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Preface

“In the beginning was the Word. . .” (John 1:1, 1st century AD)

“Consider sunbeams. When the sun’s rays let in
Pass through the darkness of a shuttered room,
You will see a multitude of tiny bodies
All mingling in a multitude of ways
Inside the sunbeam, moving in the void,
Seeming to be engaged in endless strife,
Battle, and warfare, troop attacking troop,
And never a respite, harried constantly,
With meetings and with partings everywhere.
From this you can imagine what it is
For atoms to be tossed perpetually
In endless motion through the mighty void.”

(On the Nature of Things, Lucretius, 1st century BC)

“. . . (we) have borne the burden of the work and the heat of the day.”

(Matthew 20:12, 1st century AD)

Thermal physics forms a key part of any undergraduate physics course.
It includes the fundamentals of classical thermodynamics (which was
founded largely in the nineteenth century and motivated by a desire to
understand the conversion of heat into work using engines) and also sta-

tistical mechanics (which was founded by Boltzmann and Gibbs, and is
concerned with the statistical behaviour of the underlying microstates of
the system). Students often find these topics hard, and this problem is
not helped by a lack of familiarity with basic concepts in mathematics,
particularly in probability and statistics. Moreover, the traditional focus
of thermodynamics on steam engines seems remote and largely irrelevant
to a twenty-first century student. This is unfortunate since an under-
standing of thermal physics is crucial to almost all modern physics and
to the important technological challenges which face us in this century.

The aim of this book is to provide an introduction to the key con-
cepts in thermal physics, fleshed out with plenty of modern examples
from astrophysics, atmospheric physics, laser physics, condensed matter
physics and information theory. The important mathematical princi-
ples, particularly concerning probability and statistics, are expounded
in some detail. This aims to make up for the material which can no
longer be automatically assumed to have been covered in every school
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mathematics course. In addition, the appendices contain useful math-
ematics, such as various integrals, mathematical results and identities.
There is unfortunately no shortcut to mastering the necessary mathe-
matics in studying thermal physics, but the material in the appendix
provides a useful aide-mémoire.

Many courses on this subject are taught historically: the kinetic the-
ory of gases, then classical thermodynamics are taught first, with sta-
tistical mechanics taught last. In other courses, one starts with the
principles of classical thermodynamics, followed then by statistical me-
chanics and kinetic theory is saved until the end. Although there is
merit in both approaches, we have aimed at a more integrated treat-
ment. For example, we introduce temperature using a straightforward
statistical mechanical argument, rather than on the basis of a somewhat
abstract Carnot engine. However, we do postpone detailed considera-
tion of the partition function and statistical mechanics until after we
have introduced the functions of state which manipulation of the parti-
tion function so conveniently produces. We present the kinetic theory
of gases fairly early on, since it provides a simple, well-defined arena in
which to practise simple concepts in probability distributions. This has
worked well in the course given in Oxford, but since kinetic theory is
only studied at a later stage in courses in other places, we have designed
the book so that the kinetic theory chapters can be omitted without
causing problems; see Fig. 1.5 on page 10 for details. In addition, some
parts of the book contain material which is much more advanced (of-
ten placed in boxes, or in the final part of the book), and these can be
skipped at first reading.

The book is arranged in a series of short, easily digestible chapters,
each one introducing a new concept or illustrating an important appli-
cation. Most people learn from examples, so plenty of worked examples
are given in order that the reader can gain familiarity with the concepts
as they are introduced. Exercises are provided at the end of each chapter
to allow the students to gain practice in each area.

In choosing which topics to include, and at what level, we have aimed
for a balance between pedagogy and rigour, providing a comprehensible
introduction with sufficient details to satisfy more advanced readers. We
have also tried to balance fundamental principles with practical appli-
cations. However, this book does not treat real engines in any engineer-
ing depth, nor does it venture into the deep waters of ergodic theory.
Nevertheless, we hope that there is enough in this book for a thorough
grounding in thermal physics and the recommended further reading gives
pointers for additional material. An important theme running through
this book is the concept of information, and its connection with entropy.
The black hole shown at the start of this preface, with its surface cov-
ered in ‘bits’ of information, is a helpful picture of the deep connection
between information, thermodynamics, radiation and the Universe.

The history of thermal physics is a fascinating one, and we have pro-
vided a selection of short biographical sketches of some of the key pio-
neers in thermal physics. To qualify for inclusion, the person had to have
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made a particularly important contribution and/or had a particularly
interesting life – and be dead! Therefore one should not conclude from
the list of people we have chosen that the subject of thermal physics is
in any sense finished, it is just harder to write with the same perspective
about current work in this subject. The biographical sketches are nec-
essarily brief, giving only a glimpse of the life-story, so the Bibliography
should be consulted for a list of more comprehensive biographies. How-
ever, the sketches are designed to provide some light relief in the main
narrative and demonstrate that science is a human endeavour.

It is a great pleasure to record our gratitude to those who taught us the
subject while we were undergraduates in Cambridge, particularly Owen
Saxton and Peter Scheuer, and to our friends in Oxford: we have bene-
fitted from many enlightening discussions with colleagues in the physics
department, from the intelligent questioning of our Oxford students and
from the stimulating environments provided by both Mansfield College
and St John’s College. In the writing of this book, we have enjoyed the
steadfast encouragement of Sönke Adlung and his colleagues at OUP,
and in particular Julie Harris’ black-belt LATEX support.

A number of friends and colleagues in Oxford and elsewhere have been
kind enough to give their time and read drafts of chapters of this book;
they have made numerous helpful comments which have greatly im-
proved the final result: Fathallah Alouani Bibi, James Analytis, David
Andrews, Arzhang Ardavan, Tony Beasley, Michael Bowler, Peter Duffy,
Paul Goddard, Stephen Justham, Michael Mackey, Philipp Podsiad-
lowski, Linda Schmidtobreick, John Singleton and Katrien Steenbrugge.
Particular thanks are due to Tom Lancaster, who twice read the entire
manuscript at early stages and made many constructive and imaginative
suggestions, and to Harvey Brown, whose insights were always stimulat-
ing and whose encouragement was always constant. To all these friends,
our warmest thanks are due. Errors which we discover after going to
press will be posted on the book’s website, which may be found at:

http://users.ox.ac.uk/∼sjb/ctp
It is our earnest hope that this book will make the study of thermal
physics enjoyable and fascinating and that we have managed to commu-
nicate something of the enthusiasm we feel for this subject. Moreover,
understanding the concepts of thermal physics is vital for humanity’s
future; the impending energy crisis and the potential consequences of
climate change mandate creative, scientific and technological innova-
tions at the highest levels. This means that thermal physics is a field
which some of tomorrow’s best minds need to master today.

SJB & KMB
Oxford

June 2006

http://users.ox.ac.uk/~sjb/ctp
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Part I

Preliminaries

In order to explore and understand the rich and beautiful subject that
is thermal physics, we need some essential tools in place. Part I provides
these, as follows:

• In Chapter 1 we explore the concept of large numbers, showing
why large numbers appear in thermal physics and explaining how
to handle them. Large numbers arise in thermal physics because
the number of atoms in the bit of matter under study is usually
very large (for example, it can be typically of the order of 1023),
but also because many thermal physics problems involve combina-

torial calculations (and this can produce numbers like 1023!, where
“!” here means a factorial). We introduce Stirling’s approximation

which is useful for handling expressions such as lnN ! which fre-
quently appear in thermal physics. We discuss the thermodynamic

limit and state the ideal gas equation (derived later, in Chapter 6,
from the kinetic theory of gases).

• In Chapter 2 we explore the concept of heat, defining it as “energy
in transit”, and introduce the idea of a heat capacity.

• The ways in which thermal systems behave is determined by the
laws of probability, so we outline the notion of probability in Chap-
ter 3 and apply it to a number of problems. This Chapter may
well cover ground that is familiar to some readers, but is a useful
introduction to the subject.

• We then use these ideas to define the temperature of a system
from a statistical perspective and hence derive the Boltzmann dis-

tribution in Chapter 4. This distribution describes how a thermal
system behaves when it is placed in thermal contact with a large
thermal reservoir. This is a key concept in thermal physics and
forms the basis of all that follows.



1 Introduction

1.1 What is a mole? 3

1.2 The thermodynamic limit 4

1.3 The ideal gas 6
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1.5 Plan of the book 9

Chapter summary 12

Exercises 12

The subject of thermal physics involves studying assemblies of large
numbers of atoms. As we will see, it is the large numbers involved in
macroscopic systems which allow us to treat some of their properties in
a statistical fashion. What do we mean by a large number?

Some large numbers:

million 106

billion 109

trillion 1012

quadrillion 1015

quintillion 1018

googol 10100

googolplex 1010100

Note: these values assume the US bil-
lion, trillion etc which are now in gen-
eral use.

Large numbers turn up in many spheres of life. A book might sell a
million (106) copies (probably not this one), the Earth’s population is
(at the time of writing) between six and seven billion people (6–7×109),
and the US budget deficit is currently around half a quadrillion dollars
(5 × 1014 US$). But even these large numbers pale into insignificance
compared with the numbers involved in thermal physics. The number
of atoms in an average-sized piece of matter is usually ten to the power
of twenty-something, and this puts extreme limits on what sort of cal-
culations we can do to understand them.

Example 1.1

One kilogramme of nitrogen gas contains approximately 2 × 1025 N2

molecules. Let us see how easy it would be to make predictions about
the motion of the molecules in this amount of gas. In one year, there are
about 3.2×107 seconds, so that a 3 GHz personal computer can count
molecules at a rate of roughly 1017 year−1, if it counts one molecule every
computer clock cycle. Therefore it would take about 0.2 billion years
just for this computer to count all the molecules in one kilogramme
of nitrogen gas (a time which is roughly a few percent of the age of
the Universe!). Counting the molecules is a computationally simpler
task than calculating all their movements and collisions with each other.
Therefore modelling this quantity of matter by following each and every
particle is a hopeless task.11Still more hopeless would be the task

of measuring where each molecule is
and how fast it is moving in its initial
state! Hence, to make progress in thermal physics it is necessary to make

approximations and deal with the statistical properties of molecules, i.e.
to study how they behave on average. Chapter 3 therefore contains a
discussion of probability and statistical methods which are foundational
for understanding thermal physics. In this chapter, we will briefly re-
view the definition of a mole (which will be used throughout the book),
consider why very big numbers arise from combinatorial problems in
thermal physics and introduce the thermodynamic limit and the ideal

gas equation.
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1.1 What is a mole?

A mole is, of course, a small burrowing animal, but also a name (first
coined about a century ago from the German ‘Molekul’ [molecule]) rep-
resenting a certain numerical quantity of stuff. It functions in the same
way as the word ‘dozen’, which describes a certain number of eggs (12),
or ‘score’, which describes a certain number of years (20). It might be
easier if we could use the word dozen when describing a certain num-
ber of atoms, but a dozen atoms is not many (unless you are building a
quantum computer) and since a million, a billion, and even a quadrillion
are also too small to be useful, we have ended up with using an even
bigger number. Unfortunately, for historical reasons, it isn’t a power of
ten.

The mole:
A mole is defined as the quantity of matter that contains as many
objects (for example, atoms, molecules, formula units, or ions) as the
number of atoms in exactly 12 g (= 0.012 kg) of 12C.

A mole is also approximately the quantity of matter that contains as
many objects (for example, atoms, molecules, formula units, ions) as
the number of atoms in exactly 1 g (=0.001 kg) of 1H, but carbon was
chosen as a more convenient international standard since solids are easier
to weigh accurately.

A mole of atoms is equivalent to an Avogadro number NA of atoms.
The Avogadro number, expressed to 4 significant figures, is One can writeNA as 6.022×1023 mol−1

as a reminder of its definition, but NA

is dimensionless, as are moles. They
are both numbers. By the same logic,
one would have to define the ‘eggbox
number’ as 12 dozen−1.

NA = 6.022 × 1023 (1.1)

Example 1.2

• 1 mole of carbon is 6.022 × 1023 atoms of carbon.

• 1 mole of benzene is 6.022 × 1023 molecules of benzene.

• 1 mole of NaCl contains 6.022 × 1023 NaCl formula units, etc.

The Avogadro number is an exceedingly large number: a mole of eggs
would make an omelette with about half the mass of the Moon!

The molar mass of a substance is the mass of one mole of the sub-
stance. Thus the molar mass of carbon is 12 g, but the molar mass of
water is close to 18 g (because the mass of a water molecule is about 18

12
times larger than the mass of a carbon atom). The mass m of a single
molecule or atom is therefore the molar mass of that substance divided

by the Avogadro number. Equivalently:

molar mass = mNA. (1.2)
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1.2 The thermodynamic limit

In this section, we will explain how the large numbers of molecules in
a typical thermodynamic system mean that it is possible to deal with
average quantities. Our explanation proceeds using an analogy: imagine
that you are sitting inside a tiny hut with a flat roof. It is raining
outside, and you can hear the occasional raindrop striking the roof. The
raindrops arrive randomly, so sometimes two arrive close together, but
sometimes there is quite a long gap between raindrops. Each raindrop
transfers its momentum to the roof and exerts an impulse2 on it. If you2An impulse is the product of force and

a time interval. The impulse is equal to
the change of momentum.

knew the mass and terminal velocity of a raindrop, you could estimate
the force on the roof of the hut. The force as a function of time would
look like that shown in Fig. 1.1(a), each little blip corresponding to the
impulse from one raindrop.

t

F

t

F

t

F

Fig. 1.1 Graphs of the force on a roof
as function of time due to falling rain
drops.

Now imagine that you are sitting inside a much bigger hut with a flat
roof a thousand times the area of the first roof. Many more raindrops
will now be falling on the larger roof area and the force as a function of
time would look like that shown in Fig. 1.1(b). Now scale up the area
of the flat roof by a further factor of one hundred and the force would
look like that shown in Fig. 1.1(c). Notice two key things about these
graphs:

(1) The force, on average, gets bigger as the area of the roof gets
bigger. This is not surprising because a bigger roof catches more
raindrops.

(2) The fluctuations in the force get smoothed out and the force looks
like it stays much closer to its average value. In fact, the fluctua-
tions are still big but, as the area of the roof increases, they grow
more slowly than the average force does.

The force grows with area, so it is useful to consider the pressure which
is defined as

pressure =
force

area
. (1.3)

The average pressure due to the falling raindrops will not change as the
area of the roof increases, but the fluctuations in the pressure will de-
crease. In fact, we can completely ignore the fluctuations in the pressure
in the limit that the area of the roof grows to infinity. This is precisely
analogous to the limit we refer to as the thermodynamic limit.

Consider now the molecules of a gas which are bouncing around in a
container. Each time the molecules bounce off the walls of the container,
they exert an impulse on the walls. The net effect of all these impulses is
a pressure, a force per unit area, exerted on the walls of the container. If
the container were very small, we would have to worry about fluctuations
in the pressure (the random arrival of individual molecules on the wall,
much like the raindrops in Fig. 1.1(a)). However, in most cases that one
meets, the number of molecules in a container of gas is extremely large,
so these fluctuations can be ignored and the pressure of the gas appears
to be completely uniform. Again, our description of the pressure of this
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system can be said to be ‘in the thermodynamic limit’, where we have
let the number of molecules be regarded as tending to infinity in such a
way that the density of the gas is a constant.

Suppose that the container of gas has volume V , that the temperature
is T , the pressure is p and the kinetic energy of all the gas molecules adds
up to U . Imagine slicing the container of gas in half with an imaginary
plane, and now just focus your attention on the gas on one side of the
plane. The volume of this half of the gas, let’s call it V ∗, is by definition
half that of the original container, i.e.

V ∗ =
V

2
. (1.4)

The kinetic energy of this half of the gas, let’s call it U∗, is clearly half
that of the total kinetic energy, i.e.

U∗ =
U

2
. (1.5)

However, the pressure p∗ and the temperature T ∗ of this half of the gas
are the same as for the whole container of gas, so that

p∗ = p (1.6)

T ∗ = T. (1.7)

Variables which scale with the system size, like V and U , are called
extensive variables. Those which are independent of system size, like
p and T , are called intensive variables.

Thermal physics evolved in various stages and has left us with various
approaches to the subject:

• The subject of classical thermodynamics deals with macro-
scopic properties, such as pressure, volume and temperature, with-
out worrying about the underlying microscopic physics. It applies
to systems which are sufficiently large that microscopic fluctua-
tions can be ignored, and it does not assume that there is an
underlying atomic structure to matter.

• The kinetic theory of gases tries to determine the properties of
gases by considering probability distributions associated with the
motions of individual molecules. This was initially somewhat con-
troversial since the existence of atoms and molecules was doubted
by many until the late nineteenth and early twentieth centuries.

• The realization that atoms and molecules exist led to the devel-
opment of statistical mechanics. Rather than starting with de-
scriptions of macroscopic properties (as in thermodynamics) this
approach begins with trying to describe the individual microscopic
states of a system and then uses statistical methods to derive the
macroscopic properties from them. This approach received an ad-
ditional impetus with the development of quantum theory which
showed explicitly how to describe the microscopic quantum states
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of different systems. The thermodynamic behavior of a system is
then asymptotically approximated by the results of statistical me-
chanics in the thermodynamic limit, i.e. as the number of particles
tends to infinity (with intensive quantities such as pressure and
density remaining finite).

In the next section, we will state the ideal gas law which was first
found experimentally but can be deduced from the kinetic theory of
gases (see Chapter 6).

1.3 The ideal gas

Experiments on gases show that the pressure p of a volume V of gas
depends on its temperature T . For example, a fixed amount of gas at
constant temperature obeys

p ∝ 1/V, (1.8)

a result which is known as Boyle’s law (sometimes as the Boyle–
Mariotte law); it was discovered experimentally by Robert Boyle (1627–
1691) in 1662 and independently by Edmé Mariotte (1620–1684) in 1676.
At constant pressure, the gas also obeys

V ∝ T, (1.9)

where T is measured in Kelvin. This is known as Charles’ law and was
discovered experimentally, in a crude fashion, by Jacques Charles (1746–
1823) in 1787, and more completely by Joseph Louis Gay-Lussac (1778–
1850) in 1802, though their work was partly anticipated by Guillaume
Amontons (1663–1705) in 1699, who also noticed that a fixed volume of
gas obeys

p ∝ T, (1.10)

a result that Gay-Lussac himself found independently in 1809 and is
often known as Gay-Lussac’s law.33Note that none of these scientists ex-

pressed temperature in this way, since
the Kelvin scale and absolute zero had
yet to be invented. For example, Gay-
Lussac found merely that V = V0(1 +
αT̃ ), where V0 and α are constants and
T̃ is temperature in his scale.

These three empirical laws can be combined to give

pV ∝ T. (1.11)

It turns out that, if there are N molecules in the gas, this finding can
be expressed as follows:

pV = NkBT . (1.12)

This is known as the ideal gas equation, and the constant kB is known
as the Boltzmann constant.4 We now make some comments about the4It takes the numerical value kB =

1.3807×10−23 JK−1. We will meet this
constant again in eqn 4.7.

ideal gas equation.

• We have stated this law purely as an empirical law, observed in
experiment. We will derive it from first principles using the kinetic
theory of gases in Chapter 6. This theory assumes that a gas can
be modelled as a collection of individual tiny particles which can
bounce off the walls of the container, and each other (see Fig. 1.2).
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• Why do we call it ‘ideal’? The microscopic justification which
we will present in Chapter 6 proceeds under various assumptions:
(i) we assume that there are no intermolecular forces, so that the
molecules are not attracted to each other; (ii) we assume that
molecules are point-like and have zero size. These are idealized
assumptions and so we do not expect the ideal gas model to de-
scribe real gases under all circumstances. However, it does have
the virtue of simplicity: eqn 1.12 is simple to write down and re-
member. Perhaps more importantly, it does describe gases quite
well under quite a wide range of conditions.

Fig. 1.2 In the kinetic theory of gases,
a gas is modelled as a number of indi-
vidual tiny particles which can bounce
off the walls of the container, and each
other.

• The ideal gas equation forms the basis of much of our study of
classical thermodynamics. Gases are common in nature: they
are encountered in astrophysics and atmospheric physics and it
is gases which are used to drive engines, and thermodynamics was
invented to try and understand engines. Therefore this equation
is fundamental in our treatment of thermodynamics and should be
memorized.

• The ideal gas law, however, doesn’t describe all important gases,
and several chapters in this book are devoted to seeing what hap-
pens when various assumptions fail. For example, the ideal gas
equation assumes that the gas molecules move non-relativistically.
When this is not the case, we have to develop a model of relativistic
gases (see Chapter 25). At low temperatures and high densities,
gas molecules do attract one another (this must occur for liquids
and solids to form) and this is considered in Chapters 26, 27 and
28. Furthermore, when quantum effects are important we need a
model of quantum gases, and this is outlined in Chapter 30.

• Of course, thermodynamics applies also to systems which are not
gaseous (so the ideal gas equation, though useful, is not a cure for
all ills), and we will look at the thermodynamics of rods, bubbles
and magnets in Chapter 17.

1.4 Combinatorial problems

Even larger numbers than NA occur in problems involving combinations,
and these turn out to be very important in thermal physics. The follow-
ing example illustrates a simple combinatorial problem which captures
the essence of what we are going to have to deal with.

Example 1.3

Let us imagine that a certain system contains ten atoms. Each of these
atoms can exist in one of two states, according to whether it has zero
units or one unit of energy. These ‘units’ of energy are called quanta
of energy. How many distinct arrangements of quanta are possible for
this system if you have at your disposal (a) 10 quanta of energy; (b) 4
quanta of energy?
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Solution:

We can represent the ten atoms by drawing ten boxes; an empty box
signifies an atom with zero quanta of energy; a filled box signifies an
atom with one quantum of energy (see Fig. 1.3). We give two methods
for calculating the number of ways of arranging r quanta among n atoms:

Fig. 1.3 Ten atoms which can accom-
modate four quanta of energy. An
atom with a single quantum of energy
is shown as a filled circle, otherwise it
is shown as an empty circle. One con-
figuration is shown here.

(1) In the first method, we realize that the first quantum can be as-
signed to any of the n atoms, the second quantum can be as-
signed to any of the remaining atoms (there are n − 1 of them),
and so on until the rth quantum can be assigned to any of the
remaining n − r + 1 atoms. Thus our first guess for the num-
ber of possible arrangements of the r quanta we have assigned, is
Ωguess = n × (n − 1) × (n − 2) × . . . × (n − r + 1). This can be
simplified as follows:

Ωguess =
n× (n− 1) × (n− 2) × . . .× 1

(n− r) × (n− r − 1) × . . .× 1
=

n!

(n− r)!
. (1.13)

However, this assumes that we have labelled the quanta as ‘the
first quantum’, ‘the second quantum’ etc. In fact, we don’t care
which quantum is which because they are indistinguishable. We
can rearrange the r quanta in any one of r! arrangements. Hence
our answer Ωguess needs to be divided by r!, so that the number Ω
of unique arrangements is

Ω =
n!

(n− r)! r!
≡ nCr, (1.14)

where nCr is the symbol for a combination.55Other symbols sometimes used for

nCr include n
rC and

„
n
r

«
. (2) In the second method, we recognize that there are r atoms each

with one quantum and n−r atoms with zero quanta. The number
of arrangements is then simply the number of ways of arranging r
ones and n − r zeros. There are n! ways of arranging a sequence
of n distinguishable symbols. If r of these symbols are the same
(all ones), there are r! ways of arranging these without changing
the pattern. If the remaining n − r symbols are all the same (all
zeros), there are (n−r)! ways of arranging these without changing
the pattern. Hence we again find that

Ω =
n!

(n− r)! r!
. (1.15)

For the specific cases shown in Fig. 1.4:

Fig. 1.4 Each row shows the ten atoms
which can accommodate r quanta of en-
ergy. An atom with a single quantum of
energy is shown as a filled circle, oth-
erwise it is shown as an empty circle.
(a) For r = 10 there is only one possi-
ble configuration. (b) For r = 4, there
are 210 possibilities, of which three are
shown.

(a) n = 10, r = 10, so Ω = 10!/(10! × 0!) = 1. This one possibility,
with each atom having a quantum of energy, is shown in Fig. 1.4(a).

(b) n = 10, r = 4, so Ω = 10!/(6! × 4!) = 210. A few of these
possibilities are shown in Fig. 1.4(b).

If instead we had chosen 10 times as many atoms (so n = 100) and 10
times as many quanta, the numbers for (b) would have come out much
much bigger. In this case, we would have r = 40, Ω ∼ 1028. A further
factor of 10 sends these numbers up much further, so for n = 1000 and
r = 400, Ω ∼ 10290 – a staggeringly large number.
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The numbers in the above example are so large because factorials
increase very quickly. In our example we treated 10 atoms; we are
clearly going to run into trouble when we are going to deal with a mole
of atoms, i.e. when n = 6 × 1023.

One way of bringing large numbers down to size is to look at their
logarithms.6 Thus, if Ω is given by eqn 1.15, we could calculate 6We will use ‘ln’ to signify log to the

base e, i.e. ln = loge. This is known as
the natural logarithm.ln Ω = ln(n!) − ln((n− r)!) − ln(r!). (1.16)

This expression involves the logarithm of a factorial, and it is going
to be very useful to be able to evaluate this. Most pocket calculators
have difficulty in evaluating factorials above 69! (because 70! > 10100

and many pocket calculators give an overflow error for numbers above
9.999×1099), so some low cunning will be needed to overcome this. Such
low cunning is provided by an expression termed Stirling’s formula:

lnn! ≈ n lnn− n. (1.17)

This expression7 is derived in Appendix C.3. 7As shown in Appendix C.3, it is
slightly more accurate to use the for-
mula lnn! ≈ n lnn − n + 1

2
ln 2πn, but

this only gives a significant advantage
when n is not too large.

Example 1.4

Estimate the order of magnitude of 1023!.
Solution:

Using Stirling’s formula, we can estimate

ln 1023! ≈ 1023 ln 1023 − 1023 = 5.2 × 1024, (1.18)

and hence
1023! = exp(ln 1023!) ≈ exp(5.20 × 1024). (1.19)

We have our answer in the form ex, but we would really like it as ten to
some power. Now if ex = 10y, then y = x/ ln 10 and hence

1023! ≈ 102.26×1024

. (1.20)

Just pause for a moment to take in how big this number is. It is roughly
one followed by about 2.26 × 1024 zeros! Our claim that combinatorial
numbers are big seems to be justified!

1.5 Plan of the book

This book aims to introduce the concepts of thermal physics one by one,
steadily building up the techniques and ideas which make up the subject.
Part I contains various preliminary topics. In Chapter 2 we define heat
and introduce the idea of heat capacity. In Chapter 3, the ideas of
probability are presented for discrete and continuous distributions. (For
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Fig. 1.5 Organization of the book. The dashed line shows a possible route through the material which avoids the kinetic theory
of gases. The numbers of the core chapters are given in bold type. The other chapters can be omitted on a first reading, or for
a reduced-content course.
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a reader familiar with probability theory, this chapter can be omitted.)
We then define temperature in Chapter 4, and this allows us to introduce
the Boltzmann distribution, which is the probability distribution for
systems in contact with a thermal reservoir.

The plan for the remaining parts of the book is sketched in Fig. 1.5.
The following two parts contain a presentation of the kinetic theory of
gases which justifies the ideal gas equation from a microscopic model.
Part II presents the Maxwell–Boltzmann distribution of molecular speeds
in a gas and the derivation of formulae for pressure, molecular effusion
and mean free path. Part III concentrates on transport and thermal
diffusion. Parts II and III can be omitted in courses in which kinetic
theory is treated at a later stage.

In Part IV, we begin our introduction to mainstream thermodynamics.
The concept of energy is covered in Chapter 11, along with the zeroth
and first laws of thermodynamics. These are applied to isothermal and
adiabatic processes in Chapter 12.

Part V contains the crucial second law of thermodynamics. The idea
of a heat engine is introduced in Chapter 13, which leads to various
statements of the second law of thermodynamics. Hence the important
concept of entropy is presented in Chapter 14 and its application to
information theory is discussed in Chapter 15.

Part VI introduces the rest of the machinery of thermodynamics. Vari-
ous thermodynamic potentials, such as the enthalpy, Helmholtz function
and Gibbs function, are introduced in Chapter 16, and their usage illus-
trated. Thermal systems include not only gases, and Chapter 17 looks at
other possible systems such as elastic rods and magnetic systems. The
third law of thermodynamics is described in Chapter 18 and provides
a deeper understanding of how entropy behaves as the temperature is
reduced to absolute zero.

Part VII focusses on statistical mechanics. Following a discussion of
the equipartition of energy in Chapter 19, so useful for understanding
high temperature limits, the concept of the partition function is pre-
sented in some detail in Chapter 20 which is foundational for under-
standing statistical mechanics. The idea is applied to the ideal gas in
Chapter 21. Particle number becomes important when considering dif-
ferent types of particle, so the chemical potential and grand partition
function are presented in Chapter 22. Two simple applications where
the chemical potential is zero are photons and phonons, discussed in
Chapters 23 and 24 respectively.

The discussion up to this point has concentrated on the ideal gas
model and we go beyond this in Part VIII: Chapter 25 discusses the
effect of relativistic velocities and Chapters 26 and 27 discuss the ef-
fect of intermolecular interactions while phase transitions are discussed
in Chapter 28, where the important Clausius–Clapeyron equation for a
phase boundary is derived. Another quantum mechanical implication is
the existence of identical particles and the difference between fermions
and bosons, discussed in Chapter 29, and the consequences for the prop-
erties of quantum gases are presented in Chapter 30.
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The remainder of the book, Part IX, contains more detailed informa-
tion on various special topics which allow the power of thermal physics
to be demonstrated. In Chapters 31 and 32 we describe sound waves
and shock waves in fluids. We draw some of the statistical ideas of the
book together in Chapter 33 and discuss non-equilibrium thermodynam-
ics and the arrow of time in Chapter 34. Applications of the concepts
in the book to astrophysics in Chapters 35 and 36 and to atmospheric
physics are described in Chapter 37.

Chapter summary

• In this chapter, the idea of big numbers has been introduced. These
arise in thermal physics for two main reasons:

(1) The number of atoms in a typical macroscopic lump of matter
is large. It is measured in the units of the mole. One mole of
atoms contains NA atoms where NA = 6.022 × 1023.

(2) Combinatorial problems generate very large numbers. To
make these numbers manageable, we often consider their log-
arithms and use Stirling’s approximation: lnn! ≈ n lnn− n.

Exercises

(1.1) What is the mass of 3 moles of carbon dioxide
(CO2)? (1 mole of oxygen atoms has a mass of
16 g.)

(1.2) A typical bacterium has a mass of 10−12 g. Calcu-
late the mass of a mole of bacteria. (Interestingly,
this is about the total number of bacteria living in
the guts of all humans living on planet Earth.) Give
your answer in units of elephant-masses (elephants
have a mass ≈ 5000 kg).

(1.3) (a) How many water molecules are there in your
body? (Assume that you are nearly all water.)
(b) How many drops of water are there in all the
oceans of the world? (The mass of the world’s
oceans is about 1021 kg. Estimate the size of a typ-
ical drop of water.)
(c) Which of these two numbers from (a) and (b) is
the larger?

(1.4) A system contains n atoms, each of which can only
have zero or one quanta of energy. How many ways
can you arrange r quanta of energy when (a) n = 2,
r = 1; (b) n = 20, r = 10; (c) n = 2 × 1023,
r = 1023?

(1.5) What fractional error do you make when using Stir-
ling’s approximation (in the form ln n! ≈ n ln n−n)
to evaluate

(a) ln 10!,

(b) ln 100! and

(c) ln 1000! ?

(1.6) Show that eqn C.19 is equivalent to writing

n! ≈ nne−n
√

2πn, (1.21)

and
n! ≈

√
2πnn+ 1

2 e−n. (1.22)
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In this Chapter, we will introduce the concepts of heat and heat capacity.

2.1 A definition of heat

We all have an intuitive notion of what heat is: sitting next to a roaring
fire in winter, we feel its heat warming us up, increasing our temperature;
lying outside in the sunshine on a warm day, we feel the Sun’s heat
warming us up. In contrast, holding a snowball, we feel heat leaving
our hand and transferring to the snowball, making our hand feel cold.
Heat seems to be some sort of energy transferred from hot things to cold
things when they come into contact. We therefore make the following
definition:

heat is energy in transit.

We now stress a couple of important points about this definition.

(1) Experiments suggest that heat spontaneously transfers from a hot-
ter body to a colder body when they are in contact, and not in
the reverse direction. However, there are circumstances when it is
possible for heat to go in the reverse direction. A good example
of this is a kitchen freezer: you place food, initially at room tem-
perature, into the freezer and shut the door; the freezer then sucks
heat out of the food and cools the food down to below freezing
point. Heat is being transferred from your warmer food to the
colder freezer, apparently in the ‘wrong’ direction. Of course, to
achieve this, you have to be paying your electricity bill and there-
fore be putting in energy to your freezer. If there is a power cut,
heat will slowly leak back into the freezer from the warmer kitchen
and thaw out all your frozen food. This shows that it is possible
to reverse the direction of heat flow, but only if you intervene by
putting additional energy in. We will return to this point in Sec-
tion 13.5 when we consider refrigerators, but for now let us note
that we are defining heat as energy in transit and not hard-wiring
into the definition anything about which direction it goes.

(2) The ‘in transit’ part of our definition is very important. Though
you can add heat to an object, you cannot say that ‘an object
contains a certain quantity of heat.’ This is very different to the
case of the fuel in your car: you can add fuel to your car, and you
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are quite entitled to say that your car ‘contains a certain quantity
of fuel’. You even have a gauge for measuring it! But heat is quite
different. Objects do not and cannot have gauges which read out
how much heat they contain, because heat only makes sense when
it is ‘in transit’.1

1We will see later that objects can con-
tain a certain quantity of energy, so it
is possible, at least in principle, to have
a gauge which reads out how much en-
ergy is contained.

To see this, consider your cold hands on a chilly winter day. You
can increase the temperature of your hands in two different ways:
(i) by adding heat, for example by putting your hands close to
something hot, like a roaring fire; (ii) by rubbing your hands to-
gether. In one case you have added heat from the outside, in the
other case you have not added any heat but have done some work.
In both cases, you end up with the same final situation: hands
which have increased in temperature. There is no physical differ-
ence between hands which have been warmed by heat and hands
which have been warmed by work.2

2We have made this point by giving a
plausible example, but in Chapter 11
we will show using more mathematical
arguments that heat only makes sense
as energy ‘in transit’. Heat is measured in joules (J). The rate of heating has the units of watts

(W), where 1 W=1J s−1.

Example 2.1

A 1 kW electric heater is switched on for ten minutes. How much heat
does it produce?
Solution:

Ten minutes equals 600 s, so the heat Q is given by

Q = 1kW × 600 s = 600 kJ. (2.1)

Notice in this last example that the power in the heater is supplied by
electrical work. Thus it is possible to produce heat by doing work. We
will return to the question of whether one can produce work from heat
in Chapter 13.

2.2 Heat capacity

In the previous section, we explained that it is not possible for an object
to contain a certain quantity of heat, because heat is defined as ‘energy
in transit’. It is therefore with a somewhat heavy heart that we turn to
the topic of ‘heat capacity’, since we have argued that objects have no
capacity for heat! (This is one of those occasions in physics when decades
of use of a name have made it completely standard, even though it is
really the wrong name to use.) What we are going to derive in this
section might be better termed ‘energy capacity’, but to do this would
put us at odds with common usage throughout physics. All of this being
said, we can proceed quite legitimately by asking the following simple
question:
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How much heat needs to be supplied to an object to raise its

temperature by a small amount dT?

The answer to this question is the heat dQ = C dT , where we define
the heat capacity C of an object using

C =
dQ

dT
. (2.2)

As long as we remember that heat capacity tells us simply how much
heat is needed to warm an object (and is nothing about the capacity of
an object for heat) we shall be on safe ground. As can be inferred from
eqn 2.2, the heat capacity C has units J K−1.

As shown in the following example, although objects have a heat ca-
pacity, one can also express the heat capacity of a particular substance
per unit mass, or per unit volume.3

3We will use the symbol C to represent
a heat capacity, whether of an object,
or per unit volume, or per mole. We
will always state which is being used.
The heat capacity per unit mass is dis-
tinguished by the use of the lower-case
symbol c. We will usually reserve the
use of subscripts on the heat capacity
to denote the constraint being applied
(see later).

Example 2.2

The heat capacity of 0.125 kg of water is measured to be 523 J K−1 at
room temperature. Hence calculate the heat capacity of water (a) per
unit mass and (b) per unit volume.
Solution:

(a) The heat capacity per unit mass c is given by dividing the heat
capacity by the mass, and hence

c =
523 J K−1

0.125 kg
= 4.184 × 103 J K−1 kg−1 . (2.3)

(b) The heat capacity per unit volume C is obtained by multiplying
the previous answer by the density of water, namely 1000 kg m−3, so
that

C = 4.184 × 103 J K−1 kg−1 × 1000 kg m−3 = 4.184 × 106 J K−1 m−3.
(2.4)

The heat capacity per unit mass c occurs quite frequently, and it is
given a special name: the specific heat capacity.

Example 2.3

Calculate the specific heat capacity of water.
Solution:

This is given in answer (a) from the previous example: the specific heat
capacity of water is 4.184 × 103 J K−1 kg−1 .



16 Heat

Also useful is the molar heat capacity, which is the heat capacity
of one mole of the substance.

Example 2.4

Calculate the molar heat capacity of water. (The molar mass of water
is 18 g.)
Solution:

The molar heat capacity is obtained by multiplying the specific heat
capacity by the molar mass, and hence

C = 4.184 × 103 J K−1 kg−1 × 0.018 kg = 75.2 J K−1 mol−1. (2.5)

When we think about the heat capacity of a gas, there is a further
complication.4 We are trying to ask the question: how much heat should4This complication is there for liquids

and solids, but doesn’t make such a big
difference.

you add to raise the temperature of our gas by one degree Kelvin? But
we can imagine doing the experiment in two ways (see also Fig. 2.1):

Fig. 2.1 Two methods of heating a gas:
(a) constant volume, (b) constant pres-
sure.

(1) Place our gas in a sealed box and add heat (Fig. 2.1(a)). As the
temperature rises, the gas will not be allowed to expand because
its volume is fixed, so its pressure will increase. This method is
known as heating at constant volume.

(2) Place our gas in a chamber connected to a piston and heat it
(Fig. 2.1(b)). The piston is well lubricated, and so will slide in
and out to maintain the pressure in the chamber to be identical
to that in the lab. As the temperature rises, the piston is forced
out (doing work against the atmosphere) and the gas is allowed to
expand, keeping its pressure constant. This method is known as
heating at constant pressure.

In both cases, we are applying a constraint to the system, either con-
straining the volume of the gas to be fixed, or constraining the pressure
of the gas to be fixed. We need to modify our definition of heat capacity
given in eqn 2.2, and hence we define two new quantities: CV is the heat
capacity at constant volume and Cp is the heat capacity at constant

pressure. We can write them using partial differentials as follows:

CV =

(
∂Q

∂T

)
V

, (2.6)

Cp =

(
∂Q

∂T

)
p

. (2.7)

We expect that Cp will be bigger than CV for the simple reason that
more heat will need to be added when heating at constant pressure than
when heating at constant volume. This is because in the latter case
additional energy will be expended on doing work on the atmosphere
as the gas expands. It turns out that indeed Cp is bigger than CV in
practice.5

5We will calculate the relative sizes of
CV and Cp in Section 11.3.
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Example 2.5

The specific heat capacity of helium gas is measured to be 3.12 kJ K−1 kg−1

at constant volume and 5.19 kJ K−1 kg−1 at constant pressure. Calculate
the molar heat capacities. (The molar mass of helium is 4 g.)
Solution:

The molar heat capacity is obtained by multiplying the specific heat
capacity by the molar mass, and hence

CV = 12.48 J K−1 mol−1, (2.8)

Cp = 20.76 J K−1 mol−1. (2.9)

(Interestingly, these answers are almost exactly 3
2R and 5

2R. We will see
why in Section 11.3.)

Chapter summary

• In this chapter, the concepts of heat and heat capacity have been
introduced.

• Heat is ‘energy in transit’.

• The heat capacity C of an object is given by C = dQ/dT . The heat
capacity of a substance can also be expressed per unit volume or
per unit mass (in the latter case it is called specific heat capacity).

Exercises

(2.1) Using data from this chapter, estimate the energy
needed to (a) boil enough tap water to make a cup
of tea, (b) heat the water for a bath.

(2.2) The world’s oceans contain approximately 1021 kg
of water. Estimate the total heat capacity of the
world’s oceans.

(2.3) The world’s power consumption is currently about
13 TW, and growing! (1 TW= 1012 W.) Burning
one ton of crude oil (which is nearly seven barrels
worth) produces about 42GJ (1 GJ= 109 J). If the
world’s total power needs were to come from burn-
ing oil (a large fraction currently does), how much
oil would we be burning per second?

(2.4) The molar heat capacity of gold is 25.4 Jmol−1 K−1.
Its density is 19.3×103 kg m−3. Calculate the spe-
cific heat capacity of gold and the heat capacity
per unit volume. What is the heat capacity of
4 × 106 kg of gold? (This is roughly the holdings
of Fort Knox.)

(2.5) Two bodies, with heat capacities C1 and C2 (as-
sumed independent of temperature) and initial tem-
peratures T1 and T2 respectively, are placed in ther-
mal contact. Show that their final temperature
Tf is given by Tf = (C1T1 + C2T2)/(C1 + C2).
If C1 is much larger than C2, show that Tf ≈
T1 + C2(T2 − T1)/C1.
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Life is full of uncertainties, and has to be lived according to our best
guesses based on the information available to us. This is because the
chain of events that lead to various outcomes can be so complex that the
exact outcomes are unpredictable. Nevertheless, things can still be said
even in an uncertain world: for example, it is more helpful to know that
there is a 20% chance of rain tomorrow than that the weather forecaster
has absolutely no idea; or worse still that he/she claims that there will
definitely be no rain, when there might be! Probability is therefore an
enormously useful and powerful subject, since it can be used to quantify

uncertainty.
The foundations of probability theory were laid by the French mathe-

maticians Pierre de Fermat (1601–1665) and Blaise Pascal (1623–1662),
in a correspondence in 1654 which originated from a problem set to them
by a gentleman gambler. The ideas proved to be intellectually infectious
and the first probability textbook was written by the Dutch physicist
Christian Huygens (1629–1695) in 1657, who applied it to the working
out of life expectancy. Probability was thought to be useful only for de-
termining possible outcomes in situations in which we lacked complete
knowledge. The supposition was that if we could know the motions of
all particles at the microscopic level, we could determine every outcome
precisely. In the twentieth century, the discovery of quantum theory has
led to the understanding that, at the microscopic level, outcomes are
purely probabilistic.

Probability has had a huge impact on thermal physics. This is be-
cause we are often interested in systems containing huge numbers of
particles, so that predictions based on probability turn out to be precise
enough for most purposes. In a thermal physics problem, one is often
interested in the values of quantities which are the sum of many small
contributions from individual atoms. Though each atom behaves dif-
ferently, the average behaviour is what comes through, and therefore it
becomes necessary to be able to extract average values from probability
distributions.

In this chapter, we will define some basic concepts in probability the-
ory. Let us begin by stating that the probability of occurrence of a
particular event, taken from a finite set of possible events, is zero if that
event is impossible, is one if that event is certain, and takes a value some-
where in between zero and one if that event is possible but not certain.
We begin by considering two different types of probability distribution:
discrete and continuous.



3.1 Discrete probability distributions 19

3.1 Discrete probability distributions

Discrete random variables can only take a finite number of values. Ex-
amples include the number obtained when throwing a die (1, 2, 3, 4, 5 or
6), the number of children in each family (0, 1, 2, . . .), and the number
of people killed per year in the UK in bizarre gardening accidents (0,
1, 2, . . .). Let x be a discrete random variable which takes values
xi with probability Pi. We require that the sum of the probabilities of
every possible outcome adds up to one. This may be written∑

i

Pi = 1. (3.1)

We define the mean (or average or expected value) of x to be Alternative notations for the mean of
x include x̄ and E(x). We prefer the
one given in the main text since it is
easier to distinguish quantities such as
〈x2〉 and 〈x〉2 with this notation, par-
ticularly when writing quickly.

〈x〉 =
∑

i

xiPi. (3.2)

The idea is that you weight by its probability each value taken by the
random variable x.

Example 3.1

Note that the mean, 〈x〉, may be a value which x cannot actually take.
A common example of this is the number of children in families, which is
often quoted as 2.4. Any individual couple can only have an integer num-
ber of children. Thus the expected value of x is actually an impossibility!

It is also possible to define the mean squared value of x using

〈x2〉 =
∑

i

x2
iPi. (3.3)

In fact, any function of x can be averaged, using (by analogy)

〈f(x)〉 =
∑

i

f(xi)Pi. (3.4)

Now let us actually evaluate the mean of x for a particular discrete
distribution.

Example 3.2

Let x take values 0, 1 and 2 with probabilities 1
2 , 1

4 and 1
4 respectively.

x

P
x

Fig. 3.1 An example of a discrete prob-
ability distribution.This distribution is shown in Figure 3.1. Calculate 〈x〉 and 〈x2〉.



20 Probability

Solution:

First check that
∑
Pi = 1. Since 1

2 + 1
4 + 1

4 = 1, this is fine. Now we
can calculate the averages as follows:

〈x〉 =
∑

i

xiPi

= 0 · 1

2
+ 1 · 1

4
+ 2 · 1

4

=
3

4
. (3.5)

Again, we find that the mean 〈x〉 is not actually one of the possible
values of x. We can now calculate the value of 〈x2〉 as follows:

〈x2〉 =
∑

i

x2
iPi

= 0 · 1

2
+ 1 · 1

4
+ 4 · 1

4

=
5

4
. (3.6)

3.2 Continuous probability distributions

Let x now be a continuous random variable,1which has a probability1For a continuous random variable,
there are an infinite number of possi-
ble values it can take, so the probabil-
ity of any one of them occurring is zero!
Hence we talk about the probability of
the variable lying in some range, such
as ‘between x and x+ dx’.

