε̇p (7.8)
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and

β̇ = Eβ ε̇p = α̇ − (Eα − Eβ)ε̇p (7.9)

respectively. When there is no isotropic hardening of the yield surface,
Eα = Ep; and when there is no isotropic hardening of the bounding sur-
face, Eβ = Ep. In this case, the two bounds are parallel straight lines in the
one-dimensional case.

In the multiaxial stress space, the yield surface f and the bounding surface
f̄ are

f (σij − αij, qn) = 0 and f̄ (σ̄ij − βij, qn) = 0 (7.10)

where αij and βij denote the centers of f and f̄ , respectively, and qn are internal
variables (which will be further discussed in Chapter 8). The two surfaces
may deform and translate in stress space in a coupled way. The evolution of
qn is given by

q̇n = q̇n(σij, σ̇ij, qm, ξm)H(L) when f = 0

q̇n = 0 when f < 0
(7.11)

whereH(L) is theHeaviside step function and L is the loading function, which
under the isothermal condition is

L = σ̇ = σ̇ijnij (7.12)

in which n is the unit normal to the yield surface. Internal variables qn rep-
resent the dependence of the yield surface on the history of deformation.
One of the qn may describe isotropic hardening. ξm in (7.11) are internal
variables associated with abrupt changes of the loading processes. In the
present case, they are the δin’s. These parameters remain constant during the
loading process.

The continuously changing δ and the initial value δin define the generalized
plastic modulus K with the properties

K = K(δ, δin), K̄ = K(0, δin), K(δin, δin) = ∞ (7.13)

where K̄ is the generalized plastic modulus on the bounding surface and is
an increasing function of δ for a given δin. The distance δ is from point a on
the yield surface f = 0 to a similar point ā on the bounding surface f̄ = 0
(see Figure 7.20). At similar points, the normals to the respective surfaces are
equal. Let the stress at point a be σij and the stress at point ā be σ̄ij, then δ is
defined by

δ = [(σ̄ij − σij)(σ̄ij − σij)]1/2 (7.14)
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For simplicity, we assume that the bounding surface is an isotropic expan-
sion of f = 0, but both surfaces are allowed to move. The centers for the two
surfaces areαij andβij, respectively, as shown in Figure 7.20. Since the two sur-
faces are similar, the radii connecting the two centers and the corresponding
stress points are parallel. Thus, it is written as

σ̄ij − βij = m(σij − αij) (7.15)

where m is a proportional factor which can be a function of qn. This relation
may be further written as

σ̄ij − σij = m(σij − αij)+ βij − σij (7.16)

and be substituted into (7.14) to obtain an expression for δ.
Several rules of evolution of αij and βij have been used in the literature

in conjunction with the two-surface model. The following discussion follows
Dafalias and Popov [42]. Assuming linear dependence of ε̇pij on the stress rate,
the flow rule, assuming normality, is

ε̇
p
ij =

1
K
〈L〉nij (7.17)

where 〈 〉 is the Macauley bracket defining the operation 〈L〉 = LH(L).
From (7.17), we found

〈L〉 = 〈σ̇ 〉 = K
(
ε̇
p
ij ε̇

p
ij

)1/2 (7.18)
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Workingwith themagnitudes andprojection of the stress rate onto the normal
direction, this relation is a generalized relation of σ̇ = Epε̇p in the one-
dimensional case, that is, Ep has been generalized into K. We now use the
same procedure to generalize (7.8) by writing

α̇ = α̇ijnij = Kα
(
ε̇
p
ij ε̇

p
ij

)1/2 = Kα

K
〈L〉 (7.19)

Denoting the unit vector along α̇ij by νij, which is, in general, not in the same
direction as nij, we may write

α̇ij = α̇ννij (7.20)

where α̇ν is the magnitude. Substituting (7.20) into (7.19), we have

α̇ = α̇ijnij = α̇ννijnij (7.21)

Therefore,

α̇ij = α̇

νrsnrs
νij = 1

νrsnrs

Kα

K
〈L〉νij (7.22)

The modulus Kα/K can be determined by substituting (7.22) into the consis-
tency condition. Referring to the yield surface given in (7.10), the consistency
condition is

ḟ = ∂ f
∂σij

σ̇ij + ∂ f
∂αij

α̇ij + ∂ f
∂qn

q̇n = 0 (7.23)

Denoting the magnitude of ∂f/∂σij by

g =
(
∂ f
∂σij

∂ f
∂σij

)1/2

(7.24)

we write

∂ f
∂σij
= gnij (7.25)

In addition, we assume that q̇n is linear in σ̇ij, that is,

q̇n = rn〈L〉 (7.26)

where rn is a scalar. Using (7.24) to (7.26), (7.23) reduces to

Kα

K
= 1+ 1

g
∂ f
∂qn

rn (7.27)
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We then substitute (7.27) into (7.22) to obtain α̇ij. This relation applies to any
kinematic-hardening rule for which νij is specified. A special case is obtained
when ∂f/∂qn = 0. In this case, Kα = K, which corresponds to Eα = Ep in the
one-dimensional case.

The sameproceduremaybeusedagain togeneralize (7.9). Bydifferentiating
(7.10), the consistency condition for the bounding surface is

˙̄f = ∂ f̄
∂σ̄ij
˙̄σij + ∂ f̄

∂βij
β̇ij + ∂ f

∂qn
q̇n = 0 (7.28)

Writing

ḡ =
(
∂ f̄
∂σ̄ij

∂ f̄
∂σ̄ij

)1/2

,
∂ f̄
∂σ̄ij
= ḡnij (7.29)

and

L̄ = ˙̄σ = ˙̄σijnij = K̄
(
ε̇
p
ij ε̇

p
ij

)1/2 = K̄
K
〈L〉 (7.30)

and using them in (7.28), the consistency condition is

nijβ̇ij = L̄+ 1
ḡ
∂ f̄
∂qn

rnL (7.31)

We now generalize (7.9) to obtain

β̇ = β̇ijnij = Kβ
(
ε̇
p
ij ε̇

p
ij

)1/2 = Kβ

K
〈L〉 (7.32)

and denote the unit vector along β̇ij by ξij, then

β̇ij = β̇ξ ξij (7.33)

where β̇ξ is the magnitude. But, β̇ is the projection of β̇ij along nij, and,
therefore, we have

β̇ = β̇ijnij = β̇ξ ξijnij and β̇ξ = β̇

ξijnij
(7.34)

Hence,

β̇ij = β̇

ξrsnrs
ξij = 1

ξrsnrs

Kβ

K
〈L〉ξij (7.35)
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For simplicity, consider a case νij = ξij = µij. This assumption is similar to
Mroz’s hardening rule, whereµij is a unit vector going from point a to point ā
(see Figure 7.20). For this case, (7.22) reduces to

α̇ij = 1
µrsnrs

Kα

K
〈L〉µij (7.36)

and (7.35) reduces to

β̇ij = 1
µrsnrs

Kβ

K
〈L〉µij (7.37)

Analogous to the second expression of (7.9), we write

β̇ij = α̇ij −Mµij (7.38)

From (7.36) to (7.38), the following is obtained

M = 1
µrsnrs

Kα − Kβ

K
〈L〉 (7.39)

Substituting (7.30), (7.38), and (7.39) into (7.31) obtains

Kβ

K
= K̄

K
+ 1

ḡ
∂ f̄
∂qn

rn (7.40)

Using (7.27) and (7.40), (7.39) may be further written as

M = 1
µrsnrs

[(
1− K̄

K

)
+
(

1
g
∂ f
∂qn

rn − 1
ḡ
∂ f̄
∂qn

rn

)]
〈L〉 (7.41)

In the case that both f and f̄ are not functions of qn, (7.41) becomes

M = 1
µrsnrs

(
1− K̄

K

)
〈L〉 (7.42)

and (7.40) yields Kβ = K̄. In the limit, when the yield surface contacts the
bounding surface, δ = 0, andK = K̄, the two surfaces will then move together
upon further loading. From (7.36) and (7.37), we have

β̇ij = α̇ij (7.43)
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7.5 The Plastic Strain Trajectory Approach

The strain (total strain, not plastic strain) trajectory approach was initiated
by Ilyushin [43,44], who represented the stress and deviatoric strain tensors
in a five-dimensional vector space. He then investigated the characteristics of
the stress response to a predetermined strain trajectory. Further investigations
using this approachare reportedbyLensky [45] andOhashi andhis coworkers
[3,36,46,47]. A theory by Pipkin and Rivlin [48] is similar to Ilyushin’s
theory but using strain tensors, and Zhou et al. [49] consider the plastic
strain trajectory. In an independent effort, Valanis [1,2] developed an endo-
chronic theory of plasticity using irreversible thermodynamics of internal
variables. The resulting constitutive equation, if expressed in an integral
form, resembles that presented by Ilyushin [50]. In this constitutive equation,
stress is a functional of the plastic strain history. The differences between the
two developments will be addressed in Section 7.5.2. Wu and his coworkers
[51–55] have contributed to the experimental verifications and applications of
the endochronic theory. The endochronic theory of plasticity will be further
discussed in Chapters 8 and 9.

7.5.1 The Theory of Ilyushin

Ilyushin worked with the deviator of the strain tensor (not plastic strain).
When the strain is large, the plastic strain may be approximated by the total
strain. The theory is, however, not suitable for describing the elastic–plastic
transition behavior. The deviatoric strain eij has only five independent
components. Thus, eij may be represented by a vector in a five-dimensional
space as

e =
5∑

i=1

εiui (7.44)

in which ui are unit vectors along axes of the five-dimensional space.
The magnitude of this vector must be equal to the magnitude of tensor eij,
so that

∑
i,j=1,2,3

eijeij ≡
5∑

i=1

(εi)
2 (7.45)

If we define

ε3 =
√

2e12, ε4 =
√

2e23, ε5 =
√

2e31 (7.46)

then (7.45) and (7.46) are reduced to

(e11)2 + (e22)
2 + (e33)

2 = (ε1)2 + (ε2)2 (7.47)
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FIGURE 7.21
Coordinate transformation in the deviatoric strain plane.

The relationships between components of (ε1, ε2) and (e11, e22) are found
from the coordinate transformation given in Figure 7.21. Note that
e33 = −(e11 + e22). In the figure, axes 1′, 2′, and 3′ denote the coordinate axes
for e11, e22, and e33, respectively, in the π -plane; whereas 1 and 2 denote the
axes of ε1 and ε2. The 1-axis is making angle β with the 1′-axis. Projecting ε1
and ε2 onto the 1′ and 2′ directions, respectively gives

e11 = m(ε1 cosβ + ε2 sin β) (7.48a)

e22 = m
(
−ε1 sin

(
β + π

6

)
+ ε2 cos

(
β + π

6

))
(7.48b)

where the factor m is introduced so that (7.47) is satisfied. Substituting
(7.48) into (7.47), we obtain m = √2/3. Using this value of m, we found
from (7.48) that

e11

√
3
2
= ε1 cosβ + ε2 sin β

e22

√
3
2
= −ε1 sin

(
β + π

6

)
+ ε2 cos

(
β + π

6

)

e33

√
3
2
= ε1 sin

(
β − π

6

)
− ε2 cos

(
β − π

6

)
(7.49)

The third equation of (7.49) was found from e33 = −(e11 + e22). The first two
equations of (7.49) may then be solved to obtain

ε1 =
√

2
(
e11 cos

(
β + π

6

)
− e22 sin β

)
ε2 =

√
2
(
e11 sin

(
β + π

6

)
+ e22 cosβ

) (7.50)
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Finally, if the angle is set to β = 0, then we have

ε1 =
√

3
2
e11, ε2 =

√
2
(
e22 + 1

2
e11

)
,

ε3 =
√

2e12, ε4 =
√

2e23, ε5 =
√

2e31

(7.51)

These are the five components in the plastic strain space.
Similarly, thedeviatoric stressσ ′ij withσ ′11+σ ′22+σ ′33 = 0maybe represented

in a five-dimensional stress space by the following components:

σ1 =
√

3
2
σ ′11, σ2 =

√
2
(
σ ′22 +

1
2
σ ′11
)

,

σ3 =
√

2σ ′12, σ4 =
√

2σ ′23, σ5 =
√

2σ ′31

(7.52)

The next step is to establish a relationship between the stress and the strain
increment, and this relationship is expressed in terms of the arc length s mea-
sured along the strain path. In the case of combined axial–torsion, the stress
is (σ1, σ3) and the strain increment is (dε1, dε3). A plane strain trajectory is
shown in Figure 7.22, and the arc length is

ds =
√
(ε1)2 + (ε3)2 (7.53)

If the current strain state is represented by pointA, unit vector p1 is tangential
to the trajectory at A, and unit vector p3 is the principal normal. A similar
figure is presented in [49] but in the plastic strain space. According to the
Frenet formulas for curves in space, we have the following relations:

dp1

ds
= κp3,

dp3

ds
= −κp1 (7.54)
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FIGURE 7.22
A plane strain trajectory and stress (From Zhou, Z.-D. et al., Int. J. Plasticity, 19, 1377, 2003. With
permission from Elsevier).
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where κ is the curvature. Writing the stress vector as

σ = Pp1 +Np3 (7.55)

Lensky [45] and Ohashi and his coworkers [3,36,46,47] conducted combined
axial–torsion experiments to determine the variations of P, N, the magnitude
of σ, denoted by σ , and the angle of delay θ between vectors σ and dε as
functions of s. The angle of delay is found from

cos θ = σ · dε

σ ds
(7.56)

These authors believe that these relationships are the constitutive equa-
tions of the material under investigation. Trajectories investigated include
proportional strain trajectories, strain trajectories with two straight branches,
orthogonal bilinear trajectories with a rounded corner, and more general
curvilinear strain trajectories. The results show that the arc length s and the
curvature κ are two important parameters defining the constitutive behavior
of the material.

Ilyushin proposed a postulate of isotropy, see [45], which states that, for a
strain trajectory starting from the origin of the strain space, the stress response
is defined by the intrinsic geometry of the strain trajectory and is invariant
with respect to transformation of strain trajectory by means of rotation or
reflection. Ilyushin further proposed the principle of delay, which states that
the stress response to a strain trajectory is not defined by the whole strain
trajectory, but by the recent past of the trajectory with length λ known as
the trace of delay. This is in fact a statement of fading memory. In the case
of a curved trajectory followed by a straight trajectory, at a distance λ after
the beginning of the straight trajectory, the stress vector becomes tangent
to the trajectory. This is a very intuitive statement, because experimental
results show that the stress path and the strain path do not coincide even for
a proportional straining.

Ilyushin [50] further proposed the following integral constitutive equation

σ(s) =
∫ s

0
K[s, s′; κi(s), κi(s′)]dε(s′), i = 1, 2, 3, 4 (7.57)

where s′ is the running parameter of integration; the kernel function multi-
plied by dε(s′) represents the contribution of dε(s′) to the stress vector at s′;
and κi represents the geometry of the strain trajectory. A recent derivation
of (7.57) by Zhou et al. [49] in the plastic strain space is now discussed with
permission from Elsevier.

Referring to Figure 7.22, in which the axes should be renamed εp1 and εp3 ,
the plastic strain increment is

dεp = dεp1 e1 + dεp3 e3 = dsp1 (7.58)
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and the stress is

σ = σ1e1 + σ3e3 = σ(cos θp1 + sin θp3) (7.59)

where ei are base vectors of the Cartesian coordinate system; and θ is the
angle of delay between vectors σ and dεp. We now define the length of the
plastic strain path by

ds =
√(
ε
p
1
)2 + (εp3 )2 (7.60)

Differentiating (7.59) with respect to s and using (7.54), we obtain

σ̇ = g1p1 + g3p3 (7.61)

where

g1 = σ̇ cos θ − σ(κ + θ̇ ) sin θ , g3 = σ̇ sin θ + σ(κ + θ̇ ) cos θ (7.62)

We now make use of the transformation equations

p1 = cos ηe1 + sin ηe3, p3 = − sin ηe1 + cos ηe3 (7.63)

and the relations

cos η = dεp1
ds

, sin η = dεp3
ds

(7.64)

and substituting (7.63) and (7.64) into (7.61) to obtain

σ̇ = σ̇1e1 + σ̇3e3 =
(
g1

dεp1
ds
− g3

dεp3
ds

)
e1 +

(
g1

dεp3
ds
+ g3

dεp1
ds

)
e3 (7.65)

We have thus found from (7.65) that

[
dσ1
dσ3

]
=
[
g1 −g3
g3 g1

][
dεp1
dεp3

]
(7.66)

Experimental results show that σ can be expressed by

σ(s− s′, κ) =
n∑
ρ=1

Rρ
Aρ

e−Aρ(s−s′), Aρ = Aρ(s, κ) (7.67)
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where Rρ and Aρ are material constants. Substituting (7.67) into (7.62) and
neglecting terms of higher order of smallness, we obtain

g1 =
3∑
ρ=1

RρNρ e−Aρ(s−s′), Nρ = cos θ − sin θ
(κ + (dθ/ds))

Aρ

g3 =
3∑
ρ=1

RρMρ e−Aρ(s−s′), Mρ = sin θ + cos θ
(κ + (dθ/ds))

Aρ

(7.68)

Substituting (7.68) into (7.66) and integrating the equation, yields

[
σ1
σ2

]
=

3∑
ρ=1

∫ s

0
Rρ e−Aρ(s−s′)

[
Nρ −Mρ

Mρ Nρ

][
dεp1
dεp3

]
(7.69)

This is the constitutive equation for a plastic strain trajectory.

7.5.2 The Endochronic Theory of Plasticity

The endochronic theory of plasticity was developed by Valanis [1] from the
thermo-mechanical theory of internal variables. The theory will be discussed
in detail in Chapter 8. The word endochronic is a Greek word for intrinsic time
or internal time. Valanis introduced an intrinsic time ζ , which is monotonically
increasing and is defined by

dζ 2 = Pijkm dεij dεkm (7.70)

where Pijkm is a positive definite material tensor. In a special case, dζ may be
defined by the length of the strain path, that is,

dζ 2 = dεij dεij (7.71)

The constitutive equation has two parts, the deviatoric and volumetric part.
They are

σ ′ij = 2
∫ ζ

ζ0

µ(ζ − ζ ′)deij
dζ ′

dζ ′

σkk = 3
∫ ζ

ζ0

K(ζ − ζ ′)dεkk
dζ ′

dζ

(7.72)

where µ(ζ ) and K(ζ ) are kernels of the integrals. In the one-dimensional
stressing, (7.72) reduces to

σ =
∫ ζ

0
E(ζ − ζ ′) dε

dζ ′
dζ ′ (7.73)
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where E(ζ ) is a kernel function. Equations (7.72) and (7.73) are in the same
form as (7.57), except that only the length of the strain path and not the
curvaturenor the torsionof the strain trajectory is included in the formulation.
These geometrical parameters of the strain path may be accounted for by
use of internal variables, and they have not been included for the sake of
simplicity. It has been shown that using only the length of the strain path,
the endochronic theory is capable of describing stress responses to complex
strain paths.

This version of endochronic theory is similar to but not quite the same as
Ilyushin’s theory. One of the differences is in the definition of intrinsic time.
The endochronic theory defines the intrinsic time by (7.70) using a material
tensor Pijkm, whereas Ilyushin’s theory uses the arc length as the intrinsic
time. Another difference, more significantly, is that the endochronic theory is
capable of accounting for volume change during deformation by use of the
second equation of (7.72), while the theory of Ilyushin is formulated based on
the deviatoric strain and no discussions have been given over to the volume
change. It has been found that this version of endochronic theory does not
correctly describe the unloading slope for metals and that it incorrectly pre-
dicts the same entropy production for further loading or unloading starting
at a point already in the plastic state.

Owing to theaforementioneddeficiencies, an improvedendochronic theory
was developed by Valanis [2]. The new theory is free from the aforementioned
deficiencies. In the new version, the intrinsic time is defined by the plastic
strain as

dζ 2 = Pijkmdεpij dε
p
km (7.74)

The deviatoric part of the constitutive equation is

σ ′ij = 2G0

∫ ζ

0
ρ(ζ − ζ ′)

dεpij
dζ ′

dζ ′ (7.75)

where G0 is a material constant and ρ(ζ ) is a kernel function. The volumet-
ric change can be accounted for using the volumetric constitutive equation
and the details of derivations are given in Chapter 8. It is shown in Chapter 8
that the flow theory of plasticity may be derived from the new version of
the endochronic theory. In addition, this theory is shown in Chapter 9 to
apply to geotechnical materials which undergo plastic volume change during
deformation.

7.6 Finite Plastic Deformation

Plastic deformations are large in cases such as metal forming, strain localiza-
tion, ductile fracture, soil mechanics, and pavement analysis, etc. Aplasticity
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theory of finite deformation must be used for these cases. The theories
presented in previous sections of this chapter may be extended to the finite
deformation range. The extension is not straightforward, however, and it has
led to different opinions and heated debates. To extend an infinitesimal the-
ory into a finite theory, we encounter concepts such as the stress measure,
the strain measure, the decomposition of strain into elastic and plastic parts,
the objective rate (of stress, back stress, etc.), the observer independent yield
function, and the rotation of material texture. The stress and strain measures
and the decomposition of strain are discussed first. The objective rate is then
discussed in connection with hypoelasticity and discussion of its effects in
plasticity is deferred until after a finite plasticity theory has been presen-
ted. Then the finite plastic simple shear deformation using different objective
rates, and, finally, the yield function are discussed.

7.6.1 The Stress and Strain Measures

Either the Eulerian or the Lagrangian description may be used. The stress
measures have already been discussed in Section 4.4.2.1 and strain mea-
sures in Sections 3.6, 3.9, and 3.10. In the Eulerian description, the stress and
strains are referred to the current (deformed) configuration. TheCauchy stress
σ is usually used in this configuration. This is the true stress, which is the force
per unit deformed area. The Kirchhoff stress, which is defined by Sij = Jσij
where J is the Jacobian of the deformation equations, has also been used by
some investigators. The Kirchhoff stress is also discussed in Chapter 11 in
connection with the curvilinear coordinate system. Although we can use the
Eulerian strain e or the left Cauchy–Green tensor B, it is more convenient to
use the rate of deformation tensorD,whichhas themeaningof strain rate. The
rate of deformation can be decomposed into the elastic and plastic parts and
will be further discussed. In the Lagrangian description, the stress and strain
refer to the undeformed (reference) configuration. The nonsymmetric 1st P–K
stress T(0) and the symmetric 2nd P–K stress � have been used. Popular
strain measures are the right Cauchy–Green tensor C and the Lagrangian
strain (Green’s strain orAlmansi strain) E. There is no unified approach avail-
able. The selection of the stress and strain measures greatly depends on the
preference and convenience of the investigator and the problem at hand.

7.6.2 The Decomposition of Strain and Strain Rate

In the small deformation theory, it is customary to write

εij = εeij + εpij and dεij = dεeij + dεpij (7.76)

However, in finite deformation, the decomposition

ERS = Ee
RS + Ep

RS (7.77)
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cannot be justified. This may be easily seen by considering the strain–
displacement relation

ERS = 1
2

(
∂uR
∂XS
+ ∂uS
∂XR
+ ∂uk
∂XR

∂uk
∂XS

)
(7.78)

which cannot be separated into the sum of two parts because of the nonlinear
terms in thedisplacement gradient.Anadditivedecompositionwasproposed
by Green and Naghdi [56], who defined Ee = E − Ep but explained that Ee

was not an ordinary elastic strain tensor. It was defined merely to represent
the difference between the total strain E and the plastic strain Ep. The intro-
duction of Ee was not necessary, because the use of E and Ep was sufficient
in their theory.

On the other hand, the rate of deformation tensor can be separated into
two parts because of the linear expression in the velocity gradient, that is,

Dij = 1
2 (vi,j + vj,i) (7.79)

It is possible to define two velocities ve
i and vp

i , such that

De
ij = 1

2

(
ve
i,j + ve

j,i
)

and Dp
ij = 1

2

(
vp
i,j + vp

j,i
)

(7.80)

Thus,

Dij = De
ij +Dp

ij (7.81)

We note that, in this connection, no attempt is made to separate the deforma-
tion gradient F into the elastic and plastic parts. In fact, F does not play a part
in the formulation of (7.81).

Another effort has been undertaken by researchers to derive the expres-
sions of De and Dp starting from F. This effort involves some assumptions
and physical justifications. Lee [57] introduced the concept of multiplicative
decomposition of F. The deformation gradient has been previously discussed
in Section 3.4. Let X express the initial configuration of the body, x the
elastic–plastic deformed state (the current configuration), and p the state
after de-stressing to zero stress. The deformation gradient F = ∂x/∂X with
components FiR = ∂xi/∂XR expresses the total deformation. The deforma-
tion gradient Fp from the initial state X to the plastically deformed state p
expresses the plastic deformation

Fp = ∂p
∂X

(7.82)
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F p

F

Fe

x

X
dX

dx

p
dp

X, x, p

FIGURE 7.23
Decomposition of F.

and Fe, from the plastically deformed configuration p to x, expresses the
elastic component of the deformation in the configuration x, that is,

Fe = ∂x
∂p

(7.83)

Thus,

F = Fe · Fp (7.84)

by the chain rule of differentiation. This decomposition of F into Fe and Fp

is depicted by Figure 7.23. The intermediate configuration p is obtained by
an elastic de-stressing to zero stress from the current configuration x and it
represents a pure plastic deformation fromX to p. If the plastic deformation is
homogeneous, no residual stresses exist upon de-stressing and in this case Fe

and Fp are continuous functions. However, if the plastic deformation is non-
homogeneous, residual stresses will result upon destressing. In order for all
infinitesimal material elements to reach a zero stress state, individual material
elements will have to undergo a different amount of de-stressing. There-
fore, in this case, Fe and Fp can be defined as point-functions that relate the
deformations in the infinitesimal material elements. In addition, we mention
that the intermediate state p is not uniquely defined, because the elastic de-
stressing can involve an arbitrary rigid-body rotation, which does not affect
the stress. In order to have a unique p, we assume that the elastic de-stressing
involves only pure deformation so that, by use of the polar decomposition of
Section 3.5.2, the elastic part of the deformation gradient is

Fe = Ve (7.85)

which is a symmetric tensor.
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Using (7.84) and (3.100), the Lagrangian strain is

E = 1
2 (F

T · F − 1) = 1
2 (F

pT · FeT · Fe · Fp − 1)

= 1
2 [FpT ·(FeT · Fe − 1)·Fp] + 1

2 [FpT · Fp − 1] = FpT · Ee · Fp + Ep (7.86)

where

Ee = 1
2 (F

eT · Fe − 1), Ep = 1
2 (F

pT · Fp − 1) (7.87)

It is seen from (7.86) that the additive decomposition of Ee and Ep, as defined
here, does not hold, that is,

E �= Ee + Ep (7.88)

The velocity gradient in the current configuration x is

L = ∂v
∂x
= ∂v
∂X
· ∂X
∂x
= Ḟ · F−1 (7.89)

where Ḟ is the material derivative of F. Substituting (7.84) into (7.89), we
obtain

L = (Fe · Fp) · (Fe · Fp)−1 = Ḟe · Fe−1 + Fe · Ḟp · Fp−1 · Fe−1
(7.90)

If we now choose the elastic de-stressing without rotation and the expression
for Fe given by (7.85), and let

Lp = Ḟp · Fp−1 = Dp +Wp (7.91)

then

L = V̇e ·Ve−1 +Ve ·Dp ·Ve−1 +Ve ·Wp ·Ve−1
(7.92)

From (7.92), the rate of deformation D and the spin tensor W take the form

D = De +Ve ·Dp ·Ve−1 ∣∣
S +Ve ·Wp ·Ve−1 ∣∣

S

W =We +Ve ·Dp ·Ve−1 ∣∣
A +Ve ·Wp ·Ve−1 ∣∣

A

(7.93)

whereDe,We(= 0, ifVe = VeT),Dp, andWp are the symmetric and antisym-
metric parts of V̇e ·Ve−1

andLp, respectively, and the subscripts S andAdenote
the symmetric and antisymmetric parts of a tensor. Looking at the expression
for rate of deformation in (7.93), all three terms on the right-hand side of the
equation are nonzero, in general. This indicates a very involved coupling of
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Ve,Dp, and Wp in combining to produce the total rate of deformation D.
In this formulation, (7.92) cannot be reduced to the additive decomposition
of D, expressed by (7.81), in the general case. However, elastic strain is small
and negligible for most metals undergoing large plastic deformation, and we
may use the approximation that Ve ≈ 1 to reduce (7.93) to

D = De +Dp, W =We +Wp (7.94)

On the other hand, Dafalias [58] introduced the concept of plastic spin based
on Mandel’s concept of director vectors [59]. The plastic spin is a macroscopic
representation of the rotation of material texture caused by plastic deforma-
tion. One way of observing the texture experimentally is to plot the pole
figures. The rotation (or tilting) of texture has been observed experimentally
by Montheillet et al. [60], Stout and O’Rourke [61], Toth et al. [62], and Wang
et al. [63] in the torsion of thin-walled tubes or solid bars. Dafalias [64] further
used the difference between the total spin W and the plastic spinWp, termed
constitutive spin ω to form the corotational rate. According to Dafalias, using
Fe = Ve, (7.90) may be rewritten as

L = D+W = V̇e ·Ve−1 +Ve · Ḟp · Fp−1 ·Ve−1

= ω+Ve∇ ·Ve−1 +Ve · Fp∇ · Fp−1 ·Ve−1
(7.95)

where the superscript ∇ denote the corotational rate, which has been
discussed in Section 4.7.1. Since Ve transforms as a second-order tensor and
Fp transforms as a vector upon the rotation of x (observer transformation),
their corotational derivatives are

Ve∇ = V̇e +Ve · ω− ω ·Ve, Fp∇ = Ḟp − ω · Fp (7.96)

respectively. Restricting further to small elastic deformation forwhichVe ≈ 1,
the following are obtained from (7.95)

D = Ve∇ + (Fp∇ · Fp−1
)S = De +Dp

W = ω+ (Fp∇ · Fp−1
)A = ω+Wp

(7.97)

withDe = Ve∇ , rate of a symmetric elastic deformation; Dp andWp the rates
of plastic deformation and plastic spin, respectively. Thus, a portion of the
total spin W is “absorbed” by the plastic spin and the rest accommodated by
the constitutive spin ω.

Dafalias [64] discussed the two definitions of “plastic spin” used in the
literature and cautioned against defining the plastic spin as the antisymmet-
ric part of the velocity gradient at the plastically deforming intermediate
configuration. He suggested that the rotation of texture must be governed
by a separate rule and not by the general kinematics of deformation. In the
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continuum approach, constitutive equations must be provided not only for
Dp but also for Wp, Mandel [59] and Kratochvil [65]. Dafalias writes

Wp = 〈λ〉Ωp(σ, s) (7.98)

where λ is a parameter. An internal state variable s macroscopically
describes the state of the microstructures. Using the representation theorem
of Wang [66], Ωp can be represented by

Ωp = η1(s · σ− σ · s)+ η2(s · σ2 − σ2 · s)+ η3(σ · s · σ2 − σ2 · s · σ) (7.99)

where η1, η2, and η3 are scalar valued functions of the invariants tr σ, tr σ2,
tr σ3, tr(s · σ), and tr(s · σ2). Dafalias [64] and Loret [67] used the following
simplified form to investigate the simple shear problem:

Wp = η(α · σ− σ · α) (7.100)

where η is a parameter and s is taken to be the back stress α. In addition,
Dafalias [68] proposed the following form when he investigated plastic
materials with kinematic hardening

Wp = c(α ·Dp −Dp · α) (7.101)

where c is a parameter.

EXAMPLE 7.1 Derive the corotational rate of vector g.

Solution

Let g be subjected to an orthogonal transformation such that

ḡ = QT · g (a)

Then,

Dḡ
Dt
= Q̇T · g+QT · ġ (b)

From the third equation of (4.92), we have

W̄ = QT ·W ·Q+ Q̇T ·Q = QT ·W ·Q−QT · Q̇ (c)

or

Q̇ =W ·Q−Q · W̄ (d)
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and

Q̇T = QT ·WT − W̄T ·QT (e)

Substituting (e) into (b), we obtain

Dḡ
Dt
= (QT ·WT − W̄T ·QT) · g+QT · ġ (f)

which leads to

˙̄g− W̄ · ḡ = QT · (ġ−W · g) (g)

It is to be noted that W is antisymmetric. The corotational rate of g can thus
be defined as

∇
g = ġ−W · g (h)

7.6.3 The Objective Rates

In Section 4.7 it was mentioned that only objective rates can be used to
formulate a constitutive equation. There are many objective rates, however,
and a reasonable objective rate should lead to results that can be verified by
experiments. Different objective rates lead to different results and some are
physically unacceptable results. For instance, it is known in hypoelasticity
[69] that Jaumann rate gives rise to oscillatory shear and axial stresses with
the increasing shear strain (see Section 4.10). In spite of this finding, some
investigators continued to use the Jaumann rate in the finite deformation
analysis. In the study of plasticity, Nagtegal and de Jong [70] analyzed the
simple shearproblem (shearingwith constraint in axial direction) byuseof the
Jaumann rate for back stress using Prager’s linear kinematic-hardening rule.
They showed an oscillatory shear stress response to monotonically increasing
shear strain. This work triggered a series of investigations to look for objec-
tive stress rate appropriate for the description of metallic behavior in the finite
strain range. Investigators have compared several objective stress rates with
the purpose of eliminating the oscillatory stress–strain response. Yet, certain
unreasonable behaviors, such as axial stress being zero or compressive with
unacceptably large value, still exist in the available models. Furthermore,
the majority of these models are for specimens subjected to loading only.
When unloading or cyclic simple shearing are considered, the aforemen-
tioned unusual stress–strain behaviors can manifest itself in the unloading
curve or the stress–strain loops. Discussions have been centered around two
possibilities of eliminating the oscillatory behavior. One is to find an objective
rate that does not give rise to oscillatory stress responses even using a linear
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constitutive equation. The other is to add a nonlinear term to the constitutive
equation and, in this case, Jaumann rate does not lead to oscillatory stresses.

In this subsection, the objective rate is discussed in connection with hypo-
elasticity. The effect of objective rate in plasticity is deferred to a later section.
In the case of simple shear deformation, the hypoelastic constitutive equation
is from (4.240)

σ ∗ij = 2µDij and Dkk = 0 (7.102)

where σ∗ an objective rate and µ is the shear modulus. The simple shear
deformation is governed by the following equations

x1 = X1 + 2ωtX2, x2 = X2, x3 = X3 (7.103)

u1 = 2ωtX2, u2 = u3 = 0, ω = const (7.104)

[L] =

0 2ω 0

0 0 0
0 0 0


 , [D] =


 0 ω 0
sω 0 0
0 0 0


 , [W ] =


 0 ω 0
−ω 0 0
0 0 0




(7.105)

The case of σ∗ equaling to the Jaumann rate σ∇ = (Dσ/Dt)−W ·σ+σ ·W has
been discussed in Section 4.10. Following the procedures of Section 4.10, This
section discusses the solutions of (7.102) and (7.105) using the Cotter–Rivlin
stress rate [71], Oldroyd’s convected stress rate [72], the Green–McInnis rate
[69], and the mixed objective stress rates. In the case of the Cotter–Rivlin stress
rate, the stress rate is

σ∗ = Dσ

Dt
+ LT · σ+ σ · L (7.106)

and the solution is

σ11 = 0, σ22 = −4µγ 2, σ12 = 2µγ (7.107)

where γ = 2ωt. Note that σ12 increases linearly and σ22 nonlinearly with γ .
Even though the shear stress–strain curve does not oscillate, which satisfies
the requirement, the magnitude of the axial stress is greater than that of the
shear stress. According to the experimental findings of Montheillet et al. [60],
White andAnand (reported in [73]), and Wu et al. [74], the magnitude of axial
stress is about 10% of shear stress. The predicted high σ22 of this model makes
the model unacceptable.

In the case of Oldroyd’s rate, the stress rate is

σ∗ = Dσ

Dt
− L · σ− σ · LT (7.108)
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On the other hand, Truesdell’s rate [75] is

σ∗ = Dσ

Dt
+ σ trD− L · σ− σ · LT (7.109)

Since trD = 0, (7.109) reduces to (7.108). The solution of this case is

σ11 = 4µγ 2, σ22 = 0, σ12 = 2µγ (7.110)

This model predicts a zero σ22 and a high magnitude of σ11 which are
unacceptable for real materials.

Using the Green–McInnis rate

σ∗ = Dσ

Dt
−W∗ · σ+ σ ·W∗ where W∗ = Ṙ · RT (7.111)

in which tensor R is the orthogonal rotation tensor of the polar decom-
position of the deformation gradient F, Dienes [69] obtained the following
solution

σ11 = −σ22 = 4µ[cos 2β ln(cosβ)+ β sin(2β)− sin2 β]
σ12 = 2µ cos 2β[2β − 2 tan 2β ln(cosβ)− tan β]

(7.112)

where

tan β = ωt = 1
2γ (7.113)

The shear stress–strain curve of this model does not oscillate but the
magnitude of axial stress is in the order of shear stress and does not agree with
the experimental finding of approximately one-tenth of the magnitude of the
shear stress.

All the aforementioned solutions of hypoelasticity areplotted in Figure 7.24.

EXAMPLE 7.2 Use the Green–McInnis rate to find the stresses for simple
shearing.

Solution

The motion for simple shearing is from (3.20)

x1 = X1 + 2X2 tan β, x2 = X2, x3 = X3 (a)
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FIGURE 7.24
Simple shear of hypoelastic material.

From (a), we find

[F] =

1 2 tan β 0

0 1 0
0 0 1


 , [D] =


 0 sec2 ββ̇ 0

sec2 ββ̇ 0 0
0 0 0


 ,

[U2] = [F]T[F] =

 1 2 tan β 0

2 tan β 4 tan2 β + 1 0
0 0 1




(b)

The eigenvalues and eigenvectors of [U2] are

λ1 = 1, λ2 = 1+ 2 tan2 β + 2 tan β sec β,

λ3 = 1+ 2 tan2 β − 2 tan β sec β

nT
1 =

[
0 0 1

]
, nT

2 =
[(2 tan β − sec β) − 2 1]√
(2 tan β − sec β)2 + 5

,

nT
3 =
[(2 tan β + sec β) − 2 1]√
(2 tan β + sec β)2 + 5

(c)

Therefore, [U] is

[U] = [n1 n2 n3]



1 0 0

0 λ
1/2
2 0

0 0 λ
1/2
3





nT

1

nT
2

nT
3


 (d)
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We find

[R] = [F][U]−1 =

 cosβ sin β 0
− sin β cosβ 0

0 0 1


 , [Ṙ] =


 sin ββ̇ cosββ̇ 0
− cosββ̇ − sin ββ̇ 0

0 0 0




(e)

and

[w∗] = [Ṙ][R]T =

0 β̇ 0
β̇ 0 0
0 0 0


 (f)

Using the Green–McInnis rate (7.111), the nonzero components of (7.102) are

dσ11

dt
− 2β̇σ12 = 0 (g)

dσ12

dt
+ β̇(σ11 − σ22) = 2µ sec2 ββ̇ (h)

dσ22

dt
+ 2β̇σ12 = 0 (i)

Equations (g) to (i) are combined to yield

d2σ11

dβ2 + 4σ11 = 4µ
cos2 β

with σ22 = −σ11 (j)

The general solution for (j) is

σ11 = 4µ(cos 2β ln cosβ + β sin 2β − sin2 β)+ c1 cos 2β + c2 sin 2β (k)

where c1 and c2 are constants and they vanish when all initial (at β = 0) stress
components are zero. Substituting (k) into (g), gives (7.112).

7.6.4 A Theory of Finite Elastic–Plastic Deformation

The rate of deformation D is used in this section. According to the concept of
work conjugate discussed in Section 4.4.3, the Cauchy stress σ is the work
conjugate of D. An objective stress rate should be used and we use the
Jaumann rate in this discussion. Other objective stress rates will be discussed
in the next section. The Jaumann stress rate is

σ∇ij = σ̇ij −Wipσpj + σipWpj (7.114)
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where σ̇ij = Dσij/Dt. Denoting the deviatoric part of Dij by dij, we have
dij = de

ij + dp
ij . The Mises yield criterion is

f = ξD
ij ξ

D
ij −

2Y2

3
= 0 (7.115)

where ξD
ij = σ ′ij − αD

ij ; the superscript D denotes the deviatoric part of the
quantity and Y is the current yield stress in tension. The plastic region is
characterizedby f = 0 and dp

ij dσ
′
ij > 0, while the elastic region is characterized

by either f < 0 or f = 0 and dp
ij dσ

′
ij ≤ 0. The tensor αij is the back stress.

The elastic behavior is governed by

σ ′∇ij = 2µde
ij (7.116)

where µ is the shear modulus. The flow rule is

dp
ij = λ̇

∂ f
∂σij

(7.117)

where λ̇ is a scalar factor of proportionality. Using (7.115), (7.117) reduces to

dp
ij = λ̇ξD

ij (7.118)

For simplicity, the linear isotropic-hardening rule is used and is written as

Ẏ = βhd̄p (7.119)

where d̄p is the equivalent plastic strain rate defined by

d̄p = ( 2
3d

p
ijd

p
ij

)1/2 (7.120)

and h is the slope of isotropic-hardening curve. The parameter β was previ-
ously discussed in (6.85) and β = 1 for isotropic hardening. Prager’s linear
kinematic-hardening rule is used, that is,

αD∇
ij = 2

3 (1− β)hd
p
ij (7.121)

where β = 0 or kinematic hardening. The parameter β lies within 0 ≤ β ≤ 1.
When β has a value between 0 and 1, then we have a combined isotropic–
kinematic hardening.
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The factor λ̇ is determined from the consistency condition. Differentiating
(7.115), gives

ḟ = 2ξD
ij ξ

D∇
ij −

4Y
3
Ẏ = 0 (7.122)

The expressions in (7.122) can be shown as

ξD
ij ξ

D∇
ij = ξD

ij
(
σ ′∇ij − αD∇

ij
) = ξD

ij
[
2µde

ij − 2
3 (1− β)hd

p
ij

]
= 2µdijξD

ij −
[
2µ+ 2

3 (1− β)h
]
λ̇
( 2

3Y
2)

2
3YẎ = 2

3Yβhd̄
p = 2

3Yβh
( 2

3 λ̇
2ξD

ij ξ
D
ij
)1/2 = 4

9βhY
2λ̇ (7.123)

By substituting the two expressions of (7.123) into (7.122), we obtain

2µdijξD
ij = 2

3 λ̇Y
2[2µ+ 2

3 (1− β)h+ 2
3βh

]
(7.124)

which may be solved for λ̇ to obtain

λ̇ = 3
2

dijξD
ij

Y2(1+ (h/3µ)) (7.125)

Having found the expression for λ̇, the rate of deformation may now be
written as

dij = de
ij + dp

ij =
σ ′∇ij
2µ
+ 3

2

dkmξD
kmξ

D
ij

Y2(1+ h/3µ)
(7.126)

This equation may be inverted to obtain

σ ′∇ij = 2µ

[
δikδjm −

ξD
kmξ

D
ij

(2/3)Y2(1+ h/3µ)

]
dkm (7.127)

that is, the stress rate is expressed in terms of the rate of deformation dij.
This equation is often written as

σ ′∇ij = Lijkmdkm (7.128)

to facilitate computation. We note that the volumetric behavior is assumed to
be elastic which is described by

1
3 σ̇kk = KDkk (7.129)

where K is the bulk modulus.
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EXAMPLE 7.3 Using the theory of this section to derive the stress–strain
relation for uniaxial stress.

Solution

In the case of uniaxial stress

[σ ′] =




2
3
σ 0 0

0 −σ
3

0

0 0 −σ
3


 , [Dp] = [dp] =



ε̇p 0 0

0 −1
2
ε̇p 0

0 0 −1
2
ε̇p




[αD] =




2α
3

0 0

0 −α
3

0

0 0
α

3




(a)

Using (a), the yield function (7.115) is reduced to

σ = Y + α (b)

and, using (7.125), the equivalent plastic strain rate is

d̄p = { 23 [(ε̇p)2 + 2(− 1
2 ε̇

p)2]}1/2 = ε̇p (c)

The linear isotropic-hardening rule is then given by

Ẏ = βhε̇p (d)

and the linear kinematic-hardening rule is from (7.121) and (7.130) reduces to

α̇ = (1− β)hε̇p (e)

We note that due toW=0, σ∇ = σ̇, and αD∇ = α̇D. The expression for (d) is the
same as (6.147) and the expression for (e) is the same as (6.149). The roles of
isotropic andkinematichardeningare similar to those shown inFigure6.21(b).
Using (d) and (e), the stress–plastic strain curve is given by

σ̇ = Ẏ + α̇ = βhε̇p + (1− β)hε̇p = hε̇p (f)

The slope of the stress–plastic strain curve may be identified as

h = σ̇

ε̇p
= dσ

dεp
(g)
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where the slope is a function of εp. The total strain is

ε̇ = ε̇e + ε̇p = σ̇

E
+ σ̇

h
=
(

1
E
+ 1

h

)
σ̇ (h)

where E is the elastic modulus. In the stress–strain curve, the slope is

dσ
dε
= 1
(1/E)+ (1/h) = Et (i)

where Et is the tangent modulus. Therefore,

Et = hE
h+ E

(j)

This equation relates Et to E and h. Using (i), the axial stress–strain curve
may be plotted. It is noted that the flow rule is not explicitly used in this
one-dimensional case.

EXAMPLE7.4 Arectangularmetal blockwith edges parallel to the x, y, z-axes
is compressed in the x-direction between overlapping rigid plates. Expansion
is allowed only in the y-direction, and is prevented in the z-direction by rigid
dies. All contact surfaces are perfectly lubricated so that the deformation is
plane and uniform. The compressive strain in the x-direction is controlled
and it increases monotonically from zero. Determine the stresses. Use the
theory of this section and assume that the material hardens only by isotropic
hardening.

Solution

Assume that in the elastic region, the behavior is hypoelastic so that

σ̇ij = λδijDkk + 2µ
(
Dij −Dp

ij

)
with Dkk = De

kk (a)

We note that since W = 0 for this problem, σ∇ij = σ̇ij. The flow rule is

Dp
ij = φ̇σ ′ij (b)

where Dp
ij = dp

ij due to plastic incompressibility. Parameter φ is used here so
that a distinction can be made between this parameter and the Lamé constant
λ used in (a). The equivalent plastic strain rate is

D̄p = ( 2
3D

p
ijD

p
ij

)1/2 (c)
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and the yield function is

f = σ ′ijσ ′ij −
2Y2

3
= 0 (d)

with the consistency condition

ḟ = 2σ ′ijσ̇
′
ij −

4Y
3
Ẏ = 0 (e)

The isotropic hardening is

Ẏ = hD̄p, β = 1 (f)

Using (7.125), we obtain

φ̇ = 3
2

Dijσ
′
ij

Y2(1+ h/3µ)
(g)

Substituting (g) and (b) into (a), we find

σ̇ij = λδijDkk + 2µDij − BDkmσ
′
kmσ
′
ij (h)

where

B = 3µ
Y2(1+ h/3µ)

(i)

The boundary conditions are

σx �= 0, σy = 0, σz �= 0, Dx �= 0 (known), Dy �= 0,Dz = 0
(j)

Apply the conditions σ̇y = 0 and Dz = 0 in (h) gives

Dy = −C1

C2
Dx (k1)

where

C1 = 3λ+ B(σx + σz)(2σx − σz) (k2)

C2 = 3λ+ 6µ− B(σx + σz)2 (k3)
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The other two components of (h) are

σ̇x = λ(Dx +Dy)+ 2µDx − A(2σx − σz) (l1)

σ̇z = λ(Dx +Dy)− A(2σz − σx) (l2)

where

A =
( −1
σx + σz

)
[λ(Dx +Dy)+ 2µDy] (l3)

and (k1) was used in the derivation of (l3). Equations (l1) to (l3) can be further
reduced to

σ̇x = C3Dx + C4Dy (m1)

σ̇z = C5Dx + C6Dy (m2)

where

C3 = 2µ+ λ
(

3σx
σx + σz

)
, C4 = C3 + 2µ

(
σx − 2σz
σx + σz

)

C5 = λ
(

3σz
σx + σz

)
, C6 = C5 − 2µ

(
σx − 2σz
σx + σz

) (m3)

Finally, we substitute (k1) into (m1) and (m2) to obtain

σ̇x =
(
C3 − C1C4

C2

)
Dx and σ̇z =

(
C5 − C1C6

C2

)
Dx (n)

It is to be noted that Ci are functions of σx, σz and material constants. If we
know Dx, then σx and σz may be calculated by the integration of (n), and Dy
may be found from (k1). Additional exercises may be performed by plotting
the σx versus

∫
Dx dt and σz versus

∫
Dx dt curves. In addition, Dy may be

plotted as a function of Dx and the effect of h on the results discussed.
An experimental study of the biaxial compression problem was conducted
by Khan and Wang [76].

7.6.5 A Study of Simple Shear Using Rigid-Plastic Equations with
Linear Kinematic Hardening

The subject of study in this section is the problem of simple shear using
rigid-plastic equations with linear kinematic hardening, that is, β = 0. Three
objective rates are considered. They are the Jaumann rate, the Dafalias rate,
and Lee’s rate [77].
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7.6.5.1 The Jaumann rate

The Mises yield criterion is

3
2 (σ
′ − αD) · (σ′ − αD) = Y2 (7.130)

The kinematic-hardening rule is from (7.121)

αD∇
ij = 2

3hDij (7.131)

where dp
ij = dij = Dij and Dkk = 0. The Jaumann rate is given by (7.114) and

the flow rule is from (7.118)

Dij = λ̇
(
σ ′ij − αD

ij
)

(7.132)

Using the finite simple shear straining described by (7.105), we obtain
from (7.132)

σ ′11 = αD
11, σ ′22 = αD

22, σ ′12 = αD
12 +

ω

λ̇
= αD

12 +
Y√
3

(7.133)

The last expression was obtained using (7.132) and (7.130). The expression of
(7.131) is in the form of (7.102), whose solution in the case of Jaumann rate is
given by (4.248). Therefore, the solution for (7.131) is

αD
12 =

h
3

sin γ , αD
11 = −αD

22 =
h
3
(1− cos γ ) (7.134)

From (7.134) we infer that αD
11 + αD

22 = 0 and, therefore, from the first two
equations of (7.133) we obtain σ ′22 = −σ ′11 or (2σ22−σ11)/3 = −(2σ11−σ22)/3.
Thus, σ11 + σ22 = 0 or σkk = 0, since σ33 = 0. Using this result, we conclude
that σ11 = σ ′11 and σ22 = σ ′22. Equations (7.133) and (7.134) combine to yield

σ12 = Y√
3
+ h

3
sin γ , σ11 = −σ22 = h

3
(1− cos γ ), other σij = 0

(7.135)

This is the solution for the simple shear problem by use of the Jaumann rate
for the back stress. It is seen that all nonzero stress components are oscillatory.
Finally, it is easy to show that by eliminating γ from the equations of (7.134),
we find

(
αD

12

)2 +
(
h
3
− αD

11

)2

=
(
h
3

)2

(7.136)

that is, the back stress is making a circular motion when the Jaumann rate
is used.
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7.6.5.2 The Dafalias rate

The yield function is given by (7.130) and the flow rule is given by (7.132).
Upon the substitution of (7.105) into (7.132), we obtain (7.133). The kinematic-
hardening rule is

αD∗
ij = 2

3hDij (7.137)

in which

αD∗
ij =

DαD
ij

Dt
− ωijα

D
ji + αD

ij ωji (7.138)

is the Dafalias rate; ωij is the constitutive spin defined by (7.97) and is
written as

ωij =Wij −Wp
ij =Wij − η

(
αD
ij Dji −Dijα

D
ji
)

(7.139)

where η is a parameter which describes the strength of plastic spin. By use
of (7.105), it is easily shown that

[ω] = ξ

 0 ω 0
−ω 0 0
0 0 0


 with ξ = 1− η(αD

11 − αD
22
)

(7.140)

Thus, (7.137) is reduced to

D
Dt



αD

11 αD
12 0

αD
12 αD

22 0

0 0 0


− ξω




2αD
12

(
αD

22 − αD
11
)

0(
αD

22 − αD
11
) −2αD

12 0

0 0 0


 = 2

3
h


0 ω 0
ω 0 0
0 0 0




(7.141)

The nonzero components of the equation are

DαD
11

Dt
= 2αD

12
(
1− ηαD

11 + ηαD
22
)
ω

DαD
22

Dt
= −2αD

12
(
1− ηαD

11 + ηαD
22
)
ω

DαD
12

Dt
= 2

3
hω + (αD

22 − αD
11
)(

1− ηαD
11 + ηαD

22
)
ω

(7.142)
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Since αD
11 = αD

22 = 0 initially, αD
11 = −αD

22 for all t. Using this result, (7.142) is
simplified to yield

dαD
11

dγ
= (1− 2ηαD

11
)
αD

12,
dαD

12
dγ
= h

3
− (1− 2ηαD

11
)
αD

11 (7.143)

where γ = 2ωt. We now introduce dimensionless variables α̂11 = αD
11/Y and

α̂12 = αD
12/Y, and a parameter ĥ = h/(3Y), so that (7.143) may be written as

dα̂11

dγ
= (1− ĥρα̂11)α̂12,

dα̂12

dγ
= ĥ− (1− ĥρα̂11)α̂11 (7.144)

where

ĥρ = 2ηY (7.145)

Theequations in (7.143) are solvednumericallybyDafalias [58]. Theboundary
condition is αD

ij = 0 at initial yielding. Similar to (7.133), we may establish that

σ11 = αD
11, σ22 = αD

22 = −αD
11, σ12 = αD

12 +
Y√
3

(7.146)

In Figure 7.25(a), we plot the shear stress–strain curves with values of ĥ =
1.0, 1.5, 1.6, 1.7, 1.75, and 2.0, while keeping ρ = 0.08. The corresponding
axial stress versus shear strain curves are plotted in Figure 7.25(b), and the
corresponding back stress paths as the shear strain γ increases are plotted
in Figure 7.25(c). It clearly shows that the solution is very sensitive to the
relative value between ĥ and ρ. A large ρ indicates a strong plastic spin and
the corresponding constitutive spin is small. When ĥ is relatively small such as
1.0, the constitutive spin is significant and it causes the back stress to spin as
indicated in Figure 7.25(c). As a result, both the axial and shear stresses are
oscillatory. The stresses are not oscillatory for larger ĥ, but they are very
sensitive to this parameter as seen from Figure 7.25(b) and (c). We would also
like to mention that generally the magnitude of axial stress of this model is
larger than the shear stress, which is not reasonable.

7.6.5.3 The rate of Lee

Lee et al. [77] proposed a spin W∗ to replace the spin tensor W in the
Jaumannrate, achievingnonoscillatory stresses in simple shearing. The tensor
W∗ is determined by the angular velocity of the material line element
which is instantaneously coincident with the eigenvector associated with the
maximum eigenvalue of back stress α. The spin W∗ is expressed by

W∗ij =Wij +Diknknj − ninkDkj (7.147)
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FIGURE 7.25
Simple shear using Dafalias’s rate: (a) shear stress–strain curves, (b) axial stress, (c) back stress.

where n is that eigenvector of α. Lee et al. [77] pointed out that kinematic
hardening is an anisotropic phenomenon forwhich specificdirections embed-
ded in the material and the rotation of these particular directions play a
significant role. It is noted, however, that the rotation of the eigenvector
used to define W∗ is a part of the kinematics of deformation and is not
directly related to the rotation of the material texture. Dafalias rate is different
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in that it contains a parameter that is related to the spin of the material
texture.

Following [77], we now use W∗ in connection with the corotational rate
to investigate the simple shear deformation. The rate of Lee et al. may be
written as

αD∗ = DαD

Dt
−W∗ · αD + αD ·W∗ (7.148)

Since a corotational rate is objective, Lee’s rate is objective. For the simple
shear deformation defined by (7.105), the line element associated with W∗ is
on the (x1, x2) plane. Thus, [n]T = [n1 n2 0]. Substituting this expression
of [n] into (7.147), we find

[W∗] = 2n2
2ω


 0 1 0
−1 0 0
0 0 0


 with n2

1 + n2
2 = 1 (7.149)

Using (7.149) and (7.148), the nonzero components of the linear kinematic-
hardening rule (7.137) are

α̇D
11 − 4n2

2ωα
D
12 = 0

α̇D
22 + 4n2

2ωα
D
12 = 0 (7.150)

α̇D
12 − 2n2

2ω
(
αD

22 − αD
11
) = 2h

3
ω

Equations in (7.150) are further reduced to

α̇D
12 =

2h
3
ω − 4n2

2ωα
D
11, α̇D

11 − 4n2
2ωα

D
12 = 0, and αD

22 = −αD
11 (7.151)

We now determine the eigenvector n. We have



αD

11 − λ αD
12 0

αD
12 αD

22 − λ 0
0 0 0− λ




n1
n2
0


 =


0

0
0


 (7.152)

From (7.152), we obtain

n1 =
√

1− n2
2, n2 = 1√

R2 + 1
, R = −α

D
22 +

√(
αD

22
)2 + (αD

12
)2

αD
12

(7.153)
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FIGURE 7.26
Simple shear using Lee’s rate: (a) shear stress–strain curves, (b) axial stress, (c) back stress.

The positive n2 is chosen which corresponds to the maximum eigenvalue.
In this way, n2 is expressed in terms of components αD

22 and αD
12. Knowing

αD
ij , we determine [n], which may then be substituted into (7.151). Finally, we

mention that (7.146) still applies in this case.
Numerical results for simple shear using Lee’s rate are plotted in

Figure 7.26(a) to (c). The curves are plotted for ĥ = 1.0, 1.5, and 2.0. We see
that all curves are not oscillatory, but the predicted axial stress is too large.
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EXAMPLE 7.5 Show that W∗ of Lee’s rate represents the spin of a material
line element.

Solution

Let the line element be dxi and be denoted by

dxi = ni ds (a)

where ni is the unit vector along the line element and ds is the length of the
line element. The relative velocity between the ends of the line element is

dvi = ∂vi
∂xj

dxj = Lijnj ds (b)

The component of dv normal to n determines the spinW* of that line element
to within an arbitrary spin. The component of dv normal to n is denoted by

dv∗ = dv − (dv · n)n (c)

Then, (c) in the subscript notation is

dv∗i = dvi − dvknkni = Lijnj ds− Lkjnj dsnkni

= (Dij +Wij)nj ds− (Dkj +Wkj)njnkni ds

= Dijnj ds+Wijnj ds−Dkjnjnkni ds (d)

But,

dv∗ = w∗ × nds (e)

where w∗ is the dual vector of W∗. In the index notation, (e) is

dv∗i = eijkw∗j nk ds = ekijw∗j nk ds = −W∗kink ds =W∗iknk ds (f)

Equating (d) and (f), we obtain

W∗iknk = Dijnj(nknk)+Wijnj −Dkjnjnkni (g)

which reduces to

W∗ij =Wij +Diknknj − ninkDkj (h)
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EXAMPLE 7.6 Let the simple shear motion be

[D] =

0 ω 0
ω 0 0
0 0 0


 , [W ] =


 0 ω 0
−ω 0 0
0 0 0


 (a)

Find the expression of [W*].

Solution

Let [n] = (cos θ , sin θ , 0), then from (7.147)

[W∗] =

 0 2ω sin2 θ 0
−2ω sin2 θ 0 0

0 0 0


 (b)

Since

w∗k = − 1
2 eijkW

∗
ij (c)

We find

[w∗]T = [0 0 −2ω sin2 θ
]

(d)

Thus, the angular velocityw∗3 = θ̇ of the line element varies with the direction
of the line elementdefinedbyangle θ . The line along thex1-axisdoesnot rotate
and the spin is maximum along the x2-axis.

7.6.5.4 Remarks about objective rates of plasticity

The spin W is overemphasized by the Jaumann rate. In simple shear, W is
the angular velocity θ̇ of the line element, along the principal direction of D,
making a θ = π/4 angle with the x1-axis. Referring to Figure 7.27, a square
material element initially atOA0 B0 Cassumes the shapeOABCduring simple
shearing. As the shear strain becomes large, all lines emanating from O and
lying within the angle ∠AOC have small angles θ , which are less than π/4.
According to Lee et al. [77], these lines do not have the same θ̇ and do not
rotate much. The line along OC does not spin at all and the line along OA
does not spin as much as W. This effect may be seen from Example 7.5 by
using a small θ in equation (d). It is noted that both Dij and Wij refer to
a square element, with sides parallel to the x1 and x2 axes, defined at the
current configuration. Therefore, W represents the spin of this new element
which does not contain the same material mass as the original element. The
Jaumann rate overemphasizesW because it does not represent the spin of the
original material element.
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FIGURE 7.27
Rotation of line element during simple shearing.

From the discussions of previous subsections, we see that some objective
rates lead to oscillatory stress components in simple shearing when the shear
strain ismonotonically increasing. This effect is of course in violation of exper-
imental observations. Of the several objective rates discussed none can lead
to acceptable stress responses using a linear kinematic-hardening equation.
Several rates lead to an axial stress which is about the same or larger in
magnitude than the shear stress, while experimental results show that the
axial stress is about one-tenth of the magnitude of the shear stress. A con-
clusion may be drawn that these rates will have to be applied to a nonlinear
kinematic-hardening equation.

The concept of constitutive spin proposed by Dafalias [64] is promising.
It introduces a constitutive equation for the plastic spin which is a macro-
scopic description of the spin of material texture. From the experimental
investigation of material textures [60–63], it is known that the spin (or tilting)
of the material texture is not directly expressed by the general kinematics of
deformation. In the case of torsion, for instance, a monotonic increasing shear
deformation can cause the texture to rotate in a direction of decreasing shear
strain and then reverse its direction as the shear strain becomes larger. This is
the evidence that plastic spin should not be defined by the general kinematics
of deformation.

The plastic deformation induced anisotropy is described to a large extent
by the kinematic hardening. Since plastic deformation changes the material
texture, it is reasonable to use the back stress to describe the texture rotation.
As previously mentioned, the plastic spin is independent of the kinemat-
ics of deformation, while the stress rate and the strain rate are dependent
of the same. Therefore, different objective rates should be used for back
stress, stress, and strain. In Wu [78,79], we use Dafalias rate for the back
stress, and the convected rate for the stress and strain. This approach will be
further discussed in Chapter 11 in connection with a curvilinear coordinate
system.

© 2005 by Chapman & Hall/CRC Press



384 Continuum Mechanics and Plasticity

7.6.6 The Yield Criterion for Finite Plasticity

Mostworks of finite plasticity have focusedon thedecomposition of deforma-
tion into elastic and plastic parts and the objective stress rates or back stress
rates. Little attention has been given to the yield criterion applicable in the
finite deformation range. Most theoreticalworks have assumed that theMises
yield criterion can be used. Some apply the Mises criterion expressed in terms
of the Cauchy stress and some the 2nd P–K stress. The main concern is that
yield criterion should be observer independent. For an isotropic material,
this statement is equivalent to the requirement that the yield criterion be
independent of rigid-body rotation of the material element. However, this is
only an approximation because the material does not remain isotropic during
plastic deformation. A yield criterion is observer independent, if it is defined
by stress invariants. It is noted, however, that a square material element used
to define the Cauchy stress does not remain square during plastic deforma-
tion. If referring to the orientation of another observer, a square element is
chosen to describe the state of stress, the aforementioned two square elements
do not contain the same material mass. The two elements can be compared
only when material isotropy is assumed and the concept of stress invariants is
based on this assumption. In Chapter 11, an observer independent yield cri-
terion will be defined in terms of the contravariant true stress, which remains
unchanged either during an observer transformation or when the material
element undergoes a superimposed rigid-body rotation.

In the remainder of this section, we investigate the effect of stress measure
on the shape, size, and translation of the yield surface when the specimen
has been prestrained into the finite deformation range. Specifically, we com-
pare the yield surfaces in the combined axial–torsion problem when the yield
function is defined by the Cauchy stress, the 1st P–K stress, and the 2nd
P–K stress, following the study of Wu et al. [24]. Usually, the stresses in the
experimental data are the physical components in the cylindrical-coordinates
system, so that all stress components have the same unit. The physical com-
ponents will be discussed in Chapter 11 in connection with the curvilinear
coordinates. The physical components in the present case are components of
a tensor referred to unit vectors er, eθ , ez in the radial, tangential, and axial
direction, respectively.

EXAMPLE 7.7 Determine the physical components of the deformation
gradient F in the cylindrical coordinate system.

Solution

Let (r, θ , z) be the cylindrical coordinates of a point having Cartesian
coordinates (x, y, z). The following equations hold

x = r cos θ , y = r sin θ , z = z (a)

© 2005 by Chapman & Hall/CRC Press



Advances in Plasticity 385

An inversion of (a) yields

r2 = x2 + y2, θ = tan−1
(y
x

)
, z = z (b)

The unit base vectors of the cylindrical system are (er, eθ , ez), and the unit
vectors of theCartesian systemare (ex, ey, ez). Theseunit vectors are relatedby

er = cos θex + sin θey, eθ = − sin θex + cos θey (c)

Taking the partial derivatives of (b) and using (a), we obtain

∂r
∂x
= x

r
= cos θ ,

∂r
∂y
= y

r
= sin θ ,

∂θ

∂x
= −y

x2 + y2 =
−y
r2
= − sin θ

r
,

∂θ

∂y
= cos θ

r

(d)

Differentiation of (c) gives

∂er
∂r
= ∂eθ

∂r
= ∂ez

∂r
= ∂ez
∂θ
= ∂er
∂z
= ∂eθ

∂z
= ∂ez
∂z
= 0

∂er
∂θ
= eθ ,

∂eθ
∂θ
= −er

(e)

Consider now the undeformed position vector P and the current position
vector p of a point expressed in the cylindrical system as

P = ReR + ZeZ, p = rer + zez (f)

where (R,Z) and (r, z) are components of the undeformed and deformed
position vectors, respectively; (eR, eZ) and (er, ez) are the unit vectors of the
two systems. Using (e), the differential forms for (f) are

dP = dReR + Rd�e� + dZeZ, dp = drer + rdθeθ + dzez (g)

We now proceed to find a relation between the components of dp and those
of dP. To this end, we note that r, θ , z are functions of R, �, Z. Thus, by chain
rule of differentiation, we obtain

dr = ∂r
∂R

dR+ ∂r
R∂�

Rd�+ ∂r
∂Z

dZ

r dθ = r∂θ
∂R

dR+ r∂θ
R∂�

Rd�+ r∂θ
∂Z

dZ

dz = ∂z
∂R

dR+ ∂z
R∂�

Rd�+ ∂z
∂Z

dZ

(h)
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Using (h), the components of (g) may be written in matrices as

[dp] =

 dr
r dθ
dz


 =




∂r
∂R

∂r
R∂�

∂r
∂Z

r∂θ
∂R

r∂θ
R∂�

r∂θ
∂Z

∂z
∂R

∂z
R∂�

∂z
∂Z




 dR
Rd�
dZ


 = [F][dP] (i)

where the components of the deformation gradient are

[F] =




∂r
∂R

∂r
R∂�

∂r
∂Z

r∂θ
∂R

r∂θ
R∂�

r∂θ
∂Z

∂z
∂R

∂z
R∂�

∂z
∂Z




(j)

7.6.6.1 Relations among stress measures for thin-walled tubes

The text of this section was originally presented in [24]. Considering the axial–
torsionof a thin-walled tube, twosets of cylindrical coordinates (X1,X2,X3) =
(R,�,Z) and (x1, x2, x3) = (r, θ , z) are used to describe the undeformed and
deformed status, respectively. The two sets of coordinates are related by

r = λmRm − λ2(Rm − R) = (λm − λ2)Rm + λ2R

θ = �+ ϕλ3Z

z = λ3Z

(7.154)

in the range of R1 ≥ R ≥ R0, where R1 and R0 are the undeformed outer and
inner radii, respectively; and r1 ≥ r ≥ r0, where r1 and r0 are the deformed
outer and inner radius, respectively; λm = rm/Rm describes the stretch ratio
of the mean radii which are denoted by Rm and rm in the undeformed and
deformed status, respectively; λ2 = h/H describes the stretch ratio of thewall-
thicknesses, which are denoted by H and h in the undeformed and deformed
status, respectively; λ3 = z/Z describes the deformation in the axial direc-
tion, which is denoted by Z and z in the undeformed and deformed status,
respectively; andϕ is the angle of twist per unit deformed length and is related
to the shear strain γ by

γ = rϕ (7.155)

We note that if the value of λi (i = m, 2, 3) is greater than one, then it implies
stretching; if it is equal to one, then there is no length change; and there is
contraction when this value is less than one. Taylor and Quinney [9] found
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that the hoop and radial strains are not equal for a thin-walled tube under
combined tension–torsion loading condition. According to Taylor and
Quinney, the values of λm and λ2 are the same for the tension only condi-
tion but are different and depend on the constitutive equations used for the
combined tension–torsion loading condition.

It has been shown in Example 7.6 that the physical components of
deformation gradient F are

[F] =




∂r
∂R

∂r
R∂�

∂r
∂Z

r∂θ
∂R

r∂θ
R∂�

r∂θ
∂Z

∂z
∂R

∂z
R∂�

∂z
∂Z




(7.156)

Using (7.154), (7.156) reduces to

[F] =



λ2 0 0

0
r
R

ϕλ3r

0 0 λ3


 =


λ2 0 0

0 λm γ λ3
0 0 λ3


 (7.157)

The last expression of (7.157) is found by considering the mean radius of the
tube, where R = Rm, r = rm = λmRm and γ = rmϕ. The inverse of the above
matrix is

[F]−1 =



λ−1

2 0 0

0 λ−1
m −Rmϕ

0 0 λ−1
3


 (7.158)

When the material is incompressible, which is a reasonable assumption for
metallic materials undergoing large plastic deformation, the Jacobian is

J = β2β3βm = 1 (7.159)

We now proceed to find the relations among the components of Cauchy
stress σ, 1st P–K stress T(0), and 2nd P–K stress �. These relations have
been previously discussed in Section 4.4.2.1, and the equations are from (4.42)
and (4.50)

σ = J−1F · T(0) and � = T(0) · F−T (7.160)

For the case of thin-walled tube under axial–torsional loading condition,
the stress states of σ, T(0), and � are given by their respective physical
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components as

[σ ] =

0 0 0

0 0 τ

0 τ σ


 , [T(0)] =


0 0 0

0 Tθθ Tθz

0 Tzθ Tzz


 , [�] =


0 0 0

0 �θθ �θz

0 �zθ �zz




(7.161)

in which σ zz = σ is the axial stress which is equal to the axial force divided by
2πrmh; σθz = σ zθ = τ is the shear stress, which is equal to the torque divided
by 2πr2mh; σ

θθ = 0 due to symmetry and σ rr = 0 due to no surface tractions
on both the inner and outer lateral surfaces of the tube. The last condition
is an approximation, but it is justifiable when the wall is thin. Substituting
(7.157) to (7.159) and (7.161) into (7.160), we obtain

[σ ] =

0 0 0

0 λmTθθ + ϕRmλmλ3Tzθ λmTθz + ϕRmλmλ3Tzz

0 λ3Tzθ λ3Tzz


 (7.162)

[T(0)] =




0 0 0

0 −τRmϕ
1
λm
(τ − ϕRmλmσ)

0
τ

λ3

σ

λ3


 (7.163)

[�] =




0 0 0

0
1
λm

(
Tθθ − ϕRmλmTθz

) Tθz

λ3

0
1
λm

(
Tzθ − ϕRmλmTzz) Tzz

λ3


 (7.164)

The component Tzθ , which equals the torque divided by 2πRmHrm, and the
component Tzz, which equals the axial force divided by 2πRmH, are known
quantities from experiment, where Rm is the mean radius of the tube in the
undeformed configuration and an approximated rm may be obtained by mea-
suring the deformed outer radius r1 and then subtracting H/2 from it. For
convenience, most experimental results in the literatures are presented in
terms of the 1st P–K stress components Tzz and Tzθ . However, this is only
an approximation since rm is not measured in most experiments. The current
wall-thickness h is very difficult to measure.