P (x) dx of having a value between x and x + dx. Continuous random
variables can take a range of possible values. Examples include the
height of children in a class, the length of time spent in a waiting room,
and the amount a person’s blood pressure increases when they read their
mobile-phone bill. These quantities are not restricted to any finite set
of values, but can take a continuous set of values.

As before, we require that the total probability of all possible outcomes
is one. Because we are dealing with continuous distributions, the sums
become integrals, and we have∫

P (x) dx = 1. (3.7)

The mean is defined as

〈x〉 =

∫
xP (x) dx. (3.8)

Similarly, the mean square value is defined as

〈x2〉 =

∫
x2 P (x) dx, (3.9)

and the mean of any function of x, f(x), can be defined as

〈f(x)〉 =

∫
f(x)P (x) dx, (3.10)
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Example 3.3

Let P (x) = Ce−x2/2a2

where C and a are constants. This probability
is illustrated in Figure 3.2 and this curve is known as a Gaussian.2 2See Appendix C.2.

Calculate 〈x〉 and 〈x2〉 given this probability distribution.
Solution:

The first thing to do is to normalize the probability distribution (i.e. to
ensure that the sum over all probabilities is one). This allows us to find
the constant C using eqn C.3 to do the integral:

1 =

∫ ∞

−∞
P (x) dx = C

∫ ∞

−∞
e−x2/2a2

dx

= C
√

2πa2 (3.11)

(3.12)

so we find that C = 1/
√

2πa2 which gives

P (x) =
1√

2πa2
e−x2/2a2

. (3.13)

The mean of x can then be evaluated using

〈x〉 =
1√

2πa2

∫ ∞

−∞
x e−x2/2a2

dx

= 0, (3.14)

because the integrand is an odd function. The mean of x2 can also be

P x

x

Fig. 3.2 An example continuous prob-
ability distribution.

evaluated as follows:

〈x2〉 =
1√

2πa2

∫ ∞

−∞
x2 e−x2/2a2

dx

=
1√

2πa2

1

2

√
8πa6

= a2, (3.15)

where the integrals are performed as described in Appendix C.2.

3.3 Linear transformation

Sometimes one has a random variable, and one wants to make a second
random variable by performing a linear transformation on the first one.
If y is a random variable which is related to the random variable x by
the equation

y = ax+ b (3.16)

where a and b are constants, then the average value of y is given by

〈y〉 = 〈ax+ b〉 = a〈x〉 + b. (3.17)

The proof of this result is straightforward and is left as an exercise.
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Example 3.4

Temperatures in Celsius and Fahrenheit are related by the simple for-
mula C = 5

9 (F − 32), where C is the temperature in Celsius and F the
temperature in Fahrenheit. Hence the average temperature of a partic-
ular temperature distribution is 〈C〉 = 5

9 (〈F 〉−32). The average annual
temperature in New York Central Park is 54◦F. One can convert this to
Celsius using the formula above to get ≈ 12◦C.

3.4 Variance

We now know how to calculate the average of a set of values, but what
about the spread in the values? The first idea one might have to quantify
the spread of values in a distribution is to consider the deviation from
the mean for a particular value of x. This is defined by

x− 〈x〉. (3.18)

This quantity tells you by how much a particular value is above or below
the mean value. We can work out the average of the deviation (averaging
over all values of x) as follows:

〈x− 〈x〉〉 = 〈x〉 − 〈x〉 = 0, (3.19)

which follows from using the equation for linear transformation (eqn 3.17).
Thus the average deviation is not going to be a very helpful indicator!
Of course, the problem is that the deviation is sometimes positive and
sometimes negative, and the positive and negative deviations cancel out.
A more useful quantity would be the modulus of the deviation,

|x− 〈x〉|, (3.20)

which is always positive, but this will suffer from the disadvantage that
modulus signs in algebra can be both confusing and tedious. Therefore,
another approach is to use another quantity which is always positive,
the square of the deviation, (x− 〈x〉)2. This quantity is what we need:
always positive and easy to manipulate algebraically. Hence, its average
is given a special name, the variance. Consequently, the variance of x,
written as σ2

x, is defined as the mean squared deviation: 3

3In fact, in general we can define the

kth moment about the mean as 〈(x−
〈x〉)k〉. The first moment about the
mean is the mean deviation, and it is
zero, as we have seen. The second mo-
ment about the mean is the variance.
The third moment about the mean is
known as the skewness parameter, and
sometimes turns out to be useful. The
fourth moment about the mean is called
the kurtosis.

σ2
x = 〈(x− 〈x〉)2〉. (3.21)

We further will define the standard deviation, σx as the square root
of the variance:

σx =
√

〈(x− 〈x〉)2〉. (3.22)
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The standard deviation represents the ‘root mean square’ (known as the
‘r.m.s.’) scatter or spread in the data.

The following identity is extremely useful:

σ2
x = 〈(x− 〈x〉)2〉

= 〈x2 − 2x〈x〉 + 〈x〉2〉
= 〈x2〉 − 2〈x〉〈x〉 + 〈x〉2
= 〈x2〉 − 〈x〉2. (3.23)

Example 3.5

For Examples 2.2 and 2.3 above, work out σ2
x, the variance of the dis-

tribution, in each case.
Solution:

For Example 2.2

σ2
x = 〈x2〉 − 〈x〉2 =

5

4
− 9

16
=

11

16
. (3.24)

For Example 2.3

σ2
x = 〈x2〉 − 〈x〉2 = a2 − 0 = a2. (3.25)

3.5 Linear transformation and the
variance

We return to the problem of a linear transformation of a random variable.
What happens to the variance in this case?

If y is a random variable which is related to the random variable x by
the equation

y = ax+ b, (3.26)

where a and b are constants, then we have seen that

〈y〉 = 〈ax+ b〉 = a〈x〉 + b. (3.27)

Hence, we can work out 〈y2〉, which is

〈y2〉 = 〈(ax+ b)2〉
= 〈a2x2 + 2abx+ b2〉
= a2〈x2〉 + 2ab〈x〉 + b2. (3.28)

Also, we can work out 〈y〉2, which is

〈y〉2 = (a〈x〉 + b)2 = a2〈x〉2 + 2ab〈x〉 + b2. (3.29)
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Hence, using eqn 3.23, the variance in y is given by eqn 3.28 minus
eqn 3.29, i.e.

σ2
y = 〈y2〉 − 〈y〉2

= a2〈x2〉 − a2〈x〉2
= a2σ2

x. (3.30)

Notice that the variance depends on a but not on b. This makes sense
because the variance tells us about the width of a distribution, and
nothing about its absolute position. The standard deviation of y is
therefore given by

σy = aσx. (3.31)

Example 3.6

The average temperature in a town in the USA in January is 23◦F and
the standard deviation is 9◦F. Convert these figures into Celsius using
the relation in Example 2.4.
Solution:

The average temperature in Celsius is given by

〈C〉 =
5

9
(〈F 〉 − 32) =

5

9
(23 − 32) = −5◦C, (3.32)

and the standard deviation is given by 5
9 × 9 = 5◦C.

3.6 Independent variables

If u and v are independent random variables,4 the probability that4Two random variables are indepen-
dent if knowing the value of one of them
yields no information about the value
of the other. For example, the height
of a person chosen at random from a
city and the number of hours of rain-
fall in that city on the first Tuesday
of September are two independent ran-
dom variables.

u is in the range from u to u+du and v is in the range from v to v+dv
is given by the product

Pu(u)duPv(v)dv. (3.33)

Hence, the average value of the product of u and v is

〈uv〉 =

∫∫
uvPu(u)Pv(v) du dv

=

∫
uPu(u) du

∫
vPv(v) dv

= 〈u〉〈v〉, (3.34)

because the integrals separate for independent random variables. Thus
the average value of the product of u and v is equal to the product of
their average values.
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Example 3.7

Suppose that there are n independent random variables, Xi, each with
the same mean 〈X〉 and variance σ2

X . Let Y be the sum of the random
variables, so that Y = X1 +X2 + · · ·+Xn. Find the mean and variance
of Y .
Solution:

The mean of Y is simply

〈Y 〉 = 〈X1〉 + 〈X2〉 + · · · + 〈Xn〉, (3.35)

but since all the Xi have the same mean 〈X〉 this can be written

〈Y 〉 = n〈X〉. (3.36)

Hence the mean of Y is n times the mean of the Xi. To find the variance
of Y , we can use the formula

σ2
Y = 〈Y 2〉 − 〈Y 〉2. (3.37)

Hence

〈Y 2〉 = 〈X2
1 + · · · +X2

N +X1X2 +X2X1 +X1X3 + · · · 〉 (3.38)

= 〈X2
1 〉 + · · · + 〈X2

N 〉 + 〈X1X2〉 + 〈X2X1〉 + 〈X1X3〉 + · · ·
There are n terms like 〈X2

1 〉 on the right-hand side, and n(n− 1) terms
like 〈X1X2〉. The former terms take the value 〈X2〉 and the latter terms
(because they are the product of two independent random variables)
take the value 〈X〉〈X〉 = 〈X〉2. Hence, using eqn 3.36,

〈Y 2〉 = n〈X2〉 + n(n− 1)〈X〉2, (3.39)

so that

σ2
Y = 〈Y 2〉 − 〈Y 〉2

= n〈X2〉 − n〈X〉2
= nσ2

X . (3.40)

The results proved in this last example have some interesting appli-
cations. The first concerns experimental measurements. Imagine that a
quantity X is measured n times, each time with an independent error,
which we call σX . If you add up the results of the measurements to
make Y =

∑
Xi, then the rms error in Y is only

√
n times the rms

error of a single X. Hence if you try and get a good estimate of X
by calculating (

∑
Xi)/n, the error in this quantity is equal to σX/

√
n.

Thus, for example, if you make four measurements of a quantity and
average your results, the random error in your average is half of what it
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would be if you’d just taken a single measurement. Of course, you may
still have systematic errors in your experiment. If you are consistently
overestimating your quantity by an error in your experimental setup,
that error won’t reduce by repeated measurement!

A second application is in the theory of random walks. Imagine a
drunken person staggering out of a pub and attempting to walk along
a narrow street (which confines him or her to motion in one dimen-
sion). Let’s pretend that with each inebriated step, the drunken person
is equally likely to travel one step forward or one step backward. The
effects of intoxication are such that each step is uncorrelated with the
previous one. Thus the average distance travelled in a single step is
〈X〉 = 0. After n such steps, we would have an expected total distance
travelled of 〈Y 〉 =

∑〈Xi〉 = 0. However, in this case the root mean
squared distance is more revealing. In this case 〈Y 2〉 = n〈X2〉, so that
the rms length of a random walk of n steps is

√
n times the length of

a single step. This result will be useful in considering Brownian motion
in Chapter 33.

Chapter summary

• In this chapter, several introductory concepts in probability theory
have been introduced.

• The mean of a discrete probability distribution is given by

〈x〉 =
∑

i

xiPi,

and the mean of a continuous probability distribution is given by

〈x〉 =

∫
xP (x) dx.

• The variance is given by

σ2
x = 〈(x− 〈x〉)2〉,

where σx is the standard deviation.

• If y = ax+ b, then 〈y〉 = a〈x〉 + b and σy = aσx.

• If u and v are independent random variables, then 〈uv〉 = 〈u〉〈v〉.
In particular, if Y = X1 + X2 + · · · + Xn, where the X’s are all
from the same distribution, 〈Y 〉 = n〈x〉 and σY =

√
nσX .
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Further reading

There are many good books on probability theory and statistics. Recommended ones include Papoulis (1984), Wall
and Jenkins (2003) and Sivia and Skilling (2006).

Exercises

(3.1) A throw of a regular die yields the numbers 1, 2,
. . . , 6, each with probability 1/6. Find the mean,
variance and standard deviation of the numbers ob-
tained.

(3.2) The mean birth weight of babies in the UK is about
3.2 kg with a standard deviation of 0.5 kg. Convert
these figures into pounds (lb), given that 1 kg =
2.2 lb.

(3.3) This question is about a discrete probability distri-
bution known as the Poisson distribution. Let
x be a discrete random variable which can take the
values 0, 1, 2, . . . A quantity is said to be Poisson
distributed if one obtains the value x with proba-
bility

P (x) =
e−mmx

x!
,

where m is a particular number (which we will show
in part (b) of this exercise is the mean value of x).

(a) Show that P (x) is a well-behaved probability
distribution in the sense that

∞X
x=0

P (x) = 1.

(Why is this condition important?)

(b) Show that the mean value of the probability

distribution is 〈x〉 =
∞X

x=0

xP (x) = m.

(c) The Poisson distribution is useful for describing
very rare events which occur independently
and whose average rate does not change over
the period of interest. Examples include birth
defects measured per year, traffic accidents at
a particular junction per year, numbers of ty-
pographical errors on a page, and number of
activations of a Geiger counter per minute.
The first recorded example of a Poisson dis-
tribution, the one which in fact motivated

Poisson, was connected with the rare event
of someone being kicked to death by a horse
in the Prussian army. The number of horse-
kick deaths of Prussian military personnel was
recorded for each of 10 corps in each of 20
years from 1875–1894 and the following data
recorded:

Number of deaths Observed
per year frequency
per corps

0 109
1 65
2 22
3 3
4 1

≥ 5 0

Total 200

Calculate the mean number of deaths per
year per corps. Compare the observed fre-
quency with a calculated frequency assuming
the number of deaths per year per corps are
Poisson distributed with this mean.

(3.4) This question is about a continuous probability dis-
tribution known as the exponential distribution.
Let x be a continuous random variable which can
take any value x ≥ 0. A quantity is said to be ex-
ponentially distributed if it takes values between x
and x + dx with probability

P (x) dx = Ae−x/λ dx

where λ and A are constants.

(a) Find the value of A that makes P (x) a well-
defined continuous probability distribution so
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that Z ∞

0

P (x) dx = 1.

(b) Show that the mean value of the probability

distribution is 〈x〉 =

Z ∞

0

xP (x) dx = λ.

(c) Find the variance and standard deviation of
this probability distribution. Both the expo-
nential distribution and the Poisson distribu-
tion are used to describe similar processes,
but for the exponential distribution x is the
actual time between, for example, successive
radioactive decays, successive molecular col-
lisions, or successive horse-kicking incidents
(rather than, as with the Poisson distribution,
x being simply the number of such events in
a specified interval).

(3.5) If θ is a continuous random variable which is uni-
formly distributed between 0 and π, write down an
expression for P (θ). Hence find the value of the
following averages:

(i) 〈θ〉;
(ii) 〈θ − π

2
〉;

(iii) 〈θ2〉;
(iv) 〈θn〉 (for the case n ≥ 0);

(v) 〈cos θ〉;
(vi) 〈sin θ〉;
(vii) 〈| cos θ|〉;
(viii) 〈cos2 θ〉;
(ix) 〈sin2 θ〉;
(x) 〈cos2 θ + sin2 θ〉.
Check that your answers are what you expect.

(3.6) In experimental physics, it is important to repeat
measurements. Assuming that errors are random,
show that if the error in making a single measure-
ment of a quantity X is ∆, the error obtained af-
ter using n measurements is ∆/

√
n. (Hint: Af-

ter n measurements, the procedure would be to
take the n results and average them. So you re-
quire the standard deviation of the quantity Y =
(X1+X2+ · · ·+Xn)/n where X1, X2 . . . Xn can be
assumed to be independent, and each has standard
deviation ∆.)
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Ludwig Boltzmann (1844–1906)

Ludwig Boltzmann made major contributions
to the applications of probability to thermal
physics. He worked out much of the kinetic
theory of gases independently of Maxwell, and

Fig. 3.3 Ludwig Boltzmann

together they share the
credit for the Maxwell–
Boltzmann distribution
(see Chapter 5). Boltz-
mann was very much in
awe of Maxwell all his
life, and was one of the
first to see the signifi-
cance of Maxwell’s the-
ory of electromagnetism.
“Was it a god who wrote
these lines?” was Boltz-
mann’s comment (quot-
ing Goethe) on Maxwell’s

work. Boltzmann’s great insight was to recognize
the statistical connection between thermodynamic
entropy and the number of microstates, and through
a series of technical papers was able to put the sub-
ject of statistical mechanics on a firm footing (his
work was, independently, substantially extended by
the American physicist Gibbs). Boltzmann was able
to show that the second law of thermodynamics
(considered in Part IV of this book) could be derived
from the principles of classical mechanics, although
the fact that classical mechanics makes no distinc-
tion between the direction of time meant that he had
to smuggle in some assumptions that mired his ap-
proach in some controversy. However, his derivation
of what is known as the Boltzmann transport equa-
tion, which extends the ideas of the kinetic theory of
gases, led to important developments in the electron
transport theory of metals and in plasma physics.

Boltzmann also showed how to derive from the
principles of thermodynamics the empirical law dis-
covered by his teacher, Josef Stefan, which stated
that the total radiation from a hot body was propor-
tional to the fourth power of its absolute temperature
(see Chapter 23).

Boltzmann was born in Vienna and did his doc-
torate in the kinetic theory of gases at the Uni-

versity of Vienna under the supervision of Stefan.
His subsequent career took him to Graz, Heidelberg,
Berlin, then Vienna again, back to Graz, then Vi-
enna, Leipzig, and finally back to Vienna. His own
temperament was in accord with this physical rest-
lessness and lack of stability. The moving around was
also partly due to his difficult relationships with var-
ious other physicists, particularly Ernst Mach, who
was appointed to a chair in Vienna (which occasioned
Boltzmann’s move to Leipzig in 1900), and Wilhelm
Ostwald (whose opposition in Leipzig, together with
Mach’s retirement in 1901, motivated Boltzmann’s
return to Vienna in 1902, although not before Boltz-
mann had attempted suicide).

The notions of irreversibility inherent in thermody-
namics led to some controversial implications, partic-
ularly to a Universe based on Newtonian mechanics
which are reversible in time. Boltzmann’s approach
used probability to understand how the behaviour
of atoms determined the properties of matter. Ost-
wald, a physical chemist, who had himself recognized
the importance of Gibbs’ work (see Chapters 16, 20
and 22) to the extent that he had translated Gibbs’
papers into German, was nevertheless a vigorous op-
ponent of theories that involved what he saw as un-
measurable quantities. Ostwald was one of the last
opponents of atomism, and became a dedicated op-
ponent of Boltzmann. Ostwald himself was finally
convinced of the validity of atoms nearly a decade
after Boltzmann’s death, by which time Ostwald had
been awarded a Nobel Prize, in 1909, for his work on
catalysis.

Boltzmann died just before his atomistic view-
point became obviously vindicated and universally
accepted. Boltzmann had suffered from depression
and mood swings throughout his life. On holiday
in Italy in 1906, Ludwig Boltzmann hanged himself
while his wife and daughter were swimming. His fa-
mous equation relating entropy S with number of mi-
crostates W (Ω in this book) is

S = k logW (3.41)

and is engraved on his tombstone in Vienna. The
constant k is called the Boltzmann constant, and is
written as kB in this book.
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In this chapter, we will explore the concept of temperature and show
how it can be defined in a statistical manner. This leads to the idea of
a Boltzmann distribution and a Boltzmann factor. Now of course the
concept of temperature seems such an intuitively obvious one that you
might wonder why we need a whole chapter to discuss it. Temperature
is simply a measure of ‘hotness’ or ‘coldness’, so that we say that a hot
body has a higher temperature than a cold one. For example, as shown
in Fig. 4.1(a) if an object has temperature T1 and is hotter than a second
body with temperature T2, we expect that T1 > T2. But what do these
numbers T1 and T2 signify? What does temperature actually mean?

4.1 Thermal equilibrium

T T

T T

T T

Fig. 4.1 (a) Two objects at differ-
ent temperatures. (b) The objects are
now placed in thermal contact and heat
flows from the hot object to the cold
object. (c) After a long time, the two
objects have the same final temperature
Tf .

To begin to answer these questions, let us consider what happens if our
hot and cold bodies are placed in thermal contact which means that
they are able to exchange energy. As described in Chapter 2, heat is
‘energy in transit’ and experiment suggests that, if nothing else is going
on,1 heat will always flow from the hotter body to the colder body, as
shown in Fig. 4.1(b). This is backed up by our experience of the world:
we always seem to burn ourselves when we touch something very hot
(heat flows into us from the hot object) and become very chilled when
we touch something very cold (heat flows out of us into the cold object).
As heat flows from the hotter body to the colder body, we expect that
the energy content and the temperatures of the two bodies will each
change with time.

After some time being in thermal contact, we reach the situation in
Fig. 4.1(c). The macroscopic properties of the two bodies are now no
longer changing with time. If any energy flows from the first body to
the second body, this is equal to the energy flowing from the second
body to the first body; thus, there is no net heat flow between the two
bodies. The two bodies are said to be in thermal equilibrium, which
is defined by saying that the energy content and the temperatures of the

1This is assuming that no additional power is being fed into the systems, such as
occurs in the operation of a refrigerator which sucks heat out of the cold interior and
dumps it into your warmer kitchen, but only because you are supplying electrical
power.



4.2 Thermometers 31

two bodies will no longer be changing with time. We would expect that
the two bodies in thermal equilibrium are now at the same temperature.

It seems that something irreversible has happened. Once the two bod-
ies were put in thermal contact, the change from Fig. 4.1(b) to Fig. 4.1(c)
proceeds inevitably. However, if we started with two bodies at the same
temperature and placed them in thermal contact as in Fig. 4.1(c), the
reverse process, i.e. ending up with Fig. 4.1(b), would not occur.2 Thus 2Thermal processes thus define an ar-

row of time. We will return to this
point later in Section 34.5.

as a function of time, systems in thermal contact tend towards thermal
equilibrium, rather than away from it. The process that leads to thermal
equilibrium is called thermalization.

If various bodies are all in thermal equilibrium with each other, then
we would expect that their temperatures should be the same. This idea
is encapsulated in the zeroth law of thermodynamics, which states
that

Zeroth law of thermodynamics:
Two systems, each separately in thermal equilibrium with a third, are
in equilibrium with each other.

You can tell by the numbering of the law that although it is an as-
sumption that comes before the other laws of thermodynamics, it was
added after the first three laws had been formulated. Early workers
in thermodynamics took the content of the zeroth law as so obvious
it hardly needed stating, and you might well agree with them! Never-
theless, the zeroth law gives us some justification for how to actually
measure temperature: we place the body whose temperature needs to
be measured in thermal contact with a second body which displays some
property which has a well-known dependence on temperature and wait
for them to come into thermal equilibrium. The second body is called
a thermometer. The zeroth law then guarantees that if we have cal-
ibrated this second body against any other standard thermometer, we
should always get consistent results. Thus, a more succinct statement
of the zeroth law3 is: ‘thermometers work’. 3This version is from our colleague

M.G. Bowler.

4.2 Thermometers

We now make some remarks concerning thermometers.

• For a thermometer to work well, its heat capacity must be much
lower than that of the object whose temperature one wants to
measure. If this is not the case, the action of measurement (placing
the thermometer in thermal contact with the object) could alter
the temperature of the object.

• A common type of thermometer utilizes the fact that liquids ex-
pand when they are heated. Galileo Galilei used a water ther-
mometer based on this principle in 1593, but it was Daniel Gabriel
Fahrenheit (1686–1736) who devised thermometers based on alco-
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hol (1709) and mercury (1714) that bear most resemblance to mod-
ern household thermometers. He introduced his famous tempera-
ture scale which was then superseded by the more logical scheme
devised by Anders Celsius (1701–1744).

• Another method is to measure the electrical resistance of a material
which has a well-known dependence of resistance on temperature.
Platinum is a popular choice since it is chemically resistant, ductile
(so can be easily drawn into wires) and has a large temperature-
coefficient of resistance; see Fig. 4.2. Other commonly used ther-

T

R

Fig. 4.2 The temperature dependence
of the resistance of a typical platinum
sensor.

mometers are based on doped germanium (a semiconductor which
is very stable after repeated thermal cycling), carbon sensors and
RuO2 (in contrast to platinum, the electrical resistance of these
thermometers increases as they are cooled; see Fig. 4.3).

T

R

Fig. 4.3 The temperature dependence
of the resistance of a typical RuO2 sen-
sor.

• Using the ideal gas equation (eqn 1.12), one can measure the tem-
perature of a gas by measuring its pressure with its volume fixed
(or by measuring its volume with its pressure fixed). This works
well as far as the ideal gas equation works, although at very low
temperature, gases liquefy and show departures from the ideal gas
equation.

• Another method which is useful in cryogenics is to have a liquid
coexisting with its vapour and to measure the vapour pressure.
For example, liquid helium (4He, the most common isotope) has
a vapour pressure dependence on temperature which is shown in
Fig. 4.4.

T

p

Fig. 4.4 The vapour pressure of 4He as
a function of temperature. The dashed
line labels atmospheric pressure and the
corresponding boiling point for liquid
4He.

All of these methods use some measurable property, like resistance
or pressure, which depends in some, sometimes complicated, manner on
temperature. However, none of them are completely linear across the
entire temperature range of interest: mercury solidifies at very low tem-
perature and becomes gaseous at very high temperature, the resistance
of platinum saturates at very low temperature and platinum wire melts
at very high temperature, etc. However, against what standard ther-
mometer can one possibly assess the relative merits of these different
thermometers? Which thermometer is perfect and gives the real thing,
against which all other thermometers should be judged?

It is clear that we need some absolute definition of temperature based
on fundamental physics. In the nineteenth century, one such definition
was found, and it was based on a hypothetical machine, which has never
been built, called a Carnot engine.4 Subsequently, it was found that4We will introduce the Carnot engine

in Section 13.2. The definition of tem-
perature which arises from this is based
upon eqn 13.7 and states that the ratio
of the temperature of a body to the heat
flow from it is a constant in a reversible
Carnot cycle.

temperature could be defined in terms of a purely statistical argument
using ideas from probability theory, and this is the one we will use which
we introduce in Section 4.4. In the following section we will introduce
the terminology of microstates and macrostates that will be needed for
this argument.
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4.3 The microstates and macrostates

To make the distinction between microstates and macrostates, consider
the following example.

Example 4.1

Imagine that you have a large box containing 100 identical coins. With
the lid on the box, you give it a really good long and hard shake, so
that you can hear the coins flipping, rattling and being generally tossed
around. Now you open the lid and look inside the box. Some of the
coins will be lying with heads facing up and some with tails facing up.
There are lots of possible configurations that one could achieve (2100 to
be precise, which is approximately 1030) and we will assume that each

of these different configurations is equally likely. Each possible configu-
ration therefore has a probability of approximately 10−30. We will call
each particular configuration a microstate of this system. An example
of one of these microstates would be: ‘Coin number 1 is heads, coin
number 2 is heads, coin number 3 is tails, etc’. To identify a microstate,
you would somehow need to identify each coin individually, which would
be a bit of a bore. However, probably the way you would categorize the
outcome of this experiment is by simply counting the number of coins
which are heads and the number which are tails (e.g. 53 heads and 47
tails). This sort of categorisation we call a macrostate of this sys-
tem. The macrostates are not equally likely. For example, of the ≈ 1030

possible individual configurations (microstates),

# of configurations with 50 heads and 50 tails = 100!
(50!)2 ≈ 4 × 1027,

# of configurations with 53 heads and 47 tails = 100!
53!47! ≈ 3 × 1027,

# of configurations with 90 heads and 10 tails = 100!
90!10! ≈ 1013,

# of configurations with 100 heads and 0 tails = 1.

Thus, the outcome with all 100 coins with heads facing up is a very
unlikely outcome. This macrostate contains a single microstate. If that
were the result of the experiment, you would probably conclude that
(i) your shaking had not been very vigorous and that (ii) someone had
carefully prepared the coins to be lying heads up at the start of the
experiment. Of course, a particular microstate with 53 heads and 47 tails
is just as unlikely; it is just that there are about 3×1027 other microstates
which have 53 heads and 47 tails which look extremely similar.

This simple example shows two crucial points:

• The system could be described by a very large number of equally

likely microstates.

• What you actually measure5 is a property of the macrostate of the

5In our example, the measurement was
opening the large box and counting the
number of coins which were heads and
those which were tails.
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system. The macrostates are not equally likely, because different
macrostates correspond to different numbers of microstates.

The most likely macrostate that the system will find itself in is the one
which corresponds to the largest number of microstates.

Thermal systems behave in a very similar way to the example we
have just considered. To specify a microstate for a thermal system, you
would need to give the microscopic configurations (perhaps position and
velocity, or perhaps energy) of each and every atom in the system. In
general it is impossible to measure which microstate the system is in.
The macrostate of a thermal system on the other hand would be speci-
fied only by giving the macroscopic properties of the system, such as the
pressure, the total energy or the volume. A macroscopic configuration,
such as a gas with pressure 105 Pa in a volume 1 m3, would be associ-
ated with an enormous number of microstates. In the next section, we
are going to give a statistical definition of temperature which is based
on the idea that a thermal system can have a large number of equally
likely microstates, but you are only able to measure the macrostate of
the system. At this stage, we are not going to worry about what the
microstates of the system actually are; we are simply going to posit their
existence and say that if the system has energy E, then it could be in any
one of Ω(E) equally likely microstates, where Ω(E) is some enormous
number.

4.4 A statistical definition of temperature

Fig. 4.5 Two systems able to exchange
energy between them.

We return to our example of Section 4.1 and consider two large systems
which can exchange energy with each other, but not with anything else
(Fig. 4.5). In other words, the two systems are in thermal contact with
each other, but thermally isolated from their surroundings. The first
system has energy E1 and the second system has energy E2. The total
energy E = E1 + E2 is therefore assumed fixed since the two systems
cannot exchange energy with anything else. Hence the value of E1 is
enough to determine the macrostate of this joint system. Each of these
systems can be in a number of possible microstates. This number of
possible microstates could in principle be calculated as in Section 1.4
(and in particular, Example 1.3) and will be a very large, combinatorial
number, but we will not worry about the details of this. Let us assume
that the first system can be in any one of Ω1(E1) microstates and the
second system can be in any one of Ω2(E2) microstates. Thus the whole
system can be in any one of Ω1(E1)Ω2(E2) microstates.66We use the product of the two quan-

tities, Ω1(E1) and Ω2(E2), because
for each of the Ω1(E1) states of the
first system, the second system can
be in any of its Ω2(E2) different
states. Hence the total number of pos-
sible combined states is the product of
Ω1(E1) and Ω2(E2).

The systems are able to exchange energy with each other, and we
will assume that they have been left in the condition of being joined
together for a sufficiently long time that they have come into thermal

equilibrium. This means that E1 and E2 have come to fixed values.
The crucial insight which we must make is that a system will appear

to choose a macroscopic configuration which maximizes the number of

microstates. This idea is based upon the following assumptions:
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(1) each one of the possible microstates of a system is equally likely
to occur;

(2) the system’s internal dynamics are such that the microstates of
the system are continually changing;

(3) given enough time, the system will explore all possible microstates
and spend an equal time in each of them.7 7This is the so-called ergodic hypothe-

sis.
These assumptions imply that the system will most likely be found in
a configuration which is represented by the most microstates. For a
large system our phrase ‘most likely’ becomes ‘absolutely, overwhelm-
ingly likely’; what appears at first sight to be a somewhat weak, prob-
abilistic statement (perhaps on the same level as a five-day weather
forecast) becomes an utterly reliable prediction on whose basis you can
design an aircraft engine and trust your life to it!

For our problem of two connected systems, the most probable divi-
sion of energy between the two systems is the one which maximizes
Ω1(E1)Ω2(E2), because this will correspond to the greatest number of
possible microstates. Our systems are large and hence we can use cal-
culus to study their properties; we can therefore consider making in-
finitesimal changes to the energy of one of the systems and seeing what
happens. Therefore, we can maximize this expression with respect to
E1 by writing

d

dE1
(Ω1(E1)Ω2(E2)) = 0 (4.1)

and hence, using standard rules for differentiation of a product, we have

Ω2(E2)
dΩ1(E1)

dE1
+ Ω1(E1)

dΩ2(E2)

dE2

dE2

dE1
= 0. (4.2)

Since the total energy E = E1 +E2 is assumed fixed, this implies that

dE1 = −dE2, (4.3)

and hence
dE2

dE1
= −1, (4.4)

so that eqn 4.2 becomes

1

Ω1

dΩ1

dE1
− 1

Ω2

dΩ2

dE2
= 0, (4.5)

and hence
d ln Ω1

dE1
=

d ln Ω2

dE2
. (4.6)

This condition defines the most likely division of energy between the
two systems if they are allowed to exchange energy since it maximizes
the total number of microstates. This division of energy is, of course,
more usually called ‘being at the same temperature’, and so we identify
d ln Ω/dE with the temperature T (so that our two systems have T1 =
T2). We will define the temperature T by

1

kBT
=

d ln Ω

dE
, (4.7)
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where kB is the Boltzmann constant, which is given by

kB = 1.3807 × 10−23 J K−1. (4.8)

With this choice of constant, T has its usual interpretation and is mea-
sured in Kelvin. We will show in later chapters that this choice of
definition leads to experimentally verifiable consequences, such as the
correct expression for the pressure of a gas.

We will see later (Section 14.5) that
in statistical mechanics, the quantity
kB ln Ω is called the entropy, S, and
hence eqn 4.7 is equivalent to

1

T
=

dS

dE
.

4.5 Ensembles

We are using probability to describe thermal systems and our approach
is to imagine repeating an experiment to measure a property of a system
again and again because we cannot control the microscopic properties
(as described by the system’s microstates). In an attempt to formalize
this, Josiah Willard Gibbs in 1878 introduced a concept known as an
ensemble. This is an idealization in which one consider making a large
number of mental ‘photocopies’ of the system, each one of which rep-
resents a possible state the system could be in. There are three main
ensembles that tend to be used in thermal physics:

(1) The microcanonical ensemble: an ensemble of systems that
each have the same fixed energy.

(2) The canonical ensemble: an ensemble of systems, each of which
can exchange its energy with a large reservoir of heat. As we shall
see, this fixes (and defines) the temperature of the system.

(3) The grand canonical ensemble: an ensemble of systems, each
of which can exchange both energy and particles with a large reser-
voir. (This fixes the system’s temperature and a quantity known
as the system’s chemical potential. We will not consider this again
until Chapter 22 and it can be ignored for the present.)

In the next section we will consider the canonical ensemble in more detail
and use it to derive the probability of a system at a fixed temperature
being in a particular microstate.

4.6 Canonical ensemble
T

Fig. 4.6 A large reservoir (or heat
bath) at temperature T connected to
a small system.

We now consider two systems coupled as before in such a way that they
can exchange energy (Fig. 4.6). This time, we will make one of them
enormous, and call it the reservoir (also known as a heat bath). It
is so large that you can take quite a lot of energy out of it and yet it
can remain at essentially the same temperature. In the same way, if
you stand on the sea shore and take an eggcup-full of water out of the
ocean, you do not notice the level of the ocean going down (although
it does in fact go down, but by an unmeasurably small amount). The
number of ways of arranging the quanta of energy of the reservoir will
therefore be colossal. The other system is small and will be known as
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the system. We will assume that for each allowed energy of the system
there is only a single microstate, and therefore the system has a value of
Ω equal to one. Once again, we fix8 the total energy of the system plus 8We thus treat the system plus reser-

voir as being in what is known as the
microcanonical ensemble, which
has fixed energy with each of its mi-
crostates being equally likely.

reservoir to be E. The energy of the reservoir is taken to be E− ε while
the energy of the system is taken to be ε. This situation of a system in
thermal contact with a large reservoir is very important and is known
as the canonical ensemble.9 9‘Canonical’ means part of the ‘canon’,

the store of generally accepted things
one should know. It’s an odd word,
but we’re stuck with it. Focussing on
a system whose energy is not fixed, but
which can exchange energy with a big
reservoir, is something we do a lot in
thermal physics and is therefore in some
sense canonical.

The probability P (ε) that the system has energy ε is proportional to
the number of microstates which are accessible to the reservoir multiplied
by the number of microstates which are accessible to the system. This
is therefore

P (ε) ∝ Ω(E − ε) × 1. (4.9)

Since we have an expression for temperature in terms of the logarithm
of Ω (eqn 4.7), and since ε � E, we can perform a Taylor expansion10

10See Appendix B.
of ln Ω(E − ε) around ε = 0, so that

ln Ω(E − ε) = ln Ω(E) − d ln Ω(E)

dE
ε+ · · · (4.10)

and so now using eqn. 4.7, we have

ln Ω(E − ε) = ln Ω(E) − ε

kBT
+ · · · , (4.11)

where T is the temperature of the reservoir. In fact, we can neglect
the further terms in the Taylor expansion (see Exercise 4.4) and hence
eqn 4.11 becomes

Ω(E − ε) = Ω(E) e−ε/kBT . (4.12)

Using eqn 4.9 we thus arrive at the following result for the probability
distribution describing the system which is given by

P (ε) ∝ e−ε/kBT . (4.13)

Since the system is now in equilibrium with the reservoir, it also must

P

Fig. 4.7 The Boltzmann distribu-
tion. The dashed curve corresponds
to a higher temperature than the solid
curve.

have the same temperature as the reservoir. But notice that although
the system therefore has fixed temperature T , its energy ε is not a con-
stant but is governed by the probability distribution in eqn 4.13 (and
is plotted in Fig. 4.7). This is known as the Boltzmann distribution
and also as the canonical distribution. The term e−ε/kBT is known
as a Boltzmann factor.

We now have a probability distribution which describes exactly how a
small system behaves when coupled to a large reservoir at temperature
T . The system has a reasonable chance of achieving an energy ε which is
less than kBT , but the exponential in the Boltzmann distribution begins
to quickly reduce the probability of achieving an energy much greater
than kBT . However, to quantify this properly we need to normalize the
probability distribution. If a system is in contact with a reservoir and
has a microstate r with energy Er, then

P (microstate r) =
e−Er/kBT∑
i e−Ei/kBT

, (4.14)
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where the sum in the denominator makes sure that the probability is
normalized. The sum in the denominator is called the partition func-
tion and is given the symbol Z.The partition function is the subject of

Chapter 20. We have derived the Boltzmann distribution on the basis of statistical
arguments which show that this distribution of energy maximizes the
number of microstates. It is instructive to verify this for a small system,
so the following example presents the results of a computer experiment
to demonstrate the validity of the Boltzmann distribution.

Example 4.2

To illustrate the statistical nature of the Boltzmann distribution, let
us play a game in which quanta of energy are distributed in a lattice.
We choose a lattice of 400 sites, arranged for convenience on a 20×20
grid. Each site initially contains a single energy quantum, as shown in
Fig. 4.8(a). The adjacent histogram shows that there are 400 sites with
one quantum on each. We now choose a site at random and remove
the quantum from that site and place it on a second, randomly-chosen
site. The resulting distribution is shown in Fig. 4.8(b), and the his-
togram shows that we now have 398 sites each with 1 quantum, 1 site
with no quanta and 1 site with two quanta. This redistribution pro-
cess is repeated many times and the resulting distribution is as shown
in Fig. 4.8(c). The histogram describing this looks very much like a
Boltzmann exponential distribution.

The initial distribution shown in Fig. 4.8(a) is very equitable and gives
a distribution of energy quanta between sites of which Karl Marx would
have been proud. It is however very statistically unlikely because it is
associated with only a single microstate, i.e. Ω = 1. There are many
more microstates associated with other macrostates, as we shall now
show. For example, the state obtained after a single iteration, such as
the one shown in Fig. 4.8(b), is much more likely, since there are 400
ways to choose the site from which a quantum has been removed, and
then 399 ways to choose the site to which a quantum is added; hence
Ω = 400 × 399 = 19600 for this histogram (which contains 398 singly
occupied sites, one site with zero quanta and one site with two quanta).
The state obtained after many iterations in Fig. 4.8(c) is much, much
more likely to occur if quanta are allowed to rearrange randomly as the
number of microstates associated with the Boltzmann distribution is
absolutely enormous. The Boltzmann distribution is simply a matter of
probability.

In the model considered in this example, the rôle of temperature is
played by the total number of energy quanta in play. So, for example,
if instead the initial arrangement had been two quanta per site rather
than one quantum per site, then after many iterations one would obtain
the arrangement shown in Fig. 4.8(d). Since the initial arrangement has
more energy, the final state is a Boltzmann distribution with a higher
temperature (leading to more sites with more energy quanta).
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Fig. 4.8 Energy quanta distributed on a 20×20 lattice. (a) In the initial state, one quantum is placed on each site. (b) A site
is chosen at random and a quantum is removed from that site and placed on a second randomly-chosen site. (c) After many
repetitions of this process, the resulting distribution resembles a Boltzmann distribution. (d) The analogous final distribution
following redistribution from an initial state with two quanta per site. The adjacent histogram in each case shows how many
quanta are placed on each site.

Let us now start with a bigger lattice, now containing 106 sites, and
place a quantum of energy on each site. We randomly move quanta
from site to site as before, and in our computer program we let this
proceed for a large number of iterations (in this case 1010). The resulting
distribution is shown in Fig. 4.9, which displays a graph on a logarithmic
scale of the number of sites N with n quanta. The straight line is a fit
to the expected Boltzmann distribution. This example is considered in
more detail in the exercises.
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Fig. 4.9 The final distribution for a lat-
tice of size 1000×1000 with one quan-
tum of energy initially placed on each
site. The error bars are calculated by
assuming Poisson statistics and have
length

√
N , where N is the number of

sites having n quanta. n

N

4.7 Applications of the Boltzmann
distribution

To illustrate the application of the Boltzmann distribution, we now con-
clude this chapter with some examples. These examples involve little
more than a simple application of the Boltzmann distribution, but they
have important consequences.

Before we do so, let us introduce a piece of shorthand. Since we will
often need to write the quantity 1/kBT , we will use the shorthand

β ≡ 1

kBT
, (4.15)

so that the Boltzmann factor becomes simply e−βE . Using this short-
hand, we can also write eqn 4.7 as

β =
d ln Ω

dE
. (4.16)

Example 4.3

The two state system.
The first example is one of the simplest one can think of. In a two-state
system, there are only two states, one with energy 0 and the other with
energy ε > 0. What is the average energy of the system?
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Solution:
The probability of being in the lower state is given by eqn 4.14, so we
have

Fig. 4.10 The value of 〈E〉 as a func-
tion of ε/kBT = βε, following eqn 4.19.
As T → ∞, each energy level is equally
likely to be occupied and so 〈E〉 = ε/2.
When T → 0, only the lower level is
occupied and 〈E〉 = 0.

P (0) =
1

1 + e−βε
. (4.17)

Similarly, the probability of being in the upper state is

P (ε) =
e−βε

1 + e−βε
. (4.18)

The average energy 〈E〉 of the system is then

〈E〉 = 0 · P (0) + ε · P (ε)

= ε
e−βε

1 + e−βε

=
ε

eβε + 1
. (4.19)

This expression (plotted in Fig. 4.10) behaves as expected: when
T is very low, kBT � ε, and so βε 	 1 and 〈E〉 → 0 (the sys-
tem is in the ground state). When T is very high, kBT 	 ε, and so
βε � 1 and 〈E〉 → ε/2 (both levels are equally occupied on average).

Example 4.4

Isothermal atmosphere:
Estimate the number of molecules in an isothermal11 atmosphere as a 11‘Isothermal’ means constant temper-

ature. A more sophisticated treatment
of the atmosphere is postponed until
Section 12.4; see also Chapter 37.

function of height.
Solution:
This is our first attempt at modelling the atmosphere, where we make
the rather naive assumption that the temperature of the atmosphere is
constant. Consider a molecule in an ideal gas at temperature T in the
presence of gravity. The probability P (z) of the molecule of mass m
being at height z is given by

P (z) ∝ e−mgz/kBT , (4.20)

because its potential energy is mgz. Hence, the number density12 of 12Number density means number per
unit volume.molecules n(z) at height z, which will be proportional to the probability

function P (z) of finding a molecule at height z, is given by

n(z) = n(0)e−mgz/kBT . (4.21)

This result (plotted in Fig. 4.11) agrees with a more pedestrian deriva-
tion which goes as follows: consider a layer of gas between height z and
z+dz. There are ndz molecules per unit area in this layer, and therefore
they exert a pressure (force per unit area)

dp = −ndz ·mg (4.22)
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downwards (because each molecule has weight mg). We note in passing
that eqn 4.22 can be rearranged using ρ = nm to show that

dp = −ρg dz, (4.23)

which is known as the hydrostatic equation. Using the ideal gas law
(in the form derived in Chapter 6), which is p = nkBT , we have that

dn

n
= − mg

kBT
dz, (4.24)

which is a simple differential equation yielding

lnn(z) − lnn(0) = − mg

kBT
z, (4.25)

so that, again, we have

n(z) = n(0)e−mgz/kBT . (4.26)

Our prediction is that the number density falls off exponentially with

Fig. 4.11 The number density n(z) of
molecules at height z for an isothermal
atmosphere.

height, but the reality is different. Our assumption of constant T is at
fault (the temperature falls as the altitude increases, at least initially)
and we will return to this problem in Section 12.4, and also in Chap-
ter 37.