The other components of T(0) cannot be readily determined experimentally
in the case considered. However, they may be expressed in terms of Tzz and
Tzθ . To this end, we obtain, from (7.161) and (7.162), the following relations

σθθ = 0 = λmTθθ + ϕRmλmλ3Tzθ (7.165)

σθz = τ = λmTθz + ϕRmλmλ3Tzz (7.166)
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σ zθ = τ = λ3Tzθ (7.167)

σ zz = σ = λ3Tzz (7.168)

From (7.165), we obtain

Tθθ = −ϕRmλ3Tzθ (7.169)

and, by substituting (7.167) into (7.166), we have

Tθz = 1
λm

(
λ3Tzθ − ϕRmλmλ3Tzz) (7.170)

Thus, all components of the 1st P–K stress may be determined.
By using (7.167) and (7.168), Cauchy stress components may be calculated.

In view of (7.161), the state of Cauchy stress can be completely determined.
It is seen that when the axial strain is equal to zero, that is, λ3 = 1, we
have σ zθ = Tzθ and σ zz = Tzz. But if the axial strain is large, then the differ-
ence between the two measures can be large. These transformation equations
are used in the next section where theoretical predictions of yield surfaces are
compared with experimental data.

For the axial prestrain only condition, we have λm equaling λ2 [9].
From (7.159), we then obtain the relations among λi as

λm = λ2 =
√

1
λ3

(7.171)

For the torsional prestrain only condition, all values of λi’s may be approx-
imated by one. This may be estimated by use of experimental results of
Wu and Xu [80] for pure torsion of 304 stainless steel. It has been found
that for an angle of relative grip rotation of 32.5◦, ϕ is 12.76 rad/m and the
corresponding engineering shear strain is 10.3%, which gives rise to an axial
strain ε of 0.23%. Using (7.154), we found that λ3 = 1.0023 which may be
approximated by 1 in this case. Since the diameter of the thin-walled tube
undergoes a small amount of change during pure torsion, we obtain the fol-
lowing approximated relations among λi, that is, λm ∼= λ2 ∼= λ3 ∼= 1. These
relations are used in the next section and are further discussed.

7.6.6.2 Experimental determination of yield surfaces

Experiments were conducted, by use of a computer-controlled, axial–
torsional, closed-looped, electrohydraulic materials test system. The same
batch of annealed 304 stainless steel specimens as in Wu and Yeh [4] was
used in this investigation. Detailed information about the material, speci-
mens, strain measurement, and experimental procedures may be found in
Wu and Yeh [4] and Wu et al. [24]. We only mention here that initial and

© 2005 by Chapman & Hall/CRC Press



390 Continuum Mechanics and Plasticity

–150
350. 450.

Axial stress (MPa)

Sh
ea

r 
st

re
ss

 (M
Pa

)

550. 650.

–100

–50

0

50

100

150
= First P. K. St.
= Cauchy St.(th.)
= Cauchy St.(ex.)
= Second P. K. St.

FIGURE 7.28
Subsequent yield surfaces due to tension prestrain determined by various stress measures (From
Wu, H.C. et al., J. Appl. Mech., 62, 626, 1995. With permission from ASME).

subsequent yield surfaces were determined for two loading paths. Path (1) in
axial loading had an axial prestrain of 20% and path (2) in free-end torsion had
a shear prestrain of 20%. After the subsequent yield surface was determined
for each loading path, the specimen was removed from the test machine and
cut through the cross-section in the middle of the gauge section. By measur-
ing the change of the cross-sectional area, it was found that the reduction of
the cross-sectional area was 17% for path (1) and no observable area change
was found for path (2).

Now the effect of stress measure on the shape, size, and translation of the
yield surface is investigated. Figure 7.28 shows the subsequent yield sur-
faces for path (1). The experimental yield surface (using the 1st P–K stress
components) is shown in the middle of the figure. Also shown in the figure
are the theoretical yield surfaces of the Cauchy stress components determined
from (7.161), (7.167), and (7.168) and the 2nd P–K stress components obtained
by (7.164). As an independent verification, the experimental Cauchy yield
surface is also shown in the figure. The experimental Cauchy stress compo-
nentswere determinedbased on themeasureddeformed area. The agreement
between the two Cauchy yield surfaces is generally good. However, it may
be observed from the figure that the amount of axial strain affects the size
of the Cauchy yield surface. In fact, from (7.167) and (7.168), σ = λ3Tzz

and τ = λ3Tzθ and the Cauchy yield surface is an isotropic expansion of
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the 1st P–K yield surface with λ3 being the factor of expansion. For an axial
prestrain of 20%, the size of the Cauchy yield surface is about 20% larger
than that of the corresponding 1st P–K yield surface. We also note that the
translation (the back stress) of the former yield surface is 20% more than that
of the latter. In the case of the 2nd P–K stress, we have �zθ ∼= (Tzθ /λm) and
�zz ∼= (Tzz/λ3) from (7.164) for ϕ approximately equal to zero (ϕ is zero dur-
ing axial prestrain and is very small and negligible during the probing of
yield surface). The 2nd P–K yield surface is about 9.5% larger than that of the
1st P–K yield surface in the shear direction but is about 17% smaller in the
axial direction. The back stress of the former is 17% less than that of the latter.
These results have suggested that the evolution rules for both isotropic and
kinematic hardening are stress measure dependent.

Figure 7.29 shows the subsequent yield surfaces determined by each stress
measure for path (2). Due to no observable change in the cross-sectional area,
theCauchy stress componentsσ and τ are almost identical to the 1st P–Kstress
components Tzz and Tzθ from (7.167) and (7.168). Therefore, the Cauchy and
the 1st P–K yield surfaces are indistinguishable in the figure. However, the
components of the 2nd P–K stress are different from those of the Cauchy
stress. Using the approximation that all λ’s are equal to 1, (7.164) reduces to
�zθ ∼= Tzθ − ϕRmTzz and �zz ∼= Tzz, that is, the component �zθ depends
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FIGURE 7.29
Subsequent yield surfaces due to torsion prestrain determined by various stress measures (From
Wu, H.C. et al., J. Appl. Mech., 62, 626, 1995. With permission from ASME).
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on the twist angle per unit length ϕ. This leads to a rotation of the 2nd P–K
surface, with the angle of rotation increasing with the shear strain. It also
leads to a further distortion of the 2nd P–K surface in that the yield surface is
not symmetric with respect to the shear stress axis. These results complicate
the hardening rule associated with the 2nd P–K yield surface.

In the aforementioned example, the theoretical results in the case of pre-
torsion are calculated based on the approximation that all λ’s are equal to 1.
Without this approximation, the axial strain exists but is very small. It is less
than 0.3% for a prestrain in torsion of 20%. In this case, 1.003 > λ3 > 1 and,
from Wu et al. [74] where the circumferential strain was investigated, we
obtain 0.9973 < λm < 1. Thus, the effect of this approximation is very small.
Also, we emphasize that the rotation and distortion of the 2nd P–K surface is
independent of this approximation.

EXAMPLE 7.8 Transform the Mises yield criterion in the Cauchy stress space
into the stress spaces of the 1st and 2nd P–K stresses.

Solution

The Mises yield surface in the Cauchy stress space is

(σ − ασ )2 + 3(τ − ατ )2 = k2 (a)

where ασ and ατ are, respectively, the axial and shear components of the
back stress. k is the shear yield stress and is assumed to be constant in this
discussion. Using (7.167) and (7.168), (a) is transformed into

(
Tzz − ασ

λ3

)2

+ 3
(
Tzθ − ατ

λ3

)2

=
(

k
λ3

)2

(b)

Using (7.164), (b) is further transformed into an equation in the �zθ versus
�zz stress space.

In the case of axial prestrain only, ϕ ∼= 0 and ατ = 0; and using (7.171), the
yield function in the �zθ versus �zz stress space may be written as

(�zz − (ασ /λ2
3))

2

(k/λ2
3)

+ (�zθ )2

(k/
√

3λ3)2
= 1 (c)

By comparing equations (a), (b), and (c), we see that the semimajor axes (in the
axial stress direction) of the ellipses are k for the Cauchy yield surface, k/λ3
for the 1st P–K surface, and k/λ2

3 for the 2nd P–K surface. The semiminor axes
(in the shear stress direction) are, respectively, k/

√
3, k/
√

3λ3, and k/
√

3λ3.
The back stress for the three yield surfaces are respectively ασ , ασ /λ3, and
ασ /λ

2
3. It is seen that the size, shape, and the back stress of the yield surfaces

are all influenced by the deformation of the material element when different
stress measures are used.
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In the caseof torsiononlyprestrain, ασ = 0. Ifweuse theapproximation that
all λ’s are one, then the yield surface in the 2nd P–K stress space is governed
by the equation

(�zz)2 + 3[(�zθ + ϕRm�
zz)− ατ ]2 = k2 (d)

This equation contains a 6ϕRm�
zθ�zz term, and a rotation in the ellipse

will occur.

7.6.6.3 Discussions

We have seen from the previous section that the size, shape, and position of
the subsequent yield surfaces depend greatly on the stress measure used to
define the yield surface. The different positions of the yield surfaces in the
stress space correspond to different degrees of kinematic hardening. We have
seen that the hardening rules (isotropic and kinematic hardening) depend
greatly on the definition of stress. The 2nd P–K stress which is often used in
the computational mechanics can lead to a yield surface which rotates due to
a shear prestrain, while no rotations have been found for this proportional
path using the Cauchy stress or the 1st P–K stress. Therefore, the yield surface
and the hardening rule should be paired. They vary with the definition of
stress.

The yield surface defined by the 2nd P–K stress is independent of imposed
rigid-body rotation. In order for the Cauchy yield surface (yield surface
defined by the Cauchy stress) to be independent of rigid-body rotation,
the yield function has to be a function of stress invariants. The yield surface
will be discussed further in Chapter 11 using the true stress in the convected
coordinate system. The contravariant components of the true stress do not
change with imposed rigid-body rotation.
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Problems

(1) Write a report about additional experimental evidence showing the normality
of the plastic strain increment to the subsequent yield surface.

(2) Write a report about Ilyushin’s isotropy postulate.

(3) Referring toFigure7.18 ina stress-controlled loadingproblem, howdosurfaces
fA, fB, and fC move when the stress point follows path PQ?

(4) Derive (7.97) from (7.95).

(5) In simple shear problem using Cotter–Rivlin stress rate, show that the solution
is given by (7.107) for hypoelastic materials.

(6) In simple shear problem using Truesdell’s stress rate, show that the solution
is given by (7.110) for hypoelastic materials.

(7) In the problem of rectangular metal block discussed in Example 7.3, if
µ = 26 GPa and λ = 33 GPa, plot the σx versus

∫
Dx dt and σz versus

∫
Dx dt

curves. In addition, plot Dy as a function of Dx and discuss the effect of h on
the results.

(8) Use the Jaumann rate to investigate and plot the loading–unloading curve of
simple shearing. The material is rigid-plastic with linear kinematic hardening.

© 2005 by Chapman & Hall/CRC Press



398 Continuum Mechanics and Plasticity

During loading, the simple shear deformation is governed by

x1 = X1 + 2ωtX2, x2 = X2, x3 = X3

and its displacement field is

u1 = 2ωtX2, u2 = u3 = 0, ω = const

The unloading starts at t* and the displacement field during unloading is

u1 = [2ωt ∗ −2ω(t− t∗)]x2 = 2ω(2t ∗ −t)x2, u2 = u3 = 0, for t > t ∗ .

(9) Show that (7.101) may be derived from (7.100).

(10) Solve Problem (8) using the Dafalias rate.

(11) Solve Problem (8) using Lee’s rate.

(12) Find the physical components of deformation gradient F in the spherical
coordinate system.

(13) In an uniaxial stress test, the following data have been recorded for the axial
stress–strain curve: (plastic strain, stress (MPa))={(0, 100), (0.005, 289.59),
(0.01, 336.82), (0.02, 369.03), (0.04, 397.35), (0.06, 420.78), (0.1, 458.86), (0.14,
489.12), (0.2, 526.71)}. The stress has been calculated based on the undeformed
cross-sectional area. Plot the equivalent stress versus equivalent plastic strain
curves using the Cauchy stress, the 1st P–K stress and the 2nd P–K stress as
stress measure, respectively.

(14) In a torsion test of thin-walled tubular specimen, the following data have been
recorded for the shear stress–strain curve: ( plastic shear strain, shear stress
(MPa))={(0, 100), (0.005, 273.36), (0.01, 309.48), (0.02, 334.87), (0.04, 362.20),
(0.06, 387.10), (0.1, 428.59), (0.14, 469.60), (0.2, 521.34)}. The stress has been cal-
culated based on the undeformed cross-sectional area. Plot the equivalent
stress versus equivalent plastic strain curves using the Cauchy stress, the 1st
P–K stress and the 2nd P–K stress as stress measure, respectively. Compare
these curves with those obtained in Problem (13).
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8
Internal Variable Theory of
Thermo-Mechanical Behaviors and
Endochronic Theory of Plasticity

8.1 Introduction

There are several approaches to irreversible thermodynamics. One of them,
the internal variable theory, is widely used in recent literature ofmechanics of
solids. In this chapter, the concept andequationsof the internal variable theory of
irreversible thermodynamics, which are used to describe the thermo-mechanical
behavior of materials are first discussed. Based on this thermodynamic
foundation, it is shown how a theory of plasticity, known as the endochronic
theory, can be developed. Applications of the endochronic theory to metals,
geotechnical materials, and damage mechanics are then discussed in this
chapter and Chapter 9.
The theory of thermodynamics that is presented owes much to the work of

Valanis [1–4]. A summary of Valanis’ works on the internal variable theory
of thermodynamics is nicely presented in [5], although it does not contain
recent works on the gradient theory. The gradient theory is outside scope of
this book, but readers are referred to [4] for further reading. The endochronic
theory of plasticity was developed by Valanis [6,7] and this author had the
privilege of learning the theory directly from Professor Valanis and has been
heavily involved in the further development and verification of the theory.
Other researchers have also made significant contributions to the theory.

8.2 Concepts and Terminologies of Thermodynamics

8.2.1 The First Law of Thermodynamics

Irreversible thermodynamics is also known as the nonequilibrium thermo-
dynamics. It is needed because we are dealing with an irreversible system,
which is a material region R.A reversible system exists only in an ideal gas or
an ideal elastic material. It is assumed that the system possesses an internal
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Callen [8] for measurability of internal energy.
The mechanical variables are stress, deformation, and mass. In addition,

temperature is avariable.Amechanical process is aprocessduringwhichenergy
(in the absence of heat supply, e.g., heat sources) is transmitted to the system
through an adiabatic boundary by motion of the boundary and/or applica-
tion of long-range forces. The adiabatic boundary is a boundary throughwhich
no heat can flow. This type of energy is called work, denoted byW . A thermal
process is a process during which energy flows through the boundary of the
system and/or is supplied to its interior while its boundary remains sta-
tionary and there are no long range (gravitational, say) forces acting. This
type of energy is called heat, denoted by Q. Conduction is a process during
which energy is supplied to the system by heat flow through its boundary.
Aboundary and/or a process which is not adiabatic will be called diathermal.
Conduction is a diathermal process.
Thefirst lawof thermodynamics is a statement of the conservationof energy

discussed in Section 4.3.3. In the local form, which applies to an infinitesimal
neighborhood of a material region, the energy balance equation is from (4.34)

ρε̇ = σkivi,k − hi,i + ρq̇ (8.1)

where ρ is the current mass density; hi is the heat flux vector, in which the
direction of the vector is the direction of the heat flow; q is the internal
energy supply per unit mass by radiation or “other sources” such as electric
conductors; and the dot denotes the material differentiation. We note that |hi|
is the amount of energy flowper unit area normal to the direction of heat flow
per unit time.
Referring to the undeformed configuration, the energy balance equation is

from (4.68)

ε̇ = 1
ρ0
�RSĖRS − 1

ρ0

∂hR
∂XR
+ q̇ = 1

ρ0
�RSĖRS + Q̇ with Q̇ = − 1

ρ0

∂hR
∂XR
+ q̇

(8.2)

where Q̇ is the rate of heat supply per unit volume (conduction and radiation).

8.2.2 State Variables, State Functions, and the Second Law of
Thermodynamics

The change of internal energy may be accomplished through (1) a purely
thermal process (radiation, heat conduction, etc.), which changes the temper-
ature of the system, or (2) an adiabatic process, that is, work, which changes
the position of the boundary and causes the system to deform. Thus, strain
and temperature are measures of the internal energy of the system. They are
called state variables, since they serve to define the state of the system. Internal
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energy is a state function, which is a function of state variables. The thermo-
dynamic state of the system is represented by the state functions. One of the
main tasks of thermodynamics is to establish those quantities that are state
functions and those that are not and to establish useful relationships between
state functions. In a reversible system, the internal energy and stress are state
functions written as

ε = ε(ERS,T) and �RS = �RS(EPQ,T) (8.3)

where ERS is the strain and T the temperature.
The fundamental issue is that the increment of heat supplydQ isnot an exact

differential. The meaning of this statement is not obvious without further
clarifications and definitions. A reversible system is said to undergo a revers-
ible process if its thermodynamic state is being changed under adiabatic
conditions. It is an irreversible process when the process is diathermal. In
this case, dQ is not an exact differential, where

∮
dQ �= 0 following a closed

contour in the (ERS,T) space. From (8.2), we have

∮
dε =

∮
1
ρ0
�RS dERS +

∮
dQ (8.4)

The integral on the left-hand side is zero because ε is a state function given
by (8.3). The first integral on the right-hand side represents the amount of
work done on the system, which in general is not zero when the path of
integration involves thermal processes. The statement may be better under-
stood by examining the Carnot cycle, which is a reversible cycle for ideal
gas carried out with the piston–cylinder arrangement. The Carnot cycle goes
through two reversible isothermal processes connected by two reversible
adiabatic processes and the work done is not zero. Thus, from (8.4)

∮
dQ �= 0 (8.5)

Hence, dQ is not an exact differential and we cannot write Q = Q(ERS,T).
However, in the case of an ideal gas, dQ/T is an exact differential in the sense
that

∮
dQ/T = 0. Therefore, deriving dS = dQ/T, we find that dS is an exact

differential. Thus, in the case of a gas dQ = T dS(ERS,T), where S = S(ERS,T),
which is a state function known as entropy.
An important contribution by Valanis [2] is the proof of the existence of

entropy in irreversible systems, establishing the entropy as a state function.
We now consider the reversible system and leave the irreversible system for
later discussion. In the case of the reversible system, the energy equation (8.2)
is written as

dε − 1
ρ0
�RS dERS = dQ = θ(ERS,T)dη(ERS,T) (8.6)
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where θ is the integrating factor; η is the specific entropy, and (8.6) is integrable
so that η is a state function, that is, η = η(ERS,T). The equation dη = gQ/θ is
also knownas the second lawof thermodynamics. The factor θ(ERS,T)has the
significance of empirical temperature. We note that entropy is dimensionless,
and temperature has the dimensions of energy [8]. The units of tempera-
ture depend on the nature of the thermometric substance used. Temperature
measured by a mercury thermometer is not exactly the same as that given by
an electrical resistance thermometer except at their common points. Degree
Kelvin is the absolute temperature.
Using (8.3), (8.6) is

∂ε

∂ERS
dERS + ∂ε

∂T
dT − 1

ρ0
�RSdERS = θ

(
∂η

∂ERS
dERS + ∂η

∂T
dT
)

(8.7)

Since ERS and T can be independently varied and dERS and dT are arbitrary,
the following are obtained

1
ρ0
�RS = ∂ε

∂ERS

∣∣∣∣
T
− θ ∂η

∂ERS

∣∣∣∣
T

and
∂ε

∂T
= θ ∂η

∂T
(8.8)

Since θ = θ(ERS,T), we can express the state functions as ε = ε(θ ,ERS) and
η = η(θ ,ERS). Using the chain rule of differentiation, we have

∂ε

∂T
= ∂ε

∂θ

∣∣∣∣
ERS

∂θ

∂T

∣∣∣∣
ERS

,
∂η

∂T
= ∂η

∂θ

∣∣∣∣
ERS

∂θ

∂T

∣∣∣∣
ERS

∂ε

∂ERS

∣∣∣∣
T
= ∂ε

∂θ

∣∣∣∣
ERS

∂θ

∂ERS

∣∣∣∣
T
+ ∂ε

∂ERS

∣∣∣∣
θ

∂η

∂ERS

∣∣∣∣
T
= ∂η

∂θ

∣∣∣∣
ERS

∂θ

∂ERS

∣∣∣∣
T
+ ∂η

∂ERS

∣∣∣∣
θ

(8.9)

By substituting (8.9) into (8.8), we obtain

1
ρ0
�RS = ∂ε

∂ERS

∣∣∣∣
θ

− θ ∂η

∂ERS

∣∣∣∣
θ

and
∂ε

∂θ
= θ ∂η

∂θ
(8.10)

This equationhas the same formas (8.8). It shows that the formof the equation
is independent of the temperature scale used, and the state functions can be
expressed as ε = ε(ERS, θ) and �RS = �RS(EPQ, θ).
We now introduce a new state function, defined by �(ERS, θ) = ε − θη,

which is known as the Helmholtz free energy. Differentiating �, we have

∂�

∂ERS

∣∣∣∣
θ

= ∂ε

∂ERS

∣∣∣∣
θ

− θ ∂η

∂ERS

∣∣∣∣
θ

and
∂�

∂θ
= ∂ε

∂θ
− θ ∂η

∂θ
− η.
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We then substitute these expressions into (8.10) to obtain

1
ρ0
�RS = ∂�

∂ERS
and η = −∂�

∂θ
(8.11)

These are the constitutive equations for reversible systems.

8.3 Thermodynamics of Internal State Variables

8.3.1 Irreversible Systems

In some systems, the state functions are not uniquely determined by the state
variables ERS and T of the system. For instance, in materials undergoing
plastic deformation, the current state of stress will depend on the whole his-
tory of the deformation. In the case of uniaxial loading–unloading at constant
temperature, the stress, which is a state function, is not uniquely determined
by the strain E11, as shown in Figure 8.1. Both points A and B have the same
strain, but the states of the internal structure of the material are different at
the two points. It is therefore necessary to introduce other macroscopic para-
meters, additional to strain and temperature, which are representative of the
internal structure of the material.
Another example that shows the inadequacy of the state of strain in pre-

dicting the state of stress is given in Figure 8.2. We represent the unknown
material to be tested at constant temperature by a black box. Within the black
box there are the spring and dashpot elements with elastic moduli E1 and E2
for the springs. If we do not know the internal structure of the black box and
test it macroscopically, the state of stress σ cannot be described uniquely in
terms of the state of strain of the black box. Other parameters (internal vari-
ables) will have to be used in order to determine the stress. However, if we

A

B

Π11

E11

FIGURE 8.1
Stress not uniquely determined by strain.
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� �

E1

E2 Dashpot

Black Box

FIGURE 8.2
Test of black box.

open the black box and know the internal structure and constitution of the
black box, that is, we know the properties and arrangement of the springs
and the dashpot, then we know that the overall strain of the black box is the
same as the strain of spring 1, and, if we also know the strain of the dashpot
as a function of time, we are able to describe the stress uniquely. The strain
of the dashpot is the internal variable needed to uniquely describe the stress.
For this example, the stress is a function of the overall strain and the strain of
the dashpot.
In the materials modeling, n parameters may be needed to uniquely define

the stress state. These parameters are called internal (state) variables and are
denoted by qr, where r = 1, . . . ,n. Internal state variables are called internal
coordinates by some authors. They can be scalars, but, generally, they are
tensors.
It is assumed that sufficient additional state variables (not all observable)

can always be found to describe the thermodynamic state of an irreversible
system. As previously mentioned, the internal state variables are the macro-
scopic representations of microscopic effects that have physical meanings.
They may represent observed effects due to slips at the crystallographic level
or represent dislocations, etc. Owing to the difference in scale, these effects
may not be directly observable at the macroscopic scale and are represented
by the internal variables. In themechanics literature, some investigators have
been able to identify the physical meanings of their internal variables at the
microscopic level. In that case, they are able to use the evolution rules for
those physical quantities obtained from experiments at themicroscopic level.
Mathematically speaking, the internal variables are state variables and the
state functions are defined in terms of the state variables. As long as the evol-
ution equations are provided for the state variables, theproblemcanbe solved
without assigning physical meanings to the internal variables.
For an irreversible system, the state functions are functions of strain,

temperature, andnnumbers of internal variables, and they are representedby

ε = ε(ERS, θ , qrRS), η = η(ERS, θ , qrRS), �RS = �RS(EPQ, θ , qrRS),

r = 1, . . . ,n (8.12)
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Valanis [2] proved the existence of an entropy function η and that the Pfaffian
form (8.6) of thefirst lawof thermodynamics is integrable even for irreversible
systems, and thus the entropy is a state function. In an earlier effort, Valanis
showed that the constitutive equations for irreversible systems are

1
ρ0
�RS = ∂ε

∂ERS

∣∣∣∣
θ ,qrPQ

− θ ∂η

∂ERS

∣∣∣∣
θ ,qrPQ

and
∂ε

∂θ

∣∣∣∣
EPQ,qrPQ

= θ ∂η
∂θ

∣∣∣∣
EPQ,qrPQ

(8.13)

Valanis [2] assumed that the systembehaves reversiblywhen qrRS are constants
and dqrRS = 0 for all r. The derivation from (8.6) to (8.10) can then be used to
establish (8.13) for irreversible systems. By using the Helmholtz free energy
� = ε − ηθ , where � = ψ(ERS, θ , qrRS), (8.13) is further written as

1
ρ0
�RS = ∂�

∂ERS
and η = −∂�

∂θ
(8.14)

These are powerful results and were independently obtained by Valanis [1]
and Coleman and Gurtin [9].

8.3.2 The Clausius–Duhem Inequality

By putting ε = � + ηθ into the first law of thermodynamics (8.6), we have

d� + η dθ + θ dη − 1
ρ0
�RS dERS = dQ (8.15)

or

∂�

∂ERS
dERS + ∂�

∂θ
dθ + ∂�

∂qrRS
dqrRS + η dθ + θ dη −

1
ρ0
�RS dERS = dQ

(8.16)

Using (8.14), (8.16) is reduced to

θ dη + ∂�

∂qrRS
dqrRS = dQ (8.17)

The second termon the left-hand side of (8.17) is absent in a reversible system.
In the rate form, (8.17) may be rewritten as

θη̇ + ∂�

∂qrRS

∣∣∣∣
EPQ,θ

q̇rRS = θη̇ + �̇
∣∣
EPQ,θ
= Q̇ (8.18)
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The term �̇|EPQ,θ = (∂�/∂qrRS)|EPQ,θ q̇
r
RS is the rate of change of the Helmholtz

free energy under constant strain and temperature. We now invoke the Kelvin
postulate which states that the free energy cannot increase if the strain and
the temperature are kept constant, [5]. The postulate is thus written in the
mathematical form as

�̇|EPQ,θ ≤ 0 (8.19)

If we define

θγ̇ ≡ −�̇|EPQ,θ (8.20)

then, from (8.19) and (8.20), we obtain

γ̇ ≥ 0 (8.21)

where γ̇ is known as the entropy production. Substituting (8.20) into (8.18),
we have

η̇ = Q̇
θ
+ γ̇ (8.22)

which results in

η̇ ≥ Q̇
θ

(8.23)

This inequality is known as the Clausius–Duhem inequality, and the equality
holds only for reversible systems. Using (8.22), (8.18) may be written as

(Q̇+ θγ̇ )+ ∂�

∂qrRS
q̇rRS = Q̇ (8.24)

which reduces to

θγ̇ = − ∂�

∂qrRS
q̇rRS ≥ 0 (8.25)

This is an alternate form for the Clausius–Duhem inequality.

8.3.3 The Helmholtz Formulation of Thermo-Mechanical Behavior

Most of the discussions in the previous section belong to the Helmholtz for-
mulation. We summarize the equations of this formulation here for later
reference.
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First law of thermodynamics:

ε̇ = 1
ρ0
�RSĖRS − 1

ρ0

∂hR
∂XR
+ q̇ (8.26)

Clausius–Duhem (rate of dissipation) inequality:

− ∂�

∂qrRS
q̇rRS ≥ 0 (8.27)

Heat conduction equation:

hR = hR(EPQ, θ , θ,P, qrPQ) (8.28)

where θ,R is the temperature gradient. Equation (8.28) is a generalized form
of Fourier’s law of heat conduction, which states that the heat flux vector is
proportional to the temperature gradient θ,R.

The state functions are

� = �(ERS, θ , qrRS), ε = ε(ERS, θ , qrRS)

η = η(ERS, θ , qrRS), �RS = �RS(EPQ, θ , qrPQ)
(8.29)

The relations between state functions are

�RS = ρ0 ∂�
∂ERS

, η = −∂�
∂θ

(8.30)

These relations apply to all materials irrespective of their constitution.
The internal state variables qrRS represent the constitutive nature of the
material. These internal variables distinguish one material from the other. In
anelasticmaterial, qrRS = 0;whereas inaviscoelasticmaterial, qrRS �= 0, and the
change of qrRS is governedby a set of evolution equations for qrRS. From (8.27), the
rate of change q̇rRS should be related to ∂�/∂qrRS so that the inequality is not
violated. The simplest relation between the two quantities is expressed in
terms of a functional relationship so that

q̇rRS = f rRS

(
∂�

∂qrPQ

)
= f rRS(EPQ, θ , qrPQ) where r = 1, . . . ,n (8.31)

The last expression in (8.31) is obtained due to � = �(EPQ, θ , qrPQ). The evo-
lution equations for qrRS of a material undergoing plastic deformation will be
discussed later in conjunction with the endochronic theory of plasticity.
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Knowing �, h,R, and f rRS, the expressions for �RS and η can be obtained
from (8.30). The forms of hR and f rRS are subject to the constraints

− ∂�

∂qrRS
q̇rRS ≥ 0 and hRθ,R ≤ 0 (8.32)

The second inequality of (8.32) describes the nature of heat conduction. Heat
flows from high to low temperature.
In the Helmholtz formulation, there are 22 + n equations. They are listed

below with the number of equations shown at the end of the equations:

Conservation of mass 1
Equation of motion 3
Conservation of energy 1
Strain–displacement equations 6

�RS = ρ0
∂�(EPQ, θ , qrPQ)

∂ERS
6

η = −∂�(EPQ, θ , qrPQ)

∂θ
1

ε = ε(EPQ, θ , qrPQ) or � = �(EPQ, θ , qrPQ) 1
hR = hR(EPQ, θ , θ,P, qrPQ) 3
q̇rRS = f rRS(EPQ, θ , qrPQ) n

(8.33)

The 22 + n unknowns are ρ(1),�RS(6), η(1), ε(1), hR(3), the displacements
ui(3),ERS(6), θ(1), and qrRS(n), with the number of unknowns shown inside
the parenthesis. Thus, the solution for the set of equations can be determined.

8.3.4 The Gibbs Formulation of Thermo-Mechanical Behavior

The Gibbs formulation is complementary to the Helmholtz formulation. In the
Helmholtz formulation, strain is the independent variable and stress is the
dependent variable; in the Gibbs formulation, stress is the independent
variable and strain is the dependent variable. Thus, the state functions are
functions of �RS, θ , and qrRS. The energy equation is from (8.26)

ε̇ = 1
ρ0
�RSĖRS − 1

ρ0

∂hR
∂XR
+ q̇ (8.34)

For an irreversible system at constant qrRS, followingValanis [2], wemaywrite

ε̇|qrPQ −
1
ρ0
�RSĖRS = θη̇|qrPQ (8.35)
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Let � = ε − ηθ , we have

�̇|qrPQ = ε̇|qrPQ − ηθ̇ − η̇|qrPQθ (8.36)

Substituting (8.36) into (8.35), we obtain

�̇|qrPQ −
1
ρ0
�RSĖRS + ηθ̇ = 0 (8.37)

The Gibbs free energy is now defined as

� = � − 1
ρ0
�RSERS (8.38)

By differentiation, we then have

�̇|qrPQ = �̇|qrPQ +
1
ρ0
�RSĖRS|qrPQ +

1
ρ0
�̇RSERS (8.39)

Substituting (8.39) into (8.37), we obtain

∂�

∂�RS

∣∣∣∣
θ ,qrPQ

�̇RS + ∂�

∂θ

∣∣∣∣
�PQ,qrPQ

θ̇ + 1
ρ0
�̇RSERS + ηθ̇ = 0 (8.40)

Since the stress and the temperature can be arbitrarily varied, it is con-
cluded that

ERS = −ρ0 ∂�

∂�RS

∣∣∣∣
θ ,qrPQ

and η = − ∂�

∂θ

∣∣∣∣
�PQ,qrPQ

(8.41)

These are the constitutive equations in the Gibbs formulation. In the fol-
lowing functions, we note the differences in the independent variables:
E = E(�, θ ,qr),� = �(�, θ ,qr), but � = �(E, θ ,qr).
Differentiating (8.38), we have

�̇ = �̇ − 1
ρ0
�̇RSERS − 1

ρ0
�RSĖRS (8.42)

or

∂�

∂�RS
�̇RS + ∂�

∂θ
θ̇ + ∂�

∂qrRS
q̇rRS

= ∂�

∂ERS
ĖRS + ∂�

∂θ
θ̇ + ∂�

∂qrRS
q̇rRS −

1
ρ0
�̇RSERS − 1

ρ0
�RSĖRS (8.43)
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Using (8.14) and (8.41), (8.43) reduces to

∂�

∂qrRS
q̇rRS =

∂�

∂qrRS
q̇rRS (8.44)

The Clausius–Duhem inequality (8.32) becomes

∂�

∂qrRS
q̇rRS =

∂�

∂qrRS
q̇rRS ≤ 0 (8.45)

The evolution equations for qrRS are

q̇rRS = grRS(�PQ, θ , qrPQ) (8.46)

Note that the functions grRS must satisfy the constraint of Clausius–Duhem
inequality. In addition, from (8.31) and (8.46), grRS is related to f rRS by the
equation

grRS = f rRS[EPQ(�TU , θ , qsTU), θ , q
s
TU ] with r, s = 1, . . . ,n (8.47)

The functions grRS canbenonlinear. However, linear functionswork extremely
well for applications to be discussed in connection with the endochronic
theory. In the case of linear functions, the evolution equations are

∂�

∂qrRS
+ brRSPQq̇rPQ = 0 (r not summed) (8.48)

where brRSPQ is a positive definite fourth-rank tensor. Knowing �, an explicit
form of constitutive equations can be obtained.

8.4 The Endochronic Theory of Plasticity

8.4.1 The Concepts of the Endochronic Theory

Valanis developed the endochronic theory of plasticity in two major
papers [6,7]. The Greek word endochronic means intrinsic (or internal)
time. The deformation history is represented by a monotonically increas-
ing time-like parameter ζ known as the endochronic (or intrinsic) time.
The endochronic time accounts for the intrinsic material properties and is
defined as

dζ 2 = PRSPQ dERS dEPQ (8.49)
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where PRSPQ is a fourth-rank tensor, which could depend on ERS. This
concept of intrinsic time is different from that of Ilyushin [10] and Pipkin and
Rivlin [11], using the arc length of the strain path as a parameter. In that case,

dζ 2 = dERS dERS (8.50)

We note that (8.50) is a special case of (8.49).
Another original idea of Valanis’ is to develop a theory that describes the

stress–strain curve without a yield surface. The stress–strain curves of metals
such as aluminum, brass, and high-strength steel do not show an appar-
ent yield point. As we have discussed in Section 6.2, several definitions of
yield surfaces are available and there are factors affecting the experimental
determination of yield surfaces. Valanis tried to avoid the use of yield surface
and showed in [6] that, using the thermodynamics of the internal variable
and the concept of intrinsic time, it was indeed possible to develop a theory
which not only does not have a yield point but can also successfully describe
metal behaviors such as the Baushinger effect in unloading behavior, harden-
ing due to shear prestrain, cyclic stress–strain loops, and cyclic hardening.
At the time when [6] was published, the flow theory of plasticity was not yet
successful in theoretically describing these complex behaviors of metals.
This theory of Valanis [6] is simple in form and will be referred to as the

simple endochronic theory. This theory has many advantages because of its
simplicity in calculation. Take the cyclic loading as an example, the flow the-
ory of plasticity would need to determine whether the current state is in the
plastic state and, if so, apply the flow rule, which is incremental. An intense
numerical integration is needed. The equations of the endochronic theory, on
the other hand, may be integrated to obtain a closed form solution without
having to determine the yield point. However, there are drawbacks of the
simple endochronic theory. The unloading curve has a slope slightly larger
than the initial slope of the stress–strain curve. If, in a plastic state, a small
amount of stress unloading occurs and is immediately followed by a reload-
ing back to the original stress level, then a stress–strain loop does not form.
If this unloading–reloading cycle continues, then cyclic creep or ratcheting
would occur without reaching a steady state, that is, the strain would con-
tinue to increase as the stress cycling continues, but not in agreement with
experimental findings. Another drawback is related to the rate of entropy
production. In a plastic state, increments in loading and unloadingwill result
in the same rate of entropy production, which is not acceptable.
Despite the drawbacks, the simple endochronic theory continues to be used

by some investigators because of its simplicity and because the concept of
yield surface is not needed. It provides a good approximation tometals when
only loading is of interest, or under certain loading histories such as cyclic
loading.
An improved endochronic theory, or simply the “endochronic theory” in the

remainder of this chapter, was proposed by Valanis [7] to remove the afore-
mentioned drawbacks. The improved theory uses plastic strain to define the
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intrinsic time, while the simple endochronic theory uses the total strain.
Valanis [7] showed that a limiting case of this new formulation leads to
the definition of yield surface. In fact, the flow theory of plasticity can be
derived from the endochronic theory, including the flow rule and the strain-
hardening rules. However, the forms of the flow rule and strain-hardening
rules are derived; whereas these forms and rules are separately assumed in
the traditional flow theory of plasticity.
This author has been heavily involved in the development and verification

of the endochronic theory. Specially designed experiments have been con-
ducted by the author and his coworkers which are then used to verify the
theory. These investigations will be discussed in later sections of this chapter
and in Chapter 9.

8.4.2 The Simple Endochronic Theory of Plasticity

The simple endochronic theory has been derived for small isothermal
deformation in [6], using the Helmholtz formulation discussed in
Section 8.3.3. In the small deformation, the stress is σ and the strain is ε.
Equation (8.30) reduces to

σ = ∂�

∂ε
, η = −∂�

∂θ
, − ∂�

∂qr · q̇r ≥ 0 (r not summed) (8.51)

From the last expression of (8.51), we see that q̇r cannot be independent of
−∂�/∂qr. Otherwise, an arbitrary choice of q̇r may violate the inequality.
Therefore, q̇r and −∂�/∂qr must be related. The relation can be in the form
of a function or of a functional, or something else. For the sake of simplicity,
a function is assumed in the ensuing discussion. Furthermore, a linear form
is assumed such that

∂�

∂qrij
+ brijkmq̇rkm = 0 (r not summed) (8.52)

where brijkm is a symmetric positive definite tensor. Note that this linear form
has been proven to be adequate in most applications. Other forms may be
considered if called for. However, we like the linear form because of its math-
ematical simplicity. Substituting (8.52) into the last expression of (8.51), we
obtain

brijkmq̇rijq̇
r
km ≥ 0 (r not summed) (8.53)

The intrinsic time is from (8.49)

dζ 2 = Pijkm dεij dεkm (8.54)

© 2005 by Chapman & Hall/CRC Press



Internal Variable Theory and Endochronic Theory 413

In the endochronic theory, all developments are with respect to the increment
of intrinsic time. The evolution equation for the internal variables can then
be expressed with respect to the intrinsic time as

∂�

∂qrij
+ brijkm(ζ )

dqrkm
dζ
= 0 (r not summed) (8.55)

where brijkm(ζ ) is a functionof intrinsic time ζ and brijkm = (br0)ijkmf (ζ ); (8.55)may
then be written as

∂�

∂qrij
+ (br0)ijkm f (ζ )

dqrkm
dζ
= 0 (r not summed) (8.56)

or

∂�

∂qrij
+ (br0)ijkm

dqrkm
dz
= 0 (r not summed) (8.57)

where (br0)ijkm is a fourth-rank constant tensor; the intrinsic time has been
scaled by a factor f and z is the intrinsic timescale. The relation is

dz = dζ
f (ζ )

(8.58)

The scaling factor f (ζ ) will be identified later as the isotropic hardening
function. The case of f = 1 corresponds to no isotropic hardening.
Generally, (8.58) may be integrated from the initial intrinsic time ζ0 to the
current intrinsic time ζ as

z =
∫ ζ

ζ0

dζ
f (ζ )

(8.59)

As a first approximation, we use the linear form

f (ζ ) = 1+ βζ (8.60)

and, in this case, (8.59) becomes

z = 1
β
ln(1+ βζ) (8.61)

with initial values ζ0 = z0 = 0; β is a constant.
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In summary, the endochronic equations of the Helmholtz formulation for
small isothermal deformation are

� = �(ε,qr), σ = ∂�

∂ε
,

∂�

∂qr + br
0 ·

dqr

dz
= 0,

dz = dζ
f (ζ )

, dζ 2 = dε · P · dε

(8.62)

where a boldfaced letter with an underscore, such as P, denotes a fourth-rank
tensor. To obtain an explicit constitutive equation, the free energy is expressed
in a quadratic form as

� = 1
2ε ·A · ε+ ε · Br · qr + 1

2q
r · Cr · qr (8.63)

where A , Br,Cr are fourth-rank constant tensors. Note that linear terms
in ε are absent to accommodate the requirement that the reference state
is unstressed. In addition, linear terms in qr are absent if the reversal of
the sign of strain history leaves the form of the stress response invariant.
Substituting (8.63) into (8.62), we obtain

σ = A · ε+
∑
r

Br · qr and Br · ε+ Cr · qr + br
0 ·

dqr

dz
= 0 (8.64)

IfA,Br,Cr and br
0 are isotropic functions and, since σ, ε, and qr are symmetric

tensors, the isotropic expressions for these tensors are from (1.129)

Aijkm = A1δijδkm + A2δikδjm, Br
ijkm = Br

1δijδkm + Br
2δikδjm,

Cr
ijkm = Cr

1δijδkm + Cr
2δikδjm, (br0)ijkm = br1δijδkm + br2δikδjm

(8.65)

Substituting (8.65) into (8.64) and separating the resulting equations into the
hydrostatic and deviatoric parts, we find

σkk = (3A1 + A2)εkk +
∑
r

(3Br
1 + Br

2)q
r
kk

σ ′ij = A2eij +
∑
r

Br
2p

r
ij

(8.66)

Br
0εkk + Cr

0q
r
kk + br0

dqrkk
dz
= 0

Br
2eij + Cr

2p
r
ij + br2

dprij
dz
= 0

(r not summed) (8.67)

where the deviatoric parts are

eij = εij − 1
3δijεkk , σ ′ij = σij − 1

3δijσkk , prij = qrij − 1
3δijq

r
kk (8.68)
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and

A0 = 1
3 (3A1 + A2), Br

0 = 1
3 (3B

r
1 + Br

2),

Cr
0 = 1

3 (3C
r
1 + Cr

2), br0 = 1
3 (3b

r
1 + br2)

(8.69)

Equations in (8.67) are constant coefficient linear ordinary differential equa-
tions and the solutions are

qrkk = −
Br
0

br0

∫ z

z0
exp

(
−Cr

0
br0
(z− z′)

)
εkk(z′)dz′ with qrkk(0) = 0

prij = −
Br
2

br2

∫ z

z0
exp

(
−Cr

2
br2
(z− z′)

)
eij(z′)dz′ with prij(0) = 0

(8.70)

Combining (8.66) and (8.70) yields

σ = 1
3
σkk =

∫ z

z0
K(z− z′)dεkk

dz′
dz′ and σ ′ij = 2

∫ z

z0
µ(z− z′)

deij
dz′

dz′

(8.71)

where the kernel functions are given by

K(z) =
(
A0 −

∑
r

(Br
0)
2

Cr
0

)
H(z)+

∑
r

(Br
0)
2

Cr
0

e−λrz with λr = Cr
0

br0

2µ(z) =
(
A2 −

∑
r

(Br
2)
2

Cr
2

)
H(z)+

∑
r

(Br
2)
2

Cr
2

e−ρrz with ρr = Cr
2

br2

(8.72)

whereH(z) is theHeaviside step function. Thesekernel functions are alsoknown
as the heredity functions. If 2µ(z) is plotted against z, the curve has a value
of A2 at z = 0 and relaxes gradually to [A2 −∑r((B

r
2)
2/Cr

2)] as z increases
and becomes large. Similarly, K(z) has an initial value of A0 and relaxes to
(A0−∑r((B

r
0)
2/Cr

0)). The functions µ(z) and K(z) are sums of positive decay-
ing exponential terms, where one or more of the exponents may be zero.
This describes the effect of fading memory. In the event that the hydrostatic
response is elastic as most metals are, Br

0 = Cr
0 = 0 and qrkk is constant. The

first equation of (8.72) reduces to

K(z) = A0H(z) (8.73)

and the hydrostatic stress–strain curve is from (8.71)

σ = 1
3σkk = A0εkk (8.74)
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Valanis and Wu [12] investigated the representation of heredity functions
and showed that the theory was able to describe observed behavior of metals
under conditions of cyclic deformation. In addition, Wu and his cowork-
ers [13–16] applied the theory to investigate the problem of viscoplastic wave
propagation in thin rods and thin-walled tubes.
By differentiation, the deviatoric part of the constitutive equation in (8.71)

can be written in a differential form. In the simple case of µ(z) = µ0 e−αz,
where µ0 and α are constants, we have

σ′ = 2µ0

∫ z

0
e−α(z−z′) de

dz′
dz′ (8.75)

and

dσ′

dz
= (−α)2µ0

∫ z

0
e−α(z−z′) de

dz′
dz′ + 2µ0

de
dz

(8.76)

or

dσ′

dz
+ ασ′ = 2µ0

de
dz

(8.77)

This is the constitutive equation in the differential form. From (8.77), we see
that the plastic strain increment is

dep = de− dσ′

2µ0
= α

2µ0
dzσ′ (8.78)

This is in the form of the Prandtl–Reuss relation, when the elastic strain is
considered. On the other hand, the function µ(z) may contain more terms.
For example, µ(z) = µ0+µ1 e−αz, where µ0,µ1, and α are constants. We then
obtain

dep = α

2µ̄
σ′ dz− µ0

µ̄
αedz with µ̄ = µ0 + µ1 (8.79)

Equation (8.79) is not in the form of the Prandtl–Reuss relation.

EXAMPLE 8.1 Determine the endochronic constitutive equation for uniaxial
tension.

Solution

In uniaxial tension, (8.71) reduces to

σ =
∫ z

0
E(z− z′) dε

dz′
dz′ (a)
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The stress is σ , the strain is ε, andE(z) is the heredity function.We assume that
the specimen is initially in an annealed state so that z0 = 0. We consider the
simplest case possible, when E(z) has only one exponential term, that is,

E(z) = E0 e−αz (b)

where E0 and α are constants. The intrinsic time increment is from (8.54)

dζ = ±k dε (c)

inwhich k is assumed to be a constant for simplicity. Thepositive andnegative
sign in (c) are for loading and unloading. We use the linear form for intrinsic
timescale given by (8.60), which is integrated to yield (8.61). We then obtain
from (8.61) the expression 1+ βζ = eβz, which leads to

dζ
dz
= eβz (d)

where β is a constant. Substituting (b) into (a) and using (c) and (d), we obtain

σ = E0

∫ z

0
e−α(z−z′) dε

dζ ′
dζ ′

dz′
dz′ = E0

∫ z

0
e−α(z−z′)

(
1
k

)
(eβz

′
)dz′

= E0 eβz

k(α + β) [1− e−(α+β)z] = E0(1+ βζ)
kβ(1+ α/β) [1− (1+ βζ)

−(1+α/β)]

= E0
kβn

(1+ βζ)
{
1− 1

(1+ βζ)n
}

with n = 1+ α
β

(e)

In loading starting from zero load and zero strain, (c) can be integrated to
yield

ζ = kε (f)

Using (f), (e) becomes

σ = E0
β1n

(1+ β1ε)
{
1− 1

(1+ β1ε)n
}

with β1 = kβ (g)

This is the endochronic stress–strain relation with three parameters E0,β1,
andn. This equation is able todescribe the stress–strain curve formostmetallic
materials. The three parameters may be determined by a method described
in Example 8.2. A method by use of the optimization technique is given by
Jao et al. [17].
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FIGURE 8.3
A stress–strain curve.

EXAMPLE 8.2 Determine the three parameters of the endochronic stress–
strain relation

σ = E0
β1n

(1+ β1ε)
{
1− 1

(1+ β1ε)n
}

(a)

Solution

Ahypothetical experimental stress–strain curve is shown in Figure 8.3, and
we like to determine E0, β1, and n so that (a) describes this experimental
curve. We first determine E0,Et, and σ 0 from the experimental curve. E0
is the slope at ε = 0; Et is the tangent modulus at large ε; and σ 0 is the
intercept of the asymptote of the stress–strain curve with the stress axis. We
note that E0 = (dσ/dε)|ε→0, and this is about the same as Young’s modulus
for materials that has a very straight initial curve. E0 should be slightly larger
than the conventional value for Young’s modulus, if the material starts to
bend right from the beginning of the stress–strain curve. The asymptote at
large ε is found from (a) as

σ = E0
β1n

(1+ β1ε) (b)

with slope

Et = dσ
dε

∣∣∣∣
ε→large

= E0
n

(c)

Therefore,

n = E0
Et

(d)
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The intercept of the asymptote with the stress axis is found by setting ε = 0
in (b). Thus,

σ 0 = E0
β1n

(e)

From (e), we obtain

β1 = E0
nσ 0

(f)

Therefore, knowing E0, Et, and σ 0, we find n from (d) and β1 from (f).

EXAMPLE 8.3 If the free energy � is positive definite, that is,

� = 1
2ε ·A · ε+ ε · Br · qr + 1

2q
r · Cr · qr > 0 (a)

and if

Aijkm = A1δijδkm + A2δikδjm, Cr
ijkm = Cr

1δijδkm + Cr
2δikδjm (b)

show that

A1 + 1
3A2 > 0, A2 > 0 and Cr

1 + 1
3C

r
2 > 0, Cr

2 > 0 (c)

Solution

The free energy is positive definite, � > 0, for any ε and qr subjected to
the thermodynamic constraints discussed in Section 8.3.3. In a special case,
� > 0 for ε = 0 and arbitrary nonzero qr, so that

� = 1
2q

r · Cr · qr > 0 (d)

Therefore, Cr must be positive definite. Another special case is when qr = 0
subjected to nonzero arbitrary ε. Then,

� = 1
2ε ·A · ε > 0 (e)

that is, Amust be positive definite.
Using (b) and (e), we have

� = 1
2 (A1εiiεkk + A2εikεik) (f)
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which may be written in the matrix form as

� =[ε]T[A][ε] = 1
2




ε11
ε22
ε33
ε12
ε13
ε21
ε21
ε31
ε32




T

×




A1 + A2 A1 A1 0 0 0 0 0 0
A1 A1 + A2 A1 0 0 0 0 0 0
A1 A1 A1 + A2 0 0 0 0 0 0
0 0 0 2A2 0 0 0 0 0
0 0 0 0 2A2 0 0 0 0
0 0 0 0 0 2A2 0 0 0
0 0 0 0 0 0 2A2 0 0
0 0 0 0 0 0 0 2A2 0
0 0 0 0 0 0 0 0 2A2







ε11
ε22
ε33
ε12
ε13
ε21
ε21
ε31
ε32



(g)

Since � is positive definite, [A] is a positive definite matrix, that is, the
determinant of every principal minor should be nonnegative. Therefore,

(a) A1 + A2 > 0 (h)

(b)

∣∣∣∣∣
A1 + A2 A1

A1 A1 + A2

∣∣∣∣∣ = A2(2A1 + A2) > 0 (i)

(c)

∣∣∣∣∣∣
A1 + A2 A1 A1

A1 A1 + A2 A1
A1 A1 A1 + A2

∣∣∣∣∣∣ = A2
2(3A1 + A2) > 0 (j)

(d)



A1 + A2 A1 A1 0

A1 A1 + A2 A1 0
A1 A1 A1 + A2 0
0 0 0 2A2


 = (2A2)A2

2(3A1 + A2) > 0 (k)

From (h) to (k), it is concluded that

A2 > 0, A1 + A2 > 0, 2A1 + A2 > 0, 3A1 + A2 > 0 (m)
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Plotting the above inequalities in the A2 versus A1 space, it is found that the
solution is bounded by

A2 > 0 and 3A1 + A2 > 0 (n)

Using a similar procedure, the following inequalities can be established

Cr
1 + 1

3C
r
2 > 0 and Cr

2 > 0 (o)

An alternate proof is obtained by considering simple loading conditions.
We rewrite (f) as

� = 1
2

(
A1 + A2

3

)
(εkk)

2 + 1
2
A2eikeik (p)

In the case of hydrostatic strain, the strain components are ε11 = ε22 = ε33 = ε
and eij = 0, (p) reduces to

� = 1
2

(
A1 + A2

3

)
(3ε)2 > 0 or A1 + A2

3
> 0 (q)

In the case of shear with ε12 �= 0 and other εij = 0, we have from (p)

� = A2(e12)2 > 0 or A2 > 0 (r)

The physical meanings are not clear if the same procedure is applied to
� = 1

2q
r · Cr · qr > 0.

8.4.3 The Improved Endochronic Theory of Plasticity

Valanis [7] used a strain-like tensor Qij to define the intrinsic time as

dζ 2 = dQijdQij where Qij = εij − Kijkmσkm (8.80)

This definition of intrinsic time is a generalization of (8.54). In one-
dimensional straining, (8.80) reduces to

dζ = |Q| =
∣∣∣∣dε − k1

dσ
E0

∣∣∣∣ with 0 ≤ k1 ≤ 1 (8.81)

When k1 = 0, dζ = |dε|, which is the simple endochronic theory; but when
k1 = 1, Q has the meaning of plastic strain. This new definition of intrinsic
time removes the drawbacks mentioned for the simple endochronic theory,
and, in addition, the case of k1 = 1 leads to the existence of yield surface.
We shall demonstrate the latter assertion in the discussions to follow.
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We first show that the deviatoric constitutive equation of (8.71)

σ′ = 2
∫ z

z0
µ(z− z′) de

dz′
dz′ = 2µ0

∫ z

z0
ξ(z− z′) de

dz′
dz′ (8.82)

may be written in the following form

σ′ = 2µ0

∫ z

0
ρ(z− z′)dQ

dz′
dz′ (8.83)

where

Q = e− k1
σ′

2µ0
, µ(z) = µ0ξ(z), ξ(0) = 1 (8.84)

The relation between ξ(z) and ρ(z) may be found by the method of Laplace
transformation. From (8.82), we have

σ̄′ = 2µ0ξ̄pē with e(0) = 0 (8.85)

where f̄ (p) is the transform of the function f (z) and p is the parameter of
Laplace transformation. We note that L(df (z)/dz) = pf̄ (p)− f (0). On the other
hand, (8.83) is transformed into

σ̄′ = 2µ0ρ̄pQ̄ with Q(0) = 0 (8.86)

Using the Laplace transform of (8.84), (8.86) is further written as

σ̄′ = 2µ0ρ̄p
(
ē − k1

σ̄ ′

2µ0

)
(8.87)

Substituting (8.85) into (8.87), the resulting equation is

ρ̄ − k1ρ̄pξ̄ = ξ̄ (8.88)

which may be written as

ρ̄ − k1ρ̄(pξ̄ − ξ(0))− k1ρ̄ξ(0) = ξ̄ (8.89)

An inverse transform of (8.89) gives us

(1− k1)ρ(z)− k1

∫ z

0
ρ(z− z′) dξ

dz′
dz′ = ξ(z) with ξ(0) = 1 (8.90)
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It can be shown that, for k1 = 1, the solution of (8.90) is

ρ(z) = ρ0δ(z)+ ρ1(z) (8.91)

where

ρ1(z) =
n−1∑
r=1

Rre−βrz, ξ(z) =
n∑

r=1
ξre−αrz,

n∑
r=1

ξr = 1 (8.92)

and δ(z) is the Dirac delta function; Rr, ξr, βr, αr, and ρ0 are constants.
Using (8.91) and (8.92), (8.83) becomes

σ′ = 2µ0ρ0
dQ(z)
dz
+ 2µ0

∫ z

0
ρ1(z− z′)dQ(z

′)
dz′

dz′ (8.93)

Equation (8.93) is the constitutive equation of the endochronic theory. This
equation may be used directly to calculate the stress–strain response curves.
On the other hand, based on this equation, the flow rule, the yield surface, and
its hardening rules can be derived, thereby establishing a connection between
the present theory and the flow theory of plasticity. By doing so, the phys-
ical meanings of some functions and parameters of this theory become clear.
The differences between this theory and the flow theory are that the forms
of the flow rule, yield surface, and hardening rule are related in this theory
and they evolve with respect to the intrinsic time, while they are quite open
to differently proposed forms in the classical flow theory. In the following
subsection, we derive the flow rule, the yield surface, and the hardening rule.

EXAMPLE 8.4 In the simple case of

ξ(z) = ξ1 e−α1z + ξ2 e−α2z (a)

determine the expression for ρ(z).

Solution

The Laplace transform of (a) is

ξ̄ (p) = ξ1

p+ α1 +
ξ2

p+ α2 (b)

Substituting (b) into (8.88), we have

ρ̄ = ξ̄ (p)
1− k1pξ̄ (p)

= p+ λ
(1− k1)p2 + (α1 + α2 − k1λ)p+ α1α2 (c)
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where λ = ξ1α2 + ξ2α1. In the case of k1→ 1, (c) becomes

ρ̄ ≈ p+ λ
(1− k1)p2 + (α1 + α2 − λ)p+ α1α2 =

p+ λ
(1− k1)(p+ β1)(p+ β2) (d)

where

β1 = λ̄

1− k1
, β2 = α1α2

λ̄
, λ̄ = α1ξ1 + α2ξ2 (e)

Equation (d) may be further written as

ρ̄ = 1
1− k1

[
((λ− β1)/(β2 − β2))

p+ β1 + ((λ− β2)/(β1 − β2))
p+ β2

]
(f)

which may then be inverse transformed into

ρ(z) = 1
1− k1

{
λ− β1
β2 − β1 e

−β1z + λ− β2
β1 − β2 e

−β2z
}

(g)

Using (e), we find that

λ− β1
β2 − β1 ≈ 1 and

1
1− k1

λ− β2
β1 − β2 ≈

λλ̄− α1α2
λ̄2

(h)

Therefore, (g) becomes

ρ(z) = 1
1− k1

exp
(
− λ̄

1− k1
z
)
+
(
λλ̄− α1α2

λ̄2

)
exp

(
−α1α2

λ̄
z
)

(i)

When k1→ 1, (i) reduces to

ρ(z) = ρ0δ(z)+
(
λλ̄− α1α2

λ̄2

)
exp

(
−α1α2

λ̄
z
)
= ρ0δ(z)+ ρ1(z) (j)

Thus,

ρ1(z) =
(
λλ̄− α1α2

λ̄2

)
exp

(
−α1α2

λ̄
z
)

(k)
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8.4.4 Derivation of the Flow Theory of Plasticity from
Endochronic Theory

In the case of k1 = 1, the deviatoric part of the endochronic constitutive
equation is from (8.93)

σ′ = 2µ0ρ0
dQ(z)
dz
+ 2µ0

∫ z

0
ρ1(z− z′)dQ(z

′)
dz′

dz′ (8.93)

with the intrinsic time defined from (8.80) by

dζ 2 = dQij dQij where dQij = dεpij = deij −
dσ ′ij
2µ0

(8.94)

If we let

α = 2µ0

∫ z

0
ρ1(z− z′)dQ(z

′)
dz′

dz′ and σ ′y = 2µ0ρ0 (8.95)

then, (8.93) can be written as

σ′ = σ ′y
dQ
dζ

f (z)+ α (8.96)

which may be further written as

dQ = dζ
σ ′yf (z)

(σ′ − α) (8.97)

This equation may be considered as the flow rule using the concept of the
flow theory of plasticity. By substituting (8.97) into (8.94), we obtain

dζ 2 = dQ · dQ =
(

dζ
σ ′yf (z)

)2
(σ′ − α) · (σ′ − α) (8.98)

or

[(σ′ − α) · (σ′ − α)− (σ ′yf (z))2]dζ 2 = 0 (8.99)

Therefore, we obtain from (8.99) either

(σ′ − α) · (σ′ − α) = (σ ′yf (z))2 with dζ 2 �= 0 (8.100)

or

dζ 2 = 0 (8.101)
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Equation (8.100) is the yield criterion with combined isotropic–kinematic
hardening. α represents the back stress and f (z) represents the isotropic
hardening. Wewill call f (z) the isotropic-hardening function. The yield criterion
applies when

dζ 2 = dQij dQij = dεpij dε
p
ij

= (dεp11)2 + (dεp22)2 + (dεp33)2 + 2(dεp12)
2 + 2(dεp23)

2 + 2(dεp31)
2 �= 0
(8.102)

Since all terms in (8.102) are positive, dεpij �= 0 when dζ 2 �= 0. dζ 2 = 0 only
when all components of the plastic strain increments are zero. The case of
dζ 2 = 0 is given by (8.101) and further written as

dζ 2 = dεpij dε
p
ij =

(
deij −

dσ ′ij
2µ0

)(
deij −

dσ ′ij
2µ0

)

=
(
de11 − dσ ′11

2µ0

)2
+
(
de22 − dσ ′22

2µ0

)2
+
(
de33 − dσ ′33

2µ0

)2

+ 2
(
de12 − dσ ′12

2µ0

)2
+ 2

(
de23 − dσ ′23

2µ0

)2
+ 2

(
de31 − dσ ′31

2µ0

)2
= 0

(8.103)

Since all terms in (8.103) are positive, dζ 2 = 0 only when all terms are zero,
that is,

deij −
dσ ′ij
2µ0
= 0 or dσ ′ij = 2µ0 deij and σ ′ij = 2µ0eij (8.104)

When all components of the plastic strain increments are zero, the material
behavior is described by (8.104), which is the elastic constitutive equation.
We have thus shown that the flow theory of plasticity may be derived from

the endochronic theorywhen k1 = 1. Theyield function is givenby (8.100); the
flow rule is given by (8.97); the back stress is given by (8.95); and the isotropic
hardening is given by the function f (z). We see from (8.97) that the normality
condition between the plastic strain increment and the yield surface (8.100)
is satisfied. The evolution of back stress may be written in a differential form
by differentiating (8.95). If, for simplicity, only one exponential term is used
in ρ1(z), that is, ρ1(z) = ρ̂ e−αz, where ρ̂ and α are constants, then

α = 2µ0ρ̂
∫ z

0
e−α(z−z′)dεp(z′)

dz′
dz′ (8.105)
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and

dα

dz
= 2µ0ρ̂

dεp

dz
− αα (8.106)

This is a nonlinear evolution equation for α and was used by Wu and Yang
[18] and Wu et al. [19] as mentioned in Section 6.5.3. This equation is also
known as theArmstrong–Frederick evolution equation. Another special case
of (8.95) is when ρ1(z) = ρ̂ = constant. In this case, (8.95) becomes

α = 2µ0ρ̂εp or dα = cdεp with c = 2µ0ρ̂ (8.107)

which is the linear kinematic hardening of Prager [20] and Ziegler [21]. In the
general case, when ρ1(z) is given by (8.92), the evolution equation for α is

dα

dz
=

n−1∑
r=1

2G0Rr
dεp

dz
−

n−1∑
r=1

βrαr with α =
n−1∑
r=1

αr (8.108)

8.4.5 Applications of the Endochronic Theory to Metals

The endochronic theory is applied to describe several aspects of metallic
deformation. They include loading–unloading, cyclic loading, loading with
multi-axial strain paths, and the viscoplastic effect. Additional applications
will be discussed in Chapter 9.

8.4.5.1 The loading–unloading stress–strain curves

In the case of uniaxial stress, the endochronic constitutive equation is

σ = E0

∫ z

0
ρ(z− z′)dε

p

dz′
dz′ (8.109)

We investigate three functional forms of the isotropic-hardening function f (z).
They are:

Form (a): f (z) = eβz, Form (b): f (z) = C − (C − 1)e−βcz,

and Form (c): f (z) = e−βsz (8.110)

The equation dζ/dz = f (z) is plotted in the ζ versus z space in Figure 8.4(a) for
the three forms. The slope of the asymptote for form (a) is∞, that for form
(b) is C, and for form (c) is 0. The curve of form (c) approaches a value of 1/βs
when z is large. The straight line at 45◦ angle is the case of f (z) = 1, which
represents the nonhardening behavior. This line separates the ζ–z space into
hardening zone and softening zone. When form (b) is used, the value of
C dictates the material behavior. The case of C > 1 corresponds to strain
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FIGURE 8.4
(a) Three forms of isotropic-hardening function f (z), (b) effect of C on form (b).

hardening; C = 1 corresponds to nonhardening; and 0 ≤ C < 1 corresponds
to strain softening. This relation is depicted in Figure 8.4(b). The ζ–z graph
is monotonically increasing as long as C ≥ 0. Parameter βc controls how fast
the curve bends.
We consider the kernel function expressed by

E0ρ(z) = E0δ(z)+ E1 e−µz + E2 (8.111)

where E0, E1, E2, and µ are constants. Experience shows that (8.111) is
adequate under most loading conditions for metals. In the case of loading,
we assume k1 = 1, and from (8.81), we have dζ = dεp, which becomes ζ = εp
when the loading starts from the virgin state. Either form (a) or form (b)
of f (z), givenby (8.110), canbeused to represent the loading–unloadingcurves
of strain-hardening materials. Even though form (a) is simple, according to
Wu and Yip [22], it does not lead to the steady stress–strain loop in strain-
controlled cyclic loading. In the interest of cyclic loading to be discussed in the
next subsection, following [22] form (b) is used in the following derivation.
Using (8.111), (8.109) is

σ =E0

∫ z

0
δ(z− z′)(+1)[C − (C − 1)e−βcz′ ]dz′

+ E1

∫ z

0
e−α(z−z′)(+1)[C − (C − 1)e−βcz′ ]dz′ + E2

∫ z

0
[C − (C − 1)e−βcz′ ]dz′

(8.112)
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which may be integrated to yield

σ = E0[C − (C − 1)e−βcz] + E1

{
C
µ
(1− e−µz)+ C − 1

βc − µ(e
−βcz − e−µz)

}
+ E2ζ

(8.113)

We now determine the material constants. When z = ζ = 0, we find
from (9.113) that E0 = σy, which is the initial yield stress. The asymp-
tote of the stress–strain curve may be found by putting z → ∞, and is
given by

σ = σyC + E1

(
C
α

)
+ E2ζ (8.114)

inwhichE2 is the slope of the asymptote and is the tangentmodulusEt at large
strain. The intercept σ 0 of the asymptote with the stress axis is obtained by
putting ζ = 0 into (8.114), which leads to E1 = (σ 0/C − σy)α. Thus, (9.113) is
rewritten as

σ = σy[C − (C − 1)e−βcz] +
(
σ 0

C
− σy

)

×
{
C(1− e−αz)+ α(C − 1)

βc − α (e−βcz − e−αz)
}
+ E2ζ (8.115)

where σy is the yield stress and E2 is the slope of the asymptote. These two
material constants are shown in Figure 8.5 and may be determined from an
experimental stress–strain curve. Parameterα describes the formof the kernel
function and is related to the rate of fading memory; C and βc are parameters
of the hardening function.

Et

E2

�

�y

�0

�p0

FIGURE 8.5
Material constants of the endochronic model.
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We now consider unloading starting from z = z∗. During unloading z > z∗
and the integral in (8.109) is divided into two integrals

σ = E0

∫ z∗

0
ρ(z− z′)dε

p

dz′
dz′ + E0

∫ z

z∗
ρ(z− z′)dε

p

dz′
dz′ (8.116)

Using (8.111) as the kernel function, the first integral of (8.116) consists of three
terms. They are

E0

∫ z∗

0
δ(z− z′)[C − (C − 1)e−βcz′ ]dz′ = 0,

E1

∫ z∗

0
e−α(z−z′)[C − (C − 1)e−βcz′ ]dz′

= E1 e−αz
{
C
α
(e−αz∗ − 1)+ C − 1

βc − α (e
−(βc−α)z∗ − 1)

}
,

E2

∫ z∗

0

dζ ′

dz′
dz′ = E2ζ ∗

(8.117)

The second integral also has three terms, given by

E0

∫ z

z∗
δ(z− z′)(−1)[C − (C − 1)e−βcz′ ]dz′ = −σy[C − (C − 1)e−βcz],

E1

∫ z

z∗
e−α(z−z′)(−1)[C − (C − 1)e−βcz′ ]dz′

= −E1
{
C
α
(1− e−α(z−z∗))+ C − 1

α − βc (e
−βcz − e−α(z−z∗)−βcz∗)

}

E2

∫ z

0
(−1)dζ

′

dz′
dz′ = −E2(ζ − ζ ∗)

(8.118)

Using (8.117) and (8.118), (8.116) is reduced to

σ =− σy[C − (C − 1)e−βcz] +
(
σ 0

C
− σy

)
C[2 e−α(z−z∗) − e−αz − 1]

−
(
σ 0

C
− σy

)
α

(
C − 1
α − βc

)
[2 e−α(z−z∗)−βcz∗ − e−αz − e−βcz] + E2(2ζ ∗ − ζ )

(8.119)

During the unloading stage, the following relation holds

dζ = −dεp with initial condition ζ ∗ = εp∗ (8.120)
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Integration of (8.120) results in

εp = 2ζ ∗ − ζ (8.121)

The loading–unloading curves have been calculated and compared with
experimental results for 304 stainless steel by Wu and Yip [22].

8.4.5.2 A strain-controlled cyclic loading

Since most experiments have been conducted by controlling the total strain
amplitude �ε, a small amount of approximation is involved in this theoret-
ical representation by considering a constant plastic strain amplitude cycling.
Figure 8.6(a) shows a schematic drawing for strain cycles plotted against
time t and the notation used to denote intrinsic time z at each half cycle.
Figure 8.6(b) shows the corresponding cyclic stress–strain curve. The loading
in the previous subsection can be viewed as the first 1

4 cycle which is valid

∆�

�

t

z* z3* z5* z7*

z2* z4* z6*

(a) Strain Control

z3*

z*

z5*
z(2N)*

z(2N)*
z4*
z2*

�D
�D

1

�

�

Stable

(b) Cyclic Hardening Hysteresis Loops

FIGURE 8.6
(a) Strain cycles against time, (b) cyclic hardening hysteresis loops (FromWu, H.C. andYip, M.C.,
J. Eng. Mater. Technol., 103, 212, 1981. With permission fromASME).
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for 0 < z < z∗ and the unloading in the previous subsection can be viewed as
the first unloading of the cyclic loading valid for z∗ < z < z∗∗. We continue
to derive the equations for the first reloading and the subsequent loading.
Using the same procedure, the first reloading is valid for z∗∗ < z < z3

∗
and

the equation has been found to be

σ = σy[C − (C − 1)e−βcz] +
(
σ 0

C
− σy

)
C[−2 e−α(z−z∗∗)

+ 2 e−α(z−z∗) − e−αz+ 1] −
(
σ 0

C
− σy

)
α

(
C − 1
α − βc

)

× [−2e−α(z−z∗∗)−βcz∗∗ + 2e−α(z−z∗)−βcz∗ − e−αz + e−βcz]
+ E2(ζ + 2ζ ∗ − 2ζ ∗∗) with εp = 2ζ ∗ − 2ζ ∗∗ + ζ (8.122)

This procedure may be continued. Ageneral expression of the response func-
tion for the constant total strain amplitude cyclic loading test may be found
to be

σ = (−1)2Nσy[C − (C − 1)e−βcz]

+
(
σ 0

C
− σy

)
C{1− e−αz + 2[e−α(z−z∗) − 1] − 2[e−α(z−z∗∗) − 1]

+ · · · − [(−1)2N2][e−α(z−z2N∗ ) − 1]}

−
(
σ 0

C
− σy

)
α(C − 1)
α − βc {e

−βcz − e−αz + 2[e−α(z−z∗)−βcz∗ − e−βcz]

− · · · − (−1)2N2[e−α(z−z2N∗ )−βcz2N∗ − e−βcz]}
+ E2εp for z > z2N

∗
(8.123)

where

εp = ζ + 2(ζ ∗ − ζ )− 2(ζ ∗∗ − ζ )+ · · · − (−1)2N · 2(ζ 2N∗ − ζ ) (8.124)

and N = 1
2 , 1, 1

1
2 , 2, . . . . If the above equation is examined at z = z2N

∗

and z = z2N
∗+, a drop or jump in stress of magnitude 2σyf (z) =

2σy[C − (C − 1)e−βcz2N
∗ ] results, which corresponds to the elastic response

upon reversal of loading direction. The magnitude of the jump in stress is
determined by the isotropic expansion of the yield surface. For a sufficiently
large z, the hysteresis loop becomes steady. In this case the jump or drop in
stress becomes a constant value of 2Cσy.
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FIGURE 8.7
Theory and experimental data (From Wu, H.C. and Yip, M.C., J. Eng. Mater. Technol., 103, 212,
1981. With permission fromASME).

We now use (8.123) to predict the cyclic stress–strain loops experimentally
obtainedbyLambaandSidebottom [23]. These authors obtained cyclic stress–
strain curves of oxygen-free high-conductivity copper covering curves from
the first cycle to the stable loop. The hardening effect was extremely rapid in
the first few cycles of the test. After further reversals, hardening ceased and a
steady stress range was achieved. Figure 8.7 illustrates the experimental data
and the theoretical prediction from (8.123). The material parameters used in
the calculation are: σ 0 = 25 ksi (1.73 × 102 MPa), σy = 2 ksi (13.78 MPa),
E2 = 0, C = 8.75, βc = 40, α = 3000, and �ε = 1.75%.
Finally, we mention that the same theory was applied by Wu et al. [24] to

investigate the problem of cyclic full-reversed torsional loading of a solid bar
with circular cross-section. Numerical techniques were employed to obtain
the solution. The parameters of the constitutivemodel were determined from
the test data of thin-walled specimens. These parameters were then used
without alteration to compute stress distributions within the solid specimen.
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Special attention was given to the residual stress distribution. Reasonable
results were obtained. The relation of torque versus strain at the outermost
fiber of the solid specimenprovided anultimate check of the theory as applied
to this case.

8.4.5.3 Loading with multiaxial strain path

From (8.93), the constitutive equation for metals is

σ′ = σ ′y
dεp(z)
dz

+ 2µ2

∫ z

0
e−α(z−z′)dε

p(z′)
dz′

dz′ + 2µ1εp (8.125)

where σ ′y is the deviatoric yield stress; µ1 and µ2 are constants. The volu-
metric behavior is elastic, given by (8.74). Only one exponential term in the
kernel function is used for simplicity. We applied (8.125) to describe two
strain-controlled combined axial–torsion tests (paths 01A and 02B) shown in
Figure 8.8. Form (b) of (8.110) is the isotropic-hardening function used in this
derivation. The state of stress and its deviator and the plastic strain are

[σ ] =

σ τ 0
τ 0 0
0 0 0


 , [σ ′] =



2σ
3

τ 0

τ −σ
3

0

0 0 −σ
3


 , [εp] =



εp ηp 0

ηp −ε
p

2
0

0 0 −ε
p

2




(8.126)

where ηp is the tensorial shear strain. The intrinsic time is obtained from

dζ 2 = dεp ·K · dεp (8.127)

0

1

2

A

B
�

�

FIGURE 8.8
Two strain paths of combined axial–torsion.
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as

dζ = [k21(dεp)2 + k22(dη
p)2]1/2 (8.128)

where k1 and k2 are constants. We follow the work ofWu and Yang [25] in the
following discussion with permission from Elsevier.

(A) Path 01A

The specimen isfirst strained inpure torsion from0 to 1 (Figure 8.8) and then
strained in tension from 1 to Awhile keeping the total shear strain constant.
The plastic shear strain at 1 is denoted by ηp∗ , the corresponding shear stress
by τ ∗, and the intrinsic time by z∗. There are two stages in this path. The first
stage is straining from 0 to 1 and the second stage from 1 toA.We have a pure
torsion in the first stage and the equations are from (8.125)

τ = σ ′y
dηp

dz
+ 2µ2

∫ z

0
e−α(z−z′)dη

p

dz′
dz′ + 2µ1ηp and σ = 0 (8.129)

Since during this stage, dζ = k2 dηp, (8.129) may be integrated. In the second
stage, (8.125) gives

σ = 1.5
(
σ ′y

dεp

dz
+ 2µ2

∫ z

z∗
e−α(z−z′)dε

p

dz′
dz′ + 2µ1εp

)
(8.130)

and

τ = σ ′y
dηp

dz
+ 2µ2X e−αz + 2µ2

∫ z

z∗
e−α(z−z′)dη

p

dz′
dz′ + 2µ1ηp (8.131)

where

X =
∫ z∗

0
eαz
′ dηp

dz′
dz′ = 1

k2

{
C
α
[eαz∗ − 1] − C − 1

α − β [e
(α−β)z∗ − 1]

}
(8.132)

Equation (8.131) may be reduced to a closed-form expression for τ in terms
of z, which is accomplished by use of the following procedure.
We note that η remains constant during this stage and we have

dηp = − dτ
2µ0

(8.133)

in which µ0 is the shear modulus. (8.133) is then integrated to yield

ηp = ηp∗ − 1
2µ0

(τ − τ ∗) (8.134)
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Letting z−z∗ = t and z′ −z∗ = t′ andmaking use of (8.133) and (8.134), (8.131)
may be written as

τ = −σ
′
y

2µ0

dτ
dt
+ 2µ2 e−α(t+z

∗)X − µ2
µ0

∫ t

0
e−α(t−t′) dτ

dt′
dt′

+ 2µ1

[
η
p
∗ − 1

2µ0
(t− t∗)

]
(8.135)

Laplace transform of (8.135) gives

τ̄ = Q̄

R̄

= p{(p+ α)σ ′yτ ∗ + 4µ0µ2 e−αz
∗
X + 2µ2τ ∗} + 4µ0µ1(η

p
∗ + (τ ∗/2µ0))(p+ α)

p{σ ′yp2 + [ασ ′y + 2(µ0 + µ1 + µ2)]p+ 2(µ0 + µ1)α}
(8.136)

which, by partial fraction, can be reduced to

τ̄ = 2
p
µ0µ1

µ0 + µ1
(
η
p
∗ + τ ∗

2µ0

)
+ A

p− α′ +
B

p− β ′ (8.137)

where τ̄ is the Laplace transform of τ(z) and A, B, α′, β ′ are constants. Con-
stants α′ and β ′ are the zeros of R̄(p) = 0;A = Q̄(α′)/R̄′(α′), B = Q̄(β ′)/R̄′(β ′),
and R̄′(p) = dR̄/dp. The functions Q̄(p) and R̄(p) are defined in (8.136). Finally,
(8.137) may be inverted to yield

τ = 2µ0µ1
µ0 + µ1

(
η
p
∗ + τ ∗

2µ0

)
+ A eα

′(z−z∗) + B eβ
′(z−z∗) (8.138)

which is the expression relating τ to z.
The equation for axial stress (8.130) may be written in a form convenient

for numerical computation. Let S = ∫ z
z∗ e
−α(z−z′)(dεp/dz′)dz′; then by

differentiating this integral with respect to z, we obtain

dS
dz
= dεp

dz
− αS (8.139)

in which, when dεp/dz is known, S may be computed step by step. Thus,
σ may be found from

σ = 1.5
(
σ ′y

dεp

dz
+ 2µ2S+ 3µ1εp

)
(8.140)
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The quantity dεp/dz is computed from the equation below which is found
from (8.128) and (8.133)

(
dεp

dz

)2
= 1

k21

[(
dζ
dz

)2
−
(

k2
2G0

)2 (dτ
dz

)2]
(8.141)

The quantity dζ/dz is given by form (b) of (8.110) and dτ/dz is found by
differentiation of (8.138). Therefore, by assuming a value for z, τ , and dτ/dz
may be computed from (8.138), and dεp/dzmay be found from (8.141). Using
the latter value, S can be found step by step from (8.139) and σ can be obtained
from (8.140). Furthermore, knowing the value of dεp/dz and using (8.133), εp

and ηp can be computed.

(B) Path 02B

The specimen is first strained in pure tension from 0 to 2 (Figure 8.8) and then
strained in torsion from 2 to B while keeping the total axial strain constant.
The plastic tensile strain at 2 is denoted by εp∗ , the corresponding tensile stress
by σ ∗, and the intrinsic time by ẑ∗. There are two stages in this path. The first
stage is straining in pure tension from 0 to 2, and the second stage from 2 to B.
The equations for stage 1 are

σ = 1.5
(
σ ′y

dεp

dz
+ 2µ2

∫ z

0
e−α(z−z′)dε

p

dz′
dz′ + 2µ1εp

)
and τ = 0

(8.142)

and the equations for stage 2 are

σ = 1.5
(
σ ′y

dεp

dz
+ 2µ2Y e−αz + 2µ2

∫ z

ẑ∗
e−α(z−z′)dε

p

dz′
dz′ + 2µ1εp

)
(8.143)

and

τ = σ ′y
dηp

dz
+ 2µ2

∫ z

ẑ∗
e−α(z−z′)dη

p

dz′
dz′ + 2µ1ηp (8.144)

where

Y =
∫ ẑ∗

0
eαz
′ dεp

dz′
dz′ = 1

k1

{
C
α
[eαẑ∗ − 1] − C − 1

α − β [e
(α−β)ẑ∗ − 1]

}
(8.145)

Following a similar procedure as in Path 01A, we find

σ = E0Et
E0 + Et

(
ε
p
∗ + σ

∗

E0

)
+ Â eα̂

′(z−ẑ∗) + B̂ eβ̂
′(z−ẑ∗) (8.146)
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dεp = −dσ
E0

(8.147)

Ŝ =
∫ z

ẑ∗
e−α(z−z′)dη

p

dz′
dz′ (8.148)

dŜ
dz
= dηp

dz
− αŜ (8.149)

τ = σ ′y
dηp

dz
+ 2µ2Ŝ+ 2µ1ηp (8.150)

and

(
dηp

dz

)2
= 1

k22

[(
dζ
dz

)2
−
(
k1
E0

)2 (dσ
dz

)2]
(8.151)

in which α̂′, β̂ ′, Â, B̂ are constants; E0 is Young’s modulus and Et = 3µ1.
Assuming a value for z, σ , and dσ/dz may be computed from (8.146), and
dηp/dz may be found from (8.151). Using the latter value, Ŝ can be found
step by step from (8.149) and τ can be obtained from (8.150). Furthermore,
knowing the value of dηp/dz and using (8.147), εp and ηp can be computed.
For the purpose of assessing the validity of the derived equations, the the-

oretical results are compared with the experimental data obtained by Ohashi
et al. [26] for thin-walled tubular brass (60% Cu, 40% Zn) specimens. The
constants of the theory have been determined in [25] to be σ ′y = 95.02 MPa,
β = 4.3996, C = 4.5799, µ0 = 12.74 GPa, µ2 = 6.37 GPa, µ1 = 49.0 MPa,
k1 = 1, and α = 500. Thematerial response for Path 01Ais shown in Figure 8.9
after torsion prestrain of ηp = 4.33 × 10−3, 8.66 × 10−3, 17.32 × 10−3, and
25.98 × 10−3. It is seen that the theory agrees well qualitatively with the
experiment. There are quantitative discrepancies between the theory and
experiment at the knee portion of the axial stress curve, however. In addition,
the theory predicted a faster relaxation of shear stress than the experimental
data indicated.
Ohashi and his coworkers [27,28] have described the same experimental

data using the simple endochronic theory with very good agreement. Ohashi
et al. made the kernel function a tensor quantity. Thus, different stress com-
ponents are associated with different components of the kernel function
and the parameters are different for each component of the kernel function.
In addition, the intrinsic time was made a function of the arc length as well
as the radius of curvature of the strain path. More parameters have been
introduced into the theory by this generalization.
Using the method of solution of Wu and Yang [25], the endochronic con-

stitutive equation (8.125) was applied by Wu et al. [29] to investigate the
stress response to two cyclic, nonproportional strain paths in the axial–torsion
strain space. The first path involved a cyclic axial straining and unstraining
following a shear prestrain, and the second path was cyclic in shear after a
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FIGURE 8.9
Stress response to strain path of torsion followed by tension (FromWu, H.C. and Yang, R.J., Int.
J. Non-Linear Mech., 18, 395, 1983. With permission from Elsevier).

prestrain in tension. Type 304 stainless steel tubular specimens were tested
at constant strain-rate of 5 × 10−4 per second. The theory was capable of
predicting the stress response to the two cyclic strain paths considered.
Further investigation of multiaxial straining was conducted by Wu et al.

[30]. Plastic strain-controlled experiments were conducted on 304 stainless
steel tubular specimens. The plastic strain-control was feasible by means of
a computer-aided material test system. Three in-phase plastic strain paths
(a pure axial path, a pure torsional path, and an axial–torsion in-phase
path) and two out-of-phase plastic-strain paths (small and large perturba-
tions from the axial–torsion in-phase path)were studied, and the endochronic
constitutive equation (8.125) was used to obtain theoretical results for the
five strain paths considered. It was shown that the theory and experi-
ment have good agreement. Furthermore, both experimental and theoretical
results show that strain hardening is enhanced by out-of-phase loading.
Figure 8.10(a) shows the theoretical and experimental plastic strain path of
path 5, the out-of-phase path with large perturbation from the axial–torsion
in-phase path. The corresponding axial stress versus plastic axial strain plot
is shown in Figure 8.10(b), and the corresponding shear stress versus plastic
shear strain plot is shown in Figure 8.10(c).
Finally, we mention that Wu and Yeh [31] applied (8.125) to investigate

the combined axial-internal pressure loading of tubular specimens and com-
pared their results with their own experimental data. Additional work on
endochronic theory and its application have been conducted by Valanis and
his coworkers [32,33] and byAtluri and coworkers in numerical computation
[34,35].
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8.4.6 The Endochronic Theory of Viscoplasticity

A general introduction of the strain-rate effect is given in Section 5.2.4. The
strain-rate sensitiveplasticity is alsoknownas theviscoplasticity. Basedon the
flow theory of plasticity, the viscoplastic effect was investigated by Perzyna
[36], Phillips and Wu [37], Krempl [38], and others. The endochronic visco-
plasticity provides a framework for a unified theory to discuss the constant
strain-rate stress–strain curves, the creep curves, and the stress relaxation
all together. In describing the viscoplastic behavior, Valanis [6] defines the
intrinsic time as

dζ 2 = Pijkm dεij dεkm + g2 dt2 (8.152)

where g is amaterial parameter. The intrinsic time given by (8.49) is a reduced
version for strain-rate independent plasticity. The simple endochronic visco-
plasticity was applied by Wu and his coworkers [39–41] to study the stress
wave propagation for strain-rate sensitive materials. In Wu and Yip [42], the
strain-rate and strain-rate history effects on the dynamic behavior of metals
were investigated using the improved endochronic theory. Lin and Wu [43]
further applied the theory to viscoplasticwavepropagation. Furthermore, the
theory was applied by Wu and Ho [44] to discuss the phenomenon of tran-
sient creep. In this subsection, we discuss the strain-rate effect for uniaxial
loading following the work of [42] and creep following [44].
To obtain amore general formof the intrinsic timemeasure, which accounts

for strain-rate, it is assumed that a spectrumof r intrinsic times exists and each
intrinsic time corresponds to an internal state variable. Thus, for each intrinsic
time, we write

dζ 2i = hi(εp)(dεp)2 + gi(εp)(dt)2, i = 1, 2, . . . , r (8.153)

where hi and gi are functions of dεp, and t is the real time. (8.153) can be
written as

dζi = ±
[
hi(εp)+ gi(εp)

(ε̇p)2

]1/2
dεp, i = 1, 2, . . . , r (8.154)

Introducing an average intrinsic time measure such that

dζ = �(dζ1, dζ2, . . . , dζr) (8.155)

then, using (8.154), we obtain

dζ = ±k(εp, ε̇p)dεp (8.156)

The function k is known as the strain-rate sensitivity function and it is
a function of εp and ε̇p. For simplicity, we assume that k is a function of ε̇p
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only, that is,

dζ = k(ε̇p)|dεp| (8.157)

This relation is the same as that proposed earlier in [39], except that we now
use the plastic strain instead of the total strain. In the three-dimensional
version, (8.157) is

(dζ )2 = k2(|ε̇p|)dεp · dεp (8.158)

Let us now consider the constant strain-rate stress–strain curves. Using
(8.111), form (a) of (8.110), and (8.157), (8.109)maybe integratedwhile holding
ε̇p constant to yield

σ = σDy (1+ β1εp)+ (σ 0 − σDy )(1+ β1εp){1− (1+ β1εp)−n} + E2εp

(8.159)

where

σDy =
σy

k(ε̇p)
(8.160)

and

n = α

β
+ 1 and β1 = βk = Et − E2

σ 0
(8.161)

Note that σy is the static yield stress. The dynamic yield stress σDy , the tangent
modulus Et at large εp, and the intercept of the asymptote to the stress–strain
curve with the stress axis σ 0 can be measured directly from each constant
strain-rate stress–strain curve (see Figure 8.5). For the sake of simplicity, we
have not introduced new notations for Et and σ 0. But these are dynamic
quantities and they vary with each constant strain-rate stress–strain curve.
For most materials, the constant strain-rate stress–strain curves for various
strain-rates are parallel to each other at large εp and, in this case, Et does not
vary with the strain-rate. Using the method of Example 8.2, the relations in
(8.161) have been obtained. The parameters β1, n, and E2 are determined
by the trial and error method so that the theoretical curve agrees with the
experimental reference curve. The experimental reference curve is usually
taken as the constant strain-rate stress–strain curve that has the lowest strain-
rate ε̇p0 of all the curves. The following function has been used by Lin andWu
[39] and Wu and Yip [42] to define the strain-rate sensitivity function k

k(ε̇p) = 1− ks log

(
ε̇p

ε̇
p
0

)
(8.162)
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where ks is amaterial parameter. Figure 8.11 shows that (1.162) can fit nicely to
the experimental data of Karnes and Ripperger [45] for annealed high-purity
aluminum for the strain-rate range from 10−4 to 103 s−1. The strain-rate is
shown as θ̇ in the figure. From each experimental constant strain-rate stress–
strain curve, we determine the dynamic yield stress σDy , and, since we know
σy , k(ε̇p) can be found from (8.160).
Equation (8.159) describes a set of stress–strain curves at various constant

strain-rates. By use of (8.162), the theoretical constant strain-rate stress–strain
curves thus obtained are compared with the experimental curves of [45] and
shown in Figure 8.12. The parameters for theoretical curves are E0 = 10 ×
106 psi (6.89 × 104 MPa), σ 00 = 1 × 103 psi (6.89 MPa), σy = 0.75 × 103 psi
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Strain-rate sensitivity function k (FromWu, H.C. and Yip, M.C., Int. J. Solids Struct., 16, 515, 1980.
With permission from Elsevier).
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(5.17 MPa), β = 180, n = 25, and E2 = 0. We note that σ 00 is the intercept of
the asymptotic line with the stress axis for the reference stress–strain curve.
The foregoing work is relevant to strain-hardening metallic materials such

as f.c.c. metals. For materials such as mild steel, strain-softening occurs
after initial yielding. However, the material switches from strain softening to
strain-hardening at a strain of approximately 2%, and we shall call this type
of materials strain softening–hardening materials. The ζ–z relation for this
type of materials requires special attention. We use (8.110) form (c) for the
strain-softening portion and form (a) for the strain-hardening portion of the
material behavior, and introduce a critical intrinsic time ζcr (with the corres-
ponding zcr) to indicate the point of changeover from softening to hardening
in a stress–strain curve. Thus, the following relations apply:

dζ
dz
= f (z) = e−βsz and ζ = 1

βs
(1− e−βsz) with βs > 0, for z ≤ zcr

(8.163)

dζ
dz
= bh eβh(z−zcr) and ζ = ζcr − bh

βh
[1− eβh(z−zcr)] for z ≤ zcr

(8.164)

where βs, βh, bh are material parameters. Assuming that the ζ–z relation is
smooth and differentiable at the critical point, we have

bh = e−βszcr (8.165)

Thus, bh can be calculated if βs and zcr are known. The ζ–z relation for strain
softening–hardening materials is shown schematically in Figure 8.13.
Using the isotropic-hardening function defined by (8.163) to (8.165) and

the strain-rate sensitivity function defined by (8.162), (8.109) leads to the
constant strain-rate stress–strain curves for mild steel shown in Figure 8.14.
The plastic strain-rate is denoted by θ̇ in the figure. Theoretical results com-
pare favorably with the experimental data of Cambell and Marsh [46] in the

zcr z0

�cr

�

FIGURE 8.13
Isotropic-hardening function f for strain softening–hardening materials.
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range of strain-rate from 10−4 to 5 s−1. The details of the theoretical work are
reported in [42].
Wu andYip [42] also considered the strain-rate history effect in two loading

sequences: the low–high strain-rate change test sequence and the high–low
strain-rate change test sequence. In the first test sequence, the specimens
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were tested initially at a low prescribed constant strain-rate and tested at
a higher strain-rate in the subsequent loading. In the second test sequence,
the specimens were first tested at a high strain-rate and subsequently tested
at a lower strain-rate. Both strain-hardening materials and strain softening–
hardening materials were investigated. Different test sequences resulted in
different subsequent stress–strainbehaviors. LinandWu[43]usedanonlinear
form of (8.162) to describe the strain-rate sensitive behavior of α-titanium.
The intrinsic time defined by (8.158) is applicable to describing constant

strain-rate stress–strain curves as previously shown. In the unified theory,
(8.158) is combined with (8.152) to yield

(dz)2 =
(
dζ
f (ζ )

)2
+ g2 dt2 (8.166)

where

(dζ )2 = k2(|ε̇p|)dεp · dεp and k(|ε̇p|) = 1− ks log
( |ε̇p|
|ε̇p|0

)
(8.167)

The intrinsic time expressed by (8.166) and (8.167) provides a versatile
definition of intrinsic time. In this way, the strain-rate sensitive plasticity (the
rate dependence) can be accounted for by the function k(|ε̇p|), and (8.167)
shows that the accumulation of ζ is strain-rate dependent. Creep or stress
relaxation behavior (the time dependence) is accounted for by the function g.
Although both rate dependence and time dependence are time-dependent
behaviors, it is convenient to use these terminologies.
A flow theory of viscoplasticity can be derived from the endochronic

viscoplasticity equations. The method of derivation and the resulting equa-
tions are the same as those presented in Section 8.4.4, except that the yield
stress is replacedby thedynamicyield stress. The dynamic yield stress isdefined
by (8.160) through the strain-rate sensitivity function k. The flow rule remains
the same as in (8.97), which is

dεp = (σ′ − α)

σ ′y
dz (8.168)

but the yield criterion is now

(σ′ − α) · (σ′ − α) =
(
σ ′yf (z)

k

)2
with dζ 2 �= 0 (8.169)

or

dζ 2 = 0 (8.170)
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The function k describes the strain-rate sensitivity of the dynamic loading
surface so that σ ′y/k is the size of the constant strain-rate dynamic loading
surface, which is also known as the SCISR (surface of constant inelastic strain-
rate) — an acronym introduced by Robinson [47]. The function f denotes the
size of the SCISR due to isotropic hardening and α denotes the location of the
center of the SCISR. The distortion of the yield and loading surfaces is not
described by (8.169). That subject has been discussed by Wu et al. [48] and
Wu and Lu [49].
In the case of time-dependent deformation process (creep or stress relax-

ation), g �= 0; (8.167) and (8.168) may be substituted into (8.166) to
obtain

dz2 = k2(|ε̇p|) |σ
′ − α|2
(σ ′yf )2

dz2 + g2 dt2 (8.171)

or

dz = g√
1− k2(|σ− α|2/(σ ′yf )2)

dt (8.172)

Note that sincedz > 0anddt > 0, itmustbe thatg > 0.Acreep test ispreceded
by a constant strain-rate test. During this stage of plastic deformation, the
stress point is on the yield surface which from (8.169) is

∣∣σ′ − α
∣∣ = σ ′yf (z)

k
or 1− k2

|σ′ − α|2
(σ ′yf )2

= 0 (8.173)

However, since the stress point in the stress space stays at the same point but
the back stress increases during creep as experimentally observed byWu and
Ho [50] for annealed 304 stainless steel (theremay also be isotropic hardening
for othermaterials), the stress point, which is on the SCISRwhen creepbegins,
falls back into the “elastic region” of that SCISR as the SCISR moves during
creep. In the case of stress relaxation, the stress point also falls back into the
“elastic region” of the SCISR as the stress level reduces. Therefore, during
time-dependent inelastic behavior

1− k2
|σ′ − α|2
(σ ′yf )2

�= 0 (8.174)

In an effort to unify thedefinition of intrinsic time for bothplastic deformation
and time-dependent inelastic behavior, the function g must reduce to zero in
the case of plastic deformation. To this end, the following form of g has been
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found to be satisfactory

g = B

√
1− k2

|σ′ − α|2
(σ ′yf )2

(8.175)

where B is a scaling function. Substituting (8.175) into (8.172), the intrinsic
time for time-dependent inelastic behavior is now given by

dz = Bdt (8.176)

and the time-dependent inelastic strain (creep) may be found from (8.168) as

dεp = de− dσ′

2µ0
= (σ′ − α)

σ ′y
Bdt (8.177)

which is rewritten as

dσ′ = 2µ0

[
de− (σ

′ − α)

σ ′y
Bdt

]
(8.178)

In the rate form, (8.178) is

σ̇′ = 2µ0

[
ė− (σ

′ − α)

σ ′y
B

]
(8.179)

Creep and stress relaxation are now discussed separately. In the case of
creep, the stress holds constant, that is, σ̇′ = 0, and the creep strain-rate (ε̇p)c
equals the total strain-rate. Therefore, from (8.179)

(ε̇p)c = ė = (σ′ − α)

σ ′y
B (8.180)

The form of the scaling function B is now investigated. Miller [51] suggested
that the creep rate is a function of kinematic and isotropic hardenings and
proposed the expression

(ε̇p)c = ϕ
(

σ′ − α

R

)
(8.181)

where R denotes isotropic hardening; σ′ is the hold stress; and ϕ is a non-
linear function to be further discussed. Thus, during the creep process,
both kinematic and isotropic hardenings are active. The form of (8.181)
encompasses the experimental observations that both isotropic andkinematic
hardenings can be important factors in creep [50]. This equation is, therefore,
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used in this chapter. In classical creep theories and unified viscoplasticity
theories, the power, the exponential, and the hyperbolic sine functions are
usually used to provide a description of creep strain. Of these functional
forms, the power form has been broadly used because of its numerical
simplicity. This function is now used in this writing, so that

B = bσ ′y
|σ′ − α|

(
k|σ′ − α|
σ ′yf

)m

(8.182)

where b and m are material parameters. Finally by substituting (8.182) into
(8.180), the creep strain-rate is obtained as

(ε̇p)c = b

(
k|σ′ − α|
σ ′yf

)m
(σ′ − α)

|σ′ − α| (8.183)

which is a specials case of (8.181). At the very beginning when creep is about
to occur, the stress is still on the loading surface (SCISR) so that, from (8.169),
|σ′−α| = (σ ′yf )/k, g = 0, and (8.183) does not apply yet. However, only a small
perturbation so that |σ′ −α| < (σ ′yf )/kwould start the creep process andmake
(8.183) applicable. Since the perturbation is small, |σ′ − α| ≈ (σ ′yf )/k, so that
(ε̇p)c = b. Therefore, bmaybe identified as the initial creep strain-rate. During
the process of stress relaxation, the total strain increment de = 0 so that, by
use of (8.179), the rate of stress relaxation is

σ̇′ = −2µ0Bσ′ − α

σ ′y
(8.184)

Wu and Ho [44] applied the foregoing theory to describe their own exper-
imental results for AISI type 304 stainless steel. Isotropic hardening is
insignificant for this material [52]. It has been shown in [44] that the visco-
plastic endochronic constitutive equation is capable of describing the inelastic
behavior of this rate-sensitive metal for a variety of loading histories. The
features include combined isotropic–kinematic hardening, rate sensitivity
of plastic deformation, creep, and stress relaxation. In particular, the creep
curves with a constant strain-rate preloading stage previously shown in
Figure 5.13 are well predicted. In addition, they found that (1) meaningful
results of transient creep can be obtained only fromcreep testswith a carefully
controlled constant strain-ratepreloading stage; (2) a correlationbetween con-
stant strain-rate and constant stress-rate stress–strain curves can be achieved
by means of the viscoplastic endochronic constitutive equations; (3) with
the same strain-rate in the elastic region, the stress–strain curve of constant
stress-rate is stiffer than that of constant strain-rate; (4) a correlation between
creep with constant strain-rate and constant stress-rate preloadings can be
achieved by means of the viscoplastic endochronic constitutive equations;
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and (5) the initial creep rate is a continuation of the strain-rate of preloading
and the creep curves are noticeably influenced by the initial creep rate.
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Problems

(1) Derive (8.66) and (8.67).

(2) Derive (8.71) and (8.72).

(3) In the simple endochronic theory, if in the one-dimensional straining the
intrinsic time is defined by dζ = ±k dε, where k is a constant, plot the ε
versus ζ relation for straining followed by unstraining.

(4) For a thin-walled tubemade of an initially isotropicmaterial subjected to com-
bined axial–torsion, determine k1 and k2 in the expression dζ 2 = k21(dε

p)2 +
k22(dη

p)2, where ζ is intrinsic time and ηp is the plastic part of the tensorial
shear strain.

(5) Show that the solution of (8.90) is given by (8.91) and (8.92), if k1 = 1.

(6) We consider here the kernel function ξ(z) of the deviatoric constitutive equa-
tion (8.82). In Example 8.2, the kernel function is given by two exponential
terms. Consider now the case that the kernel function consists of n number of
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FIGURE 8.15
(a) Figure of Problem (8), (b) Figure of Problem (9).

exponential terms, show that in the case of k1 ≈ 1, the deviatoric stress is

σ′ = 2µ0

∫ z

0
ξ(z− z′) de

dz′ dz
′ = 2µ0

∫ z

0
ρ(z− z′)dQ

dz′ dz
′

where ρ(z) = δ(z)+∑n−1
s Rse−αsz + R0.

(7) In the strain controlled cyclic loading discussed in Section 8.4.5.2, the
amplitudeof the total strain iskept constant throughout the test. Theamplitude
of the plastic strain �ε̃p becomes constant at stable condition. Let �ζ̃ denote
the change in ζ in 1

4 -cycle at the stable condition and the corresponding change
in z is�z̃. Show that, if Form (b) of (8.110) is used for the f function, then when
z is large �ζ̃/C = �z̃ = constant. Show that the cyclic stress–strain curve is

σ = σ 0 − (σ 0 − Cσy)

{
2e−2α�z̃

1+ e−2α�z̃

}
+ E2ε

p

(8) In a strain-controlled combined tension–torsion test of a tubular specimen,
if the strain-path is linear shown in Figure 8.15(a), use the endochronic
constitutive equation to determine the corresponding stress-path.

(9) In a stress-controlled combined tension–torsion test of a tubular specimen, con-
sider the tor-tenpath shown inFigure 8.15(b). Use the endochronic constitutive
equation to determine the corresponding strain-path. Plot the strain-path.

(10) In the constant strain-rate uniaxial stress test, if the test is conducted at a low
strain-rate into the plastic strain range and then changed to a higher constant
strain-rate, what happens to the stress–strain curve?
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9
Topics in Endochronic Plasticity

9.1 Introduction

The endochronic theory of plasticity presented in Chapter 8 is further
developed in this chapter and applied to investigate topics such as anisotropic
plasticity, finite plastic deformation, engineering materials with plastic volu-
metric deformation, and damage mechanics. It is seen that the endochronic
theory is versatile and is applicable to a wide range of engineering materials.

9.2 An Endochronic Theory of Anisotropic Plasticity

Material anisotropy is a significant factor affecting metal forming, and it is
of special importance in the case of sheet metals. The anisotropic properties
of sheet metals are discussed in Chapter 10 from the viewpoint of the flow
theory of plasticity. A general theory of anisotropic plasticity is developed in
Chapter 11usingaconvectedcoordinate system. In this section, wediscuss the
anisotropic plastic behaviors of metals using a endochronic plasticity. We dis-
cuss the topic of deformation induced anisotropy and develop an endochronic
theory for anisotropic sheet metals.

9.2.1 An Endochronic Theory Accounting for
Deformation Induced Anisotropy

In the endochronic theory, the free energy function is from (8.63) given by

� = 1
2ε ·A · ε+ ε · Br · qr + 1

2q
r · Cr · qr (9.1)

Theconstitutiveequationand theevolutionequationsare from(8.51) and (8.57)

σ = ∂�
∂ε

and
∂�

∂qr
+ br · dq

r

dz
= 0, r = 1, 2, . . . ,n (9.2)
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where A,Br,Cr, and br are isotropic fourth-rank constant tensors; σ, ε, and
qr are symmetric tensors. By use of (9.1) and (9.2), the constitutive equation
becomes

σkk = 3A0εkk +
∑
r

3Br0q
r
kk

σ ′ij = A2eij +
∑
r

Br2p
r
ij

(9.3)

To consider deformation induced anisotropy, the evolution of qr must
depend on the strain path. This may be achieved by having an anisotropic
br. Following Wu and Yeh [1], we define a strain path with reference to a
coordinate system. Thus, we may talk about the normal strain and the shear
strain. The internal structure of a material changes differently when it is under
normal strain and under shear strain. Hence, qr11 evolves differently than qr12.
We assume that qrij is symmetric and write its components in a matrix form as

[qr] = [qr11, qr22, qr33, qr23, qr13, qr12]T (9.4)

We assume further that, in the internal structure, no coupled effect exists
either between shear and normal components or among shear components.
Then, tensor brijkm is of the following form:

[br] =




br1 br2 br2 0 0 0
br2 br1 br2 0 0 0
br2 br2 br1 0 0 0
0 0 0 br3 0 0
0 0 0 0 br3 0
0 0 0 0 0 br3




(9.5)

The matrix in (9.5) is obtained by considering symmetry during permutation
of 1, 2, and 3. We further have

br1111 = br2222 = br3333 = br1, br2323 = br1313 = br1212 = br3,
br1122 = br1133 = br2233 = br3311 = · · · = br2, other brijkm = 0 (9.6)

We now consider the evolution of qr. Using (9.1), we obtain the following
expression

∂�

∂qrij
= Br1εkkδij + Br2εij + Cr1qrkkδij + Cr2qrij (9.7)
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On the other hand, we have

br · q̇r =




br1q̇
r
11 + br2q̇r22 + br2q̇r33

br2q̇
r
11 + br1q̇r22 + br2q̇r33

br2q̇
r
11 + br2q̇r22 + br1q̇r33

br3q̇
r
23

br3q̇
r
13

br3q̇
r
12



=




(br1 − br2)q̇r11 + br2q̇rkk
(br1 − br2)q̇r22 + br2q̇rkk
(br1 − br2)q̇r33 + br2q̇rkk

br3q̇
r
23

br3q̇
r
13

br3q̇
r
12




(9.8)

Substituting (9.7) and (9.8) into the second equation of (9.2), we obtain the
evolution equations for the cases of i = j and i 	= j. Thus, the governing
equations are summarized below. The hydrostatic equations are

σkk = 3A0εkk + 3
∑
r

Br0q
r
kk

Br0εkk + Cr0qrkk + br0
dqrkk
dz
= 0

(9.9)

and the deviatoric equations are

σ ′ij = A2eij +
∑
r

Br2 p
r
ij

Br2eij + Cr2prij + (br1 − br2)
dprij
dz
= 0, i = j

Br2eij + Cr2prij + br3
dprij
dz
= 0, i 	= j

(9.10)

It is assumed that the material is plastically incompressible so that only the
deviatoric part of the constitutive equation is of further interest. The evolution
equations in (9.10) for i = j and i 	= j can be solved separately to yield
expressions for pri i (i not summed) and prij, which are then substituted into the
first equation of (9.10) to yield

σ ′i i = A2ei i −
∑
r

Br2B
r
2

Cr2

∫ z

0
e−ρr(z−z′)ei i(z′)dz′, i not summed

σ ′ij = A2eij −
∑
r

Br2B
r
2

Cr2

∫ z

0
e−βr(z−z′)eij(z′)dz′, i 	= j

(9.11)

where

ρr = Cr2
br1 − br2

, βr = Cr2
br3

(9.12)
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By use of Laplace transformation as in Section 8.4.3, (9.11) may be rewritten
in terms of plastic strain as

σ ′ij = σ ′y
depij
dz
+
∫ z

0
λijkm(z− z′)

depkm
dz′

dz′ (9.13)

where

[λ] =




µ 0
µ

µ

ν

ν

0 ν




with

µ(z) =
∑
r

µr e−mrz + µ1

ν(z) =
∑
r

νr e−nrz + ν1
(9.14)

in which µr,mr, νr, and nr are material constants of the kernel functions µ(z)
and ν(z). Note that in the case of br1 = br2+ br3, we find ρr = βr, which leads to
µ(z) = ν(z). Thus, the following endochronic equation for the isotropic rate
of kinematic hardening is recovered:

σ ′ij = σ ′y
depij
dz
+
∫ z

0
µ(z− z′)

depij
dz′

dz′ (9.15)

We note that the anisotropic form (9.13) is the same as that used by Ohashi
and his coworkers [2,3].

Let us further consider the anisotropic endochronic equation (9.13) and,
following Wu et al. [4], establish a relation between the definition of the
intrinsic time and the form of the yield function. In (9.13), the back stress is

αij =
∫ z

0
λijkm(z− z′)

depkm
dz′

dz′ (9.16)

Thus, (9.13) is written as

σ ′ij − αij = σ ′y
depij
dz
= σ ′y f (z)

depij
dζ

(9.17)

resulting in the following flow rule

depij =
1
σ ′y
(σ ′ij − αij)dz (9.18)

Define the intrinsic time as

dζ 2 = dep ·K · dep (9.19)
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in which K is a fourth-rank tensor. Then, by using (9.18), (9.19) becomes

dζ 2 = (σ′ − α)
dζ
σ ′yf
·K · (σ′ − α)

dζ
σ ′yf

(9.20)

or

[(σ′ − α) ·K · (σ′ − α)− (σ ′yf )2]dζ 2 = 0 (9.21)

Therefore,

Either (σ′ − α) ·K · (σ′ − α) = (σ ′yf )2 with dζ 2 	= 0

or dζ = 0 elastic behavior (9.22)

The first equation of (9.22) is the yield criterion of this anisotropic version
of the endochronic plasticity and the second equation of (9.22) describes the
elastic behavior, which may be seen from (9.19) due to the positive definite-
ness of K. The condition dζ = 0 leads to the elastic constitutive equation as
in (8.104).

From (9.19), due to the symmetry of depij , Kijkm enjoys the following
symmetry:

depijKijkm depkm = depkmKkmij de
p
ij , depijKijkm depkm = depijKijmk depmk ,

Kijkm = Kkmij = Kijmk
(9.23)

The number of independent components of K is reduced from 81 to 21.
In most previous investigations, K was assumed to be isotropic through-
out the course of deformation for mathematical simplicity. This assumption
is now relaxed so that K depends on the direction of loading. Equation (9.19)
simply asserts that the rate of accumulation of the intrinsic time ζ is not the
same when the material is subjected to shear or subjected to tension. How-
ever, K is initially isotropic for initially isotropic materials. In which case, the
first equation of (9.22) reduces to the Mises yield criterion.

Equation (9.22) represents a distortion from the Mises yield criterion due
to the presence of K. This criterion may be used for the initial as well as the
subsequent yielding. In particular, (9.22) can accommodate the idea that the
initial yield surface is of the type of Mises, but the subsequent yield surfaces
are obtained by the compression and stretching of the Mises yield surface. It
should also be pointed out that while the plastic strain increment is still given
by (9.18) in this modified theory, this tensor is no longer normal to the yield
surface when K is not isotropic.

An important point to make here is that a formal link between the definition
of intrinsic time and the form of the yield function has been established. The
definitionof intrinsic timedirectly affects the formof theyield function, so that
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the intrinsic time defined by (9.19) leads to a yield function defined by (9.22).
On the other hand, a slightly different definition of intrinsic time, such as

dζ 2 = dεp ·K · dεp + tr(L · dεp)dζ (9.24)

would lead to a yield function given by

(σ′ − α) ·K · (σ′ − α)+ σ ′yf (z) tr[L · (σ′ − α)] = (σ ′yf (z))2 (9.25)

where L is a material tensor.
Explicit equations can be obtained from the theory of this subsection

in the case of axial–torsion loading of a thin-walled tubular specimen.
Since the material is assumed to be plastically incompressible and the
cylindrical coordinates (r, θ , z) are used in this discussion, the conditions
dεp

zz + dεp
rr + dεp

θθ = 0 and dεp
rr = dεp

θθ apply. The latter condition is a good
approximation in the case of small plastic deformation, but it is not so when
plastic deformation is large; see Wu et al. [5] for further discussion. The
matrices of the deviatoric stress σ′, the back stress α, and the plastic strain
increment dεp are

[σ ′] =



−σ
3

0 0

0
−σ
3

τ

0 τ
2σ
3


 , [α] =



−αzz

3
0 0

0
−αzz

3
αθz

0 αθz
2αzz

3


 ,

[dεp] =



−dεp

2
0 0

0
−dεp

2
dηp

0 dηp dεp


 (9.26)

which may also be written as column vectors as

[σ ′] =



−σ
3

2σ
3
τ


 , [α] =



−αzz

3
2αzz

3
αθz


 , [dεp] =



−dεp

2
dεp

dηp


 (9.27)

Then, the fourth-rank tensor K is given by the square matrix

[K] =

K11 K12 K13
K12 K22 K23
K13 K23 K33


 (9.28)
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Substituting (9.27) and (9.28) into (9.19), we obtain

dζ 2 = dεp ·K · dεp = K1(dεp)2 + 2K3(dεp)(dηp)+ K2(dηp)2 (9.29)

where

K1 = K11

4
− K12 + K22, K2 = K33, K3 = 1

2
(2K23 − K13) (9.30)

and, by using (9.18), the yield function (9.22) becomes

4
9K1(σ − αzz)2 + 4

3K3(σ − αzz)(τ − αθz)+ K2(τ − αθz)2 = (σ ′yf (z))2 (9.31)

It can be seen from (9.31) that the yield function is an ellipse in the σ versus
τ space. As plastic deformation occurs, the ellipse will change its shape,
depending on the values of K1 and K2, when the semimajor and semiminor
axes change their lengths. At the same time, isotropic hardening takes place
according to function f (z) and the ellipse translates according to the mag-
nitude of the back stress α. In addition, rotation of the yield surface occurs
according to the value of 2K3. Therefore, the major features of subsequent
yield surfaces as observed experimentally by Phillips and Tang [6] and Wu
and Yeh [7] can all be described. From the experimental results of Phillips
and his coworkers, the initial value of K3 is zero. Then by comparing equa-
tion (9.31) with the Mises yield criterion, the initial values of K1 and K2 are
determined to be 3/2 and 2, respectively. Wu and Lu [8] have established
a procedure to determine the metric of the anisotropic intrinsic time using
information related to the yield surface of 304 stainless steel.

9.2.2 An Endochronic Theory for Anisotropic Sheet Metals

The contents of this section were initially presented by Wu and Hong [9]
and are reproduced here with permission from Elsevier. In the Helmholtz
formulation, the free energy is

� = 1
2

∑
r

Arijkm(εij − qrij)(εkm − qrkm) (9.32)

where Arijkm are constants. For a rolled metal sheet, let x denote the rolling
direction (RD), y the transverse direction (TD), and z the normal direction
(ND). The nonzero strain components are εx, εy, εxy, and εz. No energy is
stored due to εz. Thus, (9.32) reduces to

� = 1
2

∑
r

[Ar(εx − qrx)2 + Br(εy − qry)2 + 2Dr(εxy − qrxy)2

+ 2Cr(εx − qrx)(εy − qry)] (9.33)
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where Ar, Br, Cr, and Dr are constants. The stress components are

σx = ∂�
∂εx
=
∑
r

[Ar(εx − qrx)+ Cr(εy − qry)] (9.34a)

σy = ∂�
∂εy
=
∑
r

[Br(εy − qry)+ Cr(εx − qrx)] (9.34b)

σxy = ∂�

∂εxy
=
∑
r

[Dr(εxy − qrxy)] (9.34c)

and the evolution equations for the internal variables are from (8.57):

∂�

∂qrij
+ brijkm

dqrkm
dz
= 0 (r not summed) (9.35)

In the rolled sheet metal, the components of internal variables are (qrx, q
r
y, q

r
xy)

and it is assumed that there are no coupling effects among these components,
so that the dissipation tensor has the following form

[br] =


brx 0 0
0 bry 0
0 0 brxy


 (9.36)

Using (9.33) and (9.36), (9.35) reduces to

dqrx
dz
+ Prqrx +Urqry = Prεx +Urεy (9.37a)

dqry
dz
+Qrqry + Vrqrx = Qrεy + Vrεx (9.37b)

dqrxy
dz
+ Rrqrxy = Rrεxy (9.37c)

where

Pr = Ar

brx
, Ur = Cr

brx
, Qr = Br

bry
, Vr = Cr

bry
, Rr = Dr

brxy
(9.38)
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Note that (9.37a,b) are coupled in qrx and qry. A standard procedure may be
used to decouple the equations. The resulting equations are

dq̄rx
dz
+ λr1q̄rx = C̃rεx + D̃rεy (9.39a)

dq̄ry
dz
+ λr2q̄ry = Ẽrεx + F̃rεy (9.39b)

where λr1 and λr2 are eigenvalues of the matrix
[Pr Ur

Vr Qr
]
. Note that sinceUr 	= 0

and Vr 	= 0, there are always two real eigenvalues. q̄rx and q̄ry are related to qrx
and qry through the eigenvectors of the matrix by the following relations

qrx = Ur(q̄rx + q̄ry), qry = (−Pr + λr1)q̄rx + (−Pr + λr2)q̄ry (9.40)

and

C̃r = [−(P
r)2 + λr2Pr − PrVr + λr1Vr]

Ur(λr2 − λr1)
D̃r = [−P

rUr + λr2Ur − PrQr + λr1Qr]
Ur(λr2 − λr1)

Ẽr = (U
rPr +UrVr)
Ur(λr2 − λr1)

F̃r = [(U
r)2 +UrQr]

Ur(λr2 − λr1)

(9.41)

Note that (9.39a,b) are now decoupled in q̄rx and q̄ry. These equations may be
integrated with results substituted into (9.40) to obtain

qrx = Ur
∫ z

0
e−λr1(z−z′)[C̃rεx(z′)+ D̃rεy(z′)]dz′

+Ur
∫ z

0
e−λr2(z−z′)[Ẽrεx(z′)+ F̃rεy(z′)]dz′ (9.42a)

qry = (−Pr + λr1)
∫ z

0
e−λr1(z−z′)[C̃rεx(z′)+ D̃rεy(z′)]dz′

+ (−Pr + λr2)
∫ z

0
e−λr2(z−z′)[Ẽrεx(z′)+ F̃rεy(z′)]dz′ (9.42b)

Also, (9.37c) may be integrated to yield

qrxy = Rr
∫ z

0
e−Rr(z−z′)εxy(z′)dz′ (9.42c)
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with qrx(0) = qry(0) = qrxy(0) = 0. By substitution of (9.42) into (9.34) and by
use of integration by parts, the following expressions are found

σx = Y1εx(z)+ Y2εy(z)+
∑
r

{
Mr
∫ z

0
e−λr1(z−z′)

[
C̃r

dεx
dz′
+ D̃r dεy

dz′

]
dz′
}

+
∑
r

{
Nr
∫ z

0
e−λr2(z−z′)

[
Ẽr

dεx
dz′
+ F̃r dεy

dz′

]
dz′
}

(9.43a)

σy = Y3εy(z)+ Y4εx(z)+
∑
r

{
Kr
∫ z

0
e−λr1(z−z′)

[
C̃r

dεx
dz′
+ D̃r dεy

dz′

]
dz′
}

+
∑
r

{
Lr
∫ z

0
e−λr2(z−z′)

[
Ẽr

dεx
dz′
+ F̃r dεy

dz′

]
dz′
}

(9.43b)

σxy =
∑
r

{
Dr
∫ z

0
e−Rr(z−z′)

dεxy
dz′

dz′
}

(9.43c)

where

Y1 = A−
∑
r

MrC̃r −
∑
r

NrẼr, Y2 = C −
∑
r

MrD̃r −
∑
r

NrF̃r

Y3 = B−
∑
r

KrD̃r −
∑
r

LrF̃r, Y4 = C −
∑
r

KrC̃r −
∑
r

LrẼr

A =
∑
r

Ar, B =
∑
r

Br, C =
∑
r

Cr,

Mr = 1
λr1

[
ArUr + Cr(−Pr + λr1)

]
, Nr = 1

λr2

[
ArUr + Cr(−Pr + λr2)

]
Kr = 1

λr1

[
CrUr + Br(−Pr + λr1)

]
, Lr = 1

λr2

[
CrUr + Br(−Pr + λr2)

]
(9.44)

Note that all quantities given in (9.44) are constants. A special case of (9.43) is
used to derive the following equations

σx = K−3/2
∫ z

0
G(z− z′)

[
(H + F)dεx

dz′
+Hdεy

dz′

]
dz′

σy = K−3/2
∫ z

0
G(z− z′)

[
(G+H)dεy

dz′
+Hdεx

dz′

]
dz′

σxy = K−3/2
∫ z

0
Gxy(z− z′)

[
M
N

dεxy
dz′

]
dz′

(9.45)
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where

G(z) =
∑
r

Gre−λrz with G(0) =
∑
r

Gr = 1

Gxy(z) =
∑
r

Grxye
−λrxyz with Gxy(0) =

∑
r

Grxy = 1

K = 2
3 (F + G+H) and M = (H + F)(G+H)−H2

(9.46)

Constitutive equations (9.45) are suitable for use in sheet metals. These are
expressions for the stress components in terms of the histories of the total
strain components εx, εy, and εxy. In the equations, E, F, G,H, Gr, Grxy, λ

r, and
λrxy are constants with r = 1, . . . ,n. The derivation of (9.45) is given in [9].

It is now desirable to express the stress in terms of the histories of plastic
strain components εp

x , εp
y , and εp

xy so that

σx = K−3/2
∫ z

0
ρ(z− z′)

[
(H + F)dε

p
x

dz′
+Hdεp

y

dz′

]
dz′

σy = K−3/2
∫ z

0
ρ(z− z′)

[
(G+H)dε

p
y

dz′
+Hdεp

x

dz′

]
dz′

σxy = K−3/2
∫ z

0
ρxy(z− z′)

[
M
N

dεp
x

dz′

]
dz′

(9.47)

The forms of expressions in the square brackets on the right-hand side of
(9.45) and (9.47) are assumed to be the same. These forms are established
based on plastic deformation for sheet metals, which is further discussed in
Chapter 10. The coefficients F, G, H, M, and N are those of the yield function
initially proposed by Hill [10]. The kernel functions ρ(z) and ρxy(z) can be
determined from knowledge of G(z) and Gxy(z) using the method of Laplace
transformation discussed in Section 8.4.3. Omitting the details of derivation,
which may be found in [9], the kernel functions are

ρ(z) = δ(z)+ ρ1(z) with ρ1(z) =
n−1∑
r=1

Rre−µrz

ρxy(z) = δ(z)+ ρxy1(z) with ρxy1(z) =
n−1∑
r=1

Rrxy e−µxyrz
(9.48)

where Rr, Rrxy, µr, and µxyr are positive constants. Substituting (9.48) into
(9.47), the constitutive equations for sheet metals may be obtained:

σx = K−3/2

[
(H + F)dε

p
x

dz
+Hdεp

y

dz

]

+ K−3/2
∫ z

0
ρ1(z− z′)

[
(H + F)dε

p
x

dz′
+Hdεp

y

dz′

]
dz′ (9.49a)
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σy = K−3/2

[
(G+H)dε

p
y

dz
+Hdεp

x

dz

]

+ K−3/2
∫ z

0
ρ1(z− z′)

[
(G+H)dε

p
y

dz′
+Hdεp

x

dz′

]
dz′ (9.49b)

σxy = K−3/2 + K−3/2
∫ z

0
ρxy1(z− z′)

[
M
N

dεp
x

dz′

]
dz′ (9.49c)

Denoting

αx = K−3/2
∫ z

0
ρ1(z− z′)

[
(H + F)dε

p
x

dz′
+Hdεp

y

dz′

]
dz′

αy = K−3/2
∫ z

0
ρ1(z− z′)

[
(G+H)dε

p
y

dz′
+Hdεp

x

dz′

]
dz′

αxy = K−3/2
∫ z

0
ρxy1(z− z′)

[
M
N

dεp
x

dz′

]
dz′

(9.50)

(9.49a,b) may be further written as[
(H + F)dε

p
x

dζ
+Hdεp

y

dζ

]
= σx − αx

K−3/2f[
(G+H)dε

p
y

dζ
+Hdεp

x

dζ

]
= σy − αy

K−3/2f

(9.51)

which may then be solved for

M
dεp

x

dζ
= (G+H)(σx − αx)

K−3/2f
− H(σy − αy)

K−3/2f
(9.52a)

M
dεp

y

dζ
= (H + F)(σy − αy)

K−3/2f
− H(σx − αx)

K−3/2f
(9.52b)

Also, (9.49c) is rewritten as

M
N

dεp
xy

dζ
= σxy − αxy

K−3/2f
(9.52c)

Therefore, in an anisotropic sheet, it takes a multiaxial stress state to produce
a single plastic strain component. Equations (9.52) may be viewed as the
flow rule using the concept of the flow theory of plasticity. It may be easily
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shown that the plastic strain increment as given by (9.52) is normal to the yield
surface to be discussed in the next paragraph. We note that, in the theory of
Section 9.2.1, the plastic strain increment is necessarily pointing along the
radial direction, emanating from the center of the yield surface, and it is not
normal to the yield surface after the yield surface has suffered a distortion.
Finally, plastic incompressibility is assumed so that

dεp
x + dεp

y + dεp
z = 0 (9.53)

It was established in [4] that the definition of the intrinsic time determines
the form of the yield function. For sheet metals, we now show that the
proposed definition of intrinsic time leads to Hill’s 1948 quadratic yield cri-
terion. The intrinsic time is defined using the concept of equivalent plastic
strain increment discussed in the appendix of [9], that is,

dζ = dε̄ =
{
(G+H)
K3 [(H + F)dεp

x +Hdεp
y ]2

− 2H
K3 [(H + F)dε

p
x +Hdεp

y ][(G+H)dεp
y +Hdεp

x ]

+ (H + F)
K3 [(G+H)dεp

y +Hdεp
x ]2 + 2N

K3

(
M
N

dεp
xy

)2
}1/2

(9.54)

Upon substitution of flow rule (9.51) or (9.52), we obtain from (9.54)

{
(G+H)
K3

(
σx − αx
K−3/2f

)2

− 2H
K3

(
σx − αx
K−3/2f

)(
σy − αy
K−3/2f

)

+ (H + F)
K3

(
σy − αy
K−3/2f

)2

+2H
K3

(
σxy − αxy
K−3/2f

)2

− 1

}
dζ 2 = 0 (9.55)

Thus, either dζ = 0 and the quantity in the bracket { } 	= 0, or dζ 	= 0 and the
bracket { } = 0. The cases of dζ = 0 and dζ 	= 0 correspond to the elastic and
plastic behavior, respectively. In the latter case, after simplification, we obtain

(G+H)(σx − αx)2 − 2H(σx − αx)(σy − αy)+ (H + F)(σy − αy)2
+ 2N(σxy − αxy)2 = f2 (9.56)

This is an extended version of Hill’s yield criterion [10]. The isotropic harden-
ing is expressed by f and the kinematic hardening is expressed by αx, αy,
and αxy. Coefficients F, G, H, and N are determined from experiments that
together with the plastic strain ratio Rα = dεp

y′/dε
p
z′ are discussed further in

Chapter 10. The plastic strain ratio is related to the test of a sheet type tension
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specimen, where x′ is along the longitudinal direction of the specimen, y′ is
the transverse direction, and z′ = z.

EXAMPLE 9.1 Show that the flow rule given by (9.52) obeys the normality
rule and is normal to the yield surface given by (9.56).

Solution

The yield function from (9.56) is

2φ = (G+H)(σx − αx)2 − 2H(σx − αx)(σy − αy)
+ (H + F)(σy − αy)2 +N(σxy − αxy)2 +N(σyx − αyx)2 − f2 (a)

Let us perform the following partial differentiation

∂φ

∂σx
= (G+H)(σx − αx)−H(σy − αy)

∂φ

∂σy
= −H(σx − αx)+ (H + F)(σy − αy)

∂φ

∂σxy
= N(σxy − αxy)

(b)

Comparing (b) with (9.52), we see that the two sets of equations differ only
by a scalar multiple factor. Therefore, we may conclude that (9.52) satisfies
the normality condition.

9.3 Endochronic Plasticity in the Finite Strain Range

In [11], Valanis considered internal variables qr (r = 1, 2, . . . ,n) as quantities
which transform as tensors with rotation of the material coordinate system,
but remain invariant with rotation of the spatial system. In [12], these
variables were regarded as quantities that transform as tensors with rotation
of the spatial coordinate system, giving rise to a spatial formulation of the
thermodynamics of internal variables. For tensors in the material coordinate
system, care was taken to distinguish between the covariant, contravariant,
and mixed components. This distinction gave rise to different constitutive
equations depending on which components were chosen as independent
variables. Valanis [13] further investigated the stress rate and the rate of
evolution for the back stress, and recommended that the convected rates
be used. He distinguished the convected rate for covariant stress from that
for contravariant stress, and applied them to show that, by use of the con-
vected rates, Prager’s linear kinematic-hardening rule did not lead to an
oscillatory shear stress–strain curve under simple shearing. It is well known
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that the shear stress–strain curve oscillates when the Jaumann rate is used
(Section 7.6.3). Valanis [13] further mentioned that while the two convected
rates have clear and distinct physical meanings, the Jaumann rate is the aver-
age of the aforementioned two rates and the physical meaning is obscure. The
convected rates are further discussed in Chapter 11 in conjunction with the
curvilinear coordinate system.

While the use of a convected rate is most appropriate for stress and kin-
ematic variables, the use of a convected rate for the back stress is questionable.
The back stress is a way to represent anisotropy resulting from the change
of material texture due to plastic deformation. While Dafalias [14] uses the
concept of plastic spin to account for the change of material texture (see
Section 7.6.2), he cautions against associating the plastic spin with the general
kinematics of deformation. The concept of plastic spin has been introduced
into the endochronic theory by Im and Atluri [15] and Wu et al. [5]. We fol-
low [5] in the remaining part of this section. We first discuss the concept of a
corotational integral, which is useful in the ensuing discussion of endochronic
theory for large strain.

9.3.1 Corotational Integrals

Suppose that a flexible body moves in space. The triad of unit vectors of frame
x̄i that rotates with the body coincides with that of the reference frame xi at
time zero. The two sets of coordinates are related by

[x̄] = [M]T[x] (9.57)

where [M] is the matrix of an orthogonal tensor, such that [M][M]T = [I].
Then, the following transformation laws apply

[ḡ] = [M]T[g] [g] = [M][ḡ]
[T̄] = [M]T[T][M] [T] = [M][T̄][M]T

(9.58)

where [g] is the matrix of a first-rank tensor and [T] is the matrix of a
second-rank tensor; [ḡ] and [T̄] refer to the x̄i frame and we may write their
corotational derivatives as

[ ∇
g
] = [ġ] − [�][g], [ ∇

T
] = [Ṫ] − [�][T] + [T][�] (9.59)

where

[�] = [Ṁ][M]T (9.60)
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and a dot over a tensor denotes its material derivative. It is easy to show that

[ ∇
T
] = [M][ ˙̄T][M]T = [M] ·

[M]T[T][M][M]T (9.61)

The expressions of (9.61) show that the corotational rate ofTwith respect to the
reference frame xi is obtained by finding the material rate of T̄ with respect to
frame x̄i and then transporting the result back to the reference frame xi. It may
be shown that the corotational rate is objective by considering a superposed
rigid body rotation Q, such that [M′] = [Q][M]. Thus,

[T̄] = [QM]T[T′][QM] = [M]T[Q]T[T′][Q][M] = [M]T[T][M] (9.62)

The last expression of (9.62) is obtained from (9.58) and we conclude from
(9.62) that

[T′] = [Q][T][Q]T (9.63)

Therefore, by using the first expression of (9.61), we obtain

[ ∇
T′
] = [M′][ ˙̄T][M′]T = [Q][M]([M]T[ ∇T ][M]

)
[M]T[Q]T = [Q][ ∇T ][Q]T

(9.64)

which shows that the corotational rate is objective.
Let us now consider the integral �{T} of the second-order objective tensor

T [16,17], which is a function of t and t′, that is, T = T(t, t′). Here, t is the
current time and t′ is a dummy parameter of integration. Referring to the
corotational frame x̄i, the integral is defined as:

�{T̄} =
∫ t

0
[T̄(t, t′)]dt′ =

∫ t

0
[M(t′)]T[T(t, t′)][M(t′)]dt′ = [M(t)]T�{T}[M(t)]

(9.65)

with

�{T} = [M(t)]
[∫ t

0
[M(t′)]T[T(t, t′)][M(t′)]dt′

]
[M(t)]T (9.66)

The integral �{T} is known as the corotational integral. Physically, the
corotational integral first transfers the tensor T to the x̄i frame to obtain T̄
and, after integration in the x̄i frame, it transports the result back to the xi
frame. Note that T(t′) is a special case of T(t, t′).
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Let us consider the expression of the back stress α, which will be used later.
Let the expression of back stress α for small deformation be

α =
∫ z

0
µ(z− z′)dεp

dz′
dz′ (9.67)

where z is the intrinsic time. We now extend expression (9.67) to large deform-
ation by use of (9.66). The integrand of (9.67) is a second-order tensor, which
becomes tensor µ(z − z′)D/ż in the case of large deformation. Then α is the
corotational integral �{µ(z− z′)D/ż}. It follows from (9.66) that

[α] = [M(z)]
[∫ z

0
µ(z− z′) [M(z

′)]T[D][M(z′)]
ż′

dz′
]
[M(z)]T (9.68)

On the other hand, by use of (9.61), we obtain the corotational rate of α as

[ ∇
α
] = [M][ ˙̄α][M]T (9.69)

We further determine ˙̄α as follows

[ ˙̄α] = d[ᾱ]
dt
= d[ᾱ]

dz
dz
dt
= d[ᾱ]

dz
ż (9.70)

Note that the dot represents material differentiation. In the study of con-
stitutive equations, α is not a function of xi and, therefore, the material
differentiation is the same as the ordinary differentiation. From (9.58) and
(9.68), we obtain

[ᾱ] = [M]T[α][M] =
∫ z

0
µ(z− z′) [M(z

′)]T[D][M(z′)]
ż′

dz′ (9.71)

The derivative of (9.71) with respect to z is

[dᾱ]
dz
= µ(0) [M(z)]

T[D][M(z)]
ż

+
∫ z

0

dµ(z− z′)
dz

[M(z′)]T[D][M(z′)]
ż′

dz′

(9.72)

By substituting (9.72) and (9.70) in (9.69), we obtain the corotational rate of α as

[ ∇
α̇
] = ż

{
µ(0)
[D]
ż
+ [M]

∫ z

0

dµ(z− z′)
dz

[M(z′)]T[D][M(z′)]
ż′

dz′[M]T
}

(9.73)
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EXAMPLE 9.2 Show that the corotational integral �{T} is objective.

Solution

We consider a superposed rigid-body rotation Q, such that [M′] = [Q][M].
With reference to the primed system, (9.65) is written as

�{T̄}=
∫ t

0
[T̄(t, t′)]dt′ =

∫ t

0
[M′(t′)]T[T′(t, t′)][M′(t′)]dt′ =[M′(t)]T�′{T′}[M′(t)]

(a)

which can be rewritten as

�′{T′} = [M′(t)]
[∫ t

0
[M′(t′)]T[T′(t, t′)][M′(t′)]dt′

]
[M′(t)]T

= [Q(t)][M(t)]
[ ∫ t

0
[M(t′)]T[Q(t′)]T[Q(t′)][T(t, t′)][Q(t′)]T

× [Q(t′)][M(t′)]dt′
]
[M(t)]T[Q(t)]T

= [Q(t)][M(t)]
[∫ t

0
[M(t′)]T[T(t, t′)][M(t′)]dt′

]
[M(t)]T[Q(t)]T

= [Q(t)]�{T}[Q(t)]T (b)

Equation (b) shows that the corotational integral �{T} is objective.

EXAMPLE 9.3 Show that the corotational integration of the corotational

derivative
∇
T recovers the original tensor T, if T = T(t′), that is, T is not a

function of t.

Solution

From (9.66) and using the first equation of (9.61), the corotational integral

of
∇
T is

�
{ ∇
T
} = [M(t)] [∫ t

0
[M(t′)]T[ ∇T(t′)][M(t′)]dt′

]
[M(t)]T

= [M(t)]
∫ t

0
[ ˙̄T(t′)]dt′[M(t)]T = [M(t)][T̄][M(t)]T = [T] (a)

Equation (a) demonstrates that the corotational integral of a corotational rate
of a tensor is the tensor itself. Therefore, the corotational integral is the inverse
operation of the corotational derivative.
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EXAMPLE 9.4 Consider the integral for small deformation given by

α =
∫ z

0
µ(z− z′)dεp

dz′
dz′ (a)

In the case of µ(z) = µ0 e−λz, where µ0 and λ are constant parameters, the
differentiation of (a) gives rise to

α̇ = µ0ε̇
p − λαż (b)

In the case of µ(z) = µ1e−λz + µ2, where µ(0) = µ1 + µ2, µ1,µ2, and λ are
constant parameters, the differentiation of (a) gives rise to

α̇ = µ(0)ε̇p − λαż+ λµ2żεp (c)

Extend (a) to large deformation and determine the corotational rates.

Solution

For the case ofµ(z) = µ0e−λz, dµ(z−z′)/dz = −λµ0e−λ(z−z′), (9.73) becomes

[ ∇
α
] = µ(0)[D] + ż

{
[M]
∫ z

0
(−λ)µ0e−λ(z−z′) [M(z

′)]T[D][M(z′)]
ż′

dz′[M]T
}

= µ0[D] − λż[α] (d)

Note that (d) is in the same form as (b). When µ(z) = µ1e−λz + µ2, then
from (9.68)

[α] = [M(z)]
[∫ z

0
µ1e−λ(z−z′) [M(z

′)]T[D][M(z′)]
ż′

dz′
]
[M(z)]T

+ [M(z)]
[∫ z

0
µ2
[M(z′)]T[D][M(z′)]

ż′
dz′
]
[M(z)]T

= [α](1) + [α](2) (e)

where

[α](1) = [M(z)]
[∫ z

0
µ1e−λ(z−z′) [M(z

′)]T[D][M(z′)]
ż′

dz′
]
[M(z)]T

[α](2) = [M(z)]
[∫ z

0
µ2
[M(z′)]T[D][M(z′)]

ż′
dz′
]
[M(z)]T

(f)
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The integral on the right-hand side of (9.73) is

[M]
∫ z

0

dµ(z− z′)
dz

[M(z′)]T[D][M(z′)]
ż′

dz′[M]T

= −λ[M(z)]
[∫ z

0
µ1e−λ(z−z′) [M(z

′)]T[D][M(z′)]
ż′

dz′
]
[M(z)]T = −λ[α](1)

(g)

Substituting (g) into (9.73), we obtain

[ ∇
α
] = µ(0)[D] − λ[α](1)ż = µ(0)[D] − λ[α]ż+ λ[α](2)ż (h)

The corotational derivative (h) is not quite of the same form as (c).