Example 4.5

Chemical reactions:
Many chemical reactions have an activation energy Eact which is about
1
2 eV. At T = 300 K, which is about room temperature, the probability
that a particular reaction occurs is proportional to

exp(−Eact/(kBT )). (4.27)

If the temperature is increased to T + ∆T = 310 K, the probability
increases to

exp(−Eact/(kB(T + ∆T )), (4.28)

which is larger by a factor

exp(−Eact/(kB(T + ∆T ))

exp(−Eact/(kBT ))
= exp

(
−Eact

kB
[(T + ∆T )−1 − T−1]

)

≈ exp

(
Eact

kBT

∆T

T

)
≈ 2. (4.29)

Hence many chemical reactions roughly double in speed when the tem-
perature is increased by about 10 degrees.
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Example 4.6

The Sun:
The main fusion reaction in the Sun13 13p+ is a proton, d+ is a deuteron (a

proton and a neutron), e+ is a positron
and ν̄ is a neutrino. This reaction
and its consequences are explored more
fully in Section 35.2.

p+ + p+ → d+ + e+ + ν̄ (4.30)

but the main barrier to this occuring is the electrostatic repulsion of the
two protons coming together in the first place. This energy is

E =
e2

4πε0r
, (4.31)

which for r = 10−15 m, the distance which they must approach each
other, E is about 1 MeV. The Boltzmann factor for this process at a
temperature of T ≈ 107 K (at the centre of the Sun) is

e−E/kBT ≈ 10−400. (4.32)

This is extremely small, suggesting that the Sun is unlikely to undergo
fusion. However, our lazy sunny afternoons are saved by the fact that
quantum mechanical tunnelling allows the protons to pass through this
barrier vastly more often than this calculation predicts that they could
pass over the top of it.

Chapter summary

• The temperature T of a system is given by

β ≡ 1

kBT
=

d ln Ω

dE
,

where kB is the Boltzmann constant, E is its energy, and Ω is the
number of microstates (i.e. the number of ways of arranging the
quanta of energy in the system).

• The microcanonical ensemble is an idealized collection of systems
which all have the same fixed energy.

• The canonical ensemble is an idealized collection of systems, each
of which can exchange its energy with a large reservoir of heat.

• For the canonical ensemble, the probability that a particular sys-
tem has energy ε is given by

P (ε) ∝ e−βε

(Boltzmann distribution), and the factor e−βε is known as the
Boltzmann factor. Its use has been illustrated for a number of
physical situations.
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Further reading

Methods of measuring temperature are described in Pobell (1996) and White and Meeson (2002).

Exercises

(4.1) Check that the probability in eqn 4.14 is normal-
ized, so that the sum of all possible probabilities is
one.

(4.2) For the two-state system described in Example 3.2,
derive an expression for the variance of the energy.

(4.3) A system comprises N states which can have energy
0 or ∆. Show that the number of ways Ω(E) of ar-
ranging the total system to have energy E = r∆
(where r is an integer) is given by

Ω(E) =
N !

r!(N − r)!
. (4.33)

Now remove a small amount of energy s∆ from the
system, where s � r. Show that

Ω(E − ε) ≈ Ω(E)
rs

(N − r)s
, (4.34)

and hence show that the system has temperature T
given by

1

kBT
=

1

∆
ln

„
N − r

r

«
. (4.35)

Sketch kBT as a function of r from r = 0 to r = N
and explain the result.

(4.4) In eqn 4.11, we neglected the next term in the Tay-
lor expansion which is

d2 ln Ω

dE2
ε2. (4.36)

Show that this term equals

− ε2

kBT 2

dT

dE
, (4.37)

and hence show that it can be neglected compared
to the first two terms if the reservoir is large. (Hint:
how much should the temperature of the reservoir
change when you change its energy by of order ε?)

(4.5) A visible photon with energy 2 eV is absorbed by
a macroscopic body held at room temperature.
By what factor does Ω for the macroscopic body
change? Repeat the calculation for a photon which
originated from an FM radio transmitter.

(4.6) Figure 4.10 is a plot of 〈E〉 as a function of βε.
Sketch 〈E〉 as a function of temperature T (mea-
sured in units of ε/kB).

(4.7) Find the average energy 〈E〉 for
(a) An n-state system, in which a given state can
have energy 0, ε, 2ε, . . . , nε.
(b) A harmonic oscillator, in which a given state can
have energy 0, ε, 2ε, . . . (i.e. with no upper limit).

(4.8) Estimate kBT at room temperature, and convert
this energy into electronvolts (eV). Using this re-
sult, answer the following:
(a) Would you expect hydrogen atoms to be ionized
at room temperature? (The binding energy of an
electron in a hydrogen atom is 13.6 eV.)
(b) Would you expect the rotational energy levels
of diatomic molecules to be excited at room tem-
perature? (It costs about 10−4 eV to promote such
a system to an excited rotational energy level.)

(4.9) Write a computer program to reproduce the results
in Example 3.1. For the case of N � 1 sites with
initially one quantum per site, show that after many
iterations you would expect there to be N(n) sites
with n quanta, where

N(n) ≈ 2−nN , (4.38)

and explain why this is a Boltzmann distribution.
Generalize your results for Q � 1 quanta dis-
tributed on N � 1 sites.



Part II

Kinetic theory of gases

In the second part of this book, we apply the results of Part I to the
properties of gases. This is the kinetic theory of gases, in which it
is the motion of individual gas atoms, behaving according to the Boltz-
mann distribution, which determines quantities such as the pressure of
a gas, or the rate of effusion. This part is structured as follows:

• In Chapter 5, we show that the Boltzmann distribution applied
to gases gives rise to a speed distribution known as the Maxwell–

Boltzmann distribution. We show how this can be measured ex-
perimentally.

• A treatment of pressure in Chapter 6 using the results so far de-
veloped allows us to derive Boyle’s law and the ideal gas law.

• We are then able to treat the effusion of gases through small holes
in Chapter 7, which also introduces the concept of flux.

• Chapter 1 considers the nature of molecular collisions and intro-
duces the concepts of the mean scattering time, the collision cross-

section and the mean free path.
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In this chapter we will apply the results of the Boltzmann distribution
(eqn 4.13) to the problem of the motion of molecules in a gas. For
the present, we will neglect any rotational or vibrational motion of the
molecules and consider only translational motion (so these results are
strictly applicable only to a monatomic gas). In this case the energy of
a molecule is given by

1

2
mv2

x +
1

2
mv2

y +
1

2
mv2

z =
1

2
mv2, (5.1)

where v = (vx, vy, vz) is the molecular velocity, and v = |v| is the molec-
ular speed. This molecular velocity can be represented in velocity space
(see Fig. 5.1). The aim is to determine the distribution of molecular
velocities and to determine the distribution of molecular speeds. This
we will do in the next two sections. To make some progress, we will

Fig. 5.1 The velocity of a molecule is
shown as a vector in velocity space.

make a couple of assumptions: first, that the molecular size is much less
than the intermolecular separation, so that we assume that molecules
spend most of their time whizzing around and only rarely bumping into
each other; second, we will ignore any intermolecular forces. Molecules
can exchange energy with each other due to collisions, but everything
remains in equilibrium. Each molecule therefore behaves like a small
system connected to a heat reservoir at temperature T , where the heat
reservoir is ‘all the other molecules in the gas’. Hence the results of the
Boltzmann distribution of energies (described in the previous chapter)
will hold.

5.1 The velocity distribution

To work out the velocity distribution of molecules in a gas, we must
first choose a given direction and see how many molecules have partic-
ular components of velocity along it. We define the velocity distribu-
tion function as the fraction of molecules with velocities in, say, the
x-direction,1 between vx and vx +dvx, as g(vx) dvx. The velocity distri-1But we could choose any direction of

motion we like! bution function is proportional to a Boltzmann factor, namely e to the
power of the relevant energy, in this case 1

2mv
2
x, divided by kBT . Hence

g(vx) ∝ e−mv2
x/2kBT . (5.2)
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This velocity distribution function is sketched in Fig. 5.2. To normal-
ize this function, so that

∫∞
−∞ g(vx) dvx = 1, we need to evaluate the

integral2 2The integral may be evaluated using
eqn C.3.∫ ∞

−∞
e−mv2

x/2kBT dvx =

√
π

m/2kBT
=

√
2πkBT

m
, (5.3)

so that

g(vx) =

√
m

2πkBT
e−mv2

x/2kBT . (5.4)

It is then possible to find the following expected values of this distribu-

Fig. 5.2 g(vx), the distribution func-
tion for a particular component of
molecular velocity (which is a Gaussian
distribution).

tion (using the integrals in Appendix C.2):

〈vx〉 =

∫ ∞

−∞
vxg(vx) dvx = 0, (5.5)

〈|vx|〉 = 2

∫ ∞

0

vxg(vx) dvx =

√
2kBT

πm
, (5.6)

〈v2
x〉 =

∫ ∞

−∞
v2

xg(vx) dvx =
kBT

m
. (5.7)

Of course, it does not matter which component of the velocity was ini-
tially chosen. Identical results would have been obtained for vy and vz.
Hence the fraction of molecules with velocities between (vx, vy, vz) and
(vx + dvx, vy + dvy, vz + dvz) is given by

g(vx)dvx g(vy)dvy g(vz)dvz

∝ e−mv2
x/2kBT dvx e−mv2

y/2kBT dvy e−mv2
z/2kBT dvz

= e−mv2/2kBT dvx dvy dvz. (5.8)

Fig. 5.3 Molecules with speeds be-
tween v and v + dv occupy a volume
of velocity space inside a spherical shell
of radius v and thickness dv. (An oc-
tant of this sphere is shown cut-away.)

5.2 The speed distribution

We now wish to turn to the problem of working out the distribution of
molecular speeds in a gas. We want the fraction of molecules which are
travelling with speeds between v = |v| and v+ dv, and this corresponds
to a spherical shell in velocity space of radius v and thickness dv (see
Fig. 5.3). The volume of velocity space corresponding to speeds between
v and v + dv is therefore equal to

4πv2 dv, (5.9)

so that the fraction of molecules with speeds between v and v + dv can
be defined as f(v) dv, where f(v) is given by

f(v) dv ∝ v2 dv e−mv2/2kBT . (5.10)

In this expression the 4π factor has been absorbed in the proportionality
sign.
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To normalize3 this function, so that
∫∞
0
f(v) dv = 1, we must evaluate3We integrate between 0 and ∞, not

between −∞ and ∞, because the speed
v = |v| is a positive quantity.

the integral (using eqn C.3)∫ ∞

0

v2e−mv2/2kBT dv =
1

4

√
π

(m/2kBT )3
, (5.11)

so that

f(v) dv =
4√
π

(
m

2kBT

)3/2

v2 dv e−mv2/2kBT . (5.12)

This speed distribution function is known as the Maxwell–Boltzmann
speed distribution, or sometimes simply as a Maxwellian distribu-
tion and is plotted in Fig. 5.4.

Having derived the Maxwell–Boltzmann distribution function in eqn 5.10,
we are now in a position to derive some of its properties.

f

Fig. 5.4 f(v), the distribution func-
tion for molecular speeds (Maxwell–
Boltzmann distribution).

5.2.1 〈v〉 and 〈v2〉
It is straightforward to find the following expected values of the Maxwell–
Boltzmann distribution:

〈v〉 =

∫ ∞

0

vf(v) dv =

√
8kBT

πm
, (5.13)

〈v2〉 =

∫ ∞

0

v2f(v) dv =
3kBT

m
. (5.14)

Note that using eqns 5.7 and 5.14 we can write

〈v2
x〉 + 〈v2

y〉 + 〈v2
z〉 =

kBT

m
+
kBT

m
+
kBT

m
=

3kBT

m
= 〈v2〉 (5.15)

as expected.
Note also that the root mean squared speed of a molecule

vrms =
√

〈v2〉 =

√
3kBT

m
(5.16)

is proportional to m−1/2.

5.2.2 The mean kinetic energy of a gas molecule

The mean kinetic energy of a gas molecule is given by

〈EKE〉 =
1

2
m〈v2〉 =

3

2
kBT. (5.17)

This is an important result, and we will later derive it again by a different
route (see section 19.2.1). It demonstrates that the average energy of a
molecule in a gas depends only on temperature.
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5.2.3 The maximum of f(v)

The maximum value of f(v) is found by setting

df

dv
= 0 (5.18)

which yields

vmax =

√
2kBT

m
. (5.19)

Since √
2 <

√
8

π
<

√
3, (5.20)

we have that
vmax < 〈v〉 < vrms (5.21)

and hence the points marked on Fig. 5.4 are in the order drawn. The
mean speed of the Maxwell–Boltzmann distribution is higher than the
value of the speed corresponding to the maximum in the distribution
since the shape of f(v) is such that the tail to the right is very long.

Example 5.1

Calculate the rms speed of a nitrogen (N2) molecule at room tempera-
ture. [One mole of N2 has a mass of 28 g.]
Solution:

For nitrogen at room temperature, m = (0.028 kg)/(6.022 × 1023) and
so vrms ≈ 500 m s−1. This is about 1100 miles per hour, and is the same
order of magnitude as the speed of sound.

5.3 Experimental justification

Fig. 5.5 The experimental apparatus
which can be used to measure the
Maxwell–Boltzmann distribution.

How do you demonstrate that the velocity distribution in a gas obeys the
Maxwell–Boltzmann distribution? A possible experimental apparatus is
shown in Fig. 5.5. This consists of an oven, a velocity selector, and a
detector which are mounted on an optical bench. Hot gas atoms emerge
from the oven and pass through a collimating slit. Velocity selection
of molecules is achieved using discs with slits cut into them which are
rotated at high angular speed by a motor. A phase shifter varies the
phase of the voltage fed to the motor for one disc relative to that of
the other. Thus only molecules travelling with a particular speed from
the oven will pass through the slits in both discs. A beam of light can
be used to determine when the velocity selector is set for zero transit
time. This beam is produced by a small light source near one disk and
passes through the velocity selector and is detected by a photocell near
the other disk.
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Another way of doing the velocity selection is shown in Fig. 5.6. This
consists of a solid surface on whose surface is cut a helical slot and which
is capable of rotation around the cylinder’s axis at a rate ω. A molecule
of velocity v which goes through the slot without changing its position
relative to the sides of the slot will satisfy the equation

Fig. 5.6 Diagram of the velocity selec-
tor. (After R. C. Miller and P. Kusch,
Phys. Rev. 99, 1314 (1955).) Copy-
right (1955) by the American Physical
Society.

v =
ωL

φ
(5.22)

in which φ and L are the fixed angle and length shown in Fig. 5.6.
Tuning ω allows you to tune the selected velocity v.

Fig. 5.7 Intensity data measured for
potassium atoms using the velocity se-
lector shown in Fig. 5.6. (After R. C.
Miller and P. Kusch, Phys. Rev. 99,
1314 (1955).) Copyright (1955) by the
American Physical Society.

Data from this experiment are shown in Fig. 5.7. In fact, the intensity
as a function of velocity v does not follow the expected v2e−mv2/2kBT

distribution but instead fits to v4e−mv2/2kBT . What has gone wrong?
Nothing has gone wrong, but there are two factors of v which have to

be included for two different reasons. One factor of v comes from the
fact that the gas atoms emerging through the small aperture in the wall
of the oven are not completely representative of the atoms inside the
oven. This effect will be analysed in Chapter 7. The other factor of v
comes from the fact that as the velocity selector is spun faster, it accepts
a smaller fraction of molecules. This can be understood in detail as
follows. Because of the finite width of the slit, the velocity selector selects
molecules with a range of velocities. The limiting velocities correspond
to molecules which enter the slot at one wall and leave the slot at the
opposite wall. This leads to velocities which range all the way from
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ωL/φ− to ωL/φ+, where φ± = φ ± l/r and l and r are as defined in
Fig. 5.6. Thus the range, ∆v, of velocities transmitted is given by

∆v = ωL

(
1

φ−
− 1

φ+

)
≈ 2l

φr
v, (5.23)

and thus increases as the selected velocity increases. This gives rise to
the second additional factor of v.

Another way to experimentally justify the treatment in this chapter is
to look at spectral lines of hot gas atoms. The limit on resolution is often
set by Doppler broadening so that those atoms travelling towards a
detector with a component of velocity vx towards the detector will have
transition frequencies which differ from those of atoms at rest due to
the Doppler shift. A spectral line with frequency ω0 (and wavelength
λ0 = 2πc/ω0, where c is the speed of light) will be Doppler-shifted to a
frequency ω0(1 ± vx/c) and the ± sign reflects molecules travelling to-
wards or away from the detector. The Gaussian distribution of velocities
given by eqn 5.2 now gives rise to a Gaussian shape of the spectral line
I(ω) (see Fig. 5.8) which is given by

Fig. 5.8 The intensity of a Doppler–
broadened spectral line.I(ω) ∝ exp

(
−mc

2(ω0 − ω)2

2kBTω2
0

)
(5.24)

and the full-width at half-maximum of this spectral line is given by either
∆ωFWHM (or in wavelength by ∆λFWHM) by

I(ω0 + ∆ωFWHM/2)

I(ω0)
=

1

2
(5.25)

so that
∆ωFWHM

ω0
=

∆λFWHM

λ0
= 2

√
2 ln 2

kBT

mc2
. (5.26)

Another source of broadening of spectral lines arises from molecular
collisions. This is called collisional broadening or sometimes pres-
sure broadening (since collisions are more frequent in a gas when the
pressure is higher, see Section 8.1). Doppler broadening is therefore
most important in low-pressure gases.
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Chapter summary

• A physical situation which is very important in kinetic theory is
the translational motion of atoms or molecules in a gas. The prob-
ability distribution for a given component of velocity is given by

g(vx) ∝ e−mv2
x/2kBT .

• We have shown that the corresponding expression for the proba-
bility distribution of molecular speeds is given by

f(v) ∝ v2e−mv2/2kBT .

This is known as a Maxwell–Boltzmann distribution, or some-
times as a Maxwellian distribution.

• Two important average values of the Maxwell–Boltzmann distri-
bution are

〈v〉 =

√
8kBT

πm
, 〈v2〉 =

3kBT

m
.

Exercises

(5.1) Do the integrals in eqns 5.5–5.7 and eqns 5.13 and
5.14, and check that you get the same answers.

(5.2) Calculate the rms speed of hydrogen (H2), helium
(He) and oxygen (O2) at room temperature. [The
atomic masses of H, He and O are 1, 2 and 16 re-
spectively.] Compare these speeds with the escape
velocity on the surface of (i) the Earth, (ii) the Sun.

(5.3) What fractional error do you make if you approxi-
mate

p〈v2〉 by 〈v〉 for a Maxwell–Boltzmann gas?

(5.4) A Maxwell–Boltzmann distribution implies that a
given molecule (mass m) will have a speed between
v and v+dv with probability equal to f(v) dv where

f(v) ∝ v2e−mv2/2kBT ,

and the proportionality sign is used because a nor-
malization constant has been omitted. (You can
correct for this by dividing any averages you work
out by

R ∞

0
f(v) dv.) For this distribution, calcu-

late the mean speed 〈v〉 and the mean inverse speed
〈1/v〉. Show that

〈v〉〈1/v〉 =
4

π
.

(5.5) The width of a spectral line (FWHM) is often
quoted as

∆λFWHM = 7.16 × 10−7λ0

r
T

m
, (5.27)

where T is the temperature in Kelvin, λ0 is the
wavelength at the centre of the spectral line in the
rest frame and m is the atomic mass of the gas
measured in atomic mass units (i.e. multiples of the
mass of a proton). Does this formula make sense?

(5.6) What is the Doppler broadening of the 21cm line in
an interstellar gas cloud (temperature 100K) com-
posed of neutral4 hydrogen? (Express your answer
in kHz.)

(5.7) Calculate the rms speed of a sodium atom in the
solar atmosphere at 6000 K. (The atomic mass of
sodium is 23.) The sodium D lines (λ = 5900 Å) are
observed in a solar spectrum. Estimate the Doppler
broadening in GHz.
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James Clerk Maxwell (1831–1879)

Born in Edinburgh, James Clerk Maxwell was
brought up in the Scottish countryside at Gle-
nair. He was educated at home until, at the age
of 10, he was sent to the Edinburgh Academy
where his unusual homemade clothes and dis-
tracted air earned him the nickname “Dafty”.

Fig. 5.9 James Clerk
Maxwell

But a lot was going on
in his head and he wrote
his first scientific paper
at age 14. Maxwell
went to Peterhouse, Cam-
bridge in 1850 but then
moved to Trinity College,
where he gained a fellow-
ship in 1854. There he
worked on the perception
of colour, and also put
Michael Faraday’s ideas
of lines of electrical force
onto a sound mathemat-
ical basis. In 1856 he
took up a chair in Natural
Philosophy in Aberdeen

where he worked on a theory of the rings of Sat-
urn (confirmed by the Voyager spacecraft visits of the
1980’s) and, in 1858, married the College Principal’s
daughter, Katherine Mary Dewar.

In 1859, he was inspired by a paper of Clausius
on diffusion in gases to conceive of his theory of
speed distributions in gases, outlined in Chapter 5,
which, with its subsequent elaborations by Boltz-
mann, is known as the Maxwell–Boltzmann distri-
bution. These triumphs were not enough to pre-
serve him from the consequences of the merging of
Aberdeen’s two Universities in 1860 when, incredi-
bly, the powers that be decided that it was Maxwell
out of the two Professors of Natural Philosophy who
should be made redundant. He failed to obtain a
chair at Edinburgh (losing out to Tait) but instead
moved to King’s College London. There, he produced
the world’s first colour photograph, came up with his
theory of electromagnetism that proposed that light
was an electromagnetic wave and explained its speed
in terms of electrical properties, and chaired a com-
mittee to decide on a new system of units to incor-

porate the new understanding of the link between
electricity and magnetism (and which became known
as the ‘Gaussian’ system, or c.g.s. system – though
‘Maxwellian system’ would have been more appropri-
ate). He also constructed his apparatus for measuring
the viscosity of gases (see Chapter 9), verifying some
of his predictions, but not others.

In 1865, he resigned his chair at King’s and moved
full time to Glenair, where he wrote his ‘Theory
of Heat’ which introduced what are now known as
Maxwell relations (Chapter 16) and the concept of
Maxwell’s demon (Section 14.7). He applied for, but
did not get, the position of Principal of St Andrews’
University, but in 1871 was appointed to the newly-
established Professorship of Experimental Physics in
Cambridge (after William Thomson and Hermann
Helmholtz both turned the job down). There he su-
pervised the building of the Cavendish Laboratory
and wrote his celebrated treatise on ‘Electricity and
Magnetism’ (1873) where his four electromagnetic
equations (‘Maxwell’s equations’) first appear. In
1877 he was diagnosed with abdominal cancer and
died in Cambridge in 1879.

In his short life Maxwell had been one of the most
prolific, inspirational and creative scientists that has
ever lived. His work has had far-reaching implica-
tions in much of physics, not just in thermodynam-
ics. He had also lived a devout and contemplative
life in which he had been free of pride, selfishness
and ego, always generous and courteous to everyone.
The doctor who tended him in his last days wrote

I must say that he is one of the best men
I have ever met, and a greater merit than
his scientific achievements is his being, so
far as human judgement can discern, a
most perfect example of a Christian gen-
tleman.

Maxwell summed up his own philosophy as follows:

Happy is the man who can recognize in
the work of Today a connected portion
of the work of life, and an embodiment
of the work of Eternity. The foundations
of his confidence are unchangeable, for he
has been made a partaker of Infinity.
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One of the most fundamental variables in the study of gases is pressure.
The pressure p due to a gas (or in fact any fluid) is defined as the ratio
of the perpendicular contact force to the area of contact. The unit is
therefore that of force (N) divided by that of area (m2) and is called the
Pascal (Pa = Nm−2). The direction in which pressure acts is always at
right angles to the surface upon which it is acting.

Other units for measuring pressure are sometimes encountered, such as
the bar (1 bar = 105 Pa) and the almost equivalent atmosphere (1 atm
= 1.01325×105 Pa). The pressure of the atmosphere at sea-level ac-
tually varies depending on the weather by approximately ±50 mbar
around the standard atmosphere of 1013.25 mbar, though pressures
(adjusted for sea level) as low as 882 mbar and as high as 1084 mbar
have been recorded. An archaic unit is the Torr, which is equal to a
millimetre of mercury (Hg): 1 Torr = 133.32 Pa.

Example 6.1

Air has a density of about 1.29 kg m−3. Give a rough estimate of the
height of the atmosphere assuming that the density of air in the atmo-
sphere is uniform.
Solution:

Atmospheric pressure p ≈ 105 Pa is due to the weight of air ρgh in
the atmosphere (with assumed height h and uniform density ρ) pressing
down on each square metre. Hence h = p/ρg ≈ 104 m (which is about
the cruising altitude of planes). Of course, in reality the density of the
atmosphere falls off with increasing height (see Chapter 37).

The pressure p of a volume V of gas (comprisingN molecules) depends
on its temperature T via an equation of state, which is an expression
of the form

p = f(T, V,N), (6.1)

where f is some function. One example of an equation of state is that
for an ideal gas, which was given in eqn 1.12:

pV = NkBT. (6.2)
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Daniel Bernoulli (1700–1782) attempted an explanation of Boyle’s law
(p ∝ 1/V ) by assuming (controversially at the time) that gases were
composed of a vast number of tiny particles (see Fig. 6.1). This was the
first serious attempt at a kinetic theory of gases of the sort that we will
describe in this chapter to derive the ideal gas equation.

Fig. 6.1 In the kinetic theory of gases,
a gas is modelled as a number of indi-
vidual tiny particles which can bounce
off the walls of the container, and each
other.

6.1 Molecular distributions

In the previous chapter we derived the Maxwell–Boltzmann speed dis-
tribution function f(v). We denote the total number of molecules per
unit volume by the symbol n. The number of molecules per unit volume
which are travelling with speeds between v and v + dv is then given
by nf(v) dv. We now seek to determine the distribution function of
molecules travelling in different directions.

6.1.1 Solid angles

Recall that an angle θ in a circle is defined by dividing the arc length s
which the angle subtends by the radius r (see Fig. 6.2), so that

θ =
s

r
. (6.3)

The angle is measured in radians. The angle subtended by the whole
circle at its centre is then

2πr

r
= 2π. (6.4)

By analogy, a solid angle Ω in a sphere (see Fig. 6.3) is defined by

s

Fig. 6.2 The definition of angle θ in
terms of the arc length.

dividing the surface area A which the solid angle subtends by the radius
squared, so that

Ω =
A

r2
. (6.5)

The solid angle is measured in steradians. The solid angle subtended

A

Fig. 6.3 The definition of solid angle
Ω = A/r2 where r is the radius of the
sphere and A is the surface area over
the region of the sphere indicated.

by a whole sphere at its centre is then

4πr2

r2
= 4π. (6.6)

6.1.2 The number of molecules travelling in a
certain direction at a certain speed

If all molecules are equally likely to be travelling in any direction, the
fraction whose trajectories lie in an elemental solid angle dΩ is

dΩ

4π
. (6.7)

If we choose a particular direction, then the solid angle dΩ corresponding
to molecules travelling at angles between θ and θ+dθ to that direction is
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equal to the area of the annular region shown shaded in the unit-radius
sphere of Fig. 6.4 which is given by

dΩ = 2π sin θ dθ, (6.8)

so that
dΩ

4π
=

1

2
sin θ dθ. (6.9)

Therefore, a number of molecules per unit volume given by

Fig. 6.4 The area of the shaded region
on this sphere of unit radius is equal to
the circumference of a circle of radius
sin θ multiplied by the width dθ and is
hence given by 2π sin θ dθ.

n f(v) dv 1
2 sin θ dθ (6.10)

have speeds between v and v+dv and are travelling at angles between θ
and θ+ dθ to the chosen direction, where f(v) is the speed distribution
function.

6.1.3 The number of molecules hitting a wall

We now let our particular direction, up until now arbitarily chosen, lie
perpendicular to a wall of area A (see Fig. 6.5). In a small time dt, the
molecules travelling at angle θ to the normal to the wall sweep out a
volume

Av dt cos θ. (6.11)

Multiplying this volume by the number in expression 6.10 implies that
in time dt, the number of molecules hitting a wall of area A is

Av dt cos θ n f(v) dv
1

2
sin θ dθ. (6.12)

Hence, the number of molecules hitting unit area of wall in unit time,
and having speeds between v and v+dv and travelling at angles between
θ and θ + dθ, is given by

v cos θ n f(v) dv 1
2 sin θ dθ. (6.13)

A

t

Fig. 6.5 Molecules hit a region of wall

(of cross-sectional area A1/2 × A1/2 =
A) at an angle θ. The number hit-
ting in time dt is the volume of the
shaded region (Avdt cos θ) multiplied
by n f(v) dv 1

2
sin θ.

6.2 The ideal gas law

We are now in a position to calculate the pressure of a gas on its con-
tainer. Each molecule which hits the wall of the container has a mo-
mentum change of 2mv cos θ which is perpendicular to the wall. This
change of momentum is equivalent to an impulse. Hence, if we multiply
2mv cos θ (the momentum change arising from one molecule hitting the
container walls) by the number of molecules hitting unit area per unit
time, and having speeds between v and v+dv and angles between θ and
θ + dθ (which we derived in eqn 6.13), and then integrating over θ and
v, we should get the pressure p. Thus

p =

∫ ∞

0

dv

∫ π/2

0

dθ (2mv cos θ)

(
v cos θ n f(v) dv

1

2
sin θ dθ

)

= mn

∫ ∞

0

dv v2 f(v)

∫ π/2

0

cos2 θ sin θ dθ, (6.14)
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and using the integral
∫ π/2

0
cos2 θ sin θ dθ = 1

3 , we have that

p = 1
3nm〈v2〉. (6.15)

If we write the total number of molecules N in volume V as

N = nV, (6.16)

then this equation can be written as

pV =
1

3
Nm〈v2〉. (6.17)

Using 〈v2〉 = 3kBT/m, this can be rewritten as

pV = NkBT, (6.18)

which is the ideal gas equation which we met in eqn 1.12. This com-
pletes the kinetic theory derivation of the ideal gas law.

Equivalent forms of the ideal gas law:

• The form given in eqn 6.18 is

pV = NkBT,

and contains an N which we reiterate is the total number of
molecules in the gas.

• An equivalent form of the ideal gas equation can be derived by
dividing both sides of eqn 6.18 by volume, so that

p = nkBT, (6.19)

where n = N/V is the number of molecules per unit volume.

• Another form of the ideal gas law can be obtained by writing
the number of molecules N = nmNA where nm is the number of
moles and NA is the Avogadro number (the number of molecules
in a mole, see Section 1.1). In this case, eqn 6.18 becomes

pV = nmRT, (6.20)

where
R = NAkB (6.21)

is the gas constant (R = 8.31447 J K−1 mol−1).

The formula p = nkBT expresses the important point that the pres-
sure of an ideal gas does not depend on the mass m of the molecules.
Although more massive molecules transfer greater momentum to the
container walls than light molecules, their mean velocity is lower and so
they make fewer collisions with the walls. Therefore the pressure is the
same for a gas of light or massive molecules; it depends only on n, the
number per unit volume, and the temperature.
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Example 6.2

What is the volume occupied by one mole of ideal gas at standard
temperature and pressure (STP, defined as 0◦C and 1 atm)?
Solution:

At p = 1.01325 × 105 Pa and T = 273.15 K, the molar volume Vm can
be obtained from eqn 6.20 as

Vm =
RT

p
= 0.022414m3 = 22.414 litres. (6.22)

Example 6.3

What is the connection between pressure and kinetic energy density?
Solution:

The kinetic energy of a gas molecule moving with speed v is

1

2
mv2. (6.23)

The total kinetic energy of the molecules of a gas per unit volume, i.e.
the kinetic energy density which we will call u, is therefore given by

u = n

∫ ∞

0

1

2
mv2 f(v) dv =

1

2
nm〈v2〉, (6.24)

so that comparing with eqn 6.15 we have thatThis expression is true for a non-
relativistic gas of particles. For an
ultra-relativistic gas, the correct ex-
pression is given in eqn 25.21.

p =
2

3
u. (6.25)

6.3 Dalton’s law

If one has a mixture of gases in thermal equilibrium, then the total pres-
sure p = nkBT is simply the sum of the pressures due to each component
of the mixture. We can write n as

n =
∑

i

ni, (6.26)

where ni is the number density of the ith species. Therefore

p =

(∑
i

ni

)
kBT =

∑
i

pi, (6.27)

where pi = nikBT is known as the partial pressure of the ith species.
The observation that p =

∑
i pi is known as Dalton’s law, after the

British chemist John Dalton (1766–1844), who was a pioneer of the
atomic theory.
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Example 6.4

Air is 75.5% N2, 23.2% O2, 1.3% Ar and 0.05% CO2 by mass. Calculate
the partial pressure of CO2 in air at atmospheric pressure.
Solution:

Dalton’s law states that the partial pressure is proportional to the num-
ber density. The number density is proportional to the mass fraction di-
vided by the molar mass. The molar masses of the species (in grammes)
are 28 (N2), 32 (O2), 40 (Ar) and 44 (CO2). Hence, the partial pressure
of CO2 is

pCO2
=

0.05

44
× 1 atm

75.5

28
+

23.2

32
+

1.3

40
+

0.05

44

= 0.00033 atm. (6.28)

Chapter summary

• The pressure, p, is given by

p =
1

3
nm〈v2〉,

where n is the number of molecules per unit volume and m is the
molecular mass.

• This expression agrees with the ideal gas equation,

p = nkBT ,

where V is the volume, T is the temperature and kB is the Boltz-
mann constant.

Exercises

(6.1) What is the volume occupied by 1 mole of gas at
10−10 Torr, the pressure inside an ‘ultra high vac-
uum’ (UHV) chamber.

(6.2) Calculate u, the kinetic energy density, for air at
atmospheric pressure.

(6.3) Mr Fourier sits in his living room at 18◦C. He de-

cides he is rather cold and turns the heating up
so that the temperature is 25◦C. What happens to
the total energy of the air in his living room? [Hint:
what controls the pressure in the room?]

(6.4) A diffuse cloud of neutral hydrogen atoms (known
as HI) in space has a temperature of 50K. Calculate
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the pressure (in Pa) and the volume (in cubic light
years) occupied by the cloud if its mass is 100M�.
(M� is the symbol for the mass of the Sun, see Ap-
pendix A.)

(6.5) (a) Given that the number of molecules hitting unit
area of a surface per second with speeds between v
and v + dv and angles between θ and θ + dθ to the
normal is

1

2
v n f(v)dv sin θ cos θ dθ,

show that the average value of cos θ for these
molecules is 2

3
.

(b) Using the results above, show that for a gas
obeying the Maxwellian distribution (i.e. f(v) ∝
v2e−mv2/2kBT ) the average energy of all the
molecules is 3

2
kBT , but the average energy of those

which hit the surface is 2kBT .

(6.6) The molecules in a gas travel with different veloci-
ties. A particular molecule will have velocity v and
speed v = |v| and will move at an angle θ to some
chosen fixed axis. We have shown that the number
of molecules in a gas with speeds between v and
v + dv, and moving at angles between θ and θ + dθ
to any chosen axis is given by

1

2
n f(v) dv sin θ dθ,

where n is the number of molecules per unit volume
and f(v) is some function of v only. [f(v) could be
the Maxwellian distribution given above; however
you should not assume this but rather calculate the
general case.] Hence show by integration that:
(a) 〈u〉 = 0
(b) 〈u2〉 = 1

3
〈v2〉

(c) 〈|u|〉 = 1
2
〈v〉

where u is any one Cartesian component of v, i.e.
vx, vy or vz.
[Hint: You can take u as the z-component of v with-
out loss of generality. Why? Then express u in
terms of v and θ and average over v and θ. You can
use expressions such as

〈v〉 =

Z ∞

0

v f(v) dvZ ∞

0

f(v) dv

and similarly for 〈v2〉. Make sure you understand
why.]

(6.7) If v1, v2, v3 are three Cartesian components of v,
what value do you expect for 〈v1v2〉, 〈v1v3〉 and
〈v2v3〉? Evaluate one of them by integration to
check your deduction.

(6.8) Calculate the partial pressure of O2 in air at atmo-
spheric pressure.
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Robert Boyle (1627–1691)

Robert Boyle was born into wealth. His fa-
ther was a self-made man of humble yeo-
man stock who, at the age of 22, had
left England for Ireland to seek his fortune.

Fig. 6.6 Robert Boyle

This his father found or,
possibly more accurately,
“grabbed” and through
rapid land acquisition of
a rather dubious nature
Boyle senior became one
of England’s richest men
and the Earl of Cork to
boot. Robert was born
when his father was in
his sixties and was the
last but one of his father’s
sixteen children. His fa-
ther, as a new member of
the aristocracy, believed

in the best education for his children, and Robert
was duly packed off to Eton and then, at the age
of 12, sent off for a European Grand Tour, taking
in Geneva, Venice and Florence. Boyle studied the
works of Galileo, who died in Florence while Boyle
was staying in the city. Meanwhile, his father was
getting into a spot of bother with the Irish rebel-
lion of 1641–1642, resulting in the loss of the rents
that kept him and his family in the manner to which
they had become accustomed, and hence also caus-
ing Robert Boyle some financial difficulty. He was
almost married off at this time to a wealthy heiress,
but Boyle managed to escape this fate and remained
unmarried for the rest of his life. His father died in
1643 and Boyle returned to England the following
year, inheriting his father’s Dorset estate.

However, by this time the Civil War (which had
started in 1642) was in full swing and Boyle tried
hard not to take sides. He kept his head down, devot-
ing his time to study, building a chemical laboratory
in his house and worked on moral and theological es-
says. Cromwell’s defeat of the Irish in 1652 worked
well for Boyle as many Irish lands were handed over
to the English colonists. Financially, Boyle was now
secure and ready to live the life of a gentleman. In
London, he had met John Wilkins who had founded
an intellectual society which he called “The Invisi-

ble College” and which suddenly brought Boyle into
contact with the leading thinkers of the day. When
Wilkins was appointed Warden of Wadham College,
Oxford, Boyle decided to move to Oxford and set up
a laboratory there. He set up an air pump and, to-
gether with a number of talented assistants (the most
famous of which was Robert Hooke, later to discover
his law of springs and to observe a cell with a mi-
croscope, in addition to numerous other discoveries)
Boyle and his team conducted a large number of elab-
orate experiments in this new vacuum. They showed
that sound did not travel in a vacuum,and that flames
and living organisms could not be sustained, and dis-
covered the “spring of air”, namely that compressing
air resulted in its pressure increasing, and that the
pressure of a gas and its volume were in inverse pro-
portion.

Boyle was much taken with the atomistic view-
point as described by the French philosopher Pierre
Gassendi (1592–1655), which seems particularly ap-
propriate for someone whose work led to the path
for the development of the kinetic theory of gases.
His greatest legacy was in his reliance on experiment
as a means of determining scientific truth. He was,
however, also someone who often worked vicariously
through a band of assistants, citing his weakness of
health and of eyesight as a reason for failing to write
his papers as he wished to and to have read other
peoples’ works as he ought; his writings are, however,
full of criticisms of his assistants for making mistakes,
failing to record data and generally slowing down his
research endeavours.

With the restoration of the monarchy in 1660, the
Invisible College, which had been meeting for several
years in Gresham College, London, sought the bless-
ing of the newly crowned Charles II and became the
Royal Society, which has existed ever since as a thriv-
ing scientific society. In 1680, Boyle (who had been
a founding fellow of the Royal Society) was elected
President of the Royal Society, but declined to hold
the office, citing an unwillingness to take the neces-
sary oaths. Boyle retained a strong Christian faith
throughout his life, and prided himself on his hon-
esty and pure seeking of the truth. In 1670, Boyle
suffered a stroke but made a good recovery, staying
active in research until the mid-1680’s. He died in
1691, shortly after the death of his sister Katherine
to whom he had been extremely close.
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Effusion is the process by which a gas escapes from a very small hole.
The empirical relation known as Graham’s law of effusion [after
Thomas Graham (1805–1869)] states that the rate of effusion is inversely
proportional to the square root of the mass of the effusing molecule.

Example 7.1

Effusion can be used to separate different isotopes of a gas (which cannotIsotopes (the word means ‘same place’)
are atoms of a chemical element with
the same atomic number Z (and hence
number of protons in the nucleus) but
different atomic weights A (and hence
different number of neutrons in the nu-
cleus).

be separated chemically). For example, in the separation of 238UF6 and
235UF6 the difference in effusion rate between the two gases is equal to√

mass of 235UF6

mass of 238UF6
=

√
352.0412

348.0343
= 1.00574, (7.1)

which, although small, was enough for many kilogrammes of 235UF6

to be extracted for the Manhattan project in 1945 to produce the first
uranium atom bomb, which was subsequently dropped on Hiroshima.

Example 7.2

How much faster does helium gas effuse out of a small hole than N2?
Solution: √

mass of N2

mass of He
=

√
28

4
= 2.6. (7.2)

In this chapter, we will discover where Graham’s law comes from. We
begin by evaluating the flux of particles hitting the inside walls of the
container of a gas.

7.1 Flux

The concept of flux is a very important one in thermal physics. It
quantifies the flow of particles or the flow of energy or even the flow
of momentum. Of relevance to this chapter is the molecular flux, Φ,
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which is defined to be the number of molecules which strike unit area
per second. Thus

molecular flux =
number of molecules

area × time
. (7.3)

The units of molecular flux are therefore m−2 s−1. We can also define
heat flux using

heat flux =
amount of heat

area × time
. (7.4)

The units of heat flux are therefore J m−2 s−1. In Section 9.1, we will
also come across a flux of momentum.

Returning to the effusion problem, we note that the flux of molecules
in a gas can be evaluated by integrating expression 6.13 over all θ and
v, so that

Φ =

∫ ∞

0

dv

∫ π/2

0

dθ v cos θ n f(v) dv
1

2
sin θ dθ

=
n

2

∫ ∞

0

dv v f(v)

∫ π/2

0

dθ cos θ sin θ (7.5)

so that
R π/2
0 sin θ cos θ dθ = 1

2
. (Hint: substi-

tute u = sin θ, du = cos θ dθ, so that
the integral becomes

R 1
0 u du = 1

2
.)

Φ = 1
4n〈v〉. (7.6)

An alternative expression for Φ can be found as follows: rearranging
the ideal gas law p = nkBT , we can write

n =
p

kBT
, (7.7)

and using the expression for the average speed of molecules in a gas from
eqn 5.13

〈v〉 =

√
8kBT

πm
, (7.8)

we can substitute these expressions into eqn 7.6 and obtain

Φ =
p√

2πmkBT
. (7.9)

Note that consideration of eqn 7.9 shows us that the effusion rate de-
pends inversely on the square root of the mass in agreement with Gra-
ham’s law.

Example 7.3

Calculate the particle flux from N2 gas at STP (standard temperature
and pressure, i.e. 1 atm and 0◦C).
Solution:

Φ =
1.01325 × 105 Pa√

2π × (28 × 1.67 × 10−27 kg) × 1.38 × 10−23 J K−1 × 273K

≈ 3 × 1027 m−2 s−1 (7.10)
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7.2 Effusion

Consider a container of gas with a small hole of area A in the side.
Gas will leak (i.e. effuse) out of the hole (see Fig. 7.1). The hole is
small, so that the equilibrium of gas in the container is not disturbed.
The number of molecules escaping per unit time is just the number of
molecules hitting the hole area in the closed box per second, so is given
by ΦA per second, where Φ is the molecular flux. This is the effusion
rate.

Fig. 7.1 A gas effuses from a small hole
in its container. Example 7.4

In the Knudsen method of measuring vapour pressure p from a liquid
containing molecules of mass m at temperature T , the liquid is placed
in the bottom of a container which has a small hole of area A at the
top (see Fig. 7.2). The container is placed on a weighing balance and
its weight Mg is measured as a function of time. In equilibrium, the
effusion rate is

ΦA =
pA√

2πmkBT
, (7.11)

so that the rate of change of mass, dM/dt is given by mΦA. Hence

p =

√
2πkBT

m

1

A

dM

dt
. (7.12)

p

Fig. 7.2 The Knudsen method.

f

k T
k T

Fig. 7.3 The distribution function for
molecular speeds (Maxwell–Boltzmann
distribution) in a gas is proportional to

v2 e−mv2/2kBT (solid line) but the gas
which effuses from a small hole has a
distribution function which is propor-

tional to v3 e−mv2/2kBT (dashed line).

Effusion preferentially selects faster molecules. Therefore the speed
distribution of molecules effusing through the hole is not Maxwellian.
This result seems paradoxical at first glance: aren’t the molecules emerg-
ing from the box the same ones that were inside beforehand? How can
their distribution be different?

The reason is that the faster molecules inside the box travel more
quickly and have a greater probability of reaching the hole than their
slower cousins.1 This can be expressed mathematically by noticing that
the number of molecules which hit a wall (or a hole) is given by eqn 6.13
and this has an extra factor of v in it. Thus the distribution of molecules
effusing through the hole is proportional to

v3 e−mv2/2kBT . (7.13)

Note the extra factor of v in this expression compared with the usual
Maxwell–Boltzmann distribution in eqn 5.10. The molecules in the

1An analogy may help here: the foreign tourists who visit your country are not
completely representative of the nation from which they have come; this is because
they are likely to be at least a little more adventurous than their average countrymen
and countrywomen by the very fact that they have actually stepped out of their own
borders.
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Maxwellian gas had an average energy of 1
2m〈v2〉 = 3

2kBT , but the
molecules in the effusing gas have a higher energy, as the following ex-
ample will demonstrate.

Example 7.5

What is the mean kinetic energy of gas molecules effusing out of a small
hole?
Solution:

〈kinetic energy〉 =
1

2
m〈v2〉 (7.14)

=
1
2m

∫∞
0
v2 v3 e−

1
2 mv2/kBT dv∫∞

0
v3 e−

1
2 mv2/kBT dv

=
1

2
m

(
2kBT

m

) ∫∞
0
u2e−u du∫∞

0
ue−u du

where the substitution u = mv2/2kBT has been made. Using the stan-
dard integral

∫∞
0
xne−x dx = n! (see Appendix C.1), we have that

〈kinetic energy〉 = 2kBT. (7.15)

This is larger by a factor of 4
3 compared to the mean kinetic energy

of molecules in the gas. This is because effusion preferentially selects
higher energy molecules.