9.3.2 Endochronic Equations for Finite Plastic Deformation

In the small strain range, the endochronic constitutive equation is from (8.93)
and (8.125)

σ′ = σ ′y
dεp

dz
+
∫ z

0
µ(z− z′)dεp

dz′
dz′ (9.74)

The intrinsic time is

dζ 2 = dεp · dεp with
dζ
dz
= f (z) (9.75)

The following yield function may be derived

(σ′ − α) · (σ′ − α) = (σ ,
yf (z))

2 (9.76)

with the flow rule given by

dεp = dz
σ ′y
(σ′ − α) (9.77)

where f (z) is the isotropic hardening function and α is the back stress given by

α =
∫ z

0
µ(z− z′)dεp

dz′
dz′ (9.78)

This set of equations will now be extended to the finite strain range by use
of stress and strain measures for finite deformation, the concept of corota-
tional derivative and corotational integral, and the concept of constitutive
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spin (Section 7.6.2). To this end, (9.75) and (9.77) are written as

ζ̇ 2 = Dp ·Dp (9.79)

Dp = 1
σ ′y
(σ′ − α)ż (9.80)

We extend (9.78) to large deformation by use of (9.66) and the resulting
equation, (9.68), is

α =M(z) ·
[∫ z

0
µ(z− z′)M

T(z′) ·Dp ·M(z′)
ż′

dz′
]
·MT(z) (9.81)

The integration in (9.81) is with respect to z′, which is not t′ as in (9.66).
The intrinsic time z is a monotonically increasing parameter and it does not
change during elastic deformation or rigid-body rotation. In general, M(z) is
not a unique function of z, because rotation may continue even when z is not
changing. This multivalued association of M(z) to z does not invalidate the
meaning of integral (9.81), as pointed out by Dafalias [17].

For simplicity in the subsequent calculations, we consider

µ(z) = µ1 exp(−λz)+ µ2 (9.82)

The corresponding corotational rate of α has been found in Example 9.5 to be

∇
α = (µ1 + µ2)Dp − λαż+ λα(2)ż (9.83)

where

α(2) = µ2 M(z) ·
[∫ z

0

MT(z′) ·Dp ·M(z′)
ż′

dz′
]
·MT(z) (9.84)

Equation (9.83) is the evolution equation of the back stress in terms of the
plastic strain rate Dp, the back stress α, and the intrinsic time z. Note that
(9.83) is in the incremental form, except for α(2), which is represented by an
integral in (9.84). It is shown in the next section that in solving the problem
of a thin-walled tube under torsion, this integral may be integrated so that
(9.83) becomes a truly incremental form.

The plastic spin, from (7.100), may be written as

Wp = C1ζ̇

(σ ′yf (z))2
(α · σ′ − σ′ · α) (9.85)
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where C1 is dimensionless and is a scalar function of the isotropic invariants
of σ′ and α. Using the second expression of (9.75) and the flow rule
(9.80), (9.85) becomes

Wp = C1f (z)ż
(σ ′yf (z))2

(α · σ′ − α2 + α2 − σ′ · α)

= C1

σ′yf (z)

[
α · (σ

′ − α)ż
σ ′y

+ (α− σ′)ż
σ ′y

· α
]

= C1

σ ′yf (z)
(α ·Dp −Dp · α) = K(α ·Dp −Dp · α) with K = C1

σ ′yf (z)

(9.86)

The above expression is the same as (7.101). Equation (9.86) together with
(7.138) is substituted into (9.83) when the corotational rate is used in the
calculation.

9.3.3 Application to a Rigid-Plastic Thin-Walled Tube Under Torsion

In the consideration of a thin-walled tube under torsion in the large strain
range, the elastic strain is neglected, so that the condition of plastic incom-
pressibility is represented by

ε̇r + ε̇θ + ε̇z = 0 (9.87)

where ε̇r denotes the plastic strain-rate in the radial direction; ε̇θ denotes the
plastic strain-rate in the tangential direction; and ε̇z denotes the plastic strain-
rate in the axial direction of the tube. The plastic shear strain 2η is related to
the angle of twist per unit length ϕ by

2η = rϕ (9.88)

in which r is the outer radius of the tube. The rate of deformation and spin
tensors are expressed as

[Dp] =

ε̇r 0 0

0 ε̇θ η̇

0 η̇ ε̇z


 , [W ] =


0 0 0

0 0 η̇

0 −η̇ 0


 (9.89)

The equations in (9.89) are now used to derive the explicit expressions for
plastic spin and back stress. Let the back stress be symmetric so that

[α] =

αrr 0 0

0 αθθ αθz
0 αθz αzz


 (9.90)
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Then, sinceDp and α are symmetric, we note thatDp ·α = (α·Dp)T. Therefore,

α ·Dp −Dp · α

=

0 0 0

0 0 (αθθ − αzz)η̇ + αθz(ε̇z − ε̇θ )
0 −(αθθ − αzz)η̇ − αθz(ε̇z − ε̇θ ) 0



(9.91)

Equation (9.91) is substituted in (9.86) to calculate the plastic spin Wp. On the
other hand, the constitutive spin ω is defined in (7.97) as

ω =W −Wp =

0 0 0

0 0 −ω
0 ω 0


 (9.92)

where

ω = K[(αθθ − αzz)η̇ + αθz(ε̇z − ε̇θ )] − η̇ (9.93)

Since the tensor α is symmetric and the tensor ω is antisymmetric, we have
α · ω = −(ω · α)T. Therefore, in order to find explicit expressions for the
corotational rate, we first find

ω · α− α · ω =

0 0 0

0 −2ωαθz −ω(αzz − αθθ )
0 −ω(αzz − αθθ ) 2ωαθz


 (9.94)

Using (9.59), the corotational derivative of α is

∇
α = α̇− ω · α+ α · ω (9.95)

We then obtain the following expressions by combining (9.95) and (9.83)

α̇ = ω · α− α · ω+ ∇α = (ω · α− α · ω)+ (µ1 + µ2)Dp − λαż+ λα(2)ż
(9.96)

where, from (9.84),

α(2) = µ2

∫ z

0

Dp

ż′
dz′ (9.97)

In the last expression, it has been assumed that the corotational axes are
parallel to the reference axes, so that M = 1. This is indeed the case for
the torsion problems under consideration. The deformation is homogeneous
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without rigid-body motion of the tube and the angle of twist per unit length
is constant along the tube.

In the numerical calculation, we can define a tensor κ as

κ = ω dt =

0 0 0

0 0 −κ
0 κ 0


 (9.98)

in which the following expression has been determined by use of (9.93)

κ = ω dt = K[(αθθ − αzz)dη + αθz(dεz − dεθ )] − dη (9.99)

Then, (9.96) reduces to

dα = (κ · α− α · κ)+ (µ1 + µ2)Dp dt− λα dz+ λα(2) dz (9.100)

The equations derived in this section can be used to describe the response
of a thin-walled tube subjected to various combined axial–torsion loading
conditions. Two special cases are considered in the following paragraphs.

9.3.3.1 Torsion with axial prestress

Denoting the axial prestress by σz = σc = constant, the stress tensor and the
deviatoric stress tensor are

[σ ] =

0 0 0

0 0 τ

0 τ σc


 and [σ ′] =



−σc

3
0 0

0
−σc

3
τ

0 τ
2σc

3


 (9.101)

Note that the hoop stress σθ is zero due to symmetry. The flow rule is, from
(9.80), (9.89), (9.90), and (9.101), written as

dεr
dz
= −σc/3+ αrr

σ ′y
,

dεθ
dz
= −σc/3+ αθθ

σ ′y
dεz
dz
= 2σc/3− αzz

σ ′y
,

dη
dz
= τ − αθz

σ ′y

(9.102)

The intrinsic time is then given from (9.79) and (9.89) by

ζ̇ 2 = ε̇2
r + ε̇2

θ + ε̇2
z + 2η̇2 = ż2f2(z) (9.103)

Therefore,

η̇2 = 1
2

[
ż2f2(z)− (ε̇2

r + ε̇2
θ + ε̇2

z
)]

(9.104)
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By use of (9.87), (9.104) reduces to

η̇2 = 1
2

[
ż2f2(z)− 2

(
ε̇2
z − ε̇θ ε̇r

)]

= 1
2
ż2

{
f2(z)− 2

[(
dεz
dz

)2

−
(

dεθ
dz

)(
dεr
dz

)]} (9.105)

Substituting (9.102) in (9.105), we then obtain

±dη = dz

√√√√1
2
f2(z)−

(
1
σ ′y

)2 [(
2σc

3
− αzz

)2

−
(σc

3
+ αrr

) (σc

3
+ αθθ

)]

(9.106)

The “+” sign is for loading and “−” is for unloading.
To perform the numerical calculation of dα by use of (9.100), α(2) must first

be determined. To obtain α(2)θz from (9.97), we use (9.89) to get

α
(2)
θz = µ2

∫ z

0

Dp
θz
ż′

dz′ = µ2

∫ η(z)
η(0)

dη = µ2η (9.107)

In the last expression, the limits of integration are η(0) = 0 and η(z) = η.
Similarly, we obtain the following components for α(2) during loading

α(2)rr = µ2εr, α
(2)
θθ = µ2εθ , α(2)zz = µ2εz (9.108)

Therefore, from (9.98), (9.100), (9.107), and (9.108), we obtain the following
equations

dαrr = (µ1 + µ2)dεr − λαrr dz+ λµ2εr dz

dαθθ = −2αθzκ + (µ1 + µ2)dεθ − λαθθ dz+ λµ2εθ dz

dαzz = 2αθzκ + (µ1 + µ2)dεz − λαzz dz+ λµ2εz dz

dαθz = (αθθ − αzz)κ + (µ1 + µ2)dη − λαθz dz+ λµ2η dz

(9.109)

with the initial conditions η(0) = 0, εi(0) = 0, and αij(0) = 0. Thus, in a step-
by-step calculation, we can use

α = α+ dα, εr = εr + dεr, εθ = εθ + dεθ ,

εz = εz + dεz, η = η + dη (9.110)

Finally, we note that for the case of free-end torsion, the ends of the specimen
are totally unconstrained with σc = 0. Thus, the equations for free-end torsion
may be obtained by setting σc = 0 in the equations of this subsection.
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9.3.3.2 Fixed-end torsion

In the case of fixed-end torsion, ε̇z = 0. Assuming incompressibility, we find
from (9.87) that ε̇θ = −ε̇r 	= 0. Hence, (9.89) becomes

[Dp] =

ε̇r 0 0

0 −ε̇r η̇

0 η̇ 0


 (9.111)

Note that this is different from the simple shear assumption where ε̇θ = 0.
The stress tensor and the deviatoric stress tensor are

[σ ] =

0 0 0

0 0 τ

0 τ σ


 and [σ ′] =



−σ
3

0 0

0
−σ
3

τ

0 τ
2σ
3


 (9.112)

in which σ may vary. Again, we mention that the hoop stress is zero, which
is different from the simple shear assumption that σθ 	= 0. The flow rule,
from (9.80), has the following component equations:

dεr
dz
= −σ/3+ αrr

σ ′y
,

dεθ
dz
= −σ/3+ αθθ

σ ′y
,

αzz = 2σ
3

,
dη
dz
= τ − αθz

σ ′y

(9.113)

The first two equations of (9.113) may be combined to yield

dεr
dz
= αθθ − αrr

2σ ′y
(9.114)

The intrinsic time is then, from (9.79) and (9.111), given by

ζ̇ 2 = 2ε̇2
r + 2η̇2 = ż2f2(z) (9.115)

Therefore,

η̇2 = ż2

{
1
2
f2(z)−

(
dεr
dz

)2
}

(9.116)

Then, by substituting (9.114) in (9.116), we obtain

±dη = dz
2

√√√√2f2(z)−
(
αθθ − αrr
σ ′y

)2

(9.117)

The “+” sign is for loading and “−” is for unloading.
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We may also obtain the following components of α(2) by using the same
procedure as that which leads to (9.107) and (9.108)

α
(2)
θz = µ2η, α(2)rr = µ2εr, α

(2)
θθ = −µ2εr, α(2)zz = 0 (9.118)

Therefore, from (9.98) to (9.100) and (9.118), we obtain the following
component equations

dαrr = (µ1 + µ2)dεr − λαrr dz+ λµ2εr dz
dαθθ = −2αθzκ − (µ1 + µ2)dεr − λαθθ dz− λµ2εr dz
dαzz = 2αθzκ − λαzz dz
dαθz = (αθθ − αzz)κ + (µ1 + µ2)dη − λαθzdz+ λµ2η dz

(9.119)

with the initial conditions η(0) = 0, εr(0) = 0, and αij(0) = 0. We again use
(9.110) for a step-by-step calculation.

9.3.3.3 Comparison of theoretical and experimental results

In this section, we compare the theoretical and experimental results initially
presented in [5] and reprinted here with permission from Elsevier. There are
seven material constants in this model: c, β, C1, σ ′y, µ1, µ2, and λ where c
and β are used in the isotropic-hardening function f (z) and describe the rate
and saturation value of isotropic hardening; C1 fixes the magnitude of plastic
spin; σ ′y is a material constant proportional to the initial yield stress in shear
(σ ′y =

√
2τy); and µ1, µ2, and λ are used in the kernel function µ(z), which

describes the evolution of back stress. These material constants are determ-
ined by fitting the theory to the experimental stress–strain curve during
loading. After they have been determined, the constitutive equations are
applied to predict experimental results of specimens subjected to different
loading conditions. Three different materials have been investigated, 70 : 30
brass, Ni-200, and Al-1100. All shear strains reported in the experimental
results are for the outer surface of the tubular specimen.

For the 70 : 30 brass material, the material constants have been determined
to fit the experimental data of Stout (reported in Im andAtluri [15]) for the case
of simple torsion (Figure 9.1). The constants are c = 3.1, β = 15.4, C1 = 4.5,
σ ′y = 90 MPa, µ1 = 200 MPa, µ2 = 50 MPa, and λ = 7.2. These constants are
then used in the equations for torsion with axial stress σc = 0 (equations in
Section 9.3.3.1) to predict behavior of the same material for two different strain
paths, that is, monotonic and cyclic free-end torsion. The strain range of the
monotonic torsion is from 0 to 4, whereas the specimen under cyclic loading
is strained from 0 to 1.7, unstrained back to 0, and then restrained to 2.0.
The results found from this theory are compared with the experimental data
of Swift [18]. Figure 9.2 shows the axial strain of both monotonic and cyclic
free-end torsion. It is seen that the theory does predict the trend of variation
for the axial strain during torsion. We note that experiments of Swift and
Stout were conducted in different laboratories and material conditions, and
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FIGURE 9.1
Shear stress–strain curve of 70 : 30 brass (From Wu, H.C. et al., Int. J. Solids Struct., 32, 1079, 1995.
With permission from Elsevier).
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FIGURE 9.2
Axial strain versus shear strain for 70 : 30 brass (From Wu, H.C. et al., Int. J. Solids Struct., 32,
1079, 1995. With permission from Elsevier).

the agreement demonstrated here is therefore considered as very satisfactory.
The effect of C1 is investigated and shown in Figure 9.3 for 70 : 30 brass. This
figure shows the dependence of the axial strain onC1 in the case of monotonic
free-end torsion. It is seen that a suitable C1 can be determined to achieve
a good agreement with the experimental results.
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Effect of parameter C1 of plastic spin on the axial strain during torsion (From Wu, H.C. et al., Int.
J. Solids Struct., 32, 1079, 1995. With permission from Elsevier).
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FIGURE 9.4
Shear stress–strain curve of Ni-200 with 0.01 MPa axial prestress (From Wu, H.C. et al., Int. J.
Solids Struct., 32, 1079, 1995. With permission from Elsevier).

The experimental data for Ni-200 are taken from Hart and Chang [19].
The material constants have been determined by fitting the shear stress–
strain curve (Figure 9.4) which was determined from torsion with a 0.01 MPa
prestress. The constants have been determined to be c = 14.2, β = 5.5, C1 = 9,
σ ′y = 40 MPa, µ1 = 45 MPa, µ2 = 40 MPa, and λ = 9.5. Using these constants
and the constitutive equations of Section 9.3.3.1, we have predicted the axial
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Axial strain for Ni-200 during torsion with axial prestresses (From Wu, H.C. et al., Int. J. Solids
Struct., 32, 1079, 1995. With permission from Elsevier).

strain associated with torsion with prestresses of 1.48, 0.01, and −1.52 MPa.
The results, shown in Figure 9.5, are quite satisfactory.

Figure 9.6 shows the experimental shear stress–strain curve under simple
shear condition (fixed-end torsion), obtained by White et al. [20] for Al-1100
material. The theoretical result of the present theory is also shown. The mater-
ial constants are c = 2.14, β = 4.5, C1 = 4.5, σ ′y = 55 MPa, µ1 = 1.8 MPa,
µ2 = 0.15 MPa, and λ = 1.64. Wu and Xu [21] also obtained a shear stress–
strain curve for Al-1100, but in a smaller deformation range (12% strain).
The curve agrees with the one shown in Figure 9.6. Using these constants
and the constitutive equations of Section 9.3.3.1, we predicted the axial strain
in the case of torsion with prestresses of −6.9 and −20.7 MPa. The results
found from this theory (the solid and dashed curves) are compared with the
experimental data of Wu and Xu [21] and shown in Figure 9.7. Figure 9.8
shows the prediction (the solid and dashed curves) of the hoop and axial
strains, respectively, for the free-end torsion condition (i.e., with σc = 0).
The experimental data of Bailey et al. [22] are also shown in the figure. Even
though the theory agrees well with experiment in terms of the axial strain,
there are discrepancies in the hoop strain at large shear strain level. These dis-
crepancies may be explained by taking a closer look at the specimens and the
procedure used in the experiments of Bailey et al. [22]. The specimens used
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by them had a very short gauge length of 3.2 mm (0.125 in.) compared with a
radius of 19 mm (0.75 in.). The radius of the relatively rigid ends of the speci-
men did not change, which in turn restricted the development of hoop strain
at large shear strain level. Another possible restriction on the hoop strain is
due to a plug and sleeve inserted into the specimens to prevent buckling at
large strain level. The authors thought that there was sufficient clearance to
allow for any reduction in diameter during test. However, we believe that
there was contact between the specimens and the plug at large shear strain
level and, therefore, the reduction in diameter was restricted. If there were
no contact, then the plug would not have been needed in the experiment. We
believe that these are the reasons causing the experimental hoop strain to be
on the low side compared with the theoretical result. Wu et al. [23] conducted
the same experiments using extruded high purity aluminum with specimens
of a much longer gauge length (82.6 mm or 3.25 in.) and without the plug.
The outer radius of the specimens was 19 mm (0.75 in.). The results are shown
in Figure 9.9. It is seen that these curves have the same trends as those of the
theoretical curves shown in Figure 9.8, that is, the hoop and axial strains at
large shear strain level have almost the same magnitude, whereas the results
of Bailey et al. [22] show that the hoop strain does not increase much with the
axial strain at large shear strain level.

In some published writings such as Canova et al. [24], the rate of hoop strain
is assumed to be equal to the rate of radial strain, ε̇θ = ε̇r, for a thin-walled
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13, 873, 1998. With permission from Elsevier).

tube under tension–torsion loading condition. This assumption is good only
for the axial loading condition. Taylor and Quinney [25] showed that the
hoop strain is not equal to the radial strain under combined tension–torsion
loading. In this calculation, we have found that the rate of radial strain is
almost zero, that is, the wall thickness changes very little. And, from (9.87),
the magnitude of the hoop strain is nearly the same as that of the axial strain, in
agreement with the experimental observation. We mention that the analysis of
Lowe and Lipkin [26] and Qian and Wu [27], by use of polycrystal plasticity,
also leads to the same trends as predicted by our theory for the axial and
hoop strains.

9.4 An Endochronic Theory for Porous and Granular Materials

Porous-granular (PG) material is a class of material that includes geotechnical
materials (concretes, rocks, soils, ice, etc.), porous metals made out of metal
powders by sintering, and ceramics. The response of PG materials to loading
generally consists of fourparts, that is, thehydrostatic response, thedeviatoric
response, the shear-enhanced volumetric response, and the hydrostatic pressure-
enhanced shear response. A significant characteristic of this class of materials is
the existence of voids (or cracks) within the material. The pores collapse and
close or grow under loading–unloading conditions, and material is either
consolidated or damaged. This process is irreversible (plastic deformation
and damage) and upon removal of the load a permanent change in the volume
of the specimen is observed. Thus, plastic volumetric strain occurs when PG
materials are subjected to hydrostatic pressure. Figure 9.10 shows a schematic
volumetric stress–strain curvewithboth the initial and thefinal slopesequal to
the elastic bulk modulusK0. The deviatoric stress–strain response for this class
of materials is similar to that observed for metallic materials. A phenomenon
similar to yielding occurs as the deviatoric stress–strain curve bends toward
the strain axis.

© 2005 by Chapman & Hall/CRC Press



488 Continuum Mechanics and Plasticity

Volumetric Strain

H
yd

ro
st

at
ic

 S
tr

es
s

FIGURE 9.10
Schematic volumetric stress–strain curve for porous-granular materials (From Wu, H.C., in
Modern Approaches to Plasticity, Elsevier, Amsterdam, 1993. With permission from D. Kolymbas).

Shear Strain

Shear Strain

Shear Strain

0

0

0

V
ol

um
et

ri
c 

St
ra

in

�0 < �th

�0 < �th

�0 > �th

FIGURE 9.11
Shear-enhanced volumetric strain (From Wu, H.C., in Modern Approaches to Plasticity, Elsevier,
Amsterdam, 1993. With permission from D. Kolymbas).

A special property of PG materials is that during the application of devi-
atoric stress, a specimen exhibits a volumetric change that can either be a
contraction or dilation depending on the state of hydrostatic stress σ 0 as
compared with a threshold stress σ th within the specimen. This coupled
behavior between volumetric and deviatoric responses is generally referred
to as the shear-enhanced volumetric strain or densification in soil mechanics.
Figure 9.11 illustrates this behavior. Another coupled behavior is the hydro-
static pressure-enhanced shear deformation, which is sometimes referred to
as the shear travel. In the last effect, additional deviatoric deformation occurs as
the hydrostatic stress increases, while keeping the deviatoric stress constant.

atoric stress is kept constant, shear travel occurs as is seen by the increase
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in the deviatoric strain for each of the path segment. A threshold deviatoric
stress may be defined above which the shear travel strain is positive and
below which it is negative.

The hydrostatic and deviatoric responses may be viewed as the primary
behavior while the coupled responses are secondary. In a theoretical treat-
ment, the degree of importance of each response is therefore different. The
hydrostatic and deviatoric responses should be the main part of a constitutive
equation and they are directly related to both yield surface and flow rule if
such concepts are used in the formulation. However, there may indeed be
cases in which no such concepts are used. In such cases, the hydrostatic and
deviatoric responses should still be the main part of a constitutive equation.
The coupled effects are secondary and can be accounted for by the flow rule
or by the evolution equation of a parameter. They also influence the shape
of yield surfaces.

In the case of soils, the most common test for the study of their mech-
anical behavior has traditionally been the conventional constant confining
pressure triaxial test (simply known as the conventional triaxial compression,
CTC). In such a test, a cylindrical specimen is prepared in a flexible mem-
brane of a material such as polyurethane, and is placed in a chamber that
can be pressurized, usually by filling it with water. An all-around constant
confining pressure is applied. Then, a loading ram can be used to apply an
axial load along the long axis of the cylinder. In this test, the mean stress
increases with the axial load and the observed stress–strain behavior is a
combination of hydrostatic–deviatoric behavior. This test is denoted by CTC
in Figure 9.13 and the stress path for this test is making an angle with HC
(the hydrostatic compression). The stresses in this figure are principal stresses.
σz is the axial stress of the cylindrical specimen. Unconfined compression tests
(UC) and confined compression tests (CC) have been used to test materials such
as concretes, rocks, and ice. Cylindrical specimens are tested in the axial
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Illustration of various tests in the stress space.

direction either with free lateral surface (UC) or confinement in a rigid cell
(CC). The lateral stress builds up with increasing axial stress in the CC test.
Both tests involve the mean stress and the deviatoric stress.

The aforementioned traditional tests are not designed to separate the hydro-
static behavior from the deviatoric behavior. Since both behaviors are of
primary importance in the characterization of PG materials, the true triaxial
test has been developed to test the hydrostatic and deviatoric behaviors sep-
arately. The true triaxial device permits application of three independent
(principal) stresses on a cubical specimen. The application of the stresses
can be such that any path of loading in the three-dimensional stress space
can be followed. Some of the paths are shown in Figure 9.13. The HC
path corresponds to the application of an all-around hydrostatic pressure
in isotropic consolidation. TC stands for triaxial compression and TE stands for
triaxial extension. In the latter two tests, the deviatoric stress is applied under
the condition of constant hydrostatic pressure, enabling us to concentrate
on the deviatoric stress–strain response. Finally, we mention that direct shear
testing and torsion of a solid shaft have also been conducted by researchers
to characterize material behavior in shear.

In this section, a version of endochronic theory of plasticity is presented that
accounts for all the aforementioned responses. This theory has been derived
based on the work of Wu andAboutorabi [28] and Wu [29]. It is presented here
with permission from Elsevier. We present the theory first and its applications
to concretes, sand, and porous aluminum are discussed.

9.4.1 The Endochronic Equations

The theory as derived in [28] has four elements corresponding to those previ-
ously mentioned. It has been modified in [29] so that the strain-rate sensitivity
may be accounted for. The stress–strain curve is decomposed into volumet-
ric and deviatoric stress–strain curves. The decomposition gives insight into
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material behavior and is of special importance due to the significant role
played by the plastic volumetric deformation.

This theory uses the Gibbs formulation described in Section 8.3.4. The Gibbs
free energy � is a function of stress σ and two groups of internal variables, γ

and π. There are h number of γ’s related to the volumetric deformation and
s number of π’s related to the deviatoric deformation. The reason for using
the Gibbs formulation is that the hydrostatic and deviatoric stresses may be
independently varied, which is a requirement for the derivation of the set of
equations to be discussed in this chapter. This requirement is difficult to satisfy
in the Helmholtz formulation, since in that case the strain, ε is used as an
independent variable and it is difficult to independently vary the volumetric
and the deviatoric strains for the PG materials. Ahydrostatic intrinsic time zH
is defined to register the history of volumetric deformation, and a deviatoric
intrinsic time zD is used to register the history of deviatoric deformation.

In the Gibbs formulation, strain εij is given by

εij = − ∂�
∂σij

(9.120)

and the evolution equations for γ hij and π sij are given by

∂�

∂γ hij

+Mh
ijkm

dγ hkm
dzH

= 0 (h not summed)

∂�

∂π sij
+Ns

ijkm
dπ skm
dzD

= 0 (s not summed)

(9.121)

whereMh
ijkl andMs

ijkl are positive semidefinite fourth-order isotropic constant
tensors. These linear evolution equations are chosen for mathematical sim-
plicity and they can be nonlinear if. However, they are shown to be adequate
for the class of materials under consideration. These evolution equations are
related to the rate of entropy production within the material. By expanding
the Gibbs free energy � in series and using only the quadratic and linear
terms, the expression for � may be substituted into (9.120) to (9.121). Each
resulting equation can then be divided into volumetric and deviatoric parts.
By doing so, it may be found that the volumetric strain εkk is the sum of the
hydrostatic strain, εH

kk , and densification strain, εS
kk . The deviatoric strain eij is

the sum of strain due to deviatoric loading, eSij, and strain developed due to the
coupling with the hydrostatic loading, eHij . The internal variables are divided
into two parts as

γ hij = 1
3δijγ

h
kk + ghij, π sij = 1

3δijπ
s
kk + psij (9.122)
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where ghij is the deviatoric part of γ hij , p
s
ij is the deviatoric part of π sij, and δij is

the Kronecker delta.
The intrinsic times ζH and ζD are defined by

dζH = kH
(
θ̇kk
) |dθkk| and dζ 2

D = kD(Q̇)2dQijdQij (9.123)

where the volumetric strain-like increment dθkk is defined as

dθkk = dεH
kk − k1

dσkk
3K0

(9.124)

and the deviatoric strain-like tensor dQij is defined as

dQij = deSij − k2
dσ ′ij
2µ0

(9.125)

where σ = σkk/3 = mean pressure, σ ′ij = deviatoric stress; k1 and k2 are con-
stants between 0 and 1. In the limiting case that k1 = k2 = 1, θkk reduces to
the usual definition of volumetric plastic strain and Qij reduces to the devi-
atoric plastic strain. K0 is the bulk modulus and µ0 is the shear modulus.
The functions kH(θ̇kk) and kD(Q̇) are the strain-rate sensitivity functions (see
Section 8.4.6), which enable the description of the strain-rate sensitive stress–
strain behavior in the volumetric and deviatoric responses, respectively.
These are functions of the strain-rates θ̇kk and Q̇, where Q̇ = ( 1

2 Q̇ijQ̇ijF)
1/2.

The following expressions may be used

kH(θ̇kk) = 1− kh log
(
θ̇kk

θ̇kk0

)
, kD(Q̇) = 1− kd log

(
Q̇

Q̇0

)
(9.126)

where kh and kd are constants; θ̇kk0 and Q̇0 are reference strain rates usually
taken as the lowest strain rates of the test series. Then, the following defines
the governing equations for each component of strain:

Volumetric:

εH
kk = 3A0σkk + 3

∑
h

Bh0γ
h
kk

Mh
0
dγ hkk
dzH
+ Eh0γ hkk − Bh0σkk = 0 for all h (no sum on h)

dζH
dzH
= h(ζH)

(9.127)
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Deviatoric:

eSij = A2σ
′
ij +
∑
s

Cs2p
s
ij

Ns
2

dpsij
dzD
+ Fs2psij − Cs2σ ′ij = 0 for all s (no sum on s)

dζD
dzD
= f (ζD, σ 0)

(9.128)

Shear-enhanced volumetric strain:

εS
kk =
∑

s C
s
0π

s
kk

Ns
0

dπ skk
dzD
+ Fs0π skk − Cs0(σkk − ξ) = 0, s = 1

Ns
0

dπ skk
dzD
+ Fs0π skk − Cs0σkk = 0, s 	= 1

(9.129)

Pressure-enhanced shear strain:

eHij =
∑

h B
h
2g
h
ij

Mh
2

dghij
dzH
+ Eh2ghij − Bh2(σ ′ij −Dij) = 0, h = 1

Mh
2

dghij
dzH
+ Eh2ghij − Bh2σ ′ij = 0, h 	= 1

(9.130)

In the above equations, f (ζD, σ 0) = the deviatoric-hardening function, σ 0 =
confining hydrostatic stress at initial shear loading, A0,A2,Bh0,Bh2,Cs0,Cs2,Eh0,
Eh2,Fs0,Fs2,Mh

0,Mh
2,Ns

0,Ns
2 = parameters of the theory (for engineering applic-

ation, they can be combined and the number of material constants reduced),
ξ = threshold mean confining pressure, Dij = threshold deviatoric stress.

The equations for hydrostatic and deviatoric responses are now further
investigated. Theseequations canbewritten ina formsuch that, in the limiting
case of k1 = k2 = 1, yield conditions can exist with respect to both the hydro-
static anddeviatoric stresses. This casealsoenables ageometric representation
of the model in the stress space, so that the physical meaning of the model
may be visualized. The geometric representation is further explained. The
values of k1 and k2 do not have to be one. A value of 0.95 has been found to
facilitate numerical computation. In this case, the constitutive equations are
continuous and there is the advantage of not having to deal with the yield
conditions in the numerical calculation. This aspect is indeed a very import-
ant strength of the present approach. In this way, even though yield stress is
defined in the theory, it can be circumvented during computation by assum-
ing k1 not equal to one. In this approach, the results will be closely related to
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those obtained from the case of k1 = k2 = 1, where the yield conditions are
used. The equations for hydrostatic and deviatoric responses are considered
further in the following subsections.

9.4.1.1 The hydrostatic response

The volumetric strain increment dεH
kk and the linear evolution for internal

variable γ hkk are from (9.127) given by

dεH
kk = 3A0 dσkk + 3

∑
h

Bh0 dγ hkk ,
dγ hkk
dzH

= Bh0
Mh

0

σkk −
Eh0
Mh

0

γ hkk (9.131)

In order to account for strain hardening, the intrinsic time zH is scaled by

dζH
dzH
= h(θkk , ζH) (9.132)

where the function h represents isotropic hardening and the increment of
volumetric intrinsic time dζH > 0 is defined in terms of plastic strain as in
(9.123). The form of the hardening function is

h(θkk) = C − (C − θm)e−µθkk
θm − θkk (9.133)

This form accounts for the experimentally observed fact that as material
compacts, its ability to undergo plastic volumetric strains diminishes and
eventually an elastic response is observed with a modulus equal to the initial
bulk modulus. Thus, a maximum plastic volumetric strain of θm may be
achieved. The material constants C and µ control the extent and rate of
isotropic hardening. The values of these constants may be adjusted to fit
the volumetric stress–strain curves of various PG materials, including soil.

By the substitution of (9.123), (9.124), (9.132), and the second equation of
(9.131) into the first equation of (9.131), the following equations may be found

dεH
kk[1± X] =

dσkk
3K0
[1± k1X] (9.134)

where

X =
∑
h

Xh with Xh = Bh0
hMh

0

=
(
Bh0σkk − Eh0γ hkk

)
(9.135)
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Note that k1 	= 1 and initially σkk = γ hkk = 0. Hence, the constant A0 may be
identified, that is, A0 = 1/9K0 and when h→∞, (9.134) yields

dεH
kk =

dσkk
3
· 1
K0

(9.136)

Equation (9.136) indicates a linear stress–strain response with a slope equal to
the initial bulk modulus at large volumetric strain. When loading reverts to
unloading the only change in the equations takes place in (9.134), where the
negative sign in the brackets changes to positive. Note that in this investiga-
tion, tensile stress is considered to be positive. Knowing dεH

kk and the current
values of zH, σkk and γ hkk , (9.134) may be used to calculate dσkk . (9.123), (9.124),
and (9.132) can then be used to determine dθkk and dzH, and (9.131) leads to
dγ hkk . Therefore, zH, σkk , and γ hkk can be updated. This step-by-step procedure
is used to calculate the volumetric stress–strain curve.

For the case of k1 = 1, it is shown now that the previous equations
can describe a physical situation when the material experiences a com-
bined isotropic–kinematic hardening in the volumetric behavior. Both tensile
(further limitedby fracture) andcompressivehydrostatic stresses are included
in this discussion and it is shown that the combined isotropic–kinematic
hardening arises naturally in the volumetric response of the endochronic
formulation. To this end, the first equation of (9.131) is solved for dσkk and
the result substituted into (9.124) to obtain

dθkk = (1− k1)dεH
kk + 3k1

(∑
h

Bh0B
h
0

Mh
0

σkk −
∑
h

Bh0E
h
0

Mh
0

γ hkk

)
dzH

= ϕH
kk + ψH

kk dzH (9.137)

where

ϕH
kk = (1− k1)dεH

kk

ψH
kk = 3k1

(∑
h

Bh0B
h
0

Mh
0

σkk −
∑
h

Bh0E
h
0

Mh
0

γ hkk

)
(9.138)

But, from (9.123) and (9.132),

hdzH = dζH = ±kH dθkk = ±kH(ϕ
H
kk + ψH

kk dzH) (9.139)

or

(
βH
kk ∓

h
kH

)
dzH + ϕH

kk = 0 (9.140)
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When k1 = 1,ϕH
kk = 0. Thus,

(
ψH
kk ∓

h
kH

)
dzH = 0 (9.141)

Since during plastic deformation, dzH 	= 0, then,

ψH
kk = ±

h
kH

(9.142)

By substituting (9.138) into (9.142), it is found that

σkk − αH
kk = ±

σ
y
kk
kH
h (9.143)

where

σ
y
kk =
(

3
∑
h

Bh0B
h
0

Mh
0

)−1

and αH
kk = 3σ ykk

∑
h

Bh0E
h
0

Mh
0

γ hkk (9.144)

This expression may be viewed as a yield criterion for hydrostatic stress with
σ
y
kkh/kH denoting the isotropic hardening and αH

kk denoting the kinematic
hardening. Note that in the isotropic hardening, σ ykk is the initial quasistatic
yield stress, which when divided by kH becomes the dynamic yield stress. h
is the isotropic-hardening function. The flow rule is given from (9.137) by

dθkk = ψH
kk dzH = dzH

σ
y
kk

(σkk − αH
kk) (9.145)

9.4.1.2 The deviatoric response

In the deviatoric response, from (9.128), the equations are

deSij = A2 dσ ′ij +
∑
s

Cs2 dpsij,
dpsij
dzD
= Cs2
Ns

2
σ ′ij −

Fs2
Ns

2
psij (9.146)

Note that the evolution of psij is defined with respect to the deviatoric intrinsic
time zD. For the first increment of loading from the virgin state, since
σ ′ij = psij = 0, (9.146) yields

[
deSij
dσ ′ij

]
0

= A2 (9.147)
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Therefore, A2 is identified as the inverse of the initial slope 2µ0 of the
deviatoric stress–strain curve. Thus, A2 = 1

2µ0. The deviatoric intrinsic time
increment dζD is defined as in (9.123) and is related to zD through the harden-
ing function f (zD) defined by (9.128). It will be shown subsequently that
function f represents isotropic hardening in the deviatoric behavior.

Solving the first equation of (9.146) for dσ ′ij and substituting the result
together with the second equation of (9.146) into (9.125) yields

dQij = ϕD
ij + ψD

ij dzD (9.148)

where

ϕD
ij = (1− k2)deSij

ψD
ij = k2

∑
s

Cs2

(
Cs2
Ns

2
σ ′ij −

Fs2
Ns

2
psij

) (9.149)

Then, by substituting the third equation of (9.128) and (9.148) into (9.123), the
following quadratic equation is obtained

Pdz2
D +W dzD + R = 0 (9.150)

where

P = ψD
ij ψ

D
ij −
(
f
kD

)2

, W = 2ϕDij ψ
D
ij , R = ϕD

ij ϕ
D
ij (9.151)

Therefore, P,W , andR are functions that are defined in terms of the constants
of the model and increments of input variables. When (9.150) is solved for
dzD, the second equation of (9.146) can be used to obtain dpsij. By substitution,
the deviatoric stress increment dσ ′ij can then be found from the first equation
of (9.146).

In the case of k2 = 1, (9.149) and (9.151) give ϕD
ij = R =W = 0. Thus, (9.150)

is reduced to Pdz2
D = 0. Since dzD 	= 0 when there is plastic deformation,

P must be zero. Hence, the first equation of (9.151) leads to

(σ ′ij − αD
ij )(σ

′
ij − αD

ij ) =
(
σ ′yf
kD

)2

(9.152)

where

σ ′y =
(∑

s

Cs2C
s
2

Ns
2

)−1

, αD
ij = σ ′y

∑
s

Cs2F
s
2

Ns
2
psij (9.153)
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This is the Mises yield criterion with combined isotropic–kinematic harden-
ing, in which σ ′yf/kD describes the isotropic hardening and αD

ij the kinematic
hardening in the deviatoric behavior. Note that in the isotropic hardening, σ ′y
is the quasistatic deviatoric yield stress, which when divided by kD becomes
the dynamic yield stress and f is the isotropic-hardening function. From
(9.148), the plastic strain increment is now given by

depij = ψD
ij dzD = dzD

σ ′y

(
σ ′ij − αD

ij

)
(9.154)

which is normal to the deviatoric yield surface. It has thus been shown that
in the case of k1 = k2 = 1, the present endochronic theory is equivalent to
a flow theory of plasticity, which obeys the Mises yield criterion with com-
bined isotropic–kinematic hardening, both in the hydrostatic and deviatoric
responses.

9.4.1.3 Geometric representation of the model

There is a simple geometrical representation of the proposed model for the
case of k1 = k2 = 1, in which two yield criteria are defined, one for volumetric
behavior and the other for deviatoric behavior. The material constants of the
model depend on the initial density of the material, and these constants are
then used to describe subsequent material behavior.

The two yield criteria exist in a space plotting the hydrostatic stress σkk/3
against the equivalent stress σeq, which is defined as the square root of the
second invariant of the deviatoric stress tensor (see Figure 9.14). The volumet-
ric yield criterion is represented by two vertical yield lines and the deviatoric
yield criterion by two horizontal yield lines. These yield lines are not neces-
sarily straight due to the cross effects between the hydrostatic and deviatoric
responses. These are shown by the thin curves in Figure 9.14. The distance

�eq

�kk/3
0

Vol. Yield Line

Vol. Yield Line

Deviatoric
Yield Line

Deviatoric
Yield Line

Vol.
Elastic Line

FIGURE 9.14
Geometric representation of the model (From Wu, H.C. et al., Int. J. Plasticity, 6, 207, 1990. With
permission from Elsevier).
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between the yield lines can expand, resulting in isotropic hardening. The two
yield lines as a set can also move, resembling the kinematic hardening.
According to this model, combined isotropic–kinematic hardening takes place
in both the volumetric and deviatoric responses. Avolumetric elastic line may
be established in the hydrostatic compression region indicating a limit beyond
which the volumetric response is elastic again. This phenomenon corresponds
with the bending upward of the volumetric stress–strain curve at large strain
level, where the modulus is elastic.

According to this model, the volumetric and deviatoric yield limits are indi-
vidually imposed. The model allows for the situation that yielding has already
occurred volumetrically but not yet occurred deviatorically. This is a situation
that is frequently observed in sands, which have a very low volumetric yield
limit. Thus, the deviatoric response in this case would initially be elastic and
then plastic when the deviatoric yield limit is reached. In the case of sand, the
volumetric yield lines are collapsed into a line passing through the origin as
shown in Figure 9.15. In this figure, compressive stress is considered positive
as is the usual practice of soil mechanics. The failure lines (FL) are shown
together with lines showing the initial yield lines and the subsequent yield
lines obtained by isotropic and kinematic hardening, respectively. The idea
of volumetric compaction yield surface and shear yield surface and of repres-
enting them as horizontal and vertical straight lines in the J1 versus

√
J2 space

was briefly mentioned by Johnson and Green [30]. This idea is similar to the
present model and is described by the endochronic constitutive equations of
this section.

Volumetric
YL

0

Kinematic hardening
Initial YL

Isotropic hardening

FL

FL

Subsequent YL
Deviatoric initial YL

�eq

�kk/3

FIGURE 9.15
Yield lines for sand (From Wu, H.C., in Modern Approaches to Plasticity, Elsevier, Amsterdam,
1993. With permission from D. Kolymbas).
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FIGURE 9.16
Plastic strain increments of the model (From Wu, H.C., inModernApproaches to Plasticity, Elsevier,
Amsterdam, 1993. With permission from D. Kolymbas).

The volumetric plastic strain increment dθkk is given by (9.145) and the
deviatoric plastic strain increment dQij is given by (9.154), which is nor-
mal to the deviatoric yield surface. These equations resemble the flow rule
of a flow theory of plasticity. However, additional plastic strain increments
dεS

kk and deHij need to be considered in this model. These increments are due
to coupled effects as discussed earlier and the occurrence of the increments
depends on the stress path. Figure 9.16 shows the plastic strain increments
associated with various stress paths in a true triaxial test. A hydrostatic com-
pression test (HC) will give rise to dθkk only; a TC test will give rise to dQij
and dεS

kk ; and a CTC test or a proportional loading test (PL) will lead to all
four increments, that is, dθkk , dQij, dεS

kk , and deHij . It is difficult to compare the
present plastic strain increments with the associative or nonassociative flow
rules of the classical theory. In that theory, the direction of the total plastic
strain increment is investigated with respect to a plastic potential in the stress
space, and combines both the deviatoric and hydrostatic behaviors. Whether
the flow rule is associative or nonassociative is still a point of debate. In the
present model, no such complication is involved, however.

9.4.2 Application to Concrete

The endochronic theory of the previous section has been applied in [28] to
investigate the experimental results of concrete reported by Scavuzzo
et al. [31]. Cubical specimens were tested under a true triaxial test. In such
a test, σx, σy, σz are principal stresses and εx, εy, εz are principal strains.
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The material is not strain-rate sensitive and the strain-rate sensitivity func-
tions are kH = kD = 1. For the isotropic-hardening functions, (9.133) is used
for h and the form for f is chosen as

f (zD) = Cp − (Cp − 1)e−µzD (9.155)

whereCp andµ are constants. Equations of Sections 9.4.1.1 and 9.4.1.2 are used
to describe the hydrostatic and deviatoric behaviors. In the consideration of
shear-enhanced volumetric strain, we use two internal variables, and (9.129)
becomes

εS
kk = C1

0π
1
kk + C2

0π
2
kk

dπ1
kk

dzD
= C1

0
N
(σkk − ξ),

dπ2
kk

dzD
= C2

0
N
σkk −

F2
0
N
π2
kk

(9.156)

All deviatoric constants associated with the internal variable π1 are assumed
to be zero. The above equations may be combined to yield

dεS
kk

dzD
= I1(σkk − ξ)− χ2εS

kk + I1χ2
∫ zD

0
(σkk − ξ)dzD + I2σkk + χ2π0

(9.157)

where

I1 = C1
0C

1
0

N
, I2 = C2

0C
2
0

N
, χ2 = F2

0
N

, π0 = C1
0π

1
kk(0) = −C2

0π
2
kk(0)

(9.158)

Following Wu et al. [32], ξ = σth. In addition, I1, I2,χ2, and π0 may be determ-
ined to complete the characterization of the shear-enhanced volumetric strain
response. Finally, we mention that the shear travel effect is determined by use
of (9.130).

In an effort to describe the experimental data for concrete obtained by
Scavuzzo et al. [31], the endochronic equations presented for the hydrostatic,
deviatoric, shear-enhanced volumetric strain, and pressure-enhanced shear
strain were solved by Wu andAboutorabi [28] in an iterative incremental fash-
ion utilizing a computer. The increment in stress path is input into a program
that computes from it an increment for the hydrostatic stress and one for the
deviatoric stress. Then, accordingly, the hydrostatic and deviatoric modules
are called on to find the corresponding increment of strains and increment
of intrinsic time. If any coupling strains are to be evaluated, then the incre-
ments of the intrinsic times are passed on to the shear-enhanced volumetric
strain and pressure-enhanced shear strain modules to find such strains. Any
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FIGURE 9.17
Behavior of concrete subjected to various stress paths — inserts show stress paths (From Wu, H.C.
and Aboutorabi, M.R., Int. J. Plasticity, 4, 163, 1988. With permission from Elsevier).

stress path that is neither purely hydrostatic nor deviatoric is approximated
by a staircase path (i.e., as a series of consecutive hydrostatic and deviat-
oric increments). The outputs of the theoretical computations are presented
in [28]. They constitute a rather extensive study of various stress paths. It is
fair to say that the model has done a good job in describing such a diverse
loading program. In Figure 9.17(a) and (b), we show two cases. For each
stress path the stress–strain relations in both 1- (vertical) and 2-directions are
presented. The 1-direction is marked with ◦ and the 2-direction with . Since
the tests are all performed in the deviatoric plane, the loadings in the 2- and
3-directions are the same and the result for the 3-direction is identical to that
for the 2-direction.

9.4.3 Application to Sand

Sand is a cohesionless soil. It has mechanical properties similar to those
described in the introductory paragraphs of Section 9.4. They are the hydro-
static response, the deviatoric response, the shear-enhanced volumetric
response, and the hydrostatic pressure-enhanced shear response. In the
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terminology of soil mechanics, the hydrostatic response is known as isotropic
consolidation. The volumetric stress–strain curve bends toward the stress
axis. The deviatoric behavior depends on hydrostatic stress (or the normal
stress) and thedeviatoric (or shear) stress–strain curvebends toward the strain
axis. There isno shear strengthat zero confiningpressure. The shear-enhanced
volumetric response is also known as densification or dilation.

The first application of the endochronic theory to the description of mech-
anical behavior of sand was due to Bazant and Krizek [33], using the simple
endochronic theory (see Section 8.4.2). Valanis and his coworkers [34,35]
have also contributed extensively to this subject. Our approach is differ-
ent from aforementioned works in that we use the Gibbs formulation. The
equations are similar to those presented in Section 9.4.1. Using this formula-
tion, Wu and Wang [36] obtained theoretical results of isotropic consolidation
and deviatoric response, which compare favorably with experimental results
of Lade [37] for Sacramento River sand subjected to loading–unloading. In
addition, the shear hysteretic loops for loose crystal silica No. 20 sand repor-
ted in [38] were theoretically investigated in [36]. We [36] also investigated
densification and the results compared favorably with those reported in [39].

The shear hysteresis of sand was further investigated by Wu and Sheu [40]
using a method of integration similar to that discussed in Section 8.4.5.2,
resulting in closed-form solutions. The theory predicted the test results of
Silver and Seed [41] at the 1st, 2nd, 10th, and 300th cycles reasonably
well. Nine cases of relative densities and vertical stresses were considered.
Additional works in the endochronic modeling of sand are Wu et al. [32] con-
sidering a true triaxial test and Wu and Aboutorabi [42] considering sand
behavior subjected to a circular stress path. Furthermore, the undrained
response of sand was discussed in [29].

9.4.4 Application to Porous Aluminum

Recent developments in the techniques of powder metallurgy (P/M) have
made it possible to solidify all kinds of metallic powders into structure com-
ponents of controlled porosity. Application of endochronic theory to describe
the phenomenological behavior of porous aluminum was carried out by
Aboutorabi et al. [43], and Wang and Wu [44]. However, these applications
were limited to isotropic consolidation and monotonic uniaxial straining,
using the experimental results of Schock et al. [45] and some limited experi-
mental data for high-purity aluminum P/M. Using specimens of high-purity
aluminum P/M, Wu et al. [46] conducted a series of experiments under
various cyclic straining conditions and showed that the endochronic theory
presented in Section 9.4.1 can be used to describe the experimental results
reasonably well.

The theory of Section 9.4.1 has four elements. They are the hydrostatic
response, the deviatoric response, the densification, and the shear travel.
Although densification and shear travel are two important coupled behaviors
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between hydrostatic and deviatoric elements, their determination cannot be
accomplished by uniaxial stress experiments and awaits further investigation
by use of other specimen configurations and loading conditions. In [46], these
two effects are neglected, and the efforts have been focused on the evaluation
of the hydrostatic and deviatoric behaviors subjected to cyclic loading. Due
to consistent results obtained even with this approximation, it may be con-
cluded that densification and shear travel are of secondary importance for
the material tested under uniaxial stress condition.

The decomposition of the axial stress–strain curve into volumetric and devi-
atoric stress–strain curves gives further insight into the material behavior.
This is of special importance due to the significant role played by the plastic
volumetric deformation. The hydrostatic and deviatoric elements of the endo-
chronic theory are now discussed separately and concepts of the present
formulation are interpreted in terms of those of the classical plasticity.

In a uniaxial strain-controlled test, the strain and stress states are

[ε] =

ε1 0 0

0 ε2 0
0 0 ε2


 , [σ ] =


σ1 0 0

0 0 0
0 0 0


 (9.159)

where 1 is in the axial direction of the cylindrical specimen. The volumetric
strain is εv = ε1 + 2ε2 and the mean stress is σkk = σ1/3. The deviatoric strain
and stress are

[e] =

 2

3 (ε1 − ε2) 0 0
0 − 1

3 (ε1 − ε2) 0
0 0 − 1

3 (ε1 − ε2)


 ,

[σ ′] =

 2

3σ1 0 0
− 1

3σ1 0
0 − 1

3σ1




(9.160)

The hydrostatic response is described by (9.133) and (9.134). Several cyclic
straining paths were tested. One of them is shown in Figure 9.18(a) and
another in Figure 9.18(b). Both theoretical and experimental results are shown
in the figures. Only one internal variable p is used for simplicity in the discus-
sion of the deviatoric response. Since we have σ ′11 = −2σ ′22 = −2σ ′33 and e11 =
−2e22 = −2e33, only the 11-components of (9.146) and (9.125) are independent
equations. Combing these equations and (9.123) with kD = 1, we obtain

de11[1± XD] = dσ ′11
2G0
[1± k2XD] (9.161)

where

XD =
√

3
2
C2

fN2
(C2σ

′
11 − F2p11) (9.162)
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FIGURE 9.18
Cyclic volumetric stress–strain curve for porous aluminum: (a) test program 1, (b) test program 2
(From Wu, H.C. et al., Int. J. Plasticity, 6, 207, 1990. With permission from Elsevier).

The hardening function is

f (zD) = CD − (CD − 1) exp(−µzD) (9.163)

Equations (9.161) and (9.163) are used in a numerical procedure to compute
the deviatoric stress–strain curves. Figures 9.19(a) and (b) are the deviatoric
counterparts of Figures 9.18(a) and (b).
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Deviatoric counterparts of Figure 9.18 (From Wu, H.C. et al., Int. J. Plasticity, 6, 207, 1990. With
permission from Elsevier).

9.5 An Endochronic Formulation of a Plastically Deformed
Damaged Continuum

9.5.1 Introduction

Typical work in continuum damage mechanics (CDM) often involves the
damage-effect variables in the sense of Kachanov [47] and the effective
stress/effective strain concepts. Consequently, damage mechanics theories
are often derived from the usual constitutive theories by use of effect-
ive variables, which take into account the effects of damage, in place of
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original variables. The thermodynamics framework of CDM often involves
the concept of either the strain equivalence postulate [48] or the strain-energy
equivalence postulate [49,50], or the hypothesis of stress working equivalence
[51] along with the concepts of continuum mechanics and irreversible changes
in the material internal structure. The microdefects are represented at the mac-
roscopic level by a damage variable. A typical elastoplastic damage theory
is based on the generalized damage theory initially proposed by Chaboche
[52] and later by Lemaitre [53]. In [53], Lemaitre proposed that the damage
energy release rate, that is, energy release by the system during the damaging
process, is related to the elastic strain energy. The damage energy release rate
is defined by the thermodynamic force conjugate to damage evolution. This
treatment amounts to an uncoupled consideration between plasticity and
damage processes.

These concepts of CDM have been proposed by different authors associ-
ated with different definitions and theories, and not all of them are needed in
one theory. Some of the aforementioned concepts and definitions are not even
compatible with each other. Following the work of Wu and Nanakorn [54], we
discuss the existing concepts of CDM and propose a CDM constitutive frame-
work using a set of concepts in a unified manner. The reproduction of [54] is
with permission from Elsevier. Further constitutive modeling is required to
arrive at explicit constitutive equations for CDM, which may be achieved by
use of a concept such as damage potential within the proposed constitutive
framework. Another approach is to formulate the constitutive equations
based on an endochronic concept and still using the same constitutive frame-
work. The endochronic formulation for CDM is discussed in this section.

9.5.2 The Anisotropic Damage Tensor

This work uses a second-order tensor as a parameter of damage. The tensor
defines the loss of net area of material as in the original work of Kachanov [47].
The presentation of damage tensor Dij in this section follows previous work
by Murakami and Ohno [55] and Betten [56], in which the damage tensor
is constructed using area vectors related to Cauchy’s tetrahedron in a dam-
aged state. In Murakami and Ohno’s anisotropic damage theory of creep,
the second-rank symmetric damage tensorDij is derived by representing the
effects of microscopic grain-boundary cavities in terms of a dyadic product
of the unit normal vector to the relevant boundary. On the other hand, in
a macroscopic approach, Betten derived the damage tensor from a third-order,
skew-symmetric, continuity tensor that represents the area vector. In [54], the
derivation ofDij is similar to Betten’s derivation, but a second-order continu-
ity tensor is used, which provides a simple and more meaningful physical
interpretation.

Consider a differential tetrahedron of an undamaged material as shown in
Figure 9.20(a). Note that the figure shows a special case where xi axes coincide
with the principal damage axes. In general, if dS(j)i denotes the i-component of
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Definition of damage measure-load bearing area: (a) undamaged continuum, (b) actual damaged
continuum, (c) fictitious undamaged continuum (From Wu, H.C. and Nanakorn, C.K., Int. J. Solids
Struct., 36, 5057, 1999. With permission from Elsevier).

a gross area element that has the normaln(j)k , then dS(j)i can be characterized by

dS(1)i = − 1
2 eijk dx(2)j dx(3)k

dS(2)i = − 1
2 eijk dx(3)j dx(1)k

dS(3)i = − 1
2 eijk dx(1)j dx(2)k

dS(4)i = − 1
2 eijk (dx

(1)
j − dx(3)j )(dx

(2)
k − dx(3)k )

(9.164)

where eijk is the permutation tensor and the vectors dx(j)i do not coincide with
the principal damage axes in the general case. The sum of these vectors is
zero due to closure of the surface area of tetrahedron, that is

dS(1)i + dS(2)i + dS(3)i + dS(4)i = 0i (9.165)
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Consider now a tetrahedron of a material with internal damage as shown
in Figure 9.20(b). The nominal dimensions of this tetrahedron are the same
as those for Figure 9.20(a), but the areas are reduced by scalar factors α, β,
γ , and κ from the previous tetrahedron with their corresponding normals
unchanged. Then, the area vectors are

dS̄(1)i = − 1
2αijk dx(2)j dx(3)k = α dS(1)i

dS̄(2)i = − 1
2βijk dx(3)j dx(1)k = β dS(2)i

dS̄(3)i = − 1
2γijk dx(1)j dx(2)k = γ dS(3)i

dS̄(4)i = − 1
2κijk(dx

(1)
j − dx(3)j )(dx

(2)
k − dx(3)k ) = κ dS(4)i

(9.166)

where αijk = αeijk ,βijk = βeijk , γijk = γ eijk , and κijk = κeijk . The areas in
(9.166) represent net cross-sectional areas of the element. These are the areas
that are effectively resisting loads and are perpendicular to the coordinate
axes x1, x2, and x3, respectively. Note that dS̄(4)i denotes the inclined side.
The parameters α, β, and γ are discussed further later in this section. We
note that the vectors dS̄(1)i , . . . , dS̄(4)i , defined in (9.166), and the correspond-
ing dS(1)i , . . . , dS(4)i defined in (9.164), differ in length, and the condition of
closure cannot be satisfied, that is

dS̄(1)i + dS̄(2)i + dS̄(3)i + dS̄(4)i 	= 0i (9.167)

except for the case of isotropic damage where α = β = γ = κ .
Because of the existence of microcavities in the material, the load-carrying

net areas of the damaged continuum, Figure 9.20(b), are reduced. It is now
postulated that there exists a fictitious undamaged continuum, as shown in
Figure 9.20(c), which is mechanically equivalent to the damaged continuum.
Thus, the damage state is represented by the fictitious undamaged continuum
such that

dŜ(1)i = − 1
2 eijk dx̂(2)j dx̂(3)j = dS̄(1)i

dŜ(2)i = − 1
2 eijk dx̂(3)j dx̂(1)j = dS̄(2)i

dŜ(3)i = − 1
2 eijk dx̂(1)j dx̂(2)j = dS̄(3)i

dŜ(4)i = − 1
2 eijk(dx̂

(1)
j − dx̂(3)j )(dx̂

(2)
k − dx̂(3)k )

(9.168)
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where dx̂(j)i define the fictitious differential tetrahedron. Furthermore, the
closure of the fictitious undamaged continuum is assumed to be satisfied.
Thus,

dŜ(1)i + dŜ(2)i + dŜ(3)i + dŜ(4)i = 0i (9.169)

The three area vectors dŜ(j)i in (9.168) are identical to the vectors dS̄(j)i
in (9.166) and are related to the vectors dS(j)i in (9.164) by scalar factors
α, β, and γ , respectively. The fourth vectors dŜ(4)i and dS̄(4)i are different
in both magnitude and direction. Since (9.168) is used in the remaining part
of this chapter, the parameter κ is not important and is not discussed further.
It is reasonable to assume that dŜ(4)i and dS(4)i are related by a linear relation

dŜ(4)i = ψij dS(4)j (9.170)

where ψij is a second-order tensor. In (9.170), dŜ(4)i represents the effective
load-carrying area of the damaged material and dS(4)j is the gross area on
the inclined face of the material element. Therefore, tensor ψij represents the
fraction of dS(4)j that can be used to carry load, accounting for the effect of
damage. Tensor ψij is known as the continuity tensor, since it describes the
continuity state of the material.

The continuity tensor ψij can be determined directly from (9.170).
Substituting (9.164) and (9.165) into the right-hand side of (9.170), and (9.166),
(9.168), and (9.169) into the left-hand side of (9.170), we obtain

αijk dx(2)j dx(3)k + βijk dx(3)j dx(1)k + γijk dx(1)j dx(2)k

= ψirerjk (dx(2)j dx(3)k + dx(3)j dx(1)k + dx(1)j dx(2)k ) (9.171)

If the vectors dx(j)i are aligned with the coordinate axes xi, respectively, then

dx(j)i = δij|dsj| (no sum on j), where |dsj| defines the magnitude of the

vector dx(j)i . Then, for i = 1, (9.171) becomes

(ψ11 − α)e123|ds2||ds3| + ψ12e231|ds3||ds1| + ψ13e321|ds1||ds2| = 0

(9.172)

Since |dsj|, the magnitudes of dx(j)i , are independent of each other, they can
be independently varied. But, due to the closure assumption, (9.172) cannot
be violated. Therefore, (9.172) can be satisfied for all values of |dsj|, if and
only if

ψ11 = α, ψ12 = 0, ψ13 = 0 (9.173)
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Similar discussions may be used for i = 2 and 3. Thus, the continuity tensor
is found to be

[ψ] =

α 0 0

0 β 0
0 0 γ


 (9.174)

It is seen that when the xi axes are principal damage axes, the continuity
tensor ψij is in a diagonal form.

In the case of uniaxial tension along the x1 direction, let s be the total gross
cross-sectional area and ŝ be the effective area of resistance so that ŝ < s.
In view of (9.170), vectors dŜ(4)i and dS(4)i are represented by [ŝ, 0, 0]T
and [s, 0, 0]T, respectively, with n(4)i = [1, 0, 0]T. Then, by use of (9.174),
(9.170) reduces to

ŝ = ψs (9.175)

where ψ = ψ11 = α. Therefore, ψ = ŝ/s represents that fraction of the cross-
sectional area which can be used to resist load. When ψ = 1, the material
is in the virgin state without damage and ŝ is identical to s. When ψ = 0,
the material can no longer resist load, since its effective area of resistance is
reduced to zero.

The damage tensor is defined as a complementary (dual) tensor of
continuity [57]. In other words, the damage tensor represents the fraction
of the cross-sectional area that was reduced by microdefects. In the uniaxial
loading case, the damage variable can be expressed in terms of the continuity
variable ψ as

D = s− ŝ
s
= 1− ψ (9.176)

Thus, D = 0 corresponds to the undamaged state and D = 1 corresponds
to the breaking state of the material. In the multiaxial case, a second-order
damage tensor Dij is defined as

Dij = δij − ψij (9.177)

Note that Dij is the damage tensor and is not to be confused with the rate of
deformation tensor used in most chapters of this book. In the special case,
when the xi axes are also the principal axes of damage, tensor ψij is given
by (9.174), and the damage tensor is given by

[D] =

D1 0 0

0 D2 0
0 0 D3


 =

1− α 0 0

0 1− β 0
0 0 1− γ


 (9.178)
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It is seen that the principal values D1,D2, and D3 are related to the principal
continuity variables α,β, and γ , respectively. These principal valuesDi can be
measured on the test specimens cut along mutually perpendicular directions
x1, x2, and x3, respectively. Alternatively, the continuity tensor is given in
terms of the principal values of the damage tensor as

[ψ] =

α 0 0

0 β 0
0 0 γ


 =

1−D1 0 0

0 1−D2 0
0 0 1−D3


 (9.179)

where α = 1−D1, β = 1−D2, and γ = 1−D3.

9.5.3 Gross Stress, Net Stress, and Effective Stress

In the previous section, a definition of damage is derived by introducing a fic-
titious undamaged continuum that is mechanically equivalent to the actual
damaged continuum. In this section, various definitions of stress, such as
the gross stress, the net stress, and the effective stress, are discussed. The
gross stress or the Cauchy stress, σij, is the stress defined on the actual dam-
aged continuum while the net stress, σ̂ij, and the effective stress, σ̃ij, are the
nonsymmetric and symmetric stress, respectively, defined on the fictitious
undamaged continuum.

By considering the actual damaged continuum and the fictitious undam-
aged continuum under the same applied force, the corresponding stresses on
the two continua are different, since the stresses are calculated over different
cross-sectional areas of the continua. If the equilibrium of the actual damaged
continuum is considered (Figure 9.21(a)), one can derive the relation between
the stress vector ti and the stress tensor σij, that is,

ti = σjinj (9.180)

where ni is the unit normal of an area element dS. Similarly, the equilibrium
of the fictitious undamaged continuum, with an area element dŜ and unit
normal n̂i (Figure 9.21(b)) yields

t̂i = σ̂jin̂j (9.181)

where σ̂ij is the net stress acting on the fictitious undamaged continuum and
t̂i is the corresponding stress vector. Since the area elements dS and dŜ are
subjected to the same force, that is, dP̂i = dPi, we can conclude that

dPi = ti dS = σjinj dS = σ̂kin̂kdŜ = t̂i dŜ = dP̂i (9.182)
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FIGURE 9.21
Definitions of stress tensor and pseudo-force: (a) Cauchy stress, (b) net stress, (c) effective stress
(From Wu, H.C. and Nanakorn, C.K., Int. J. Solids Struct., 36, 5057, 1999. With permission from
Elsevier).

wheredSanddŜare scalarquantities and thecorrespondingvector expression
is obtained from (9.170) as n̂i dŜ = ψijnj dS. Thus, (9.182) becomes

(σji − σ̂kiψkj)nj dS = 0 (9.183)

and it follows that

σij = ψkiσ̂kj and σ̂ij = ψ−1
ik σkj (9.184)

By use of (9.174), the net-stress σ̂ij is found to be

[σ̂ ] =




σ11

α

σ12

α

σ13

α

σ21

β

σ22

β

σ23

β

σ31

γ

σ32

γ

σ33

γ




(9.185)

which shows that the net-stress σ̂ij is nonsymmetric, except for the case
of isotropic damage. It is not convenient to use the nonsymmetric stress
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tensor σ̂ij together with a symmetric strain tensor and strain rate in the con-
stitutive equations. Therefore, new symmetric stress measures, the effective
stress σ̃ij, have been defined on the fictitious undamaged continuum and
used in the constitutive equations. Various definitions have been proposed
to symmetrize σ̂ij. These definitions may be summarized based on various
transformations operated on the net stress σ̂ij. They are

1. Betten [56] proposed a transformed net-stress tensor, which is an
effective stress subjected to the following transformation

σ̃ij = 1
2 (σ̂ijψ

−1
kj + ψ−1

ki σ̂jk) (9.186)

Using (9.184), the expression becomes

σ̃ij = 1
2 (ψ
−1
ik ψ

−1
ij + ψ−1

jk ψ
−1
mi )σkm =Mijkmσkm (9.187)

where

Mijkm = 1
2 (ψ
−1
ik ψ

−1
ij + ψ−1

jk ψ
−1
mi ) (9.188)

The fourth-order transformation tensor Mijkm is referred to as the
damage-effect tensor. For ψij to have the diagonalized form of (9.174),
(9.187) is expressed in the matrix form as




σ̃11
σ̃22
σ̃33
σ̃12
σ̃23
σ̃31



=




1
α2 0 0 0 0 0

1
β2 0 0 0 0

1
γ 2 0 0 0

1
αβ

0 0

sym
1
βγ

0

1
γα







σ11
σ22
σ33
σ12
σ23
σ31




(9.189)

or

[σ̃ ] =




σ11

α2
σ12

αβ

σ13

αγ
σ12

αβ

σ22

β2
σ23

βγ
σ13

αγ

σ23

βγ

σ33

γ 2


 (9.190)

which is a symmetric tensor.
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2. The effective stress proposed by Cordebois and Sidoroff [58], also by
Chow and Wang [59], is defined through its components given by

σ̃ij =
√
σ̂ijσ̂ji (no sum on i or j) (9.191)

Since the right-hand side of (9.191) is not a tensor operation, the effect-
ive stress σ̃ij as defined by (9.191) is not a tensor. However, in the
matrix form, the above definition of effective stress can also give rise
to a linear relationship between σ̃ij and σij.

3. In a study of anisotropic damage in ductile solids, Stumvoll and
Swobada [60] defined the effective stress as the symmetric part of
the net-stress tensor, that is,

σ̃ij = 1
2 (σ̃ij + σ̃ji) = 1

2 (ψ
−1
ik δjm + δikψ−1

jm )σkm (9.192)

where the damage-effect tensor is

Mijkm = 1
2 (ψ
−1
ik δjm + δikψ−1

jm ) (9.193)

By use of (9.179),Mijkm may be written in terms of the principal dam-
ageD1,D2, andD3 and it can be reduced to a form used by Rabotnov
[61] and later by Chow and Lu [62].

In all cases, the effective stress σ̃ij is related to the Cauchy stress σij by the
equation

σ̃ij =Mijkmσkm (9.194)

where the exact expression for the damage-effect tensor Mijkm depends on
the method used in symmetrizing σ̂ij. With respect to the principal dam-
age coordinate system, the damage-effect tensor Mijkm is represented by a
6× 6 diagonal matrix. In a special case, if the directions of principal stresses
coincide with those of the principal damage, then these equations further
reduce to 

σ̃11
σ̃22
σ̃33


 =

M1111 0 0

0 M2222 0
0 0 M3333




σ11
σ22
σ33


 (9.195)

where M1111, M2222, and M3333 are functions of principal damage variables
D1,D2, and D3.

The interpretation of the effective stress is now investigated. The net-stress
tensor σ̂ij is an actual nonsymmetric stress acting on the fictitious, undamaged
continuum, which is subjected to the same applied force as the original, actual,
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damaged continuum, that is, dP̂i = dPi. On the other hand, the effective stress
tensor σ̃ij is the fictitious symmetric stress acting on the fictitious undam-
aged continuum due to the application of the pseudo-force dP̃i, as shown in
Figure 9.21(c). To validate this statement, the Cauchy formula, relating the
pseudo-force dP̃i to the effective stress σ̃ij is

dP̃i = σ̃jin̂dŜ (9.196)

where n̂i and dŜ were previously defined on the fictitious undamaged ele-
ment. Using (9.170) and (9.194), the above relation can be rewritten in terms
of the Cauchy stress and the area element ni dS as

dP̃i =Mjikmσkmn̂j dŜ =Mjikmσkmψjrnr dS (9.197)

If Betten’s definition of the damage-effect tensor (9.188) is used, (9.197)
becomes

dP̃i = ψ−1
ij dPj (9.198)

This equation establishes that the pseudo-force dP̃i is related to the original
applied force dPi by the inverse-transpose of the continuity tensor ψij. If,
on the other hand, the damage-effect tensor is defined by (9.193), then the
pseudo-force on the fictitious undamaged element is

dP̃i = 1
2 (dPi + σ̂ijn̂j dŜ) = 1

2 (dPi + ψ−1
ik σjkn̂j dŜ) (9.199)

We note that dPi = σ̂jin̂j dŜ 	= σ̂ijn̂j dŜ, due to the nonsymmetric property
of σ̂ij. The last term of (9.199) can be viewed as an additional abstract-force
due to the actual stress σij acting over the area of the fictitious undamaged
continuum, that is, n̂j dŜ. Therefore, the pseudo-force corresponding to this
definition of effective stress has no simple physical interpretation.

9.5.4 An Internal State Variables Theory

Based upon concepts of continuum mechanics and irreversible thermo-
dynamics with internal variables, the Clausius–Duhem inequality (with
thermal gradient) with respect to the actual, damaged continuum is given
by (see [63])

σijε̇ij − �̇(εij, qrij,Dij, γ sij , θ)− ηθ̇ −
1
θ
hjθ,j ≥ 0 (9.200)

In (9.200), the Helmholtz free energy � is a function of total (elastoplastic)
strain εij, damage measure Dij, temperature θ , and two sets of internal
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state variables qrij and γ sij . There are n number of internal variables qrij
(r = 1, 2, . . . ,n), which describe the state of plastic deformation, and m num-
ber of internal variables γ sij (s = 1, 2, . . . ,m), which specify the state of damage
in the continuum. hi is heat flux vector and η is entropy density.

In a typical damage mechanics model, the damage tensor Dij is treated as
an internal state variable (it is macroscopically not measurable by definition)
that describes the irreversible process of internal structure due to microde-
fects. However, in the present work, the damage tensor Dij is not an internal
state variable and it represents a measurable quantity, that is, the fraction of
reduction in load-resisting area. It is a measurable quantity in the description
of damage, even though it may be difficult to measure. The role played byDij
in the description of damage is similar to the role played by strain, which is
also measurable, in the description of plastic deformation.

In [54], a set of internal state variables γ sij has been introduced to describe
the state of internal damage as a result of growth and/or nucleation of micro-
cracks and/or microvoids. The set of m internal variables γ sij , which evolves
with loading histories, is introduced to distinguish one internal state of dam-
age from the others, similar to the set of internal variables qrij which describes
the state of plastic deformation that cannot be uniquely described by the
plastic strain alone. The damage variable Dij describes the current fraction
of area reduction but not the state of damage. To elaborate, two continua of
the same initial damaged state, when undergoing different loading histories,
may end up having the same load-resisting area momentarily, hence the same
value of Dij, but having two different states of damage.

The concept of using both damage tensor Dij and damage internal state
variables γ sij in [54] is similar but not equal to the concept of Krajcinovic [64]
proposed for the brittle CDM model. In Krajcinovic’s model, the microcracks
vector fields ω(i), treated as internal variables, are used to describe the state
of damage, and a scalar damage measure D is used to describe the over-
all damage of the material. However, D is the macroscopic counterpart of
the microscopic ω(i) (they are related by an integral) and D is, therefore, not
measurable. In the present work, Dij is defined by a definition not directly
related to γ sij and it is influenced by the current loading condition. Thus, at the
same state of damage, a different incremental loading state will give rise to a
different increment ofDij. Hence, dDij is different when the material element
is subjected to incremental tension, compression, or shear. As an illustra-
tion, consider uniaxial tension of a cylinder. The majority of the microcracks
will develop in the plane perpendicular to the maximum tensile strain. If
the specimen is then unloaded and subsequently subjected to a small com-
pressive stress along its axial direction, the specimen will behave as though
it were undamaged up to a certain compressive stress threshold, since all of
the microcracks will be passive (crack closure). Consequently, the initial incre-
ment ofDij depends on whether the stress increment is tensile or compressive,
even though the state of damage is the same at that moment. Furthermore,
with the second-order tensor representations of Dij and γ sij , the theory [54]
is capable of describing both spherical (e.g., void volume fraction) and
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planar (e.g., a system of planar microcracks) effects of microcracks, and their
interactions.

In the fictitious undamaged configuration, the volume and surface area of
the continuum are reduced by excluding the volume and area of the con-
tinuum that were previously occupied by microdefects. These are denoted by
V̂ and Ŝ, respectively. Consequently, the fictitious undamaged matrix material
becomes homogeneous and isotropic. For a given force field P̂i = Pi, the first
law of thermodynamics written for this fictitious undamaged continuum is

d
dt

∫
V̂

(
1
2
v̂iv̂i + ε̂

)
ρ̂ dV̂ =

∫
V̂
ρ̂b̂iv̂idV̂ +

∫
Ŝ
(σ̂jiv̂i − ĥj)n̂j dŜ+

∫
V̂
r̂ dV̂

(9.201)

where (∧ ) is used to indicate that the quantity is associated with the ficti-
tious undamaged continuum. In (9.201), v̂i is the velocity; ε̂ is the internal
energy density; ρ̂ is the mass density; b̂i is the body force; and r̂ is the heat
source term. The first term in the surface integral represents the rate of work
done by surface traction and is expressed in terms of the nonsymmetric net-
stress tensor σ̂ij. When the pseudo-force field P̃i is introduced to the fictitious
continuum so that the corresponding effective stress σ̃ij is symmetric, (9.201)
is written as

d
dt

∫
V̂

(
1
2
ṽiṽi + ε̂

)
ρ̂ dV̂ =

∫
V̂
ρ̂b̂iṽi dV̂ +

∫
Ŝ
(σ̃jiṽi − ĥj)n̂j dŜ+

∫
V̂
r̂ dV̂

(9.202)

Due to the use of pseudo-force field P̃i, the velocity vector in this configuration
is ṽi instead of v̂i, as indicated in (9.202). Consequently, the deformation of the
fictitious undamaged continuum subjected to pseudo-force field P̃i is different
from that subjected to force field Pi. The rate of deformation for the fictitious
undamaged configuration is then defined by

˙̃εij = 1
2

(
∂ ṽi
∂xj
+ ∂ ṽj
∂xi

)
(9.203)

where ε̃ij defines the deformation of the fictitious undamaged continuum
(with pseudo-force field P̃i) and is referred to as the effective strain. Accord-
ing to (9.203), the relationship between the effective strain ε̃ij and the actual
strain εij depends on transformations between velocity vectors from vi to v̂i
and from v̂i to ṽi. In general, the explicit forms of these transformations are
difficult to define due to the complexity of the geometry and mathematics
involved. In this work, the effective strain ε̃ij is expressed in terms of dam-
age tensor Dij and actual strain εij, and this relationship is discussed later in
this section. The postulate of free energy equivalence is applied in the sub-
sequent discussion. According to this postulate, which was initially proposed
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by Cordebois and Sidoroff [58] in the form of strain-energy equivalence, the
free energy for an actual, damaged material has the same form as that for a
fictitious, undamaged material, but the variables are replaced by the effective
quantities. Thus,

�̃
(
ε̃ij, q̃rij, γ

s
ij , θ
) ≡ �(εij, qrij,Dij, γ sij , θ) (9.204)

where the q̃rij’s are the effective qrij’s. Note that Dij does not explicitly appear
as one of the state variables on the left-hand side of (9.204). In view of (9.204),
the free energy available to do mechanical work and stored in the fictitious
continuum is the same as that stored in the actual continuum, resulting in an
equivalent mechanical behavior.

The second law of thermodynamics and the equation of motion at the
fictitious configuration subjected to the pseudo-force field P̃i become

d
dt

∫
V̂
ρ̂η dV̂ ≥

∫
V̂

r̂
θ

dV̂ −
∫
Ŝ

ĥi
θ
n̂j dŜ (9.205)

∂σ̃ji

∂xi
+ ρ̂b̂i = ρ̂ f̃i (9.206)

where f̂i = dṽi/dt. Using (9.202) to (9.206), the Clausius–Duhem inequality for
the fictitious undamaged continuum in the isothermal condition is given by

σ̃ij ˙̃εij − ˙̃�
(
ε̃ij, q̃rij, γ

s
ij
) ≥ 0 (9.207)

so that (
σ̃ij − ∂�̃

∂ε̃ij

)
˙̃εij − ∂�̃

∂ q̃rij
˙̃qrij −

∂�̃

∂γ sij
γ̇ sij ≥ 0 (9.208)

In the fictitious continuum, ε̃ij, q̃rij, and γ sij are the state variables so that they
can be independently varied. Although, q̃rij may vary when ε̃ij changes, their
relation is not one-to-one. Different ε̃ij histories may lead to the same q̃rij,
and a material with different q̃rij may correspond to the same ε̃ij moment-
arily. Thus, it is possible to vary ε̃ij so that q̃rij is left unchanged. Therefore,
inequality (9.208) is always satisfied, if

σ̃ij = ∂�̃
∂ε̃ij

and − ∂�̃
∂ q̃rij
˙̃qrij −

∂�̃

∂γ sij
γ̇ sij ≥ 0 (9.209)

According to the first equation of (9.209), the effective stress σ̃ij is derivable
from the fictitious undamaged free-energy �̃. The inequality (9.209) gives the
thermodynamic constraints on the laws governing the evolution of the two
sets of internal variables, q̃rij and γ sij .
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It is now possible to derive the explicit relationship for effective strain ε̃ij.
A relation similar to the first equation of (9.209) exists for the actual damaged
continuum. When the postulate of free energy equivalence is assumed, this
relation is

σij = ∂�
∂εij
= ∂�̃
∂εij
= ∂�̃

∂ε̃mn

∂ε̃mn

∂εij
+ ∂�̃

∂ q̃rmn

∂ q̃rmn
∂εij

(9.210)

where the effective internal variable q̃rij is assumed to be a function of the
actual internal variable qrij and damage tensor Dij. Note that, for the actual
damaged continuum s independent variables are εij, qrij, and Dij, so that the
second term on the right-hand side of (9.210) drops out and the equation
reduces to

σij = ∂�̃

∂ε̃mn

∂ε̃mn

∂εij
= σ̃mn ∂ε̃mn

∂εij
(9.211)

Using (9.194), (9.211) further reduces to

∂ε̃mn

∂εij
= Nijmn (9.212)

where Nijmn is the inverse of Mijmn and is a function of Dij only, or

MijmnNrsij = Imnrs (9.213)

In (9.213), the fourth-order identity tensor is Iijkm = δikδjm and δij isKronecker’s
delta. Thus, it follows from (9.212) that the effective strain ε̃ij is linearly related
to εij by

ε̃ij = Nkmijεkm or εij =Mkmijε̃km (9.214)

Then, it is assumed that the following relations are valid for the internal
variable qrij

q̃rij = Nkmijqrkm or qrij =Mkmijq̃rkm (9.215)

Constitutive equations at the fictitious undamaged configuration must sat-
isfy the inequality given by (9.207). By use of (9.214) this inequality can be
written as

σijε̇ij − ˙̃�(ε̃ij, q̃rij, γ sij)+ σ̃km
∂ε̃km

∂Dij
Ḋij ≥ 0 (9.216)

where

∂ε̃ij

∂Dmn
= ∂Nrsij
∂Dmn

εrs (9.217)
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By observing (9.204), the first two terms of (9.216) are the same as the left-
hand side of (9.200) in the isothermal case. During an incremental loading,
the fictitious undamaged continuum undergoes a deformation in the matrix
as well as an increase in damage. The first two terms of (9.216) are energy dis-
sipated associated with this process. However, by definition, the state of the
fictitious material remains undamaged at the end of each loading increment.
The amount of energy dissipated in order to restore the fictitious continuum
to the undamaged state is represented by the last term of inequality (9.216).
For convenience, inequality (9.216) can be rewritten as

σijε̇ij − ˙̃�
(
ε̃ij, q̃rij, γ

s
ij
)− GijḊij ≥ 0 (9.218)

where

Gij = −σ̃km ∂ε̃km
∂Dij

(9.219)

Tensor Gij is the thermodynamic force associated with unit damage growth
Ḋij, and, in this work, it is referred to as the “damage force” for simplicity. This
quantity may also be considered as the energy release rate per unit damage
advance. Physically, the negative of the damage force,−Gij, can be interpreted
as the “restoring force” that restores the fictitious continuum to its undamaged
state after experiencing a unit damage growth Ḋij. It is seen from (9.219) that
Gij can be expressed in terms of σ̃ij, ε̃ij, and Dij. A further discussion of the
damage force can be found in the appendix of [54].

9.5.5 Plasticity and Damage

We now characterize the plastic deformation process, the damage process,
and the couplingbetween the twoprocesses. Startingwith theactualdamaged
configuration, where the state variables are εij, Dij, qrij, and γ sij , the Clausius–
Duhem inequality (9.200) can be rewritten for isothermal process as

σijε̇ij − ∂�
∂εij

ε̇ij − ∂�
∂qrij

q̇rij −
∂�

∂Dij
Ḋij − ∂�

∂γ sij
γ̇ sij ≥ 0 (9.220)

Replacing� by �̃ and noting thatDij andγ sij are independent variables, (9.220)
becomes

σijε̇ij − ∂�̃
∂ε̃ij

∂ε̃ij

∂εkm
ε̇km − ∂�̃

∂ q̃rij

∂ q̃rij
∂qrkm

q̇rkm −
(
∂�̃

∂ε̃ij

∂ε̃ij

∂Dkm
+ ∂�̃
∂ q̃rij

∂ q̃rij
∂Dkm

)
Ḋkm

− ∂�̃
∂γ sij

γ̇ sij ≥ 0 (9.221)
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or, after regrouping of terms, it may be shown that

σijε̇ij − ˙̃�
(
ε̃ij, q̃rij, γ

s
ij

)
≥ 0 (9.222)

Constraint (9.222) represents the Clausius–Duhem inequality of the actual
damaged configuration. However, unlike (9.200), inequality (9.222) involves
the fictitious free energy �̃(ε̃ij, q̃rij, γ

s
ij), which is defined in the ficti-

tious undamaged configuration, where the fictitious material is isotropic.
Therefore, �̃(ε̃ij, q̃rij, γ

s
ij) involves only material constants that are isotropic

tensors.
In an attempt to characterize the plastic deformation and the damage pro-

cess, one recognizes that the damage process does not directly influence the
mechanismsofplasticdeformation; that is, there isnodirect couplingbetween
damage and plastic deformation. In general, plasticity is directly related to
slips for metals and to other mechanisms for other materials. In all cases, dam-
age influences plastic strains only because the net area of resistance decreases
as the damage proceeds. In the present work, damage does not directly influ-
ence plastic deformation of the fictitious undamaged continuum, but it does
influence the plastic deformation of the actual continuum. Based on this
observation, the fictitious free energy �̃(ε̃ij, q̃rij, γ

s
ij) is assumed to consist of

two parts, the fictitious plastic potential �̃1(ε̃ij, q̃rij) and the damage potential

�̃2(Dij, γ sij), that is,

�̃
(
ε̃ij, q̃rij, γ

s
ij
) = �̃1

(
ε̃ij, q̃rij

)+ �̃2
(
Dij, γ sij

)
(9.223)

where potential �̃1(ε̃ij, q̃rij) characterizes the plastic process of the fictitious
undamaged continuum while potential �̃2(Dij, γ sij) describes the damage
process. During deformation, the microcracks and microvoids will extend,
grow, and nucleate, resulting in progressive material deterioration. This
damage deterioration is not arbitrary and it must obey thermodynamic
constraints to be established. The damage potential �̃2(Dij, γ sij) is used to
provide the equation of damage evolution and its necessary constraints.
The state of microdefects is represented by the set of internal variables γ sij .
The change in microdefects together with the loading condition bring about
a decrease in load-resisting area, which is represented at the macroscopic
level by damage tensor Dij. The effect is carried over to the deforma-
tion process, elastic or plastic, through the effective variables, σ̃ij, ε̃ij, and
q̃rij. Hence, an indirect coupling occurs between the plasticity and dam-
age in the actual damaged continuum. Using (9.223), inequality (9.222) is
written as

σijε̇ij − ˙̃�1
(
ε̃ij, q̃rij

)− ˙̃�2
(
Dij, γ sij

) ≥ 0 (9.224)
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9.5.6 The Constitutive Equations and Constraints

Within an infinitesimal strain theory, the stress rate is usually represented by
the material rate. In CDM, it is important, however, to consider the rotation
of the principal directions of damage during the deformation process. The
principal directions of damage do not generally coincide with the principal
stress, when nonproportional loading takes place or when the material has
suffered a prior damage. To satisfy the requirements of reference frame indif-
ference, the rate of change of damage measure Dij and the internal variables
γ sij are expressed by the corotational derivatives

D∇ij = Ḋij − ωikDkj +Dikωkj, γ s∇ij = γ̇ sij − ωikγ skj + γ sikωkj (9.225)

where ωij represents the spin of the principal damage coordinate frame
with respect to the fixed reference coordinate frame. Thus, it follows from
(9.224) that(

σij − ∂�̃1

∂ε̃km

∂ε̃km

∂εij

)
ε̇ij − ∂�̃1

∂ q̃rkm

∂ q̃rkm
∂qrij

q̇rij

−
(
∂�̃1

∂ε̃km

∂ε̃km

∂Dij
+ ∂�̃1

∂ q̃rkm

∂ q̃rkm
∂Dij

+ ∂�̃2

∂Dij

)
D∇ij −

∂�̃

∂γ sij
γ s∇ij ≥ 0 (9.226)

Since εij, Dij, qrij, and γ sij are independent state variables, fixing these values
also fix the values of σij, �̃1, and �̃2 because they are state functions. For
inequality (9.226) not to be violated for any arbitrary choice of ε̇ij while
keeping Dij, qrij, and γ sij unchanged, the following conditions must hold

σij = ∂�̃1

∂ε̃km

∂ε̃km

∂εij
, (9.227a)

− ∂�̃1

∂ q̃rkm

∂ q̃rkm
∂qrij

q̇rij −
(
∂�̃1

∂ε̃km

∂ε̃km

∂Dij
+ ∂�̃1

∂ q̃rkm

∂ q̃rkm
∂Dij

+ ∂�̃2

∂Dij

)
D∇ij −

∂�̃

∂γ sij
γ s∇ij ≥ 0

(9.227b)

Using (9.212) and noting that Nijkm is the inverse ofMijkm, (9.227a) reduces to

σ̃ij = ∂�̃1

∂ε̃ij
(9.228)

Thus, the effective stress is derivable from potential �̃1(ε̃ij, q̃rij). Also, (9.227b)
can be rearranged to yield

− ∂�̃1

∂ q̃rkm
q̃r∇km +

(
Gij − ∂�̃2

∂Dij

)
D∇ij −

∂�̃2

∂γ sij
γ s∇ij ≥ 0 (9.229)
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where

Gij = ∂�̃1

∂ε̃km

∂ε̃km

∂Dij
= −σ̃km ∂ε̃km

∂Dij
(9.230)

In the derivation, (9.228) and (9.219) were used. Note that the first term
of (9.227b) and the second term in the bracket of the same inequality are
combined to form the first term of (9.229).

From the assumption that damage does not directly influence the state of
fictitious plasticity, that is, damage affects the deformation only through Dij,
the constraint (9.229) can be replaced by the following stronger conditions

−∂�̃1

∂ q̃rij
q̃r∇ij ≥ 0 and

(
Gij − ∂�̃2

∂Dij

)
D∇ij −

∂�̃2

∂γ sij
γ s∇ij ≥ 0 (9.231)

The conditions apply, respectively, to the fictitious plastic deformation pro-
cess and the damage process. Furthermore, if the values of εij, Dij, qrij, and γ sij
are fixed, then the values of Gij and �̃2 are also fixed, since Gij is a function of
state variables as defined by (9.230), and �̃2 is a state function. For inequal-
ity (9.231b) not to be violated for an arbitrary choice of D∇ij , the following
conditions must hold

Gij = ∂�̃2

∂Dij
and − ∂�̃2

∂γ sij
γ s∇ij ≥ 0 (9.232)

For a more detailed investigation of a CDM model, the damage tensorDij can
be divided into two parts, that is,

Dij = Drij +Dnij (9.233)

The recoverable partDrij is due to area reduction associated with the growth
of microdefects that can be recovered during unloading. The nonrecover-
able part Dnij involves the reduction of area due to the extension of existing
microcracks and/or the nucleation of microdefects.

In summary, the constitutive equations for an isothermal damaged con-
tinuum are given by the following sets of equations and constraints

σ̃ij = ∂�̃1

∂ε̃ij
with − ∂�̃1

∂ q̃rij
q̃r∇ij ≥ 0 (9.234)

Gij = ∂�̃2

∂Dij
with − ∂�̃2

∂γ sij
γ s∇ij ≥ 0 (9.235)
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and

Gij = − ∂�̃1

∂ε̃km

∂ε̃km

∂Dij (9.236)

Equation (9.234) characterizes the deformation of the fictitious undamaged
continuum, and the inequality of (9.234) constrains the evolution of plastic
internal variables. The set of equation and constraint (9.235) provides a
relationship between the damage force Gij and the damage measure Dij. It
also provides a constraint on the evolution of damage internal variables.
Finally, the coupling between the deformation process and damage process
is provided by (9.236). This is further explained in the subsequent paragraph.

Consider a fictitious, undamaged, element subjected to loading increment
dP̃i. During loading, there are various forms of dissipation of energy associ-
ated with plasticity and damage processes. In particular, the rate of energy
dissipation (caused by the damage force) due to a unit damage growth D∇ij
with respect to the fictitious element is (∂�̃2/∂Dij)D∇ij . At the end of the load-
ing period, it is required that the fictitious element returns to its undamaged
state before the next loading can be applied. The restoring energy associated
with this transformation is given by−GijD∇ij , where−Gij is the restoring force.
Because the damage needed to be restored at the end of a loading period is
equal to the negative of the damage growth during loading, the force associ-
ated with the two processes must be equal in magnitude. Therefore, (9.236)
can be viewed as a constraint that must be satisfied for the fictitious deforma-
tion and damage process to occur simultaneously within the same continuum.
In fact, this is a required constraint that arrives naturally from thermodynamic
consideration.

Equations and constraints in (9.234) to (9.236) provide a framework for
theories of CDM. Explicit constitutive equations may be obtained if functions
for �̃1 and �̃2 are specified. Explicit evolution equations, which satisfy the
inequalities of (9.234) and (9.235), for internal variables qrij, and γ sij should
also be given. Different theories may be proposed based on this constitutive
framework. One such theory has been formulated by Wu and Nanakorn [65]
by use of the concept of endochronic plasticity. In that paper, the model has
been applied to a one-dimensional case that describes uniaxial monotonic
compression and tension of a concrete specimen. It successfully describes
the strain-softening behavior after the peak load. In addition, the model has
been applied to the description of deformation behavior for cyclically loaded
concrete and mortar specimens. Satisfactory results have been obtained.

It is remarked that the internal variables are not observable. Using the evol-
ution equations for these variables, these variables do not necessarily appear
in the final form of the constitutive equations. Depending on the functional
forms for �̃1 and �̃2 and the explicit forms for the evolution equations for qrij,
and γ sij , a set of macroscopic parameters may be used for the model. These
parameters may then be determined from experiments.
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9.5.7 A Brief Summary of Wu and Nanakorn’s Endochronic CDM

Several CDM models based on endochronic theory of plasticity have been
proposed. The model of Valanis [66] is for brittle materials, while the models
of Niu [67] and Chow and Chen [68] are for ductile materials. The model of
Niu [67] is limited to isotropic damage due to the scalar representation of
damage; the model of Chow and Chen [68] is an anisotropic damage model.
Wu and Nanakorn’s model [65] is applicable to ductile materials with aniso-
tropic damage. The equations of the Wu–Nanakorn model are summarized
in this section for later references with permission from ASCE. This model is
different from that of Chow and Chen [68], which uses neither the damage
internal variables γ sij nor the concept of damage restoring force Gij. Instead,
Chow and Chen [68] uses Dij as an internal variable and express the dam-
age evolution equations in terms of the potential of damage dissipation and
elastic strain energy release rate Yij.

In the Wu–Nanakorn model, the governing equations and constraints
are given by (9.234) to (9.236). In this section, explicit forms of equations
are derived by assuming the following quadratic forms for �̃1(ε̃ij, q̃rij) and

�̃2(Dij, γ sij):

�̃1
(
ε̃ij, q̃rij

) = 1
2

∑
r

Aijkm
(
ε̃ij − q̃rij

)(
ε̃km − q̃rkm

)
(9.237)

�̃2
(
Dij, γ sij

) = 1
2

∑
r

Hijkm
(
Dij − γ sij

)(
Dkm − γ skm

)
(9.238)

whereAijkm andHijkm are positive semi-definite fourth-rank isotropic tensors.
The free energies in (9.237) and (9.238) are defined on the fictitious undamaged
material, which is isotropic. Represent now any fourth-order isotropic tensor
Wijkm by

Wijkm =W1δijδkm +W2δikδjm, with W0 = 3
(
W1 + W2

3

)
(9.239)

whereW1 andW2 are constants, and symmetry ofWijkm with respect to k and
m is assumed. Also, the variables may be decomposed into the deviatoric and
hydrostatic parts as

σ̃ij = σ̃ ′ij + 1
3δijσ̃kk , ε̃ij = ẽij + 1

3δijε̃kk , q̃rij = p̃rij + 1
3δij q̃

r
kk (9.240)

and

Gij = gij + 1
3δijGkk , Dij = dij + 1

3δijDkk , γ sij = rsij + 1
3δijγ

s
kk (9.241)

Using these notations, the explicit form of constitutive equations for dam-
aged materials may be derived and are presented in the remaining part of
this section.
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9.5.7.1 Equations of plastic deformation

The deformation behavior is characterized by the effective stress-effective
strain relationship given in (9.234). Using (9.237), this equation reduces
to the following two equations by separating hydrostatic and deviatoric
components:

σ̃kk =
∑
r

Ar0(ε̃kk − q̃rkk) (9.242)

σ̃ ′ij =
∑
r

Ar2(ẽij − p̃rij) (9.243)

where Ar0 and Ar2 are defined by (9.239) with W replaced by A.
Within a linear assumption, the evolution equations for the hydrostatic and

deviatoric parts of q̃rij are given in the following form

Lr0

(
dq̃rkk
dz̃H

)∇
− σ̃kk = 0 and Lr2

(
dp̃rij
dz̃D

)∇
− σ̃ ′ij = 0 (9.244)

where ( )∇ indicates that the differentiation operator in bracket is corotational;
Lr0 and Lr2 are constants; and dz̃ defines the intrinsic time with respect to the
fictitious deformation. The intrinsic time is divided into the hydrostatic and
deviatoricparts.Anhydrostatic intrinsic timemeasure ζH isdefined to register
the hydrostatic deformation. It is scaled by the intrinsic time scale zH so that
it can properly describe strain hardening. They are related by

dζH =
∣∣∣∣dε̃kk − k1

dσ̃kk
3K0

∣∣∣∣ with
dζH
dzH
= h (ζH) > 0 (9.245)

where 0 ≤ k1 ≤ 1 and K0 is the Bulk Modulus. The deviatoric intrinsic time
ζD is defined based on an effective strain-like tensor Q̃ij which is given by

∇dQ̃ij =∇ dẽij − k2

∇dσ̃ ′ij
2µ0

(9.246)

where 0 ≤ k2 ≤ 1 and µ0 is the shear modulus. The operator ∇d denotes
the corotational increment and is defined on a second-order tensor aij with
respect to the intrinsic time z as

∇daij = tdaij −Wikakj dz+ aikWkj dz (9.247)

where td denotes the increment based on material rate and Wij is the spin
tensor. The deviatoric intrinsic time is defined and scaled as follows:

dζ 2
D = ∇dQ̃ij ∇ dQ̃ij with

dζD
dzD
= f (ζD) > 0 (9.248)
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In (9.245) and (9.248), h(ζH) and f (ζD) are the strain-hardening functions
corresponding to the hydrostatic and deviatoric deformation, respectively.

9.5.7.2 Equations of damage

Equations (9.235) and (9.238) lead to the following relations for the hydrostatic
and deviatoric parts of damage force Gij, respectively,

Gkk =
∑
s

Hs
0
(
Dkk − γ skk

)
, gij =

∑
s

Hs
2

(
dij − rsij

)
(9.249)

where Hs
0 and Hs

2 are constants. In the hydrostatic damage, microdefects
expand and contract such that the overall symmetric properties of the mater-
ial, that is, all planes of symmetry, are retained. In the deviatoric damage,
the orientation of microcracks and microvoids changes, resulting in changes
of overall symmetry properties and inducing the anisotropic behavior of the
material.

Using the inequality of (9.235), the linear evolution equations of γ sij can be
further separated into hydrostatic and deviatoric parts as

Js0

(
dγ skk
dzd

H

)∇
− Gkk = 0 and Js2

(
drsij
dzd

D

)∇
− gij = 0 (9.250)

where Js0 and Js2 are constants; dzd
H and dzd

D are the damage intrinsic time
increment corresponding to the hydrostatic and deviatoric damage, respect-
ively. The hydrostatic damage intrinsic time and its timescale are defined,
respectively, by

dζd
H =
∣∣∣∣dDkk − k3

dGkk
3B0

∣∣∣∣ with
dζd

H

dzd
H

= hd
(
ζd
H

)
> 0 (9.251)

where 0 ≤ k3 ≤ 1 and B0 is a material constant. Similarly, the deviatoric
damage intrinsic time and its timescale are defined by

(
dζd

D
)2 = ∇dRij∇dRij with

dζd
D

dzd
D

= fd(ζd
D
)
> 0 (9.252)

where the damage-like tensor ∇dRij is defined by

∇dRij = ∇ddij − k4

∇dgij
2M0

(9.253)

with 0 ≤ k4 ≤ 1 and M0 is a material constant. The role played by material
constants B0 andM0 in theGij versusDij relationship is similar to that played
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by the bulk modulus K0 and shear modulus µ0 in the stress–strain relation-
ship. The functions hd(ζd

H) and fd(ζd
D) describe the material damage resisting

(hardening) behavior, which increases the damage threshold. These functions
are similar to the hardening functions h(ζH) and f (ζD) of plastic deformation,
but with a different physical meaning.

The role played by (9.251) and (9.252) in damage is analogous to that played
by (9.245) and (9.248) in the stress–strain space for the limit case of ki → 1
(i = 1, 2, 3, 4). The relations (9.251a) and (9.253) can be interpreted as the non-
recoverable hydrostatic and deviatoric parts of the damage tensor increment
dDij, respectively. Note that ζd is defined in terms of the nonrecoverable dam-
ageDn

ij rather than the effective plastic strain ε̃p
ij , as in the theories of Niu [67]

and Chow and Chen [68]. This new damage intrinsic time enables the present
theory to describe the behavior of damage in brittle materials, where damage
occurs within the elastic range, as well as in ductile materials.

9.5.7.3 Coupling between deformation and damage

The coupling between deformation and damage processes is achieved
through the damage force Gij given by (9.236). Using the quadratic form of
�̃1(ε̃ij, q̃rij) given in (9.237), (9.236) reduces to

Gij = −
∑
r

Aruvmn(ε̃mn − q̃rmn)(
∂ε̃uv

∂Dij
)∇

= −
∑
r

Aruvmn
(
ε̃mn − q̃rmn

)
εpq

(
dNpquv
dDij

)∇
(9.254)

This equation relates the damage forceGij to the effective strain ε̃ij and effect-
ive internal variables q̃rij, both of which are responsible for the deformation
process of the fictitious continuum. On the other hand, the damage force is
related to the damage potential �̃2(Dij, γ sij) by (9.235), which, by use of (9.238),
reduces to

Gij = ∂�̃2

∂Dij
=
∑
s

Hs
ijkm
(
Dkm − γ skm

)
(9.255)

This equation relates damage force Gij to the damage tensor Dij and internal
variables γ sij . The interpretations of (9.254) and (9.255) are as follows: consider
a fictitious, undamaged, material element subjected to a loading increment.
During loading, different forms of energy associated with plasticity and
damage process are dissipated. In particular, the rate of energy dissipation
due to damage growth D∇ij in the fictitious element is (∂�2/∂Dij)D∇ij . At the
end of the loading period, it is required that the fictitious element returns to its
undamaged state before the next loading can be applied. The restoring energy
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associated with this process is −GijD∇ij , where −Gij is the restoring force and
the negative of the restoring force,Gij, is given by (9.254). Because the damage
to be restored at the end of the loading period is equal to the negative of the
damage growth during loading, the force associated with the two processes
must be equal in magnitude. Therefore, (9.255) withGij defined by (9.254), can
be viewed as a constraint that must be satisfied for the deformation and dam-
age processes to occur simultaneously within the fictitious continuum. In fact,
this is a required constraint which arises naturally from the thermodynamic
consideration.

9.5.8 Application

In this section, the model of the previous section is applied to investigate the
problem of a cylindrical concrete specimen subjected to uniaxial compression
in the x3-direction. For such a problem, the state of stress and strain is given by

[σ ] =

0 0 0

0 0 0
0 0 σ33


 [ε] =


ε11 0 0

0 ε22 0
0 0 ε33


 (9.256)

where ε33 is prescribed for a strain control test. These are the principal stress
and strain components and the directions of principal damage coincide with
those of the principal stress and strain, if the specimen is initially isotropic
and is subjected to proportional loading. In this case, the corotational rate
reduces to the material rate. The increments of effective stress and effective
strain are

[dσ̃ ] =

0 0 0

0 0 0
0 0 dσ̃33


 [dε̃] =


dε̃11 0 0

0 dε̃22 0
0 0 dε̃33


 (9.257)

Their deviatoric parts are

[dσ̃ ′] = 1
3


−dσ̃33 0 0

0 −dσ̃33 0
0 0 2 dσ̃33




[dẽ] = 1
3




(2 dε̃11 − dε̃22 0 0
−dε̃33)

0 (−dε̃11 + 2 dε̃22 0
−dε̃33)

0 0 (−dε̃11 − dε̃22
+2 dε̃33)




(9.258)

The damage-effect tensor Mijkm is selected according to Betten’s definition
of effective stress. Using (9.179) and (9.188), this tensor and its inverse are
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expressed in the matrix form as

[M] =




1
(1−D1)2

0 0

0
1

(1−D2)2
0

0 0
1

(1−D3)2




[N] =

(1−D1)

2

(1−D2)
2

(1−D3)
2




(9.259)

whereD1,D2, and D3 are the principal damage in the x1, x2, and x3 directions,
respectively.

In this example, for the sake of simplicity, only one internal variable each
for q̃ij and γij is used. The use of only one internal variable was shown in
previous applications of endochronic plasticity to be capable of capturing the
main features of stress–strain responses in a plastically deformed continuum.
The hydrostatic behavior of the fictitious deformation is now considered.
Combining (9.242), (9.244a) and (9.245a), the following equation is obtained

dσ̃kk
A0
± k1X

dσ̃kk
3K0
= (1± X)dε̃kk with X = σ̃kk

L0h(ζH)
(9.260)

where A0 and L0 are constants. The minus (−) and plus (+) signs, in (9.260),
correspond to tension and compression, respectively. The material constant
A0 may be identified with the bulk modulus 3K0 by considering the fictitious
undamaged material at its initial loading state, where σ̃kk = q̃kk = 0. Using
the effective stress and effective strain of (9.257), (9.260) becomes

dσ̃33 = 3K0F(k1,X)(dε̃11 + dε̃22 + dε̃33) (9.261)

where

F(k1,X) = 1± X
1± k1X

and X = σ̃33

L0h(ζH)
(9.262)

The deviatoric response of the fictitious undamaged material, from (9.243),
(9.244b), and (9.258), is described by

− dσ̃33 = A2(2 dε̃11 − dε̃22 − dε̃33)+ A2σ̃33

L2
dzD (9.263a)

− dσ̃33 = A2(−dε̃11 + 2 dε̃22 − dε̃33)+ A2σ̃33

L2
dzD (9.263b)

2 dσ̃33 = A2(−dε̃11 − dε̃22 + 2 dε̃33)− A2σ̃33

L2
dzD (9.263c)

© 2005 by Chapman & Hall/CRC Press



532 Continuum Mechanics and Plasticity

Equation (9.261) and the two independent equations of (9.263) can be put in
the matrix form as

1 −3K0 F(k1,X) −3K0 F(k1,X)
1 2A2 −A2
1 −A2 2A2




dσ̃33

dε̃11
dε̃22


+

0

1
1


 A2σ̃33

L2
dzD

=

3K0 F(k1,X)

A2
A2


dε̃33 (9.264)

where dzD is related to the deviatoric components of the incremental effective
strain dε̃ij and its relationship is now discussed. The following expression may
be found from (9.246)

dQ̃ij = ϕij + ψij dzD (9.265)

where

ϕij = (1− k2)dẽij and ψij =
k2σ̃
′
ij

L2
(9.266)

By use of (9.248) and (9.265), the relation for dzD is obtained as

ϕijϕij + 2ϕijψij dzD + [ψijψij − f (ζD)2]dz2
D = 0 (9.267)

The equation of hydrostatic damage is found from (9.249a), (9.250a), and
(9.251a) as

dGkk
H0
± k3Y

dGkk
3B0

= (1± Y)dDkk with Y = Gkk
J0hd(ζd

H)
(9.268)

where H0, B0, and J0 are material constants. Considering the initial loading
state, where Gkk = γkk = 0, it may be shown that H0 is the initial slope
of the Gkk versus Dkk curve and that H0 = 3B0. The minus (−) and plus
(+) signs, in (9.268), correspond to tension and compression, respectively.
Equation (9.268a) further reduces to

dGkk = H0F(k3,Y)dDkk with F(k3,Y) = 1± Y
1± k3Y

(9.269)

The equation for deviatoric damage response may be obtained from (9.249b)
and (9.250b) as

dgij = H2

(
ddij +

gij
J2

dzd
D

)
(9.270)
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whereH2 and J2 are constants andH2 may be identified with the initial slope
of the deviatoric Gij versus Dij curve. Furthermore, H2 = 2M0. The dam-
age intrinsic time increment dzd

D is related to the deviatoric components of
the damage force increment dgij and its relationship is now discussed. The
following expression may be found from (9.253) and (9.270)

dRij = ϕd
ij + ψd

ij dzd
D (9.271)

where

ϕd
ij = (1− k4)

dgij
H2

and ψd
ij =

gij
J2

(9.272)

By use of (9.252a) and (9.271), the relation for dzd
D is obtained as

ϕd
ijϕ

d
ij + 2ϕd

ijψ
d
ij dzd

D +
[
ψd
ijψ

d
ij − fd(ζd

D)
2](dzd

D)
2 = 0 (9.273)

Using (9.236) and (9.257), the damage force Gij reduces to

Gij = −σ̃km ∂ε̃km
∂Dij

= −σ̃33
∂ε̃33

∂Dij
(9.274)

Since ε̃33 = (1 − D3)
2ε33, ε̃33 does not depend on D1 and D2. Consequently,

the only nonzero component of tensor Gij is

G33 = 2σ̃33ε̃33

1−D3
(9.275)

and its increment is found to be

dG33 = 2σ̃33

1−D3
dε̃33 + 2ε̃33

1−D3
dσ̃33 + 2σ̃33ε̃33

(1−D3)
2 dD3 (9.276)

Thus, the deviatoric part of the increment of the damage force is

[dgij] = 1
3


−dG33 0 0

0 −dG33 0
0 0 2dG33


 (9.277)

Furthermore,

[ddij] = 1
3


2 dD1 − dD2 − dD3 0 0

0 −dD1 + 2 dD2 − dD3 0
0 0 −dD1 − dD2 + 2 dD3




(9.278)
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Equations (9.277) and (9.278) are substituted into (105) and the two inde-
pendent equations of (9.269) to obtain the following matrix equation for the
damage process:


H0F(k3,Y) H0F(k3,Y) H0F(k3,Y)

2H2 −H2 −H2
−H2 2H2 −H2




dD1

dD2
dD3




=

 1
−1
−1


dG33 −


0

1
1


 H2G33

J2
dzd

D (9.279)

The equations derived in this section are now applied to the problem
of uniaxial compression of cylindrical concrete specimen (f ′c = 73.8 MPa
and E=27.6 GPa). To determine the material parameters for the model, the
analytical stress–strain curves obtained by Fonseka and Krajcinovic [69] is
used. In this case, the directions of the principal damage coincide with those
of the principal stress. The procedure of calculation is now described. An
increment dε̃33 is first specified. An initial value for dzD is assumed and
(9.264) solved for dσ̃33, dε̃11, and dε̃22. These values are then used in (9.267)
to solve for dzD. An iteration procedure is applied to determine dG33. (9.273)
is subsequently used to determine dzd

D. Thus, dD1, dD2, and dD3 are found
from (9.279). An iteration procedure is also applied on dD3 to determine its
value, which corresponds to the specified dε̃33. Knowing dε̃33 and dD3, dε33
can be calculated from the incremental form of

ε33 = ε̃33

(1−D3)2
(9.280)

This procedure continues for another specified dε̃33.
Using a trial-and-error (curve-fitting) procedure, the following material

parameters for the deformation equations have been determined: Poisson’s
ratio = 0.2, effective hydrostatic yield stress L0 = 4.55 MPa, effective deviat-
oric yield stress L2 = 18.61 MPa, strain-hardening parameters µH = µd = 0,
and k1 = k2 = 0.95. The material parameters for the damage equations
have been found to be: hydrostatic damage modulus H0 = 0.78 MPa, devi-
atoric damage modulus H2 = 1.91 MPa, hydrostatic damage threshold
J0 = 0.61 MPa, deviatoric damage threshold J2 = 1.93 MPa, damage resisting
(hardening) parameters µd

H = µd
D = 0, and k3 = k4 = 0.95.

The computed stress–strain curves are plotted in Figure 9.22. There are two
curves in this figure. One curve is for the axial strain and the other for the
lateral strain. The volumetric strain versus compressive stress is plotted in
Figure 9.23. The curve shows a change of sign of the volumetric strain as
the axial strain increases. The volumetric strain is initially negative and it
changes to positive when the axial strain becomes large in magnitude. This
phenomenon is typical in concrete and rocks, and it is due to the increase
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Stress versus axial and lateral strains in uniaxial compression of concrete (From Wu, H.C. and
Nanakorn, C.K., Int. J. Solids Struct., 36, 5057, 1999. With permission from Elsevier).
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Stress versus volumetric strain in uniaxial compression of concrete (From Wu, H.C. and
Nanakorn, C.K., Int. J. Solids Struct., 36, 5057, 1999. With permission from Elsevier).

in the lateral-to-axial strain ratio (−ε11/ε33) as the axial strain increases. It
is seen in Figure 9.24 that this ratio changes from 0.2 to approximately 0.6
as the axial compressive strain increases from 0 to 0.005. The results of this
model presented in Figure 9.22 and Figure 9.23 show good agreement with
the computed value obtained by Fonseka and Krajcinovic [69].

9.5.9 Concluding Remarks

The concepts of CDM have been discussed and a constitutive framework
of CDM has been developed based on the internal variables approach.
The framework involves transforming the actual damaged continuum into
an equivalent fictitious undamaged continuum. The effects of damage are
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Lateral to axial strain ratio versus axial compressive strain (From Wu, H.C. and Nanakorn, C.K.,
Int. J. Solids Struct., 36, 5057, 1999. With permission from Elsevier).

accounted for by replacing the actual stress σij (gross stress) on the damaged
continuum with the symmetric effective stress σ̃ij. Adistinction has been made
between the state of damage and the damage measureDij and the concept of
“damage force” has been introduced.

Within the proposed constitutive framework, the endochronic concept
has been used to derive explicit constitutive equations. Two intrinsic times
are used in the formulation. The first intrinsic time ζ is used to describe the
plastic deformation history of the fictitious undamaged continuum and the
second intrinsic time ζd is used to depict the damage history. The model is
applicable to both brittle and ductile materials with damage. The following
conclusions may be drawn from this study:

1. The damage tensor Dij may be defined based on a second-order
continuity tensor ψij.

2. The damage-effect tensorMijkm defined by Betten [58] gives rise to an
effective stress that has a simple physical interpretation, while other
definitions of Mijkm do not have the same significance.

3. The transformation equation for effective strain, (9.214), may be
derived based on the free energy equivalence postulate.

4. In addition to damage tensor Dij, which is a measurable quantity, a
set of damage internal variables γ sij , which are not measurable, is used
in the formulation.

5. The constitutive equations for an isothermal damaged continuum
include two sets of equations and constraints. The first set charac-
terizes the deformation of the fictitious undamaged continuum and
constrains the evolution of plastic internal variables qrij. The second
set provides a relationship between the damage force Gij and the
damage measure Dij. It also provides a constraint on the evolution
of damage internal variables γ sij . In addition, (9.236) must be used to
complete the constitutive equations. This equation is a constraint that
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must be satisfied for the fictitious deformation and damage process
to occur simultaneously within the same continuum.

6. The theory does not use the concepts of yield surface or damage
surface as its prime requisite although both surfaces may be defined
when necessary by setting all ki = 1. Therefore, the constitutive equa-
tions of this theory are continuous without discontinuities, which is
advantageous in the numerical calculation.

7. The proposed model has been shown to describe the three-
dimensional state of deformation of a cylindrical concrete specimen
subjected to uniaxial compression.

The focal point of the work of Wu and Nanakorn [54] is to formulate a
constitutive framework that is self-consistent. Some well-known concepts
have been discussed and it has been pointed out that some concepts are not
compatible with others. Only concepts that are compatible to each other are
used in the derivation. New concept such as the distinction between the
state of damage and damage measure and the concept to restore the ficti-
tious continuum to its undamaged state after each step of deformation and
damage have been introduced. Finally, we mention that we use the coro-
tational rate to account for rotation of principal damage directions during
deformation.

References

1. Wu, H.C. and Yeh, W.C., Some considerations in the endochronic description
of anisotropic hardening, Acta Mech., 69, 59, 1987.

2. Ohashi, Y., Tokuda, M., Mitake, T., Kurita, Y., and Suzuki, T., Stress–strain rela-
tion of integral type for deformation of brass along strain trajectories consisting
of three normal straight branches, Arch. Mech., 32, 125, 1980.

3. Ohashi, Y., Tokuda, M., Suzuki, T., and Kurita, Y., Stress–strain relation of
brass for the plastic deformation along bi-linear strain trajectories with various
corner angles, Bull. Japan. Soc. Mech. Eng., 24, 1909, 1981.

4. Wu, H.C., Hong, H.K., and Lu, J.K., An endochronic theory accounted for
deformation induced anisotropy, Int. J. Plasticity, 11, 145, 1995.

5. Wu, H.C., Lu, J.K., and Pan, W.F., Endochronic equations for finite plastic
deformation and application to metal tube under torsion, Int. J. Solids Struct.,
32, 1079, 1995.

6. Phillips, A. and Tang, J.L., The effect of loading path on the yield surface at
elevated temperatures, Int. J. Solids Struct., 8, 463, 1972.

7. Wu, H.C. and Yeh, W.C., On the experimental determination of yield surfaces
and some results of annealed 304 stainless steel, Int. J. Plasticity, 7, 803, 1991.

8. Wu, H.C. and Lu, J.K., Further development and application of an endochronic
theory accounted for deformation induced anisotropy, Acta Mech., 109, 11,
1995.

© 2005 by Chapman & Hall/CRC Press



538 Continuum Mechanics and Plasticity

9. Wu, H.C. and Hong, H.K., Endochronic description of plastic anisotropy in
sheet metal, Int. J. Solids Struct., 36, 2735, 1999.

10. Hill, R., A theory of yielding and plastic flow of anisotropic materials, Proc.
Roy. Soc., London, A, 193, 281, 1948.

11. Valanis, K.C., A theory of viscoplasticity without a yield surface, Arch. Mech.
23, 517, 1971.

12. Valanis, K.C., Proper tensorial formulation of the internal variable theory, The
endochronic time spectrum, Arch. Mech., 29, 173, 1977.

13. Valanis, K.C., Back stress and Jaumann rates in finite plasticity, Int. J. Plasticity,
6, 353, 1990.

14. Dafalias, Y.F., Plastic spin: necessity or redundancy?, Int. J. Plasticity, 14,
909, 1998.

15. Im, S. and Atluri, S.N., A study of two finite strain plasticity models:
an internal time theory using Mandel’s director concept, and a general
isotropic/kinematic-hardening theory, Int. J. Plasticity, 3, 163, 1987.

16. Goddard, J.D. and Miller, C., An inverse for the Jaumann derivative and
some applications to the rheology of viscoelastic fluids, Rheol. Acta, 5, 177,
1966.

17. Dafalias, Y.F., Corotational integral in constitutive formulations, J. Eng. Mech.,
113, 1967, 1987.

18. Swift, H.W., Length change in metal under torsional overstrain, Engineering,
163, 253, 1947.

19. Hart, E.W. and Chang, Y.W., Material rotation effects in tension–torsion test:
experimental result, in Plasticity Today, Sawczuck, A. and Bianchi, G.E., Eds.,
Elsevier Appl. Sci., U.K., 1985, 235.

20. White, C.S., Bronkhorst, C.A., and Anand, L., An improved isotropic-
kinematic hardening model for moderate deformation metal plasticity, Mech.
Mater., 10, 127, 1990.

21. Wu, H.C. and Xu, Z.Y., An extensometer investigation of the axial effect dur-
ing torsion. Proc. Int. Conf. on Constitutive Laws for Eng. Material, Fan, J. and
Murakami, S., Eds., Chongqing, China, 1989, 232.

22. Bailey, J.A., Haas, S.L., and Nawab, K.C., Anisotropy in Plastic Torsion, J. Basic
Eng., 94, 231, 1972.

23. Wu, H.C., Xu, Z., and Wang, P.T., Torsion test of aluminum in the large strain
range, Int. J. Plasticity, 13, 873, 1998.

24. Canova, G.R., Kocks, U.F., and Jonas, J.J., Theory of torsion texture develop-
ment, Acta Metall., 32, 211, 1984.

25. Taylor, G.I. and Quinney, H., The plastic distortion of metal, Phil. Trans. Roy.
Soc., A, 230, 323, 1932.

26. Lowe, T.C. and Lipkin, J., Analysis of axial deformation response during
reverse shear, Sand90-8417, Sandia National Lab., 1990.

27. Qian, Z. and Wu, H.C., A 2-D texture study based on a double-slip model of
polycrystal plasticity with analysis of thin-walled tube under torsion, Int. J.
Solids Struct., 33, 4167, 1996.

28. Wu, H.C. and Aboutorabi, M.R., Endochronic modeling of coupled
volumetric–deviatoric behavior of porous and granular materials, Int. J.
Plasticity, 4, 163, 1988.

29. Wu, H.C., An endochronic theory for porous and granular materials, in
Modern Approaches to Plasticity, Kolymbas, D., Ed., Elsevier, Amsterdam,
1993, 347.

© 2005 by Chapman & Hall/CRC Press



Topics in Endochronic Plasticity 539

30. Johnson, J.N. and Green, S.J., Mechanical response of porous media subject to
static load, in Effects of Voids on Material Deformation, Cowin, S.C. and Carroll,
M.M., Eds., AMD-16, ASME, New York, 1976, 93.

31. Scavuzzo, R., Stankowski, T., Gerstle, K.H., and Ko, H.Y., Stress–strain
curves for concrete under multiaxial load histories, Report, Department of
Civil, Environmental and Architectural Engineering, University of Colorado,
Boulder, CO, 1983.

32. Wu, H.C., Wang, Z.K., and Aboutorabi, M.R., Endochronic modeling of sand
in true triaxial test, J. Eng. Mech., ASCE, 111, 1257, 1985.

33. Bazant, Z.P. and Krizek, R.J., Endochronic constitutive law for liquefaction of
sand, J. Eng. Mech. Div., ASCE, 102, 225, 1976.

34. Valanis, K.C. and Read, H.E., A new endochronic plasticity model for soils, in
Soil Mechanics-Transient and Cyclic Loads, Pande, G.N. and Zienkiewicz, O.C.,
Eds., John Wiley, New York, 1982.

35. Valanis, K.C. and Peters, J.F., Configurational plasticity in granular media,
in Modern Approaches to Plasticity, Kolymbas, D., Ed., Elsevier, Amsterdam,
1993, 1.

36. Wu, H.C., Wang, T.P., Endochronic description of sand response to static
loading, J. Eng. Mech., ASCE, 109, 970, 1983.

37. Lade, P.V., Elasto-plastic stress–strain theory for cohesiveless soil with curved
yield surfaces, Int. J. Solids Struct., 13, 1019, 1977.

38. Cuellar, V., Bazant, Z.P., Krizek, R.J., and Silver, M.L., Densification and hys-
teresis of sand under cyclic shear, J. Geotechn. Eng. Division, ASCE, 103, 399,
1977.

39. Lee, K.L. and Seed, H.B., Drained strength characteristics of sands, J. SoilMech.
Found. Div., ASCE, 93, 117, 1967.

40. Wu, H.C. and Sheu, J.C., Endochronic modeling for shear hysteresis of sand,
J. Geotechn. Eng., ASCE, 109, 1539, 1983.

41. Silver, M.L. and Seed, H.B., Deformation characteristic of sand under cyclic
loading, J. Soil Mech. Found. Div., ASCE, 97, 1081, 1971.

42. Wu, H.C. and Aboutorabi, M.R., Endochronic model of sand with circular
stress path, J. Geotechn. Eng., ASCE, 114, 93, 1988.

43. Aboutorabi, M.R., Wu, H.C., Wang, T.P., and Gao, Q.Y., Stress–strain
behavior of porous aluminum, in Proc. 2nd International Conf. on Con-
stitutive Laws for Engineering Materials: Theory and Application, Desai, C.S.,
Krempl, E., Kiousis, P.D., and Kundu, T., Eds., Elsevier, New York,
1987, 477.

44. Wang, P.T. and Wu, H.C., An endochronic model for compaction of porous
metals, Prog. Powder Metall., 41, 161, 1986.

45. Schock, R.N., Abey, A.E., and Duba A., Quasi-static deformation of porous
beryllium and aluminum, J. Appl. Phys., 47, 53, 1976.

46. Wu, H.C., Wang, P.T., Pan, W.F., and Xu, Z.Y., Cyclic stress–strain response of
porous aluminum, Int. J. Plasticity, 6, 207, 1990.

47. Kachanov, L.M., On the time to failure during creep, Izv. AN. SSSR.,
OTN.337,1958.

48. Lemaitre, J. and Chaboche, J.L., Aspects phénoménologique ge la rupture par
endommagement, J. Méc. Appl., 2, 167, 1978.

49. Sidoroff, F., Description of anisotropic damage application to elasticity, inPhys-
ical Non-Linearities in Structure Analysis-IUTAM, Hult, J. and Lemaitre, J., Eds.,
Springer-Verlag, New York, 1981, 237.

© 2005 by Chapman & Hall/CRC Press



540 Continuum Mechanics and Plasticity

50. Lemaitre, J. and Chaboche, J.L.,Mécanique des Matériaux Solides, Paris: Dunod;
English Edition, Cambridge University Press, 1985.

51. Chow, C.L. and Lu, T.J., A comparative study of continuum damage
models for crack propagation under gross yielding, Int. J. Fract., 53, 43,
1992.

52. Chaboche, J.L., Sur l’utilisation des variables d’état interne pour la
description du comportement viscoplastique et de la rupture par endom-
magement, Symposium Franco-Polonais de Rhéologie et Mécanique, Cracovie,
1977.

53. Lemaitre, J., Acontinuum damage mechanics model for ductile fracture, J. Eng.
Mater. Technol., 107, 83, 1985.

54. Wu, H.C. and Nanakorn, C.K., A constitutive framework of plastically
deformed damaged continuum and a formulation using the endochronic
concept, Int. J. Solids Struct., 36, 5057, 1999.

55. Murakami, S. and Ohno, N., A continuum theory of creep and creep damage,
in Creep Structures, Ponter A.R.S. and Hayhust, D.R., Eds., Springer, Berlin,
1981, 922.

56. Betten, J., Damage tensors in continuum mechanics, J. Mecanique theorique et
appliqué, 2 , 13, 1983.

57. Rabotnov, Y.N., Creep Problems in Structural Members, North-Holland Series in
Applied Math. and Mech., Vol. 7, Chap. 6, North-Holland, Amsterdam,1969.

58. Cordebois, J.P. and Sidoroff, F., Damage induced elastic anisotropy, Comporte-
ment mecanique des solides anisotropes, EUROMECH, 115, Proc. Coll., Int. du
C.N.R.S., Boehler J.P. Ed., Villard-de-Lens, France, 1979, 761.

59. Chow, C.L. and Wang, J., An anisotropic theory of elasticity for continuum
damage mechanics. Int. J. Fract., 33, 3, 1987.

60. Stumvoll, M. and Swobada, G., Deformation behavior of ductile solids
containing anisotropic damage, J. Eng. Mech., 119, 1331, 1993.

61. Rabotnov, Y.N., Creep rupture, in Proceedings, Applied Mechanics Conference,
Hetenyi, M. and Vincenti, H., Eds., Standford University, 1968, 342.

62. Chow, C.L. and Lu, T.J., On evolution laws of anisotropic damage, Eng. Fract.
Mech., 34, 679, 1989.

63. Valanis, K.C., Irreversible Thermodynamics of ContinuousMedia, Springer-Verlag,
Udine, 1971.

64. Krajcinovic, D., Continuous damage mechanics revisited: basic concepts and
definition, ASME, J. Appl. Mech., 52, 829, 1985.

65. Wu, H.C. and Nanakorn, C.K., An endochronic theory of continuum damage
mechanics, ASCE, J. Eng. Mech., 124, 200, 1998.

66. Valanis, K.C., A theory of damage in brittle materials, Eng. Fract. Mech., 36,
403, 1990.

67. Niu, X., Endochronic plastic constitutive equations coupled with isotropic
damage and damage evolution models, Eur. J. Mech., A/Solids, 8, 293,
1989.

68. Chow, C.L. and Chen, X.F., An anisotropic model of damage mechanics based
on endochronic theory of plasticity, Int. J. Fract., 55, 115, 1992.

69. Fonseka, G.U. and Krajcinovic, D., The continuous damage theory of brittle
materials, part 2: uniaxial and plane response modes. J. Appl. Mech., 48, 816,
1981.

© 2005 by Chapman & Hall/CRC Press



Topics in Endochronic Plasticity 541

Problems

(1) Start from (9.10) and derive (9.11).

(2) Derive (9.13).

(3) Show that if the intrinsic time is defined by dζ 2 = dεp ·K ·dεp+ tr(L ·dεp)dζ ,
then the corresponding yield function is (σ′ − α) · K · (σ′ − α) + σ ′yf (z)tr[L ·
(σ′ − α)] = (σ ′yf (z))2.

(4) In (9.37), the evolution equations of internal variables qrx and qry are

dqrx
dz
+ Prqrx +Urqry = Prεx +Urεy

dqry
dz
+Qrqry + Vrqrx = Qrεy + Vrεx

where Pr , Qr , Ur , and Vr are not functions of qrx and qry. These two equations
are coupled in qrx and qry. Decouple the equations.

(5) Derive (9.45).

(6) For the PG materials discussed in Section 9.4.1, derive the governing equations
given by (9.127) to (9.130).

(7) In the application to porous aluminum discussed in Section 9.4.4, derive (9.161)
and (9.162) for the deviatoric stress–strain behavior.
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10
Anisotropic Plasticity for Sheet Metals

10.1 Introduction

Sheet metal is a special product form of a material that is produced by the
rolling process. The process of rolling is illustrated by considering a strip of
metal passing between a pair of rolls with their axes parallel to each other.
The sheet metal enters the rolls, and the marginal speed of the rolls on the
entry side is higher than the entry speed of the sheet. The friction forces
created between the rolls and the metal strip tend to pull the strip into the
gap between the rolls, where plastic deformation takes place. On exiting the
rolls, the friction forces change direction and the sheet acquires a reduced
thickness, while the speed of the sheet is greater than the speed of the rolls.
The thickness of a metal sheet can be reduced further by additional rolling,
generating various degrees of anisotropy.

The anisotropy in the sheet metal is two-fold: the anisotropy in the yield
stress and the anisotropy in the plastic flow. The anisotropy is usually

TD denotes the transverse direction and ND, the normal direction, which is
not shown in the figure. Tension specimens cut at various angles θ measured
counterclockwise from the rolling direction can exhibit different yield stresses
and different characteristics of plastic deformation. Generally, both the yield
stress and the plastic deformation are functions of the orientation angle θ .
However, it is possible that a material does not show noticeable anisotropy in
the yield stress but shows significant anisotropy in the plastic deformation.
The anisotropyof plastic flow isusuallymeasuredby theplastic strain-ratioR,
which is defined by many recent researchers as

R = dεpw
dεpt

(10.1)

where dεpw is the plastic strain increment in the width direction, and dεpt that
in the thickness direction of a tension specimen. The value of R can vary from
one sheet material to the other. It can be greater than one or less than one,
and R = 1 implies material isotropy. The R-ratio is an important parameter
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FIGURE 10.1
Tension specimen cut at angle θ .

of a sheet material. A large R means a small change in the thickness during
longitudinal tension, while a small R corresponds to a large change in the
thickness during longitudinal stretching. Therefore, a small R would lead to
easy thinning and early failure of the sheet.

This definition of R-ratio is not universal, however. Recent researchers
prefer the definition of (10.1) because of its apparent tie to the flow rule of
plasticity. On the other hand, the ASTM Standards [1] define the R-ratio as

R = εw

εt
where εw = ln

(
wf

w0

)
and εt = ln

(
tf
t0

)
(10.2)

The subscripts ( )0 and ( )f denote the initial and final lengths, respectively;
w stands for width and t, the thickness. Thus, the R-ratio is the ratio between
the true width strain and the true thickness strain. Due to the thinness of
sheets, the thickness strain is difficult to measure accurately. A practical
method is to measure the longitudinal and width strains and make the
assumption of volume constancy. Therefore, (10.2) reduces to

R = ln(w0/wf)

ln(lfwf/l0w0)
(10.3)

where l is the longitudinal measurement.
Many researchers believe that the R-ratio does not vary appreciably with

strain and make the assumption of constancy in their theoretical analyses.
Detailed information concerning the strain level at which the measurements
ofRwere taken is generallynot reported in the literature. Somemeasurements
were taken after the specimens had undergone large deformation. Some were
taken midway between the first occurrence of nonuniform strain and the
final fracture. Tracking of the R-ratio during experiments has indicated, how-
ever, that the R-ratio may vary greatly with the increasing plastic strain [2].
Mellor [2] and Lin and Ding [3] noted further that, due to the inaccuracy of
the experimental data, the R-ratio could not be assessed closer to the initial
yield region of the material. The variation of R-ratio with increasing plastic
strain is discussed later in this chapter.
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10.2 Standard Tests for Sheet Metal

10.2.1 The Uniaxial Tension Test

Tensile specimens are cut at predetermined angles θ (usually every 15◦) to
the rolling direction. Uniaxial tension tests are conducted on these specimens
and yield stress σθ determined as a function of θ . The stress state is given by

σx = σθ cos2 θ , σy = σθ sin2 θ , and σxy = σθ sin θ cos θ (10.4)

After the test, strains in both the axial and width directions of the specimens
are measured, and the thickness strain determined by the assumption of
volume constancy.

10.2.2 Equibiaxial Tension Test

This experiment is performed to determine the equibiaxial yield stress σB. It can
be accomplished by a self-designed loading frame attached to a universal
test machine or a servo-hydraulic test system. When the sheet is thin and the
static loading is of concern, the experiment could also be carried out by use
of a self-designed dead-weight loading system. For a more versatile testing,
two servo-controlled actuators may be placed 90◦ from each other to form
the loading system.

10.2.3 Hydraulic Bulge Test

This test could also be used to determine the equibiaxial yield stress σB. In the
bulge test, a thin disc of sheet metal is clamped around its periphery and
then subjected to an increasing fluid pressure applied to one side. The region
in the vicinity of the dome becomes nearly spherical in shape as the sheet
bulges. The tensile stresses in the plane of the sheet are the same by symmetry.
An advantage of the bulge test is that it can be carried out to strains far greater
than the instability strain in tension and is not complicated by friction as is the
compression test. However, the test results are not direct. A boundary value
problem has to be solved in which a constitutive equation is needed.

10.2.4 Through-Thickness Compression Test

Cylindrical specimens are prepared from discs of the sheet material glued
together with an epoxy adhesive. The specimens were tested in compression
using Teflon sheet and graphite grease for lubrication between the specimen
ends and platen of the test machine. Due to the usual assumption that
hydrostatic stress does not affect yielding, the equibiaxial yield stress is also
the compressive yield stress perpendicular to the sheet. Factors of uncertainty
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arose from the epoxy adhesive, the Teflon sheet and graphite grease. There-
fore, the equibiaxial tension test is preferred over the through-thickness
compression test.

10.2.5 Plane-Strain Compression Test

In this test, a thin sheet is indented between long narrow dies. To ensure
parallelism of the accurately ground, smooth die faces and to facilitate testing,
thedies aremounted ina special leaderpindie set. Incremental loading isused
to make a 2 to 5% reduction in thickness each time, followed by measurement
of the thickness and relubrication with a high-pressure lubricant. Stress is
calculated by dividing the load by the area between the indenters, while
a corresponding strain is computed from ε = ln(t/t0), where t and t0 are the
current and initial thickness of the sheet. The stress–strain curve for plane
strain can then be obtained. The accuracy of the results is workpiece geo-
metry dependent. It is actually a boundary value problem and a slip-line
field theory of the problem is available.

10.2.6 Simple Shear Test

Specimens having two regions to be sheared in-plane are fixed tightly to the
shearing test jig with bolts in order to generate pure shear within the specified
regions. The test can be carried out by the use of a universal test machine.
The test attempts to produce a pure shear stress state. The stress state of
this test is, however, never simple, and the test can at best be used as an
approximation. We do not distinguish between pure shear and simple shear
when the deformation is small.

10.3 Experimental Yield Surface for Sheet Metal

Extensive literature is available addressing the issue of experimental determ-
ination of yield surfaces in plasticity, as explained in Sections 6.2 and 7.2. Most
of these works used tubular specimens and determined the yield surfaces in
the shear stress versus axial stress subspace. From these investigations, it was
clear that the definition of yield significantly influenced the characteristics
of strain hardening. Yield defined by proportional limit leads to kinematic
hardening and distortion of the yield surface, yield defined by a 0.2% proof
strain leads to a combined isotropic–kinematic hardening, and yield defined
by backward linear extrapolation or by a large proof strain leads to isotropic
hardening.

The picture is not as clear in the case of sheet metals or metal plates. In this
case, the experimental points on the yield surface are usually determined
from the uniaxial tension test, the bulge test (balanced biaxial tension), the
biaxial test using cruciform specimens, the plane-strain compression test, and
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the through-thickness compression test. Test data using the uniaxial tension
test, the bulge test, and the cruciform specimen test provide yield surface only
in the tensile stress quadrant of the two-dimensional principal stress space.
Test data of the plane-strain compression test and the through-thickness
test can include information for the compression region, but these must be
supplemented by the assumption that a superimposedhydrostatic stress does
not influence yielding. Therefore, they are not direct experimental results.

In the discussion of sheet metals, usually a Cartesian coordinate system is
used with the x-axis taken along the RD, the y-axis along the TD, and the
z-axis along the ND. Szczepinski [4] investigated the effect of yield defini-
tion by use of uniaxial tension specimens cut out from metal sheets making
various α angles with the rolling direction. The yield stress determined from
each specimen is transformed into a set of stress components (σx, σy, σxy) by
the use of Mohr’s circle. These sets of stress components can then be plotted in
a three-dimensional stress space, with σx and σy forming two perpendicular
axes on the horizontal plane, and σxy the vertical axis normal to the hori-
zontal plane. The initial yield surface for an isotropic material is an ellipsoid
in this space. The subsequent yield surfaces are represented by the motion,
distortion, and/or expansion of the ellipsoid and can be best viewed by two
projections. The first projection is onto the (σx, σy) plane (the plane view) and
the second projection (the elevation view) is onto a plane that passes through
the σxy axis and the s-direction which bisects the right angle formed by the
σx and−σy axes and isperpendicular to themajor axis of the ellipsoid. Thekin-
ematic hardening, which is difficult to identify based on data in the tension
quadrant of the two-dimensional principal stress space, can be visualized in
the aforementioned projections.

Experimental data of Lee and Backofen [5] show a strong kinematic harden-
ing. Those of Lege et al. [6] show a difference in tensile and compressive yield
stresses, hinting at the existence of kinematic hardening. Naruse et al. [7]
determined the yield locus in the tension stress quadrant by use of a yield
definition based on plastic work that corresponds to a tensile strain of 20%.
The yield locus thus determined is significantly influenced by the deforma-
tion history. Tests by use of cruciform specimens were conducted by Kreissig
and Schindler [8]. The experimental results show a significant kinematic-
hardening effect on the yield surface of sheet metal materials. Lin and Ding [3]
also determined the yield loci in the tension quadrant of the principal stress
space by use of cruciform specimens.

In an attempt to provide test data in the compressive stress region,
Tozawa [9] and Barlat et al. [10] used biaxial compression tests on cubic spe-
cimens made from laminated sheet samples. Tozawa [9] obtained yield loci,
at various proof strains, which were concentric circles in the π -plane of the
principal stress space for initially isotropic material. For the same material,
when subjected to a predetermined amount of prestrain, the yield loci was
enlarged and distorted, and this behavior repeated itself with increasing sub-
sequent strain. Barlat et al. [10], usingaprocedure similar to that ofTozawa [9],
determined the yield locus at a plastic strain of 10% and observed primarily
the effect of isotropic hardening. A typical yield locus determined in [10] is
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�x

�y

FIGURE 10.2
A typical yield locus for sheet metal assuming isotropic hardening (From Barlat, F. et al., Int. J.
Plasticity, 13, 385, 1997. With permission from Elsevier).

shown in Figure 10.2. We see from the figure that the biaxial yield stress σY
B is

larger than the uniaxial tensile yield stress σY
u and thus the yield locus cannot

strain of 10% is a very large strain indeed to define a yield surface. A large
amount of plastic deformation has already occurred within the yield surface.
Each experimental point on the yield locus has its own deformation history
and its own history of strain hardening. Therefore, if we use a small proof
strain to define the yield point, then the data points on a yield locus of [10]
do not belong to the same yield locus. Furthermore, we mention that the
delamination of the test specimens can lead to inaccurate yield stress values.

It is seen from this summary of experimental findings that the sheet metals
do show a significant amount of kinematic hardening. The conclusion is not
as clear as that drawn from the axial–torsion test of tubes. The situation has
been complicated by the different types of test setups and the limitation
of most tests to obtaining yield loci in the tension quadrant of the two-
dimensional principal stress space. However, it is our opinion that the results
of Kreissig and Schindler [8] are the most convincing. Also, potentially sig-
nificant results can be obtained from the type of test initially proposed by
Szczepinski [4]. More experimental investigations are needed to confirm the
kinematic-hardening effect on sheet metals.