The hole has to be small. How small? The diameter of the hole has
to be much less2 than the mean free path λ, defined in Section 8.3. 2This is because, as we shall see in Sec-

tion 8.3, the mean free path controls
the characteristic distance between col-
lisions. If the hole is small on this scale,
molecules can effuse out without the
rest of the gas ‘noticing’, i.e. without
a pressure gradient developing close to
the hole.

Example 7.6

Consider a container divided by a partition with a small hole, diameter
D, containing the same gas on each side. The gas on the left-hand side
has temperature T1 and pressure p1. The gas on the right-hand side has
temperature T2 and pressure p2.

If D 	 λ, p1 = p2.
If D � λ, we are in the effusion regime and the system will achieve

equilibrium when the molecular fluxes balance, so that

Φ1 = Φ2, (7.16)

so that, using eqn 7.9 we may write

p1√
T1

=
p2√
T2

. (7.17)
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A final example gives an approximate derivation of the flow rate of
gas down a pipe at low pressures.

Example 7.7

Estimate the mass flow rate of gas down a long pipe of length L and
diameter D at very low pressures in terms of the difference in pressures
p1 − p2 between the two ends of the pipe.
Solution:

This type of flow is known as Knudsen flow. At very low pressures,
molecules make collisions much more often with the walls of the tube
than they do with each other. Let us define a coordinate x which mea-
sures the distance along the pipe. The net flux Φ(x) of molecules flow-
ing down the pipe at position x can be estimated by subtracting the
molecules effusing down the pipe since their last collision (roughly a dis-
tance D upstream) from the molecules effusing up the pipe since their
last collision (roughly a distance D downstream). Thus

Φ(x) ≈ 1

4
〈v〉[n(x+D) − n(x−D)], (7.18)

where n(x) is the number density of molecules at position x. Using
p = 1

3nm〈v2〉 (eqn 6.15), this can be written

Φ(x) ≈ 3

4m

〈v〉
〈v2〉 [p(x+D) − p(x−D)]. (7.19)

We can write

p(x+D) − p(x−D) ≈ −2D
dp

dx
, (7.20)

but also notice that in steady state Φ must be the same along the tube,
so that

dp

dx
=
p2 − p1

L
. (7.21)

Hence the mass flow rate Ṁ = mΦ(πD2/4) (where πD2/4 is the cross-
sectional area of the pipe) is given by

Ṁ ≈ 3

8

〈v〉
〈v2〉πD

3 p1 − p2

L
. (7.22)

With eqns 5.13 and 5.14, we have that

〈v〉2
〈v2〉 =

8

3π
, (7.23)

and hence our estimate of the Knudsen flow rate is

Ṁ ≈ D3

〈v〉
p1 − p2

L
. (7.24)

Note that the flow rate is proportional to D3, so it is much more efficient
to pump gas through wide pipes to obtain low pressures.
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Chapter summary

• The molecular flux, Φ, is the number of molecules which strike unit
area per second and is given by

Φ =
1

4
n〈v〉.

• This expression, together with the ideal gas equation, can be used
to derive an alternative expression for the particle flux:

Φ =
p√

2πmkBT
.

• These expressions also govern molecular effusion through a small
hole.

Exercises

(7.1) In a vacuum chamber designed for surface science
experiments, the pressure of residual gas is kept as
low as possible so that surfaces can be kept clean.
The coverage of a surface by a single monolayer
requires about 1019 atoms per m2. What pressure
would be needed to deposit less than one monolayer
per hour from residual gas? You may assume that
if a molecule hits the surface, it sticks.

(7.2) A vessel contains a monatomic gas at tempera-
ture T . Use the Maxwell–Boltzmann distribution
of speeds to calculate the mean kinetic energy of
the molecules.
Molecules of the gas stream through a small hole
into a vacuum. A box is opened for a short time
and catches some of the molecules. Neglecting the
thermal capacity of the box, calculate the final tem-
perature of the gas trapped in the box.

(7.3) A closed vessel is partially filled with liquid mer-
cury; there is a hole of area 10−7 m2 above the
liquid level. The vessel is placed in a region of high
vacuum at 273 K and after 30 days is found to be
lighter by 2.4×10−5 kg. Estimate the vapour pres-
sure of mercury at 273 K. (The relative molecular
mass of mercury is 200.59.)

(7.4) Calculate the mean speed and most probable speed
for a molecule of mass m which has effused out of
an enclosure at temperature T . Which of the two
speeds is the larger?

(7.5) A gas effuses into a vacuum through a small hole of
area A. The particles are then collimated by pass-
ing through a very small circular hole of radius a,
in a screen a distance d from the first hole. Show
that the rate at which particles emerge from the
second hole is 1

4
nA〈v〉(a2/d2), where n is the par-

ticle density and 〈v〉 is the average speed. (Assume
no collisions take place after the gas effuses through
the second hole, and that d � a.)

(7.6) Show that if a gas were allowed to leak through a
small hole, into an evacuated sphere and the parti-
cles condensed where they first hit the surface they
would form a uniform coating.

(7.7) An astronaut goes for a space walk and her space
suit is pressurised to 1 atm. Unfortunately, a tiny
piece of space dust punctures her suit and it devel-
ops a small hole of radius 1 µm. What force does
she feel due to the effusing gas?

(7.8) Show that the time dependence of the pressure in-
side an oven (volume V ) containing hot gas (molec-
ular mass m, temperature T ) with a small hole of
area A is given by

p(t) = p(0)e−t/τ , (7.25)

with

τ =
V

A

r
2πm

kBT
. (7.26)
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At room temperature, the r.m.s. speed of O2 or N2 is about 500 ms−1.
Processes such as the diffusion of one gas into another would therefore be
almost instantaneous, were it not for the occurrence of collisions between
molecules. Collisions are fundamentally quantum mechanical events, but
in a dilute gas, molecules spend most of their time between collisions and
so we can consider them as classical billiard balls and ignore the details of
what actually happens during a collision. All that we care about is that
after collisions the molecules’ velocities become essentially randomized.11It turns out that large-angle scatter-

ing dominates transport processes in
most gases (described in Chapter 9)
and is largely independent of energy
and therefore temperature; this allows
us to use a rigid-sphere model of colli-
sions, i.e. to model atoms in a gas as
billiard balls.

In this chapter we will model the effect of collisions in a gas and develop
the concepts of a mean collision time, the collision cross-section and the
mean free path.

8.1 The mean collision time

In this section, we aim to calculate the average time between molecular
collisions. Let us consider a particular molecule moving in a gas of other
similar molecules. To make things simple to start with, we suppose
the molecule under consideration is travelling at speed v and that the
other molecules in the gas are stationary. This is clearly a gross over-
simplification, but we will relax this assumption later. We will also
attribute a collision cross-section σ to each molecule which is something
like the cross-sectional area of our molecule. Again, we will refine this
definition later in the chapter.

In a time dt, our molecule will sweep out a volume σvdt. If another
molecule happens to lie inside this volume, there will be a collision. With
n molecules per unit volume, the probability of a collision in time dt is
therefore nσvdt. Let us define P (t) as follows:

P (t) = the probability of a molecule not colliding up to time t. (8.1)

Elementary calculus then implies that

P (t+ dt) = P (t) +
dP

dt
dt, (8.2)

but P (t + dt) is also the probability of a molecule not colliding up to
time t multiplied by the probability of not colliding in subsequent time
dt, i.e. that

P (t+ dt) = P (t)(1 − nσvdt). (8.3)



8.2 The collision cross-section 69

Hence rearranging gives

1

P

dP

dt
= −nσv (8.4)

and therefore that (using P (0) = 1)

P (t) = e−nσvt. (8.5)

Now the probability of surviving without collision up to time t but then
colliding in the next dt is

e−nσvtnσvdt. (8.6)

We can check that this is a proper probability by integrating it,∫ ∞

0

e−nσvtnσvdt = 1, (8.7)

and confirming that it is equal to unity. Here, use has been made of the
integral ∫ ∞

0

e−x dx = 0! = 1 (8.8)

(see Appendix C.1). We are now in a position to calculate the mean
scattering time τ , which is the average time elapsed between collisions
for a given molecule. This is given by

τ =

∫ ∞

0

t e−nσvtnσvdt

=
1

nσv

∫ ∞

0

(nσvt)e−nσvtd(nσvt)

=
1

nσv

∫ ∞

0

xe−xdx (8.9)

where the integral has been simplified by the substitution x = nσvt.
Hence we find that

τ =
1

nσv
, (8.10)

where use has been made of the integral (again, see Appendix C.1)∫ ∞

0

xe−x dx = 1! = 1. (8.11)

a

a

Fig. 8.1 Two spherical molecules of
radii a1 and a2 with a hard-sphere po-
tential between them.

8.2 The collision cross-section

In this section we will consider the factor σ in much more detail. To be
as general as possible, we will consider two spherical molecules of radii
a1 and a2 with a hard-sphere potential between them (see Fig. 8.1).
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This implies that there is a potential energy function V (R) that depends
on the relative separation R of their centres, and is given by

V (R) =

{
0 R > a1 + a2

∞ R ≤ a1 + a2
(8.12)

and this is sketched in Fig. 8.2.
The impact parameter b between two moving molecules is defined

as the distance of closest approach that would result if the molecular
trajectories were undeflected by the collision. Thus for a hard-sphere
potential there is only a collision if the impact parameter b < a1 +
a2. Focus on one of these molecules (let’s say the one with radius a1).
This is depicted in Fig. 8.3. Now imagine molecules of the other type
(with radius a2) nearby. A collision will only take place if the centre of
these other molecules comes inside a tube of radius a1 + a2 (so that the
molecule labelled A would not collide, whereas B and C would). Thus
our first molecule can be considered to sweep out an imaginary tube of
space of cross-sectional area π(a1 +a2)

2 that defines its ‘personal space’.
The area of this tube is called the collision cross-section σ and is then
given by

R

V R

a a

Fig. 8.2 The hard-sphere potential
V (R).

σ = π(a1 + a2)
2. (8.13)

If a1 = a2 = a, then
σ = πd2 (8.14)

where d = 2a is the molecular diameter.

Fig. 8.3 A molecule sweeps out an
imaginary tube of space of cross-
sectional area σ = π(a1 + a2)2. If the
centre of another molecule enters this
tube, there will be a collision.

Is the hard-sphere potential correct? It is a good approximation at
lower temperatures,2 but progressively worsens as the temperature in-

2But not too low a temperature, or
quantum effects become important.

creases. Molecules are not really hard spheres but slightly squashy ob-
jects, and when they move at higher speeds and plough into each other
with more momentum, you need more of a direct hit to cause a collision.
Thus as the gas is warmed, the molecules may appear to have a smaller
cross-sectional area.3

3Cross-sections in nuclear and particle
physics can be much larger than the size
of the object, expressing the fact that
an object (in this case a particle) can
react strongly with things a long dis-
tance away from it.
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8.3 The mean free path

Having derived the mean collision time, it is tempting to derive the
mean free path as

λ = 〈v〉τ =
〈v〉
nσv

(8.15)

but what should we take as v? A first guess is to use 〈v〉, but that turns
out to be not quite right. What has gone wrong?

Our picture of molecular scattering has been to focus on one molecule
as the moving one, and think of all of the others as sitting ducks, fixed
in space waiting patiently for a collision to occur. The reality is quite
different: all molecules are whizzing around. We should therefore take
v as the average relative velocity, i.e. 〈vr〉, where

vr = v1 − v2 (8.16)

and v1 and v2 are the velocities of two molecules labelled 1 and 2. Now,

v2
r = v2

1 + v2
2 − 2v1 · v2, (8.17)

so that
〈v2

r 〉 = 〈v2
1〉 + 〈v2

2〉 = 2〈v2〉, (8.18)

because 〈v1 · v2〉 = 0 (which follows because 〈cos θ〉 = 0). The quantity
which we want is 〈vr〉, but what we have an expression for is 〈v2

r 〉. If
the probability distribution is a Maxwell–Boltzmann distribution, then
the error in writing 〈vr〉 ≈

√〈v2
r 〉 is small,4so to a reasonable degree of 4Equation 7.23 implies that

〈v〉/p〈v2〉 =
q

8
3π

= 0.92, so

the error is less than 10%.

approximation we can write

〈vr〉 ≈
√

〈v2
r 〉 ≈

√
2〈v〉 (8.19)

and hence we obtain an expression for λ as follows:

λ ≈ 1√
2nσ

. (8.20)

Substitution of p = nkBT yields the expression

λ ≈ kBT√
2pσ

. (8.21)

To increase the mean free path by a certain factor, the pressure needs
to be decreased by the same factor.

Example 8.1

Calculate the mean free path for a gas of N2 at room temperature and
pressure. (For N2, take d = 0.37 nm.)
Solution:

The collision cross-section is πd2 = 4.3× 10−19 m2. We have p ≈ 105 Pa
and T ≈ 300 K, so the number density is n = p/kBT ≈ 105/(1.38 ×
10−23×300) ≈ 2×1025 m−3. This leads to λ ≈ 1/(

√
2nσ) = 6.8×10−8 m.
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Notice that both λ and τ decrease with increasing pressure at fixed
temperature. Thus the frequency of collisions increases with increasing
pressure.

Chapter summary

• The mean scattering time is given by

τ =
1

nσ〈vr〉 ,

where the collision cross-section is σ = πd2, d is the molecular
diameter and 〈vr〉 ≈

√
2〈v〉.

• The mean free path is

λ ≈ 1√
2nσ

.

Exercises

(8.1) What is the mean free path of an N2 molecule
in an ultra-high-vacuum chamber at a pressure of
10−10 mbar? What is the mean collision time? The
chamber has a diameter of 0.5 m. On average,
how many collisions will the molecule make with
the chamber walls compared with collisions with
other molecules? If the pressure is suddenly raised
to 10−6 mbar, how do these results change?

(8.2) (a) Show that the root mean square free path is
given by

√
2λ where λ is the mean free path.

(b) What is the most probable free path length?

(c) What percentage of molecules travel a distance
greater (i) than λ, (ii) than 2λ, (iii) than 5λ?

(8.3) Show that particles hitting a plane boundary have
travelled a distance 2λ/3 perpendicular to the plane
since their last collision, on average.

(8.4) A diffuse cloud of neutral hydrogen atoms in space
has a temperature of 50K. Estimate the mean scat-
tering time (in years) between hydrogen atoms in
the cloud and the mean free path (in Astronomi-
cal Units). (1 Astronomical Unit is the Earth–Sun
distance; see Appendix A for a numerical value.)



Part III

Transport and thermal

diffusion

In the third part of this book, we use our results from the kinetic theory
of gases to derive various transport properties of gases and then apply
this to solving the thermal diffusion equation. This part is structured
as follows:

• In Chapter 9, we use the intuition developed from considering
molecular collisions and the mean free path to determine various
transport properties, in particular viscosity, thermal conductivity

and diffusion. These correspond to the transport of momentum,
heat and particles respectively.

• In Chapter 10 we derive the thermal diffusion equation which shows
how heat is transported between regions of different temperature.
This equation is a differential equation and can be applied to a
variety of physical situations, and we show how to solve it in certain
cases of high symmetry.
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In this chapter, we wish to describe how a gas can transport momen-
tum, energy or particles, from one place to another. The model we have
used so far has been that of a gas in equilibrium, so that none of its
parameters are time-dependent. Now we consider non-equilibrium situ-
ations, but still in the steady state, i.e. so that the system parameters
are time-independent, but the surroundings will be time-dependent. The
phenomena we want to treat are called transport properties and we
will consider

(1) viscosity, which is the transport of momentum,

(2) thermal conductivity which is the transport of heat, and

(3) diffusion, which is the transport of particles.

9.1 Viscosity

Viscosity is the measure of the resistance of a fluid to the deformation
produced by a shear stress. For straight, parallel and uniform flow, the
shear stress between the layers is proportional1 to the velocity gradient

1This proportionality was suggested by
Isaac Newton and holds for many liq-
uids and most gases, which are thus
termed Newtonian fluids. Non-
Newtonian fluids have a viscosity which
is a function of the applied shear stress.

in the direction perpendicular to the layers. The constant of propor-
tionality, given the symbol η, is called the coefficient of viscosity, the
dynamic viscosity or simply the viscosity.22Also used is the kinematic viscosity

ν, defined by ν = η/ρ where ρ is the
density. This is useful because one of-
ten wants to compare the viscous forces
with inertial forces. The unit of kine-
matic viscosity is m2 s−1.

F

F

x

z

ux

u

Fig. 9.1 A fluid is sandwiched between
two plates of area A which each lie in
an xy plane.

Consider the scenario in Fig. 9.1 in which a fluid is sandwiched be-
tween two plates of area A which each lie in the xy plane. A shear
stress τxz = F/A is applied to the fluid by sliding the top plate over
it at speed u while keeping the bottom plate stationary. A shear force
F is applied. A velocity gradient d〈ux〉/dz is set up, so that 〈ux〉 = 0
near the bottom plate and 〈ux〉 = u near the top plate. If the fluid is
a gas, then this extra motion in the x-direction is superimposed on the
Maxwell–Boltzmann motion in the x, y and z directions (and hence the
use of the average 〈ux〉, rather than ux).

The viscosity η is then defined by

τxz =
F

A
= η

d〈ux〉
dz

. (9.1)

The units of viscosity are Pa s (= N m−2 s). Force is rate of change
of momentum, and hence transverse momentum is being transported
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through the fluid. This is achieved because molecules travelling in the
+z direction move from a layer in which 〈ux〉 is smaller to one in which
〈ux〉 is larger, and hence they transfer net momentum to that layer in
the −x direction. Molecules travelling parallel to −z have the opposite
effect. Hence, the shear stress τxz is equal to the transverse momen-
tum transported across each square metre per second, and hence τxz is
equal to a flux of momentum (though note that there must be a mi-
nus sign involved, because the momentum flux must be from regions of
high transverse velocity to regions of low transverse velocity, which is in
the opposite direction to the velocity gradient). The velocity gradient
∂〈ux〉/∂z therefore drives a momentum flux Πz, according to

Πz = −η ∂〈ux〉
∂z

. (9.2)

The viscosity can be calculated using kinetic theory as follows:

z
v

Fig. 9.2 Molecular velocty v for
molecules travelling at an angle θ to the
z-axis. These will have travelled on av-
erage a distance λ since their last col-
lision, and so they will have travelled
a distance λ cos θ parallel to the z-axis
since their last collision.

Recall first that we showed before in eqn 6.13 that the number of
molecules which hit unit area per second is v cos θ n f(v) dc 1

2 sin θ dθ.
Consider molecules travelling at an angle θ to the z-axis (see Fig. 9.2).
Then molecules which cross a plane of constant z will have travelled
on average a distance λ since their last collision, and so they will have
travelled a distance λ cos θ parallel to the z-axis since their last colli-
sion. Over that distance there is an average increase in 〈ux〉 given by
(∂〈ux〉/∂z)λ cos θ, so these upward travelling molecules bring an excess
momentum in the x-direction given by3 3The negative sign is because the

molecules moving in the +z direction
are moving up the velocity gradient
from a slower to a faster region and
so bring a deficit in x-momentum if“

∂〈ux〉
∂z

”
is positive. It is the same rea-

son for the negative sign in eqn 9.2.

−m
(
∂〈ux〉
∂z

)
λ cos θ. (9.3)

Hence the total x-momentum transported across unit area perpendicular
to z in unit time is the momentum flux Πz given by

Πz =

∫ ∞

0

∫ π

0

v cos θ n f(v) dv
1

2
sin θ dθ ·m

(
−∂〈ux〉

∂z

)
λ cos θ

=
1

2
nmλ

∫ ∞

0

v f(v) dv

(
−∂〈ux〉

∂z

)∫ π

0

cos2 θ sin θ dθ

= −1

3
nmλ〈v〉

(
∂〈ux〉
∂z

)
. (9.4)

Hence the viscosity is given by

η =
1

3
nmλ〈v〉. (9.5)

Equation 9.5 has some important consequences.

• η independent of pressure.

Because λ ≈ 1/(
√

2nσ) ∝ n−1, the viscosity is independent of n
and hence (at constant temperature) it is independent of pressure.
This is at first sight a weird result: as you increase the pressure,
and hence n, you should be better at transmitting momentum
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because you have more molecules to do it with. However, your
mean free path reduces correspondingly, so that each molecule
becomes less effective at transmitting momentum in such a way as
to precisely cancel out the effect of having more of them.
This result holds impressively well over quite a range of pressures
(see Fig. 9.3) although it begins to fail at very low or very high
pressures.

• η ∝ T 1/2.T

Fig. 9.3 The apparent viscosity of air
as a function of pressure at 288 K. It is
found to be constant over a wide range
of pressure.

Because η is independent of n, the only temperature dependence
is from 〈v〉 ∝ T 1/2, and hence η ∝ T 1/2. Note therefore that
the viscosity of gases increases with T , which is different for most
liquids which get runnier (i.e. less viscous) when you heat them.

• Substituting in λ = (
√

2nσ)−1, σ = πd2 and 〈v〉 = (8kBT/πm)1/2

yields a more useful (though less memorable) expression for the
viscosity:

η =
2

3πd2

(
mkBT

π

)1/2

. (9.6)

• Equation 9.6 predicts that the viscosity will be proportional to√
m/d2 at constant temperature. This holds very well, as shown

in Fig. 9.4.

Fig. 9.4 The dependence of the viscos-

ity of various gases on
√
m/d2. The

dotted line is the prediction of eqn 9.6.
The solid line is the prediction of
eqn 9.45.

m m d

• Various approximations have gone into this approach, and a con-
dition for their validity is that

L	 λ	 d, (9.7)

where L is the size of the container holding the gas and d is the
molecular diameter. We need λ	 d (pressure not too high) so that
we can neglect collisions involving more than two particles. We
need λ� L (pressure not too low) so that molecules mainly collide
with each other and not with the container walls. If λ is of the



9.1 Viscosity 77

same order of magnitude or greater than L, most of a molecule’s
collisions will be with the container walls. Figure 9.3 indeed shows
that the pressure-independence of the viscosity begins to break
down when the pressure is too low or too high.

T

Fig. 9.5 The temperature dependence
of the viscosity of various gases. The
agreement with the predicted T 1/2 be-
haviour is satisfactory as a first approx-
imation, but not very good in detail.

• The factor of 1
3 in eqn 9.5 is not quite right, so that eqn 9.6 leads to

the dotted line in Fig. 9.4. To get a precise numerical factor, you
need to consider the fact that the velocity distribution is different
in different layers (because of the shear stress applied) and then
average over the distribution of path lengths. This will be done in
Section 9.4 and leads to a prediction which gives the solid line in
Fig. 9.4.

• The measured temperature dependence of the viscosity of various
gases broadly agrees with our prediction that η ∝ √

T , as shown
in Fig. 9.5, but the agreement is not quite perfect. The reason
for this is that the collision cross-section, σ = πd2, is actually
temperature-dependent. At high temperatures, molecules move
faster and hence have to collide more directly to have a proper
momentum-randomizing collision. We have been assuming that
molecules behave as perfect hard spheres and that any collision
perfectly randomizes the molecular motion, but this is not precisely
true. This means that the effective molecular diameter shrinks as
you increase the temperature, increasing the viscosity over and
above the expected

√
T dependence. This is evident in the data

presented in Fig. 9.5.

• Viscosity can be measured by the damping of torsional oscillations
in the apparatus shown in the box.
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Measurement of viscosity

Maxwell developed a method for measuring
the viscosity of a gas by observing the damp-
ing rate of oscillations of a disk suspended
from a fixed support by a torsion fibre.

(a)

(b)

a

b

Fig. 9.6 Measuring viscos-
ity by (a) Maxwell’s method
and (b) the rotating cylinder
method.

It is positioned halfway
between two, fixed hor-
izontal disks and oscil-
lates parallel to them
in the gas. This is
shown in Fig. 9.6(a),
with the fixed horizon-
tal disks shaded and
the oscillating disk in
white. The damp-
ing of the torsional os-
cillations is from the
viscous damping due
to the gas trapped on
each side of the oscil-
lating disk between the
fixed disks. The fixed
disks are mounted in-
side a vacuum chamber
in which the composi-
tion and pressure of the
gas to be measured can
be varied.

A very accurate
method is the rotating-

cylinder method in
which gas is confined
between two vertical
coaxial cylinders. It is
shown in Fig. 9.6(b).
The outer cylinder (in-
ner radius a) is rotated
by a motor at a con-
stant angular speed ω0,
while the inner cylin-
der (outer radius b) is
suspended by a torsion
fibre from a fixed sup-
port. The torque G on

the outer cylinder is transmitted via the gas to the
inner cylinder and a resulting torque on the torsion

fibre. The velocity gradient u(r) is related to the an-
gular velocity ω(r) by u(r) = rω(r), and we expect
that ω varies all the way from 0 at r = a to ω0 at
r = b. The velocity gradient is thus

du

dr
= ω + r

dω

dr
, (9.8)

but the first term here simply corresponds to the ve-
locity gradient due to rigid rotation and does not
contribute to the viscous shearing stress which is thus
ηrdω/dr. The force F on a cylindrical element of gas
(of length l) is then just this viscous stress multiplied
by the area of the cylinder 2πrl, i.e.

F = 2πrlη × r
dω

dr
, (9.9)

and so the torque G = rF on this cylindrical element
is

G = 2πr3lη
dω

dr
. (9.10)

In the steady state, there is no change in viscous
torque from the outer to the inner cylinder (if there
were, angular acceleration would be induced some-
where and the system would change) so this torque
is transmitted to the suspended cylinder. Hence re-
arranging and integrating give

G

∫ b

a

dr

r3
= 2πlη

∫ ω0

0

dω = 2πlηω0, (9.11)

so that

η =
G

4πωl

(
1

a2
− 1

b2

)
. (9.12)

The torque G is related to the angular deflection φ of
the inner cylinder by G = αφ. The angular deflection
can be measured using a light beam reflected from a
small mirror attached to the torsion fibre. The coeffi-
cient α is known as the torsion constant. This can
be found by measuring the period T of torsional oscil-
lations of an object of moment of inertia I suspended
from the wire, which is

T = 2π

√
I

α
. (9.13)

Knowledge of I and T yields α which can be used
with the measured φ to obtain G and hence η.
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9.2 Thermal conductivity

We have defined heat as ‘energy in transit’.4 It quantifies the transfer 4See Chapter 2.

of energy in response to a temperature gradient. The amount of heat
which flows along a temperature gradient depends upon the thermal
conductivity of the material which we will now define.

Thermal conductivity can be considered in one-dimension using the
diagram shown in Fig. 9.7. Heat flows from hot to cold, and so flows
against the temperature gradient. The flow of heat can be described by
a heat flux vector J , whose direction lies along the direction of flow of
heat and whose magnitude is equal to the heat energy flowing per unit
time per second (measured in J s−1 m−2 =W m−2). The heat flux Jz in
the z-direction is given by

Jz = −κ
(
∂T

∂z

)
, (9.14)

T

T
z

Jz T
T T

Fig. 9.7 Heat flows in the opposite di-
rection to the temperature gradient.

where the negative sign is because heat flows ‘downhill’. The constant
κ is called the thermal conductivity5 of the gas. In general, in three

5Thermal conductivity has units

W m−1 K−1.

dimensions we can write that the heat flux J is related to temperature
using

J = −κ∇T. (9.15)

How do molecules in a gas ‘carry’ heat? Gas molecules have energy,
and as we found in eqn 5.17 their mean translational kinetic energy
〈 1
2mv

2〉 = 3
2kBT depends on the temperature. Therefore to increase

the temperature of a gas by 1 K, one has to increase the mean kinetic
energy by 3

2kB per molecule. The heat capacity6 C of the gas is the heat 6See Section 2.2.

required to increase the temperature of gas by 1 K. The heat capacity
Cmolecule of a gas molecule is therefore equal to 3

2kB, though we will later
see that it can be larger than this if the molecule can store energy in
forms other than translational kinetic energy.7 7Other forms include rotational kinetic

energy or vibrational energy, if the gas
molecules are polyatomic.

The derivation of the thermal conductivity of a gas is very similar to
that for viscosity. Consider molecules travelling along the z-axis. Then
molecules which cross a plane of constant z will have travelled on average
a distance λ since their last collision, and so they will have travelled a
distance λ cos θ parallel to the z-axis since their last collision. Therefore,
they bring a deficit of thermal energy given by

Cmolecule × ∆T = Cmolecule
∂T

∂z
λ cos θ, (9.16)

where Cmolecule is the heat capacity of a single molecule. Hence the total
thermal energy transported across unit area in unit time, i.e. the heat
flux, is given by

Jz =

∫ ∞

0

dv

∫ π

0

(
−Cmolecule

∂T

∂z
λ cos θ

)
v cos θ nf(v)

1

2
sin θdθ

= −1

2
nCmoleculeλ

∫ ∞

0

v f(v) dv
∂T

∂z

∫ π

0

cos2 θ sin θ dθ

= −1

3
nCmoleculeλ〈v〉∂T

∂z
. (9.17)
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Hence, the thermal conductivity κ is given by

κ =
1

3
CV λ〈v〉, (9.18)

where CV = nCmolecule is the heat capacity per unit volume (though the
subscript V here refers to a temperature change at constant volume).
Equation 9.18 has some important consequences.

• κ independent of pressure.

The argument is the same as for η. Because κ ≈ 1/(
√

2nσ) ∝ n−1,
κ is independent of n and hence (at constant temperature) it is
independent of pressure.

• κ ∝ T 1/2.

The argument is also the same as for η. Because κ is independent
of n, the only temperature dependence is from 〈v〉 ∝ √

T , and
hence η ∝ T 1/2. This holds really quite well for a number of gases
(see Fig. 9.8).

• As for viscosity, substituting in λ = (
√

2nσ)−1, σ = πd2 and
〈v〉 = (8kBT/πm)1/2 yields a more useful (though less memorable)
expression for the thermal conductivity:

κ =
2

3πd2
Cmolecule

(
kBT

πm

)1/2

. (9.19)

• L 	 λ 	 d is again the relevant condition for our treatment to
hold.

T

Fig. 9.8 The thermal conductivity of
various gases as a function of tempera-
ture. The agreement with the predicted
T 1/2 behaviour is satisfactory as a first
approximation, but not very good in
detail.

• Equation 9.19 predicts that the thermal conductivity will be pro-
portional to 1/(

√
md2) at constant temperature. This holds very

well, as shown in Fig. 9.9.

d m m

Fig. 9.9 The dependence of the ther-
mal conductivity of various gases on
1/(

√
md2). The dotted line is the pre-

diction of eqn 9.19. The solid line is the
prediction of eqn 9.46 which works very
well for the monatomic noble gases, but
a little less well for diatomic N2.

• Thermal conductivity can be measured by various techniques, see
the box.

The similarity of η and κ would suggest that

κ

η
=
Cmolecule

m
. (9.20)

The ratio Cmolecule/m is the specific heat capacity8 cV (the subscript V

8See Section 2.2.

indicating a measurement at constant volume), so equivalently

κ = cVη. (9.21)

However, neither of these relations hold too well. Faster molecules cross
a given plane more often than slow ones. These carry more kinetic energy
and therefore do carry more heat. However, they don’t necessarily carry
more average momentum in the x-direction. We will return to this point
in Section 9.4.
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Measurement of thermal
conductivity

The thermal conductivity κ can be measured us-
ing the hot-wire method. Gas fills the space be-
tween two coaxial cylinders (inner cylinder radius
a, outer cylinder radius b) as shown in Fig. 9.10.

a

b

Ta

Tb

Fig. 9.10 The hot-wire method
for measuring thermal conduc-
tivity.

The outer cylinder
is connected to a
constant-temperature
bath of temperature Tb,
while heat is generated
in the inner cylinder
(the hot wire) at rate
Q per unit length of the
cylinder (measured in
units of W m−1). The
temperature of the in-
ner cylinder rises to Ta.
The rate Q can be con-
nected with the radial
heat flux Jr using

Q = 2πrJr, (9.22)

and Jr itself is given by −κ∂T/∂r, as in eqn 9.14.
Hence

Q = −2πrκ

(
∂T

∂r

)
, (9.23)

and rearranging and integrating yields

Q

∫ b

a

dr

r
= −2πκ

∫ Tb

Ta

dT, (9.24)

and hence

κ =
Q

2π

ln b/a

Ta − Tb
. (9.25)

Since Q is known (it is the power supplied to heat
the inner cylinder) and Ta and Tb can be measured,
the value of κ can be deduced.

An important application of this technique is in
the Pirani gauge, which is commonly used in vac-
uum systems to measure pressure. A sensor wire is
heated electrically, and the pressure of the gas is de-
termined by measuring the current needed to keep
the wire at a constant temperature. (The resistance
of the wire is temperature dependent, so the temper-
ature is estimated by measuring the resistance of the
wire.) The Pirani gauge thus relies on the fact that
at low pressure the thermal conductivity is a func-
tion of pressure (since the condition λ � L, where
L is a linear dimension in the gauge, is not met). In
fact, a typical Pirani gauge will not work to detect
pressures much above 1 mbar because, above these
pressures, the thermal conductivity of the gases no
longer changes with pressure. The thermal conduc-
tivity of each gas is different, so the gauge has to be
calibrated for the individual gas being measured.

9.3 Diffusion

Consider a distribution of similar molecules, some of which are labelled
(e.g. by being radioactive). Let there be n∗(z) of these labelled molecules
per unit volume, but note that n∗ is allowed to be a function of the z
coordinate. The flux Φz of labelled molecules parallel to the z-direction
(measured in m−2s−1) is9 9In three dimensions, this equation is

written Φ = −D∇n∗.

Φz = −D
(
∂n∗

∂z

)
, (9.26)

where D is the coefficient of self-diffusion.10Now consider a thin

10We use the phrase self-diffusion be-
cause the molecules which are diffus-
ing are the same (apart from being
labelled) as the molecules into which
they are diffusing. Below we will con-
sider diffusion of molecules into dissim-
ilar molecules.

slab of gas of thickness dz and area A, as shown in Fig. 9.11. The flux
into the slab is

AΦz, (9.27)
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and the flux out of the slab is

A

(
Φz +

∂Φz

∂z
dz

)
. (9.28)

The difference in these two fluxes must be balanced by the time-dependent
changes in the number of labelled particles inside the region. Hence

∂

∂t
(n∗Adz) = −A∂Φz

∂z
dz, (9.29)

so that
∂n∗

∂t
= −∂Φz

∂z
, (9.30)

and hence that

z An z

A z

A z z z z

Fig. 9.11 The fluxes into and out of
a thin slab of gas of thickness dz and
area A.

∂n∗

∂t
= D

∂2n∗

∂z2
. (9.31)

This is the diffusion equation. A derivation of the diffusion equation
in three dimensions is shown in the box.1111See also Appendix C.12.

Three-dimensional derivation of the diffusion equation
The total number of labelled particles that flow out of a closed surface
S is given by the integral ∫

S

Φ · dS, (9.32)

and this must be balanced by the rate of decrease of labelled particles
inside the volume V which is surrounded by S, i.e.∫

S

Φ · dS = − ∂

∂t

∫
V

n∗ dV. (9.33)

The divergence theorem implies that∫
S

Φ · dS =

∫
V

∇ · ΦdV, (9.34)

and hence that

∇ · Φ = −∂n
∗

∂t
. (9.35)

Substituting in Φ = −D∇n∗ then yields the diffusion equation, which
is

∂n∗

∂t
= D∇2n∗. (9.36)

A kinetic theory derivation of D proceeds as follows. The excess
labelled molecules hitting unit area per second is

Φz =

∫ ∞

0

v cos θf(v) dv
1

2
sin θ

(
−∂n

∗

∂z
λ cos θ

)

= −1

3
λ〈v〉∂n

∗

∂z
, (9.37)
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and hence

D =
1

3
λ〈v〉. (9.38)

This equation has some important implications:

• D ∝ p−1

In this case, there is no factor of n, but λ ∝ 1/n and henceD ∝ n−1

and at fixed temperature D ∝ p−1 (this holds quite well experi-
mentally, see Fig. 9.12).

• D ∝ T 3/2

Because p = nkBT and 〈v〉 ∝ T 1/2, we have that D ∝ T 3/2 at
fixed pressure.

• Dρ = η
The only difference between the formula for D and that for η is a
factor of ρ = nm, and so

Dρ = η. (9.39)

• D ∝ m−1/2d−2 which is the same dependence as thermal conduc-
tivity.

• The less-memorable formula for D is, as before, obtained by sub-
stituting in the expressions for 〈v〉 and λ, yielding

D =
2

3πnd2

(
kBT

πm

)1/2

. (9.40)

p

D

p

D

Fig. 9.12 Diffusion as a function of
pressure.

This section has been about self-diffusion, where labelled atoms (or
molecules) diffuse amongst unlabelled, but otherwise identical atoms
(or molecules). Experimentally, it is easier to measure the diffusion of
atoms (or molecules) of one type (call them type 1, mass m1, diameter
d1) amongst atoms (or molecules) of another type (call them type 2,
mass m2, diameter d2). In this case the diffusion constant D12 is used
which is given by eqn 9.40 with d replaced by (d1+d2)/2 and m replaced
by 2m1m2/(m1 +m2), so that

D12 =
2

3πn( 1
2 [d1 + d2])2

(
kBT (m1 +m2)

2πm1m2

)1/2

. (9.41)
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9.4 More-detailed theory

The treatment of the transport properties presented so far in this chap-
ter has the merit that it allows one to get the basic dependences fairly
straightforwardly, and gives good insight as to what is going on. How-
ever, some of the details of the predictions are not in complete agreement
with experiment and it is the purpose of this section to offer a critique of
this approach and see how things might be improved. This section con-
tains more advanced material than considered in the rest of this chapter
and can be skipped at first reading.

One effect which we have ignored is the persistence of velocity af-
ter a collision. Our assumption has been that following a collision, a
molecule’s velocity becomes completely randomized and is completely
uncorrelated with its velocity before the collision. However, although
that is the simplest approximation to take, it is not correct. After most
collisions, a molecule will retain some component of its velocity in the
direction of its original motion. Moreover, our treatment has implicitly
assumed a Maxwellian distribution of molecular velocities and that the
different components of v are uncorrelated with each other, so that they
can be considered to be independent random variables.12 However, these12See Section 3.6.

components are actually partially correlated with each other and so are
not independent random variables.

A further effect which becomes important at low pressure is the pres-
ence of boundaries; the details of the collisions of molecules with walls of
a container can be quite important, and such collisions become more im-
portant as the pressure is reduced so that the mean free path increases.

Yet another consideration is the interconversion between the internal
energy of a molecule and its translational degrees of freedom. As we will
see in later chapters, the heat capacity of a molecule contains terms not
only due to its translational motion (Cmolecule = 3

2kB) but also due to
its rotational and vibrational degrees of freedom. Collisions can give rise
to processes where a molecule’s energy can be redistributed throughout
these different degrees of freedom. Thus if the molar heat capacity CV

can be written as the sum of two terms, CV = C ′
V + C ′′

V , where C ′
V is

due to translational degrees of freedom and C ′′
V is due to other degrees

of freedom, then it turns out that eqn 9.21 should be amended to give

κ =

(
5

2
C ′

V + C ′′
V

)
η. (9.42)

The 5
2 factor reflects the correlations that exist between momentum,

energy and translational motion. The most energetic molecules are the
most rapid and therefore possess longer mean free paths. This leads to
Eucken’s formula, which states that

κ =
1

4
(9γ − 5)ηCV . (9.43)

For an ideal monatomic gas γ = 5
3 and hence

κ =
5

2
ηCV , (9.44)
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which supersedes eqn 9.21.
A more accurate treatment of the effects mentioned in this section has

been performed by Chapman and Enskog (in the twentieth century); the
methods used go beyond the scope of this text, but we summarize the
results.

• The viscosity, which was written as η = (2/3πd2)(mkBT/π)1/2 in
eqn 9.6, should be replaced by

η =
5

16

1

d2

(
mkBT

π

)1/2

, (9.45)

i.e. the 2/3π should be replaced by 5/16.

• The corrected formula for κ (which we had evaluated in eqn 9.19)
can be obtained from this expression of η using Eucken’s formula,
eqn 9.43, and hence reads

κ =
25

32d2
Cmolecule

(
kBT

πm

)1/2

, (9.46)

i.e. the 2/3π should be replaced by 25/32.

• The formula for D, which appears in eqn 9.40, should now be
replaced by

D =
3

8

1

nd2

(
kBT

πm

)1/2

, (9.47)

i.e. the 2/3π should be replaced by 3/8. Similarly, eqn 9.41 should
be replaced by

D =
3

8n( 1
2 [d1 + d2])2

(
kBT (m1 +m2)

2πm1m2

)1/2

. (9.48)

This also alters other conclusions, such as eqn 9.39, which becomes

Dρ =
3
8η
5
16

=
6η

5
. (9.49)
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Chapter summary

• Viscosity, η, defined by Πz = −η ∂〈ux〉/∂z is (approximately)

η =
1

3
nmλ〈v〉.

• Thermal conductivity, κ, defined by Jz = −κ ∂T/∂z is (approxi-
mately)

κ =
1

3
CV λ〈v〉.

• Diffusion, D, defined by Φz = −D∂n∗/∂z is (approximately)

D =
1

3
λ〈v〉.

• These relationships assume that

L	 λ	 d.

The results of a more detailed theory have been summarized (which
serve only to alter the numerical factors at the start of each equa-
tion).

• The predicted pressure, temperature, molecular mass and molecu-
lar diameter dependences are:

η κ D

∝ p0 ∝ p0 ∝ p−1

∝ T 1/2 ∝ T 1/2 ∝ T 3/2

∝ m1/2d−2 ∝ m−1/2d−2 ∝ m−1/2d−2

(In this table, ∝ p0 means independent of pressure.)

Further reading

Chapman and Cowling (1970) is the classic treatise describing the more advanced treatment of transport properties
in gases.
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Exercises

(9.1) Is air more viscous than water? Compare the
dynamic viscosity η and the kinematic viscosity
ν = η/ρ using the following data:

ρ η
(kg m−3) (Pa s)

Air 1.3 17.4×10−6

Water 1000 1.0×10−3

(9.2) Obtain an expression for the thermal conductiv-
ity of a gas at ordinary pressures. The thermal
conductivity of argon (atomic weight 40) at S.T.P.
is 1.6×10−2 Wm−1K−1. Use this to calculate the
mean free path in argon at S.T.P. Express the mean
free path in terms of an effective atomic radius for
collisions and find the value of this radius. Solid
argon has a close–packed cubic structure in which,
if the atoms are regarded as hard spheres, 0.74 of
the volume of the structure is filled. The density of
solid argon is 1.6×103 kg m−3. Compare the effec-
tive atomic radius obtained from this information
with your effective collision radius. Comment on
your result.

(9.3) Define the coefficient of viscosity. Use kinetic the-
ory to show that the coefficient of viscosity of a gas
is given, with suitable approximations, by

η = Kρ〈c〉λ
where ρ is the density of the gas, λ is the mean free
path of the gas molecules, 〈c〉 is their mean speed,
and K is a number which depends on the approxi-
mations you make.
In 1660 Boyle set up a pendulum inside a vessel
which was attached to a pump which could remove
air from the vessel. He was surprised to find that
there was no observable change in the rate of damp-
ing of the swings of the pendulum when the pump
was set going. Explain his observation in terms of
the above formula.
Make a rough order of magnitude estimate of the
lower limit to the pressure which Boyle obtained;
use reasonable assumptions concerning the appa-
ratus which Boyle might have used. [The viscos-
ity of air at atmospheric pressure and at 293 K is
18.2 µN s m−2.]
Explain why the damping is nearly independent of
pressure despite the fact that fewer molecules col-
lide with the pendulum as the pressure is reduced.

(9.4) Two plane disks, each of radius 5 cm, are mounted
coaxially with their adjacent surfaces 1 mm apart.
They are in a chamber containing Ar gas at S.T.P.
(viscosity 2.1×10−5 N s m−2) and are free to rotate
about their common axis. One of them rotates with
an angular velocity of 10 rad s−1. Find the torque
which must be applied to the other to keep it sta-
tionary.

(9.5) Measurements of the viscosity, η, of argon gas
(40Ar) over a range of pressures yield the follow-
ing results at two temperatures:

at 500 K η ≈ 3.5 × 10−5 kg m−1 s−1;
at 2000 K η ≈ 8.0 × 10−5 kg m−1 s−1.

The viscosity is found to be approximately indepen-
dent of pressure. Discuss the extent to which these
data are consistent with (i) simple kinetic theory,
and (ii) the diameter of the argon atom (0.34 nm)
deduced from the density of solid argon at low tem-
peratures.

(9.6) In Section 11.3, we will define the ratio of Cp to CV

is given by the number γ. We will also show that
Cp = CV + R, where the heat capacities here are
per mole. Show that these definitions lead to

CV =
R

(γ − 1)
. (9.50)

Starting with the formulae CV = C′
V + C′′

V and
κ =

`
5
2
C′

V + C′′
V

´
η, show that if C′

V /R = 3
2
, then

κ =
1

4
(9γ − 5) ηCV , (9.51)

which is Eucken’s formula. Deduce the value of γ
for each of the following monatomic gases measured
at room temperatures.

Species κ/(ηCV )
He 2.45
Ne 2.52
Ar 2.48
Kr 2.54
Xe 2.58

Deduce what proportion of the heat capacity of the
molecules is associated with the translational de-
grees of freedom for these gases. (Hint: notice the
word ‘monatomic’.)
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In the previous chapter, we have seen how the thermal conductivity
of a gas can be calculated using kinetic theory. In this chapter, we
look at solving problems involving the thermal conductivity of matter
using a technique which was developed by mathematicians in the late
eighteenth and early nineteenth centuries. The key equation describes
thermal diffusion, i.e. how heat appears to ‘diffuse’ from one place to
the other, and most of this chapter introduces techniques for solving
this equation.

This section assumes familiarity with
solving differential equations (see e.g.
Boas (1983), Riley et al. (2006)). It
can be omitted at first reading.