10.4 Hill’s Anisotropic Theory of Plasticity

10.4.1 The Quadratic Yield Criterion

The most well-known anisotropic yield criterion for sheet metals was due to
Hill [11,12]. It is in a quadratic form and reduces to the Mises yield criterion
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when the material is isotropic. Assuming that the hydrostatic pressure does
not influence yielding, only the differences of the normal stress components
can appear in the yield function. Thus, the yield function is written as

2f (σij) =F(σy − σz)
2 + G(σz − σx)

2 +H(σx − σy)
2

+ 2Lσ 2
yz + 2Mσ 2

zx + 2Nσ 2
xy = 1 (10.5)

The material parameters F, G, H, L, M, and N represent the current state
of anisotropy of the metal sheet, while σij represents the components of the
Cauchy stress. Hill’s criterion assumes that there is no Bauschinger effect
and considers the axes of anisotropy as the axes of reference, thus making
x the rolling direction and y the transverse direction of the sheet metal.
Equation (10.5) can be rearranged and written as

[
(G+H)σ 2

x − 2Hσxσy + (F +H)σ 2
y + 2Nσ 2

xy
]

− 2(Gσx + Fσy)σz + 2(Lσ 2
yz +Mσ 2

zx)+ (F + G)σ 2
z = 1 (10.6)

In the case of sheet metals, σz = σzx = σzy = 0, (10.7) reduces to

(G+H)σ 2
x − 2Hσxσy + (F +H)σ 2

y + 2Nσ 2
xy = 1 (10.7)

The anisotropic coefficients F, G, H, and N can be determined from exper-
iments. In a tension test along the x-direction, the stresses are σx �= 0,
σy = σxy = 0, and (10.7) reduces to

G+H = (
σY

x
)−2 (10.8a)

where σY
x is the yield stress in the x-direction. Similarly, a tension test along

the y-direction leads to

H + F = (
σY

y
)−2 (10.8b)

where σY
y is the yield stress in the y-direction. Yielding under equibiaxial

tension occurs when σx = σy = σY
B . In this case, (10.7) reduces to

G+ F = (
σY

B
)−2 (10.8c)

Due to the usual assumption that hydrostatic stress does not affect yielding,
this is also the compressive yield stress perpendicular to the sheet.
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Equations (10.8a,b,c) can be solved for G, F, and H as

2G = 1
(σY

x )
2 −

1
(σY

y )
2 +

1
(σY

B )
2

(10.9a)

2F = 1
(σY

y )
2 −

1
(σY

x )
2 +

1
(σY

B )
2

(10.9b)

2H = 1
(σY

x )
2 +

1
(σY

y )
2 −

1
(σY

B )
2

(10.9c)

Finally, the coefficient N may be determined from the tension test of a
specimen cut at 45◦ angle with the x-direction. The tensile yield stress for
this specimen is denoted by σ45, and σx = σy = σxy = (1/2)σ45. Using this
condition, it may be found from (10.7) that

2N =
(σ45

2

)−2 − (
σY

B
)−2 (10.9d)

Since σ45 is easily determined experimentally, N is thus determined from
(10.9d). The shearyield stressσY

xy is determined inpure shearwith thematerial
element parallel to the orthotropic axes. It may be shown from (10.7) that

σY
xy =

1√
2N

(10.10)

In sheet metals, pure shear is difficult to realize experimentally. However, the
simple shear test is sometimes used in the literature to determine N. We have
thus shown that the coefficients of the yield function (10.7) can be determined
by a set of tension tests. Well-controlled tension tests are simple to perform.
The equibiaxial test can be carried out by use of cruciform specimens as in
Makinde et al. [13] and Lin and Ding [3].

10.4.2 The Flow Rule and the R-Ratio

Assuming that the normality rule is valid, the increments of plastic strain
components are

dεpx = dλ{(G+H)σx −Hσy}
dεpy = dλ{(H + F)σy −Hσx}
dεpxy = dλNσxy

(10.11)

where dλ is a proportional factor, which varies with loading.
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The R-ratio for a tensile specimen cut at an angle α from the rolling direction
of the sheet is defined as in (10.1) by

Rθ =
dεpy′

dεpz′
(10.12)

where dεpy′ is the plastic strain increment in the width direction, and dεpz′ in
the thickness direction. In this way, x′ is oriented at an angle θ from the rolling
direction, and it coincides with the longitudinal axis of the specimen. In addi-
tion, the normal axis of the sheet is z = z′. The R-values are usually assessed
at a longitudinal strain >0.5. As a result, the elastic strain is negligible, and
due to the incompressibility assumption, (10.12) may be written as

Rθ = −
dεpy′

dεpx′ + dεpy′
= − g

1+ g
where g

(
ε
p
x′
) = dεpy′

dεpx′
(10.13)

The motivation for such transformation relies on the fact that during a tensile
test, it is difficult to assess the strain along the thickness direction. This allows
R-ratio to be evaluated in terms of the longitudinal and lateral strains only.
These are experimental readings easy to obtain and also more reliable, and
the function g can be easily determined.

By use of coordinate transformation between the (x, y, z) and (x′, y′, z′) axes,
(10.13) reduces to

Rθ = −
(

dεpx sin2 θ + dεpy cos2 θ − 2 dεpxy sin θ cos θ

dεpx + dεpy

)
(10.14)

where dεpx , dεpy , and dεpxy are the components of the plastic strain increment.
Substituting (10.4) and (10.11) into (10.14), yields

Rθ = H + (2N − F − G− 4H) sin2 θ cos2 θ

F sin2 θ + G cos2 θ
(10.15)

Then, for the caseof a tensile test performedalong the rollingdirection (θ = 0),
(10.15) reduces to

R0 = H
G

(10.16)

Similarly, it is possible to obtain the R-ratio along θ = 90◦ (TD), and θ = 45◦
orientations

R90 = H
F

and R45 = 1
2

(
2N

G+ F
− 1

)
(10.17)
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Most often the drawability of a metal sheet is assessed by evaluating the
R-ratio. Researchers consider two parameters, R̄, the average strain ratio, and
�R, the variation in strain ratio in the plane of the sheet. The parameter R̄
measures normal anisotropy, and is defined by

R̄ = R0 + 2R45 + R90

4
(10.18)

For instance, the material exhibiting R̄ > 1 usually possesses good draw-
ability, while R̄ = 1 means equal flows of material occurring along the width
and thickness direction and exhibiting moderate drawability.

The case of planar anisotropy, on the other hand, is assessed by �R. This
parameter describes the variation of R-ratio in the plane of the sheet along
different orientations, and provides a good indication of ear formation during
the deep drawing process. In the case of an isotropic material, R̄ = 1 and
�R = 0. An ideal material for deep drawing purposes would exhibit R̄ > 1
and �R = 0.

10.4.3 The Equivalent Stress and Equivalent Strain

Based on the yield criterion (10.7), Hill [12] suggested that the equivalent
stress be represented by

σ̄ = K−1/2 = K−1/2[(G+H)σ 2
x − 2Hσxσy + (F +H)σ 2

y + 2Nσ 2
xy
]1/2

(10.19)

where

K = 2
3 (F + G+H) (10.20)

The increment of plastic work per unit volume is defined as

dWp = σx dεpx + σy dεpy + 2σxy dεpxy (10.21)

After the substitution of (10.11) into (10.21) and using (10.7), we can show that

dWp = dλ (10.22)

The equivalent plastic strain increment, dε̄p, is defined so that the plastic
work increment is given by

dWp = σ̄ dε̄p (10.23)
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Its expression may be obtained by observing that the flow rule (10.11) may be
solved for stress as

σx dλ = 1
M
[(F +H)dεx +H dεy], σydλ = 1

M
[(G+H)dεy +H dεx]

(10.24)

where

M = (F +H)(G+H)−H2 (10.25)

Upon the substitution of (10.24) into (10.7), we obtain

(G+H)

[
(F +H)dεpx +H dεpy

M

]2

− 2H

[
(F +H)dεpx +H dεpy

M

]

×
[
(G+H)dεpy +H dεpx

M

]
+ (F +H)

[
(G+H)dεpy +H dεpx

M

]2

+ 2N
M2

[
M dεpxy

N

]2

= (dλ)2 (10.26)

From (10.19), (10.21), and (10.22), we found that

dε̄p = K1/2 dλ (10.27)

Using (10.26), the equivalent dε̄p is given by

dε̄p =K1/2


(G+H)

[
(F +H)dεpx +H dεpy

M

]2

− 2H

[
(F +H)dεpx +H dεpy

M

][
(G+H)dεpy +H dεpx

M

]

+ (F +H)

[
(G+H)dεpy +H dεpx

M

]2

+ 2N
M2

[
M dεpxy

N

]2



1/2

(10.28)

It is noted that the intrinsic timedefinedby (9.54) is of the same formas (10.28).

10.4.4 The Anomalous Behavior

Hill [12] showed that for materials with rotational symmetry about the z-axis,
F = G. Considering that the principal stress space with 1 denotes the RD
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and 2 the TD, (10.7) reduces to

(G+H)σ 2
1 − 2Hσ1σ2 + (G+H)σ 2

2 = 1 (10.29)

in which σ1 and σ2 are principal stresses in the plane of the sheet. Using
(10.8a), (10.29) is given as

σ 2
1 −

2H
G+H

σ1σ2 + σ 2
2 =

1
G+H

= σ 2
u (10.30)

where σu is the uniaxial yield stress along the RD. Using (10.16), (10.30) can be
further reduced to

σ 2
1 + σ 2

2 −
2R0

R0 + 1
σ1σ2 = σ 2

u (10.31)

where R0 is the plastic strain ratio along the RD. The yield stress for equibi-
axial tension may then be determined by setting σ1 = σ2 = σB in (10.31).
We obtain

σB =
(

1+ R0

2

)1/2

σu (10.32)

Thus, (10.32) results in σB > σu when R0 > 1 and σB < σu when R0 < 1.
This relationship is further illustrated by plotting (10.31) in Figure 10.3. Most
sheet metals show a yield locus with σB > σu in the tension quadrant of
the two-dimensional principal stress space. It is seen from the figure that
Hill’s criterion (10.31) is satisfactory for the case of R0 > 1, but it does not
agree with observed results in the case of R0 < 1. This “anomalous behavior”

�2

�10

R < 1 R = 1

R > 1

FIGURE 10.3
Quadratic yield loci with coefficients expressed in terms of R (From Wu, H.C., Int. J. Plasticity,
18, 1661, 2002. With permission from Elsevier).
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was noted by Pearce [14] and Woodthorpe and Pearce [15] when they tested
commercially pure aluminum sheets.

10.5 Nonquadratic Yield Functions

To accommodate the “anomalous behavior,” Hill [16,17] proposed a num-
ber of possible generalizations of the quadratic yield function. These yield
functions are generally more complex and are nonquadratic with additional
anisotropic parameters.

Hill (1979):

F|σ2 − σ3|m + G|σ3 − σ1|m +H|σ1 − σ2|m + L|2σ1 − σ2 − σ3|m
+M|2σ2 − σ3 − σ1|m +N|2σ3 − σ1 − σ2|m = 1 (10.33)

Hill (1990):

|σ1 + σ2|m +
(
σm

B
τm

)
|σ1 − σ2|m + |σ 2

1 + σ 2
2 |(m/2)−1

× {− 2a
(
σ
(
σ 2

1 − σ 2
2
))+ b(σ1 − σ2)

2 cos 2α
}
cos 2α = (2σB)

m (10.34)

where m (with m > 1, integer or noninteger) is a material coefficient; σ1, σ2,
and σ3 are principal stresses and are expressed in the orthotropic symmetry
axes x, y, and z; τ is the yield stress under pure shear parallel to the orthotropic
axes. In addition,

a = (F − G)
(F + G)

and b = (F + G+ 4H − 2N)
(F + G)

(10.35)

Note that, in (10.33), the principal loads must coincide with the axes of
orthotropy, whereas in (10.34) they can have any orientation. Furthermore,
(10.34) is restricted to plane stress.

A yield function was proposed by Hosford [18] in the form of

F|σ1 − σ2|m + G|σ2 − σ3|m +H|σ3 − σ1|m = 1 (10.36)

where m is 6 or 8 according to whether the crystal grains are body- or
face-centered cubic, and the function does not include the anomaly.

Other nonquadratic forms have been proposed in the literature.
Gotoh [19] proposed

σ̄ 4 =C1σ
4
xx + C2σ

3
xxσyy + C3σ

2
xxσ

2
yy + C4σxxσ

3
yy + C5σ

4
yy

+ σ 2
xy(C6σ

2
xx + C7σxxσyy + C8σ

2
yy)+ C9σ

4
xy (10.37)
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where σ̄ is the effective stress; Ci are constants. Barlat and Lian [20] used the
following criterion:

a|K1 + K2|m + a|K1 − K2|m + (2− a)|2K2|m = 2σ̄m

with

K1 = (σxx + hσyy)/2

K2 = {[(σxx − hσyy)/2]2 + [pσxy]2}0.5
(10.38)

where a, h, p, and m are material constants.
Hill [21] pointed out that none of the above yield functions accounts for

the behavior of the tensile yield to be the same along both the rolling and
transverse directions, while the associated strain-ratios are markedly differ-
ent. Hill then proposed the following nonquadratic yield function in the same
paper to account for this effect:

σ 2
1 −

(
2− σ

2
u

σ 2
B

)
σ1σ2 + σ 2

2 +
{
(p+ q)− (pσ1 + qσ2)

σB

}
σ1σ2 = σ 2

u (10.39)

This function was proposed with applications to thin sheet in mind and is
restricted to the tension quadrant of the (σ1, σ2) plane. An additional restric-
tion of this form is that the tensile yield stress, denoted by σu, is the same in
the rolling and transverse directions. The nondimensional parameters p and
q are either positive or negative. The application of (10.39) is explained in [22],
but that application was made in connection with the work contours which
are not the same as the yield loci. Equation (10.39) accounts for the anomaly.
A nonquadratic yield function was also presented in Hill [21] for the case
when tensile yield stresses in rolling and transverse directions are distinct.

A nonquadratic yield criterion was proposed by Barlat et al. [23] as

φ1 = |S1 − S2|m + |S2 − S3|m + |S3 − S1|m = 2σ̄m (10.40)

where Si is the principal value of an isotropic plasticity equivalent (IPE)
stress tensor defined by

S = L · σ (10.41)

in which σ is the Cauchy stress and L is a fully symmetric and traceless
fourth-rank tensor. Tensor L introduces the material anisotropy into the
formulation. In the works of Barlat and coworkers, σ̄ is sometimes referred to
as the effective yield stress and sometimes as the uniaxial tensile yield stress
in the rolling direction.
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Karafillis and Boyce [24,25] constructed a yield criterion by mixing two
yield functions, φ1 and φ2, which are defined by

φ1 = |S1 − S2|m + |S2 − S3|m + |S3 − S1|m

φ2 = 3m

2m−1 + 1

(|S1|m + |S2|m + |S3|m
) (10.42)

The Karafillis and Boyce yield criterion is then defined by the yield function:

φ = (1− c)φ1 + cφ2 = 2σm
u (10.43)

where c ∈ [0, 1] and m is a constant. In the case of orthotropic symmetry,
the components of tensor L are

[L] = C




1 β1 β2 0 0 0
β1 α1 β3 0 0 0
β2 β3 α2 0 0 0
0 0 0 γ1 0 0
0 0 0 0 γ2 0
0 0 0 0 0 γ3




(10.44)

in which

β1 = 1
2 (α2 − α1 − 1), β2 = 1

2 (α1 − α2 − 1), β3 = 1
2 (1− α1 − α2)

(10.45)

Therefore, only C,α1,α2, γ1, γ2, and γ3 are independent parameters.
Barlat et al. [10] further proposed the following yield criterion:

φ = α1|S1 − S2|m + α2|S2 − S3|m + α3|S3 − S1|m = 2σ̄m (10.46)

where Si are principal values of Sαβ which is

[S] =




1
3 [C3(σxx − σyy) C6σxy C5σzx
−C2(σzz − σxx)]

C6σxy
1
3 [C1(σyy − σzz) C4σzy
−C3(σxx − σyy)]

C5σzx C4σzy
1
3 [C2(σzz − σxx)

−C1(σyy − σzz)]




(10.47)

In (10.47), Ci are material constants and the coefficients αi are further
defined by

αi = αxp2
1i + αyp2

2i + αzp2
3i (10.48)
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where pij are the ith component of the jthprincipal directionof S (denoted as 1,
2, 3) with respect to the anisotropy axes of the material; αx, αy, and αz are three
additional functions. The expressions of these functions are given in [26].

Nonquadratic yield functions have also been proposed by Chakrabarty [27]
with yield function given by

|σx + σy|m + 2a
(|σx|m − |σy|m

)+ b|2σxy|m + c
[
(σx − σy)

2 + 4σ 2
xy
]m/2=(2σB)

m

(10.49)

where

4a =
(

2σY
B

σY
x

)m

−
(

2σY
B

σY
y

)m

, 2(1+ c) =
(

2σY
B

σY
x

)m

+
(

2σY
B

σY
y

)m

,

2b = 2

(
2σY

B
σ45

)m

−
(

2σY
B

σY
x

)m

−
(

2σY
B

σY
y

)m (10.50)

and m > 1.
The aforementioned yield criteria are phenomenological criteria. A poly-

crystal model based on Taylor [28] and Bishop and Hill [29], the TBH model,
can also be used to describe the deformation of sheet metals. Such study has
been reported by Barlat and Richmond [30] and Lege et al. [6]. By use of the
TBH model, the effects of rolling textures (Brass, Copper, S) and recrystalli-
zation textures (Cube, Goss) can be individually studied. The textures change
with deformation, however, and the description of plastic deformation by
the TBH model that accounts for the evolution of textures has not yet been
demonstrated.

10.6 Anisotropic Plasticity Using Combined
Isotropic–Kinematic Hardening

10.6.1 Introduction

From the summary of nonquadratic yield functions presented in the previous
section, we see that these are generally very complicated expressions with
additionalmaterial parameters. In a recentwork, Lademo et al. [31] compared
the models of Hill [11], Barlat and Lian [20], and Karafillis and Boyce [24]
with their own experimental data of two aluminum materials and found
that, for the first two models, calibrations based on yield stresses gave a
good description of the yield stress anisotropy, but the same calibrations gave
poor descriptions of the anisotropy in the R-ratio. Similarly, a calibration
based on R-ratios gave a good description of the anisotropy in the R-ratio
but a poor description of the yield stress anisotropy. The model of Karafillis
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and Boyce [24] with zero back stress was unable to describe both kinds of
anisotropy. It was then concluded that none of the models considered was
capable of simultaneously describing both the anisotropy in the yield stress
and the R-ratio for the alloys considered. The model of Karafillis and Boyce
with nonzero back stress was not considered by Lademo et al. [31].

Due to these discrepancies, we feel that the theory of anisotropic plasticity
needs to be fundamentally modified in order to obtain a realistic plasticity
model. The existing anisotropic theory of plasticity for sheet metals proposes
a yield function (quadratic or nonquadratic), assumes the normality con-
dition for the plastic strain increments, and considers isotropic hardening.
This theory is very different from the classical flow theory of plasticity in
many aspects which are as follows: first, instead of a quadratic (initial) yield
function for all metallic materials, this anisotropic theory for sheet metals uses
a nonquadratic yield functionwith the exponent of the functiondepending on
the material being considered. Furthermore, instead of the usual isotropic–
kinematic hardening concept, this theory is entirely based on the concept
of isotropic hardening. Another discrepancy is related to the experimental
determination of the coefficients of the yield function. Traditionally, in the
flow theory of plasticity, the yield function has been determined independent
of the flow rule. In this theory, however, the flow rule has been extensively
used in the determination of the coefficients of the yield function through the
useofR. It shouldbepointedout that thesedifferent assumptionsof the theory
are not fully compatible. They have together created inconsistencies which
have been demonstrated by the findings of Lademo et al. [31] that none of the
models considered were capable of describing both aspects of anisotropy in
the yield stress and the R-ratio for the alloys considered. The existing theory
also leads to an undesirable situation that the sheet metal would require a
different theory of plasticity from that used for the same material in other
product forms.

In the existing theory of anisotropic plasticity, all experimental data,
including yield loci and R-ratio, have been interpreted from the viewpoint of
isotropic hardening. It is this viewpoint that has led to the concept of “anom-
alous behavior” and to the nonquadratic yield function. It has also led to the
idea of expressing coefficients of the yield function in terms of the R-ratio.
Since most experimentally determined yield loci for sheet metals have data
only in the tension quadrant of the two-dimensional stress space, the iso-
tropic hardening is but an assumption and, consequently, the yield locus is
symmetrical with respect to the stress axes. Experimental results in compres-
sion, such as [10], support the idea of isotropic hardening. But, a closer look
at [10] reveals that the plastic strain introduced during each probe of the
yield surface was approximately 10%, which is a very large strain indeed.
Due to this large strain definition of yield, the yield locus has been found to
be symmetrical to both the σx and σy
amount of plastic deformation has already taken place before a yield point is
reached on the yield surface. If, on the other hand, a small proof strain is used
to determine yield, then at each point on the yield locus of [10], the material
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FIGURE 10.4
Two interpretations based on experimental data in tension quadrant.

has already experienced its own deformation history and its own history of
strain hardening. In other words, these points do not belong to the same yield
locus, if yield is defined by a small proof strain.

From the summary of experimental findings in Section 10.3, we are confid-
ent that the sheet metals do undergo isotropic as well as kinematic hardening,
and we take this viewpoint in formulating an anisotropic theory of plasticity
[32–34] and assume that the material undergoes a combined isotropic–
kinematic hardening. Since most experimentally determined yield loci for
sheet metals have data only in the tension quadrant of the two-dimensional
stress space, the yield locus may either be viewed as having an isotropic
hardening with a highly nonlinear yield function or as having a combined
isotropic–kinematic hardening with the quadratic yield function. Both yield
loci pass through the experimental points as shown in Figure 10.4.

10.6.2 The Anisotropic Theory Using Combined
Isotropic–Kinematic Hardening

In this section, we present the theory propounded by Wu [34] with permis-
sion from Elsevier. In this development, the elastic deformation of the sheet
material is assumed tobe isotropic. In the caseofplane stress, theequationsare

εex =
1
E
(σx − νσy), εey =

1
E
(σy − νσx), εexy =

1
2µ
σxy (10.51)

where the elastic strain components are

εex = De
x dt, εey = De

y dt, εexy = De
xy dt (10.52)
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and De
x, De

y and De
xy are components of the elastic part of the rate of

deformation Dx, Dy, and Dxy, respectively. In (10.51), E is the elastic modulus,
µ is the shear modulus, and ν is Poisson’s ratio.

The new yield function, like Hill’s 1948 yield criterion [11], considers the
axes of anisotropy as the axes of reference and is represented by (10.53).
Hence, x denotes the rolling direction and y the transverse direction of the
sheet metal. The yield function is

2φ = (G+H)(σx − αx)
2 − 2H(σx − αx)(σy − αy)

+ (H + F)(σy − αy)
2 + 2N(σxy − αxy)

2 = f2 (10.53)

where the material parameters F, G, H, and N are determined by the initial
state of anisotropy of the metal sheet. The components of the back stress, αx,
αy, and αxy, specify the center of the yield surface and are directly related to
the kinematic hardening of the material. The function f specifies the size of
the yield surface, and it is an expression of isotropic hardening. The function
f increases with the accumulated plastic strain and will be further discussed.
In the case of a material without isotropic hardening, f = 1; in the case of
an annealed or an as-received material where the initial state of anisotropy
is not apparent, αx = αy = αxy = 0, and the initial value of f is f0 = 1.
When there is a significant presence of anisotropy in the as-received material
at initial yielding, the initial values for αx, αy, and αxy are not zero. In this
situation, it is then desirable to fit (10.53) to the experimental yield surface
through an optimization procedure. In this way, it is possible to determ-
ine the values of coefficients (F, G, H, and N), and the initial back stress
components.

Using (10.53) and the normality rule, the flow rule is

Dp
x = λ̇[(G+H)ξx −Hξy]

Dp
y = λ̇[−Hξx + (H + F)ξy]

Dp
xy = λ̇Nξxy

(10.54)

where the components of the effective stress vector are

ξx = σx − αx, ξy = σy − αy, ξxy = σxy − αxy (10.55)

The “effective stress vector” is defined by (10.55) and this definition has been
usedbyother authors, suchasChoandDafalias [35]. It shouldnot be confused
with the equivalent stress defined in (10.19), which is sometimes referred to as
the “effective stress” in the plasticity literature. The flow rule (10.54) may
be applied to calculate the rate of plastic deformation. Note that λ̇ is the
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plastic multiplier which is a positive scalar that may vary during the straining
process, and Dp

x , Dp
y , and Dp

xy are the plastic parts of the rate of deformation,
such that

Dx = De
x +Dp

x , Dy = De
y +Dp

y , Dxy = De
xy +Dp

xy (10.56)

In the case of uniaxial tension test using a specimen cut out from a metal
sheet at an orientation angle θ , measured counterclockwise from the rolling
direction, the stress components are given by (10.4) and written as

σx = σθ cos2 θ , σy = σθ sin2 θ , σxy = σθ sin θ cos θ (10.57)

where σθ is the stress along the axial direction x′ of the specimen. Let y′
be along the width direction of the specimen, the x′–y′–z′ axes thus form a
rectangular specimen coordinate system with x′ and y′ lying in the x–y plane
and z′ = z. In this case, the rate of deformation in the specimen coordinate
system is

Dx′ = Dx cos2 θ +Dy sin2 θ + 2Dxy sin θ cos θ

Dy′ = Dx sin2 θ +Dy cos2 θ − 2Dxy sin θ cos θ

Dxy′ = − 1
2 (Dx −Dy) sin(2θ)+Dxy cos(2θ)

(10.58)

and the corresponding plastic parts are related by

Dp
x′ = Dp

x cos2 θ +Dp
y sin2 θ + 2Dp

xy sin θ cos θ

Dp
y′ = Dp

x sin2 θ +Dp
y cos2 θ − 2Dp

xy sin θ cos θ

Dp
xy′ = − 1

2 (D
p
x −Dp

y ) sin(2θ)+Dp
xy cos(2θ)

(10.59)

The equivalent stress, σ̄ , is similarly defined as in (10.19), but it includes
the effect of kinematic hardening:

σ̄ =
[
(G+H)ξ2

x − 2Hξxξy + (H + F)ξ2
y + 2Nξ2

xy

K

]1/2

(10.60)

Combining (10.53) and (10.60), the equivalent stress can also be expressed by

σ̄ = f√
K

(10.61)

The equivalent plastic strain rate, D̄p, is defined so that the rate of plastic
work per unit volume is

Ẇp = σ̄ D̄p (10.62)
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To obtain the expression for D̄p, the rate of plastic work is first written as

Ẇp = (σij − αij)D
p
ij = (σij − αij)

∂φ

∂σij
λ̇ (10.63)

Upon the differentiation of the yield function, 2φ, with respect to the stress
components and with the appropriate substitutions, (10.63) then reduces to

Ẇp = f2λ̇ = 2φλ̇ (10.64)

Using (10.64) and (10.53), it can then be shown that (10.62) is satisfied if D̄p

is given by the following expression:

D̄p =
√

K
M

{
(F +H)

(
Dp

x
)2 + 2HDp

xDp
y + (G+H)

(
Dp

y
)2 + 2M

N

(
Dp

xy
)2}1/2

(10.65)

where

M = (G+H)(H + F)−H2 (10.66)

It can also be found that

λ̇ = D̄p

f
√

K
(10.67)

In this model, a combined isotropic–kinematic hardening is considered.
The evolution of isotropic hardening is accomplished by the evolution of the
isotropic function f and that of kinematic hardening through the evolution
of the back stress (αx,αy,αxy). In the isotropic hardening, the effective plastic
strain rate, D̄p, is directly related to a monotonic increasing parameter (or it
can be regarded as an intrinsic time as in the endochronic theory discussed

ζ̇ = D̄p (10.68)
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where ζ represents the accumulated effective plastic strain. Following (6.62),
the isotropic hardening is given by

f = f
(∫

D̄p dt
)
= f (ζ ) (10.69)

which may be further expressed by a modified exponential function proposed
by Wu and Yip [36] in (8.110) as

f (ζ ) = Dθ − (Dθ − 1)e−βθ ζ (10.70)

Note that Dθ and βθ are material constants with values depending on the
angle θ , that is, the isotropic hardening is direction dependent. The para-
meter Dθ , where Dθ ≥ 1, represents the asymptotic amount of isotropic
hardening as ζ →∞, while βθ represents the rate of hardening. In addition,
it is noted that f (ζ ) = 1 for a material without isotropic hardening. In the
case of loading, (10.70) may be differentiated with Dθ and βθ remaining con-
stant for each specified direction, and, using (10.67) the following expression
may be obtained:

ḟ = √Kβθ (Dθ − f )f λ̇ (10.71)

Prager’s linear kinematic-hardening rule [37] is used according towhich the
rate of translation of the center of the yield surface is in the direction of the
plastic strain rate. Consequently, the deviatoric part of back stress rates are:

α̇D
x = CDp

x = Cλ̇[(G+H)ξx −Hξy]
α̇D

y = CDp
y = Cλ̇[−Hξx + (H + F)ξy]

α̇D
xy = CDp

xy = Cλ̇Nξxy

(10.72)

and

α̇D
x + α̇D

y + α̇D
z = 0 (10.73)

Knowing that α̇z = 0 for plane stress, it may be shown that

α̇x = 2α̇D
x + α̇D

y and α̇y = α̇D
x + 2α̇D

y (10.74)

The scalar parameter C characterizes the material behavior. In this study, C is
considered a constant, which leads to a linear-kinematic strain hardening.
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The plastic strain ratio, Rθ , for a tension specimen cut at an angle θ from
the rolling direction, is defined by

Rθ =
Dp

y′

Dp
z′
= −

(
Dp

y′

Dp
x′ +Dp

y′

)
(10.75)

where the plastic incompressibility of the material is assumed. Using of
(10.59), (10.75) is reduced to

Rθ = −[(G+H)(σθ cos2 θ − αx)−H(σθ sin2 θ − αy)] sin2 θ

[G(σθ cos2 θ − αx)+ F(σθ sin2 θ − αy)]

+ [(H + F)(σθ sin2 θ − αy)−H(σθ cos2 θ − αx)] cos2 θ

[G(σθ cos2 θ − αx)+ F(σθ sin2 θ − αy)]

− 2N(σθ sin θ cos θ − αxy) sin θ cos θ

[G(σθ cos2 θ − αx)+ F(σθ sin2 θ − αy)]
(10.76)

Note that the isotropic-hardening function, f , does not appear in (10.76), but
the back stress components do. Therefore, the R-ratio is significantly influ-
enced by kinematic hardening. From this equation, the following expressions
can be found

R0 =
σ0H −Hαx + (H + F)αy

σ0G− Gαx − Fαy

R45 = 1
2

[
2N(σ45 − 2αxy)

σ45(G+ F)− 2Gαx − 2Fαy
− 1

]

R90 =
σ90H + (G+H)αx −Hαy

σ90F − Gαx − Fαy

(10.77)

where σ0, σ45, σ90, R0, R45, and R90 represent the yield stress and plastic strain
ratio at orientations 0◦, 45◦, and 90◦ from the rolling direction, respectively.
In the case of αx = αy = αxy = 0, (10.77) reduces to Hill’s 1948 definition of
plastic strain ratios given by (10.16) and (10.17).

For a given direction θ , the yield stress σθ may be found by the substitution
of (10.57) into (10.53). The resulting equation is as follows:

σ 2
θ [(G+H) cos4 θ − 2 H cos2 θ sin2 θ + (F +H) sin4 θ + 2 N sin2 θ cos2 θ ]
+ σθ

[− 2(G+H)αx cos2 θ + 2 H(αx sin2 θ + αy cos2 θ)

− 2(H + F)αy sin2 θ − 4 Nαxy sin θ cos θ
]

+ (G+H)α2
x − 2 Hαxαy + (H + F)α2

y + 2 Nα2
xy − f2 = 0 (10.78)
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10.6.3 Results and Discussion

It is shown in this section that the theory of the previous section is capable
of predicting experimentally observed data for sheet metals. In particu-
lar, tension test of specimens cut at different θ angles measured from the
rolling direction is of interest. The theoretical results are compared with
two sets of experimental data for different aluminum materials. The return-
mapping algorithm, of Simo and Hughes [38], is used in the computation
to ensure that the updated stress point is on the current yield surface. The
procedure is as follows:

1. Input time increment dt and angle θ to determine the initial yield
stress σθ and the initial yield strain using (10.51), (10.57), and (10.78).

2. Use the return-mapping algorithm to determine the increment dλ, so
that the plastic part of rate of deformation and the plastic strain-ratio
R may be found from (10.54), (10.58), and (10.75).

3. Update σθ , f ,αx,αy, and αxy using (10.71)–(10.74) and the following
equations of return-mapping algorithm:

Trial stress = σT
θ(n+1) = σθ(n) + EDx′(n) dt

σθ(n+1) = σT
θ(n+1) − EDp

x′(n) dt
(10.79)

The first example is related to the experimental data of Lademo et al. [31].
These authors tested two aluminum materials in uniaxial tension. Only
AA7108-T1 is being considered here, and the other material can be similarly
considered. The present writer agrees with Lademo et al. [31] that the uniaxial
tension test is a desirable test to use for the calibration of a material model. At
the present stage of knowledge, however, the tension test does not provide
all the needed information. It does not, for example, provide information
about the initial back stress, which is needed in the present model. Due to
the thinness of the sheet material, a compression test is not practical. There-
fore, more research needs to be conducted to determine the initial back stress
components (αx,αy,αxy)which are present due to material processing.

The experimental data have been reproduced from table 2 of Lademo
et al. [31]. Only specimen #1 for each θ angle is considered. The equation
to reproduce the experimental stress–strain curve is

Ȳ = Y +
∑

k

Qk(1− exp(−Ck ε̄
p)) (10.80)

which was given in Lademo et al. [31]; Ȳ is the flow stress; Y is the yield stress;
ε̄p is the plastic strain; and Qk and Ck are material parameters given in Table 2
of Lademo et al. [31]. It is to be noted that, in most cases, three exponential
terms of (10.80) were used, and this equation reproduces the experimental
data very well.

© 2005 by Chapman & Hall/CRC Press



Anisotropic Plasticity for Sheet Metals 567

In the present computation by use of the proposed theory, only one expo-
nential term with two parameters Dθ and βθ for each loading direction is used
in the isotropic-hardening function, (10.70), and one material parameter C is
used in the kinematic-hardening rule, (10.72). The idea is to keep the number
of parameters at itsminimumso that themodel canbeused topredictmaterial
behavior under various loading conditions. Based on the experimental data,
the variations of Dθ and βθ as a function of θ have been determined. If more
terms are used in equations (10.70) and (10.72), better agreement with the
experimental results in discussion can be attained but, at the same time, the
parameters need to be adjusted case by case as in Lademo et al. [31] and
the model will lose its power of prediction.

From table 2 of Lademo et al. [31], we see that the elastic modulus E and
Poisson’s ratio vary slightly from one θ angle to the other. For simplicity,
the average values of E = 66, 586 MPa and ν = 0.345 are used throughout
the computation. The following constants have been used in this computa-
tion: F = 4.919 × 10−6 (MPa)−2, G = 8.862 × 10−6 (MPa)−2, H = 5.309 ×
10−6 (MPa)−2, N = 0.000035 (MPa)−2, Dθ = 2.4 for all θ ’s, C = 300 MPa, and
βθ varies as a function of θ as

βθ = −8.5046 θ4 + 29.405 θ3 − 32.789 θ2 + 11.797 θ + 0.6 (10.81)

This functional relation has been found by use of experimental data for
the cases of θ = 0◦, 35◦, 45◦, 55◦, and 90◦. An improved relation would
have been obtained if Lademo et al. [31] had reported data for 15◦ and
75◦. The author has tried to express (10.81) by simple mathematical expres-
sions without success. The initial back stress has been determined to be
α◦x = 11 MPa, α◦y = −44 MPa, and α◦xy = 0. Constants (F, G, H, N) and
back stress (α◦x ,α◦y ,α◦xy) have been determined to fit the experimental data for
all measured σθ , that is σ0, σ35, σ45, σ55, and σ90 and to satisfy the constraint
imposed by (10.78).

The theoretical stress–strain curves (the solid curves) are compared with

Only the cases of θ = 0◦, 45◦, and 90◦ are shown. Curves for θ = 35◦ and
55◦ have also been obtained with a similar degree of agreement with the
experimental data.

at constant strain levels of 0.01, 0.02, 0.03, 0.1, and 0.14. Both theoretical curves
and experimental data are shown. The theoretical curves showmaximaoccur-
ring at about 15◦ and 75◦, but no experimental data in these regions have been

The experimental R-ratio was determined by applying linear regression to the
plastic width strain versus thickness strain curve for each θ , which did not
deviate much from a straight line. The R-ratio has only changed slightly as
strain increases for this material. Two theoretical curves are shown: one for
initial yielding and the other for strain at 0.14. Although there is a general
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the experimental data of Lademo et al. [31] (the dotted curves) in Figure 10.5.

Figure 10.6 shows the flow stress plotted against θ at the initial yielding and

reported by Lademo et al. [31]. Figure 10.7 shows the R-ratio plotted against θ .
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FIGURE 10.5
Tensile stress–strain curves for AA7108-T1 aluminum: (a) θ = 0◦, (b) θ = 45◦, and (c) θ = 90◦
(From Wu, H.C., Int. J. Plasticity, 18, 1661, 2002. With permission from Elsevier).
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FIGURE 10.6
Flow stress versus θ for AA7108-T1 aluminum at constant strain levels of initial yielding, 1, 2, 3,
10, and 14% (From Wu, H.C., Int. J. Plasticity, 18, 1661, 2002. With permission from Elsevier).

agreement between theory and experiment, the poor agreement for θ = 90◦
cannot be explained.

longitudinal strain of the specimen increases. All are linear paths going from
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Figure 10.8 shows the stress paths for tension tests for all θ angles as the



Anisotropic Plasticity for Sheet Metals 569

30 60 90

0.5

1

1.5

2

� Angle (°)

R
-R

at
io

Experiment

Theory
(Initial Yield)

Theory
(Strain = 0.14)

FIGURE 10.7
R-ratio versus θ for AA7108-T1 aluminum at initial yielding and 14% strain (From Wu, H.C., Int.
J. Plasticity, 18, 1661, 2002. With permission from Elsevier).
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FIGURE 10.8
Stress paths for tension tests ofAA7108-T1 aluminum with θ shown: (a) plane view, (b) elevation
view (From Wu, H.C., Int. J. Plasticity, 18, 1661, 2002. With permission from Elsevier).

A to B, where B is the far end of each path. These paths do not stay in the
(σx, σy) plane except for the cases of θ = 0◦ and 90◦, but they are linear paths
defined by (10.57). Both the plane view (Figure 10.8(a)) and the elevation
view (Figure 10.8(b)) are shown. As it was mentioned earlier, the plane view
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FIGURE 10.9
Direction of effective stress vector for tension test of AA7108-T1 aluminum at θ = 45◦: (a) plane
view, (b) elevation view (From Wu, H.C., Int. J. Plasticity, 18, 1661, 2002. With permission from
Elsevier).

is the projection of a three-dimensional figure onto the (σx, σy) plane; while
the elevation view is the projection of the same figure onto a plane which
passes through the σxy axis and the s-direction. The number marked at the
far end of each path corresponds to the θ angle for that path. The correspond-
ing back-stress-paths may be drawn and they are generally nonlinear paths.
But, they are not shown due to the smallness of these paths.

Finally, Figure 10.9 shows the gradual change in direction of the “effective
stress vector” for the case of θ = 45◦. Similar figures may be drawn for other
θ angles. Figure 10.9(a) shows the plane view and Figure 10.9(b) the elevation
view. The effective stress vector is the quantity (ξx, ξy, ξxy) defined by (10.55);
it is represented by the vector from C to A when the axial strain is 0.005, and
by the vector from D to B when the axial strain is 0.1. It is seen from the
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figures that this vector changes direction as the axial strain increases. When
this vector changes direction, the corresponding stress point moves along the
yield surface, resulting in the change of direction of the corresponding plastic
strain-rate vector.

In the conventional approach, the isotropic hardening fixes the shape of the
yield surface and also the direction of the plastic strain increment (associated
flow rule) as the load increases, leading to a poor description of the aniso-
tropic flow properties. Lademo et al. [31] pointed out that the anisotropic
flow properties may be better described by use of a nonassociated flow rule.
In the theory of Wu [34], reasonable results are obtained by use of associ-
ated flow rule together with the concept of kinematic hardening. As shown

loading increases, and it is not necessary to use a nonassociated flow rule as
suggested by Lademo et al. [31].

The second example is related to a set of uniaxial tension experiments
conducted in the writer’s laboratory by Y.P. Shiao and M. Loureiro. The
experimental results are reported in Shiao [39]. The material was a 6061-O
aluminum sheet tested at the as-received condition. Tension specimens
were cut at 0◦, 1 5◦, 30◦, 45◦, 60◦, 75◦, and 90◦ from the rolling direction.
Three samples were tested for each case. Postyield strain gauges, one along
the axial direction and one along the width direction of the specimen, were
used to measure strains for each specimen.

The theory of the previous section is used to model the tests. The same pro-
cedures as in the first example are followed in the determination of constants
and in the computation. The following constants are used in the calculation:
E = 70 GPa, ν = 0.33, F = 0.975× 10−4 (MPa)−2, G = 1.2546× 10−4 (MPa)−2,
H = 1.0474 × 10−4 (MPa)−2, N = 2.6611 × 10−4 (MPa)−2, C = 0.2 MPa,
βθ = 2.7 for all θ ’s, and Dθ which is given by

Dθ = D0

(
σ0

σθ

)m

(10.82)

where D0 = 2.9 is the value of Dθ at θ = 0◦ and m = 0.5. Note that σθ are
initial yield stresses and are known for each θ . In effect, (10.82) is express-
ing Dθ as a function of θ . The initial back stress has been determined to be
α0

x = −20.8 MPa, α0
y = −13 MPa, and α0

xy = 0.
The theoretical stress–strain curves (the solid curves) are now compared

with the experimental data (the dotted curves). Only the case of θ = 0◦ is

ence of anisotropy for this material, eventhough a significant anisotropy is
found in the initial yield stress and R-ratio, which will be further discussed.

for the case of θ = 0◦. The dotted curve indicates the experimental data.

the cases of θ = 0◦, 30◦, 60◦, and 90◦, where thedots denote experimental data.
Reasonable agreement between theory and experiment has been achieved.
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in Figure 10.9, the direction of the plastic strain increment changes as the

shown in Figure 10.10. The stress–strain diagrams indicate only a small influ-

Figure 10.11 shows the calculated width strain plotted against the axial strain

The calculated R-ratios are plotted against the axial strains in Figure 10.12 for
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FIGURE 10.10
Tensile stress–strain curves for 6061-O aluminum, θ = 0◦ (From Wu, H.C., Int. J. Plasticity, 18,
1661, 2002. With permission from Elsevier).
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Width strain versus axial Strain for 6061-O aluminum, θ = 0◦ (From Wu, H.C., Int. J. Plasticity,
18, 1661, 2002. With permission from Elsevier).

levels of 1, 2, 4, and 7%. No experimental data for larger strain levels have
been obtained due to necking of the specimens. Figure 10.13 is construc-

Figure 10.13 due to scatter, but a direct comparison between theory and exper-
iment can be made in Figure 10.12. The initial yield stress is plotted against θ

10.6.4 Summary and Conclusion

A simple anisotropic theory of plasticity has been presented in this section.
This theory uses Hill’s 1948 quadratic yield criterion, the normality con-
dition for the flow rule, and a combined isotropic–kinematic-hardening
rule. This theory is, in fact, the same as that usually used in classical
plasticity. The research presented in this section merely confirms that the flow
theory of plasticity may be extended to the case of anisotropic sheet metals.

© 2005 by Chapman & Hall/CRC Press

Figure 10.13 shows the theoretical R-ratios plotted against θ at constant strain

ted directly from Figure 10.12(a) to (d). No experimental data are shown in

in Figure 10.14 with dots denoting again the experimental data.
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Wu, H.C., Int. J. Plasticity, 18, 1661, 2002. With permission from Elsevier).
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Theoretical R-ratio for 6061-O aluminum at constant strain levels of 1, 2, 4, and 7% (From
Wu, H.C., Int. J. Plasticity, 18, 1661, 2002. With permission from Elsevier).

Although this is not surprising, the theory has not been previously verified
against experimental data related to sheet metals. The results of this research
indicate that the conventional nonquadratic yield functions are not necessary
for sheet metals, and the proposed theory may be useful for analyses of sheet
metal forming.
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FIGURE 10.14
Initial yield stress versus θ or 6061-O Aluminum (From Wu, H.C., Int. J. Plasticity, 18, 1661, 2002.
With permission from Elsevier).

In both examples considered, the present theory has achieved a gen-
eral agreement with experimental results in both aspects of anisotropy
(yield stress and R-ratio). The agreement is not perfect due to the simple
expressions used to describe isotropic and kinematic hardening given by
equations (10.70) and (10.72), and the fact that there are only two func-
tions Dθ and βθ and a parameter C in the equations. The agreement shown
is very satisfactory, if one realizes that the experimental data of Lademo
et al. [31] have been reproduced by (10.80) using three Qk’s and three Ck’s
for each θ to describe the axial stress–axial strain relation and an additional
set of three Qk’s and three Ck’s to describe the axial stress–width strain
relation.

Anisotropy is two-fold in nature (yield stress and R-ratio) as previously
mentioned. In the two examples considered, the materials are very different.
They are different in the magnitude of yield stress and also in its variation
with θ . They are also different in the magnitude of the R-ratio. In fact, the
R-ratio for AA7108-T1varies from 0.3 at θ = 0◦ to 2.0 at θ = 55◦, while that
for 6061-O aluminum remains less than 1.0 for all values of θs. In order to
describe such a wide range of variations of material behavior, using the same
constitutive equation, we find that the material functions are different for
the two materials. For AA7108-T1, Dθ is taken as constant for all θs and βθ
varies with θ as in (10.81); for 6061-O aluminum, βθ is taken as constant for
all θs, but Dθ is made to vary with θ as in (10.82). The two variations are not
the same due to different materials in the two examples.

The definitions of yield and their effect on the hardening rules of the sheet
material have been discussed. It has been shown that strain hardening plays
an important role in the determination of the R-ratios and yield stresses,
which are obtained from uniaxial tension specimens, cut at θ angle mea-
sured from the rolling direction of the metal sheet. Furthermore, kinematic
hardening makes it possible to have the directional change in the plastic strain
rate without introducing the nonassociated flow rule into the formulation as
suggested by Lademo et al. [31].
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Problems

(1) In the stamping operation of sheet metals, circles of 6.35 mm (0.25 in.) are
printed on the sheet prior to the operation. After the stamping, the circles are
changed into ellipses. Focusing on the deformation of one circle, if the major
and minor axes of the ellipse are 8.26 and 6.99 mm, respectively, determine the
equivalent strain ε̄.

(2) For tension specimen cut at θ angle, if the longitudinal stress σl versus lon-
gitudinal strain εl and width strain εw curves are experimentally recorded,
determine the expressions for dε

p
l and dε

p
w. Determine also the ε

p
w versus

σl relation.

(3) Referring to Problem (2), determine the difference between R-ratio defined by
R = dε

p
w/dε

p
t and R = εpw/εpt , where ε

p
t is the thickness strain.

(4) Referring to (10.5), show that in the case of rotational symmetry about the
z-axis, we obtain F = G, N = F + 2H, and L =M.

(5) Referring to (10.5), show that in the case of material isotropy, we have
L =M = N = 3F = 3G = 3H.

(6) Show that (10.28) and (10.65) are the same.
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11
Description of Anisotropic Material Behavior
Using Curvilinear Coordinates

11.1 Convected Coordinate System and
Convected Material Element

The Cauchy stress, σij, used in previous chapters is defined with respect
to a square element fixed to a Cartesian coordinate system. Referring to

medium is deformed into p at the deformed configuration. At P, the square
element is taken with reference to a Cartesian coordinate system defined at
this configuration, and, at p, the square element is chosen with reference to
a Cartesian coordinate system defined at the deformed configuration. The
two square elements coincide if, for the sake of simplicity and without loss
of generality, the two Cartesian coordinate systems coincide. Otherwise, they
differ by a rigid-body rotation. The square element at the deformed config-
uration does not account for the change in size and distortion of the element,
which occurs during deformation of the continuum. Therefore, by defining
the Cauchy stress with respect to these squares, we do not follow the mater-
ial element in our investigation of deformation and stress behavior of the
material element.

Arequirement supportedbyexperimentalfindings is that constitutive equa-
tions describing plastic behavior of material depend on the deformation
history of the material element. This dependence of the deformation history
may be easily accounted for if a material element is being followed during
the deformation process. Since the square element used to define the Cauchy
stress is not the same as the deformed material element, the Cauchy stress
is not an appropriate stress measure for nonprincipal stress states when the
material is anisotropic.

In this chapter, we use convected coordinates to monitor the deformation
history of a material element. The convected coordinates are also known
as imbedded coordinates. If we draw an element with a marker on the
surface of a continuum at the initial configuration, this element will assume
a deformed shape at the deformed configuration as can be seen from
the deformed marked element. Since the same material mass is contained

579
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Chapter 3, a material point P at the reference configuration in a continuous
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FIGURE 11.1
A convected material element due to simple shear.

within the marked element before and after deformation, the element
will be referred to as a convected material element. In this way, a material
element (with the same material mass) is being followed and the shape of
the element changes during deformation. The convected coordinates are
generally curvilinear coordinates.

Figure 11.1 shows a convected material element at the deformed configur-
ation. When an initially rectangular material element is subjected to simple
shear, for example, the element gets distorted and the deformed element
is shown in this figure by the solid lines. The Cartesian square element is
also shown by the dashed lines in the same figure. It is seen that the dashed
element does not contain the original material mass.

We discuss the basic concepts related to curvilinear coordinate system and
its tensor properties in Sections 11.2 to 11.6, and we discuss only topics of
curvilinear coordinates that are needed to address the plastic deformation
of an anisotropic continuum presented in the remaining part of this chapter.

background information, we are then ready to discuss the plastic deformation
behavior of a continuous medium using the convected coordinates. Readers
whoare familiarwith the curvilinear coordinatesmayskipSections11.2 to11.6
and start reading from Section 11.7.

11.2 Curvilinear Coordinates and Base Vectors

Referring to a right-handed Cartesian coordinate system, the position vector
of a point P is r, which can be expressed in terms of its components and base
vectors as

r = xiei (11.1)

© 2005 by Chapman & Hall/CRC Press

For further readings of the curvilinear coordinates, we refer to [1–5]. With this
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The base vectors for the Cartesian system are unit vectors denoted by ei.
The increment of the position vector r is

dr = ∂r
∂xk

dxk = dxkek with ek = ∂r
∂xk

(11.2)

The length of the increment dr, denoted by ds, is then given by

ds2 = dr · dr = dxk dxk (11.3)

The position vector of point P may also be expressed in terms of curvilin-
ear coordinates. We now introduce general curvilinear coordinates θ i by the
transformation

θ i = θ i(xj) (11.4)

and assume that the transformation may be reversed so that

xi = xi(θ j) (11.5)

with a nonzero Jacobian of the transformation, that is, |∂xi/∂θ j| �= 0. Thus, the
coordinates of point P may either be expressed by (x1, x2, x3) or (θ1, θ2, θ3) in
a three-dimensional Euclidean space. The coordinate curves are three curves
as shown in Figure 11.2, and the coordinate surfaces are the surfaces passing
through two of the coordinate curves with the third coordinate equal to zero.

g2

g1

g3

� 3-curve

�1 -curve

� 2-curve

�2-Surface

�3-Surface

�1-Surface

FIGURE 11.2
Coordinate curves and coordinate surfaces.
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The increment of the position vector referred to the curvilinear coordinate
system is now

dr = ∂r
∂θk

dθk = dθkgk (but r �= θkgk) (11.6)

where

gk = ∂r
∂θk

(11.7)

are covariant base vectors. These are tangent to the coordinate curves as shown

respect to the curvilinear coordinates θ i. A relationship between the covariant
base vectors and the Cartesian base vectors ei may be found by writing

dr = ∂r
∂xi

∂xi
∂θk

dθk = dθk
∂xi
∂θk

ei (11.8)

Comparing (11.8) with (11.6), we see that

gk = ∂xi
∂θk

ei or ei = ∂θk

∂xi
gk (11.9)

We note that (11.9) follows the covariant rule of transformation, and the vector gk
is a covariant vector. In the transformation between two coordinate systems
θ i and θ̄ i, where the variables are related by

θ̄ i = θ̄ i(θ1, θ2, θ3) and θ i = θ i(θ̄1, θ̄2, θ̄3) (11.10)

the components of a vector u, denoted by ũi, obey the covariant transforma-
tion rule, if

¯̃ui = ∂θ j

∂θ̄ i
ũj (11.11)

The components ũi are called the covariant components of vector u. The
contravariant components ũi of the same vector transform according to the
contravariant transformation rule as

¯̃ui = ∂θ̄ i

∂θ j
ũj (11.12)

The vector can then be represented by

u = ũigi = ũigi (11.13)
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in Figure 11.2 and represent the rate of change of the position vector r with



Description of Anisotropic Material Behavior 583

g1

g2

g2

g1

�1

�2

FIGURE 11.3
Covariant and contravariant base vectors.

where gi are contravariant base vectors, which are the reciprocal base vectors
defined by the following nine equations

gi · gj = δji (11.14)

In the above equations, δji is the Kronecker delta. The base vector g1 is perpen-
dicular to g2 and g3; g2 is perpendicular to g1 and g3; and g3 is perpendicular
to g2 and g1. The covariant and contravariant base vectors are shown in
Figure 11.3 for a two-dimensional drawing.

We now find the equations that relate gi to ei. They can be easily found
by substituting (11.9) into (11.14) and solving the resulting equations for gi.
The equations are

gk = ∂θk

∂xi
ei or ei = ∂xi

∂θk
gk (11.15)

Equations (11.15) obey the contravariant transformation rule for a vector as
given in (11.12). The increment of the position vector given by (11.6) can be
further written as

dr = dθkgk = dθkgk (11.16)

where dθk and dθk are contravariant and covariant components, respectively,
and are given by

dθ i = ∂θ i

∂xk
dxk and dθi = ∂xk

∂θ i
dxk (11.17)
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We see that from the above equations, dθ i can be identified with the usual
differential of the variable θ i, but dθi is not the differential of θ i. Therefore,
the differentials are contravariant components, and we will also use the upper
index for variable θ i for consistency, although it is not necessary to do so.

11.3 Tensors and Special Tensors

dyadic products. Using this definition of tensor and the base vectors ei, gi,
and gi, tensor T may be expressed as

T = Tijei ⊗ ej = T̃ijgi ⊗ gj = T̃ijgi ⊗ gj = T̃i
jgi ⊗ gj = T̃j

ig
i ⊗ gj (11.18)

whereTij are the Cartesian components; T̃ij are the contravariant components;
T̃ij are the covariant components; T̃i

j and T̃j
i are the mixed components of the

same tensor. Note that T̃i
j = T̃i

j = T̃i
j , if tensorT is symmetric. Throughout this

chapter, we use the tilde (˜) to denote components referred to curvilinear base
vectors. This is generally true for physical quantities discussed in this chapter,
except for the true stress to be defined in Section 11.11 and some specifically
defined tensors, such as gij, εijk , etc. to be defined later in this section. The
components in (11.18) refer to specific tensor bases shown and they are related.
We can find the relationships by substituting (11.9) and (11.15) into (11.18). To
find the relation (or transformation) between T̃ij and Tij, we write

T = Tijei ⊗ ej = T̃ijgi ⊗ gj = T̃ij
(
∂xr
∂θ i

er

)
⊗
(
∂xs
∂θ j

es

)
= T̃ij ∂xr

∂θ i

∂xs
∂θ j

er ⊗ es
(11.19)

Comparing the second and last identities of (11.19), we obtain

Tij = ∂xi
∂θ r

∂xj
∂θ s

T̃rs or T̃ij = ∂θ i

∂xr

∂θ j

∂xs
Trs (11.20)

This is the rule of transformation between the Cartesian components and the
contravariant components for a second-rank tensor. The same procedures can
be used to obtain the transformation rule between the Cartesian components
and the covariant components. The relations are

Tij = ∂θ r

∂xi

∂θ s

∂xj
T̃rs and T̃ij = ∂xr

∂θ i

∂xs
∂θ j

Trs (11.21)
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The same transformation rules apply to components of higher order tensors.
For example, components of a third-rank tensor transform as

T̃ijk = ∂xr
∂θ i

∂xs
∂θ j

∂xt
∂θk

Trst (covariant) (11.22)

T̃ijk = ∂θ i

∂xr

∂θ j

∂xs

∂θk

∂xt
Trst (contravariant) (11.23)

We now discuss two special tensors. They are the Kronecker deltas and
the permutation symbols. The Kronecker deltas (δij, δij, and δij ) are the
components of the unit tensor 1 referred to the Cartesian tensor bases formed
by Cartesian base vectors ei = ei. The corresponding components referred to
the curvilinear tensor bases are known as metric tensors and denoted by gij,
gij, and gij . Thus, the unit tensor may be written as

1 = δijei ⊗ ej = δijei ⊗ ej = δijei ⊗ ej = δjiei ⊗ ej
= gijgi ⊗ gj = gijgi ⊗ gj = gijgi ⊗ gj = g j

i g
i ⊗ gj (11.24)

The covariant metric tensor gij, the contravariant metric tensor gij, and the
mixed metric tensor gij are related to the Kronecker deltas by their respective
tensor transformation laws given in (11.20) and (11.21) so that

gij = ∂xr
∂θ i

∂xs
∂θ j

δrs = ∂xs
∂θ i

∂xs
∂θ j

(11.25)

gij = ∂θ i

∂xr

∂θ j

∂xs
δrs = ∂θ i

∂xs

∂θ j

∂xs
(11.26)

gij =
∂θ i

∂xr

∂xs
∂θ j

δrs =
∂θ i

∂xs

∂xs
∂θ j
= δij (11.27)

We note that δij = δij = δij = δji = 0 for i �= j and = 1 for i = j.
The determinants of the metric tensors are

g = |gij| =
∣∣∣∣ ∂xi∂θ j

∣∣∣∣
2

and
1
g
= |gij| =

∣∣∣∣∣∂θ
i

∂xj

∣∣∣∣∣
2

(11.28)

and we note that

gisgsj = ∂xk
∂θ i

∂xk
∂θ s

∂θ s

∂xr

∂θ j

∂xr
= δji (11.29)
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Knowing gij, we solve (11.29) to yield

gij = cofactor of |gij|
g

(11.30)

Therefore, (11.30) can be used to determine gij. We further note that, using
(11.9), (11.15), (11.25) and (11.26), we find that

gi · gj = ∂xr
∂θ i

er · ∂xs
∂θ j

es = ∂xs
∂θ i

∂xs
∂θ j
= gij

gi · gj = gij, gi · gj = gij = δij
(11.31)

Furthermore, gij and gij can be used to raise or lower the indices. For example,

gi = girgr, gi = girgr, vi = girvr, Tij = girTr
j (11.32)

These relations may be easily proven. The first relation of (11.32), for instance,
may be shown using (11.26), (11.9), and (11.15).

coordinate system as

eijk = eijk = 1 for even permutation of ijk

= −1 for odd permutation of ijk

= 0 for two or more equal indices

(11.33)

Thus, e123 = 1, e132 = −1, e112 = 0, e231 = 1, e222 = 0, etc. These are now
transformed into the curvilinear coordinate system using the transformation
rules of (11.22) and (11.23). The resulting equations are

εijk = ∂xr
∂θ i

∂xs
∂θ j

∂xt
∂θk

erst (11.34)

εijk = ∂θ i

∂xr

∂θ j

∂xs

∂θk

∂xt
erst (11.35)

The relation between (eijk , eijk) and (εijk , εijk) can be further established using
a known identity in the matrix analysis. If the determinant of a matrix with
elements Ti

j is denoted by |Ti
j |, then

eijkTr
i T

s
j T

t
k = |Ti

j |erst and eijkTi
rT

j
sTk

t = |Ti
j |erst (11.36)
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Substituting (11.36) into the right-hand side of (11.34) and (11.35) and
using (11.28), these equations reduce to

εijk =
∣∣∣∣∂xr∂θ s

∣∣∣∣ eijk = √geijk and εijk =
∣∣∣∣∂θ r∂xs

∣∣∣∣ eijk = 1√
g
eijk (11.37)

EXAMPLE 11.1 Determine the base vectors and metric tensors for the
cylindrical coordinate system.

Solution

The transformation equations between the Cartesian coordinates (x1, x2, x3)
and the cylindrical coordinates (θ1, θ2, θ3) are

x1 = θ1 cos θ2, x2 = θ1 sin θ2, x3 = θ3 (a)

and these equations may be inverted to obtain

θ1 =
√
(x1)2 + (x2)2, θ2 = tan−1

(
x2

x1

)
, θ3 = x3 (b)

The covariant base vectors may be obtained using (11.9) and by differentiating
(a). The resulting expressions are

g1 = cos θ2e1 + sin θ2e2

g2 = −θ1 sin θ2e1 + θ1 cos θ2e2, g3 = e3

(c)

point P is given by

r = xkek = (θ1 cos θ2)e1 + (θ1 sin θ2)e2 + θ3e3

= θkgk = θ1g1 + θ2g2 + θ3g3 (d)

The covariant metric tensor may be found from (11.31) by finding the inner
products of the base vectors given by (c). The resulting matrix is

gij =

1 0 0

0 (θ1)2 0
0 0 1


 with g = det gij = (θ1)2 (e)

The contravariant metric tensor may be found from (11.30) as

gij = cofactor gij
g

= 1
(θ1)2


(θ1)2 0 0

0 1 0
0 0 (θ1)2


 =


1 0 0

0 (θ1)−2 0
0 0 1


 (f)

© 2005 by Chapman & Hall/CRC Press

These vectors are shown in Figure 11.4. Note that the position vector for
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FIGURE 11.4
Coordinates and base vectors in the cylindrical coordinate system.

Since the cylindrical coordinate system is orthogonal, gij = 1/gij. The con-
travariant base vectors may be obtained from (11.15) by differentiating (b);
and it may also be obtained by raising the index using the first equation of
(11.32). Finally, we note that by using (11.31), the contravariant metric tensor
can also be obtained.

EXAMPLE 11.2 Determine the base vectors and metric tensors for the
spherical coordinate system.

Solution

The position vector of a point is denoted by

r = xkek = R(sin α cos θ)e1 + R(sin α sin θ)e2 + R(cosα)e3 (a)

where (R,α, θ ) are the spherical coordinates. From (11.9) and (a), we find

g1 = sin α cos θe1 + sin α sin θe2 + cosαe3

g2 = R(cosα cos θ)e1 + R(cosα sin θ)e2 − R(sin α)e3

g3 = −R(sin α sin θ)e1 + R(sin α cos θ)e2

(b)

Using (11.31) we find that the covariant metric tensor is

gij =

1 0 0

0 R2 0
0 0 R2 sin2 α


 (c)
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and its inverse is

gij =

1 0 0

0 R−2 0
0 0 R−2 sin−2 α


 (d)

The base vector gi can be determined by raising the index of gi. Thus, from
the first of (11.32), we find

g1 = g11g1 = g1, g2 = g22g2 = R−2g2, g3 = g33g3 = R−2 sin−2 αg3
(e)

EXAMPLE11.3 In the two-dimensional space, a vector is v = 3e1+2e2. Given
that g1 = e1 and g2 = Ke1 + e2 with K = 0.5, determine the metric tensors
and covariant and contravariant components of v.

Solution

The metric tensors are

gij =

1 K 0
K 1+ K2 0
0 0 1


 and gij =


1+ K2 −K 0
−K 1 0
0 0 1


 (a)

and, using (11.32), we find that

g1 = g11g1 + g12g2 = e1 − Ke2 = e1 − 0.5e2

g2 = g21g1 + g22g2 = e2

(b)

Thus,

ṽ1 = v · g1 = (3e1 + 2e2) · e1 = 3, ṽ2 = v · g2 = 3K + 2 = 3.5

ṽ1 = v · g1 = (3e1 + 2e2) · (e1 − Ke2) = 3− 2K = 2, ṽ2 = v · g2 = 2
(c)

The vector may then be expressed as

v = 3e1 + 2e2 = 3g1 + 3.5g2 = 2g1 + 2g2 (d)

The base vectors and the components of vector v are shown drawn to scale

EXAMPLE 11.4 Show that

gi × gj = εijkgk and gi × gj = εijkgk (11.38)

© 2005 by Chapman & Hall/CRC Press
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FIGURE 11.5
Base vectors and the components of vector v.

Solution

LHS = ∂xr
∂θ i

er × ∂xs
∂θ j

es = ∂xr
∂θ i

∂xs
∂θ j

er × es = ∂xr
∂θ i

∂xs
∂θ j

erstet

= ∂xr
∂θ i

∂xs
∂θ j

erst

(
∂xt
∂θk

gk
)
= εijkgk = RHS (a)

The second equality can be similarly proven.

11.4 Multiplication of Vectors

Two vectors a and b can be multiplied in two different ways. Their scalar
product is

a · b = (ãigi) · (b̃jgj) = ãib̃jgij = ãib̃i

= (ãigi) · (b̃jgj) = ãib̃jgij = ãib̃i (11.39)

and their vector product is

a× b = (ãigi)× (b̃jgj) = ãib̃jgi × gj = εijk ãib̃jgk

= (ãigi)× (b̃jgj) = ãib̃jgi × gj = εijk ãib̃jgk (11.40)
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11.5 Physical Components of a Vector

As previously mentioned in (11.13), a vector u may be written as

u = ũigi = ũigi (11.41)

in which the base vectors gi and gi are, in general, not of unit mag-
nitude. We are now interested in knowing the dimensions of components
ũi and ũi. If u represents the displacement vector and has the dimension of
length (L), then, in the case of cylindrical coordinates from (e) of Example 11.1,
|g1| = √g11 = 1 (dimensionless), |g2| = √g22 = θ1 (dimension L), and
|g3| = √g33 = 1 (dimensionless). Since all terms in (11.41) have the same
dimensions, the dimensions of ũi can be determined to be ũ1 ∼ L, ũ2 ∼ 1, and
ũ3 ∼ L. We see that the components ũi have different dimensions. Similarly,
we find that components of ũi do not have the same dimensions either.

In the engineering applications, physical quantities have known properties
and dimensions and may be mathematically represented by tensors. We are
interested in finding components of a tensor that have the same dimensions
and these are known as physical components. We are interested in the physical
components because they describe the characteristics of that physical quantity
through its unit and dimension, and they are usually the experimentally
determined quantities. The physical components of a vector are discussed in
this section, while those of higher-order tensors are discussed later in this
chapter.

The physical components of a vector may be defined by taking parallel
projections of the vector on unit vectors lying along the coordinate curves.
Therefore, (11.41) may be written as

u = ũigi = u〈i〉ei (11.42)

where ei are unit vectors defined by

ei = gi√gi i (i not summed) (11.43)

and are u〈i〉 the physical components. Unit vector ei is in the same direction
as base vector gi. Substituting (11.43) into (11.42), we find that

u〈i〉 = ũi
√
gi i (i not summed) (11.44)

Equation (11.44) gives the relationship between the physical and tensor com-
ponents of a vector. To find the physical components for ũi, we use the metric
tensor gij to lower the index. Thus, using (11.44),

ũi = gijũj =
∑
j

gij
u〈j〉√gjj (11.45)
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The physical components of ũi may also be defined by parallel projections of
vector u on unit vectors lying along gi. Thus,

u〈i〉 = ũi
√
gii (i not summed) (11.46)

This definition of the physical component is not consistent with the previous
definition for u〈i〉 because the two sets of unit vectors defined based on gi and
gi are not in the same directions. Therefore, for the sake of consistency, (11.46)
should not be used.

11.6 Differentiation of a Tensor with Respect to
the Space Coordinates

A tensor field differentiated with respect to the space variables leads to the
covariant differentiation of a tensor. Both the components and the base vectors
need to be differentiated. The differentiation of the components is partial
differentiation of scalars with respect to θ i and no special attention is needed.
We will now discuss the differentiation of the base vectors. The quantity
∂gi/∂θ j indicates the rate of change in direction and length of the base vector
gi as it moves along coordinate θ j. Differentiating (11.9) and noting that ei
does not vary, we have

∂gi
∂θ j
= ∂2xk
∂θ i∂θ j

ek = ∂2xk
∂θ i∂θ j

∂θm

∂xk
gm = 
m

ij gm

= 
m
ij gnmg

n = 
ijkgk (11.47)

Thus,

∂gi
∂θ j
= 
m

ij gm = 
ijk gk (11.48)

The derivative may either be expressed in terms of the covariant or the
contravariant base vectors. The symbols 
ijk and 
k

ij are called the Christoffel
symbols of the first and second kind, respectively, and they are given by the
relations


ijk = 
m
ij gkm =

∂2xm
∂θ i∂θ j

∂xm
∂θk


k
ij =

∂2xm
∂θ i∂θ j

∂θk

∂xm
= gkm 
ijm

(11.49)
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Note that (11.25) was used in the above equations. By the differentiation
of (11.25) we can further show that


ijk = 1
2

(
∂gik
∂θ j
+ ∂gjk
∂θ i
− ∂gij
∂θk

)
(11.50)

Both Christoffel symbols are symmetric in indices i and j.
Differentiating (11.14) and making use of (11.48), we obtain

∂gi

∂θk
· gj = −gi ·

∂gj
∂θk
= −gi · 
m

jkgm = −
i
jk (11.51)

which leads to

∂gi

∂θ j
= −
i

jkg
k (11.52)

In the coordinate transformation from θ i to θ̄ i, the transformation law
for 
k

ij is


̄k
ij = 
t

rs
∂θ r

∂θ̄ i

∂θ s

∂θ̄ j

∂θ̄k

∂θ t
+ ∂2θ s

∂θ̄ i∂θ̄ j

∂θ̄k

∂θ s
(11.53)

Due to the presence of the last term of (11.53), the Christoffel symbol 
k
ij are

not components of a tensor. The same thing may be said of 
ijk .

11.6.1 Derivative of a Scalar

When the coordinates transform from θ i to θ̄ i, the value of a scalar ϕ remains
unchanged, that is, ϕ̄ = ϕ. But, its partial derivatives transform according to
the covariant rule of transformation, such that

∂ϕ̄

∂θ̄ i
= ∂ϕ̄

∂θ j

∂θ j

∂θ̄ i
= ∂θ j

∂θ̄ i

∂ϕ

∂θ j
(11.54)

11.6.2 Derivatives of a Vector

The derivatives of a vector u with respect to θ i-transform as

∂u
∂θ̄ i
= ∂u
∂θ j

∂θ j

∂θ̄ i
= ∂θ j

∂θ̄ i

∂u
∂θ j

(11.55)

which is of the same form as (11.11) and obey the covariant transforma-
tion rule. Furthermore, by differentiating the first and second expressions
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of (11.13), respectively, we obtain

∂u
∂θ i
= ∂ũj

∂θ i
gj + ũj

∂gj
∂θ i
= ∂ũj

∂θ i
gj + ũj
k

jigk =
(
∂ũj

∂θ i
+ ũk
j

ki

)
gj = ũj|i gj (11.56)

and

∂u
∂θ i
= ∂ũj
∂θ i

gj + ũj
∂gj

∂θ i
= ∂ũj
∂θ i

gj − ũj

j
ikg

k =
(
∂ũj
∂θ i
− ũk
k

ij

)
gj = ũj|i gj (11.57)

We note that (11.52) was used in the derivation of (11.56), and (11.48) was
used in the derivation of (11.57). The expressions ũj|i and ũj|i are called the
covariant derivatives of the components ũi and ũi of vector u, respectively.
The expressions may be summarized as

∂u
∂θ i
= ũj|i gj = ũj|i gj (11.58)

where

ũj|i = ∂ũj

∂θ i
+ 
j

kiũ
k (11.59)

ũj|i =
∂ũj
∂θ i
− 
k

jiũk (11.60)

11.6.3 Derivatives of a Tensor

When a second-order tensor T is written in the form of (11.18), its
derivatives are

∂T
∂θ r
= ∂(T̃ijgi ⊗ gj)

∂θ r
= ∂T̃ij

∂θ r
gi ⊗ gj + T̃ij

∂gi

∂θ r
⊗ gj + T̃ijgi ⊗ ∂gj

∂θ r

= ∂T̃ij

∂θ r
gi ⊗ gj + T̃ij(−
i

rkg
k)⊗ gj + T̃ijgi ⊗ (−
j

rkg
k)

=
(
∂T̃ij

∂θ r
− 
m

ir T̃mj − 
m
jr T̃im

)
gi ⊗ gj = T̃ij|r gi ⊗ gj (11.61)

A similar procedure results in

∂T
∂θ r
=
∂(T̃i

j gi ⊗ gj)
∂θ r

=
(
∂T̃i

j

∂θ r
+ 
i

rmT̃
m
j − 
m

jr T̃
i
m

)
gi ⊗ gj = T̃i

j|r gi ⊗ gj

(11.62)
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and

∂T
∂θ r
= ∂(T̃ijgi ⊗ gj)

∂θ r
=
(
∂T̃ij

∂θ r
+ 
i

rmT̃
mj + 
j

rmT̃im

)
gi ⊗ gj = T̃ij|r gi ⊗ gj

(11.63)

Thus, the covariant derivatives of the components of second-rank tensorT are

T̃ij|r = ∂T̃ij

∂θ r
+ 
i

rmT̃
mj + 
j

rmT̃im

T̃i
j|r =

∂T̃i
j

∂θ r
+ 
i

rmT̃
m
j − 
m

jr T̃
i
m

T̃ij|r =
∂T̃ij

∂θ r
− 
m

ir T̃mj − 
m
jr T̃im

(11.64)

This procedure may be extended to the differentiation of a higher rank tensor.
For example, the covariant derivatives of the mixed tensor component T̃i

.jk are
found to be

T̃i
.jk|r =

∂T̃i
.jk

∂θ r
+ 
i

mrT̃
m
.jk − 
m

jr T̃
i
.mk − 
m

krT̃
i
.jm (11.65)

We now make the following remarks related to the covariant derivatives:

1. The metric tensor reduces to the Kronecker deltas in the Cartesian
coordinate system. Since the derivatives of the Kronecker deltas are
zero, the derivatives of the metric tensors vanish in all coordinate
systems, that is,

gij|r = gij|r = gij|r = 0 (11.66)

2. Since the derivatives of the permutation symbols eijk are zero in
the Cartesian coordinate system, the derivatives of the permutation
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symbols are zero in all coordinate systems, that is,

εijk|r = 0 and εijk|r = 0 (11.67)

EXAMPLE 11.5 Determine the expressions of the Christoffel symbols in the
cylindrical coordinate system.

Solution

In the cylindrical coordinate system, the metric tensors are given in (e)
and (f) of Example 11.1. Using (11.50), the following components are obtained


122 = 
212 = 1
2

(
∂g12

∂θ2 +
∂g22

∂θ1 −
∂g12

∂θ2

)
= 1

2
(2θ1) = θ1


221 = 1
2

(
∂g21

∂θ2 +
∂g21

∂θ2 −
∂g22

∂θ1

)
= −1

2
(2θ1) = −θ1

all other 
ijk = 0

(a)

We use gij to raise the index so that 
k
ij = gkm
ijm. Therefore,


2
12 = 
2

21 = g2m
12m = g21
121 + g22
122 + g23
123 = 1
θ1


1
22 = g1m
22m = g11
221 + g12
222 + g13
223 = −θ1

all other 
k
ij = 0

(b)

For example, 
1
13 = g1m
13m = g11
131 + g12
132 + g13
133 = 0.

EXAMPLE 11.6 In the cylindrical coordinate system, determine the covariant
derivatives ũ1|1 and ũ1|2 of vector u.

Solution

We use (11.59) and the Christoffel symbols found in Example 11.5 to obtain

ũ1|1 = ∂ũ1

∂θ1 + 
1
1kũ

k = ∂ũ1

∂θ1

ũ1|2 = ∂ũ1

∂θ2 + 
1
2kũ

k = ∂ũ1

∂θ2 + 
1
22ũ

2 = ∂ũ1

∂θ2 − θ1ũ2

EXAMPLE 11.7 Find the expressions for gradient, divergence, and curl in the
curvilinear coordinates.
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Solution

Define the del operator ∇ = gk(∂/∂θk), then gradient, divergence, and curl
of a tensor field can be determined as

gradient of scalar φ = ∇φ = gk
∂φ

∂θk
= gkmgm

∂φ

∂θk
= gkgkm

∂φ

∂θm
(a)

divergence of vector a = ∇ · a = gk · ∂a
∂θk
= gk · gmãm|k = ãk|k (b)

curl of vector a = ∇ × a

= gk
∂

∂θk
× a = gk × ∂a

∂θk
= gk × ãm|k gm = gk × gmãm|k

= εnkmgnãm|k = εkmnãn|m gk = ekmn

√
g
ãn|m gk (c)

We used (11.56) in the derivation of ∇ × a and (11.37), (11.38), and (11.57) in
the derivation of ∇ × a.

EXAMPLE 11.8 Find the Laplacian ∇2 in the cylindrical coordinates.

Solution

In the cylindrical coordinate system, the conventional variables are (r, θ , z).
Therefore, θ1 = r, θ2 = θ , and θ3 = z. The Laplacian of scalar field φ is the
divergence of the gradient of φ, and we use the expression for the divergence
given in Example 11.7 to derive

∇2φ = div · (gradφ) = ∇ ·
(
gkgkm

∂φ

∂θm

)
=
(
gkm

∂φ

∂θm

) ∣∣∣∣
k
= gkm

∂φ

∂θm

∣∣∣∣
k

= g11 ∂φ

∂θ1

∣∣∣∣
1
+ g22 ∂φ

∂θ2

∣∣∣∣
2
+ g33 ∂φ

∂θ3

∣∣∣∣
3

=
(
∂2φ

∂θ1∂θ1 − 
m
11
∂φ

∂θm

)
+ 1

r2

(
∂2φ

∂θ2∂θ2 − 
m
22
∂φ

∂θm

)
+
(
∂2φ

∂θ3∂θ3 − 
m
33
∂φ

∂θm

)

= ∂2φ

∂r2 +
1
r2

(
∂2φ

∂θ2 − 
1
22
∂φ

∂r

)
+ ∂

2φ

∂z2

= ∂2φ

∂r2 +
1
r
∂φ

∂r
+ 1

r2
∂2φ

∂θ2 +
∂2φ

∂z2 (a)

Note that (11.60) and the results of Example 11.5 for the Christoffel symbols
were used in the above derivation.
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EXAMPLE 11.9 Find the expression for curl a in terms of the physical
components of a in the cylindrical coordinates.

Solution

Using the results of Example 11.7, curl a is

∇ × a = ekmn

√
g
ãn|m gk

= e123

√
g
ã3|2 g1 + e132

√
g
ã2|3 g1 + e213

√
g
ã3|1 g2

+ e231

√
g
ã1|3 g2 + e312

√
g
ã2|1 g3 + e321

√
g
ã1|2 g3 (a)

Defining unit vectors (er, eθ , ez), respectively, along the directions of the base
vectors (g1,g2,g3), we have

g1 = √g11er, g2 = √g22eθ , g3 = √g33ez (b)

By substituting the above equations and noting that g = r2, we obtain

∇ × a = 1
r
(ã3|2 − ã2|3)er + (ã1|3 − ã3|1)eθ + 1

r
(ã2|1 − ã1|2)ez (c)

Using (11.60) and noting that 
k
ij = 
k

ji, it may be shown that

ã3|2 − ã2|3 =
(
∂ ã3

∂θ2 − 
k
32ãk

)
−
(
∂ ã2

∂θ3 − 
k
23ãk

)
= ∂ ã3

∂θ2 −
∂ ã2

∂θ3 (d)

Similarly,

ã1|3 − ã3|1 = ∂ ã1

∂θ3 −
∂ ã3

∂θ1 and ã2|1 − ã1|2 = ∂ ã2

∂θ1 −
∂ ã1

∂θ2 (e)

In the above expressions, (ã1, ã2, ã3) are tensor components. We now
express them in the physical components (a〈1〉, a〈2〉, a〈3〉). In the conventional
notations, we write a〈1〉 = ar, a〈2〉 = aθ , and a〈3〉 = az so that

a = arer + aθeθ + azez (f)

From (11.45) and Example 11.1, it may be found that

ã1 = ar, ã2 = raθ , ã3 = az (g)
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Hence,

∇ × a =1
r

(
∂ ã3

∂θ2 −
∂ ã2

∂θ3

)
er +

(
∂ ã1

∂θ3 −
∂ ã3

∂θ1

)
eθ + 1

r

(
∂ ã2

∂θ1 −
∂ ã1

∂θ2

)
ez

=1
r

(
∂az
∂θ
− ∂(raθ )

∂z

)
er +

(
∂ar
∂z
− ∂az
∂r

)
eθ + 1

r

(
∂(raθ )
∂r
− ∂ar
∂θ

)
ez

=
(

1
r
∂az
∂θ
− ∂aθ
∂z

)
er +

(
∂ar
∂z
− ∂az
∂r

)
eθ +

[
1
r
∂(raθ )
∂r
− 1

r
∂ar
∂θ

]
ez (h)

11.7 Strain Tensor

We now discuss the deformation of a continuum denoted by R0 at its unde-
formed (or initial) configuration and by Rt at its deformed (or current)
configuration. A fixed Cartesian coordinate system denoted by (x1, x2, x3) is
shown in Figure 11.6. A material point P at the undeformed configuration
(time t = 0) has Cartesian coordinates (X1,X2,X3) with position vector R
so that

R = Xiei (11.68)

As the continuum deforms from R0 to Rt at time t, a generic point P in R0
moves to point p in Rt. The position vector of p is

r = xiei (11.69)

x3

x2
x1

R

r

u

P(xi)

P(xi)

N0

R0

0

Nt

Rt

FIGURE 11.6
Position vectors of a point.
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and the displacement is

u = r − R (11.70)

Throughout this chapter (and also the rest of the book) we shall use uppercase
letters to denote quantities at the undeformed configuration and lowercase
letters to denote quantities associated with the deformed configuration. The
coordinates of P and p are related by the following transformation equations:

xi = xi(X1,X2,X3, t) (11.71)

These equations describe the motion of the continuum, and the functions in
(11.71) are single-valued and continuous. These equations may be inverted
to obtain

Xi = Xi(x1, x2, x3, t) (11.72)

The differentials of (11.71) and (11.72) are

dxi = ∂xi
∂Xk

dXk and dXi = ∂Xi

∂xk
dxk (11.73)

We introduce a convected (or imbedded) curvilinear coordinate system to
describe the deformation of the continuum. A brief introduction of the con-
vected coordinates is previously given in Section 11.1. Here, we devote to
the discussion of the deformation of a neighborhood N0 around P, shown in

t around p. Figure 11.7
shows the details of N0 and Nt. At the undeformed configuration, we use
a marker to draw coordinate curves in N0. The convected coordinates are θ i

and, in this two-dimensional illustration, we show only θ1 and θ2 in the figure.
Coordinate curves of constant values for θ1 and θ2 are shown in the figure. If M
denotes the origin of the convected coordinate system, then the M–M′ curve
is the θ1-coordinate axis and the M–M′′ curve the θ2-coordinate axis. Line

M
M�

PM�

� 1

�
2

�2

�1

NtN0

G1

G2

m

m�
m�

p

g1
g2

FIGURE 11.7
Neighborhood N0 deforms into Nt.
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segment MM′ is deformed into mm′ and line segment MM′′ into mm′′. If
the length of MM′ is five units, say, then the length of mm′ remains at five
units, except that the unit lengths for MM′ and mm′ are different. Similarly,
if the length of MM′′ is six units, then the length of mm′′ is also six units.
We note that the shaded material element in N0 is deformed into the shaded
material element in Nt, and we are dealing with the same material mass in
both elements. The shaded pattern indicates that the material is anisotropic
and the pattern gets deformed as the continuum undergoes deformation.
Therefore, the element is a convected material element and we will follow the
deformation history of this element in the study of plastic deformation of the
continuum.

The position of P may now be described by the curvilinear coordinates,
so that

Xi = Xi(θ
1, θ2, θ3) (11.74)

and the position of p described by

xi = xi(θ1, θ2, θ3) (11.75)

The material line element at the undeformed and deformed configurations
are, respectively,

dR = ∂R
∂θk

dθk = dθkGk and dr = ∂r
∂θk

dθk = dθkgk (11.76)

where Gi and gi are the base vectors at the undeformed and deformed con-
figurations, respectively.Gi and gi vary from point to point in the continuum,
and are, as in (11.9), related to ei by

Gk = ∂Xi

∂θk
ei and gk = ∂xi

∂θk
ei (11.77)

If we denote the length of material line element in N0 by dS and that in Nt
by ds, we write

(dS)2 = dR · dR = dθ iGi · dθkGk = Gik dθ i dθk (11.78)

and

(ds)2 = dr · dr = dθ igi · dθkgk = gik dθ i dθk (11.79)

where Gik and gik are the covariant metric tensors referred to the undeformed
and deformed configurations, respectively.
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A strain tensor γ̃ij may be defined related to the change in length of the line
element. Thus, subtracting (11.79) from (11.78), we obtain

ds2 − dS2 = (gij − Gij)dθ i dθ j = 2γ̃ij dθ i dθ j (11.80)

where

γ̃ij = 1
2 (gij − Gij) (11.81)

is the strain tensor. The strain tensor thus defined may be viewed as a measure
of the changeof themetric tensorduringdeformation. When thebodyremains
rigid, both the length of the line element and the metric tensor are unchanged,
ds = dS and gij = Gij, the strain is then zero. The strain defined in (11.81)
are covariant components. They together with the contravariant base vectors
form two strain tensors as

� = γ̃ijGi ⊗Gj and γ = γ̃ijgi ⊗ gj (11.82)

The tensor � is defined in the space of the undeformed state, and γ

in the deformed space. These are two different tensors with the same
covariant components. It is possible to define mixed and contravariant strain
components by raising the indices of γ̃ij using gij and Gij and using covariant
base vectors Gi and gi. However, no clear physical meaning can be found
relating these strain components to the convected material element and,
therefore, they will not be further discussed.

We now investigate the physical meaning of the covariant strain γ̃ij. We
will show that the diagonal terms γ̃11, γ̃22, and γ̃33 determine the extensions
of the line elements along the coordinate curves, and the off-diagonal terms
γ̃12, γ̃23, and γ̃31 are related to the angle changes between line elements along
two different coordinate curves. These properties of γ̃ij indicate that γ̃ij is a
reasonable definition of strain.

The relative elongation along curvilinear coordinate curves is defined by

ε(i) = dsi − dSi
dSi

(i not summed) (11.83)

A line element lying along coordinate axis θ1 may be written as

dr(1) = ∂r
∂θk

dθk = dθ1g1 with ds(1) = √g11 dθ1 (11.84)

Similarly, along the other two coordinate axes, we have

ds(2) = √g22 dθ2 and ds(3) = √g33 dθ3 (11.85)
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Substituting (11.84) and (11.85) into (11.83), we obtain

ε(i) =
√
gii −

√
Gii√

Gii
=
√
gii
Gii
− 1 =

√
1+ 2γ̃ii

Gii
− 1 (i not summed) (11.86)

It is seen from (11.86) that γ̃11 is related to relative elongation ε(1), γ̃22 is related
to relative elongation ε(2), and γ̃33 is related to relative elongation ε(3).

If φij is the angle between line elements dr(i) and dr(j) in Nt, then the scalar
product between these vectors is

cosφij =
dr(i) · dr(j)
ds(i)ds(j)

= gij√giigjj =
Gij + 2γ̃ij√

(Gii + 2γ̃ii)(Gjj + 2γ̃jj)

(i, j not summed, i �= j) (11.87)

Note that (11.81), (1.84), and (11.85) were used in the derivation of (11.87).
Equation (11.87) shows that γ̃13, γ̃23, and γ̃12 are related to angle changes φ13,
φ23, and φ12, respectively.

11.8 Strain–Displacement Relations

The position vectors of points P and p and the displacement vector from P
to p denoted by u are related by (11.70). Rewrite the equation as

r = R + u (11.88)

we can then differentiate it with respect to the curvilinear coordinates θ i to
obtain

gi = ∂r
∂θ i
= ∂R
∂θ i
+ ∂u
∂θ i
= Gi + ∂u

∂θ i
(11.89)

The metric tensor may then be found as

gij = gi · gj =
(
Gi + ∂u

∂θ i

)
·
(
Gj + ∂u

∂θ j

)

= Gij +Gi · ∂u
∂θ j
+Gj · ∂u

∂θ i
+ ∂u
∂θ i
· ∂u
∂θ j

(11.90)

Substituting (11.90) into (11.81), the covariant strain components can be
found to be

γ̃ij = 1
2

(
Gi · ∂u

∂θ j
+Gj · ∂u

∂θ i
+ ∂u
∂θ i
· ∂u
∂θ j

)
(11.91)
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The derivative of a vector with respect to θ i was discussed in Section 11.6.2.
Applying (11.58), (11.91) becomes

γ̃ij = 1
2 (Gi · Ũm|0j Gm +Gj · Ũm|0i Gm + Ũm|0i Gm · Ũn|0j Gn)

= 1
2 (Ũi|0j + Ũj|0i + Ũm|0i Ũn|0j gmn) (11.92)

Therefore,

γ̃ij = 1
2 (Ũi|0j + Ũj|0i + Ũm|0i Ũm|0j ) (11.93)

In this strain–displacement relation, the strain is expressed in terms of
displacement components referred to Gi and Gi in the undeformed config-
uration, that is, u= ŨiGi = ŨiGi. The covariant derivatives are from (11.59)
and (11.60) given by

Ũj|0i =
∂Ũj

∂θ i
+0 


j
kiŨ

k and Ũj|0i =
∂Ũj

∂θ i
−0 


k
jiŨk (11.94)

in which 0

k
ji is calculated in the undeformed configuration, such that

0

k
ij = Gkm

0
ijm and 0
ijk = 1
2

(
∂Gik

∂θ j
+ ∂Gjk

∂θ i
− ∂Gij

∂θk

)
(11.95)

Similarly, we may also express the strain–displacement relation in the
deformed configuration and referring the displacement vector to gi and gi,
so that u = ũigi = ũigi. In this case, we rewrite (11.70) as

R = r − u (11.96)

Differentiating this equation with respect to θ i, we then find

Gij = Gi ·Gj = gij − gi · ∂u
∂θ j
− gj · ∂u

∂θ i
+ ∂u
∂θ i
· ∂u
∂θ j

(11.97)

Combining (11.97) with (11.81), we find

γ̃ij = 1
2

(
gi · ∂u

∂θ j
+ gj · ∂u

∂θ i
− ∂u
∂θ i
· ∂u
∂θ j

)
(11.98)

Using the equations for covariant derivatives, (11.59) and (11.60),
equation (11.98) reduces to

γ̃ij = 1
2 (ũi|j + ũj|i − ũm|i ũm|j) (11.99)
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g1

g2

g3

p2

p3

p1

n

�3

�2

�1

t(n)dS

–t3dS(3)

–t2dS(2)

–t1dS(1)

p

FIGURE 11.8
Convected material element cut by a plane with normal n.

The covariant derivatives ũi|j and ũm|i are given by (11.59) and (11.60) and
the Christoffel symbols by (11.49) and (11.50) in the deformed configuration.
Note that γ̃ij is the same strain as in (11.93), but the displacement components
are now referred to the deformed configuration.

If the convected coordinates are Cartesian at the undeformed state, that is,
θ i = Xi, then (11.81) and (11.93) reduce to

Eij = 1
2
(gij − δij) = 1

2

(
∂Ui

∂Xj
+ ∂Uj

∂Xi
+ ∂Um

∂Xi

∂Um

∂Xj

)
(11.100)

where Ui = Ũi are the Cartesian components of u. The Lagrangian strain Eij

configuration, the convected coordinates are Cartesian, then θ i = xi, and the
covariant strain, referred to (11.99), becomes

eij = 1
2
(δij − Gij) = 1

2

(
∂ui
∂xj
+ ∂uj
∂xi
− ∂um
∂xi

∂um
∂xj

)
(11.101)

where ui = ũi refer to Cartesian coordinates at the deformed configura-
tion. The strain eij is known as the Eulerian strain and was also discussed
in Chapter 3. Note that the two strains in (11.100) and (11.101) are not equal.
In (11.100), a square element is deformed into a parallelogram and, in (11.101),
a parallelogram is deformed into a square element. The two expressions of
strain do not refer to the same material element.
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11.9 Stress Vector and Stress Tensor

We now define the stress vector and the stress tensor for the convected

vected material element cut by a plane with a unit normal n. This plane and
the curvilinear coordinate planes form an infinitesimal tetrahedron whose
edges are the coordinate curves. We denote the area of triangle �p1p2p3 by
dS with an outward unit normal n; denote the area of �pp2p3 by dS(1) with
unit outward normal n(1); denote the area of �pp3p1 by dS(2) with unit out-
ward normal n(2); and denote the area of�pp1p2 by dS(3) with unit outward
normal n(3). Due to the closure of the surface of the tetrahedron, the vectorial
sum of all faces expressed by vectors is zero. Therefore, we may write

ndS+ n(1) dS(1) + n(2) dS(2) + n(3) dS(3) = 0 (11.102)

Let us consider the unit normals n(1), n(2), and n(3). Take n(3), for example.
This is the outward normal of �pp1p2, and this triangle is represented by
1
2dr(2) × dr(1). The line elements of this triangle are

−→pp1 = dr(1) = dθ1g1 and −→pp2 = dr(2) = dθ2g2 (11.103)

Thus,

�pp1p2 = 1
2

dr(2) × dr(1) = 1
2
g2 × g1 dθ1 dθ2 = −1

2
ε123g3 dθ1 dθ2

= −1
2
ε123

√
g33 g3√

g33
dθ1 dθ2 (11.104)

It is seen from (11.104) that

n(3) = − g3√
g33

and dS(3) = 1
2
ε123

√
g33 dθ1 dθ2 (11.105)

Similarly, we can obtain

n(1) = − g1√
g11

and n(2) = − g2√
g22

(11.106)

Substituting (11.105) and (11.106) into (11.102), we then find

ñigi dS =
3∑

i=1

dS(i)√
gii
gi (11.107)
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By equating the coefficients of gi on both sides of (11.107), we obtain the
following equation relating the areas of different faces of the tetrahedron

ñi
√
gi idS = dS(i) (i not summed) (11.108)

We now consider forces acting on the surfaces of the infinitesimal tetrahed-
ron. The stress vector (force per unit area) acting on�p1p2p3 is t(n), the stress
vector acting on �pp3p2 is −t(1), that acting on �pp1p3 is −t(2), and that on
�pp2p1 is −t(3). The negative signs are related to the normals of the surfaces
pointing to the negative directions, as seen from (11.105) and (11.106). Consid-
ering the equations of motion of the tetrahedron and realizing that the body
forces and inertia forces are of a higher order of smallness compared to the
surface traction, we obtain

t(n) dS = t(i) dS(i) (11.109)

Substituting (11.108) into (11.109), we have

t(n) =
3∑

i=1

ñit(i)
√
gii (11.110)

This equation relates the stress vectors acting on the surfaces of the
tetrahedron.

We now define a stress tensor denoted by τ, which is known as the true
stress. In (2.8), we defined a stress tensor based on the stress vector and the
unit normal of the inclined surface of the tetrahedron. We now rewrite this
relationship using stress tensor τ as

t(n) = n · τ (11.111)

Comparing (11.110) with (11.111), we see that if we define stress tensors based
on t(i)

√
gii, then we would be able to put (11.110) in the form of (11.111). The

quantity t(i)
√
gii represents the stress vector multiplied by a factor

√
gii and it

has a contravariant type of property because, when multiplied by the area, it
is a force acting on a surface defined by covariant bases gi. On the other hand,
a force acting on a surface defined by contravariant bases gi has a covariant
property. In addition, we note that this quantity forms an invariant with the
covariant ñi in (11.110), and, therefore, it has a contravariant type of property.

Decomposing t(i)
√
gii into the directions of the base vectors, we can write

t(i)
√
gii = τ ijgj = τ ij gj (11.112)

in which τ ij and τ ij are contravariant and mixed components of the stress
tensor τ, respectively. These are true stresses defined on the convected
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FIGURE 11.9
Stress components: (a) τ ij , (b) τ ij , (c) τ ij , and (d) τij .

material element at the deformed configuration. The stress components τ ij

and τ ij are shown in Figure 11.9(a) and (b), respectively. On the other hand,
mixed and covariant stress components τ ij and τij may be defined based on an
element formed by the contravariant bases. They are shown in Figure 11.9(c)
and (d). These stress components are not useful in the study of plasticity
because they do not refer to the convected material element.

We now write the true stress in the following form:

τ = τ ijgi ⊗ gj = τ ij gi ⊗ gj (11.113)

Substituting the first equality of (11.113) into (11.111), we have

t̃(n)jgj = ñjgj · τ rsgr ⊗ gs = ñjτ rsgj · gr ⊗ gs = ñjτ rsδ
j
rgs = ñiτ ijgj (11.114)

Thus, we obtain

t̃(n)j = ñiτ ij (11.115)

If we substitute the second equality of (11.113) into (11.111), then we can obtain

t̃(n)j gj = ñjgj · τ rs gr ⊗ gs = ñjτ rs δ
j
rgs = ñiτ ij g

j (11.116)
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Therefore,

t̃(n)j = ñiτ ij (11.117)

Equations (11.115) and (11.117) relate the stress tensor components to the
components of the stress vector.

11.10 Physical Components of the Stress Tensor

We discussed the physical components of a vector in Section 11.5 and we now
discuss the physical components of the stress tensor τ, which is represented
in (11.113) by its components and base vectors. In the curvilinear coordinate
system, the base vectors are generally not unit vectors and they are not dimen-
sionless, and not all the tensor components τ ij and τ ij have the dimension of
stress. We now replace the base vectors of the first equality of (11.113) by their
corresponding unit vectors as

τ =
∑
i,j

τ ij
√
gii
√
gjj

gi√
gii
⊗ gj√gjj = τ

〈ij〉ei ⊗ ej (11.118)

Thus, the physical components of τ ij may be defined as

τ 〈ij〉 = τ ij√gii√gjj (11.119)

All physical components τ 〈ij〉 have the dimension of stress. On the other hand,
the physical components of τ ij may also be defined using (11.112). We note
that t(i)

√
gii is not the stress vector, but t(i) is, and t(i) instead of t(i)

√
gii has the

unit of force per unit area. Thus, we can rewrite (11.112) as

t(i) =
3∑

j=1

τ ijgj√
gii
=

3∑
j=1

√
gjj
gii
τ ij

gj√gjj =
3∑

j=1

τ 〈ij〉ej (i not summed) (11.120)

Therefore, we may define the physical components of τ ij as

τ 〈ij〉 =
√
gjj
gii
τ ij (11.121)

which has the unit of force per unit area. Equations (11.121) and (11.119) are
the same for orthogonal coordinates, because, in this case,

√
gii = 1/

√
gii. But,

they are not the same in general and the definition of (11.121) conforms to the
expectation that t(i) is a stress vector whereas the definition of (11.119) does

© 2005 by Chapman & Hall/CRC Press



610 Continuum Mechanics and Plasticity

not say anything about t(i). In a similar way, the second equality of (11.112)
leads to

τ
〈i〉
〈m〉 =

√
gmm

gii
gjmτ ij =

√
gmm

gii
τ im (11.122)

If orthogonal,

τ
〈i〉
〈m〉 =

√
gmmgiiτ im (11.123)

Finally, we note that the physical components are not components of a tensor
and they do not follow the tensor transformation rules.

11.11 Other Stress Tensors and the Cartesian Stress Components

Some commonly used stress tensors are the true stress τ, the Kirchhoff stress
S, and the second Piola–Kirchhoff stress (or simply the 2nd P–K stress) �.
The true stress was discussed in Section 11.9 and is expressed in the tensor
form in (11.113). The Kirchhoff stress is defined by

S = Jτ = Jτ ijgi ⊗ gj = S̃ijgi ⊗ gj (11.124)

with

S̃ij = Jτ ij and J = ρ0/ρ (11.125)

where J is the Jacobian of transformation representing deformation, ρ0 is the
density of the undeformed continuum, and ρ is the density of the deformed
continuum. The 2nd P–K stress is defined by

� = F−1 · S · F−T = S̃ijGi ⊗Gj = �̃ijGi ⊗Gj (11.126)

where F is the deformation gradient and its expression in the convected
coordinate system is now discussed. The deformation gradient F transforms
the undeformed line element dR into the deformed line element dr and they
are related by

dr = F · dR (11.127)

Using (11.76), F transforms Gi into gi, that is,

gi = F ·Gi (11.128)
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Using (11.68), (11.69), and (11.76), (11.127) may be further written as

dr = dxiei = ∂xi
∂θ j

dθ jei = dθ jgj = (dR ·Gj)gj = gj(Gj · dR) = (gj ⊗Gj) · dR
(11.129)

Comparing (11.129) with (11.127), we see that

F = gj ⊗Gj (11.130)

The expressions for the inverse and transpose of Fmay be found using (11.128)
and (11.130). We use the notations F−T = (FT)−1 = (F−1)T for simplicity.
They are

Gi = F−1 · gi with F−1 = Gi ⊗ gi
Gi = FT · gi with FT = Gi ⊗ gi
gi = F−T ·Gi with F−T = gi ⊗Gi

(11.131)

From (11.130) and (11.131), we see that the matrices of F, F−1, FT, and F−T

are all unit matrices when referred to the covariant and contravariant base
vectors of the convected coordinate system in the undeformed and deformed
configurations.

We now substitute (11.131) into (11.126),

� = F−1 · S · F−T = (Gi ⊗ gi) · (S̃mngm ⊗ gn) · (gj ⊗Gj)

= S̃mn(gi · gm)(Gi ⊗ gn) · (gj ⊗Gj) = S̃mnδim(gn · gj)(Gi ⊗Gj)

= S̃mnδimδ
j
n(Gi ⊗Gj) = S̃ij(Gi ⊗Gj) (11.132)

We see that (11.132) is the same as (11.126). By comparing (11.124) with
(11.126), we conclude that the Kirchhoff stress and the 2nd P–K stress have
the same components S̃ij but with different bases. The Kirchhoff stress refers
to the bases of the deformed configuration, while the 2nd P–K stress refers to
the undeformed configuration.

We now determine the components of the true stress σ ij, the Kirchhoff stress
Sij, and the 2nd P–K stress�ij with respect to the Cartesian coordinate system.
In the case of true stress, we write

τ = τ ijgi ⊗ gj = σ ijei ⊗ ej (11.133)

Note that σ ij = σij is the Cauchy stress. Applying (11.9), we can find
from (11.133) that

τ ij = ∂θ i

∂xp

∂θ j

∂xq
σ pq and σ ij = ∂xi

∂θp

∂xj
∂θq

τ pq (11.134)
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The components τ ij refer to the convected material element in the deformed

into σ ij using (11.134). The components σ ij are defined on an imaginary square
element based on the Cartesian coordinate system. The Cartesian components
of the Kirchhoff stress are related to σ ij by

Sij = Jσ ij (11.135)

This relationship may be shown as

S = Jτ = Jτ ijgi ⊗ gj = Jτ ij
∂xr
∂θ i

∂xs
∂θ j

er ⊗ es = Jσ rser ⊗ es = Srser ⊗ es
(11.136)

which leads to (11.135). In addition, we find

S̃ij = ∂θ i

∂xr

∂θ j

∂xs
Srs and Sij = ∂xi

∂θ r

∂xj
∂θ s

S̃rs (11.137)

Using (11.77), (11.132) may be written as

� = S̃ij(Gi ⊗Gj) = S̃ij
∂Xr

∂θ i
er ⊗ ∂Xs

∂θ j
es = S̃ij

∂Xr

∂θ i

∂Xs

∂θ j
er ⊗ es

= ∂θ i

∂xm

∂θ j

∂xn
Smn ∂Xr

∂θ i

∂Xs

∂θ j
er ⊗ es = ∂Xr

∂xm

∂Xs

∂xn
Smner ⊗ es

= �rser ⊗ es (11.138)

We found from the last two expressions of (11.138) that

�ij = ∂Xi

∂xm

∂Xj

∂xn
Smn = J

∂Xi

∂xm

∂Xj

∂xn
σmn (11.139)

Note that in (11.139), σ ij,Sij, and �ij are all Cartesian components.

11.12 Stress Rate and Strain Rate

The contravariant true stresses τ ij are defined with respect to a convected
material element. Since gi are marked on the convected material element
and τ ij refers to gi, the components of τ ij are invariant with respect to the
orientation of an observer. The material rate of change Dτ ij/Dt, denoted by
τ̇ ij for simplicity, also remains invariant with respect to the orientation of an
observer. Equation (11.134) transforms τ ij into the Cauchy stress σ ij referred to
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the Cartesian coordinate system. We would like to find a stress-rate tensor τ̇(1)

with components τ̇ ij that transform according to the same rule of transforma-
tion as in (11.134) into a convected stress rate σ ∗ij in the Cartesian coordinate
system. We write

τ̇(1) = τ̇ ijgi ⊗ gj = σ ∗ijei ⊗ ej (11.140)

We note that tensor τ̇(1) is only a part of tensor τ̇ and this point will be further
discussed in Section 11.13. To find the relationship that transforms τ̇ ij into
σ ∗ij, let us differentiate the second equation of (11.134) and obtain

σ̇ ij = ∂xi
∂θp

∂xj
∂θq

τ̇ pq + ∂vi
∂θp

∂xj
∂θq

τ pq + ∂xi
∂θp

∂vj
∂θq

τ pq

= ∂xi
∂θp

∂xj
∂θq

τ̇ pq + ∂vi
∂xk

∂xk
∂θp

∂xj
∂θq

τ pq + ∂xi
∂θp

∂vj
∂xk

∂xk
∂θq

τ pq

= ∂xi
∂θp

∂xj
∂θq

τ̇ pq + ∂vi
∂xk

σ kj + ∂vj
∂xk

σ ik (11.141)

where vi are Cartesian components of the particle velocity and are given by

vi = Dui
Dt
= D(xi − Xi)

Dt
= Dxi

Dt
(11.142)

Therefore, we write

σ ∗ij = σ̇ ij − ∂vi
∂xk

σ kj − ∂vj
∂xk

σ ik = ∂xi
∂θp

∂xj
∂θq

τ̇ pq (11.143)

It is seen from (11.143) that

σ ∗ij = ∂xi
∂θp

∂xj
∂θq

τ̇ pq and τ̇ ij = ∂θ i

∂xp

∂θ j

∂xq
σ ∗pq (11.144)

The quantity σ ∗ij is the rate of change of the contravariant true stress, τ̇ ij,
projected onto the Cartesian spatial frame xi, and it is known as the convected
stress rate of τ ij. The convected rates have been discussed in [6–8].

The covariant stress τij are defined based on an element formed by contrav-

Even though they are not useful in the study of plasticity, the rate of change
of τij is considered for making an important point related to the Jaumann rate.
In terms of the covariant stress components, the stress tensor may be written
as

τ = τij gi ⊗ gj = σijei ⊗ ej (11.145)
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Applying (11.15), we can find from (11.145) that

σij = ∂θp

∂xi

∂θq

∂xj
τpq or τij =

∂xp
∂θ i

∂xq
∂θ j

σpq (11.146)

Following (11.140), we write the stress rate as

τ̇(1) = τ̇ij gi ⊗ gj = σ ◦ijei ⊗ ej (11.147)

Differentiating the second equation of (11.146), we obtain

τ̇ij =
∂xp
∂θ i

∂xq
∂θ j

σ̇pq + ∂vp
∂θ i

∂xq
∂θ j

σpq + ∂xp
∂θ i

∂vq
∂θ j

σpq

= ∂xp
∂θ i

∂xq
∂θ j

σ̇pq + ∂vp
∂xk

∂xk
∂θ i

∂xq
∂θ j

σpq + ∂xp
∂θ i

∂vq
∂xk

∂xk
∂θ j

σpq (11.148)

Multiplying both sides of (11.148) by (∂θ i/∂xr)(∂θ j/∂xs), we then obtain

σ ◦ij = σ̇ij +
∂vp
∂xi

σpj +
∂vp
∂xj

σip = ∂θp

∂xi

∂θq

∂xj
τ̇pq (11.149)

The quantity σ ◦ij is the rate of change of the covariant true stress, τij, projected
onto the Cartesian spatial frame xi, and it is known as the convected stress
rate of τij.

An interesting point to observe is that the Jaumann rate σ∇ij is the average
of the two convected rates σ ∗ij and σ ◦ij , that is,

σ∇ij =
1
2
(σ ∗ij + σ ◦ij ) =

1
2

[(
σ̇ij − ∂vi

∂xk
σkj −

∂vj
∂xk

σik

)
+
(
σ̇ij +

∂vp
∂xi

σpj +
∂vp
∂xj

σip

)]

= σ̇ij + 1
2

(
∂vk
∂xi
− ∂vi
∂xk

)
σkj + 1

2

(
∂vk
∂xj
− ∂vj
∂xk

)
σik

= σ̇ij +Wkiσkj +Wkjσik (11.150)

whereWij is the spin tensor. Bothσ ∗ij andσ ◦ij haveclearphysicalmeanings: σ ∗ij
is defined based on the convected material element and σ ◦ij is defined based
on an element defined by the contravariant base vectors at the deformed state.
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Since σ∇ij is the average of σ ∗ij and σ ◦ij , the physical meaning of σ∇ij is not clear.
This observation was made in [7–9].

The strain rate may be found by differentiating (11.81) and we obtain

Dγ̃ij
Dt
= 1

2
Dgij
Dt

(11.151)

We then differentiate (11.25) to find

Dgij
Dt
= ∂xm
∂θ i

∂vm
∂θ j
+ ∂vm
∂θ i

∂xm
∂θ j

= ∂xm
∂θ i

∂vm
∂xn

∂xn
∂θ j
+ ∂vm
∂xn

∂xn
∂θ i

∂xm
∂θ j
= ∂xm
∂θ i

∂xn
∂θ j

(
∂vm
∂xn
+ ∂vn
∂xm

)
(11.152)

From (11.151) and (11.152) we find that

Dγ̃ij
Dt
= 1

2
Dgij
Dt
= ∂xm
∂θ i

∂xn
∂θ j

Dmn (11.153)

Equation (11.153) shows that the strain rate ˙̃γij is transformed into the rate
of deformation Dij in the Cartesian coordinate system. The transformation
in (11.153) follows the covariant rule of transformation.

EXAMPLE 11.10 Show that the convected stress rate σ ∗ij is objective.

Solution

In an observer transformation, let the second observer observe quantities
denoted by an overhead bar, and the two observers are differed by their
orientation, which is denoted by Q. Note that Q is an arbitrary orthogonal
tensor. The Cauchy stress transforms as

σ̄ = QT · σ ·Q (a)

and its material differentiation gives

σ̄ = QT · σ̇ ·Q+ Q̇T · σ ·Q+QT · σ · Q̇ (b)

We now make use of the following equations, which were established in (4.96)

L̄ = QT · L ·Q+ Q̇T ·Q and L̄T = QT · LT ·Q+QT · Q̇ (c)
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Using these equations, the convected stress rate σ ∗ij can be calculated as

σ̄ ∗ = ˙̄σ − L̄ · σ̄ − σ̄ · L̄T = QT · σ̇ ·Q+ Q̇T · σ ·Q+QT · σ · Q̇
− [QT · L ·Q+ Q̇T ·Q] ·QT · σ ·Q−QT · σ ·Q · [QT · LT ·Q+QT · Q̇]
= QT · [σ̇− L · σ− σ · LT] ·Q = QT · σ∗ ·Q (d)

Therefore, the convected stress rate σ ∗ij is objective.

EXAMPLE11.11 Show that the contravariant stress τ ij and the covariant strain
γ̃ij are work conjugates.

Solution

In the curvilinear coordinate system, the rate of work per unit mass is

Ẇ = 1
ρ
τ ij ˙̃γij = 1

2ρ
τ ij

Dgij
Dt

(a)

Using (11.134) and (11.153), the above expression may be written as

Ẇ = 1
ρ

∂θ i

∂xp

∂θ j

∂xq
σ pq ∂xm

∂θ i

∂xn
∂θ j

Dmn = 1
ρ
δmp δ

n
q σ

pqDmn = 1
ρ
σ ijDij (b)

The last expression is the expression for rate of work referred to the Cartesian
coordinate system. Therefore, τ ij and γ̃ij are work conjugates.

EXAMPLE 11.12 Show that the co-rotational rate of σij is expressed as

σ̇ = σ∇ij ei ⊗ ej (11.154)

Solution

If a Cartesian system co-rotates with the continuum, the rate of change σ̇ is
referred to the co-rotational system and then referred back to a pre-assigned
xi system. Expressing in terms of components and tensor basis, we have

σ̇ = σ̇ijei ⊗ ej + σij ėi ⊗ ej + σijei ⊗ ėj

= σ̇ijei ⊗ ej + σijWikek ⊗ ej + σijei ⊗Wjkek

= (σ̇ij −Wikσkj + σikWkj)ei ⊗ ej

= σ∇ij ei ⊗ ej (a)

In the derivation, we used

ėi =Wikek (b)
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11.13 Further Discussion of Stress Rate

A line element initially at dR moves to dr and they are expressed as
in (11.76) by

dr = dxiei = dθ igi, dR = dθ iGi (11.155)

The particle velocity in the Cartesian reference system is

v = dr
dt
= ∂xi

∂t
ei = viei (11.156)

but it is zero in the convected system. Some properties of the base vectors are

Ġi = 0, Ġi = 0, gi = ∂r
∂θ i
= ∂xj

∂θ i
ej

ġi = ∂v
∂θ i
= ṽj|i gj = ∂2xj

∂θ i∂t
ej, ġi = −ṽi|j gi

(11.157)

where ṽj|i are covariant derivatives of the components ṽj.
Referring to the current configuration, the true stress tensor is

τ = τ ijgi ⊗ gj = σijei ⊗ ej (11.158)

We note that the components τ ij are defined with respect to gi, which moves
with the continuum undergoing a motion. In the case of a rigid-body motion
of the continuum, we propose that the components τ ij remain constant, that is,
τ̇ ij = 0. Define now a tensor

P = τ ijGi ⊗Gj (11.159)

The components in (11.159) are the same as in (11.158), but the base vectors
are different. At the reference configuration t0, τ = P, but at t > t0, τ �= P.
We can say that P is a different tensor from τ. The material differentiation
of (11.158) gives

τ̇ = τ̇ ijgi ⊗ gj + τ ijġi ⊗ gj + τ ijgi ⊗ ġj
= [(τ̇ ij)θ i= const + τmjṽi|m + τ imṽj|m]gi ⊗ gj
= (σ̇ij)θ i= constei ⊗ ej (11.160)

We see from (11.160) that, for components τ ij to remain constant, τ̇ is generally
nonzero. Differentiating (11.159), we have

Ṗ = (τ̇ ij)θ i= constGi ⊗Gj (11.161)
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Based on (11.161), we further define another tensor τ̇(1). Tensors Ṗ and τ̇(1)

have the same components but different bases. The new tensor is

τ̇(1) = (τ̇ ij)θ i= constgi ⊗ gj (11.162)

The two tensors Ṗ and τ̇(1) are generally not equal for t > t0, but at t0, Gi = gi
and Ṗ = τ̇(1). Substituting (11.162) into (11.160), we obtain

τ̇ = τ̇(1) + [τmjṽi|m + τ imṽj|m]gi ⊗ gj (11.163)

Thus, τ̇(1) is a part of τ̇ and it does not contain the parts of τ̇ that are related
to the spin of the base vectors.

Using (11.157), the first equality of (11.160) is

τ̇ ij
∂xm

∂θ i
em ⊗ ∂x

n

∂θ j
en + τ ij ∂v

m

∂θ i
em ⊗ ∂x

n

∂θ j
en + τ ij ∂x

m

∂θ i
em ⊗ ∂v

n

∂θ j
en

= (σ̇mn)|θ i= constem ⊗ en (11.164)

The coefficients on both sides of (11.164) are related by

τ̇ ij
∂xm

∂θ i

∂xn

∂θ j
+ τ ij ∂v

m

∂θ i

∂xn

∂θ j
+ τ ij ∂x

m

∂θ i

∂vn

∂θ j
= (σ̇mn)|θ i= const (11.165)

Substituting (11.134) into (11.165), we find

σ̇mn − σkn ∂v
m

∂xk
− σmk

∂vn

∂xk
= ∂xm

∂θ i

∂xn

∂θ j
τ̇ ij (11.166)

Therefore, a stress rate may be defined as

σ ∗mn = σ̇mn − ∂v
m

∂xk
σkn − ∂v

n

∂xk
σmk (11.167)

so that (11.166) becomes

σ ∗mn =
∂xm

∂θ i

∂xn

∂θ j
τ̇ ij (11.168)

Finally, we substitute (11.168) into (11.162) and using (11.157) to obtain

τ̇(1) = τ̇ ijgi ⊗ gj = σ ∗ij ei ⊗ ej (11.169)

We note that the base vectors gi spin with the continuum during a rigid-
body motion, but the contravariant stress components τ ij remain stationary.
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Therefore, τ̇ ij = 0. From (11.168) we see that the convected rate σ ∗ij = 0 during
a rigid-body motion. We will call τ̇(1) the stress-rate tensor which is zero
during rigid-body motions. In addition, we note that when the yield function
is expressed as a function of the components τ ij, it is independent of the rigid-
body motion of the continuum. We conclude that, for use in the constitutive
equation of plasticity, the convected stress rate is a preferred stress rate.

11.14 A Theory of Plasticity for Anisotropic Metals

We are now ready to write a theory of plasticity for anisotropic metals. The
material may be initially anisotropic due to the manufacturing process. In
this case, an anisotropic initial yield function will be used. We will also con-
sider the deformation induced anisotropy. The yield surface will undergo, in
addition to isotropic and kinematic hardening, distortion and rotation. The
latter two effects have been experimentally observed and are presented in

that initial anisotropy of material is not apparent, we assume the material to be
initially isotropic and use von Mises yield criterion for the initial yielding. This
kind of material will be subjected to deformation induced anisotropy as well
and the material will experience isotropic–kinematic hardening, distortion
and rotation of the yield surface.

deformation of sheet metals. The validity of these works is usually verified
against metal sheets subjected to a principal stress state with symmetric axes
of orthotropy coinciding with the principal stress directions. Very few exper-
imental verifications have been published, however, which address the case
of nonprincipal state of stress. In the nonprincipal stress state, an initially
rectangular material element becomes distorted after deformation. This fact
is significant, particularly in the case of finite strain of anisotropic materials,
and most metal-forming operations do encounter nonprincipal states of stress
in the large strain range. It is this distortion of material element that mandates
the consideration of a convected material element described in Sections 11.1
and 11.9 and it requires the use of convected curvilinear coordinates.

The present theory of anisotropic plasticity was first presented by the author
in [9] and it was extended in two recent papers [10,11] to discuss torsion of
a thin-walled tube and the evolution of the subsequent yield surface. The
theory is presented in this section, with permission from Elsevier, and its
applications are given in Chapter 12. The following concepts have been incor-
porated into the constitutive framework: (1) the convected coordinates and
the contravariant true stress, (2) an observer independent yield function, (3)
the convected rate for general kinematics of deformation, and (4) the rota-
tion of material texture expressed by a constitutive spin. In the formulation,
we use the contravariant true stress τ ij and its rate; the latter, discussed in
Sections 11.12 and 11.13, transforms by (11.145) into the convected stress rate

© 2005 by Chapman & Hall/CRC Press

Chapter 12 and these effects are discussed using the present theory. In the case

In Chapter 10, we discussed works of anisotropic plasticity addressing the
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σ ∗ij referred to a Cartesian system. We use the covariant strain γ̃ij and its rate,
which transforms by (11.154) into the rate of deformation Dij referred to the
Cartesian system.

The deformation-induced textures represent an overview of shape and ori-
entation changes of the crystallites. Since the back stress is related to the shape
and orientation of grains, we see a relation between the back stress and the
texture and postulate that the evolution of back stress be related to the rotation
of texture in a macroscopic relation. We use the corotational rate to account
for the spin of material texture. One way of observing the texture experiment-
ally and theoretically (polycrystal plasticity) is to plot the pole figures. In the
case of torsion of thin-walled tubes or solid bars, the preferred texture orient-
ation can rotate (or tilt) with increasing shear strain. This phenomenon was
observed experimentally by Montheillet et al. [12], Stout and O’Rourke [13],
Toth et al. [14], and Wang et al. [15]; and the observed tilting was in the range
of ±2 to 5◦. Computer simulations of torsion by use of polycrystal plasticity
have also led to tilting of the ideal orientation, Canova et al. [16,17], Harren
et al. [18] and Toth et al. [19–21]. In [22], we obtained an analytical solution,
which predicted the tilting of texture in torsion by use of a double-slip model
of polycrystal plasticity. Since these studies refer to a Cartesian coordinate
system, we will refer to the same system for the characterization of the mater-
ial texture spin, and, therefore, the use of corotational rate involving the

the term “constitutive spin” to denote the difference of the material spin and
plastic spin, and used the constitutive spin to form the corotational rate. He
argued against expressing the plastic spin in terms of the kinematics of finite
deformation and used the continuum approach to propose an expression for
the plastic spin. Dafalias’ [23] argument is supported by the experimental
finding that the tilting of texture in torsion is first opposite to the direction of
the increasing shear strain and then reverses its direction as the shear strain
further increases. This observation shows that the rotation of texture is not

present a study of the free-end torsion problem and assume that the rule of
constitutive spin follows the tilting effect observed in the torsion problem.
The constitutive spin, denoted by � , is assumed to influence the evolution
of the back stress through its corotational rate. The constitutive spin for prob-
lems with other specimen geometry and loading condition is not yet clear
and needs to be further investigated.

The theory as presented here uses the simplest equations of the flow the-

expressions are possible. Aclassical flow theory is formulated based on a yield
criterion, a flow rule, strain-hardening rules, and a loading–unloading condi-
tion. These are augmented in the present theory by considering the distortion
and rotation of the subsequent yield surface. We discuss the yield function,
the flow rule, and the strain-hardening rules in the remaining part of this
chapter, and, in Chapter 12, we discuss in detail an application of the theory
in the study of combined axial–torsion of thin-walled tubes.
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constitutive spin is justified. As discussed in Chapter 7, Dafalias [23] coined

directly related to the kinematics of shear deformation. In Chapter 12, we

ory of plasticity discussed in Chapter 6. Refinements by use of sophisticated
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FIGURE 11.10
The two elements do not contain the same material mass.

11.14.1 The Yield Function

Since the Cauchy stress components are not invariant with respect to rota-
tion of a Cartesian spatial frame, a yield function is observer independent
when it is defined in terms of the Cauchy stress invariants. This definition
of yield function is useful for isotropic materials, but it is questionable when
the material is anisotropic. The reason is that the spatial rectangular element
used to define the Cauchy stress varies with the choice of Cartesian spatial
frame, and the element will not contain the same material mass when a dif-
ferent Cartesian spatial frame is used (see elements described by solid and
dashed lines in Figure 11.10). This fact is not important in the case of isotropic
materials, as long as the value of the yield function, which is defined by stress
invariants, remains unchanged. However, the element not containing the
same material mass is an important issue in the case of anisotropic materials,
when the deformation history of a material element is being followed. There-
fore, defining the yield function using the Cauchy stress invariants is not
appropriate in the case of anisotropic plasticity.

In this investigation, an observer-independent yield function will be
expressed in terms of the contravariant true stress τ ij. In this way, the stress
components are defined with respect to the convected coordinates and do not
vary with the observer. For metals, since the hydrostatic pressure does not
influence yielding, the deviatoric stress is used to define the yield function.
Following (11.134), (11.25), and (11.26), the deviatoric stress p̃ij transforms
according to the equation

p̃ij = τ ij − pgij = ∂θ i

∂xp

∂θ j

∂xq

(
σ pq − 1

3
σ kkδpq

)
, where p = 1

3
gpqτ pq = 1

3
σ kk

(11.170)

It is convenient to define a yield function in terms of the physical compon-
ents due to their equi-dimensional properties. Generally, the yield criterion
is experimentally determined in the stress space and it has the dimension
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of stress. Therefore, it is desirable to formulate the yield function in terms
of the physical components. The physical components of the stress deviator
p̃ij may be defined in the same way as we defined stress based on (11.120).
From (11.120), we write

3∑
j=1

(τ ij − pgij)gj√
gii

=
3∑

j=1

√
gjj
gii
(τ ij − pgij)

gj√gjj =
3∑

j=1

p̃〈ij〉ej (11.171)

Therefore,

p̃〈ij〉 = τ 〈ij〉 − pgij
√gjj√
gii

(i, j not summed) (11.172)

Using a polynomial expressed by the physical components of the stress
deviator, the yield function for plane stress problems may be written as

2φ = h11(p̃〈11〉)2 + h22(p̃〈22〉)2 + h33(p̃〈33〉)2 + h55(p̃〈23〉)2

+ 2h12p̃〈11〉p̃〈22〉 + 2h13p̃〈11〉p̃〈33〉 + 2h23p̃〈22〉p̃〈33〉

+ 2h15p̃〈11〉p̃〈23〉 + 2h25p̃〈22〉p̃〈23〉 + 2h35p̃〈33〉p̃〈23〉

+ b11p̃〈11〉 + b22p̃〈22〉 + b33p̃〈33〉 + b55p̃〈23〉 + b00

= f2 (11.173)

where hij and bij are coefficients of anisotropy and f specifies the size of
the yield surface. Simplified yield functions can be deduced from (11.173)
depending on the material considered. We now consider some special cases
in the following subsections. The more general case of combined axial–torsion

11.14.1.1 Yield function in uniform extensions

We use fixed Cartesian coordinates to define the undeformed configuration
R0 of a block (unit cube ) and identify convected coordinates θ i withXi so that

θ1 = X1, θ2 = X2 and θ3 = X3 (11.174)

We now deform the unit cube in a way that the sides which are initially
parallel to the axes (X1,X2,X3) remain parallel to the axes, respectively, but
with changed length of the sides. The deformed block may be referred to the
fixed Cartesian axes with coordinates xi, so that

x1 = λ1X1, x2 = λ2X2, x3 = λ3X3 (11.175)
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in which λi are the stretch ratios and can be functions of time. We consider
a simple case here that λi are constants. The base vectors Gi,Gi,gi,gi remain
in the directions of Xi axes, and the metric tensors for the undeformed and
deformed configurations can be found from (11.174) and (11.175), using (11.25)
and (11.26), as

Gij = Gij = δij, G = 1

gij =


λ2

1 0 0

0 λ2
2 0

0 0 λ2
3


 , gij =



λ−2

1 0 0

0 λ−2
2 0

0 0 λ−2
3


 , g = λ2

1λ
2
2λ

2
3

(11.176)

From (11.121), the physical components of contravariant stress are

τ 〈11〉 = λ2
1τ

11, τ 〈22〉 = λ2
2τ

22, τ 〈33〉 = λ2
3τ

33, other τ 〈ij〉 = 0
(11.177)

Using (11.172), we obtain

p̃〈11〉 = λ2
1τ

11 − p = 1
3 (2λ

2
1τ

11 − λ2
2τ

22 − λ2
3τ

33)

p̃〈22〉 = λ2
2τ

22 − p = 1
3 (2λ

2
2τ

22 − λ2
3τ

33 − λ2
1τ

11)

p̃〈33〉 = λ2
3τ

11 − p = 1
3 (2λ

2
3τ

33 − λ2
1τ

11 − λ2
2τ

22)

Other p̃〈ij〉 = 0

(11.178)

with the hydrostatic pressure given by

p = 1
3gpqτ

pq = 1
3 (λ

2
1τ

11 + λ2
2τ

22 + λ2
3τ

33) (11.179)

We now assume that the material is initially isotropic and use a simplified
form of (11.173) as the yield criterion. We consider an expression similar to
the von Mises yield criterion and write

1
2 p̃
〈ij〉p̃〈ij〉 = 1

3Y
2 where Y = yield stress in tension (11.180)

which reduces to

(p̃〈11〉)2 + (p̃〈22〉)2 + (p̃〈33〉)2 = 2
3Y

2 (11.181)
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The true stress and the Cauchy stress are related by (11.134). Using (11.175),
(11.134) reduces to

σ 11 = λ2
1τ

11, σ 22 = λ2
2τ

22, σ 33 = λ2
3τ

33, σ 12 = σ 23 = σ 31 = 0

(11.182)

Comparing (11.177) and (11.182), we see that the Cauchy stress and the phys-
ical components are equal in this case. This is a case that a rectangular element
remains rectangular without distortion. Substituting (11.182) and (11.178) into
(11.181), the yield criterion is now expressed by

(σ 11 − σ 22)2 + (σ 22 − σ 33)2 + (σ 33 − σ 11)2 = 2Y2 (11.183)

On the other hand, we may solve this same problem by identifying the
convected coordinates with xi at the deformed configuration. In this case,

θ1 = x1 = λ1X1, θ2 = x2 = λ2X2, θ3 = x3 = λ3X3 (11.184)

The metric tensors are

gij = gij = δij, g = 1

Gij =


λ−2

1 0 0

0 λ−2
2 0

0 0 λ−2
3


 , Gij =



λ2

1 0 0

0 λ2
2 0

0 0 λ2
3


 , G = λ−2

1 λ−2
2 λ−2

3

(11.185)

Using (11.121) and (11.184), we found

τ 〈11〉 = τ 11, τ 〈22〉 = τ 22, τ 〈33〉 = τ 33 (11.186)

and, from (11.134), the Cauchy stress is

σ ij = ∂xi
∂θp

∂xj
∂θq

τ pq = ∂xi
∂xp

∂xj
∂xq

τ pq = δipδjqτ pq = τ ij (11.187)

Therefore, the Cauchy stress components are equal to the true stress and are
also equal to the physical components in this case. From (11.172) and (11.185),
we obtain

p̃〈11〉 = 1
3 (2τ

11 − τ 22 − τ 33)

p̃〈22〉 = 1
3 (2τ

22 − τ 33 − τ 11)

p̃〈33〉 = 1
3 (2τ

33 − τ 11 − τ 22) with p = 1
3 (τ

11 + τ 22 + τ 33)

(11.188)
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This is the von Mises yield criterion discussed in Chapter 6.
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The yield criterion (11.180), with (11.187) and (11.188) substituted, reduces to
the same expression as in (11.183).

We note that both approaches, by setting θ i = Xi and by setting θ i = xi,
have led to the same yield function (11.183) expressed in terms of the physical
components and in terms of the Cauchy stress. This yield function is inde-
pendent of the amount of deformation, because it is defined with respect to
unit area of the element, either deformed or undeformed. Due to (11.182), we
see that τ ijis not defined per unit area when we set θ i = Xi. But, from (11.186),
τ ij is defined per unit area when we set θ i = xi. We also note that no distortion
due to prestrain can occur in the yield surface as defined by (11.183).

11.14.1.2 Yield function in simple shear

configuration has base vectors Gi shown in Figure 11.11(a). This block is
deformed into the parallelogram shown in Figure 11.11(b) with base vec-
tors gi and gi. Each material point in the block moves parallel to the X1 axis
by an amount proportional to its X2 coordinate. A material point with initial
coordinates Xi moves to a point with coordinates xi, so that

x1 = X1 + KX2, x2 = X2, x3 = X3 (11.189)

where K is a constant denoting the amount of shearing. We identify θ i = Xi,
and, from (11.9) and (11.15), the base vectors are

G1 = G1 = e1, G2 = G2 = e2, G3 = G3 = e3

g1 = e1, g2 = Ke1 + e2, g3 = e3

g1 = e1 − Ke2, g2 = e2, g3 = e3

(11.190)

and the metric tensors are

Gij = Gij = δij, G = 1

gij =

1 K 0
K 1+ K2 0
0 0 1


 , gij =


1+ K2 −K 0
−K 1 0
0 0 1


 , g = 1

(11.191)

In the J′2-theory discussed in (6.6), the yield function for plane stress is

σ 2
x − σxσy + σ 2

y + 3τ 2
xy = Y2 (11.192)

Using this yield function, but in terms of the physical components τ 〈ij〉, we
may write

(τ 〈11〉)2 − τ 〈11〉τ 〈22〉 + (τ 〈22〉)2 + 3(τ 〈12〉)2 = Y2 (11.193)
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Simple shear is described in Figure 11.11. A square block at the undeformed
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g1

(b)

FIGURE 11.11
Base vectors during simple shear.

where, using (11.121), we have

τ 〈11〉 = τ 11√
1+ K2

, τ 〈22〉 =
√

1+ K2τ 22, τ 〈12〉 = τ 12 (11.194)

Substituting (11.194) into (11.193), the yield criterion is obtained as

(τ 11)2 − (1+ K2)τ 11τ 22 + (1+ K2)2(τ 22)2 + 3(1+ K2)(τ 12)2 = Y2(1+ K2)

(11.195)

This is the yield function expressed in terms of the true stress τ ij, and we may
express it in terms of Cauchy stress σ ij if we use (11.134) to find

τ 11 = σ 11 + K2σ 22 − 2Kσ 12, τ 22 = σ 22, τ 12 = σ 12 − Kσ 22 (11.196)

Combining (11.195) and (11.196), we obtain the yield function as

(σ 11)2 + (2K2 + 1)2(σ 22)2 + (7K2 + 3)(σ 12)2 + (K2 − 1)σ 11σ 22

− 4K(2K2 + 1)σ 12σ 22 − 4Kσ 11σ 12 = Y2(K2 + 1) (11.197)

This equation describes a family of ellipsoids in the three-dimensional stress
space with varying K-values. The cross-sections of the ellipsoids cut by the
plane σ 12

yield surface at K = 0 is the same as the von Mises yield criterion, but the
yield curves for other Ks show distortion and rotation of the yield surface.
Figure 11.12(b) shows the yield surfaces cut by the σ 11 = 0 plane. The
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= 0 are shown in Figure 11.12(a) for various K-values. The initial
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FIGURE 11.12
Yield surfaces for simple shear at various K-values: (a) cut by σ 12 = 0 plane, (b) cut by σ 11 = 0
plane.

equations are

(σ 11)2 + (2K2 + 1)2(σ 22)2 + (K2 − 1)σ 11σ 22 = Y2(K2 + 1) for σ 12 = 0

(2K2 + 1)2(σ 22)2 + (7K2 + 3)(σ 12)2 − 4K(2K2 + 1)σ 12σ 22 = Y2(K2 + 1)

for σ 11 = 0
(11.198)
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based on the yield criterion given by (11.193). Since no experimental results
are available for comparison, the results presented in Figure 11.12 cannot be
verified.

11.14.2 The Flow Rule

Referring to (11.153), the rate of deformation may be decomposed into the
elastic and the plastic parts as

Dij = De
ij +Dp

ij, De
ij =

1
2
∂θ r

∂xi

∂θ s

∂xj

Dgers
Dt

and Dp
ij =

1
2
∂θ r

∂xi

∂θ s

∂xj

Dgp
rs

Dt
(11.199)

in which De
ij and geij are the elastic part and Dp

ij and gpij are the plastic part,
respectively. The flow rule is

Dp
ij

Dt
= �̇ ∂φ

∂τ ij
(11.200)

where �̇ is the plastic multiplier.

11.14.3 The Strain Hardening

We discuss isotropic and kinematic hardening in this subsection. We use an
equivalent plastic strain-rate ġp to define isotropic hardening first. The equi-
valent plastic strain-rate may be defined using the concept of rate of plastic
work, which is

Ẇp = 1
2 τ̄ ġ

p (11.201)

where τ̄ is the equivalent stress. The expressions for τ̄ and ġp are dependent
on the explicit form of the yield function and are further discussed, when
we consider the problem of combined axial–torsion of thin-walled tubes

Following (8.110) [24], the isotropic-hardening function is
given by

f (ζ ) = D− (D− 1)e−βζ (11.202)

where D and β are material parameters; and ζ is a positive, monotonically
increasing parameter that accounts for the history of plastic deformation. It is
assumed that the rate of change is

ζ̇ = |ġp| (11.203)
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We note that the yield surfaces in Figure 11.12(a) and (b) have been obtained

in Chapter 12.
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It has been discussed in the introductory paragraph of Section 11.14 that the
kinematic hardening is described by the evolution of the back stress, which,
in turn, is governed by a corotational rate involving the constitutive spin � .
Using the linear kinematic-hardening rule of Prager [25] discussed in (6.74),
the evolution equation for the back stress is

∇
αD
ij = c̄Dp

ij with
∇
αD

11+
∇
αD

22+
∇
αD

33 = 0 (11.204)

where αD
ij is the deviatoric part of αij, such that

∇
αij =

∇
αD
ij + 1

3δij
∇
αkk (11.205)

We denote the back stress in the τ ij- stress space by α̃ij, which may be pro-
jected onto a fixed Cartesian spatial frame xi with components αij and the
transformation equations given by

αij = ∂xi
∂θp

∂xj
∂θq

α̃pq (11.206)

The material parameter c̄ in (11.204) can take different values for different
components of back stress. This extended feature of the linear kinematic-
hardening rule would allow for the consideration of a material with
anisotropic rate of kinematic hardening. The corotational rate of the back
stress is

α∇ = Dα
Dt
−� · α+ α ·� (11.207)

11.14.4 Elastic Constitutive Equations

Assuming that the elastic behavior is isotropic, the elastic constitutive
equation is given by the following tensor relation in the rate form

2µγ̇e = τ̇− α̇ (11.208)

To refer the components of (11.207) to the xi system, we use the convected rate
for the first two terms and the co-rotational rate for the last term. By use of
(11.198), (11.168), and (11.154), the component equation of (11.208), referred
to the tensor bases ei ⊗ ej is

2µDe
ij = σ ∗ij − α∇ij (11.209)

where De
ij is the elastic part of rate of deformation given by (11.199).
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Problems

(1) Prove (11.15).

(2) Starting from F = gj ⊗ Gj, express F in terms of Cartesian components and
Cartesian base vectors ei ⊗ Ek , where ei and Ekrefer to current and initial
configurations, respectively.

(3) Show that F−1 = Gi ⊗ gi and F−T = gi ⊗Gi.

(4) Show that the coordinate transformation law for 
kij is


̄kij = 
trs
∂θ r

∂θ̄ i
∂θ s

∂θ̄ j
∂θ̄k

∂θ t
+ ∂2θ s

∂θ̄ i∂θ̄ j
∂θ̄k

∂θ s

(5) Show that the covariant derivative of the contravariant component of the
second-rank tensor

H = H̃ijgi ⊗ gj is H̃ij|k =
∂H̃ij

∂θk
+ H̃mj
imk + H̃im


j
mk

(6) Show that (vk + wk)|i = vk|i + wk|i.
(7) Show that (vjwk)|i = vj|i wk + vj wk|i.
(8) In the case of simple shear, use the Kirchhoff stress to define the Mises yield

criterion and compare the result with the Mises yield criterion defined by the
Cauchy stress.

(9) In the case of simple shear, use the 2nd P–K stress to define the Mises yield
criterion and compare the result with the Mises yield criterion defined by the
Cauchy stress.

(10) The yield criterion defined by

(σx − σy)2 + (σy − σz)2 + (σz − σx)2 + 2σ 2
xy + 2σ 2

yz + 2σ 2
zx = f2
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is independent of hydrostatic pressure. Express this yield criterion in terms of
the physical components τ 〈ij〉.

(11) In the case of simple shear, express the result of Problem (10) in terms of the
Cauchy stress components.

(12) Express the yield criterion of Problem (10) in terms of the 2nd P–K stress
components and then, in the case of simple shear, reduce it to a criterion in
terms of the Cauchy stress.

(13) The yield function in the case of simple shear is assumed to be

2φ = (ξ̃11)2 − (1+ K2)ξ̃11ξ̃22 + (1+ K2)2(ξ̃22)2 + 3(1+ K2)(ξ̃12)2

= Y2(1+ K2)

where ξ̃ ij = τ ij − α̃ij; α̃ij is the back stress in the convected system and it may
be projected onto a fixed Cartesian spatial frame xi with components αij. The
transformation equations are αij = (∂xi/∂θp)(∂xj/∂θq)α̃pq. If the flow rule is
given by (11.200), find explicit expressions for the flow rule expressed in terms
of the Cartesian components Dp

ij and ξij = σij − αij.
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12
Combined Axial–Torsion of
Thin-Walled Tubes

12.1 Introduction

We focus on in the combined axial–torsion of thin-walled tubes, because this
geometry of testing provides results that are most needed for the verification
of multidimensional plasticity models. This test can determine the evolution
of the yield function in the two-dimensional, shear stress versus axial stress,
stress space, which is one of the simplest multiaxial stress spaces and one in
which the test conditions can be well controlled. The other two-dimensional
state of stress is achieved by the biaxial test subjected to tensile loads, which
is not easily conducted, however. We further state that the combined axial–
torsion test can provide the nonprincipal state of stress, while the biaxial test
provides the principal state of stress. The combined axial–torsion test has

of experimental considerations have also been discussed.
A second reason for focusing on the testing of thin-walled tubes is in the

determination of material behavior subjected to torsion, which includes the
free-end torsion and the fixed-end torsion. In the free-end torsion, we apply
torque to the tube freeing the two ends to elongate, and we detect length
change during the experiment, which is the axial effect also known as the
Swift effect [1]. In the fixed-end torsion, the torque is applied with the two
ends of the specimenbeingfixed so that length change is not possible. Because
of this restriction in the length change, axial compressive stress developswith
increasing torque. The free-end torsion is frequently used by constitutive
modelers to test their models. The shear stress–strain curve and the Swift
effect are of interest. It is often possible to calibrate the parameters of different
models to fit the experimental data. Therefore, the torsion test itself is not a
sensitive test for model verification.
In this chapter, we apply the theory of anisotropic plasticity discussed

different loading paths. One of the loading paths addresses the torsion
problem. Different types of nonlinear kinematic-hardening rules are used

633
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been discussed in Chapters 5 and 7 and the biaxial test in Chapter 10. Details

in Chapter 11 to describe the evolution of the yield surface subjected to
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and compared.We also consider a loading history involving axial loading and
unloading followed by torsion. This test is one of the tests that can identify
a good model for nonproportional loading.