10.1 Derivation of the thermal diffusion
equation

Recall from eqn 9.15 that the heat flux J is given by

J = −κ∇T. (10.1)

This equation is very similar mathematically to the equation for particle
flux Φ in eqn 9.26 which is, in three dimensions,

Φ = −D∇n, (10.2)

where D is the diffusion constant, and also to the flow of electrical
current given by the current density Je defined by

Je = σE = −σ∇φ, (10.3)

where σ is the conductivity, E is the electric field and φ here is the
electric potential. Because of this mathematical similarity, an equation
which is analogous to the diffusion equation (eqn 9.36) holds in each
case. We will derive the thermal diffusion equation in this section.

V

S

J

J
J

J

Fig. 10.1 A closed surface S encloses
a volume V . The total heat flow out of
S is given by

R
S J · dS.

In fact in all these phenomena, there needs to be some account of the
fact that you can’t destroy energy, or particles, or charge. (We will only
treat the thermal case here.) The total heat flow out of a closed surface
S is given by the integral ∫

S

J · dS, (10.4)

and is a quantity which has the dimension of power. It is therefore
equal to the rate which the material inside the surface is losing energy.
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This can be expressed as the rate of change of the total thermal energy
inside the volume V which is surrounded by the closed surface S. The
thermal energy can be written as the volume integral

∫
V
CT dV , where We haven’t worried about what the

‘zero’ of thermal energy is; there could
also be an additive, time-independent,
constant in the expression for total
thermal energy, but since we are going
to differentiate this with respect to time
to obtain the rate of change of thermal
energy, it doesn’t matter.

C here is the heat capacity per unit volume (measured in J K−1 m−3)
and is equal to ρc, where ρ is the density and c is the heat capacity per
unit mass (the specific heat capacity, see Section 2.2). Hence∫

S

J · dS = − ∂

∂t

∫
V

CT dV. (10.5)

The divergence theorem implies that∫
S

J · dS =

∫
V

∇ · J dV, (10.6)

and hence that

∇ · J = −C ∂T
∂t
. (10.7)

Substituting in eqn 10.1 then yields the thermal diffusion equation
which is

∂T

∂t
= D∇2T , (10.8)

whereD = κ/C is the thermal diffusivity. Since κ has units W m−1 K−1

and C = ρc has units J K−1 m−3, D has units m2 s−1.

10.2 The one-dimensional thermal
diffusion equation

In one dimension, this equation becomes

∂T

∂t
= D

∂2T

∂x2
, (10.9)

and can be solved using conventional methods.

Example 10.1

Solution of the one-dimensional thermal diffusion equation
The one-dimensional thermal diffusion equation looks a bit like a wave
equation. Therefore, one method to solve eqn 10.9 is to look for wave-like
solutions of the form

T (x, t) ∝ exp(i(kx− ωt)), (10.10)

where k = 2π/λ is the wave vector, ω = 2πf is the angular frequency, λ
is the wavelength and f is the frequency. Substitution of this equation
into eqn 10.9 yields

−iω = −Dk2 (10.11)
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and hence

k2 =
iω

D
(10.12)

so that

k = ±(1 + i)

√
ω

2D
. (10.13)

The spatial part of the wave, which looks like exp(ikx), can either be of
the form

exp

(
(i − 1)

√
ω

2D
x

)
, which blows up as x→ −∞ , (10.14)

or

exp

(
(−i + 1)

√
ω

2D
x

)
, which blows up as x→ ∞ . (10.15)

Let us now solve a problem in which a boundary condition is applied
at x = 0 and a solution is desired in the region x > 0. We don’t want
solutions which blow up as x → ∞ and pick the first type of solution
(i.e. eqn 10.14). Hence our general solution for x ≥ 0 can be written as

T (x, t) =
∑
ω

A(ω) exp(−iωt) exp

(
(i − 1)

√
ω

2D
x

)
, (10.16)

where we have summed over all possible frequencies. To find which fre-
quencies are needed, we have to be specific about the boundary condition
for which we want to solve.

Let us imagine that we want to solve the one-dimensional problem of
the propagation of sinusoidal temperature waves into the ground. The
waves could be due to the alternation of day and night (for a wave with
period 1 day), or winter and summer (for a wave with period 1 year).
The boundary condition can be written as

T (0, t) = T0 + ∆T cos Ωt. (10.17)

This boundary condition can be rewritten

T (0, t) = T0 +
∆T

2
eiΩt +

∆T

2
e−iΩt. (10.18)

However, at x = 0 the general solution (eqn 10.16) becomes

T (0, t) =
∑
ω

A(ω) exp(−iωt). (10.19)

Comparison of eqns 10.18 and 10.19 implies that the only non-zero values
of A(ω) are

A(0) = T0, A(−Ω) =
∆T

2
and A(Ω) =

∆T

2
. (10.20)

Hence the solution to our problem for x ≥ 0 is

T (x, t) = T0 +
∆T

2
e−x/δ cos

(
Ωt− x

δ

)
, (10.21)
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where

δ =

√
2D

Ω
=

√
2κ

ΩC
(10.22)

is known as the skin depth. The solution in eqn 10.21 is plotted in
Fig. 10.2. [Note that the use of the term skin depth brings out the
analogy between this effect and the skin depth which arises when elec-
tromagnetic waves are incident on a metal surface, see e.g. Griffiths
(2003).]

We note the following important features of this solution:

• T falls off exponentially as e−x/δ.

• There is a phase shift of x/δ radians in the oscillations.

• δ ∝ Ω−1/2 so that faster oscillations fall off faster.

t

x

t x

T

T

T

Fig. 10.2 A contour plot and a surface plot of eqn 10.21, showing that the temper-

ature falls off exponentially as e−x/δ. The contour plot shows that there is a phase
shift in the oscillations as x increases.
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10.3 The steady state

If the system has reached a steady state, its properties are not time-
dependent. This includes the temperature, so that

∂T

∂t
= 0. (10.23)

Hence in this case, the thermal diffusion equation reduces to

∇2T = 0, (10.24)

which is Laplace’s equation.

10.4 The thermal diffusion equation for a
sphere

Very often, heat transfer problems have spherical symmetry (e.g. the
cooling of the Earth or the Sun). In this section we will show that one
can also solve the (rather forbidding looking) problem of the thermal
diffusion equation in a system with spherical symmetry. In spherical
polars, we have in general that ∇2T is given by11See Appendix B.

∇2T =
1

r2
∂

∂r

(
r2
∂T

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂T

∂θ

)
+

1

r2 sin2 θ

∂2T

∂φ2
, (10.25)

so that if T is not a function of θ or φ we can write

∇2T =
1

r2
∂

∂r

(
r2
∂T

∂r

)
, (10.26)

and hence the diffusion equation becomes

∂T

∂t
=
κ

C

1

r2
∂

∂r

(
r2
∂T

∂r

)
. (10.27)

Example 10.2

The thermal diffusion equation for a sphere in the steady state.
In the steady state, ∂T/∂t = 0 and hence we need to solve

1

r2
∂

∂r

(
r2
∂T

∂r

)
= 0. (10.28)

Now if T is independent of r, ∂T/∂r = 0 and this will be a solution.
Moreover, if r2(∂T/∂r) is independent of r, this will generate another
solution. Now r2(∂T/∂r) = constant implies that T ∝ r−1. Hence a
general solution is

T = A+
B

r
, (10.29)



10.4 The thermal diffusion equation for a sphere 93

where A and B are constants. This should not surprise us if we know
some electromagnetism, as we are solving Laplace’s equation in spherical
coordinates assuming spherical symmetry, and in electromagnetism the
solution for the electric potential in this case is an arbritary constant
plus a Coulomb potential which is proportional to 1/r.

A practical problem one often needs to solve is cooking a slab of meat.
The meat is initially at some cool temperature (the temperature of the
kitchen or of the refrigerator) and it is placed into a hot oven. The
skill in cooking is getting the inside up to temperature. How long does
it take? The next example shows how to calculate this for the (rather
artificial) example of a spherical chicken!

Example 10.3

The spherical chicken
A spherical chicken2 of radius a at initial temperature T0 is placed 2The methods in this example can also

be applied to a spherical nut roast.into an oven at temperature T1 at time t = 0 (see Figure 10.3). The
boundary conditions are that the oven is at temperature T1 so that

T (a, t) = T1, (10.30)

and the chicken is originally at temperature T0, so that

T (r, 0) = T0. (10.31)

We want to obtain the temperature as a function of time at the centre
of the chicken, i.e. T (0, t).

T T T T

a

Fig. 10.3 Initial condition of a spheri-
cal chicken of radius a at initial temper-
ature T0 which is placed into an oven at
temperature T1 at time t = 0.

Solution: We will show how we can transform this to a one-dimensional
diffusion equation. This is accomplished using a substitution

T (r, t) = T1 +
B(r, t)

r
, (10.32)

where B(r, t) is now a function of r and t. This substitution is motivated
by the solution to the steady–state problem in eqn 10.29 and of course
means that that we can write B as B = r(T − T1).

We now need to work out some partial differentials:

∂T

∂t
=

1

r

∂B

∂t
, (10.33)

∂T

∂r
= −B

r2
+

1

r

∂B

∂r
, (10.34)

and hence multiplying eqn 10.34 by r2 we have that

r2
∂T

∂r
= −B + r

∂B

∂r
, (10.35)
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and therefore
∂

∂r

[
r2
∂T

∂r

]
= r

∂2B

∂r2
, (10.36)

which reduces the problem to

∂B

∂t
= D

∂2B

∂r2
, (10.37)

where D = κ/C. This is a one-dimensional diffusion equation and is
therefore much easier to solve than the one with which we started.

The new boundary conditions can be rewritten as follows:

(1) because B = r(T − T1) we have that B = 0 when r = 0:

B(0, t) = 0; (10.38)

(2) because T = T1 at r = a we have that:

B(a, t) = 0; (10.39)

(3) because T = T0 at t = 0 we have that:

B(r, 0) = r(T0 − T1). (10.40)

We look for wave-like solutions with these boundary conditions and
hence are led to try

B = sin(kr)e−iωt, (10.41)

and hence
iω = Dk2. (10.42)

The relation ka = nπ where n is an integer fits the first two boundary
conditions and hence

iω = D
(nπ
a

)2

, (10.43)

and hence our general solution is

B(r, t) =

∞∑
n=1

An sin
(nπr
a

)
e−D(nπ

a )
2
t. (10.44)

To find An, we need to match this solution at t = 0 using our third
boundary condition. Hence

r(T0 − T1) =
∞∑

n=1

An sin
(nπr
a

)
. (10.45)

We multiply both sides by sin
(

mπr
a

)
and integrate, so thatNotice that the functions sin(nπr/a)

and sin(mπr/a) are orthogonal unless
m = n. ∫ a

0

sin
(mπr

a

)
r(T0 − T1) dr =

∞∑
n=1

An

∫ a

0

sin
(mπr

a

)
sin
(nπr
a

)
dr.

(10.46)
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The right-hand side yields Ama/2 and the left-hand side can be inte-
grated by parts. This yields

Am =
2a

mπ
(T1 − T0)(−1)m, (10.47)

and hence that

B(r, t) =
2a

π
(T1 − T0)

∞∑
n=1

(−1)n

n
sin(nπr/a)e−D(nπ/a)2t, (10.48)

so that using eqn 10.32 the temperature T (r, t) inside the chicken (r ≤ a)
behaves as

T (r, t) = T1 +
2a

π
(T1 − T0)

∞∑
n=1

(−1)n

n

sin(nπr/a)

r
e−D(nπ/a)2t. (10.49)

The centre of the chicken has temperature

T (0, t) = T1 + 2(T1 − T0)

∞∑
n=1

(−1)ne−D(nπ/a)2t, (10.50)

using the fact that as r → 0,

1

r
sin
(nπr
a

)
→ nπ

a
. (10.51)

The expression in eqn 10.50 becomes dominated by the first exponential
in the sum as time t increases, so that

T (0, t) ≈ T1 − 2(T1 − T0)e
−D(π/a)2t, (10.52)

for t 	 a2/Dπ2. Analogous behaviour is of course found for a warm
sphere which is cooling in a colder environment. A cooling or warming
body thus behaves like a low-pass filter, with the smallest exponent
dominating at long times. The smaller the sphere, the shorter the time
before it warms or cools according to a simple exponential law.

10.5 Newton’s law of cooling

Newton’s law of cooling states that the temperature of a cooling body
falls exponentially towards the temperature of its surroundings with a
rate which is proportional to the area of contact between the body and
the environment. The results of the previous section indicate that it is
an approximation to reality, as a cooling sphere only cools exponentially
at long times.

Newton’s law of cooling is often stated as follows: the heat loss of a
solid or liquid surface (a hot central heating pipe or the exposed sur-
face of a cup of tea) to the surrounding gas (usually air, which is free
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Fig. 10.4 The sum of the first
few terms of T (0, t) = T1 +

2(T1−T0)
P∞

n=1(−1)ne−D(nπ/a)2t are
shown, together with T (0, t) evaluated
from all terms (thick solid line). The
sums of only the first few terms fail near
t = 0 and one needs more and more
terms to give an accurate estimate of
the temperatures as t gets closer to 0
(although this is the region where one
knows what the temperature is any-
way!).

to convect the heat away) is proportional to the area of contact mul-
tiplied by the temperature difference between the solid/liquid and the
gas. Mathematically, this can be expressed as an equation for the heat
flux J which is

J = h∆T, (10.53)

where ∆T is the temperature difference between the body and its envi-
ronment and h is a vector whose direction is normal to the surface of
the body and whose magnitude h = |h| is a heat transfer coefficient. In
general, h depends on the temperature of the body and its surroundings
and varies over the surface, so that Newton’s “law” of cooling is more
of an empirical relation.

This alternative definition generates an exponential decay of temper-
ature as demonstrated in the following example.

Example 10.4

A polystyrene cup containing tea at temperature Thot at t = 0 stands
for a while in a room with air temperature Tair. The heat loss through
the surface area A exposed to the air is, according to Newton’s law of
cooling, proportional to A(T (t)−Tair), where T (t) is the temperature of
the tea at time t. Ignoring the heat lost by other means, we have that

−C ∂T
∂t

= JA = hA(T − Tair), (10.54)
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where J is the heat flux, C is the heat capacity of the cup of tea and h
is a constant, so that

T = Tair + (Thot − Tair)e
−λt (10.55)

where λ = Ah/C.

What makes these types of calculations of heat transfer so difficult is
that heat transfer from bodies into their surrounding gas or liquid often
is dominated by convection.3 Convection can be defined as the transfer

3One can either have forced convec-
tion, in which fluid is driven past the
cooling body by some external input of
work (provided by means of a pump,
fan, propulsive motion of an aircraft
etc.), or free convection, in which any
external fluid motion is driven only by
the temperature difference between the
cooling body and the surrounding fluid.
Newton’s law of cooling is actually only
correct for forced convection, while for
free convection (which one should prob-
ably use for the example of the cool-
ing of a cup of tea in air) the heat
transfer coefficient is temperature de-
pendent (h ∝ (∆T )1/4 for laminar flow,
h ∝ (∆T )1/3 in the turbulent regime).
We examine convection in stars in more
detail in Section 35.3.2.

of heat by the motion of or within a fluid (i.e. within a liquid or a gas).
Convection is often driven by the fact that warmer fluid expands and
rises, while colder fluid contracts and sinks; this causes currents in the
fluid to be set up which rather efficiently transfer heat. Our analysis
of the thermal conductivity in a gas ignores such currents. Convection
is a very complicated process and can depend on the precise details of
the geometry of the surroundings. A third form of heat transfer is by
thermal radiation and this will be the subject of chapter 23.

10.6 The Prandtl number

How valid is it to ignore convection? It’s clearly fine to ignore it in
a solid, but for a fluid we need to know the relative strength of the
diffusion of momentum and heat. Convection dominates if momentum
diffusion dominates (because convection involves transport of the gas
itself) but conduction dominates if heat diffusion dominates. We can
express these two diffusivities using the kinematic viscosity ν = η/cp
(with units m2s−1) and the thermal diffusivity D = κ/ρcp (also with
units m2s−1), where ρ is the density. To examine their relative mag-
nitudes, we define the Prandtl number as the dimensionless ratio σp

obtained by dividing ν by D, so that

σp =
ν

D
=
ηcp
κ
. (10.56)

For an ideal gas, we can use cp/cV = γ = 5
3 , and using eqn 9.21 (which

states that κ = cVη) we arrive at σp = 5
3 . However, eqn 9.21 resulted

from an approximate treatment, and the corrected version is eqn 9.44
(which states that κ = 5

2ηcV ), and hence we arrive at

σp =
2

3
. (10.57)

For many gases, the Prandtl number is found to be around this value.
It is between 100 and 40000 for engine oil and around 0.015 for mer-
cury. When σp 	 1 diffusion of momentum (i.e. viscosity) dominates
over diffusion of heat (i.e. thermal conductivity), and convection is the
dominant mode of heat transport. When σp � 1 the reverse is true, and
thermal conduction dominates the heat transport.
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10.7 Sources of heat

If heat is generated at a rate H per unit volume, (so H is measured in
W m−3), this will add to the divergence of J so that eqn 10.7 becomes

∇ · J = −C ∂T
∂t

+H, (10.58)

and hence the thermal diffusion equation becomes

∇2T =
C

κ

∂T

∂t
− H

κ
, (10.59)

or equivalently

∂T

∂t
= D∇2T +

H

C
. (10.60)

Example 10.5

A metallic bar of length L with both ends maintained at T = T0 passes
a current which generates heat H per unit length of the bar per second.
Find the temperature at the centre of the bar in steady state.
Solution: In steady state,

∂T

∂t
= 0, (10.61)

and so

∂2T

∂x2
= −H

κ
. (10.62)

Integrating this twice yields

T = αx+ β − H

2κ
x2, (10.63)

where α and β are constants of integration. The boundary conditions
imply that

T − T0 =
H

2κ
x(L− x), (10.64)

so that at x = L/2 we have that the temperature is

T = T0 +
HL2

8κ
. (10.65)
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Chapter summary

• The thermal diffusion equation (in the absence of a heat source) is

∂T

∂t
= D∇2T , (10.66)

where D = κ/C is the thermal diffusivity.

• ‘Steady state’ implies that

∂

∂t
(physical quantity) = 0. (10.67)

• If heat is generated at a rate H per unit volume per unit time,
then the thermal diffusion equation becomes

∂T

∂t
= D∇2T +

H

C
. (10.68)

• Newton’s law of cooling states that the heat loss from a solid or
liquid surface is proportional to the area of the surface multiplied
by the temperature difference between the solid/liquid and the gas.

Exercises

(10.1) One face of a thick uniform layer is subject to sinu-
soidal temperature variations of angular frequency
ω. Show that damped sinusoidal temperature os-
cillations propagate into the layer and give an ex-
pression for the decay length of the oscillation am-
plitude.
A cellar is built underground and is covered by a
ceiling which is 3 m thick and made of limestone.
The outside temperature is subject to daily fluctu-
ations of amplitude 10◦C and annual fluctuations of
20◦C. Estimate the magnitude of the daily and an-
nual temperature variations within the cellar. As-
suming that January is the coldest month of the
year, when will the cellar’s temperature be at its
lowest?

[The thermal conductivity of limestone is
1.6 Wm−1 K−1, and the heat capacity of limestone
is 2.5 × 106 J K−1 m−3.]

(10.2) (a) A cylindrical wire of thermal conductivity κ, ra-
dius a and resistivity ρ uniformly carries a current

I. The temperature of its surface is fixed at T0 us-
ing water cooling. Show that the temperature T (r)
inside the wire at radius r is given by

T (r) = T0 +
ρI2

4π2a4κ
(a2 − r2).

(b) The wire is now placed in air at temperature Tair

and the wire loses heat from its surface according to
Newton’s law of cooling (so that the heat flux from
the surface of the wire is given by α(T (a) − Tair),
where α is a constant). Find the temperature T (r).

(10.3) Show that for the problem of a spherical chicken be-
ing cooked in an oven considered in Example 10.3
in this chapter, the temperature T gets 90% of the
way from T0 to T1 after a time ∼ a2 ln 20/π2D.

(10.4) A microprocessor has an array of metal fins at-
tached to it, whose purpose is to remove heat gen-
erated within the processor. Each fin may be rep-
resented by a long thin cylindrical copper rod with
one end attached to the processor; heat received by
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the rod through this end is lost to the surroundings
through its sides.
Show that the temperature T (x, t) at location x
along the rod at time t obeys the equation

ρCp
∂T

∂t
= κ

∂2T

∂x2
− 2

a
R(T ),

where a is the radius of the rod, and R(T ) is the rate
of heat loss per unit area of surface at temperature
T .
The surroundings of the rod are at temperature T0.
Assume that R(T ) has the form of Newton’s law of
cooling, namely

R(T ) = A(T − T0).

In the steady state:
(a) obtain an expression for T as a function of x for
the case of an infinitely long rod whose hot end has
temperature Tm;
(b) show that the heat that can be transported away
by a long rod (with radius a) is proportional to a3/2,
provided that A is independent of a.
In practice the rod is not infinitely long. What
length does it need to have for the results above to
be approximately valid? The radius of the rod, a,
is 1.5 mm.
[The thermal conductivity of copper is
380 W m−1 K−1. The cooling constant A =
250 W m−2 K−1.]

(10.5) For oscillations at frequency ω, a viscous penetra-
tion depth δv can be defined by

δv =

„
2η

ρω

«1/2

, (10.69)

analogously to the thermal penetration depth

δ =

„
2κ

ρcpω

«1/2

(10.70)

defined in this chapter. Show that„
δv

δ

«2

= σp, (10.71)

where σp is the Prandtl number (see eqn 10.56).

(10.6) For thermal waves, calculate the magnitude of the
group velocity. This shows that the thermal diffu-
sion equation cannot hold exactly as the velocity
of propagation can become larger than that of the

carriers. An alternative equation can be derived as
follows. Consider the number density n of thermal
carriers in a material. In equilibrium, n = n0, so
that „

∂n

∂t

«
= −v · ∇n +

n − n0

τ
, (10.72)

where τ is a relaxation time and v is the carrier ve-
locity. Multiply this equation by �ωτv, where �ω
is the energy of a carrier, and sum over all k states.
Using the fact that

P
k

n0v = 0 and J =
P

k
�ωnv,

and that |n − n0| � n0 show that

J + τ
dJ

dt
= −κ∇T, (10.73)

and hence the modified thermal diffusion equation
becomes

∂T

∂t
+ τ

∂2T

∂t2
= D∇2T. (10.74)

Show that this does not suffer from a group velocity
whose magnitude can ever become infinite. Is this
modification ever necessary?

(10.7) A series of N large, flat rectangular slabs with thick-
ness ∆xi and thermal conductivity κi are placed
on top of one another. The top and bottom sur-
faces are maintained at temperature Ti and Tf re-
spectively. Show that the heat flux J through the
slabs is given by J = (Ti − Tf )/

P
i Ri, where

Ri = ∆xi/κi.

(10.8) The space between two concentric cylinders is filled
with material of thermal conductivity κ. The in-
ner (outer) cylinder has radius r1 (r2) and is main-
tained at temperature T1 (T2). Derive an expres-
sion for the heat flow per unit length between the
cylinders.

(10.9) A pipe of radius R is maintained at a uniform tem-
perature T . In order to reduce heat loss from the
pipe, it is lagged by an insulating material of ther-
mal conductivity κ. The lagged pipe has radius
r > R. Assume that all surfaces lose heat accord-
ing to Newton’s law of cooling J = h∆T , where
h = |h| can be taken to be a constant. Show that
the heat loss per unit length of pipe is inversely
proportional to

1

hr
+

1

κ
ln

“ r

R

”
, (10.75)

and hence show that thin lagging doesn’t reduce
heat loss if R < κ/h.
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Jean Baptiste Joseph Fourier (1768–1830)

Fourier was born in Auxerre, France, the son of a
tailor. He was schooled there in the École Royale Mil-
itaire where he showed early mathematical promise.

Fig. 10.5 J.B.J. Fourier

In 1787 he entered a
Benedictine abbey to
train for the priesthood,
but the pull of science
was too great and he
never followed that vo-
cation, instead becoming
a teacher at his old school
in Auxerre. He was also
interested in politics, and
unfortunately there was
a lot of it around at the
time; Fourier became em-
broiled in the Revolution-
ary ferment and in 1794
came close to being guil-

lotined, but following Robespierre’s execution by the
same means, the political tide turned in Fourier’s
favour. He was able to study at the École Nor-
male in Paris under such luminaries as Lagrange and
Laplace, and in 1795 took up a chair at the École
Polytechnique.

Fourier joined Napoleon on his invasion of Egypt
in 1798, becoming governor of Lower Egypt in the
process. There he carried out archaeological explo-
rations and later wrote a book about Egypt (which
Napoleon then edited to make the history sections
more favourable to himself). Nelson’s defeat of the
French fleet in late 1798 rendered Fourier isolated
there, but he nevertheless set up political institu-
tions. He managed to slink back to France in 1801
to resume his academic post, but Napoleon (a hard
man to refuse) sent him back to an administrative
position in Grenoble where he ended up on such high-
brow activities as supervising the draining of swamps
and organizing the construction of a road between
Grenoble and Turin. He nevertheless found enough
time to work on experiments on the propagation of

heat and published, in 1807, his memoir on this sub-
ject. Lagrange and Laplace criticized his mathemat-
ics (Fourier had been forced to invent new techniques
to solve the problem, which we now call Fourier se-
ries, and this was fearsomely unfamiliar stuff at the
time), while the notoriously difficult Biot (he of the
Biot-Savart law fame) claimed that Fourier had ig-
nored his own crucial work on the subject (Fourier
had discounted it, as Biot’s work on this subject was
wrong). Fourier’s work won him a prize, but reserva-
tions about its importance or correctness remained.

In 1815, Napoleon was exiled to Elba and Fourier
managed to avoid Napoleon who was due to pass
through Grenoble en route out of France. When
Napoleon escaped, he brought an army to Grenoble
and Fourier avoided him again, earning Napoleon’s
displeasure, but he managed to patch things up and
got himself made Prefect of Rhône, a position from
which he resigned as soon as he could. Following
Napoleon’s final defeat at Waterloo, Fourier became
somewhat out of favour in political circles and was
able to continue working on physics and mathematics
back in Paris. In 1822 he published his Théorie ana-

lytique de chaleur (Analytical Theory of Heat) which
included all his work on thermal diffusion and the use
of Fourier series, a work that was to prove influential
with many later thermodynamicists of the nineteenth
century.

In 1824, Fourier wrote an essay which pointed to-
wards what we now call the greenhouse effect; he
realised that the insulating effect of the atmosphere
might increase the Earth’s surface temperature. He
understood the way planets lose heat via infrared ra-
diation (though he called it “chaleur obscure”). Since
so much of his scientific work had been bound up with
the nature of heat (even his work on Fourier series
was only performed so he could solve heat problems)
he became, in his later years, somewhat obsessed by
the imagined healing powers of heat. He kept his
house overheated, and wore excessively warm clothes,
in order to maximize the effect of the supposedly life-
giving heat. He died in 1830 after falling down the
stairs.
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Part IV

The first law

In this part we are now ready to think about energy in some detail and
hence introduce the first law of thermodynamics. This part is structured
as follows:

• In Chapter 11, we present the notion of a function of state, of which
internal energy is one of the most useful. We discuss in detail the
first law of thermodynamics, which states that energy is conserved
and heat is a form of energy. We derive expressions for the heat

capacity measured at constant volume or pressure for an ideal gas.

• In Chapter 12 we introduce the key concept of reversibility and
discuss isothermal and adiabatic processes.
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In this chapter we are going to focus on one of the key concepts in ther-
mal physics, that of energy. What happens when energy is changed from
one form to another? How much work can you get out of a quantity of
heat? These are key questions to be answered. We are now beginning
a study of thermodynamics proper, and in this chapter we will in-
troduce the first law of thermodynamics. Before the first law, the most
important concept in this chapter, we will introduce some additional
ideas.

11.1 Some definitions

11.1.1 A system in thermal equilibrium

In thermodynamics, we define a system to be whatever part of the
Universe we select for study. Near the system are its surroundings.
We recall from Section 4.1 that a system is in thermal equilibrium when
its macroscopic observables (such as its pressure or its temperature) have
ceased to change with time. If you take a gas in a container which has
been held at a certain stable temperature for a considerable period of
time, the gas is likely to be in thermal equilibrium. A system in thermal
equilibrium having a particular set of macroscopic observables is said to
be in a particular equilibrium state. If however, you suddenly apply a
lot of heat to one side of the box, then initially at least, the gas is likely
to be in a non-equilibrium state.

11.1.2 Functions of state

A system is in an equilibrium state if macroscopic observable proper-
ties have fixed, definite values, independent of ‘how they got there’.
These properties are functions of state (sometimes called variables
of state). A function of state is any physical quantity that has a
well-defined value for each equilibrium state of the system. Thus, in
thermal equilibrium these variables of state have no time dependence.
Examples are volume, pressure, temperature and internal energy, and
we will introduce a lot more in what follows. Examples of quantities
which are not functions of state include the position of particle number
4325667, the total work done on a system and the total heat put into
the system. Below, we will show in detail why work and heat are not
functions of state. However, the point can be understood as follows: the
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fact that your hands are warm or cold depends on their current temper-
ature (a function of state), independently of how you got them to that
temperature. For example, you can get to the same final thermodynamic
state of having warm hands by different combinations of working and
heating, e.g. you can end up with warm hands by rubbing them together
(using the muscles in your arms to do work on them) or putting them
in a toaster1 (adding heat). 1NB don’t try this at home.

We now give a more mathematical treatment of what is meant by a
function of state. Let the state of a system be described by parameters
x = (x1, x2, . . .) and let f(x) be some function of state. [Note that this
could be a very trivial function, such as f(x) = x1, since what we’ve
called ‘parameters’ are themselves functions of state. But we want to
allow for more complicated functions of state which might be combina-
tions of these ‘parameters’.] Then if the system parameters change from
xi to xf , the change in f is

∆f =

∫ xf

xi

df = f(xf) − f(xi). (11.1)

This only depends on the endpoints xi and xf . The quantity df is an
exact differential (see Appendix C.7) and functions of state have exact
differentials. By contrast, a quantity which is represented by an inexact
differential is not a function of state. The following example illustrates
these kinds of differentials.

Example 11.1

Let a system be described by two parameters, x and y. Let f = xy so
that

df = d(xy) = y dx+ xdy. (11.2)

Then if (x, y) changes from (0, 0) to (1, 1), the change in f is given by

∆f =

∫ (1,1)

(0,0)

df = [xy]
(1,1)
(0,0) = (1 × 1) − (0 × 0) = 1. (11.3)

This answer is independent of the exact path taken (it could be any of
those shown in Fig. 11.1) because df is an exact differential.

x

y

x

y

x

y

Fig. 11.1 Three possible paths be-
tween the points (x, y) = (0, 0) and
(x, y) = (1, 1).

Now consider2 d̄g = y dx. The change in g when (x, y) changes from

2We put a line through quantities such
as the d in d̄g to signify that it is an
inexact differential.

(0, 0) to (1, 1) along the path shown in Fig. 11.1(a) is given by

∆g =

∫ (1,1)

(0,0)

y dx =

∫ 1

0

xdx =
1

2
. (11.4)

However when the integral is not carried out along the line y = x, but
along the path shown in Fig. 11.1(b), it is given by

∆g =

∫ (1,0)

(0,0)

y dx+

∫ (1,1)

(1,0)

y dx = 0. (11.5)
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If the integral is taken along the path shown in Fig. 11.1(c), yet another
result would be obtained, but we are not going to attempt to calculate
that!

Hence we find that the value of ∆g depends on the path taken, and
this is because d̄g is an inexact differential.33Note that if x is taken to be volume,

V , and y is taken to be pressure, p, then
the quantity f is proportional to tem-
perature, while d̄g is the negative of the
work d̄W = −p dV . This demonstrates
that temperature is a function of state
and work is not.

Recall from Section 1.2 that functions of state can either be:

• extensive (proportional to system size), e.g. energy, volume, mag-
netization, mass, or

• intensive (independent of system size), e.g. temperature, pres-
sure, magnetic field, density, energy density.

In general one can find an equation of state which connects functions
of state: for a gas this takes the form f(p, V, T ) = 0. An example is the
equation of state for an ideal gas, pV = nRT , which we met in eqn 1.12.

11.2 The first law of thermodynamics

Though the idea that heat and work are both forms of energy seems obvi-
ous to a modern physicist, the idea took some getting used to. Lavoisier
had, in 1789, proposed that heat was a weightless, conserved fluid called
caloric. Caloric was a fundamental element that couldn’t be created or
destroyed. Lavoisier’s notion ‘explained’ a number of phenomena, such
as combustion (fuels have stored caloric which is released on burning).
Rumford in 1798 realised that something was wrong with the caloric the-
ory: heating could be produced by friction, and if you keep on drilling
through a cannon barrel (to take the example that drew the problem to
his attention) almost limitless supplies of heat can be extracted. Where
does all this caloric come from? Mayer quantified this in 1842 with an
elegant experiment in which he frictionally generated heat in paper pulp
and measured the temperature rise. Joule4independently performed sim-4The S.I. unit of energy is named af-

ter Joule. 1 J=1N m. Older units
are still in use in some places: 1 calo-
rie is defined as the energy required
to raise 1 g of water by 1◦C (actually
from 14.5◦C to 15.5◦C at sea level) and
1 cal= 4.184 J. The energy contained in
food is usually measured in kilocalories
(kcal), where 1 kcal=1000 cal. Older
books sometimes used the erg: 1 erg=
10−7 J. The British thermal unit (Btu)
is an archaic unit, no longer commonly
used in Britain: 1 Btu=1055 J. The
foot-pound is 1 ft lb =1.356 J. Electric-
ity bills often record energy in kilo-
watt hours (1 kWh=3.6 MJ). Useful in
atomic physics is the electron Volt:
1 eV=1.602×10−19 J.

ilar experiments, but more accurately, in the period 1840–1845 (and his
results became better known so that he was able to claim the credit!)
Joule let a mass tied to a string slowly descend a certain height, while
the other end of the string turns a paddle wheel immersed in a certain
mass of water. The turning of the paddle frictionally heats the water.
After a number of descents, Joule measured the temperature rise of the
water. In this way he was able to deduce the ‘mechanical equivalent of
heat’. He also measured the heat output of a resistor (which, in modern
units, is equal to I2R, where I is the current and R the resistance). He
was able to show that the same heat was produced for the same energy
used, independent of the method of delivery. This implied that heat is
a form of energy. Joule’s experiments therefore consigned the caloric
theory of heat to a footnote in history.

However, it was Mayer and later Helmholtz who elevated the experi-
mental observations into a grand principle, which we can state as follows:
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The first law of thermodynamics:
Energy is conserved and heat and work are both forms of energy.

A system has an internal energy U which is the sum of the energy
of all the internal degrees of freedom that the system possesses. U is a
function of state because it has a well–defined value for each equilibrium
state of the system. We can change the internal energy of the system
by heating it or by doing work on it. The heat Q and work W are
not functions of state since they concern the manner in which energy is
delivered to (or extracted from) the system. After the event of delivering
energy to the system, you have no way of telling which of Q or W was
added to (or subtracted from) the system by examining the system’s
state.

The following analogy may be helpful: your personal bank balance
behaves something like the internal energy U in that it acts like a func-
tion of state of your finances; cheques and cash are like heat and work in
that they both result in a change in your bank balance, but after they
have been paid in, you can’t tell by simply looking at the value of your
bank balance by which method the money was paid in.

The change in internal energy U of a system can be written

∆U = ∆Q+ ∆W, (11.6)

where ∆Q is the heat supplied to the system and ∆W is the work done
on the system. Note the convention: ∆Q is positive for heat supplied to
the system; if ∆Q is negative, heat is extracted from the system; ∆W
is positive for work done on the system; if ∆W is negative, the system
does work on its surroundings.

We define a thermally isolated system as a system which cannot
exchange heat with its surroundings. In this case we find that ∆U =
∆W , because no heat can pass in or out of a thermally isolated system.

For a differential change, we write eqn 11.6 as

dU = d̄Q+ d̄W , (11.7)

where d̄W and d̄Q are inexact differentials.

F

x

V

Fig. 11.2 (a) The work done stretching
a wire by a distance dx is F dx. (b) The
work done compressing a gas is −pdV .

The work done on stretching a wire by a distance dx with a tension
F is (see Fig. 11.2(a))

d̄W = F dx. (11.8)

The work done by compressing a gas (pressure p, volume V ) by a piston
can be calculated in a similar fashion (see Fig. 11.2(b)). In this case the
force is F = pA, where A is the area of the piston, and Adx = −dV , so
that

d̄W = −pdV. (11.9)

In this equation, the negative sign ensures that the work d̄W done on
the system is positive when dV is negative, i.e. when the gas is being
compressed.



108 Energy

It turns out that eqn 11.9 is only strictly true for a reversible change,
a point we will explain further in Section 12.1. The idea is that if the
piston is not frictionless, or if you move the piston too suddenly and
generate shock waves, you will need to do more work to compress the
gas because more heat is dissipated in the process.

11.3 Heat capacity

We now want to understand in greater detail how adding heat can change
the internal energy of gas. In general, the internal energy will be a
function of temperature and volume, so that we can write U = U(T, V ).
Hence a small change in U can be related to changes in T and V by

dU =

(
∂U

∂T

)
V

dT +

(
∂U

∂V

)
T

dV. (11.10)

Rearranging eqn 11.7 with eqn 11.9 yields

d̄Q = dU + pdV, (11.11)

and now using eqn 11.10 we have that

d̄Q =

(
∂U

∂T

)
V

dT +

[(
∂U

∂V

)
T

+ p

]
dV. (11.12)

We can divide eqn 11.12 by dT to obtain

d̄Q

dT
=

(
∂U

∂T

)
V

+

[(
∂U

∂V

)
T

+ p

]
dV

dT
, (11.13)

which is valid for any change in T or V . However, what we want to
know is what is the amount of heat we have to add to effect a change
of temperature under certain constraints. The first constraint is that
of keeping the volume constant. We recall the definition of the heat
capacity at constant volume CV (see Section 2.2, eqn 2.6) as

CV =

(
∂Q

∂T

)
V

. (11.14)

From eqn 11.13, this constraint knocks out the second term and implies
that

CV =

(
∂U

∂T

)
V

. (11.15)

The heat capacity at constant pressure is then, using eqns 2.7 and 11.13,
given by

Cp =

(
∂Q

∂T

)
p

(11.16)

=

(
∂U

∂T

)
V

+

[(
∂U

∂V

)
T

+ p

](
∂V

∂T

)
p

(11.17)
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so that

Cp − CV =

[(
∂U

∂V

)
T

+ p

](
∂V

∂T

)
p

. (11.18)

Recall from Section 2.2 that heat capacities are measured in J K−1 and
refer to the heat capacity of a certain quantity of gas. We will sometimes
wish to talk about the heat capacity per mole of gas, or sometimes the
heat capacity per mass of gas. We will use small c for the latter, known
as the specific heat capacities:

cV =
CV

M
(11.19)

cp =
Cp

M
(11.20)

(11.21)

where M is the mass of the material. Specific heat capacities are mea-
sured in J K−1 kg−1.

Example 11.2

Heat capacity of an ideal monatomic gas
For an ideal monatomic gas, the internal energy U is due to the kinetic

energy, and hence U = 3
2RT per mole (see eqn 5.17; this result arises

from the kinetic theory of gases). This means that U is only a function
of temperature. Hence (

∂U

∂V

)
T

= 0. (11.22)

The equation of state for 1 mole of ideal gas is

pV = RT, (11.23)

so that

V =
RT

p
, (11.24)

and hence (
∂V

∂T

)
p

=
R

p
, (11.25)

and hence using eqns 11.18, 11.22 and 11.25 we have that

Cp − CV =

[(
∂U

∂V

)
T

+ p

](
∂V

∂T

)
p

= R. (11.26)

Because U = 3
2RT , we therefore have that

CV =

(
∂U

∂T

)
V

=
3

2
R per mole, (11.27)

and

Cp = CV +R =
5

2
R per mole. (11.28)
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Example 11.3

Is it always true that dU = CV dT?
Solution: No, in general eqn 11.10 and eqn 11.15 imply that

dU = CV dT +

(
∂U

∂V

)
T

dV. (11.29)

For an ideal gas,
(

∂U
∂V

)
T

= 0 (eqn 11.22) so it is true that

dU = CV dT, (11.30)

but for non-ideal gases,
(

∂U
∂V

)
T
�= 0 and hence dU �= Cv dT .

The ratio of Cp to CV turns out to be a very useful quantity (we will
see why in the following chapter) and therefore we give it a special name.
Hence, we define the adiabatic index5 γ as the ratio of Cp and CV , so5γ is sometimes called the adiabatic

exponent. that

γ =
Cp

CV
. (11.31)

The reason for the name will become clear in the following chapter.

Example 11.4

What is γ for an ideal monatomic gas?
Solution: Using the results from the previous example66If the gas is not monatomic, γ can take

a different value; see Section 19.2.

γ =
Cp

CV
=
CV +R

CV
= 1 +

R

CV
=

5

3
. (11.32)

Example 11.5

Assuming U = CV T for an ideal gas, find (i) the internal energy per
unit mass and (ii) the internal energy per unit volume.
Solution: Using the ideal gas equation pV = NkBT and the density
ρ = Nm/V (where m is the mass of one molecule), we find that

p

ρ
=
kBT

m
. (11.33)

Using eqn 11.32, we have that the heat capacity per mole is given by

CV =
R

γ − 1
. (11.34)
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Hence, we can write that the internal energy for one mole of gas is

U = CV T =
RT

γ − 1
=
NAkBT

γ − 1
. (11.35)

The molar mass is mNA, and so dividing eqn 11.35 by the molar mass,
yields ũ, the internal energy per unit mass, given by

ũ =
p

ρ(γ − 1)
. (11.36)

Multiplying ũ by the density ρ gives u, the internal energy per unit
volume, as

u = ρũ =
p

γ − 1
. (11.37)

Chapter summary

• Functions of state have exact differentials.

• The first law of thermodynamics states that ‘energy is conserved
and heat is a form of energy’.

• dU = d̄W + d̄Q.

• For a reversible change, d̄W = −pdV .

• CV =
(

∂Q
∂T

)
V

=
(

∂U
∂T

)
V

.

• CV =
(

∂Q
∂T

)
P

and Cp − CV = R for a mole of ideal gas.

• The adiabatic index is γ = Cp/CV .

Exercises

(11.1) One mole of ideal monatomic gas is confined in a
cylinder by a piston and is maintained at a con-
stant temperature T0 by thermal contact with a
heat reservoir. The gas slowly expands from V1

to V2 while being held at the same temperature
T0. Why does the internal energy of the gas not
change? Calculate the work done by the gas and
the heat flow into the gas.

(11.2) Show that, for an ideal gas,

R

CV
= γ − 1 (11.38)

and
R

Cp
=

γ − 1

γ
, (11.39)

where CV and Cp are the heat capacities per mole.

(11.3) Consider the differential

dz = 2xy dx + (x2 + 2y) dy. (11.40)

Evaluate the integral
R (x2,y2)

(x1,y1)
dz along the paths

consisting of straight-line segments
(i) (x1, y1) → (x2, y1) and then (x2, y1) → (x2, y2).
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(ii) (x1, y1) → (x1, y2) and then (x1, y2) →
(x2, y2).
Is dz an exact differential?

(11.4) In polar coordinates, x = r cos θ and y = r sin θ.
The definition of x implies that

∂x

∂r
= cos θ =

x

r
. (11.41)

But we also have x2 + y2 = r2, so differentiating
with respect to r gives

2x
∂x

∂r
= 2r =⇒ ∂x

∂r
=

r

x
. (11.42)

But eqns 11.41 and 11.42 imply that

∂x

∂r
=

∂r

∂x
. (11.43)

What’s gone wrong?

(11.5) In the comic song by Flanders and Swann about
the laws of thermodynamics, they summarize the
first law by the statement:

Heat is work and work is heat

Is that a good summary?
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Antoine Lavoisier (1743–1794)

All flammable materials contain the odour-
less, colourless, tasteless substance phlogis-

ton, and the process of burning them re-
leases this phlogiston into the air. The
burned material is said to be “dephlogistonated”.

Fig. 11.3 Antoine
Lavoisier

That this notion is completely
untrue was first shown by An-
toine Lavoisier, who was born
into a wealthy Parisian family.
Lavoisier showed that both sul-
phur and phosphorous increase
in weight once burned, but the
weight gain was lost from the
air. He demonstrated that it
was oxygen which was responsi-
ble for combustion, not phlogis-
ton and also that oxygen was re-
sponsible for the rusting of met-
als (his oxygen work was helped
by results communicated to him

by Joseph Priestley, and Lavoisier was a little lax
in giving Priestley credit for this). Lavoisier showed

that hydrogen and oxygen combined to make wa-
ter and also identified the concept of an element as
a fundamental substance that could not be broken
down into simpler constituents by chemical processes.
Lavoisier combined great experimental skill (and in
this, he was ably assisted by his wife) and theoretical
insight and is considered a founder of modern chem-
istry. Unfortunately, he added to his list of elemental
substances both light and caloric, his proposed fluid
which carried heat. Thus while ridding science of an
unnecessary mythical substance (phlogiston), he in-
troduced another one (caloric).

Lavoisier was a tax collector and thus found himself
in the firing line when the French revolution started,
the fact that he ploughed his dubiously-gotten gains
into scientific research cutting no ice with revolu-
tionaries. He had unfortunately made an enemy of
Jean-Paul Marat, a journalist with an interest in sci-
ence who in 1780 had wanted to join the French
Academy of Sciences, but was blocked by Lavoisier.
In 1792 Marat, now a firebrand revolutionary leader,
demanded Lavoisier’s death. Although Marat was
himself assassinated in 1793 (while lying in his bath),
Lavoisier was guillotined the following year.