12.2 Convected Coordinates in the Combined Axial–Torsion
of a Thin-Walled Tube

In the combined axial–torsion of a thin-walled tube, we assume that thewall is
so thin that the thickness is not a factor in the analysis. Cylindrical coordinates
areused, and, at theundeformed state, a point Phas coordinates (R,�,Z)with
θ1 = R, θ2 = �, and θ3 = Z. The coordinate transformation equations are

X1 = R cos�, X2 = R sin�, X3 = Z (12.1)

and the base vectors are,

G1 = cos�e1 + sin�e2, G2 = −R sin�e1 + R cos�e2, G3 = e3 (12.2)

G1 = G1, G2 = 1
R2
G2, G3 = G3 (12.3)

We then determine the metric tensors as

Gij =

1 0 0
0 R2 0
0 0 1


 , Gij =



1 0 0

0
1
R2

0

0 0 1


 , G = |Gij| = R2 (12.4)

Point P in the undeformed state transforms into p in the deformed state. Point
p has coordinates (r, θ , z) and the coordinate transformation equations are

x1 = r cos θ , x2 = r sin θ , x3 = z (12.5)

The two sets of cylindrical coordinates are related by

r = r(R), θ = �+ ψZ, z = λZ (12.6)

whereψ is the angle of twist perunit undeformed length andλ is the extension
ratio. The base vectors for the deformed state are

g1 = rR(cos θe1 + sin θe2), g2 = r(− sin θe1 + cos θe2),

g3 = ψg2 + λe3 with rR = dr(R)
dR

(12.7)

g1 = 1
r2R
g1, g2 =

(
ψ2

λ2
+ 1
r2

)
g2 − ψ

λ2
g3, g3 = 1

λ
e3 (12.8)
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�
Θ

x

y

o

P

p
g2

g1

g2
g1

FIGURE 12.1
Base vectors at the deformed configuration for a thin-walled tube (From Wu, H.C., Int. J.
Plasticity, 19, 91, 2003. With permission from Elsevier).

d�2g2

d�
3 g 3

g2

g3 Face (2)

Face (1)

FIGURE 12.2
Convected material element in combined axial–torsion (From Wu, H.C., Int. J. Plasticity, 19, 91,
2003. With permission from Elsevier).

Figure 12.1 shows the covariant and contravariant base vectors at the
deformed configuration and a fixed Cartesian coordinate system (x, y, z) with
origin o located at the center of the circular cross-section of the tube. In
this discussion, the Cartesian coordinate systems (Xi, O) and (xi, o) are taken
to coincide with (x, y, z, o). These base vectors together with the convected
material element are also shown in Figure 12.2. Note that dθ2g2 and dθ3g3
define the sides of the convected material element. The metric tensors in the
deformed configuration are

gij =



1
λ

0 0

0 r2 ψr2

0 ψr2 ψ2r2 + λ2


 , gij =




λ 0 0

0
ψ2

λ2
+ 1
r2
− ψ
λ2

0 − ψ
λ2

1
λ2


 ,

g = |gij| = r2λ (12.9)
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where gij and gij are seen from (12.9) to be independent of θ . In the subsequent
discussion, θ is taken to be zero, that is, g1 is lying along the x-direction
and g2
at (12.9), an assumption has been made related to no volume change, which
is approximately true when the plastic deformation is large; thus, g = G.
From (12.4) and (12.9), this assumption leads to

r2Rr
2λ2 = R2 or r

∂r
∂R
λ = R (12.10)

The last equationmay be integrated. Since the stress state is uniform through-
out the gauge section of the specimen, the radius r should be independent
of � and Z. Therefore, we find

λr2 = R2 and rR = 1√
λ

(12.11)

From (11.122) and (12.9), we determine the physical components τ 〈ij〉 as

τ 〈11〉 = τ
11

λ
, τ 〈22〉 = r2√

1+ (γ /λ)2 τ
22, τ 〈23〉 = λrτ 23,

τ 〈33〉 = λ2
√
1+

(γ
λ

)2
τ 33

(12.12)

where

γ = ψr = shear strain (12.13)

The shear strain γ is defined as per unit undeformed length along the longitu-
dinal direction of the tube. The stress of the deformed element τ ij may
be projected onto a fixed Cartesian spatial frame xi and the transforma-
tion equations are given by (11.135). Using (12.5) with θ = 0, (11.135) is
reduced to

σ11 = 1
λ
τ 11, σ22 = r2τ 22 + 2rγ τ 23+ γ 2τ 33, σ23 = σ32 = λ(rτ 23+ γ τ 33),

σ33 = λ2τ 33, σ12 = σ21 = σ13 = σ31 = 0

(12.14)

Since the hoop stress is σ22 = 0, from (12.14), it is found that

τ 22 = − γ
r2
(2rτ 23 + γ τ 33) (12.15)
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12.3 The Yield Function

12.3.1 The Mises Yield Criterion

We first consider the vonMises yield function due to its simplicity. If defined
in the p〈ij〉 space, the yield function is

1
2
{(p̃〈11〉)2 + (p̃〈22〉)2 + (p̃〈33〉)2 + 2(p̃〈23〉)2} = Y2

3
(12.16)

We note that (12.16) is a special case of (11.173). Using (11.172) and (12.9), we
find

p̃〈11〉 = τ 〈11〉 − p = τ
11

λ
− p

p̃〈22〉 = τ 〈22〉 − p
√
1+

(γ
λ

)2 = r2τ 22√
1+ (γ /λ)2 − p

√
1+

(γ
λ

)2

p̃〈33〉 = τ 〈33〉 − p
√
1+

(γ
λ

)2 = λ2
√
1+

(γ
λ

)2
τ 33 − p

√
1+

(γ
λ

)2
p̃〈23〉 = p̃〈32〉 = τ 〈23〉 + p

(γ
λ

)
= λrτ 23 + p

(γ
λ

)
p̃〈13〉 = p̃〈12〉 = 0

(12.17)

where

p = 1
3

{
τ 11

λ
+ r2τ 22 + 2rγ τ 23 + (λ2 + γ 2)τ 33

}
(12.18)

From (12.14), the true stress and the Cauchy stress are related by

τ 11 = 0, τ 33 = σ
33

λ2
, τ 23 = σ

23

λr
− ψ
λ2
σ 33, τ 22 = −ψ(2τ 23 + ψτ 33)

(12.19)

In the combined axial–torsion of thin-walled tubes, both the radial stress σ 11

and the hoop stress σ 22 are 0. We now substitute (12.17) to (12.19) into (12.16)
to obtain

(σ 23)2

(
1
r2λ2
+ 2γ 2

r4λ2

)
+ σ 23σ 33

(
− 4γ
3r2λ3

+ 2γ
3r4λ

− 4γ 3

3r4λ3

)

+ (σ 33)2
(

1
18r4
+ 2
9λ4
+ λ

2

18
+ 4γ 2

9r2λ4
− 2γ 2

9r4λ2
+ 2γ 4

9r4λ4

)
= Y2

3
(12.20)
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This is the von Mises yield criterion expressed in the σ ij space. If plotted in
the σ 23 versus σ 33 space, (12.20) describes a family of ellipses, when λ or
γ is varied. In the determination of yield surface with shear prestrain, the
extension ratio λ is approximately 1. In this case, (12.20) reduces to

(σ 23)2

(
1
r2
+ 2γ 2

r4

)
+ σ 23σ 33

(
− 4γ
3r2
+ 2γ
3r4
− 4γ 3

3r4

)

+ (σ 33)2
(

1
18r4
+ 5
18
+ 4γ 2

9r2
− 2γ 2

9r4
+ 2γ 4

9r4

)
= Y2

3
(12.21)

The size and the semi-axes of the ellipse will change with the value of γ
according to (12.21). In addition, the ellipse will rotate in the σ 23 versus σ 33

space due to the presence of the σ 23σ 33 term. This termwill vanish onlywhen
γ = 0, that is, at the initial yielding. This is a result that is not supported by
experimental observations. Experimental results reported inWu [2] show that
the subsequent yield surface does not rotate in the case of prestrain in torsion.
Therefore, the yield criterion defined by (12.16) is not realistic, and a realistic
yield criterion is defined in the next section.

12.3.2 A Yield Criterion Proposed by Wu

We show in this section that, following Wu [2,3] with permission from
Elsevier, we may derive a yield criterion that is suitable for use in describ-
ing the observed experimental findings of combined axial–torsion. The
material under consideration can be either initially isotropic or anisotropic,
but deformation induced anisotropy can occur in either case. Therefore,
a yield criterion, which accounts for the evolution of yield surface, should
be derived based on anisotropic considerations. For this purpose, we refer to
the yield function given in (11.173), in which hij are constants and the expres-
sions for bij may be so chosen that, after the substitution of (12.17), (11.173)
reduces to

2φ = h11(τ 〈11〉)2 + h22(τ 〈22〉)2 + h33(τ 〈33〉)2 + h55(τ 〈23〉)2
+ 2h12τ 〈11〉τ 〈22〉 + 2h13τ 〈11〉τ 〈33〉 + 2h23τ 〈22〉τ 〈33〉
+ 2h15τ 〈11〉τ 〈23〉 + 2h25τ 〈22〉τ 〈23〉 + 2h35τ 〈33〉τ 〈23〉 (12.22)

As mentioned in Section 11.14, a preferred texture orientation develops in
the tangential plane of the cylindrical surface of the tube during torsion
and the direction of the preferred orientation is generally not parallel to the
z-direction. It is also anticipated that a preferred texture orientation develops
in the case of combined axial–torsion, but no experimental results to this effect
have been reported in the literature. As a result of preferred orientation, the
material is not orthotropic.
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Applying the conditions of combined axial–torsion of a thin-walled tube,
that is, the radial stress σ1 = σx = τ 〈11〉 = 0, σy = σ2 = hoop stress, σz = σ3 =
axial stress, and τxy = τzx = 0, (12.22) becomes

2φ = h22(τ 〈22〉)2 + h33(τ 〈33〉)2 + h55(τ 〈23〉)2 + 2h23τ 〈22〉τ 〈33〉
+ 2h25τ 〈22〉τ 〈23〉 + 2h35τ 〈33〉τ 〈23〉 (12.23)

Using the anisotropy coefficients similar to those used by Hill [4] and

(G+H)(τ 〈22〉)2 − 2Gτ 〈22〉τ 〈33〉 + 2G(τ 〈33〉)2 + 2Bτ 〈23〉(δτ 〈22〉 + τ 〈33〉)
+ 2M(τ 〈23〉)2 = f2 (12.24)

where G, H, and M are material constants. In (12.24), index 2 indicates
the hoop direction; 3 indicates the axial direction; δ is a parameter; and
f specifies the size of the yield surface. The term containing B is a mixed
normal-shear stress term and is present because the material is not ortho-
tropic. The expression for B will be subsequently determined based on the
experimental observation that the yield surface does not rotate as the shear
prestrain increases. Note that Hill’s (1948) quadratic yield function reduces to

(G+H)σ 2y − 2Gσyσz + 2Gσ 2z + 2Mτ 2yz = 1 (12.25)

for a thin-walled tubular specimen with the assumption of material ortho-
tropy. Equation (12.24) is different from (12.25) in the term that contains B and
in the use of τ 〈ij〉. The yield function (12.24) was shown byWu [2] to describe
the distortion of yield surface for specimens subjected to torsionprestrain, but
it has been found in a subsequent investigation [3] that it does not describe the
distortion of yield surface for specimens subjected to axial prestrain. In fact,
for the case of material element subjected to normal stress only, as in the
case of uniform extensions reported in Section 11.14.1.1, the yield criterion
defined by the physical components of the true stress τ ij cannot account for
the distortion of the yield surface.
In order to account for the distortion associated with axial prestrain, an

axial distortion function h is introduced into the yield function, through the
component hτ 〈33〉, so that the yield function reads

(G+H)(τ 〈22〉)2 − 2Gτ 〈22〉(hτ 〈33〉)+ 2G(hτ 〈33〉)2 + 2Bτ 〈23〉(δτ 〈22〉 + hτ 〈33〉)
+ 2M(τ 〈23〉)2 = f2 (12.26)
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Using (12.12), (12.26) may be expressed in terms of τ ij as

2φ = A1(τ 22)2 − 2A2τ 22τ 33 + A3(τ 33)2 + 2A4τ 23τ 22 + 2A5τ 23τ 33
+ 2A6(τ 23)2 = f2 (12.27)

where

A1 = (G+H) R4

1+ (γ /λ)2 , A2 = Ghλ2R2, A3 = 2Gh2λ4
(
1+

(γ
λ

)2)
,

A4 = BδλR3√
1+ (γ /λ)2 , A5 = BRhλ3

√
1+

(γ
λ

)2
, A6 =Mλ2R2

(12.28)

Since the experimental yield surfaces are determined in the σ23 versus σ33
space, (12.27) is transformed into this space by use of (12.19), and the result is

σ 223

[
2M − 4Bδγ

λ
√
1+ γ 2/λ2 +

4Gγ 2

(1+ γ 2/λ2)λ2 +
4Hγ 2

(1+ γ 2/λ2)λ2
]

+ σ23σ33

2Bh

√
1+ γ

2

λ2
+ 4(Gh−M)γ

λ
+ 6Bδγ 2

λ2
√
1+ γ 2/λ2

− 4(G+H)γ 3
(1+ γ 2/λ2)λ3

]
+ σ 233

[
2Gh2

(
1+ γ

2

λ2

)
− 2Bhγ

√
1+ γ 2/λ2
λ

−2(Gh−M)γ
2

λ2
− 4Bδγ 3

λ3
√
1+ γ 2/λ2 +

Gγ 4

(1+ γ 2/λ2)λ4 +
Hγ 4

(1+ γ 2/λ2)λ4
]

= f2 (12.29)

will undergo change in size, translation, and distortion as prestrain increases.

initial yield surface, which is a circle, will gradually become distorted as the
prestrain increases with the flattened ellipse facing the origin of the stress
space. This phenomenon can be described when the coefficient of σ23σ33
in (12.29) is given by the following expression

2Bh

√
1+ γ

2

λ2
+ 4(Gh−M)γ

λ
+ 6Bδγ 2

λ2
√
1+ γ 2/λ2 −

4(G+H)γ 3
(1+ γ 2/λ2)λ3

= ξ sin 2ϕ (12.30)
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From the experimental observations discussed in Chapter 7, the yield surface
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where ξ is a material parameter to be determined; ϕ is the angle deter-
mined by the plastic strain path as suggested by Helling et al. [5] and the
relation is

ϕ = tan−1
(
2Dp

23

Dp
33

)
(12.31)

whereDp
23 andD

p
33 are the plastic parts of the rate of deformation for the shear

and axial components, respectively. From (12.30), B can be derived as

B = (4(G+H)γ
3)/(1+ γ 2/λ2)λ3 − (4(Gh−M)γ )/λ+ ξ sin 2ϕ

2h
√
1+ γ 2/λ2 + [6δγ 2/λ2√1+ γ 2/λ2] (12.32)

Upon the substitutionof (12.32) into (12.29), the yield surface is nowwritten as

A23σ 223 + A2333σ23σ33 + A33σ 233 = f2 (12.33)

with

A23 = 2{(2hH + hM + 2Hδ −Mδ)γ 4 + (2hH + 2hM −Mδ)γ 2λ2 + hMλ4}
(γ 2 + λ2)[3γ 2δ + h(γ 2 + λ2)]

+ 2{2Gγ 2[γ 2δ + h(1+ 2δ)(γ 2 + λ2)] − γ δλ(γ 2 + λ2)ξ sin 2ϕ}
(γ 2 + λ2)[3γ 2δ + h(γ 2 + λ2)]

A2333 = ξ sin 2ϕ

A33 = G[−γ 6δ−hγ 4(3+2δ)(γ 2+λ2)+ 2h2γ 2(1+3δ)(γ 2+λ2)2+ 2h3(γ 2+λ2)3]
λ2(γ 2 + λ2)[3γ 2δ + h(γ 2 + λ2)]

− γ
2{γ 2δ[Hγ 2 − 2M(γ 2 + λ2)] + h(γ 2 + λ2)[3Hγ 2 + 2M(γ 2 + λ2)]}

λ2(γ 2 + λ2)[3γ 2δ + h(γ 2 + λ2)]

− γ λ(γ
2 + λ2)[γ 2δ + h(γ 2 + λ2)]ξ sin 2ϕ
λ2(γ 2 + λ2)[3γ 2δ + h(γ 2 + λ2)]

(12.34)

Equation (12.33) describes an ellipse and it can account for the distortion of
the yield surface through the change in the aspect ratio of the ellipse as the
plastic strain increases. It is interesting to see that the coefficients of (12.33) are
functions of extension ratio λ and shear strain γ , which is a consequence of
defining the yield function in terms of τ 〈ij〉. This is a naturalway to account for
changes in the shape and size of the yield surface. If we set ϕ = 0 and γ = 0,
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the yield criterion (12.33) is reduced to

2Mσ 223 + 2Gh2σ 233 = f2 (12.35)

We see that without the function h, (12.35) is not capable of describing the
distortion of the yield surface during axial loading. The form of h will be
proposed later, but it will be a function of the axial prestrain ε = ln λ, with
the constraint that h reduces to 1 when ε = 0.
A combined isotropic–kinematic-hardening rule is applied in this

investigation, and the yield function from (12.27) is written as

2φ = A1(ξ̃22)2 − 2A2ξ̃22ξ̃33 + A3(ξ̃33)2 + 2A4ξ̃23ξ̃22 + 2A5ξ̃23ξ̃33
+ 2A6(ξ̃23)2 = f2 with ξ̃ ij = τ ij − α̃ij (12.36)

where α̃ij is the back stress in the τ ij — stress space. The evolution of the
back stress is discussed later; but the back stress α̃ij may be projected onto a
fixed Cartesian spatial frame xi with components αij and the transformation
equations are

αij = ∂xi
∂θp

∂xj
∂θq

α̃pq (12.37)

In the case of combined axial–torsion, the nonzero components of αij are α22,
α23, and α33. Thus, (12.37) reduces to

α̃22 = α33γ
2 − 2α23γ λ+ α22λ2

r2λ2
, α̃23 = −α33γ + α23λ

rλ2
, α̃33 = α33

λ2

(12.38)

12.4 Flow Rule and Strain Hardening

The rate of change of the strain tensor may be projected onto the
fixed Cartesian spatial frame xi and the transformation equations are,
from (11.154),

Dij = 1
2
∂θp

∂xi

∂θq

∂xj

Dgpq
Dt

(12.39)
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where Dij is the rate of deformation tensor and it may be decomposed into
the elastic and the plastic parts as

Dij = Deij +Dp
ij , Deij =

1
2
∂θp

∂xi

∂θq

∂xj

Dgeij
Dt

, and Dp
ij =

1
2
∂θp

∂xi

∂θq

∂xj

Dgpij
Dt

(12.40)

in which Deij and g
e
ij are the elastic part and D

p
ij and g

p
ij are the plastic part,

respectively. The flow rule from (11.200) is

Dgpij
Dt
= �̇ ∂φ

∂τ ij
(12.41)

where �̇ is the plastic multiplier. Using (12.36), the flow rule becomes

Dgp22
Dt
= �̇(A1ξ̃22 − A2ξ̃33 + A4ξ̃23)

Dgp33
Dt
= �̇(−A2ξ̃22 + A3ξ̃33 + A5ξ̃23)

Dgp23
Dt
= �̇

(
1
2
A4ξ̃22 + 1

2
A5ξ̃33 + A6ξ̃23

)
(12.42)

On the other hand, the third equation of (12.40), using (12.5) with θ = 0 and
(12.42), reduces to

Dgp22
Dt
= 2r2Dp

22 = �̇(A1ξ22 − A2ξ33 + A4ξ23)
Dgp33
Dt
= 2γ 2Dp

22 + 4γ λDp
23+ 2λ2Dp

33 = �̇(−A2ξ22 + A3ξ33+ A5ξ23)
Dgp23
Dt
= 2rγDp

22 + 2rλDp
23 = �̇

(
1
2
A4ξ22 + 1

2
A5ξ33 + A6ξ23

)
(12.43)

where

ξ ij = σ ij − αij (12.44)

This set of equations may be solved to obtain

Dp
33 = �̇(η1ξ23 + η2ξ33 − η6α22)

Dp
23 = �̇(η3ξ23 + 0.5η1ξ33 − 0.5η5α22)

Dp
22 = �̇(η5ξ23 + η6ξ33 + η9α22)

(12.45)
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where

η1 = A5
2rλ3

+ (A2 − A6)γ
r2λ3

+ 3A4γ 2

2r3λ3
− A1γ

3

r4λ3

η2 = A3
2λ4
− A5γ
rλ4
− (A2 − A6)γ

2

r2λ4
− A4γ

3

r3λ4
+ A1γ

4

2r4λ4

η3 = A6
2r2λ2

− A4γ
r3λ2
+ A1γ

2

r4λ2
, η5 = A4

2r3λ
− A1γ
r4λ

η6 = − A2
2r2λ2

− A4γ
2r3λ2

+ A1γ
2

2r4λ2
, η9 = − A12r4

(12.46)

and the axial strain is ε = ln λ and λ = eε.
The rate of plastic work is

Ẇp = 1
2
ξ̃ ij
Dgpij
Dt
= ξijDp

ij (12.47)

and it is possible to define an equivalent stress τ̄ and an equivalent plastic
strain rate ġp such that

Ẇp = 1
2 τ̄ ġ

p (12.48)

The expressions are

τ̄ = K−1/2{A1(ξ̃22)2 − 2A2ξ̃22ξ̃33 + A3(ξ̃33)2 + 2A4ξ̃23ξ̃22
+ 2A5ξ̃23ξ̃33 + 2A6(ξ̃23)2}1/2

= f√
K

(12.49)

and

ġp = √Kf�̇ = √K
√
MM
NN

(12.50)

where

MM = (A25 − 2A3A6)(ġp22)2 + 4(A3A4 + A2A5)ġp22ġp23
+ (4A22 − 4A1A3)(ġp23)2 − 2(A4A5 + 2A2A6)ġp22ġp33
+ 4(A2A4 + A1A5)ġp23ġp33 + (A24 − 2A1A6)(ġp33)2 (12.51)

NN = 2A2A4A5 + A1A25 + 2A22A6 + A3(A24 − 2A1A6) (12.52)
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Note thatK =M and the dot “.” is an abbreviated notation of D/Dt. There are
several definitions of K in the literature. Hill [6] and Hosford and Caddell [7]
definedK basedon the tension test so that τ̄ = σ11 in the case of simple tension.
In the present work, K is defined based on free-end torsion. The different
expressions for K differ only by a constant factor and they do not affect the
analysis of this investigation. In the case of free-end torsion, σ33 = τ 33 = 0,
and, (12.38) reduces to

α̃33 = α33 = 0, α̃23 = α23
λr

, α̃22 = α22
r2
− 2ψ
λr
α23 (12.53)

By use of (12.19), the following expressions can then be obtained

ξ̃22 = τ 22 − α̃22 = −
(
2ψ
λr
ξ23 + α22r2

)

ξ̃33 = τ 33 − α̃33 = 0

ξ̃23 = τ 23 − α̃23 = ξ23
λr

(12.54)

Substituting (12.54) into (12.49) and letting γ = α23 = α22 = 0, the resulting
expression is

τ̄ =
√
2
M
K
σ23 =

√
2σ23 (12.55)

The last equality was obtained by setting K =M. It is seen that in the case of
free-end torsion at small strain, τ̄ reduces to the shear stress.
Following Wu and Yip [8], the isotropic-hardening function is given by

f (ζ ) = D− (D− 1)e−βζ (12.56)

where D and β are material parameters, and ζ is a positive, monotonically
increasing parameter that accounts for the history of plastic deformation.
It is assumed that

ζ̇ = ∣∣ġp∣∣ (12.57)

During the loading process, the following equation governs the evolution of
the isotropic-hardening function f

ḟ = β√K(D− f )f�̇ (12.58)

The equation was derived by differentiating (12.56), and using (12.57) and
the first equality of (12.50).
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In the case of kinematic hardening, the corotational rate is given by

α∇ = Dα
Dt
−� · α+ α ·� (12.59)

It has been assumed that for the combined axial–torsion problem under
consideration, the spin of the ideal texture orientation may be taken as the
constitutive spin �. Thus,

� =
(
0 ω

−ω 0

)
(12.60)

The spin ω(γ ) is found from Qian and Wu [9] where the function ϑ(γ ) is
given, which describes the change in the orientation of the ideal texture as a
function of shear strain. Thus,

ω = ϑ̇ = Dϑ
Dγ

γ̇ = Dϑ
Dγ

(2D23) (12.61)

Using the linear kinematic-hardening rule of Prager [10], the evolution
equation for the back stress, from (11.204), is

∇
α22 = Dα22

Dt
− 2ωα23 = 2α

∇
D
22 + α

∇
D
33 = cκ̄(2Dp

22 +Dp
33)

∇
α23 = Dα23

Dt
+ ω(α22 − α33) = α

∇
D
23 = cDp

23

∇
α33 = Dα33

Dt
+ 2ωα23 = α

∇
D
22 + 2α

∇
D
33 = cκ̄(Dp

22 + 2Dp
33)

(12.62)

where c is a constant and κ̄ is a parameter that specifies the anisotropic rate
of kinematic hardening. The proposed form for κ̄ is

κ̄ = κ̄T + (κ̄A − κ̄T) cos ϕ (12.63)

where κ̄A is the value of κ̄ for the case of axial prestrain, and κ̄T is the value
of κ̄ for the case of torsion.

12.5 Elastic Constitutive Equations

In the combined axial–torsion problem, the rate of deformation and the spin
tensors are

D =
(
D22 D23
D23 D33

)
and W =

(
0 D23
−D23 0

)
(12.64)
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respectively. The convected stress rate can be found from (11.143) and (12.64),
referring to the xi frame, as

σ ∗ij =
Dσij
Dt
−
(

2σ23D23 σ23(D22 +D33)+ σ33D23
σ23(D22 +D33)+ σ33D23 2(σ23D23 + σ33D33)

)
(12.65)

In the formulation to be presented, we assume for simplicity that the elastic
behavior is isotropic. This assumption has minimal effect on the anisotropic,
large plastic deformation. The elastic constitutive equation is

2µDe
ij = 2µ(Dij −Dp

ij) = σ ∗ij −
∇
αij (12.66)

Using (12.62) and (12.65), the three component equations of (12.66) are

2µD22 = −2σ23D23 + 2(µ− cκ̄)Dp
22 − cκ̄Dp

33

2(σ33 + µ)D33 = Dσ33
Dt
− 2σ23D23 − cκ̄Dp

22 + 2(µ− cκ̄)Dp
33

(2µ+ σ33)D23 = Dσ23
Dt
− σ23(D22 +D33)+ 2(µ− cκ̄)Dp

23

(12.67)

These are the equations for determination of the rate of deformation.

12.6 Algorithm for Computation

The return-mapping algorithm [11] is used for computation. By use of (12.65)
and (12.66), the elastic trials are

(σ23)
T
n+1 = (σ23)n +�σ23 = (σ23)n +�∗σ23 + σ23(D22 +D33)�t+ σ33D23�t

(σ33)
T
n+1 = (σ33)n +�σ33 = (σ33)n +�∗σ33 + 2(σ23D23 + σ33D33)�t

(12.68)

where �∗σ23 and �∗σ33 are the stress increments using the convected rate
and �t is the time increment. The stresses are

(σ23)n+1 = (σ23)Tn+1 − 2µDp
23�t = (σ23)n + σ23(D22 +D33)�t

+ σ33D23�t+ 2µD23�t− (2µ− c)Dp
23�t

(σ33)n+1 = (σ33)Tn+1−2µDp
33�t = (σ33)n + 2µD33�t+ 2(σ23D23+ σ33D33)�t

+ [cκ̄Dp
22 + 2(cκ̄ − µ)Dp

33]�t
(12.69)
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The increment of the back stress may be determined from (12.62) as

(α22)n+1 = (α22)n + 2(ω�t)(α23)n + cκ̄(2Dp
22 +Dp

33)�t

(α33)n+1 = (α33)n − 2(ω�t)(α23)n + cκ̄(Dp
22 + 2Dp

33)�t

(α23)n+1 = (α23)n − (ω�t)(α22 − α33)n + cDp
23�t

(12.70)

and that of the isotropic-hardening function f , from (12.58), as

fn+1 = fn + β
√
K(D− fn)fn�� (12.71)

In addition,

(ξ23)n+1 = (σ23)n+1 − (α23)n+1
= (ξ23)n + (ω�t)(α22 − α33)n + (2µ+ σ33)D23�t

+ σ23(D22 +D33)�t− 2µDp
23�t

(ξ33)n+1 = (σ33)n+1 − (α33)n+1
= (ξ33)n + (2ω�t)(α23)n + 2(µ+ σ33)D33�t

+ 2σ23D23�t− 2µDp
33�t

(12.72)

where

�� = �̇�t (12.73)

and

Dp
33�t = ��(η1ξ23 + η2ξ33 − η6α22)

Dp
23�t = ��(η3ξ23 + 0.5η1ξ33 − 0.5η5α22)

Dp
22�t = ��(η5ξ23 + η6ξ33 + η9α22)

(12.74)

By use of (12.14) and (12.38), the yield function (12.36) reduces to

� = 2φ = A23ξ223 + A2333ξ23ξ33 + A33ξ233 = f2 (12.75)

and the consistency condition of the yield function may be found by setting
up the function

g = �n+1 − f2n+1 (12.76)

with the conditions that if g < 0, then �� = 0; and if g ≥ 0, then ��
is determined by iteration so that g = 0. Knowing ��, �̇ can be deter-
mined from (12.73) and the result substituted into (12.74) to determine the
plastic strain components. Finally, the axial strain ε and the shear strain γ
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are updated by use of

(ε)n+1 = (ε)n +D33�t

(γ )n+1 = (γ )n + 2D23�t
(12.77)

12.7 Nonlinear Kinematic Hardening

We use the nonlinear-hardening rule of endochronic theory for kinematic
hardening and, by use of the corotational rate, write

α
∇
D
ij =

2
3
cDp

ij − καDij ζ̇ with α
∇
D
11 + α

∇
D
22 + α

∇
D
33 = 0 (12.78)

where αDij is the deviatoric part of back stress αij; c and κ are parameters.
Wu and Yang [12] andWu et al. [13] had applied this rule to investigate load-
ing of nonproportional axial–torsion strain paths. Equation (12.78) is similar
to (6.87) and is also known as the Armstrong and Frederick [14] kinematic-
hardening rule. By use of (12.78), (12.62) should be replaced by, see Wu

∇
α22 = Dα22

Dt
− 2ωα23 = 2α

∇
D
22 + α

∇
D
33 =

2
3
c(2Dp

22 +Dp
33)− κα22ζ̇

∇
α23 = Dα23

Dt
+ ω(α22 − α33) = α

∇
D
23 =

2
3
cDp

23 − κα23ζ̇
∇
α33 = Dα33

Dt
+ 2ωα23 = α

∇
D
22 + 2α

∇
D
33 =

2
3
c(Dp

22 + 2Dp
33)− κα33ζ̇

(12.79)

Similarly, (12.67) should be replaced by the following set of equations

2µD22 = −2σ23D23 + 2
(
µ− 2

3
c
)
Dp
22 −

2
3
cDp

33 + κα22ζ̇

2(σ33 + µ)D33 = Dσ33
Dt
− 2σ23D23 − 2

3
cDp

22 + 2
(
µ− 2

3
c
)
Dp
33 + κα33ζ̇

(2µ+ σ33)D23 = Dσ23
Dt
− σ23(D22 +D33)+ 2

(
µ− 2

3
c
)
Dp
23 + κα23ζ̇

(12.80)

12.8 Description of Yield Surface with Various Preloading Paths

In the testing of thin-walled tubes under combined axial–torsion condition,
the axial load F and torque T are measurable quantities and they need to

© 2005 by Chapman & Hall/CRC Press
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be transformed into normal and shear stresses applied to the end-sections
of a tubular specimen. An initially rectangular element on the wall of the
tube will become distorted, and the convected material element is shown

the deformed element is parallel to the end-sections of the tubular specimen
and the normal and tangential forces acting on this face are now considered.
The unit normal to Face (2) is

n = g3√
g33
= λg3 (12.81)

with ñ3 = λ, ñ1 = ñ2 = 0. From (11.114), the stress vector is

t(n) = ñiτ ijgj = λτ 3jgj (12.82)

and the tangential and normal components of the stress vector are

t(n)t = t(n) · g2√
G22
= σ23 and t(n)n = t(n) · g3√

g33
= σ33 (12.83)

respectively. Thus, the torque and the force are expressed as

T = 2π
∫ ρo

ρi

ρ2σ23 dρ and F = 2π
∫ ρo

ρi

ρσ33 dρ (12.84)

where ρ is the radial coordinate of the tube and ρi and ρo are the inner and
outer radii of the tube, respectively. In the case of a thin-walled tube, the
approximated expressions are

T = 2πr2tσ23 and F = 2πrtσ33 (12.85)

where r is the outer radius and t the wall-thickness of the tube. Therefore,
σ23 and σ33 may be calculated and plotted to determine yield surfaces in
the Cauchy stress space, when T and F have been experimentally measured.
The experimental results obtained in our laboratory are used in the remaining
part of this section.
The theory presented in Sections 12.3 to 12.5 and 12.7 is now applied to

describe the evolution of yield surface subjected to various preloading paths.
The algorithm for computation presented in Section 12.6 is used, supplemen-
ted by specific conditions imposed in each case. The problem considered is
related to the combined axial–torsion of a thin-walled tube with prestrains
into the large strain range.

determined subsequent yield surfaceswith prestrain in the large strain range.
The paper by Helling et al. [5] is very informative and it presented yield

© 2005 by Chapman & Hall/CRC Press

in Figure 12.2, where 3 is along the axial direction of the tube. Face (2) of

As mentioned in Chapter 7, only experiments reported in [3,5,16] have
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surfaceswith several different preloadingpaths. It does not, however, contain

an important path because it determines parameters and material functions
associated with yield surface distortion subjected to axial prestrain and it,
therefore, also influences the surface distortion for combined axial–torsion
paths. On the other hand, the experiments conducted in our laboratory
and reported in [3,16] have determined yield surfaces with both preloading
paths (1) and (2), and this set of data provide more complete information for
the determination of material constants. In this regard, we report an investig-
ation by Wu [3] for the case of “linear” kinematic hardening and by Wu [15]
for the case of nonlinear kinematic hardening. In both investigations path (1)
has been used to determinematerial parameters associatedwith axial loading
and path (2) to determine material parameters associated with torsion. These
parameters are then used in the calculation of other paths. The material used
in the experiment was high-purity cast aluminum, and its behavior in torsion
was reported inWu et al. [17] andWu [2]. The elastic moduli for this material
are E = 70.3 GPa and µ = 26.2 GPa.
Assuming that G = pH and M = qH, where p and q are parameters,

(12.33) reduces to the following expression for the case of γ = 0, ε = 0,
and h = 1, that is, the initial yield surface,

qσ 223 + pσ 233 =
f2

2H
(12.86)

It can be easily seen that, when q = 3p, (12.86) reduces to the von
Mises yield criterion. The material tested was an annealed high-purity cast
aluminumwith its initial yield surface closely resembling aMises ellipse (see

experimental data for this material and will be used in the remaining part
of this chapter. Other relations between p and q may be used, if the experi-
mental data deviates from the Mises ellipse. For a tube with anisotropy, the
yield stress is higher in the 3-direction than in the 2-direction, which means
G+H > 2G, as may be seen from (12.26) with h = 1. Thus, H > G and p < 1.
In this discussion, p = 0.8 is used for calculation. With this value of p and the
relation of q = 3p, (12.86) reduces to the following expression for the initial
yield surface

3σ 223 + σ 233 =
1
p

(
f2

2H

)
= (11.0 MPa)2 (12.87)

The last expression of (12.87) is the size of the experimental initial yield
surface. Since f = 1 at initial yielding, the value of H may be determined as

H = 1
2p(11.0)2

= 5.165× 10−3 MPa−2 (12.88)
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the axial preloading path, which is shown as path (1) in Figure 7.2. This is

Figure 12.6(a)). The choice of q = 3p leads to a reasonable description of the
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There are two parameters c and κ̄ in the linear kinematic-hardening rule
(12.64). We found that if c is a constant, then the back stress would vary
linearly with strain ε in the case of tensile prestrain and vary linearly with
shear strain γ in the case of torsion prestrain. As it will be seen in the ensuing
d iscussion that the corresponding experimental relationships are nonlinear,
we will therefore use nonlinear kinematic-hardening rules. Several different
nonlinear rules are possible; but, we consider two cases, compare their res-
ults, and show that different kinematic-hardening rules do lead to different
results in the case of a nonproportional path. Therefore, kinematic-hardening
rules should be investigated further experimentally, particularly for com-
bined loading. In the first case, we use the linear kinematic hardening rule
(12.64). In order to make the relation nonlinear, we propose that c varies as a
linear function of ζ so that

c = c0(1− 1.15ζ ) with c0 = 180 MPa (12.89)

In addition, we assume that κ̄ depends on angle ϕ through (12.63), andwe use
κ̄A = 0.7 and κ̄T = 0.0005 in the calculation. This is a case of mild nonlinearity
and we refer to it as the “linear” case henceforth. In the second case, we use
the equations of Section 12.8, and it is a fully nonlinear case, andwe refer to it
as the nonlinear case henceforth. Again, there are two parameters c and κ in
(12.78). But, we make these two parameters vary according to the following
relations

c = c0(1+ qζ ), with c0 = c0T + (c0A − c0T) cosϕ
and q = qT + (qA − qT) cosϕ (12.90)

where c0A = 425 MPa, c0T = 360 MPa, qA = 0, qT = 0.18, and

κ = κT + (κA − κT) cos ϕ (12.91)

in which c0 is the value of c when the history parameter ζ = 0; κA = 7;
and κT = 3; the subscripts A and T in (12.90) and (12.91) denote the val-
ues corresponding to axial prestrain and torsion prestrain, respectively. In
addition, we use δ = −0.45.

12.8.1 Path (1) — Axial Tension

This is a special case of proportional loading with ϕ = 0. Axial prestrain
was performed with a constant axial strain rate of D33 = 0.001 s−1 and the
shear stress σ23 = 0. The isotropic-hardening function f can be determined
from the experimental data reported in [3]. The size of the yield surface is
determined by measuring the maximum length of the ellipse σ23yield along a
direction parallel to the σ23 axis in the σ23 versus σ33 space, and its values are
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TABLE 12.1

Experimental f Values for Path (1)

Axial strain ε History parameter ζ Isotropic-hardening f

0 0 1.0
0.02 0.0557 2.698
0.116 0.3082 3.687
0.231 0.6079 4.075
0.45 1.175 4.417

Source: From Wu, H.C., Int. J. Plasticity, 19, 1773, 2003.
With permission from Elsevier.
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FIGURE 12.3
Isotropic-hardening function f ; • Exp., — theory.

listed in Table 12.1. The values for f are then determined by setting σ33 = 0 in
(12.33). Thus,

f = σ23 yield
√
A23 (12.92)

The plastic deformation history parameter ζ is determined by integrating
(12.57) with respect to time using (12.50), and its values with the correspond-
ing axial strain ε are also listed in Table 12.1. The values of f , when plotted
versus ζ , can be fitted by (12.56) with D = 4.6 and β = 5. The experimental
data and the fitted curve are shown in Figure 12.3.
The aspect ratio of the yield surface is determined from (12.35) as

σ23 yield

σ33 yield
=
√
Gh2

M
(12.93)

and it has been found that the following function h can be used to describe
the aspect ratio satisfactorily

h = [eε(2.7 − 1.7e−mε)]1/2 with m = 50 (12.94)
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FIGURE 12.4
Aspect ratio for path (1): axial loading; • Exp., — theory (From Wu, H.C., Int. J. Plasticity, 19,
1773, 2003. With permission from Elsevier).
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FIGURE 12.5
Path (1): (a) axial stress–strain curve, (b) back stress: • Exp., — theory (From Wu, H.C., Int. J.
Plasticity, 19, 1773, 2003. With permission from Elsevier).

The aspect ratio for this path is plotted versus ε in Figure 12.4. The motion of
the yield surface is described by the kinematic-hardening rules as previously
explained. Due toD23 = 0, the constitutive spin given by (12.60) is not a factor
in this case.
The numerical results are now compared with the experiments reported

in [3]. Figure 12.5(a) shows the axial stress–strain curves and Figure 12.5(b)
shows the back stressα33 plotted against ε. The theoretical curves of case 1 (the
“linear” case), case 2 (the nonlinear case), and experimental data are shown.
The experimental data for back stress α33 were determined from the exper-
imental yield surfaces and they were the centers of the yield surfaces. The
theoretical yield surfaces using nonlinear kinematic hardening at prestrains
of 0, 0.58, 5.8, 11.6, 23.1, and 45% were calculated from the yield function

experimental data reported in [3]. For each value of prestrain, the isotropic-
hardening function f was calculated from (12.56) and the back stress α33 from

Figure 12.6(a) to (f) plotted in one graph. The yield surface has a signifi-
cant increase in size and the aspect ratio also increases with the increasing
prestrain. The yield surfaces calculated from the “linear” case are not shown,
but they are in reasonable agreement with the experimental data.
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given by (12.36) and they are shown in Figure 12.6(a) to (f) together with

data of Figure 12.5(b). Figure 12.6(g) shows all theoretical yield surfaces of



Combined Axial–Torsion of Thin-Walled Tubes 655

–10 –5 5 10
�33 MPa

–10

–5

5

10

3 �23 MPa

� = 0

�33 MPa

3 �23 MPa

–10 10 20

–20

–10

10

20

� = 0.0058

�33 MPa

3 �23 MPa

10 20 30 40

–30

–20

–10

10

20

30

� = 0.058

�33 MPa

3 �23 MPa

10 20 30 40 50

–20

20

40

� = 0.116

(a) (b)

(c) (d)

(e) (f)

�33 MPa

3 �23 MPa

30 40 50 60

–40

–20

20

40

� = 0.231

�33 MPa

3 �23 MPa

50 60 70 80

–40

–20

20

40

� = 0.45

FIGURE 12.6
Yield surfaces for path (1): (a) ε = 0, (b) ε = 0.58%, (c) ε = 5.8%, (d) ε = 11.6%, (e) ε = 23.1%,
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Plasticity, 19, 1773, 2003. With permission from Elsevier).
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FIGURE 12.7
Inverse aspect ratio for path (2): torsion; • Exp., — theory (From Wu, H.C., Int. J. Plasticity, 19,
1773, 2003. With permission from Elsevier).

12.8.2 Path (2) — Torsion

We now use the same procedures as in path (1) to determine parameters
of path (2). This path is also a special case of proportional loading with
ϕ = π/2. The torsion prestrain was performed with a constant shear strain
rate of D23 = 0.001732 s−1 and the axial stress σ33 = 0 in a free-end torsion
condition. The inverse aspect ratio for the ellipse is

σ23 yield

σ33 yield
=
√
A33
A23

(12.95)

which has the value of 0.577 (Mises) when γ = 0 and 0.388 when γ = 0.4 for
the case of δ = −0.45. Thus, the ellipse flattens as the plastic strain increases.
The amount of flattening is influenced by the value of δ. The inverse aspect
ratio for this path is plotted versus γ in Figure 12.7 for the cases of δ = −0.3
and −0.45.
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TABLE 12.2

Experimental f Values for Path (2)

Shear strain γ History parameter ζ Isotropic-hardening f

0 0 1.0
0.01 0.0156 1.50
0.1 0.158 2.34
0.2 0.317 4.26
0.4 0.641 4.51

Source: From Wu, H.C., Int. J. Plasticity, 19, 1773, 2003. With
permission from Elsevier.

The isotropic-hardening function f has been determined earlier by use of
the data of path (1). The parameters of (12.56) were found to be D = 4.6 and
β = 5. We found that these parameters and the function also describe the
data of path (2). The size of the experimental yield surface is determined by
measuring themaximum length of the ellipse along a direction parallel to the
σ33 axis; its values are listed in Table 12.2. The values for f are determined by
setting σ23 = 0 in (12.33). Thus,

f = σ33 yield
√
A33 (12.96)

The plastic deformation history parameter ζ is determined by integrating
(12.57) with respect to time and its values with corresponding shear strains
γ are listed in Table 12.2 together with the experimental f values for path (2).
These values of f , when plotted versus ζ , can be well described by (12.56).
The spin of the ideal texture orientation is significant for path (2) and may

be taken as the constitutive spin. The constitutive spin was determined from
(12.61), where the function Dϑ/Dγ was found from Qian and Wu [9] by a
polynomial approximation. The expression used in the calculation was

ω = 2{−0.431(b+ γ )4 + 5.1472(b+ γ )3 − 23.1651(b+ γ )2
+ 46.894(b+ γ )− 35.97}D23 (12.97)

The parameter b was used so that (12.97) became suitable for use for the
material under consideration. The function ϑ found by Qian andWu [9] was
a prediction of the double-slipmodel of polycrystal plasticity, and it should be
adjusted. We found that b = 3 gave us reasonable results for this calculation.
The numerical results are now compared with the experiments reported

in [3]. Figure 12.8(b)
shows the “Swift effect”; and Figure 12.8(c) shows the back stress α23 plotted
against γ . Theoretical curves of the “linear” case are almost identical to
those of the nonlinear case. The theoretical curves and experimental data
are shown. The experimental data for back stress α23 were determined from
the experimental yield surfaces and they were the centers of the yield sur-
faces. The theoretical yield surfaces at prestrains of 0, 1, 10, 20, and 40%

© 2005 by Chapman & Hall/CRC Press

Figure 12.8(a) shows the shear stress–strain curve;
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FIGURE 12.8
Path (2): (a) shear stress–strain curve, (b) the Swift effect, (c) back stress; • or - - - Exp., — theory
(FromWu, H.C., Int. J. Plasticity, 19, 1773, 2003. With permission from Elsevier).

were calculated from the yield function given by (12.36) and they are shown

For each value of prestrain, the isotropic-hardening function f was calculated
from (12.56) and the back stress α23 from data of Figure 12.8(b). Figure 12.9(f)
showsall theoretical yield surfaces of Figure 12.9(a) to (e) plotted inonegraph.
The yield surface increases in size and the reverse aspect ratio reduces with
the increasing prestrain.
Theparametersof the theoryhavebeendetermined fromthe tensionand the

free-end torsion tests, which are two special cases of proportional loading.
The two rules of kinematic hardening employed in the calculation do not
lead to noticeable differences in the solutions. We show in the subsequent
subsections, however, that they give rise to significantly different results in
the general case of proportional and nonproportional paths.
The agreement of the theory with experiment is acceptable judging from

tested against the following sets of experimental data: (1) axial stress–strain
curve, (2) axial back stress versus axial strain, (3) subsequent yield surfaces up
to a prestrain of ε = 0.45, (4) shear stress–strain curve, (5) the “Swift effect,”
(6) shear back stress versus shear strain, and (7) subsequent yield surfaces
up to a shear prestrain of γ = 0.40. In the literatures, we have seen theories
compared with only two sets of test data, for example, data sets (4) and (5)
for the torsion test. Since only two sets of data are described by those models,
itwaspossible to choosemodel parameters so that themodels closelydescribe
the two data sets. A greater challenge is whether any model can successfully
describe the aforementioned seven sets of data.

© 2005 by Chapman & Hall/CRC Press

in Figure 12.9(a) to (e) together with the experimental data reported in [3].

Figures 12.3 to 12.9. We mention that in these figures the theory has been
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12.8.3 Path (3) — Proportional Loading

We use material parameters and functions determined from paths (1) and (2)
to describe proportional and nonlinear paths discussed in the remaining
subsections of Section 12.8. Parameter ξ has been introduced in (12.30)
to describe the combined axial–torsion loading. This parameter is further
expressed by

ξ = 0.02εh2 (12.98)

A proportional strain-controlled path with constant strain-rate is defined by
the angle

 = tan−1
(
2D23

D33

)
(12.99)

where  is an angle to be specified for each proportional path. The axial
distortion function h of (12.94) is now modified to read

h = [eε cos2 ϕ(2.7 − 1.7e−mε cos2 ϕ)]1/2 with m = 50 (12.100)

which reduces to (12.94) when ϕ = 0. By use of nonlinear kinematic harden-

the case of  = π/6. The surfaces shown are for proportional prestrains of
ε = 0, 0.1, 0.2, 0.3, and 0.35, respectively. Figure 12.10(b) shows the evolution
of the yield surface for the case of = π/3. Yield surfaces are plotted for pro-
portional prestrains of γ = 0, 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. The dots
in the figures denote the loading points for the yield surfaces, and together
they form the stress paths of these tests. It is seen that a proportional strain
path does not necessarily lead to a proportional stress path. Paths with other
slopes can also be calculated. Figure 12.10(c) and (d) shows the corresponding
yield surfaces predicted by the use of the “linear” kinematic-hardening rule.
It is seen that the stress paths are different for different kinematic-hardening

12.8.4 Tor–Ten Path (4)

This is the first of three nonlinear tor–ten paths to be considered. The example
presented is calculated by use of “linear” kinematic hardening. It describes
a case of pretorsion from 0 to a shear strain of γ = 0.1 (with a corres-
ponding shear stress of σ23 = 22.87 MPa) followed by an elastic unloading
to σ23 = 5.21 MPa, which is an approximated center of the current yield
surface. Axial loading is then applied while keeping the shear stress constant
at 5.21 MPa. This is a stress-controlled test with a prescribed stress increment
�σ33 for each increment of time�t. This section of the loading path is similar
to an axial test with angle ϕ = 0 and κ = κA = 0.7. The initial conditions
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ing, the predicted subsequent yield surfaces are shown in Figure 12.10(a) for

rules, and these different stress paths are summarized in Figure 12.11.
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are: σ33 = 30.93 MPa (determined from the elastic loading), f = 2.8118,
α23 = 5.21 MPa, α22 = 0.16 MPa, and α33 = −0.16 MPa. These data are
obtained from path (2) when γ = 0.1.
The incremental expressions for the computation of this path are

(σ23)n+1 = (σ23)n
(σ33)n+1 = (σ33)n +�σ33�t
(ξ23)n+1 = (ξ23)n + (ω�t)(α22 − α33)n − cDp

23�t

(ξ33)n+1 = (ξ33)n + (2ω�t)(α23)n +�σ33�t− cκ(Dp
22 + 2Dp

33)�t

(12.101)
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FIGURE 12.12
Evolution of yield surface for path (4) (From Wu, H.C., Int. J. Plasticity, 19, 1773, 2003. With
permission from Elsevier).

Figure 12.12 shows the evolution of yield surface for this path. The dots
represent stress points on each yield surface. By connecting these dots,
one can envisage the stress path. This figure shows that no rotation of the yield
surface has taken place during this loading.

12.8.5 Tor–Ten Path (5)

We consider now the case of free-end torsion to a prestrain of γ = 0.1
followed by an axial stressing. This is a path previously discussed by Helling
et al. [5], but with strain in the small strain range of ε < 0.05. In the
present case, the shear stress is kept at a constant value of σ23 = 27.49 MPa
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Plasticity, 19, 1773, 2003. With permission from Elsevier).

while the axial load is increased. In the calculation, σ22 = 0 and σ33, α33, α22,
α23, D33, D22, and D23 need to be updated. Nonlinear kinematic hardening is
used in the calculation. Figure 12.13(a) shows the axial stress plotted against
the axial strain; Figure 12.13(b) shows the strain path during the axial stress-
ing stage; and Figure 12.13(c) shows the evolution of yield surface for this
path. The yield surfaces plotted are those with axial prestrains of 0, 0.0058,
0.02, 0.058, 0.116, 0.231, 0.30, and 0.45. The dots in this figure, when connec-
ted, represent the stress path and the plastic strain increment vector is plotted
at each intersection point of the stress path with the corresponding yield sur-
face. The plastic strain increment vector is normal to the yield surface at these
points. Both the magnitude and the direction of the vector vary as the stress
path is traversed. The angle that the plastic strain increment vector makes
with the σ33 axis changes from 90◦, at the point when the stress path abruptly
changes its direction, to about 30◦ as the tensile stressing proceeds. But, the
angle does not remain constant. This theoretical prediction is comparable to
that experimentally observed by Phillips and Kaechele [18] from their testing
of aluminum specimens.
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12.8.6 Tor–Ten Path with Constant Shear Strain

This is a path previously investigated by Ohashi et al. [19] and Wu et al. [20]
for the multiaxial stress–strain behavior of metals in the small strain range.
But, the evolution of yield surfacewas not investigated by them. The example
presented is a pretorsion from 0 to a shear strain of γ = 0.1 (with a corres-
ponding shear stress of σ23 = 22.87 MPa) followed by an axial loading while
keeping the shear strain constant at γ = 0.1. The calculation is carried out
by use of the “linear” kinematic-hardening rule and keepingD33 = 0.001 s−1
during axial loading, while allowing σ23 andσ33 to vary. Figure 12.14(a) shows
that the shear stress drops quickly as the axial loading is applied. The shear
stress drops to a value of 5.65 MPa at an axial strain of ε = 0.002, to a value
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FIGURE 12.14
Tor–ten path with constant shear strain: (a) shear stress, (b) evolution of yield surfaces; • loading
point on each yield surface (From Wu, H.C., Int. J. Plasticity, 19, 1773, 2003. With permission
from Elsevier).
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of 5.06 MPa at ε = 0.08, and it stays almost constant thereafter, although still
slowly decreasing as the axial strain increased. The shear stress is 4.68MPa at

the stress point for each yield surface is denoted by a dot. It is seen that the
stress path follows the yield locus during the initial portion of the axial load-
ing. The yield surfaces show apparent isotropic–kinematic hardening with
distortion. But, no rotation is predicted by the model because the shear strain
was kept constant during axial loading.

12.9 A Stress Path of Tension-Unloading Followed by Torsion

This is a stress path investigated by Khan and Wang [21]. These authors
conducted combined axial–torsion tests onOHFC copper, following two non-
proportional stress paths. In one of the stress paths, the specimenwas stressed
in tension fromO to a into the plastic region (see Figure 12.15). Partial unload-
ing and reverse loading then took place from a to b while keeping the shear
stress 0. Finally, torsion was increased from b to D while keeping the axial
stress constant. In the other path, the specimen was subjected to shear stress
followed by an unloading. Axial stress was then applied while keeping the
shear stress constant. The two paths are similar in nature, andwe discuss here
only the first path mentioned above. The experimental data reported in [21]
are not complete in that no yield surfaces were determined. Nevertheless,

ABCDE

O b a
�33

3 �23

FIGURE 12.15
Schematic stress paths of axial stressing followed by unloading and reverse loading, and then
torsion while keeping the axial stress constant.
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ε = 0.3. Figure 12.14(b) shows the evolution of yield surface for this path and
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this set of data is useful in that it may be used to test a model subjected to a
nonproportional path.

model of the previous section, investigated the strain path during the final
torsion stage, which begins at various stages of unloading. The yield surface
shown in dashed curve is obtained from an axial stressing to σ33 = 81.03MPa
with a prestrain of ε = 0.45. Several torsion stress paths denoted by A, B, C,
D, and E were investigated, each starting at a different stage of unloading
identified by the value of ε. Path A has no unloading in the axial stress, and
torsion is appliedwhile keeping σ33 = 81.03MPa; in path B, torsion is applied
immediately after an elastic axial unloading, keeping σ33 = 34.11 MPa; path
C has a reverse loading down to ε = 0.4413, keeping σ33 = 26.39 MPa while
torsion is applied; path D has a reverse loading down to ε = 0.4343, keeping
σ33 = 20.10 MPa while torsion is applied; and path E has a reverse loading
down to ε = 0.3943, keeping σ33 = −9.42 MPa while torsion is applied. The

as torsion is applied in pathA. Immediately after an elastic unloading in path
B, the initial plastic yielding would produce a negative plastic strain incre-
ment, whichwould quickly turn positive as torsion increases. Since σ33 is kept
constant during this process, all axial strain increments are plastic strain incre-
ments. The specimen shortens initially and quickly turns into elongation as
torsion increases. Paths C, D, and E show the similar behavior of plastic strain
increment changing sign while the corresponding axial stress remains con-
stant. This behavior is similar to the experimental results reported inKhanand
Wang [21]. However, the sign change of the plastic strain increment is delayed
by the amount of reverse loading before torsion is applied. The further the
reverse loading goes, the larger the torsion that must be applied to cause the
plastic strain increment to change sign. If the reverse loading is large enough,
then no sign change in the plastic strain increment is predicted, and, in this
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0.45 0.5 0.55 0.6 0.65
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FIGURE 12.16
Strain paths corresponding to stress paths of Figure 12.15 using nonlinear kinematic-
hardening rule.
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Referring to Figure 12.15,Wu [15], using thenonlinear kinematic-hardening

corresponding strainpaths are shown inFigure 12.16. The specimen elongates
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case, the specimenwill shortenwhen torsion is applied. Further experimental
investigation is needed to determine the characteristics of the strain path.
The evolution of the yield surface for path D is shown in Figure 12.17.

Referring to Figure 12.15, path D follows path O–a–b–D. The first yield sur-
face shown at the right-hand side of Figure 12.17 corresponds to the stress
state at b, after an unloading and reverse loading from point a. At this point,
σ33 = 20.10 MPa and σ23 = 0. The plastic strain increment is shown by the
arrow and it is pointing to the negative direction of the σ33-axis. As torsion is
increased, the yield surface deforms, translates, and rotates, and the plastic
strain increment, shown by the arrow, changes its direction from negative to
positive.
A similar investigation was conducted by Wu [15] using the “linear”

kinematic-hardening rule. The strain paths of this calculation are shown in

applied. The axial strain at this point is ε = 0.45. In path B, torsion is applied
immediately after an elastic axial unloading. The axial strain at this point
is ε = 0.4493. Curve C represents two cases: torsion applied at ε = 0.4413
and 0.4343. But the two curves are indistinguishable in the figure. Curve D
represents the case when torsion is applied at ε = 0.4293. We see that the
plastic strain increment does not change sign in curves B, C, and D in con-
tradiction to the experimental results obtained by Khan and Wang [21]. In
particular, we mention that curve A predicts an elongation of the specimen

© 2005 by Chapman & Hall/CRC Press

path D shown in Figure 12.15.

Figure 12.18. Path A has no unloading in the axial stress before torsion is
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hardening rule.

when torsion is applied, whereas curve B predicts a shortening of the spe-
cimen. This is physically impossible because the two cases differ only by an
elastic unloading. Therefore, we must conclude that the “linear” kinematic
hardening leads to unreasonable behavior.

12.10 Summary and Discussion

This section discusses the evolution of the yield surface due to different (pro-
portional and nonproportional) loading paths with prestrains in the large
strain range. It has been concluded that the evolution of yield surface depends
significantly on the preloading path. The evolution includes the change in
size (isotropic-hardening), distortion, translation (kinematic hardening), and
rotation of the yield surface. No rotation of yield surface has been observed
for the specimen subjected to a proportional preloading path. Rotation of
yield surface may or may not occur, depending on the nonproportional path
followed. The following conclusions may be drawn about the anisotropic
plasticity model of Wu [3,15]:

1. Both “linear” and nonlinear kinematic-hardening rules give reason-
able results in one-dimensional cases such as the axial tension test or
the free-end torsion test.

2. In addition to describing the aforementioned seven sets of experi-
mental data, this model has been shown to describe the change in the
direction of the plastic strain increment in the case of torsion followed
by axial stressing. The results agree with the findings of Phillips and
Kaechele [18].
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Figure 12.15
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3. The nonlinear kinematic-hardening model predicted the change of
sign in the plastic strain increment as observed by Khan and Wang
[21]. This phenomenon is not predicted by the “linear” kinematic-
hardening model. Therefore, we can conclude that the nonlinear
kinematic-hardening rule gives reasonable results in the combined
axial–torsion stress states.
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Problems

(1) Show that Hill’s quadratic yield function reduces to (12.25).

(2) Derive (12.50).

(3) Use (12.86) to plot the initial yield surface using q = m̄ p, where m̄ is a
parameter.

(4) In the combined axial–torsion of a thin-walled tube, consider the material
On Face (2), the stress vector is t(n) =

t̃(n)igj = ñjτ jigj. Show that its tangential component is σ23 and its normal
component along the axial direction of the tube is σ33. Show the tangential
and normal components in a sketch.

(5) Find the physical components of the stress vector t(n) of Problem (4). Draw
a sketch to show these components.

(6) Plot curves to show the yield surface evolution, if a ten–tor path depicted by
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element depicted by Figure 12.2.

path OaA of Figure 12.15 is followed.
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(2) δijδij = δii = 3.
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Chapter 2
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(6) [t(n)] =

 0.35
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 , normal = −0.103, shear = 0.517.
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Chapter 3
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 , [R] =


1 0 0
0 1 0
0 0 1


.

(2) Length = 1.755.

(4) λ1 = 1, n(1) = [
0 0 1

]
, λ2 = 1

2 (k
2 + 2+ k

√
k2 + 4),

n(2) =

√

2

k2 + k
√

k2 + 4+ 4
,

√√√√ k2 + k
√

k2 + 4+ 2
k2 + k

√
k2 + 4+ 4

, 0


 ,
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λ3 = 1
2 (k

2 + 2− k
√

k2 + 4),

n(3) =

√

2

k2 − k
√

k2 + 4+ 4
,

√√√√ k2 − k
√

k2 + 4+ 2
k2 − k

√
k2 + 4+ 4

, 0


 .

(5) [dx] = [1+ k, 1, 0].

(7) [F] =
[
0.8 0.5

0.2 0.9

]
, [C] =

[
0.68 0.58

0.58 1.06

]
.

(11) (a)
{(α

2

)2 + β2 + γ 2}1/2, (b) cos−1
(

−α√
α2 + 4β2

)
, (c) αβγ = 1.

(12) [C] =


1.44 −0.72 0

−0.72 1.17 0

0 0 0.81


 , [e] =



−0.16 −0.23 0

−0.23 −0.27 0

0 0 −0.11


.

(15) (b) dx(1) · dx(2) = 0, φ = 90◦, (c) dx(1) · dx(2) = dX(1) dX(2), φ = 45◦.

(16) α2β = 1; ds =
√
α2τ2R2 + β2, dS = 1; ds = 1, dS = 1

β
(1+ R2τ2)1/2.

(17) [F] = (1+ α�T)[δij], l = (1+ α�T)L.

(18) κ = 2, [E] =




2
3

10

√
3
9

0

10

√
3
9

26
9

0

0 0 0



, κ = −2, [E] =




−26
9

10

√
3
9

0

10

√
3
9

−2
3

0

0 0 0



.

(24) [v] =
[
1
2X2

2, 0, 0
]
=

[
1
2x22, 0, 0

]
, [f ] = [0, 0, 0].

(29) (c) [D] =




0
2ktx2

(1+ kt)2
0

2ktx2
(1+ kt)2

k
1+ kt

0

0 0 0


 , [W ] =




0
2ktx2

(1+ kt)2
0

− 2ktx2
(1+ kt)2

0 0

0 0 0


,

(d)
dV
dV0

= det[F] = 1+ kt.

(33) n21 + n22 + n23 = 1 and n1 + n2 + n3 = ±1.
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Chapter 4

(2) Bijnj = λni, material model is σ = αB + βB · B + γ I. Show that
σijnj = (αλ+ βλ2 + γ )ni = m ni.

(4) [σ ] = χ̂0(k2)

1 0 0
0 1 0
0 0 1


+ χ̂1(k2)


1+ k2 k 0

k 1 0
0 0 1


+ χ̂−1(k2)


 1 −k 0
−k 1+ k2 0
0 0 1


,

σ12 = σ21 = µk, show that normal stresses are not zero.

Chapter 5

(4) For small strain, εp does not affect the Nadai equation.

(6) 0.248.

(10)
√
3× 10−4 s−1.

Chapter 6

(1) (a) 125 MPa, (b) 20 MPa, (c) −30 MPa.

(4) 18.75 mm.

(6) 287.35 MPa.

(10) σ̄ = σ .
(11) dε̄p = dεp.

(14) Mises yield criterion,
∂f
∂σkm

= σ ′km − c(κ1)ε
p
km,

∂f

∂ε
p
km

= −c
∂f
∂σkm

,

∂f
∂κ1
= − ∂c

∂κ1

∂f
∂σkm

ε
p
km, and

∂f
∂σkm

∂f
∂σkm

= 2f = 2κ0.

(15) Et = 3
4

(
2c+√6 ∂c

∂κ1
εp

)
.

Chapter 7

(6)
dσ22
dt
= 0,

dσ12
dt
= 2ω(σ22 + µ), dσ11dt

= 4ωσ12.

(8) Unloading starts at t∗, where σ∗12 =
Y√
3
+ h

3
sin γ ∗, γ = 2ωt∗ − 2ω(t − t∗),

σ12 = σ ′12 = −
Y√
3
+ αD12, σ11 = σ ′11 = αD11, σ22 = σ ′22 = αD22,

d2αD12
dt2

= −4ω2αD12
same as loading.
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(9) Use the flow rule.

(12) r = (
x21 + x22 + x23

)1/2, θ = tan−1
{
(x21 + x22)

1/2

x3

}
, φ = tan−1

(
x2
x1

)
.

[F] =




∂r
∂R

1
R
∂r
∂�

1
R sin�

∂r
∂�

r
∂θ

∂R
r
R
∂θ

∂�

r
R sin�

∂θ

∂�

r sin θ
∂φ

∂R
r
R
sin θ

∂φ

∂�

r sin θ
R sin�

∂φ

∂�



.

(13) σ̄ = σ , T̄(0) = e−εσ̄ , �̄ = e−2εσ̄ , ε̄ = ε.

(14) σ̄ = √3τ , T̄(0) = σ̄
√
4
3
η2 + 1, �̄ = σ̄

√
16
3
η2 + 1, ε̄ = 2η√

3
.

Chapter 8

(1) Use (8.65) in (8.64) and write the resulting equations in component form. Add
equations for σ11, σ22, σ33 to obtain (8.66a). Get (8.66b) by using σ ′ij = σij −
1
3 δijσkk . Use a similar procedure to obtain (8.67).

(4) k1 =
√
3
2 , k2 =

√
2.

(9) τ = τ∗, dτ = 0, dη = dηp, let z − z∗ = t and z′ − z∗ = t′, (8.131) becomes

τ∗ = σ ′y
dη
dt
+ 2µ2 e−α(t+z∗)X − 2µ2

∫ t
0 e
−α(t−t′) dη

dt′ dt′ + 2µ1η.
Use L-transform to find η̄, then reverse transform to find η(z).

(10) The stress will jump higher and gradually merge with the higher constant
strain-rate curve.

Chapter 10

(1) ε1 = 0.263, ε2 = 0.096, ε3 = −(ε1 + ε2) = −0.359, ε̄ = 0.372.

(2) dε
p
l = dεl −

dσl
E

, dε
p
w = dεw + ν dσlE

.

(3) R = Rs + εpt
dRs

dε
p
t
, Rs = ε

p
w

ε
p
t
, R = dε

p
w

dε
p
t
.

(4) Substitute stress transformation equations into (10.6). Expand and regroup the
resulting equation in a form similar to (10.6) and the stresses are nowexpressed
in the primed system. Require the coefficient of each term to be the same as
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that of the corresponding term in (10.6), we obtainN+F+ 2H and L =M. For
σz = σz′ , the requirement of (Gσx + Fσy)σz = (Gσx′ + Fσy′)σz′ leads to G = F.

(5) Due to symmetry for isotropic material, (10.5) leads to F = G = H and L =
M = N. But N = F + 2H due to rotational symmetry, therefore, N = 3F.

Chapter 11

(2) F = ∂xi
∂Xk

ei ⊗ Ek .

(4) Consider
∂ḡi

∂θ̄ j = �m
ij ḡm, where ḡi = ∂θm

∂θ̄ i gm.

∂ḡi

∂θ̄ j =
∂

∂θ̄ j

(
∂θm

∂θ̄ i gm

)
= ∂2θm

∂θ̄ i∂θ̄ j gm + ∂θ
m

∂θ̄ i
∂gm

∂θ̄ j

= ∂2θ s

∂θ̄ i∂θ̄ j
∂θ̄m

∂θ s ḡm + �t
rs
∂θ r

∂θ̄ i
∂θ s

∂θ̄ j
∂θ̄m

∂θ t ḡm.

(5)
∂H
∂θ r =

∂(H̃ijgi ⊗ gj)

∂θ r = ∂H̃ij

∂θ r gi ⊗ gj + H̃ij ∂gi
∂θ r ⊗ gj + H̃ijgi ⊗

∂gj

∂θ r

=
(
∂H̃ij

∂θ r + �i
rmH̃mj + �j

rmH̃im

)
gi ⊗ gj = H̃ij|rgi ⊗ gj.

(6) (vk + wk)|i = ∂(vk + wk)

∂θ i + (vj + wj)�k
ji = vk|i + wk|i.

(7) View vjwk as contravariant components of a second-rank tensor, then

(vjwk)|i = ∂(vjwk)

∂θ i + �j
im(v

mwk)+ �k
im(v

jwm) = vj|iwk + vjwk|i.

(9) σ11 = �11 + 2K �12 + K2�22, σ12 = �12 + K�22, σ22 = �22

2φ = σ 211 + (1+ K2)2σ 222 + (2K2 − 1)σ11σ22 + (3+ 4K2)σ 212

− 4Kσ12[σ11 + (1+ K2)σ22] = Y2

(13) D
p
11 = −

�̇

4
[−2ξ11 + 4Kξ12 + (1− K2)ξ22],

D
p
22 = −

�̇

4
[(1− K2)ξ11 + 2K(5+ 7K2)ξ12 − 2(1+ 6K2 + 6K4)ξ22],

D
p
12 = −

�̇

4
[2Kξ11 − 2(3+ 5K2)ξ12 + K(5+ 7K2)ξ22].
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