Benjamin Thompson [Count Rumford]
(1753–1814)

Thompson was born in rural Massachusetts
and had an early interest in science.

Fig. 11.4 Benjamin
Thompson

In 1772, as a humble doctor’s
apprentice he married a rich
heiress, moved to Rumford, New
Hampshire, and got himself ap-
pointed as a major in a local
militia. He threw his lot in with
the British during the Ameri-
can Revolution, feeding them in-
formation about the location of
American forces and performing
scientific work on the force of
gunpowder. His British loyal-
ties made him few friends in the
land of his birth and he fled to

Britain, abandoning his wife.
He subsequently fell out with the British and

moved, in 1785, to Bavaria where he worked for Elec-
tor Karl Theodor who made him a Count, and hence-
forth he was known as Count Rumford. He organised

the poor workhouses, established the cultivation of
the potato in Bavaria and invented Rumford soup.
He continued to work on science, sometimes errati-
cally (he believed that gases and liquids were perfect
insulators of heat) but sometimes brilliantly; he no-
ticed that the drilling of metal cannon barrels pro-
duced apparently limitless amounts of heat and his
subsequent understanding of the production of heat
by friction allowed him to put an end to Lavoisier’s
caloric theory. Not content with simply destroying
Lavoisier’s theory, he married Lavoisier’s widow in
1804, though they separated four years later (Rum-
ford unkindly remarked that Antoine Lavoisier had
been lucky to have been guillotined than to have
stayed married to her!). In 1799, Rumford founded
the Royal Institution of Great Britain, establishing
Davy as the first lecturer (Michael Faraday was ap-
pointed there 14 years later). He also endowed a
medal for the Royal Society and a chair at Harvard.
Rumford was also a prolific inventor and gave the
world the Rumford fireplace, the double boiler, a drip
coffeepot and, perhaps improbably, Baked Alaska
(though Rumford’s priority on the latter invention
is not universally accepted).
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In this chapter we will apply the results of the previous chapter to illus-
trate some properties concerning isothermal and adiabatic expansions of
gases. These results will assume that the expansions are reversible, and
so the first part of this chapter explores the key concept of reversibil-
ity. This will be important for our discussion of entropy in subsequent
chapters.

12.1 Reversibility

The laws of physics are reversible, so that if any process is allowed, then
the time-reversed process can also occur. For example, if you could film
the molecules in a gas bouncing off each other and the container walls,
then when watching the film it would be hard to tell whether the film
was being played forwards or backwards.

However, there are plenty of processes which you see in nature which
seem to be irreversible. For example, consider an egg rolling off the
edge of a table and smashing on the floor. Potential energy is converted
into kinetic energy as the egg falls, and ultimately the energy ends up
as a small amount of heat in the broken egg and the floor. The law of
conservation of energy does not forbid the conversion of that heat back
into kinetic energy of the reassembled egg which would then leap off the
ground and back on to the table. However, this is never observed to
happen. As another example, consider a battery which drives a current
I through a resistor with resistance R and dissipates heat I2R into the
environment. Again, one never finds heat being absorbed by a resis-
tor from its environment, resulting in the generation of a spontaneous
current which can used to recharge the battery.

Lots of processes are like this, in which the final outcome is some
potential, chemical or kinetic energy that gets converted into heat, which
is then dissipated into the environment. As we shall see, the reason seems
to be that there are lots more ways that the energy can be distributed
in heat than in any other way, and this is therefore the most probable

outcome. To try and understand this statistical nature of reversibility,
it is helpful to consider the following example.
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Example 12.1

We return to the situation described in Example 4.1. To recap, you are
given a large box containing 100 identical coins. With the lid on the box,
you give it a really good long and hard shake, so that you can hear the
coins flipping, rattling and being generally tossed around. Now you open
the lid and look inside the box. Some of the coins will be lying with heads
facing up and some with tails facing up. We assume that each of the
2100 possible possible configurations (the microstates) are equally likely
to be found. Each of these is equally likely and so each has a probability
of occurrence of approximately 10−30. However, the measurement made
is counting the number of coins which are heads and the number which
are tails (the macrostates), and the results of this measurement are not
equally likely. In Example 3.1 we showed that of the ≈ 1030 individual
microstates, a large number (≈ 4 × 1027) corresponded to 50 heads and
50 tails, but only one microstate corresponded to 100 heads and 0 tails.

Now, imagine that you had in fact carefully prepared the coins so
that they were lying heads up. Following a good shake, the coins will
most probably be a mixture of heads and tails. If, on the other hand,
you carefully prepared a mixed arrangement of heads and tails, a good
shake of the box is very unlikely to achieve a state in which all the
coins lie with heads facing up. The process of shaking the box seems to
almost always randomize the number of heads and tails, and this is an
irreversible process.

This shows that the statistical behaviour of large systems is such as
to make certain outcomes (such as a box of coins with mixed heads and
tails) more likely than certain others (such as a box of coins containing
coins the same way up). The statistics of large numbers therefore seems
to drive many physical changes in an irreversible direction. How can we
do a process in a reversible fashion?

The early researchers in thermodynamics wrestled with this problem
which was of enormous practical importance in the design of engines
in which you want to waste as little heat as possible in order to make
your engine as efficient as possible. It was realized that when gases are
expanded or compressed, it is possible to irreversibly convert energy into
heat, and this will generally occur when we perform the expansion or the
compression very fast, causing shock waves to be propagated through the
gas (we will consider this effect in more detail in Chapter 32). However,
it is possible to perform the expansion or compression reversibly if we do
it sufficiently slowly so that the gas remains in equilibrium throughout

the entire process and passes seamlessly from one equilibrium state to
the next, each equilibrium state differing from the previous one by an
infinitesimal change in the system parameters. Such a process is said
to be quasistatic, since the process is almost in completely unchanging
static equilibrium. As we shall see, heat can nevertheless be absorbed or
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emitted in the process, while still maintaining reversibility.1 In contrast,
1This is an important point: reversibil-
ity does not necessarily exclude the gen-
eration of heat. However, reversibility
does require the absence of friction; a
vehicle braking and coming to a com-
plete stop, converting its kinetic energy
into heat through friction in the brakes,
is an irreversible process.

for an irreversible process, a non-zero change (rather than a sequence of
infinitesimal changes) is made to the system, and therefore the system
is not at equilibrium throughout the process.

An important (but given the name, perhaps not surprising) property
of reversible processes is that you can run them in reverse. This fact
we will use a great deal in Chapter 13. Of course, it would take an
infinite amount of time for a strictly reversible process to occur, so most
processes we term reversible are approximations to the ‘real thing’.

12.2 Isothermal expansion of an ideal gas

In this section, we will calculate the heat change in a reversible isother-
mal expansion of an ideal gas. The word isothermal means ‘at constant
temperature’, and hence in an isothermal process

∆T = 0. (12.1)

For an ideal gas, we showed in eqn 11.30 that dU = CV dT , and so this
means that for an isothermal change

∆U = 0, (12.2)

since U is a function of temperature only. Equation 12.2 implies that
dU = 0 and hence from eqn 11.7

d̄W = −d̄Q, (12.3)

so that the work done by the gas on its surroundings as it expands
is equal to the heat absorbed by the gas. We can use d̄W = −pdV
(eqn 11.9) which is the correct expression for the work done in a re-
versible expansion. Hence the heat absorbed by the gas during an
isothermal expansion from volume V1 to volume V2 of 1 mole of an
ideal gas at temperature T is

∆Q =

∫
d̄Q (12.4)

= −
∫

d̄W (12.5)

=

∫ V2

V1

pdV (12.6)

=

∫ V2

V1

RT

V
dV (12.7)

= RT ln
V2

V1
. (12.8)

For an expansion, V2 > V1, and so ∆Q > 0. The internal energy has
stayed the same, but the volume has increased so that the energy density
has gone down. The energy density and the pressure are proportional
to one another2, so that pressure will also have decreased.2See eqn 6.25.
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12.3 Adiabatic expansion of an ideal gas

The word adiathermal means ‘without flow of heat’. A system bounded
by adiathermal walls is said to be thermally isolated. Any work done on
such a system produces an adiathermal change. We define a change to
be adiabatic if it is both adiathermal and reversible. In an adiabatic
expansion, therefore, there is no flow of heat and we have

d̄Q = 0. (12.9)

The first law of thermodynamics therefore implies that

dU = d̄W. (12.10)

For an ideal gas, dU = CV dT , and using d̄W = −pdV for a reversible
change, we find that, for 1 mole of ideal gas,

CV dT = −pdV = −RT
V

dV, (12.11)

so that CV here is per mole, since we are deal-
ing with 1 mole of ideal gas.

ln
T2

T1
= − R

CV
ln
V2

V1
. (12.12)

Now Cp = CV + R, and dividing this by CV yields γ = Cp/CV =
1 +R/CV , and therefore −(R/CV ) = 1 − γ, so that eqn 12.12 becomes

TV γ−1 = constant, (12.13)

or equivalently (using pV ∝ T for an ideal gas)

p1−γT γ = constant (12.14)

and

pV γ = constant, (12.15)

the last equation probably being the most memorable.
Figure 12.1 shows isotherms (lines of constant temperature, as would

be followed in an isothermal expansion) and adiabats (lines followed by
an adiabatic expansion in which heat cannot enter or leave the system)
for an ideal gas on a graph of pressure against volume. At each point,
the adiabats have a steeper gradient than the isotherms, a fact we will
return to in a later chapter.

12.4 Adiabatic atmosphere

The hydrostatic equation (eqn 4.23) expresses the additional pressure
due to a thickness dz of atmosphere with density ρ and is

dp = −ρg dz. (12.16)
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V

p

Fig. 12.1 Isotherms (solid lines) and adiabats (dashed lines).

Since p = nkBT and ρ = nm, where m is the mass of one molecule, we
can write ρ = mp/kBT and hence

dp

dz
= −mgp

kBT
, (12.17)

which implies that

T
dp

p
= −mg

kB
dz. (12.18)

For an isothermal atmosphere, T is a constant, and one obtains the re-
sults of Example 4.4. This assumes that the whole atmosphere is at a
uniform temperature and is very unrealistic. A much better approxi-
mation (although nevertheless still an approximation to reality) is that
each parcel of air3 does not exchange heat with its surroundings. This3Atmospheric physicists call a ‘bit’ of

air a ‘parcel’. means that if a parcel of air rises, it expands adiabatically. In this case,
eqn 12.18 can be solved by recalling that for an adiabatic expansion
p1−γT γ is a constant (see eqn 12.14) and hence that

(1 − γ)
dp

p
+ γ

dT

T
= 0. (12.19)

Substituting this into eqn 12.18 yields

dT

dz
= −

(
γ − 1

γ

)
mg

kB
, (12.20)

which is an expression relating the rate of decrease of temperature with
height, predicting it to be linear. We can rewrite (γ − 1)/γ = R/Cp,
and using R = NAkB and writing the molar mass Mmolar = NAm we
can write eqn 12.20 as

dT

dz
= −Mmolarg

Cp
, (12.21)
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The quantity Mmolarg/Cp is known as the adiabatic lapse rate. For
dry air (mostly nitrogen), it comes out as 9.7 K/km. Experimental
values in the atmosphere are closer to 6–7 K/km (due partly to the fact
that the atmosphere isn’t dry, and latent heat effects, due to the heat
needed to evaporate water droplets [and sometimes thaw ice crystals],
are also important).

Chapter summary

• In an isothermal expansion ∆T = 0.

• An adiabatic change is both adiathermal (no flow of heat) and re-
versible. In an adiabatic expansion of an ideal gas, pV γ is constant.

Exercises

(12.1) In an adiabatic expansion of an ideal gas, pV γ is
constant. Show also that

TV γ−1 = constant, (12.22)

T = constant × p1−1/γ . (12.23)

(12.2) Assume that gases behave according to a law given
by pV = f(T ), where f(T ) is a function of tem-
perature. Show that this implies„

∂p

∂T

«
V

=
1

V

df

dT
, (12.24)„

∂V

∂T

«
p

=
1

p

df

dT
. (12.25)

Show also that„
∂Q

∂V

«
p

= Cp

„
∂T

∂V

«
p

, (12.26)

„
∂Q

∂p

«
V

= CV

„
∂T

∂p

«
V

. (12.27)

In an adiabatic change, we have that

dQ =

„
∂Q

∂p

«
V

dp +

„
∂Q

∂V

«
p

dV = 0. (12.28)

Hence show that pV γ is a constant.

(12.3) Explain why we can write

d̄Q = Cp dT + A dp and (12.29)

d̄Q = CV dT + B dV, (12.30)

where A and B are constants. Subtract these
equations and show that

(Cp − CV )dT = B dV − A dp, (12.31)

and that at constant temperature

„
∂p

∂V

«
T

=
B

A
. (12.32)

In an adiabatic change, show that

dp = −(Cp/A)dT, (12.33)

dV = −(CV /B)dT. (12.34)

Hence show that in an adiabatic change, we have
that

„
∂p

∂V

«
adiabatic

= γ

„
∂p

∂V

«
T

, (12.35)„
∂V

∂T

«
adiabatic

=
1

1 − γ

„
∂V

∂T

«
p

,(12.36)

„
∂p

∂T

«
adiabatic

=
γ

γ − 1

„
∂p

∂T

«
V

.(12.37)

(12.4) Using eqn 12.35, relate the gradients of adiabats
and isotherms on a p–V diagram.
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(12.5) Two thermally insulated cylinders, A and B, of
equal volume, both equipped with pistons, are con-
nected by a valve. Initially A has its piston fully
withdrawn and contains a perfect monatomic gas
at temperature T , while B has its piston fully in-
serted, and the valve is closed. Calculate the final
temperature of the gas after the following opera-
tions, which each start with the same initial ar-
rangement. The thermal capacity of the cylinders
is to be ignored.
(a) The valve is fully opened and the gas slowly
drawn into B by pulling out the piston B; piston
A remains stationary.
(b) Piston B is fully withdrawn and the valve is
opened slightly; the gas is then driven as far as it
will go into B by pushing home piston A at such a
rate that the pressure in A remains constant: the
cylinders are in thermal contact.

(12.6) In Rüchhardt’s method of measuring γ, illustrated
in Fig. 12.2, a ball of mass m is placed snugly in-
side a tube (cross-sectional area A) connected to
a container of gas (volume V ). The pressure p of
the gas inside the container is slightly greater than
atmospheric pressure p0 because of the downward
force of the ball, so that

p = p0 +
mg

A
. (12.38)

Show that if the ball is given a slight downwards
displacement, it will undergo simple harmonic mo-
tion with period τ given by

τ = 2π

r
mV

γpA2
. (12.39)

[You may neglect friction. As the oscillations are
fairly rapid, the changes in p and V which occur
can be treated as occurring adiabatically.]
In Rinkel’s 1929 modification of this experiment,
the ball is held in position in the neck where the
gas pressure p in the container is exactly equal to
air pressure, and then let drop, the distance L that
it falls before it starts to go up again is measured.
Show that this distance is given by

mgL =
γPA2L2

2V
. (12.40)

Fig. 12.2 Rüchhardt’s apparatus for measuring γ. A
ball of mass m oscillates up and down inside a tube.



Part V

The second law

In this part we introduce the second law of thermodynamics and follow
its consequences. This part is structured as follows:

• In Chapter 13, we consider heat engines, which are cyclic processes
that convert heat into work. We state various forms of the second

law of thermodynamics and prove their equivalence, in particular
showing that no engine can be more efficient than a Carnot en-

gine. We also prove Clausius’ theorem, which applies to any cyclic
process.

• In Chapter 14 we show how the results from the preceding chapter
lead to the concept of entropy. We derive the important equation
dU = TdS − pdV , which combines the first and second laws of
thermodynamics. We also introduce the Joule expansion and use
it to discuss the statistical interpretation of entropy and Maxwell’s

demon.

• There is a very deep connection between entropy and information,
and we explore this in Chapter 15, briefly touching upon data com-

pression and quantum information.
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In this chapter, we introduce the second law of thermodynamics, prob-
ably the most important and far-reaching of all concepts in thermal
physics. We are going to illustrate it with an application to the theory
of ‘heat engines’, which are machines that produce work from a tem-
perature difference between two reservoirs.1 It was by considering such

1A reservoir in this context is a body
which is sufficiently large that we can
consider it to have essentially infinite
heat capacity. This means that you can
keep sucking heat out of it, or dump-
ing heat into it, without its tempera-
ture changing. See Section 4.6.

engines that nineteenth century physicists such as Carnot, Clausius and
Kelvin came to develop their different statements of the second law of
thermodynamics. However, as we will see in subsequent chapters, the
second law of thermodynamics has a wider applicability, affecting all
types of processes in large systems and bringing insights in information
theory and cosmology. In this chapter, we will begin by stating two
alternative forms of the second law of thermodynamics and then discuss
how these statements impact on the efficiency of heat engines.

13.1 The second law of thermodynamics

The second law of thermodynamics can be formulated as a statement
about the direction of heat flow that occurs as a system approaches
equilibrium (and hence there is a connection with the direction of the
‘arrow of time’). Heat is always observed to flow from a hot body to a
cold body, and the reverse process, in isolation,2 never occurs. Therefore,2The ‘in isolation’ phrase is very im-

portant here. In a refrigerator, heat is
sucked out of cold food and squirted out
of the back into your warm kitchen, so
that it flows in the ‘wrong’ direction:
from cold to hot. However, this pro-
cess is not happening in isolation. Work
is being done by the refrigerator motor
and electrical power is being consumed,
adding to your electricity bill.

following Clausius, we can state the second law of thermodynamics as
follows:

Clausius’ statement of the second law of thermodynamics:
‘No process is possible whose sole result is the transfer of heat from a
colder to a hotter body.’

It turns out that an equivalent statement of the second law of ther-
modynamics can be made, concerning how easy it is to change energy
between different forms, in particular between work and heat. It is very
easy to convert work into heat. For example, pick up a brick of mass m
and carry it up to the top of a building of height h (thus doing work on it
equal to mgh) and then let it fall back to ground level by dropping it off
the top (being careful not to hit passing pedestrians). All the work that
you’ve done in carrying the brick to the top of the building will be dissi-
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pated in heat (and a small amount of sound energy) as the brick hits the
ground. However, conversion of heat into work is much harder, and in
fact the complete conversion of heat into work is impossible. This point
is expressed in Kelvin’s statement of the second law of thermodynamics:

Kelvin’s statement of the second law of thermodynamics:
‘No process is possible whose sole result is the complete conversion of
heat into work.’

These two statements of the second law of thermodynamics do not
seem to be obviously connected, but the equivalence of these two state-
ments will be proved in Section 13.4.

13.2 The Carnot engine

Kelvin’s statement of the second law of thermodynamics says that you
can’t completely convert heat into work. However, it does not forbid
some conversion of heat into work. How good a conversion from heat
to work is possible? To answer this question, we have to introduce the
concept of an engine. We define an engine as a system operating a
cyclic process that converts heat into work. It has to be cyclic so that
it can be continuously operated, producing a steady power.

V

p

Fig. 13.1 A Carnot cycle consists of
two reversible adiabats (BC and DA)
and two reversible isotherms (AB and
CD). The Carnot cycle is here shown
on a p–V plot. It is operated in the
direction A→B→C→D→A, i.e. clock-
wise around the solid curve. Heat Qh

enters in the isotherm A→B and heat
Q� leaves in the isotherm C→D.

One such engine is the Carnot engine, which is based upon a process
called a Carnot cycle and which is illustrated in Figure 13.1. An equiv-
alent plot which is easier to sketch is shown in Figure 13.2. The Carnot
cycle consists of two reversible adiabats and two reversible isotherms for
an ideal gas. The engine operates between two heat reservoirs, one at
the high temperature of Th and one at the lower temperature of T
. Heat
enters and leaves only during the reversible isotherms (because no heat
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Fig. 13.2 A Carnot cycle can be drawn
on replotted axes where the isotherms
are shown as horizontal lines (T is con-
stant for an isotherm) and the adiabats
are shown as vertical lines (where the
quantity S, which must be some func-
tion of pV γ , is constant in an adiabatic
expansion; in Chapter 14 we will give a
physical interpretation of S).

T

T
Q

Q

S

T

can enter or leave during an adiabat). Heat Qh enters during the expan-
sion A→B and heat Q
 leaves during the compression C→D. Because
the process is cyclic, the change of internal energy (a state function) in
going round the cycle is zero. Hence the work output by the engine, W ,
is given by

W = Qh −Q
. (13.1)

Example 13.1

Find an expression for Qh/Q
 for an ideal gas undergoing a Carnot cycle
in terms of the temperatures Th and T
.
Solution:
Using the results of Section 12.2, we can write down

A → B : Qh = RTh ln
VB

VA
, (13.2)

B → C :

(
Th

T


)
=

(
VC

VB

)γ−1

, (13.3)

C → D : Q
 = −RT
 ln
VD

VC
, (13.4)

D → A :

(
T


Th

)
=

(
VA

VD

)γ−1

. (13.5)

Equations 13.3 and 13.5 lead to

VB

VA
=
VC

VD
, (13.6)

and dividing eqn 13.2 by eqn 13.4 and substituting in eqn 13.6 leads to

Qh

Q

=
Th

T

. (13.7)

This is a key result.3

3In fact, when we later prove in Sec-
tion 13.3 that all reversible engines have
this efficiency, one can use eqn 13.7 as
a thermodynamic definition of temper-
ature. In this book, we have preferred
to define temperature using a statistical
argument via eqn 4.7.
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The Carnot engine is shown schematically in Fig. 13.3. It is drawn
as a machine with heat input Qh from a reservoir at temperature Th,
drawn as a horizontal line, and two outputs, one of work W and the
other of heat Q
 which passes into the reservoir at temperature T
.

T

T

W

Q

Q

Fig. 13.3 A Carnot engine shown
schematically. In diagrams such as this
one, the arrows are labelled with the
heat/work flowing in one cycle of the
engine.

The concept of efficiency is important to characterize engines. It is
the ratio of ‘what you want to achieve’ to ‘what you have to do to achieve
it’. For an engine, what you want to achieve is work (to pull a train up
a hill for example) and what you have to do to achieve it is to put heat
in (by shovelling coal into the furnace), keeping the hot reservoir at Th

and providing heat Qh for the engine. We therefore define the efficiency
η of an engine as the ratio of the work out to the heat in. Thus

η =
W

Qh
. (13.8)

Note that since the work out cannot be greater than the heat in (i.e.
W < Qh) we must have that η < 1. The efficiency must be below 100%.

Example 13.2

For the Carnot engine, the efficiency can be calculated using eqns 13.1,
13.7 and 13.8 as follows: substituting eqn 13.1 into 13.8 yields

ηCarnot =
Qh −Q


Qh
, (13.9)

and eqn 13.7 then implies that

ηCarnot =
Th − T


Th
= 1 − T


Th
. (13.10)

How does this efficiency compare to that of a real engine? It turns
out that real engines are much less efficient than Carnot engines.

Example 13.3

A power station steam turbine operates between Th ∼ 800 K and T
 =
300 K. If it were a Carnot engine, it could achieve an efficiency of
ηCarnot = (Th − T
)/Th = 60%, but in fact real power stations do not
achieve the maximum efficiency and figures closer to 40% are typical.
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13.3 Carnot’s theorem

The Carnot engine is in fact the most efficient engine possible! This is
stated in Carnot’s theorem, as follows:

Carnot’s theorem:
Of all the heat engines working between two given temperatures, none
is more efficient than a Carnot engine.

Remarkably, one can prove Carnot’s theorem on the basis of Clausius’
statement of the second law of thermodynamics.4 The proof follows a4This means that Carnot’s theorem is,

in itself, a statement of the second law
of thermodynamics.

reductio ad absurdum argument.
Proof: Imagine that E is an engine which is more efficient than a Carnot
engine (i.e. ηE > ηCarnot). The Carnot engine is reversible so one can
run it in reverse. Engine E, and a Carnot engine run in reverse, are
connected together as shown in Fig. 13.4. Now since ηE > ηCarnot, we
have that

W

Q′
h

>
W

Qh
, (13.11)

and so
Qh > Q′

h. (13.12)

The first law of thermodynamics implies that
T

T

W

Q

Q

Q

Q

Fig. 13.4 A hypothetical engine E,
which is more efficient than a Carnot
engine, is connected to a Carnot engine.

W = Q′
h −Q′


 = Qh −Q
, (13.13)

so that
Qh −Q′

h = Q
 −Q′

. (13.14)

Now Qh−Q′
h is positive because of eqn 13.12, and therefore so is Q
−Q′


.
The expression Qh − Q′

h is the net amount of heat dumped into the
reservoir at temperature Th. The expression Q
 −Q′


 is the net amount
of heat extracted from the reservoir at temperature T
. Because both
these expressions are positive, the combined system shown in Fig. 13.4
simply extracts heat from the reservoir at T
 and dumps it into the
reservoir at Th. This violates Clausius’ statement of the second law of
thermodynamics, and therefore engine E cannot exist.

Corollary:
All reversible engines have the same efficiency ηCarnot.

Proof: Imagine another reversible engine R. Its efficiency ηR ≤ ηCarnot

by Carnot’s theorem. We run it in reverse and connect it to a Carnot
engine going forwards, as shown in Figure 13.5. This arrangement will
simply transfer heat from the cold reservoir to the hot reservoir and
violates Clausius’ statement of the second law of thermodynamics unless

ηR = ηCarnot. Therefore all reversible engines have the same efficiency
T

T

W

Q

Q

Q

Q

Fig. 13.5 A hypothetical reversible en-
gine R is connected to a Carnot engine.

ηCarnot =
Th − T


Th
. (13.15)
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13.4 Equivalence of Clausius and Kelvin
statements

We first prove the proposition that if a system violates Kelvin’s state-
ment of the second law of thermodynamics, it violates Clausius’ state-
ment of the second law of thermodynamics.
Proof: If a system violates Kelvin’s statement of the second law of
thermodynamics, one could connect it to a Carnot engine as shown in
Figure 13.6. The first law implies that

Q′
h = W (13.16)

and that

Qh = W +Q
. (13.17)

The heat dumped in the reservoir at temperature Th is

Qh −Q′
h = Q
. (13.18)

This is also equal to the heat extracted from the reservoir at temperature
T
. The combined process therefore has the net result of transferring
heatQ
 from the reservoir at T
 to the reservoir at Th as its sole effect and
thus violates Clausius’ statement of the second law of thermodynamics.
Therefore the Kelvin violator does not exist.

T

T

W

Q

Q

Q

Fig. 13.6 A Kelvin violator is con-
nected to a Carnot engine.

We now prove the opposite proposition, that if a system violates Clau-
sius’ statement of the second law of thermodynamics, it violates Kelvin’s
statement of the second law of thermodynamics.
Proof: If a system violates Clausius’ statement of the second law of
thermodynamics, one could connect it to a Carnot engine as shown in
Figure 13.7. The first law implies that

Qh −Q
 = W. (13.19)

The sole effect of this process is thus to convert heat Qh −Ql into work
and thus violates Kelvin’s statement.

T

T

Q

Q

W

Q

Q

Fig. 13.7 A Clausius violator is con-
nected to a Carnot engine.

We have thus shown the equivalence of Clausius’ and Kelvin’s state-
ments of the second law of thermodynamics.

13.5 Examples of heat engines

One of the first engines to be constructed was made in the first century
by Hero of Alexandria, and is sketched in Fig. 13.8(a). It consists of
an airtight sphere with a pair of bent pipes projecting from it. Steam is
fed via another pair of pipes and once expelled through the bent pipes
causes rotational motion. Though Hero’s engine convincingly converts
heat into work, and thus qualifies as a bona fide heat engine, it was little
more than an entertaining toy. More practical was the engine sketched
in Fig. 13.8(b) which was designed by Thomas Newcomen (1664–1729).
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This was one of the first practical steam engines and was used for pump-
ing water out of mines. Steam is used to push the piston upwards. Then,
cold water is injected from the tank and condenses the steam, reducing
the pressure in the piston. Atmospheric pressure then pushes the pis-
ton down and raises the beam on the other side of the fulcrum. The
problem with Newcomen’s engine was that one had then to heat up the
steam chamber again before steam could be readmitted and so it was
extremely inefficient. James Watt (1736–1819) famously improved the
design so that condensation took place in a separate chamber which was
connected to the steam cylinder by a pipe. This work led the foundation
of the industrial revolution.

Fig. 13.8 Sketches of (a) Hero’s engine, (b) Newcomen’s engine and (c) Stirling’s engine.

Another design of an engine is Stirling’s engine, the brainchild of the
Rev. Robert Stirling (1790–1878) and which is sketched in Fig. 13.8(c),
It works purely by the repeated heating and cooling of a sealed amount
of gas. In the particular engine shown in Fig. 13.8(c), the crankshaft
is driven by the two pistons in an oscillatory fashion, but the 90◦ bend
ensures that the two pistons move out of phase. The motion is driven by
a temperature differential between the top and bottom surfaces of the
engine. The design is very simple and contains no valves and operates
at relatively low pressures. However, such an engine literally has to
‘warm up’ to establish the temperature differential and so it is harder
to regulate power output.

One of the most popular engines is the internal combustion engine
used in most automobile applications. Rather than externally heating
water to produce steam (as with Newcomen’s and Watt’s engines) or to
produce a temperature differential (as with Stirling’s engine), here the
burning of fuel inside the engine’s combustion chamber generates the
high temperature and pressure necessary to produce useful work. Dif-
ferent fuels can be used to drive these engines, including diesel, gasoline,
natural gas and even biofuels such as ethanol. These engines all pro-
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duce carbon dioxide, and this has important consequences for Earth’s
atmosphere, as we shall discuss in Chapter 37. There are many different
types of internal combustion engines, including piston engines (in which
pressure is converted into rotating motion using a set of pistons), com-
bustion turbines (in which gas flow is used to spin a turbine’s blades)
and jet engines (in which a fast moving jet of gas is used to generate
thrust).5 5In Exercise 13.5 we consider the Otto

cycle, which models the diesel engine, a
type of internal combustion engine.

13.6 Heat engines running backwards

In this section we discuss two applications of heat engines in which the
engine is run in reverse, putting in work in order to move heat around.

Example 13.4

(a) The refrigerator:
The refrigerator is a heat engine which is run backwards so that you put
work in and cause a heat flow from a cold reservoir to a hot reservoir
(see Figure 13.9). In this case, the cold reservoir is the food inside
the refrigerator which you wish to keep cold and the hot reservoir is
usually your kitchen. For a refrigerator, we must define the efficiency in
a different way from the efficiency of a heat engine. This is because what
you want to achieve is ‘heat sucked out of the contents of the refrigerator’
and what you have to do to achieve it is ‘electrical work’ from the mains
electricity supply. Thus we define the efficiency of a refrigerator as

η =
Q


W
. (13.20)

T

T

W

Q

Q

Fig. 13.9 A refrigerator or a heat
pump. Both devices are heat engines
run in reverse (i.e. reversing the arrows
on the cycle shown in Fig. 13.3).

For a refrigerator fitted with a Carnot engine, it is then easy to show
that

ηCarnot =
T


Th − T

, (13.21)

which can yield an efficiency above 100%.

(b) The heat pump:
A heat pump is essentially a refrigerator (Figure 13.9 applies also for a
heat pump), but it is utilized in a different way. It is used to pump heat
from a reservoir, to a place where it is desired to add heat. For example,
the reservoir could be the soil/rock several metres underground and heat
could be pumped out of the reservoir into a house which needs heating.
In one cycle of the engine, we want to add heat Qh to the house, and
now W is the work we must apply (in the form of electrical work) to
accomplish this. The efficiency of a heat pump is therefore defined as

η =
Qh

W
. (13.22)
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Note that Qh > W and so η > 1. The efficiency is always above 100%!
(See Exercise 13.1.) This shows why heat pumps are attractive6 for6However, the capital cost means that

heat pumps have not become popular
until recently.

heating. It is always possible to turn work into heat with 100% efficiency
(an electric fire turns electrical work into heat in this way), but a heat
pump can allow you to get even more heat into your house for the same
electrical work (and hence for the same electricity bill!).

For a heat pump fitted with a Carnot engine, it is easy to show that

ηCarnot =
Th

Th − T

. (13.23)

13.7 Clausius’ theorem

Consider a Carnot cycle. In one cycle, heat Qh enters and heat Q


leaves. Heat is therefore not a conserved quantity of the cycle. However,
we found in eqn 13.7 that for a Carnot cycle

Qh

Q

=
Th

T

, (13.24)

and so if we define7 ∆Qrev as the heat entering the system at each point,7The subscript ‘rev’ on ∆Qrev is there
to remind us that we are dealing with
a reversible engine.

we have that ∑
cycle

∆Qrev

T
=
Qh

Th
+

(−Q
)

T

= 0, (13.25)

and so ∆Qrev/T is a quantity which sums to zero around the cycle.
Replacing the sum by an integral, we could write∮

d̄Qrev

T
= 0 (13.26)

for this Carnot cycle.
Our argument so far has been in terms of a Carnot cycle which oper-

ates between two heat distinct reservoirs. Real engine cycles can be much
more complicated than this in that their ‘working substance’ changes
temperature in a much more complicated way and, moreover, real en-
gines do not behave perfectly reversibly.8 Therefore we would like to8You need to get the energy out of a

real engine quickly, so you do not have
time to everything quasistatically!

generalize our treatment so that it can be applied to a general cycle op-
erating between a whole series of reservoirs and we would like the cycle
to be either reversible or irreversible. Our general cycle is illustrated in
Fig. 13.10(a). For this cycle, heat d̄Qi enters at a particular part of the
cycle. At this point the system is connected to a reservoir which is at
temperature Ti. The total work extracted from the cycle is ∆W , given
by

∆W =
∑
cycle

d̄Qi, (13.27)

from the first law of thermodynamics. The sum here is taken around the
whole cycle, indicated schematically by the dotted circle in Fig. 13.10(a).
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Ti

Qi

W

Ti

Qi

Qi

i

Wi

W

T

Fig. 13.10 (a) A general cycle in which
heat d̄Qi enters in part of the cycle from
a reservoir at temperature Ti. Work
∆W is extracted from each cycle. (b)
The same cycle, but showing the heat
d̄Qi entering the reservoir at Ti from a
reservoir at temperature T via a Carnot
engine (labelled Ci).

Next we imagine that the heat at each point is supplied via a Carnot
engine which is connected between a reservoir at temperature T and the
reservoir at temperature Ti (see Fig. 13.10(b)). The reservoir at T is
common for all the Carnot engines connected at all points of the cycle.
Each Carnot engine produces work d̄Wi, and for a Carnot engine we
know that

heat to reservoir at Ti

Ti
=

heat from reservoir at T

T
, (13.28)

and hence
d̄Qi

Ti
=

d̄Qi + d̄Wi

T
. (13.29)

Rearranging, we have that

d̄Wi = d̄Qi

(
T

Ti
− 1

)
. (13.30)

The thermodynamic system in Fig. 13.10(b) looks at first sight to do
nothing other than convert heat to work, which is not allowed according
to Kelvin’s statement of the second law of thermodynamics, and hence
we must insist that this is not the case. Hence

total work produced per cycle = ∆W +
∑
cycle

d̄Wi ≤ 0. (13.31)
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Using eqns 13.27, 13.30 and 13.31, we therefore have that

T
∑
cycle

d̄Qi

Ti
≤ 0. (13.32)

Since T > 0, we have that

∑
cycle

d̄Qi

Ti
≤ 0, (13.33)

and replacing the sum by an integral, we can write this as∮
d̄Q

T
≤ 0, (13.34)

which is known as the Clausius inequality, embodied in the expression
of Clausius’ theorem:

Clausius’ theorem:

For any closed cycle,

∮
d̄Q

T
≤ 0, where equality necessarily holds for

a reversible cycle.

Chapter summary

• No process is possible whose sole result is the transfer of heat from
a colder to a hotter body. (Clausius’ statement of the second law
of thermodynamics)

• No process is possible whose sole result is the complete conver-
sion of heat into work. (Kelvin’s statement of the second law of
thermodynamics)

• Of all the heat engines working between two given temperatures,
none is more efficient than a Carnot engine. (Carnot’s theorem)

• All the above are equivalent statements of the second law of ther-
modynamics.

• All reversible engines operating between temperatures Th and T


have the efficiency of a Carnot engine: ηCarnot = (Th − T
)/Th.

• For a Carnot engine:
Qh

Q

=
Th

T

.

• Clausius’ theorem states that for any closed cycle,

∮
d̄Q

T
≤ 0 where

equality necessarily holds for a reversible cycle.
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Further reading

An entertaining account of how steam engines really work may be found in Semmens and Goldfinch (2000). A short
account of Watt’s development of his engine is Marsden (2002).

Exercises

(13.1) A heat pump has an efficiency greater than 100%.
Does this violate the laws of thermodynamics?

(13.2) What is the maximum possible efficiency of an en-
gine operating between two thermal reservoirs, one
at 100◦C and the other at 0◦C?

(13.3) The history of science is littered with various
schemes for producing perpetual motion. A ma-
chine which does this is sometimes referred to as
a perpetuum mobile, which is the Latin term for a
perpetual motion machine.

• A perpetual motion machine of the first kind
produces more energy than it uses.

• A perpetual motion machine of the second
kind produces exactly the same amount of
energy as it uses, but it continues running
forever indefinitely by converting all its waste
heat back into mechanical work.

Give a critique of these two types of machine and
state which laws of thermodynamics they each
break, if any.

(13.4) A possible ideal-gas cycle operates as follows:
(i) from an initial state (p1, V1) the gas is cooled
at constant pressure to (p1, V2);
(ii) the gas is heated at constant volume to
(p2, V2);
(iii) the gas expands adiabatically back to (p1, V1).
Assuming constant heat capacities, show that the
thermal efficiency is

1 − γ
(V1/V2) − 1

(p2/p1) − 1
. (13.35)

(You may quote the fact that in an adiabatic
change of an ideal gas, pV γ stays constant, where
γ = cp/cV .)

V V V V

Q

Q

Fig. 13.11 The Otto cycle.

(13.5) Show that the efficiency of the standard Otto cycle
(shown in Fig. 13.11) is 1−r1−γ , where r = V1/V2

is the compression ratio. The Otto cycle is the
four-stroke cycle in internal combustion engines in
cars, lorries and electrical generators.

(13.6) An ideal air conditioner operating on a Carnot cy-
cle absorbs heat Q2 from a house at temperature
T2 and discharges Q1 to the outside at tempera-
ture T1, consuming electrical energy E. Heat leak-
age into the house follows Newton’s law,

Q = A[T1 − T2], (13.36)

where A is a constant. Derive an expression for T2

in terms of T1, E and A for continuous operation
when the steady state has been reached.
The air conditioner is controlled by a thermostat.
The system is designed so that with the thermo-
stat set at 20◦C and outside temperature 30◦C the
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system operates at 30% of the maximum electrical
energy input. Find the highest outside tempera-
ture for which the house may be maintained inside
at 20◦C.

(13.7) Two identical bodies of constant heat capacity Cp

at temperatures T1 and T2 respectively are used
as reservoirs for a heat engine. If the bodies re-
main at constant pressure, show that the amount
of work obtainable is

W = Cp (T1 + T2 − 2Tf) , (13.37)

where Tf is the final temperature attained by both
bodies. Show that if the most efficient engine is
used, then T 2

f = T1T2.

(13.8) A building is maintained at a temperature T by
means of an ideal heat pump which uses a river

at temperature T0 as a source of heat. The heat
pump consumes power W , and the building loses
heat to its surroundings at a rate α(T −T0), where
α is a positive constant. Show that T is given by

T = T0 +
W

2α

“
1 +

p
1 + 4αT0/W

”
. (13.38)

(13.9) Three identical bodies of constant thermal capac-
ity are at temperatures 300 K, 300 K and 100 K. If
no work or heat is supplied from outside, what is
the highest temperature to which any one of these
bodies can be raised by the operation of heat en-
gines? If you set this problem up correctly you
may have to solve a cubic equation. This looks
hard to solve but in fact you can deduce one of
the roots [hint: what is the highest temperature
of the bodies if you do nothing to connect them?].
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Sadi Carnot (1796–1832)

Sadi Carnot’s father, Lazare Carnot (1753–1823),
was an engineer and mathematician who founded
the École Polytechnique in Paris, was briefly
Napoleon Bonaparte’s minister of war and served
as his military governor of Antwerp. Af-
ter Napoleon’s defeat, Lazare Carnot was forced
into exile. He fled to Warsaw in 1815 and
then moved to Magdeburg in Germany in 1816.

Fig. 13.12 Sadi Carnot

It was there in 1818 that
he saw a steam engine,
and both he and his son
Sadi Carnot, who visited
him there in 1821, be-
came hooked on the prob-
lem of understanding how
it worked.

Sadi Carnot had been
educated as a child by his
father. In 1812 he entered
the École Polytechnique
and studied with Poisson
and Ampère. He then
moved to Metz and stud-
ied military engineering,

worked for a while as a military engineer, and then
moved back to Paris in 1819. There he became inter-
ested in a variety of industrial problems as well as the
theory of gases. He had now become skilled in tack-
ling various problems, but it was his visit to Magde-
burg that proved crucial in bringing him the prob-
lem that was to be his life’s most important work.
In this, his father’s influence was a significant fac-
tor in the solution to the problem. Lazare Carnot
had been obsessed by the operation of machines all
his life and had been particularly interested in think-
ing about the operation of water-wheels. In a water-
wheel, falling water can be made to produce useful
mechanical work. The water falls from a reservoir of
high potential energy to a reservoir of low potential
energy, and on the way down, the water turns a wheel
which then drives some useful machine such as a flour
mill. Lazare Carnot had thought a great deal about
how you could make such systems as efficient as pos-
sible and convert as much of the potential energy of

the water as possible into useful work.
Sadi Carnot was struck by the analogy between

such a water-wheel and a steam engine, in which
heat (rather than water) flows from a reservoir at
high temperature to a reservoir at low temperature.
Carnot’s genius was that rather than focus on the
details of the steam engine he decided to consider an
engine in abstracted form, focussing purely on the
flow of heat between two thermal reservoirs. He ide-
alized the workings of an engine as consisting of sim-
ple gas cycles (in what we now know as a Carnot
cycle) and worked out its efficiency. He realised that
to be as efficient as possible, the engine had to pass
slowly through a series of equilibrium states and that
it therefore had to be reversible. At any stage, you
could reverse its operation and send it the other way
around the cycle. He was then able to use this fact
to prove that all reversible heat engines operating be-
tween two temperatures had the same efficiency.

This work was summarized in his paper on the
subject, Réflexions sur la puissance motrice du feu

et sur les machines propres à développer cette puis-

sance (Reflections on the motive power of fire and
machines fitted to develop That power) which was
published in 1824. Carnot’s paper was favourably re-
viewed, but had little immediate impact. Few could
see the relevance of his work, or at least see past the
abstract argument and the unfamiliar notions of ide-
alized engine cycles; his introduction, in which he
praised the technical superiority of English engine
designers, may not have helped win his French audi-
ence. Carnot died in 1832 during a cholera epidemic,
and most of his papers were destroyed (the standard
precaution following a cholera fatality). The French
physicist Émile Clapeyron later noticed his work and
published his own paper on it in 1834. However, it
was yet another decade before the work simultane-
ously came to the notice of a young German student,
Rudolf Clausius, and a recent graduate of Cambridge
University, William Thomson (later Lord Kelvin),
who would each individually make much of Carnot’s
ideas. In particular, Clausius patched up and mod-
ernized Carnot’s arguments (which had assumed the
validity of the prevailing, but subsequently discred-
ited, caloric theory of heat) and was motivated by
Carnot’s ideas to introduce the concept of entropy.
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In this chapter we will use the results from Chapter 13 to define a quan-
tity called entropy and to understand how entropy changes in reversible
and irreversible processes. We will also consider the statistical basis for
entropy, and use this to understand the entropy of mixing, the appar-
ent conundrum of Maxwell’s demon and the connection between entropy
and probability.

14.1 Definition of entropy

In this section, we introduce a thermodynamic definition of entropy. We
begin by recalling from eqn 13.26 that

∮
d̄Qrev/T = 0. This means that

the integral ∫ B

A

d̄Qrev

T

is path independent (see Appendix C.7). Therefore the quantity d̄Qrev/T
is an exact differential and we can write down a new state function which
we call entropy. We therefore define the entropy S by

dS =
d̄Qrev

T
, (14.1)

so that

S(B) − S(A) =

∫ B

A

d̄Qrev

T
, (14.2)

and S is a function of state. For an adiabatic process (a reversible
adiathermal process) we have that

dQrev = 0. (14.3)

Hence an adiabatic process involves no change in entropy (the process
is also called isentropic).

14.2 Irreversible change

Entropy S is defined in terms of reversible changes of heat. Since S is
a state function, then the integral of S around a closed loop is zero, so
that ∮

d̄Qrev

T
= 0. (14.4)
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Let us now consider a loop which contains an irreversible section (A→B)
and a reversible section (B→A), as shown in Fig. 14.1. The Clausius
inequality (eqn 13.34) implies that, integrating around this loop, we have
that ∮

d̄Q

T
≤ 0. (14.5)

Writing out the left-hand side in detail, we have that

V

p

Fig. 14.1 An irreversible and a re-
versible change between two points A
and B in p–V parameter space.

∫ B

A

d̄Q

T
+

∫ A

B

d̄Qrev

T
≤ 0, (14.6)

and hence rearranging gives∫ B

A

d̄Q

T
≤
∫ B

A

d̄Qrev

T
. (14.7)

This is true however close A and B get to each other, so in general we
can write that the change in entropy dS is given by

dS =
d̄Qrev

T
≥ d̄Q

T
. (14.8)

The equality in this expression is only obtained (somewhat trivially)
if the process on the right-hand side is actually reversible. Note that
because S is a state function, the entropy change in going from A to B
is independent of the route.

Consider a thermally isolated system. In such a system d̄Q = 0 for
any process, so that the above inequality becomes

dS ≥ 0. (14.9)

This is a very important equation and is, in fact, another statement of
the second law of thermodynamics. It shows that any change for this
thermally isolated system always results in the entropy either staying the
same (for a reversible change)1 or increasing (for an irreversible change). 1For a reversible process in a thermally

isolated system, T dS ≡ dQrev = 0 be-
cause no heat can flow in or out.

This gives us yet another statement of the second law, namely that: ‘the
entropy of an isolated system tends to a maximum.’ We can tentatively
apply these ideas to the Universe as a whole, under the assumption that
the Universe itself is a thermally isolated system:

Application to the Universe:
Assuming that the Universe can be treated as an isolated system, the
first two laws of thermodynamics become:

(1) UUniverse = constant.

(2) SUniverse can only increase.

The following example illustrates how the entropy of a particular sys-
tem and a reservoir, as well as the Universe (taken to be the system plus
reservoir), changes in an irreversible process.
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Example 14.1

A large reservoir at temperature TR is placed in thermal contact with a
small system at temperature TS. They both end up at the temperature
of the reservoir, TR. The heat transferred from the reservoir to the
system is ∆Q = C(TR−TS), where C is the heat capacity of the system.

• If TR > TS, heat is transferred from reservoir to system, the sys-
tem warms and its entropy increases; the entropy of the reservoir
decreases, because heat flows out of it.

• If TR < TS, heat is transferred from system to reservoir, the sys-
tem cools and its entropy decreases; the entropy of the reservoir
increases, because heat flows into it.

Let us calculate these entropy changes in detail: The entropy change in
the reservoir, which has constant temperature TR, is

∆Sreservoir =

∫
d̄Q

TR
=

1

TR

∫
d̄Q =

∆Q

TR
=
C(TS − TR)

TR
, (14.10)

while the entropy change in the system is

∆Ssystem =

∫
d̄Q

T
=

∫ TR

TS

C dT

T
= C ln

TR

TS
. (14.11)

Hence, the total entropy change in the Universe is

∆SUniverse = ∆Ssystem + ∆Sreservoir = C

[
ln
TR

TS
+
TS

TR
− 1

]
. (14.12)

These expressions are plotted in Fig. 14.2 and demonstrate that even
though ∆Sreservoir and ∆Ssystem can each be positive or negative, we
always have that

∆SUniverse ≥ 0. (14.13)

C

C

C

S

Fig. 14.2 The entropy change in the
simple process in which a small system
is placed in contact with a large reser-
voir.

14.3 The first law revisited

Using our new notion of entropy, it is possible to obtain a much more
elegant and useful statement of the first law of thermodynamics. We
recall from eqn 11.7 that the first law is given by

dU = d̄Q+ d̄W. (14.14)

Now, for a reversible change only, we have that

d̄Q = TdS (14.15)
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and

d̄W = −pdV. (14.16)

Combining these, we find that

dU = TdS − pdV. (14.17)

Constructing this equation, we stress, has assumed that the change is
reversible. However, since all the quantities in eqn 14.17 are functions
of state, and are therefore path independent, this equation holds for
irreversible processes as well! For an irreversible change, d̄Q ≤ T dS
and also d̄W ≥ −pdV , but with d̄Q being smaller than for the reversible
case and d̄W being larger than for the reversible case so that dU is the
same whether the change is reversible or irreversible.

Therefore, we always have that:

dU = TdS − pdV . (14.18)

This equation implies that the internal energy U changes when either
S or V changes. Thus, the function U can be written in terms of the
variables S and V which are its so-called natural variables. These
variables are both extensive (i.e. they scale with the size of the system).2 2See Section 11.1.2.

The variables p and T are both intensive (i.e. they do not scale with the
size of the system) and behave a bit like forces, since they show how the
internal energy changes with respect to some parameter. In fact, since
mathematically we can write dU as

dU =

(
∂U

∂S

)
V

dS +

(
∂U

∂V

)
S

dV, (14.19)

we can make the identification of T and p using

T =

(
∂U

∂S

)
V

and (14.20)

p = −
(
∂U

∂V

)
S

. (14.21)

The ratio of p and T can also be written in terms of the variables U , S
and V , as follows:

p

T
= −

(
∂U

∂V

)
S

(
∂S

∂U

)
V

, (14.22)

using the reciprocal theorem (see eqn C.41). Hence

p

T
=

(
∂S

∂V

)
U

, (14.23)

using the reciprocity theorem (see eqn C.42). These equations are used
in the following example.
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Example 14.2

Consider two systems, with pressures p1 and p2 and temperatures T1

and T2. If internal energy ∆U is transferred from system 1 to system 2,
and volume ∆V is transferred from system 1 to system 2 (see Fig. 14.3),
find the change of entropy. Show that equilibrium results when T1 = T2

and p1 = p2.

p p

U V

Fig. 14.3 Two systems, 1 and 2, which
are able to exchange volume and inter-
nal energy.

Solution:

Equation 14.18 can be rewritten as

dS =
1

T
dU +

p

T
dV. (14.24)

If we now apply this to our problem, the change in entropy is then
straightforwardly

∆S =

(
1

T1
− 1

T2

)
∆U +

(
p1

T1
− p2

T2

)
∆V. (14.25)

Equation 14.9 shows that the entropy always increases in any physi-
cal process. Thus, when equilibrium is achieved, the entropy will have
achieved a maximimum, so that ∆S = 0. This means that the joint
system cannot increase its entropy by further exchanging volume or in-
ternal energy between system 1 and system 2. ∆S = 0 can only be
achieved when T1 = T2 and p1 = p2.

Eqn 14.18 is an important equation that will be used a great deal
in subsequent chapters. Before proceeding, we pause to summarize the
most important equations in this section and state their applicability.

Summary
dU = d̄Q+ d̄W always true
d̄Q = T dS only true for reversible changes
d̄W = −pdV only true for reversible changes
dU = TdS − pdV always true

For irreversible changes: d̄Q ≤ T dS, d̄W ≥ −pdV

14.4 The Joule expansion

In this section, we describe in detail an irreversible process which is
known as the Joule expansion. One mole of ideal gas (pressure pi,
temperature Ti) is confined to the left-hand side of a thermally isolated
container and occupies a volume V0. The right-hand side of the container
(also volume V0) is evacuated. The tap between the two parts of the
container is then suddenly opened and the gas fills the entire container
of volume 2V0 (and has new temperature Tf and pressure pf). Both
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containers are assumed to be thermally isolated from their surroundings.
For the initial state, the ideal gas law implies that

piV0 = RTi, (14.26)

and for the final state that

p

V

p

V

p

V

Fig. 14.4 The Joule expansion between
volume V0 and volume 2V0. One mole
of ideal gas (pressure pi, temperature
Ti) is confined to the left-hand side of
a container in a volume V0. The con-
tainer is thermally isolated from its sur-
roundings. The tap between the two
parts of the container is then suddenly
opened and the gas fills the entire con-
tainer of volume 2V0 (and has new tem-
perature Tf and pressure pf).

pf(2V0) = RTf . (14.27)

Since the system is thermally isolated from its surroundings, ∆U = 0.
Also, since U is only a function of T for an ideal gas, ∆T = 0 and hence
Ti = Tf . This implies that piV0 = pf(2V0), so that the pressure halves,
i.e.

pf =
pi

2
. (14.28)

It is hard to calculate directly the change of entropy of a gas in a
Joule expansion along the route that it takes from its initial state to
the final state. The pressure and volume of the system are undefined
during the process immediately after the partition is removed since the
gas is in a non-equilibrium state. However, entropy is a function of state
and therefore for the purposes of the calculation, we can take another
route from the initial state to the final state since changes of functions
of state are independent of the route taken. Let us calculate the change
in entropy for a reversible isothermal expansion of the gas from volume
V0 to volume 2V0 (as indicated in Fig. 14.5). Since the internal energy is
constant in the isothermal expansion of an ideal gas, dU = 0, and hence
the new form of the first law in eqn 14.18 gives us T dS = pdV , so that

∆S =

∫ f

i

dS =

∫ 2V0

V0

pdV

T
=

∫ 2V0

V0

R dV

V
= R ln 2. (14.29)

Since S is a function of state, this increase in entropy R ln 2 is also the
change of entropy for the Joule expansion.

V

p

V V

Fig. 14.5 The Joule expansion between
volume V0 and volume 2V0 and a re-
versible isothermal expansion of a gas
between the same volumes. The path in
the p–V plane for the Joule expansion
is undefined, whereas it is well defined
for the reversible isothermal expansion.
In each case however, the start and end
points are well defined. Since entropy
is a function of state, the change in en-
tropy for the two processes is the same,
regardless of route.

Example 14.3

What is the change of entropy in the gas, surroundings and Universe
during a Joule expansion?
Solution:

Above, we have worked out ∆Sgas for the reversible isothermal expansion
and the Joule expansion: they have to be the same. What about the
surroundings and the Universe in each case?

For the reversible isothermal expansion of the gas, we deduce the
change of entropy in the surroundings so that the entropy in the Universe
does not increase (because we are dealing with a reversible situation).

∆Sgas = R ln 2,

∆Ssurroundings = −R ln 2,

∆SUniverse = ∆Sgas + ∆Ssurroundings = 0. (14.30)
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Notice that the entropy of the surroundings goes down. This does not
contradict the second law of thermodynamics. The entropy of something
can decrease if that something is not isolated. Here the surroundings
are not isolated because they are able to exchange heat with the system.

For the Joule expansion, the system is thermally isolated so that the
entropy of the surroundings does not change. Hence

∆Sgas = R ln 2,

∆Ssurroundings = 0,

∆SUniverse = ∆Sgas + ∆Ssurroundings = R ln 2. (14.31)

Once the Joule expansion has occurred, you can only put the gas back
in the left-hand side by compressing it. The best3 you can do is to do3In other words, the method involving

the least work. this reversibly, by a reversible isothermal compression, which takes work
∆W given (for 1 mole of gas) by

∆W = −
∫ V0

2V0

pdV = −
∫ V0

2V0

RT

V
dV = RT ln 2 = T∆Sgas. (14.32)

The increase of entropy in a Joule expansion is thus ∆W/T .

A paradox?:

• In the Joule expansion, the system is thermally isolated so no
heat can be exchanged: ∆Q = 0.

• No work is done: ∆W = 0.

• Hence ∆U = 0 (so for an ideal gas, ∆T = 0).

• But if ∆Q = 0, doesn’t that imply that ∆S = ∆Q/T = 0?

The above reasoning is correct, until the very end: the answer to the
question in the last point is NO! The equation d̄Q = TdS is only true
for reversible changes. In general d̄Q ≤ TdS, and here we have ∆Q = 0
and ∆S = R ln 2, so we have that ∆Q ≤ T∆S.

14.5 The statistical basis for entropy

We now want to show that as well as defining entropy via thermody-
namics, i.e. using dS = d̄Qrev/T , it is also possible to define entropy via
statistics. We will motivate this as follows:

As we showed in eqn 14.20, the first law dU = TdS − pdV implies
that

T =

(
∂U

∂S

)
V

, (14.33)
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or equivalently
1

T
=

(
∂S

∂U

)
V

. (14.34)

Now, recall from eqn 4.7 that

1

kBT
=

d ln Ω

dE
. (14.35)

Comparing these last two equations motivates the identification of S
with kB ln Ω, i.e.

S = kB ln Ω. (14.36)

This is the expression for the entropy of a system which is in a particular
macrostate in terms of Ω, the number of microstates associated with
that macrostate. We are assuming that the system is in a particular
macrostate which has fixed energy, and this situation is known as the
microcanonical ensemble (see Section 4.5). Later in this chapter (see
Section 14.8), and also later in the book, we will generalize this result to
express the entropy for more complicated situations. Nevertheless, this
expression is sufficiently important that it was inscribed on Boltzmann’s
tombstone, although on the tombstone the symbol Ω is written as a ‘W’.4 4See page 29.

In the following example, we will apply this expression to understanding
the Joule expansion which we introduced in Section 14.4.

Example 14.4

Joule expansion:
Following a Joule expansion, each molecule can be either on the left-hand
side or the right-hand side of the container. For each molecule there are
therefore two ways of placing it. For one mole (NA molecules) there
are 2NA ways of placing them. The additional number of microstates
associated with the gas being in a container twice as big as the initial
volume is therefore given by

Ω = 2NA (14.37)

for one mole (NA molecules) of gas, so that

∆S = kB ln 2NA = kBNA ln 2 = R ln 2, (14.38)

which is the same expression as written in eqn 14.29.

14.6 The entropy of mixing

Consider two different ideal gases (call them 1 and 2) which are in sep-
arate vessels with volumes xV and (1 − x)V respectively at the same
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pressures p and temperatures T (see Fig. 14.6). Since the pressures and
temperatures are the same on each side, and since p = (N/V )kBT , the
number of molecules of gas 1 is xN and of gas 2 is (1 − x)N , where N
is the total number of molecules.

If the tap on the pipe connecting the two vessels is opened, the gases
will spontaneously mix, resulting in an increase in entropy, known as the
entropy of mixing. As for the Joule expansion, we can imagine going
from the starting state (gas 1 in the first vessel, gas 2 in the second vessel)
to the final state (a homogeneous mixture of gas 1 and gas 2 distributed
throughout both vessels) via a reversible route, so that we imagine a
reversible expansion of gas 1 from xV into the combined volume V and
a reversible expansion of gas 2 from (1−x)V into the combined volume V .
For an isothermal expansion of an ideal gas, the internal energy doesn’t
change and hence T dS = pdV so that dS = (p/T ) dV = NkB dV/V ,
using the ideal gas law. This means that the entropy of mixing for our
problem is

∆S = xNkB

∫ V

xV

dV1

V1
+ (1 − x)NkB

∫ V

(1−x)V

dV2

V2
(14.39)

and hence

xV x V
p T p T

Fig. 14.6 Gas 1 is confined in a vessel
of volume xV , while gas 2 is confined in
a vessel of volume (1−x)V . Both gases
are at pressure p and temperature T .
Mixing occurs once the tap on the pipe
connecting the two vessels is opened.

∆S = −NkB(x lnx+ (1 − x) ln(1 − x)). (14.40)

This equation is plotted in Fig. 14.7. As expected, there is no entropy

x

S
N

k

Fig. 14.7 The entropy of mixing ac-
cording to eqn 14.40.

increase when x = 0 or x = 1. The maximum entropy change occurs
when x = 1

2 in which case ∆S = NkB ln 2. This of course corresponds to
the equilibrium state in which no further increase of entropy is possible.

This expression for x = 1
2 also admits to a very simple statistical

interpretation. Before the mixing of the gases takes place, we know that
gas 1 is only in the first vessel and gas 2 is only in the second vessel.
After mixing, each molecule can exist in two additional ‘microstates’
than before; for every microstate with a molecule of gas 1 on the left
there is now an additional one with a molecule of gas 1 now on the right.
Therefore Ω must be multiplied by 2N and hence S must increase by
kB ln 2N which is NkB ln 2.

This treatment has an important consequence: distinguishability is
an important concept! We have assumed that there is some tangible
difference between gas 1 and gas 2, so that there is some way to label
whether a particular molecule is gas 1 or gas 2. For example, if the
two gases were nitrogen and oxygen, one could measure the mass of the
molecules to determine which was which. But what if the two gases
were actually the same? Physically, we would expect that mixing them
would have no observable consequences, so there should be no increase
in entropy. Thus mixing should only increase entropy if the gases really
are distinguishable. We will return to this issue of distinguishability in
Chapter 29.
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14.7 Maxwell’s demon

In 1867, James Clerk Maxwell came up with an intriguing puzzle via a
thought experiment. This has turned out to be much more illuminat-
ing and hard to solve than he might ever have imagined. The thought
experiment can be stated as follows: imagine performing a Joule expan-
sion on a gas. A gas is initially in one chamber, which is connected via a
closed tap to a second chamber containing only a vacuum (see Fig. 14.4).
The tap is opened and the gas in the first chamber expands to fill both
chambers. Equilibrium is established and the pressure in each cham-
ber is now half of what it was in the first chamber at the start. The
Joule expansion is formally irreversible as there is no way to get the gas
back into the initial chamber without doing work. Or is there? Maxwell
imagined that the tap was operated by a microscopic intelligent creature,
now called Maxwell’s demon, who was able to watch the individual
molecules bouncing around close to the tap (see Fig. 14.8). If the demon
sees a gas molecule heading from the second chamber back into the first,
it quickly opens the tap and then shuts it straight away, just letting
the molecule through. If it spots a gas molecule heading from the first
chamber back into the second chamber, it keeps the tap closed. The
demon does no work5 and yet it can make sure that the gas molecules in 5It does no work in the pdV sense,

though it does do some in the brain
sense.

the second chamber all go back into the first chamber. Thus it creates a
pressure difference between the two chambers where none existed before
the demon started its mischief.

Fig. 14.8 Maxwell’s demon watches
the gas molecules in chambers A and
B and intelligently opens and shuts
the trap door connecting the cham-
bers. The demon is therefore able to
reverse the Joule expansion and only let
molecules travel from B to A, thus ap-

parently contravening the second law of
thermodynamics.
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Now, a similar demon could be employed to make hot molecules go the
wrong way (i.e. so that heat flows the wrong way, from cold to hot – this
in fact was Maxwell’s original implementation of the demon), or even
to sort out molecules of different types (and thus subvert the ‘entropy
of mixing’, see Section 14.6). It looks as if the demon could therefore
cause entropy to decrease in a system with no consequent increase in
entropy anywhere else. In short, Maxwell’s demon appears to make a
mockery out of the second law of thermodynamics. How on earth does
it get away with it?

Many very good minds have addressed this problem. One early idea
was that the demon needs to make measurements of where all the gas
molecules are, and to do this would need to shine light on the molecules;
thus the process of observation of the molecules might be thought to
rescue us from Maxwell’s demon. However, this idea turned out not to
be correct as it was found to be possible, even in principle, to detect
a molecule with arbitrarily little work and dissipation. Remarkably, it
turns out that because a demon needs to have a memory to operate (so
that it can remember where it has observed a molecule and any other
results of its measurement process), this act of storing information (ac-
tually it is the act of erasing information, as we will discuss below) is
associated with an increase of entropy, and this increase cancels out any
decrease in entropy that the demon might be able to effect in the sys-
tem. This connection between information and entropy is an extremely
important insight and will be explored in Chapter 15.

The demon is in fact a type of computational device that processes
and stores information about the world. It is possible to design a com-
putational process which proceeds entirely reversibly, and therefore has
no increase in entropy associated with it. However, the act of erasing
information is irreversible (as anyone who has ever failed to backup their
data and then had their computer crash will testify). Erasing informa-
tion always has an associated increase in entropy (of kB ln 2 per bit, as
we shall see in Chapter 15); Maxwell’s demon can operate reversibly
therefore, but only if it has a large enough hard disk that it doesn’t ever
need to clear space to continue operating. The Maxwell demon therefore
beautifully illustrates the connection between entropy and information.

14.8 Entropy and probability

The entropy that you measure is due to the number of different states
in which the system can exist, according to S = kB ln Ω (eqn 14.36).
However, each state may consist of a large number of microstates that
we can’t directly measure. Since the system could exist in any one
of those microstates, there is extra entropy associated with them. An
example should make this idea clear.
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Example 14.5

A system has 5 possible equally likely states in which it can exist, and
which of those states it occupies can be distinguished by some easy
physical measurement. The entropy is therefore, using eqn 14.36,

S = kB ln 5. (14.41)

However, each of those 5 states is made up of 3 equally likely microstates
and it is not possible to measure easily which of those microstates it is in.
The extra entropy associated with these microstates is Smicro = kB ln 3.
The system therefore really has 3 × 5 = 15 states and the total entropy
is therefore Stot = kB ln 15. This can be decomposed into

Stot = S + Smicro. (14.42)

Now let us suppose that a system can have N different, equally–likely
microstates. As usual, it is hard to measure the details of these mi-
crostates directly, but let us assume that they are there. These mi-
crostates are divided into various groups (we will call these groups
macrostates) with ni microstates contained in the ith macrostate. The
macrostates are easier to distinguish using experiment because they cor-
respond to some macroscopic, measurable property. We must have that
the sum of all the microstates in each macrostate is equal to the total
number of microstates, so that∑

i

ni = N. (14.43)

The probability Pi of finding the system in the ith macrostate is then
given by

Pi =
ni

N
. (14.44)

Equation 14.43 then implies that
∑
Pi = 1 as required. The total en-

tropy is of course Stot = kB lnN , though we can’t measure that directly
(having no information about the microstates which is easily accessible).
Nevertheless, Stot is equal to the sum of the entropy associated with the
freedom of being able to be in different macrostates, which is our mea-
sured entropy S, and the entropy Smicro associated with it being able to
be in different microstates within a macrostate. Putting this statement
in an equation, we have

Stot = S + Smicro, (14.45)

which is identical to eqn 14.42. The entropy associated with being able
to be in different microstates (the aspect we can’t measure) is given by

Smicro = 〈Si〉 =
∑

i

PiSi, (14.46)
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where Si = kB lnni is the entropy of the microstates in the ith macrostate
and, to recap, Pi is the probability of a particular macrostate being oc-
cupied. Hence

S = Stot − Smicro

= kB

(
lnN −

∑
i

Pi lnni

)

= kB

∑
i

Pi(lnN − lnni), (14.47)

and using lnN − lnni = − ln(ni/N) = − lnPi (from eqn 14.44) yields
Gibbs’ expression for the entropy:

S = −kB

∑
i Pi lnPi. (14.48)

Example 14.6

Find the entropy for a system with Ω macrostates, each with probability
Pi = 1/Ω (i.e. assuming the microcanonical ensemble).
Solution:
Using eqn 14.48, substitution of Pi = 1/Ω yields

S = −kB

∑
i

Pi lnPi = −kB

Ω∑
i=1

1

Ω
ln

1

Ω
= −kB ln

1

Ω
= kB ln Ω, (14.49)

which is the same as eqn 14.36.

A connection between the Boltzmann probability and the expression
for entropy in eqn 14.48 is demonstrated in the following example.

Example 14.7

Maximise S = −kB

∑
i Pi lnPi (eqn 14.48) subject to the constraints

that
∑
Pi = 1 and

∑
i PiEi = U .

Solution:

Use the method of Lagrange multipliers,6 in which we maximize6See Appendix C.13.

S

kB
− α× (constraint 1) − β × (constraint 2) (14.50)

where α and β are Lagrange multipliers. Thus we vary this expression
with respect to one of the probabilities Pj and get

∂

∂Pj

(∑
i

−Pi lnPi − αPi − βPiEi

)
= 0, (14.51)
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so that
− lnPj − 1 − α− βEj = 0. (14.52)

This can be rearranged to give

Pj =
e−βEj

e1+α
, (14.53)

so that with Z = e1+α we have

Pj =
e−βEj

Z
(14.54)

which is our familiar expression for the Boltzmann probability (eqn 4.13).

Chapter summary

• Entropy is defined by dS = d̄Qrev/T .

• The entropy of an isolated system tends to a maximum.

• The entropy of an isolated attains this maximum at equilibrium.

• The laws of thermodynamics can be stated as follows:
(1) UUniverse = constant.
(2) SUniverse can only increase.

• These can be combined to give dU = T dS − pdV which always
holds.

• The statistical definition of entropy is S = kB ln Ω.

• The general definition of entropy, due to Gibbs, is
S = −kB

∑
i Pi lnPi.

Exercises

(14.1) A mug of tea has been left to cool from 90◦C to
18◦C. If there is 0.2 kg of tea in the mug, and the
tea has specific heat capacity 4200 J K−1 kg−1,
show that the entropy of the tea has decreased by
185.7 J K−1. Comment on the sign of this result.

(14.2) In a free expansion of a perfect gas (also called
Joule expansion), we know U does not change,
and no work is done. However, the entropy must
increase because the process is irreversible. Are
these statements compatible with the first law

dU = TdS − pdV ?

(14.3) A 10 Ω resistor is held at a temperature of 300K.
A current of 5A is passed through the resistor for
2 minutes. Ignoring changes in the source of the
current, what is the change of entropy in (a) the
resistor and (b) the Universe?

(14.4) Calculate the change of entropy
(a) of a bath containing water, initially at 20◦C,
when it is placed in thermal contact with a very
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large heat reservoir at 80◦C,
(b) of the reservoir when process (a) occurs,
(c) of the bath and of the reservoir if the bath is
brought to 80◦C through the operation of a Carnot
engine between them.
The bath and its contents have total heat capacity
104 J K−1.

(14.5) A block of lead of heat capacity 1 kJ K−1 is cooled
from 200 K to 100 K in two ways.
(a) It is plunged into a large liquid bath at 100 K.
(b) The block is first cooled to 150 K in one liquid
bath and then to 100 K in another bath.
Calculate the entropy changes in the system com-
prising block plus baths in cooling from 200 K to
100 K in these two cases. Prove that in the limit of
an infinite number of intermediate baths the total
entropy change is zero.

(14.6) Calculate the changes in entropy of the Universe
as a result of the following processes:
(a) A capacitor of capacitance 1 µF is connected
to a battery of e.m.f. 100V at 0◦C. (NB think
carefully about what happens when a capacitor is
charged from a battery.)
(b) The same capacitor, after being charged to 100
V, is discharged through a resistor at 0◦C.
(c) One mole of gas at 0◦C is expanded reversibly
and isothermally to twice its initial volume.
(d) One mole of gas at 0◦C is expanded reversibly
and adiabatically to twice its initial volume.
(e) The same expansion as in (f) is carried out by
opening a valve to an evacuated container of equal
volume.

(14.7) Consider n moles of a gas, initially confined within
a volume V and held at temperature T . The gas
is expanded to a total volume αV , where α is a
constant, by (a) a reversible isothermal expansion
and (b) removing a partition and allowing a free

expansion into the vacuum. Both cases are illus-
trated in Fig. 14.9. Assuming the gas is ideal,
derive an expression for the change of entropy of
the gas in each case.

Fig. 14.9 Diagram showing n moles of gas, initially
confined within a volume V .

Repeat this calculation for case (a), assuming that
the gas obeys the van der Waals equation of state„

p +
n2a

V 2

«
(V − nb) = nRT. (14.55)

Show further that for case (b) the temperature of
the van der Waals gas falls by an amount propor-
tional to (α − 1)/α.

(14.8) The probability of a system being in the ith mi-
crostate is

Pi = e−βEi/Z, (14.56)

where Ei is the energy of the ith microstate and
β and Z are constants. Show that the entropy is
given by

S/kB = ln Z + βU, (14.57)

where U =
P

i PiEi is the internal energy.

(14.9) Use the Gibbs expression for entropy (eqn 14.48)
to derive the formula for the entropy of mixing
(eqn 14.40).
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Julius Robert Mayer (1814-1878)

Robert Mayer studied medicine in Tübingen
and took the somewhat unusual career route
of signing up as a ship’s doctor with a
Dutch vessel bound for the East Indies.

Fig. 14.10 Robert
Mayer

While letting blood from sailors
in the tropics, he noticed that
their venous blood was redder
than observed back home and
concluded that the metabolic
oxidation rate in hotter climates
was slower. Since a constant
body temperature was required
for life, the body must reduce its
oxidation rate because oxidation
of material from food produces
internal heat. Though there was
some questionable physiological
reasoning in his logic, Mayer was

on to something. He had realised that energy was
something that needed to be conserved in any physi-
cal process. Back in Heilbronn, Germany, Mayer set
to work on a measurement of the mechanical equiva-
lent of heat and wrote a paper in 1841 which was the
first statement of the conservation of energy (though

he used the word ‘force’). Mayer’s work predated the
ideas of Joule and Helmholtz (though his experiment
was not as accurate as Joule’s) and his notion of the
conservation of energy had a wider scope than that
of Helmholtz; not only were mechanical energy and
heat convertible, but his principle could be applied to
tides, meteorites, solar energy and living things. His
paper was eventually published in 1842, but received
little acclaim. A later more detailed paper in 1845
was rejected and he published it privately.

Mayer then went through a bit of a bad patch, to
put it mildly: others began to get the credit for ideas
he thought he had pioneered, three of his children
died in the late 1840’s and he attempted suicide in
1850, jumping out of a third-story window, but only
succeeding in permanently laming himself. In 1851 he
checked into a mental institution where he received
sometimes brutal treatment and was discharged in
1853, with the doctors unable to offer him any hope
of a cure. In 1858, he was even referred to as being
dead in a lecture by Liebig (famous for his condenser,
and editor of the journal that had accepted Mayer’s
1842 paper). Mayer’s scientific reputation began to
recover in the 1860’s and he was awarded the Copley
Medal of the Royal Society of London in 1871, the
year after they awarded it to Joule.

James Prescott Joule (1818-1889)

James Joule was the son of a wealthy
brewer in Salford, near Manchester, England.

Fig. 14.11 James
Joule

Joule was educated at home,
and his tutors included John
Dalton, the father of modern
atomic theory. In 1833, ill-
ness forced his father to retire,
and Joule was left in charge of
the family brewery. He had
a passion for scientific research
and set up a laboratory, work-
ing there in the early morning
and late evening so that he could
continue his day job. In 1840, he

showed that the heat dissipated by an electric cur-
rent I in a resistor R was proportional to I2R (what
we now call Joule heating). In 1846, Joule discov-

ered the phenomenon of magnetostriction (by which
a magnet changes its length when magnetized). How-
ever Joule’s work did not impress the Royal Society
and he was dismissed as a mere provincial dilettante.
However, Joule was undeterred and he decided to
work on the convertibility of energy and to try to
measure the mechanical equivalent of heat.

In his most famous experiment he measured the
increase in temperature of a thermally insulated bar-
rel of water, stirred by a paddle-wheel which was
driven by a falling weight. But this was just one
of an exhaustive series of meticulously performed ex-
periments which aimed to determine the mechanical
equivalent of heat, using electrical circuits, chemical
reactions, viscous heating, mechanical contraptions
and gas compression. He even attempted to measure
the temperature difference between water at the top
and bottom of a waterfall, an opportunity afforded
to him by being in Switzerland on his honeymoon!
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Joule’s obsessive industry paid off: his completely dif-
ferent experimental methods gave consistent results.

Part of Joule’s success was in designing thermome-
ters with unprecedented accuracy which could mea-
sure temperature changes as small as 1/200 degrees
Fahrenheit. This was necessary as the effects he was
looking for tended to be small. His methods proved
to be accurate and even his early measurements were
within several percent of the modern accepted value
of the mechanical equivalent of heat, and his 1850 ex-
periment was within 1 percent. However, the small-
ness of the effect led to scepticism, particularly from
the scientific establishment, who had all had proper
educations, didn’t spend their days making beer and
knew that you couldn’t measure temperature differ-
ences as tiny as Joule claimed to have observed.

However the tide began to turn in Joule’s favour in
the late 1840’s. Helmholtz recognized Joule’s contri-
bution to the conservation of energy in his paper of

1847. In the same year, Joule gave a talk at a British
Association meeting in Oxford where Stokes, Fara-
day and Thomson were in attendance. Thomson was
intrigued and the two struck up a correspondence,
resulting in a fruitful collaboration between the two
between 1852 and 1856. They measured the temper-
ature fall in the expansion of a gas, and discovered
the Joule–Thomson effect.

Joule refused all academic appointments, prefer-
ring to work independently. Though without ad-
vanced education, Joule had excellent instincts and
was an early defender of the kinetic theory of gases,
and felt his way towards a kinetic theory of heat,
perhaps because of his youthful exposure to Dalton’s
teachings. On Joule’s gravestone is inscribed the
number ‘772.55’, the number of foot-pounds required
to heat a pound of water by one degree Fahrenheit. It
is fitting that today, mechanical and thermal energy
are measured in the same unit: the Joule.

Rudolf Clausius (1822-1888)

Rudolf Clausius studied mathematics and
physics in Berlin, and did his doctorate in
Halle University on the colour of the sky.

Fig. 14.12 Rudolf
Clausius

Clausius turned his attention to
the theory of heat and, in 1850,
he published a paper which es-
sentially saw him picking up the
baton left by Sadi Carnot (via
an 1834 paper by Emile Clapey-
ron) and running with it. He
defined the internal energy, U ,
of a system and wrote that the
change of heat was given by
dQ = dU+(1/J)pdV , where the
factor J (the mechanical equiv-
alent of heat) was necessary to

convert mechanical energy pdV into the same units
as thermal energy (a conversion which in today’s
units is, of course, unnecessary). He also showed that
in a Carnot process, the integral round a closed loop
of f(T ) dQ was zero, where f(T ) was some function
of temperature.

His work brought him a professorship in Berlin,
though he subsequently moved to chairs in Zürich
(1855), Würzburg (1867) and Bonn (1869). In 1854,

he wrote a paper in which he stated that heat can-
not of itself pass from a colder to a warmer body, a
statement of the second law of thermodynamics. He
also showed that his function f(T ) could be written
(in modern notation) as f(T ) = 1/T . In 1865 he
was ready to give f(T ) dQ a name, defining the en-
tropy (a word he made up to sound like ‘energy’ but
contain ‘trope’ meaning ‘turning’, as in the word ‘he-
liotrope’, a plant which turns towards the Sun) using
dS = dQ/T for a reversible process. He also summa-
rized the first and second laws of thermodynamics by
stating that the energy of the world is constant and
its entropy tends to a maximum.

When Bismarck started the Franco-German war,
Clausius patriotically ran a volunteer ambulance
corps of Bonn students in 1870–1871, carrying off the
wounded from battles in Vionville and Gravelotte.
He was wounded in the knee, but received the Iron
Cross for his efforts in 1871. He was no less zeal-
ous in defending Germany’s preeminence in thermal
physics in various priority disputes, being provoked
into siding with Mayer’s claim over Joule’s, and in
various debates with Tait, Thomson and Maxwell.
Clausius however showed little interest in the work
of Boltzmann and Gibbs that aimed to understand
the molecular origin of the irreversibility that he had
discovered and named.
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In this chapter we are going to examine the concept of information and
relate it to thermodynamic entropy. At first sight, this seems a slightly
crazy thing to do. What on earth do something to do with heat engines
and something to do with bits and bytes have in common? It turns
out that there is a very deep connection between these two concepts.
To understand why, we begin our account by trying to formulate one
definition of information.

15.1 Information and Shannon entropy

Consider the following three true statements about Isaac Newton (1643–
1727) and his birthday.1 1The statements take as prior informa-

tion that Newton was born in 1643 and
that the dates are expressed according
to the calendar which was used in his
day. The Gregorian calendar was not
adopted in England until 1742.

(1) Isaac Newton’s birthday falls on a particular day of the year.

(2) Isaac Newton’s birthday falls in the second half of the year

(3) Isaac Newton’s birthday falls on the 25th of a month.

The first statement has, by any sensible measure, no information content.
All birthdays fall on a particular day of the year. The second statement
has more information content: at least we now know which half of the
year his birthday is. The third statement is much more specific and has
the greatest information content.

How do we quantify information content? Well, one property we could
notice is that the greater the probability of the statement being true in

the absence of any prior information, the less the information content of
the statement. Thus if you knew no prior information about Newton’s
birthday, then you would say that statement 1 has probability P1 = 1,
statement 2 has probability P2 = 1

2 , and statement 3 has probability2 2We are using the fact that 1643 was
not a leap year!P3 = 12

365 ; so as the probability decreases, the information content in-
creases. Moreover, since the useful statements 2 and 3 are independent,
then if you are given statements 2 and 3 together, their information con-
tents should add. Moreover, the probability of statements 2 and 3 both

being true, in the absence of prior information, is P2 × P3 = 6
365 . Since

the probability of two independent statements being true is the product

of their individual probabilities, and since it is natural to assume that
information content is additive, one is motivated to adopt the definition
of information which was proposed by Claude Shannon (1916–2001) as
follows:
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The information content Q of a statement is defined by

Q = −k logP, (15.1)

where P is the probability of the statement and k is a positive constant.33We need k to be a positive constant so
that as P goes up, Q goes down. If we use log2 (log to the base 2) for the logarithm in this expression

and also k = 1, then the information Q is measured in bits. If instead
we use ln ≡ loge and choose k = kB, then we have a definition which, as
we shall see, will match what we have found in thermodynamics. In this
chapter, we will stick with the former convention since bits are a useful
quantity with which to think about information.

Thus, if we have a set of statements with probability Pi, with cor-
responding information Qi = −k logPi, then the average information
content S is given by

S = 〈Q〉 =
∑

i

QiPi = −k
∑

i

Pi logPi. (15.2)

The average information is called the Shannon entropy.

Example 15.1

• A fair die produces outcomes 1, 2, 3, 4, 5 and 6 with probabilities
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 . The information associated with each outcome is

Q = −k log 1
6 = k log 6 and the average information content is

then S = k log 6. Taking k = 1 and using log to the base 2 gives a
Shannon entropy of 2.58 bits.

• A biased die produces outcomes 1, 2, 3, 4, 5 and 6 with prob-
abilities 1

10 ,
1
10 ,

1
10 ,

1
10 ,

1
10 ,

1
2 . The information contents associated

with the outcomes are k log 10 ,k log 10, k log 10, k log 10, k log 10
and k log 2. (These are 3.32, 3.32, 3.32, 3.32, 3.32 and 1 bit re-
spectively.) If we take k = 1 again, the Shannon entropy is then
S = k(5× 1

10 log 10+ 1
2 log 2) = k(log

√
20) (this is 2.16 bits). This

Shannon entropy is smaller than in the case of the fair die.

The Shannon entropy quantifies how much information we gain, on
average, following a measurement of a particular quantity. (Another way
of looking at it is to say the Shannon entropy quantifies the amount of
uncertainty we have about a quantity before we measure it.) To make
these ideas more concrete, let us study a simple example in which there
are only two possible outcomes of a particular random process (such as
the tossing of a coin, or asking the question ‘will it rain tomorrow?’).
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Example 15.2

What is the Shannon entropy for a Bernoulli4 trial (a two-outcome 4James Bernoulli (1654–1705).

random variable) with probabilities P and 1 − P of the two outcomes?

P

S
P

PP

Fig. 15.1 The Shannon entropy of a
Bernoulli trial (a two-outcome random
variable) with probabilities P and 1 −
P of the two outcomes. The units are
chosen so that the Shannon entropy is
in bits. Also shown is the information
associated with each outcome (dashed
lines).

Solution:

S = −
∑

i

Pi logPi = −P logP − (1 − P ) log(1 − P ), (15.3)

where we have set k = 1. This behaviour is sketched in Fig. 15.1. The
Shannon entropy has a maximum when p = 1

2 (greatest uncertainty
about the outcome, or greatest information gained, 1 bit, following a
trial) and a minimum when p = 0 or 1 (least uncertainty about the
outcome, or least information gained, 0 bit, following a trial).

The information associated with each of the two possible outcomes
is also shown in Fig. 15.1 as dashed lines. The information associated
with the outcome having probability P is given by Q1 = − log2 P and
decreases as P increases. Clearly when this outcome is very unlikely (P
small) the information associated with getting that outcome is very large
(Q1 is many bits of information). However, such an outcome doesn’t
happen very often so it doesn’t contribute much to the average informa-
tion (i.e. to the Shannon entropy, the solid line in Fig. 15.1). When this
outcome is almost certain (P almost 1) it contributes a lot to the aver-
age information but has very little information content. For the other
outcome, with probability 1−P , Q2 = − log2(1−P ) and the behaviour
is simply a mirror image of this. The maximum average information
is when P = 1 − P = 1

2 and both outcomes have 1 bit of information
associated with them.

15.2 Information and thermodynamics

Remarkably, the formula for Shannon entropy in eqn 15.2 is identical
(apart from whether you take your constant as k or kB) to Gibbs’ ex-
pression for thermodynamic entropy in eqn 14.48. This gives us a useful
perspective on what thermodynamic entropy is. It is a measure of our
uncertainty of a system, based upon our limited knowledge of its prop-
erties and ignorance about which of its microstates it is in. In making
inferences on the basis of partial information, we can assign probabil-
ities on the basis that we maximize entropy subject to the constraints
provided by what is known about the system. This is exactly what
we did in Example 14.7, when we maximized the Gibbs entropy of an
isolated system subject to the constraint that the total energy U was
constant; hey presto, we found that we recovered the Boltzmann prob-
ability distribution. With this viewpoint, one can begin to understand
thermodynamics from an information theory viewpoint.
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However, not only does information theory apply to physical systems,
but as pointed out by Rolf Landauer (1927–1999), information itself is
a physical quantity. Imagine a physical computing device which has
stored N bits of information and is connected to a thermal reservoir of
temperature T . The bits can be either one or zero. Now we decide to
physically erase that information. Erasure must be irreversible. There
must be no vestige of the original stored information left in the erased
state of the system. Let us erase the information by resetting all the bits
to zero.5 Then this irreversible process reduces the number of states of5We could equally well reset the bits to

one. the system by ln 2N and hence the entropy of the system goes down by
NkB ln 2, or kB ln 2 per bit. For the total entropy of the Universe not to
decrease, the entropy of the surroundings must go up by kB ln 2 per bit
and so we must dissipate heat in the surroundings equal to kBT ln 2 per
bit erased.

This connection between entropy and information helps us in our un-
derstanding of Maxwell’s demon discussed in Section 14.7. By perform-
ing computations about molecules and their velocities, the demon has
to store information. Each bit of information is associated with entropy,
as becomes clear when the demon has to free up some space on its hard
disk to continue computing. The process of erasing one bit of informa-
tion gives rise to an increase of entropy of kB ln 2. If Maxwell’s demon
reverses the Joule expansion of 1 mole of gas, it might therefore seem
like it has decreased the entropy of the Universe by NAkB ln 2 = R ln 2,
but it will have had to store at least NA bits of information to do this.
Assuming that Maxwell’s demons only have on-board a storage capacity
of a few hundred gigabytes, which is much less than NA bits, the demon
will have had to erase its disk many many times in the process of its
operation, thus leading to an increase in entropy of the Universe which
at least equals, and probably outweighs, the decrease of entropy of the
Universe it was aiming to achieve.

If the demon is somehow fitted with a vast on-board memory so that
it doesn’t have to erase its memory to do the computation, then the
increase in entropy of the Universe can be delayed until the demon needs
to free up some memory space. Eventually, one supposes, as the demon
begins to age and becomes forgetful, the Universe will reclaim all that
entropy!

15.3 Data compression

Information must be stored, or sometimes transmitted from one place
to another. It is therefore useful if it can be compressed down to its
minimum possible size. This really begs the question what the actual
irreducible amount of real information in a particular block of data re-
ally is; many messages, political speeches, and even sometimes book
chapters, contain large amounts of extraneous padding that is not really
needed. Of course, when we compress a file down on a computer we
often get something which is unreadable to human beings. The English
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language has various quirks, such as when you see a letter ‘q’ it is almost
always followed by a ‘u’, so is that second ‘u’ really needed when you
know it is coming? A good data compression algorithm will get rid of
extra things like that, plus much more besides. Hence, the question of
how many bits are in a given source of data seems like a useful question
for computer scientists to attempt to answer; in fact we will see it has
implications for physics!

We will here not prove Shannon’s noiseless channel coding the-
orem, but motivate it and then state it.

Example 15.3

Let us consider the simplest case in which our data are stored in the
form of the binary digits ‘0’ and ‘1’. Let us further suppose that the
data contain ‘0’ with probability P and ‘1’ with probability 1 − P . If
P = 1

2 then our data cannot really be compressed, as each bit of data
contains real information. Let us now suppose that P = 0.9 so that
the data contain more 0’s than 1’s. In this case, the data contain less
information, and it is not hard to find a way of taking advantage of
this. For example, let us read the data into our compression algorithm
in pairs of bits, rather than one bit at a time, and make the following
transformations:

00 → 0

10 → 10

01 → 110

11 → 1110

In each of the transformations, we end on a single ‘0’, which lets the de-
compression algorithm know that it can start reading the next sequence.
Now, of course, although the pair of symbols ‘00’ have been compressed
to ‘0’, saving a bit, the pair of symbols ‘01’ has been enlarged to ‘110’
and ‘11’ has been even more enlarged to ‘1110’, costing 1 extra or 2 extra
bits respectively. However, ‘00’ is very likely to occur (probability 0.81)
while ‘01’ and ‘11’ are much less likely to occur (probabilities 0.09 and
0.01 respectively), so overall we save bits using this compression scheme.

This example gives us a clue as to how to compress data more gen-
erally. The aim is to identify in a sequence of data what the typical
sequences are and then efficiently code only those. When the amount
of data becomes very large, then anything other than these typical se-
quences is very unlikely to occur. Because there are fewer typical se-
quences than there are sequences in general, a saving can be made.
Hence, let us divide up some data into sequences of length n. Assum-
ing the elements in the data do not depend on each other, then the
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probability of finding a sequence x1, x2, . . . , xn is

P (x1, x2, . . . , xn) = P (x1)P (x2) . . . P (xn) ≈ PnP (1− P )n(1−P ), (15.4)

for typical sequences. Taking logarithms to base 2 of both sides gives

− log2 P (x1, x2, . . . , xn) ≈ −nP log2 P − n(1 − P ) log2(1 − P ) = nS,
(15.5)

where S is the entropy for a Bernoulli trial with probability P . Hence

P (x1, x2, . . . , xn) ≈ 1

2nS
. (15.6)

This shows that there are at most only 2nS typical sequences and hence
it only requires nS bits to code them. As n becomes larger, and the
typical sequences become longer, the possibility of this scheme failing
becomes smaller and smaller.

A compression algorithm will take a typical sequence of n terms
x1, x2, . . . , xn and turn them into a string of length nR. Hence, the
smaller R is, the greater the compression. Shannon’s noiseless channel
coding theorem states that if we have a source of information with en-
tropy S, and if R > S, then there exists a reliable compression scheme
of compression factor R. Conversely, if R < S then any compression
scheme will not be reliable. Thus the entropy S sets the ultimate com-
pression limit on a set of data.

15.4 Quantum information

This section shows how the concept of information can be extended
to quantum systems and assumes familiarity with the main results of
quantum mechanics.

In this chapter we have seen that in classical systems the information
content is connected with the probability. In quantum systems, these
probabilities are replaced by density matrices. A density matrix is
used to describe the statistical state of a quantum system, as can arise
for a quantum system in thermal equilibrium at finite temperature. A
summary of the main results concerning density matrices is given in the
box on page 159.

For quantum systems, the information is represented by the operator
−k log ρ, where ρ is the density matrix; as before we take k = 1. Hence
the average information, or entropy, would be 〈− log ρ〉. This leads to
the definition of the von Neumann entropy S as66The operator Tr means the trace of

the following matrix, i.e. the sum of the
diagonal elements. S(ρ) = −Tr(ρ log ρ). (15.7)

If the eigenvalues of ρ are λ1, λ2 . . ., then the von Neumann entropy
becomes

S(ρ) = −
∑

i

λi log λi, (15.8)

which looks like the Shannon entropy.
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The density matrix:

• If a quantum system is in one of a number of states |ψi〉 with
probability Pi, then the density matrix ρ for the system is defined
by

ρ =
∑

i

Pi|ψi〉〈ψi|. (15.9)

• As an example, think of a three-state system and think of |ψ1〉

as a column vector


1

0
0


, and hence 〈ψ1| as a row vector (1, 0, 0),

and similarly for |ψ2〉, 〈ψ2|, |ψ3〉 and 〈ψ3|. Then

ρ = P1


1 0 0

0 0 0
0 0 0


+ P2


0 0 0

0 1 0
0 0 0


+ P3


0 0 0

0 0 0
0 0 1




=


P1 0 0

0 P2 0
0 0 P3


 (15.10)

This form of the density matrix looks very simple, but this is
only because we have expressed it in a very simple basis.

• If Pj �= 0 and Pi�=j = 0, then the system is said to be in a pure
state and ρ can be written in the simple form

ρ = |ψj〉〈ψj |. (15.11)

Otherwise, it is said to be in a mixed state.

• One can show that the expectation value 〈Â〉 of a quantum me-
chanical operator Â is equal to

〈Â〉 = Tr(Âρ). (15.12)

• One can also prove that

Trρ = 1, (15.13)

where Trρ means the trace of the density matrix. This expresses
the fact that the sum of the probabilities must equal unity, and
is in fact a special case of eqn 15.12 setting Â = 1.

• One can also show that Trρ2 ≤ 1 with equality if and only if the
state is pure.

• For a system in thermal equilibrium at temperature T , Pi is given
by the Boltzmann factor e−βEi where Ei is an eigenvalue of the
Hamiltonian Ĥ. The thermal density matrix ρth is

ρth =
∑

i

e−βEi |ψi〉〈ψi| = exp(−βĤ). (15.14)
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Example 15.4

Show that the entropy of a pure state7 is zero. How can you maximize7A pure state is defined in the box on
page 159. the entropy?

Solution:

(i) As shown in the box on page 159, the trace of the density matrix
is equal to one (Trρ = 1), and hence∑

λi = 1. (15.15)

For a pure state only one eigenvalue will be one and all the other eigen-
values will be zero, and hence8 S(ρ) = 0, i.e. the entropy of a pure8Note that we take 0 ln 0 = 0.

state is zero. This is not surprising, since for a pure state there is no
‘uncertainty’ about the state of the system.

(ii) The entropy is maximized when λi = 1/n for all i, where n
is the dimension of the density matrix. In this case, the entropy is
S(ρ) = n × (− 1

n log 1
n ) = logn. This corresponds to there being maxi-

mal uncertainty in its precise state.

Classical information is made up only of sequences of 0’s and 1’s (in
a sense, all information can be broken down into a series of ‘yes/no’
questions). Quantum information is comprised of quantum bits (known
as qubits), which are two-level quantum systems which can be repre-
sented by linear combinations9 of the states |0〉 and |1〉. Quantum me-9An arbitary qubit can be written as

|ψ〉 = α|0〉+β|1〉 where |α|2 + |β|2 = 1. chanical states can also be entangled with each other. The phenomenon
of entanglement10 has no classical counterpart. Quantum information10Einstein called entanglement ‘spooky

action at a distance’, and used it to ar-
gue against the Copenhagen interpre-
tation of quantum mechanics and show
that quantum mechanics is incomplete.

therefore also contains entangled superpositions such as (|01〉+|10〉)/√2.
Here the quantum states of two objects must be described with refer-
ence to each other; measurement of the first bit in the sequence to be
a 0 forces the second bit to be 1; if the measurement of the first bit
gives a 1, the second bit has to be 0; these correlations persist in an
entangled quantum system even if the individual objects encoding each
bit are spatially separated. Entangled systems cannot be described by
pure states of the individual subsystems, and this is where entropy plays
a rôle, as a quantifier of the degree of mixing of states. If the overall
system is pure, the entropy of its subsystems can be used to measure its
degree of entanglement with the other subsystems.1111It turns out that a unitary opera-

tor, such as the time-evolution opera-
tor, acting on a state leave the entropy
unchanged. This is akin to our results
in thermodynamics that reversibility is
connected with the preservation of en-
tropy.

In this text we do not have space to provide many details about the
subject of quantum information, which is a rapidly developing area of
current research. Suffice to say that the processing of information in
quantum mechanical systems has some intriguing facets which are not
present in the study of classical information. Entanglement of bits is just
one example. As another example, the no-cloning theorem states that
it is impossible to make a copy of non-orthogonal quantum mechanical
states (for classical systems, there is no physical mechanism to stop you
copying information, only copyright laws). All of these features lead to
the very rich structure of quantum information theory.
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Chapter summary

• The information Q is given by Q = − lnP where P is the proba-
bility.

• The entropy is the average information S = 〈Q〉 = −∑i Pi logPi.

• The quantum mechanical generalization of this is the von Neumann
entropy given by S(ρ) = −Tr(ρ log ρ) where ρ is the density matrix.

Further reading

The results which we have stated in this chapter concerning Shannon’s coding theorems, and which we considered
only for the case of Bernoulli trials, i.e. for binary outputs, can be proved for the general case. Shannon also studied
communication over noisy channels in which the presence of noise randomly flips bits with a certain probability. In
this case it is also possible to show how much information can be reliably transmitted using such a channel (essentially
how many times you have to ‘repeat’ the message to get yourself ‘heard’, though actually this is done using error-
correcting codes). Further information may be found in Feynman (1996) and Mackay (2003). An excellent account
of the problem of Maxwell’s demon may be found in Leff and Rex (2003). Quantum information theory has become
a very hot research topic in the last few years and an excellent introduction is Nielsen and Chuang (2000).

Exercises

(15.1) In a typical microchip, a bit is stored by a 5 fF ca-
pacitor using a voltage of 3 V. Calculate the energy
stored in eV per bit and compare this with the min-
imum heat dissipation by erasure, which is kBT ln 2
per bit, at room temperature.

(15.2) A particular logic gate takes two binary inputs A
and B and has two binary outputs A′ and B′. Its
truth table is

A B A′ B′

0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

and this is produced by A′ = NOT A and B′ =
NOT B. The input has a Shannon entropy of 2
bits. Show that the output has a Shannon entropy
of 2 bits.
A second logic gate has a truth table given by

A B A′ B′

0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

This can be achieved using A′ = A OR B and
B′ = A AND B. Show that the output now has an
entropy of 3

2
bits. What is the difference between

the two logic gates?

(15.3) Maximize the Shannon entropy S =
−k

P
i Pi log Pi subject to the constraints thatP

Pi = 1 and 〈f(x)〉 =
P

Pif(xi) and show that

Pi =
1

Z(β)
e−βf(xi), (15.16)

Z(β) =
X

e−βf(xi), (15.17)

〈f(x)〉 = − d

dβ
ln Z(β). (15.18)



162 Exercises

(15.4) Noise in a communication channel flips bits at ran-
dom with probability P . Argue that the entropy
associated with this process is

S = −P log P − (1 − P ) log(1 − P ). (15.19)

It turns out that the rate R at which we can pass
information along this noisy channel is 1−S. (This
is an application of Shannon’s noisy channel coding
theorem, and a nice proof of this theorem is given
on page 548 of Nielsen and Chuang (2000).)

(15.5) (a) The relative entropy measures the closeness
of two probability distributions P and Q and is de-
fined by

S(P ||Q) =
X

Pi log

„
Pi

Qi

«
= −Sp −

X
Pi log Qi,

(15.20)

where Sp = −P
Pi log Pi. Show that S(P ||Q) ≥ 0

with equality if and only if Pi = Qi for all i.
(b) If i takes N values with probability Pi, then
show that

S(P ||Q) = −SP + log N (15.21)

where Qi = 1/N for all i. Hence show that

SP ≤ log N (15.22)

with equality if and only if Pi is uniformly dis-
tributed between all N outcomes.



Part VI

Thermodynamics in action

In this part we use the laws of thermodynamics developed in Part V to
solve real problems in thermodynamics. Part VI is structured as follows:

• In Chapter 16 we derive various functions of state called thermo-

dynamic potentials, in particular the enthalpy, Helmholtz function

and the Gibbs function, and show how they can be used to study
thermodynamic systems under various constraints. We introduce
the Maxwell relations, which allow us to relate various partial dif-
ferentials in thermal physics.

• In Chapter 17 we show that the results derived so far can be ex-
tended straightforwardly to a variety of different thermodynamic
systems other than the ideal gas.

• In Chapter 18 we introduce the third law of thermodynamics, which
is really an addendum to the second law, and explain some of its
consequences.
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The internal energy U of a system is a function of state, which means
that a system undergoes the same change in U when we move it from
one equilibrium state to another, irrespective of which route we take
through parameter space. This makes U a very useful quantity, though
not a uniquely useful quantity. In fact, we can make a number of other
functions of state, simply by adding to U various other combinations
of the functions of state p, V , T and S in such a way as to give the
resulting quantity the dimensions of energy. These new functions of state
are called thermodynamic potentials, and examples include U +TS,
U −pV , U +2pV −3TS. However, most thermodynamic potentials that
one could pick are really not very useful (including the ones we’ve just
used as examples!) but three of them are extremely useful and are given
special symbols: H = U + pV , F = U − TS and G = U + pV − TS.
In this chapter, we will explore why these three quantities are so useful.
First, however, we will review some properties concerning the internal
energy U .

16.1 Internal energy, U

Let us review the results concerning the internal energy that were derived
in Section 14.3. Changes in the internal energy U of a system are given
by the first law of thermodynamics written in the form (eqn 14.17):

dU = TdS − pdV. (16.1)

This equation shows that the natural variables1 to describe U are S and1See Section 14.3.

V , since changes in U are due to changes in S and/or V . Hence we write
U = U(S, V ) to show that U is a function of S and V . Moreover, if S
and V are held constant for the system, then

dU = 0, (16.2)

which is the same as saying that U is a constant. Equation 16.1 implies
that the temperature T can be expressed as a differential of U using

T =

(
∂U

∂S

)
V

, (16.3)

and similarly the pressure p can be expressed as

p = −
(
∂U

∂V

)
S

. (16.4)
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We also have that for isochoric processes (where isochoric means that
V is constant),

dU = TdS, (16.5)

and for reversible2 isochoric processes 2For a reversible process, d̄Q = T dS,
see Section 14.3.

dU = d̄Qrev = CV dT, (16.6)

and hence

∆U =

∫ T2

T1

CV dT. (16.7)

This is only true for systems held at constant volume; we would like to
be able to extend this to systems held at constant pressure (an easier
constraint to apply experimentally), and this can be achieved using the
thermodynamic potential called enthalpy which we describe next.

16.2 Enthalpy, H

We define the enthalpy H by

H = U + PV . (16.8)

This definition together with eqn 16.1 imply that

dH = TdS − pdV + pdV + V dp

= TdS + V dp. (16.9)

The natural variables for H are thus S and p, and we have that H =
H(S, p). We can therefore immediately write down that for a isobaric
(i.e. constant pressure) process,

dH = TdS, (16.10)

and for a reversible isobaric process

dH = d̄Qrev = Cp dT, (16.11)

so that

∆H =

∫ T2

T1

Cp dT. (16.12)

This shows the importance of H, that for reversible isobaric processes
the enthalpy represents the heat absorbed by the system.3 Isobaric con- 3If you add heat to the system at con-

stant pressure, the enthalpy H of the
system goes up. If heat is provided by
the system to its surroundings H goes
down.

ditions are relatively easy to obtain: an experiment which is open to
the air in a laboratory is usually at constant pressure since pressure is
provided by the atmosphere.4 We also conclude from eqn 16.9 that if

4At a given latitude, the atmosphere
provides a constant pressure, small
changes due to weather fronts notwith-
standing.

both S and p are constant, we have that dH = 0.
Equation 16.9 also implies that

T =

(
∂H

∂S

)
p

, (16.13)



166 Thermodynamic potentials

and

V =

(
∂H

∂p

)
S

. (16.14)

Both U and H suffer from the drawback that one of their natural
variables is the entropy S, which is not a very easy parameter to vary
in a lab. It would be more convenient if we could substitute that for the
temperature T , which is, of course, a much easier quantity to control
and to vary. This is accomplished for both of our next two functions of
state, the Helmholtz and Gibbs functions.

16.3 Helmholtz function, F

We define the Helmholtz function5 using5This is sometimes called Helmholtz
free energy.

F = U − TS. (16.15)

Hence we find that

dF = TdS − pdV − TdS − SdT

= −SdT − pdV. (16.16)

This implies that the natural variables for F are V and T , and we can
therefore write F = F (T, V ). For an isothermal process (constant T ),
we can simplify eqn 16.16 further and write that

dF = −pdV, (16.17)

and hence

∆F = −
∫ V2

V1

pdV. (16.18)

Hence a positive change in F represents reversible work done on the
system by the surroundings, while a negative change in F represents
reversible work done on the surroundings by the system. As we shall see
in Section 16.5, F represents the maximum amount of work you can get
out of a system at constant temperature, since the system will do work
on its surroundings until its Helmholtz function reaches a minimum.
Equation 16.16 implies that the entropy S can be written as

S = −
(
∂F

∂T

)
V

, (16.19)

and the pressure p as

p = −
(
∂F

∂V

)
T

. (16.20)

If T and V are constant, we have that dF = 0 and F is a constant.
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16.4 Gibbs function, G.

We define the Gibbs function6 using 6This is sometimes called the Gibbs
free energy.

G = H − TS. (16.21)

Hence we find that

dG = TdS + V dp− TdS − SdT

= −SdT + V dp, (16.22)

and hence the natural variables of G are T and p. [Hence we can write
G = G(T, p).]

Having T and p as natural variables is particularly convenient as T
and p are the easiest quantities to manipulate and control for most
experimental systems. In particular, note that if T and p are constant,
dG = 0. Hence G is conserved in any isothermal isobaric process.7 7For example, at a phase transition be-

tween two different phases (call them
phase 1 and phase 2), there is phase co-
existence between the two phases at the
same pressure at the transition temper-
ature. Hence the Gibbs functions for
phase 1 and phase 2 must be equal at
the phase transition. This will be par-
ticularly useful for us in Chapter 28.

The expression in eqn 16.22 allows us to write down expressions for
entropy and volume as follows:

S = −
(
∂G

∂T

)
p

(16.23)

and

V = −
(
∂G

∂p

)
T

. (16.24)

We have now defined the four main thermodynamic potentials which
are useful in much of thermal physics: the internal energy U , the en-
thalpy H, the Helmholtz function F and the Gibbs function G. Before
proceeding further, we summarize the main equations which we have
used so far.

Function of state Differential Natural First derivatives
variables

Internal energy U dU = TdS − pdV U = U(S, V ) T =
(

∂U
∂S

)
V

, p = − ( ∂U
∂V

)
S

Enthalpy H = U + pV dH = TdS + V dp H = H(S, p) T =
(

∂H
∂S

)
p
, V =

(
∂H
∂p

)
S

Helmholtz function F = U − TS dF = −SdT − pdV F = F (T, V ) S = − (∂F
∂T

)
V

, p = − ( ∂F
∂V

)
T

Gibbs function G = H − TS dG = −SdT + V dp G = G(T, p) S = − (∂G
∂T

)
p
, V =

(
∂G
∂p

)
T

Note that to derive these equations quickly, all you need to do is
memorize the definitions of H, F and G and the first law in the form
dU = TdS − pdV and the rest can be written down straightforwardly.



168 Thermodynamic potentials

Example 16.1

Show that U = −T 2
(

∂
∂T

)
V

F
T and H = −T 2

(
∂

∂T

)
p

G
T .

Solution:

Using the expressions

S = −
(
∂F

∂T

)
V

, and S = −
(
∂G

∂T

)
p

,

we can write down

U = F + TS = F − T

(
∂F

∂T

)
V

= −T 2

(
∂(F/T )

∂T

)
V

, (16.25)

and

H = G+ TS = G− T

(
∂G

∂T

)
p

= −T 2

(
∂(G/T )

∂T

)
p

. (16.26)

These equations are known as the Gibbs–Helmholtz equations and
are useful in chemical thermodynamics.

16.5 Availability

We want to try now to work out how to find the equilibrium properties of
a system when it is placed in contact with its surroundings. In general,
a system is able to exchange heat with its surroundings and also to
do work on its surroundings. Let us now consider a system in contact
with surroundings which are at temperature T0 and pressure p0 (see
Fig. 16.1). Let us consider what happens when we transfer energy

T p

Fig. 16.1 A system in contact with sur-
roundings at temperature T0 and pres-
sure p0.

dU and volume dV from the surroundings, to the system. The internal
energy of the surroundings changes by dU0, where

dU0 = −dU = T0 dS0 − p0(−dV ), (16.27)

where the minus signs express the fact that the energy and volume in
the surroundings are decreasing. We can rearrange this expression to
give the change of entropy in the surroundings as

dS0 = −
[
dU + p0dV

T0

]
. (16.28)

If the entropy of the system changes by dS, then the total change of
entropy dStot is

dStot = dS0 + dS, (16.29)

and the second law of thermodynamics implies that dStot ≥ 0. Using
eqns 16.28 and 16.29, we have that

T0dStot = − [dU + p0dV − T0dS] ≥ 0. (16.30)
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Hence
dU + p0dV − T0dS ≤ 0. (16.31)

We now define the availability A by

A = U + p0V − T0S, (16.32)

and because p0 and T0 are constants, then

dA = dU + p0dV − T0dS. (16.33)

Hence eqn 16.31 becomes
dA ≤ 0. (16.34)

We have derived this inequality from the second law of thermodynamics.
It demonstrates that changes in A are always negative. As a system
settles down to equilibrium, any changes will always force A downwards.
Once the system has reached equilibrium, A will be constant at this
minimum level. Hence equilibrium can only be achieved by minimizing
A. However, the type of equilibrium achieved depends on the nature of
the constraints, as we will now show.

• System with fixed entropy and volume:
In this case dS = dV = 0 and hence eqns 16.33 and 16.34 imply

dA = dU ≤ 0, (16.35)

so we must minimize U to find the equilibrium state of this system.

• System with fixed entropy and pressure:
In this case dS = dp = 0, and hence eqn 16.33 implies

dA = dU + p0 dV. (16.36)

The change in enthalpy is dH = dU+pdV +V dp, and since p = p0

and dp = 0, we have that

dH = dU + p0 dV, (16.37)

and hence
dA = dH ≤ 0, (16.38)

so we must minimize H to find the equilibrium state.

• System thermally isolated and with fixed volume:
Since no heat can enter the system and the system can do no
work on its surroundings, dU = 0. Hence eqn 16.33 becomes
dA = −T0 dS and hence dA ≤ 0 implies that dS ≥ 0. Thus we
must maximise S to find the equilibrium state.

• System with fixed volume at constant temperature:
dA = dU −T0dS ≤ 0, but because dT = 0 and dF = dU −T0dS−
SdT = dU − T0dS, we have that

dA = dF ≤ 0, (16.39)

so we must minimize F to find the equilibrium state.
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• System at constant pressure and temperature:
Eqn 16.33 gives dA = dU − T0dS + p0dV ≤ 0. We can write dG
(from the definition G = H − TS) as

dG = dU + p0 dV + V dp− T0 dS − S dT = dU − T0dS + p0dV,
(16.40)

since dp = dT = 0, and hence

dA = dG ≤ 0, (16.41)

so we must minimize G to find the equilibrium state.

Example 16.2

Chemistry laboratories are usually at constant pressure. If a chemical
reaction is carried out at constant pressure, then by eqn 16.10 we have
that

∆H = ∆Q, (16.42)

and hence ∆H is the reversible heat added to the system, i.e. the heat
absorbed by the reaction. (Recall that our convention is that ∆Q is the
heat entering the system, and in this case the system is the reacting
chemicals.)

• If ∆H < 0, the reaction is called exothermic and heat will be
emitted.

• If ∆H > 0, the reaction is called endothermic and heat will be
absorbed.

However, this does not tell you whether or not a chemical reaction will
actually proceed. Usually reactions occur8 at constant T and p, so if

8The temperature may rise during a re-
action, but if the final products cool
to the original temperature, one only
needs to think about the beginning and
end points, since G is a function of
state.

the system is trying to minimize its availability, then we need to con-
sider ∆G. The second law of thermodynamics (via eqn 16.34 and hence
eqn 16.41) therefore implies that a chemical system will minimize G, so
that if ∆G < 0, the reaction may spontaneously occur.9

9However, one may also need to con-
sider the kinetics of the reaction. Of-
ten a reaction has to pass via a
metastable intermediate state which
may have a higher Gibbs function, so
the system cannot spontaneously lower
its Gibbs function without having it
slightly raised first. This gives a reac-
tion an activation energy which must
be added before the reaction can pro-
ceed, even though the completion of the
reaction gives you all that energy back
and more.

16.6 Maxwell’s relations

In this section, we are going to derive four equations which are known as
Maxwell’s relations. These equations are very useful in solving problems
in thermodynamics, since each one relates a partial differential between
quantities that can be hard to measure to a partial differential between
quantities that can be much easier to measure. The derivation proceeds
along the following lines: a state functon f is a function of variables x
and y. A change in f can be written as

df =

(
∂f

∂x

)
y

dx+

(
∂f

∂y

)
x

dy. (16.43)
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Because df is an exact differential (see Appendix C.7), we have that(
∂2f

∂x∂y

)
=

(
∂2f

∂y∂x

)
. (16.44)

Hence writing

Fx =

(
∂f

∂x

)
y

and Fy =

(
∂f

∂y

)
x

, (16.45)

we have that (
∂Fy

∂x

)
=

(
∂Fx

∂y

)
. (16.46)

We can now apply this idea to each of the state variables U , H, F
and G in turn.

Example 16.3

The Maxwell relation based on G can be derived as follows. We write
down an expression for dG:

dG = −SdT + V dp. (16.47)

We can also write

dG =

(
∂G

∂T

)
p

dT +

(
∂G

∂p

)
T

dp, (16.48)

and hence we can write S = − (∂G
∂T

)
p

and V =
(

∂G
∂p

)
T
. Because dG is

an exact differential, we have that(
∂2G

∂T∂P

)
=

(
∂2G

∂p∂T

)
, (16.49)

and hence we have the following Maxwell relation:

−
(
∂S

∂p

)
T

=

(
∂V

∂T

)
p

(16.50)

This reasoning can be applied to each of the thermodynamic potentials
U , H, F and G to yield the four Maxwell relations:

Maxwell’s relations:(
∂T

∂V

)
S

= −
(
∂p

∂S

)
V

(16.51)(
∂T

∂p

)
S

=

(
∂V

∂S

)
p

(16.52)(
∂S

∂V

)
T

=

(
∂p

∂T

)
V

(16.53)(
∂S

∂p

)
T

= −
(
∂V

∂T

)
p

. (16.54)
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These equations should not be memorized;10 rather it is better to10If you do, however, insist on mem-
orizing them, then lots of mnemonics
exist. One useful way of remembering
them is as follows. Each Maxwell rela-
tion is of the form„

∂∗
∂‡

«
	

= ±
„
∂†
∂�

«
‡

where the pairs of symbols which are
similar to each other (� and ∗, or †
and ‡) signify conjugate variables,
so that their product has the dimen-
sions of energy: e.g. T and S, and p
and V . Thus you can notice that, for
each Maxwell relation, terms diagonally
opposite each other are conjugate vari-
ables. The variable held constant is
conjugate to the one on the top of the
partial differential. Another point is
that you always have a minus sign when
V and T are on the same side of equa-
tion.

remember how to derive them!
A more sophisticated way of deriving these equations based on Jaco-

bians (which may not to be everybody’s taste) is outlined in the box
below. It has the attractive virtue of producing all four Maxwell rela-
tions in one go by directly relating the work done and heat absorbed in
a cyclic process, but the unfortunate vice of requiring easy familiarity
with the use of Jacobian transformations.

An alternative derivation of Maxwell’s relations:
The following derivation is more elegant, but requires a knowledge of
Jacobians (see Appendix C.9): Consider a cyclic process which can be
described in both the T–S and p–V planes. The internal energy U is
a state function and therefore doesn’t change in a cycle, so

∮
pdV =∮

T dS, and hence we have∫ ∫
dpdV =

∫ ∫
dT dS, (16.55)

so that the work done (the area enclosed by the cycle in the p–V plane)
is equal to the heat absorbed (the area enclosed by the cycle in the
T–S plane). However, one can also write∫ ∫

dpdV
∂(T, S)

∂(p, V )
=

∫ ∫
dT dS, (16.56)

where ∂(T, S)/∂(p, V ) is the Jacobian of the transformation from the
p–V plane to the T–S plane, and so this implies that

∂(T, S)
∂(p, V )

= 1. (16.57)

This equation is sufficient to generate all four Maxwell relations via

∂(T, S)

∂(x, y)
=
∂(p, V )

∂(x, y)
, (16.58)

where (x, y) are taken as (i) (T, p), (ii) (T, V ), (iii) (p, S) and (iv)
(S, V ), and using the identities in Appendix C.9.

We will now give several examples of how Maxwell’s relations can be
used to solve problems in thermodynamics.
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Example 16.4

Find expressions for (∂CV /∂p)T and (∂CV /∂V )T in terms of p, V and T .
Solution:

By the defintions of CV and Cp we have that

CV =

(
∂Q

∂T

)
V

= T

(
∂S

∂T

)
V

(16.59)

and

Cp =

(
∂Q

∂T

)
p

= T

(
∂S

∂T

)
p

. (16.60)

Now (
∂Cp

∂p

)
T

=

(
∂

∂p
T

(
∂S

∂T

)
p

)
T

= T

(
∂

∂p

(
∂S

∂T

)
p

)
T

= T

(
∂

∂T

(
∂S

∂p

)
T

)
p

(16.61)

and using a Maxwell relation(
∂Cp

∂p

)
T

= −T
(
∂

∂T

(
∂V

∂T

)
p

)
p

= −T
(
∂2V

∂T 2

)
p

. (16.62)

Similarly (
∂CV

∂V

)
T

= T

(
∂2p

∂T 2

)
V

. (16.63)

Both the expressions in eqns 16.62 and 16.63 are zero for a perfect gas.

Before proceeding further with the examples, we will pause to list the
tools which you have at your disposal to solve these sorts of problems.
Any given problem may not require you to use all of these, but you may
have to use more than one of these ‘techniques’.

(1) Write down a function of state in terms of particular vari-
ables.
If f is a function of x and y, so that f = f(x, y), you then have
immediately that

df =

(
∂f

∂x

)
y

dx+

(
∂f

∂y

)
x

dy. (16.64)

(2) Use Maxwell’s relations to transform the partial differen-
tial you start with into a more convenient one.
Use the Maxwell relations in eqns 16.51–16.54.
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(3) Invert a Maxwell relation using the reciprocal theorem.
The reciprocal theorem states that(

∂x

∂z

)
y

=
1(

∂z
∂x

)
y

, (16.65)

and this is proved in Appendix C.6 (see eqn C.41).

(4) Combine partial differentials using the reciprocity theo-
rem.
The reciprocity theorem states that(

∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1, (16.66)

which is proved in Appendix C.6 (see eqn C.42). This can be
combined with the reciprocal theorem to write that(

∂x

∂y

)
z

= −
(
∂x

∂z

)
y

(
∂z

∂y

)
x

, (16.67)

which is a very useful identity.

(5) Identify a heat capacity.
Some of the partial differentials which appear in Maxwell’s rela-
tions relate to real, measurable properties. As we have seen in
Example 16.4, both

(
∂S
∂T

)
V

and
(

∂S
∂T

)
p

can be related to heat ca-
pacities:

CV

T
=

(
∂S

∂T

)
V

and
Cp

T
=

(
∂S

∂T

)
p

(16.68)

(6) Identify a “generalized susceptibility”.
A generalized susceptibility quantifies how much a particular
variable changes when a generalized force is applied. A general-
ized force is a variable such as T or p which is a differential of
the internal energy with respect to some other parameter.11 An11Recall that T = (∂U/∂S)V and

p = −(∂U/∂V )S . example of a generalized susceptibility is
(

∂V
∂T

)
x

which, you will
recall, answers the question “keeping x constant, how much does
the volume change when you change the temperature?”. It is re-
lated to the thermal expansivity at constant x, where x is pressure
or entropy. Thus the isobaric expansivity βp is defined as

βp =
1

V

(
∂V

∂T

)
p

, (16.69)

while the adiabatic expansivity βS is defined as

βS =
1

V

(
∂V

∂T

)
S

. (16.70)

Expansivities measure the fractional change in volume with a change
in temperature.
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Another useful generalized susceptibility is the compressibility.
This quantifies how large a fractional volume change you achieve
when you apply pressure. The isothermal compressibility κT

is defined as

κT = − 1

V

(
∂V

∂p

)
T

, (16.71)

while the adiabatic compressibility κS is defined as

κS = − 1

V

(
∂V

∂p

)
S

. (16.72)

Both quantities have a minus sign so that the compressibilities are
positive (this is because things get smaller when you press them,
so fractional volume changes are negative when positive pressure is
applied). None of these expansivities or compressibilities appears
directly in a Maxwell relation, but each can easily be related to
those that do using the reciprocal and reciprocity theorems.

Example 16.5

By considering S = S(T, V ), show that Cp − CV = V Tβ2
p/κT .

Solution:

Considering S = S(T, V ) allows us to write down immediately that

dS =

(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV. (16.73)

Differentiating this equation with respect to T at constant p yields(
∂S

∂T

)
p

=

(
∂S

∂T

)
V

+

(
∂S

∂V

)
T

(
∂V

∂T

)
p

. (16.74)

Now the first two terms can be replaced by Cp/T and CV /T respectively,
while use of a Maxwell relation and a partial differential identity (see
eqn 16.67) yields(

∂S

∂V

)
T

=

(
∂p

∂T

)
V

= −
(
∂p

∂V

)
T

(
∂V

∂T

)
p

(16.75)

and hence using eqns 16.69 and 16.71 we have that

Cp − CV =
V Tβ2

p

κT
. (16.76)

The next example shows how to calculate the entropy of an ideal gas.
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Example 16.6

Find the entropy of 1 mole of ideal gas.
Solution:

For one mole of ideal gas pV = RT . Consider the entropy S as a function
of volume and temperature, i.e.

S = S(T, V ), (16.77)

so that

dS =

(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV (16.78)

=
CV

T
dT +

(
∂p

∂T

)
V

dV, (16.79)

using eqn 16.53 and eqn 16.68. The ideal gas law for 1 mole, p = RT/V ,
implies that (

∂p

∂T

)
V

= R/V, (16.80)

and hence, if we integrate eqn 16.79,

S =

∫
CV

T
dT +

∫
RdV

V
. (16.81)

If CV is not a function of temperature (which is true for an ideal gas)
simple integration yields

S = CV lnT +R lnV + constant. (16.82)

The entropy of an ideal gas increases with increasing temperature and
increasing volume.

The final example in this chapter shows how to prove that the ratio
of the isothermal and adiabatic compressibilities, κT /κS , is equal to γ.

Example 16.7

Find the ratio of the isothermal and adiabatic compressibilities.
Solution:

This follows using straightforward manipulations of partial differentials.
To begin with, we write

κT

κS
=

1

V

(
∂V

∂p

)
T

1

V

(
∂V

∂p

)
S

, (16.83)
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which follows from the definition of κT and κS (eqns 16.71 and 16.72).
Then we proceed as follows:

κT

κS
=

−
(
∂V

∂T

)
p

(
∂T

∂p

)
V

−
(
∂V

∂S

)
p

(
∂S

∂p

)
V

reciprocity theorem

=

(
∂V

∂T

)
p

(
∂S

∂V

)
p(

∂p

∂T

)
V

(
∂S

∂p

)
V

Maxwell’s relations

=

(
∂S

∂T

)
p(

∂S

∂T

)
V

reciprocity theorem

=
Cp

CV

= γ. (16.84)

We can show that this equation is correct for the case of an ideal gas as
follows. Assuming the ideal gas equation pV ∝ T , we have for constant
temperature that

dp

p
= −dV

V
, (16.85)

and hence

κT =
1

p
. (16.86)

For an adiabatic change p ∝ V −γ and hence

dp

p
= −γ dV

V
, (16.87)

and hence

κS =
1

γp
. (16.88)

This agrees with eqn 16.84 above. We note that because κT is larger
than κS (because γ > 1), the isotherms always have a smaller gradient
than the adiabats on a p–V plot (see Fig. 12.1).
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Chapter summary

• We define the following thermodynamic potentials:

U, H = U + pV, F = U − TS, G = H − TS,

which are then related by the following differentials:

dU = TdS − pdV

dH = TdS + V dp

dF = −SdT − pdV

dG = −SdT + V dp

• The availability A is given by A = U + p0V − T0S, and for any
spontaneous change we have that dA ≤ 0. This means that a
system in contact with a reservoir (temperature T0, pressure p0)
will minimize A which means

– minimizing U when S and V are fixed;

– minimizing H when S and p are fixed;

– minimizing F when T and V are fixed;

– minimizing G when T and p are fixed.

• Four Maxwell relations can be derived from the boxed equations
above, and used to solve many problems in thermodynamics.

Exercises

(16.1) (a) Using the first law dU = TdS − pdV to pro-
vide a reminder, write down the definitions
of the four thermodynamic potentials U , H,
F , G (in terms of U , S, T , p, V ), and
give dU, dH, dF, dG in terms of T, S, p, V and
their derivatives.

(b) Derive all the Maxwell relations.

(16.2) (a) Derive the following general relations

(i)

„
∂T

∂V

«
U

= − 1

CV

»
T

„
∂p

∂T

«
V

− p

–

(ii)

„
∂T

∂V

«
S

= − 1

CV
T

„
∂p

∂T

«
V

(iii)

„
∂T

∂p

«
H

=
1

Cp

"
T

„
∂V

∂T

«
p

− V

#

In each case the quantity on the left hand side
is the appropriate thing to consider for a par-
ticular type of expansion. State what type of
expansion each refers to.

(b) Using these relations, verify that for an ideal
gas (∂T/∂V )U = 0 and (∂T/∂p)H = 0, and
that (∂T/∂V )S leads to the familiar relation
pV γ = constant along an isentrope.

(16.3) Use the first law of thermodynamics to show that„
∂U

∂V

«
T

=
Cp − CV

V βp
− p, (16.89)

where βp is the coefficient of volume expansivity
and the other symbols have their usual meanings.

(16.4) (a) The natural variables for U are S and V . This
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means that if you know S and V , you can find
U(S, V ). Show that this also gives you simple ex-
pressions for T and p.
(b) Suppose instead that you know V , T and the
function U(T, V ) (i.e. you have expressed U in
terms of variables which are not all the natural vari-
ables of U). Show that this leads to a (much more
complicated) expression for p, namely

p

T
=

Z „
∂U

∂V

«
T

dT

T 2
+ f(V ), (16.90)

where f(V ) is some (unknown) function of V .

(16.5) Use thermodynamic arguments to obtain the gen-
eral result that, for any gas at temperature T , the

pressure is given by

P = T

„
∂P

∂T

«
V

−
„

∂U

∂V

«
T

, (16.91)

where U is the total energy of the gas.

(16.6) Show that another expression for the entropy per
mole of an ideal gas is

S = Cp ln T − R ln p + constant. (16.92)

(16.7) Show that the entropy of an ideal gas can be ex-
pressed as

S = CV ln

„
p

ργ

«
+ constant. (16.93)
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Hermann von Helmholtz (1821–1894)

Since his family couldn’t afford to give him an
academic education in physics, the seventeen-
year old Helmholtz found himself at a Berlin
medical school getting a free four-year medical
education, the catch being that he then had
to serve as a surgeon in the Prussian army.

Fig. 16.2 H. von
Helmholtz

It was during his time in the
army that he submitted a sci-
entific paper ‘On the conserva-
tion of force’ (his use of the
word ‘force’ is more akin to what
we call ‘energy’, the two con-
cepts being poorly differentiated
at the time). It was a blow
against the notion of a ‘vital
force’, an indwelling ‘life source’
which was widely proposed by
physiologists to explain biologi-
cal systems. Helmholtz intuited

that such a vital force was mere metaphysical specu-
lation and instead all physical and chemical processes
involved the exchange of energy from one form to an-
other, and that ‘all organic processes are reducible to
physics’. Thus he began a remarkable career based
on his remarkable physical insight into physiology.

In 1849 he was appointed professor of physiology
at Königsberg, and six years later took up a profes-
sorship in anatomy in Bonn, moving to Heidelberg
three years later. During this period he pioneered the
application of physical and mathematical techniques
to physiology: he invented the opthalmoscope (for
looking into the eye), the opthalmometer (for mea-
suring the curvature and refractive errors in the eye)
and worked on the problem of three-colour vision; he
did pioneering research in physiological acoustics, ex-
plaining the operation of the inner ear; he also mea-
sured the speed of nerve impulses in a frog.

He even found time to make important contribu-
tions in understanding vortices in fluids. In 1871,
he was appointed to a chair in Berlin, but this time
it was in physics; here he pursued work in elec-
trodynamics, non-Euclidean geometry and physical
chemistry. Helmholtz mentored and influenced many
highly talented students in Berlin, including Planck,
Wien and Hertz.

Helmholtz’s scientific life was characterized by a
search for unity and clarity. He once said that ‘who-
ever in the pursuit of science, seeks after immediate
practical utility may rest assured that he seeks in
vain’, but there can be only few scientists in history
whose work has had the result of greater practical
utility.

William Thomson [Lord Kelvin] (1824–1907)

William Thomson was something of a prodigy:

Fig. 16.3 William
Thomson

born in Belfast, the son of a
mathematician, he studied in
Glasgow University and then
moved to Peterhouse, Cam-
bridge. By the time he had
graduated, he had written 12 re-
search papers, the first of the
661 of his career. He became
Professor of Natural Philosophy
in the University of Glasgow at
22, a Fellow of the Royal Society
at 27, was knighted at 42, and
in 1892 became Baron Kelvin of
Largs (taking his new title from

the River Kelvin in Glasgow), an appointment which

occurred during his presidency of the Royal Society.
When he died, he was buried next to Isaac Newton
in Westminster Abbey.

Thomson made pioneering contributions in fun-
damental electromagnetism and fluid dynamics, but
also involved himself in large engineering projects.
After working out how to solve the problem of send-
ing signals down very long cables, he was involved in
laying the first transatlantic telegraph cables in 1866.
In 1893, he headed an international commission to
plan the design of the Niagara Falls power station
and was convinced by Nikola Tesla, somewhat against
his better judgement, to use three-phase AC power
rather than his preferred DC power transmission. On
this point he was unable to accurately forecast the
future (which was of course AC, not DC); in similar
vein, he pronounced heavier-than-air flying machines
‘impossible’, thought that radio had ‘no future’ and
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that war, as a ‘relic of barbarism’ would ‘become as
obsolete as duelling’. If only.

It is his progress in thermodynamics that interests
us here. Inspired by the meticulous thermometric
measurements of Henri Regnault which he had ob-
served during a postgraduate stay in Paris, Thom-
son proposed an absolute temperature scale in 1848.
Thomson was also profoundly influenced by Fourier’s
theory of heat (which he had read in his teens) and
Carnot’s work via the paper of Clapeyron. These had
assumed a caloric theory of heat, which Thomson had
initially adopted, but his encounter with Joule at the
1847 British Association meeting in Oxford had sown
some seeds of doubt in caloric. After much thought,
Thomson groped his way towards his ‘dynamical the-
ory of heat’ which he published in 1851, a synthe-
sis of Joule and Carnot, containing a description of
the degradation of energy and speculations about the
heat death of the Universe. He just missed a full
articulation of the concept of entropy, but grasped
the essential details of the first and second laws of

thermodynamics. His subsequent fruitful collabora-
tion with Joule led to the Joule-Thomson (or Joule-
Kelvin) effect.

Thomson also discovered many key results concern-
ing thermoelectricity. His most controversial result
was however his estimate of the age of the Earth,
based on Fourier’s thermal diffusion equation. He
concluded that if the Earth had originally been a
red-hot globe, and had cooled to his present temper-
ature, its age must be about 108 years. This pleased
nobody: the Earth was too old for those who believed
in a six-thousand year old planet but too young for
Darwin’s evolution to produce the present biological
diversity. Thomson could not have known that ra-
dioactivity (undiscovered until the very end of the
nineteenth century) acts as an additional heat source
in the Earth, allowing the Earth to be nearly two
orders of magnitude older than he estimated. His
lasting legacy however has been his new temperature
scale, so that his ‘absolute zero’, the lowest possible
temperature obtainable, is zero degrees Kelvin.

Josiah Willard Gibbs (1839–1903)

Willard Gibbs was born in New Haven and
died in New Haven, living his entire life

Fig. 16.4 J. W.
Gibbs

(a brief postdoctoral period in
France and Germany excepted)
at Yale, where he remained un-
married. His father was also
called Josiah Willard Gibbs and
had also been a professor at
Yale, though in Sacred Litera-
ture rather than in mathemat-
ical physics. Willard Gibbs’
life was quiet and secluded, well
away from the centres of intense
scientific activity at the time,
which were all in Europe. This
gave this gentle and scholarly
man the opportunity to perform
clear-thinking, profound and in-

dependent work in chemical thermodynamics, work
which turned out to be completely revolutionary,
though this took time to be appreciated. Willard
Gibbs’ key papers were published in a series of in-
stallments in the Transactions of the Conneticut

Academy of Sciences, which was hardly required
reading at the time; moreover his mathematical style
did not make his papers easily accessible. Maxwell
was one of the few who were very impressed.

Gibbs established the key principles of chemical
thermodynamics, defined the free energy and chem-
ical potential, completely described phase equilibria
with more than one component and championed a
geometric view of thermodynamics. Not only did he
substantially formulate thermodynamics and statis-
tical mechanics in the form we know it today, but
he also championed the use of vector calculus, in its
modern form, to describe electromagnetism (in the
face of spirited opposition from various prominent
Europeans who maintained that the only way to de-
scribe electromagnetism was using quaternions).

Gibbs didn’t interact a great deal with scientific
colleagues in other institutions; he was privately se-
cure in himself and in his ideas. One contemporary
wrote of him: ‘Unassuming in manner, genial and
kindly in his intercourse with his fellow-men, never
showing impatience or irritation, devoid of personal
ambition of the baser sort or of the slightest desire to
exalt himself, he went far toward realising the ideal
of the unselfish, Christian gentleman’.
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In this book, we have been illustrating the development of thermody-
namics using the ideal gas as our chief example. We have written the
first law of thermodynamics as

dU = T dS − pdV, (17.1)

and everything has followed from this. However, in this chapter we want
to show that thermodynamics can be applied to other types of systems.
In general we will write the work d̄W as

d̄W = X dx, (17.2)

where X is some (intensive1) generalized force and x is some (extensive)1Recall from Section 11.1.2 that inten-
sive variables are independent of the
size of the system whereas extensive
variables are proportional to the size of
the system.

generalized displacement. Examples of these are given in Table 17.1. In
this chapter we will examine only three of these examples in detail: the
elastic rod, the surface tension in a liquid and the assembly of magnetic
moments in a paramagnet.

X x d̄W

fluid −p V −pdV
elastic rod f L f dL
liquid film γ A γ dA
dielectric E pE E · dpE

magnetic B m B · dm

Table 17.1 Generalized force X and generalized displacement x for various different
systems. In this table, p=pressure, V =volume, f =tension, L= length, γ=surface
tension, A=area, E =electric field, pE =electric dipole moment, B =magnetic field,
m=magnetic dipole moment.

17.1 Elastic rod

Consider a rod with cross-sectional area A and length L, held at tem-
perature T . The rod is made from any elastic material (such as a metal
or rubber) and is placed under an infinitesimal tension df , which leads
to the rod extending by an infinitesimal length dL (see Fig. 17.1). We

f

f

L

L

Fig. 17.1 An elastic material of length
L and cross-sectional area A is ex-
tended a length dL by a tension df .
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define the isothermal Young’s modulus ET as the ratio of stress
σ = df/A to strain ε = dL/L, so that

ET =
σ

ε
=
L

A

(
∂f

∂L

)
T

. (17.3)

The Young’s modulus ET is always a positive quantity.
There is another useful quantity that characterizes an elastic rod. We

can also define the linear expansivity at constant tension, αf , by

αf =
1

L

(
∂L

∂T

)
f

, (17.4)

which is the fractional change in length with temperature. This quantity
is positive in most elastic systems (though not rubber). If you hang a
weight onto the end of a metal wire (thus keeping the tension f in the
wire constant) and heat the wire, it will extend. This implies that αf > 0
for a the metal wire. However, if you hang a weight on a piece of rubber
and heat it, you will find that the rubber will often contract, which
implies that αf < 0 for rubber.

Example 17.1

How does the tension of a wire held at constant length change with
temperature?
Solution: Our definitions of ET and αf allow us to calculate this. Using
eqn C.42, we have that(

∂f

∂T

)
L

= −
(
∂f

∂L

)
T

(
∂L

∂T

)
f

= −AETαf , (17.5)

where the last step is obtained using eqns 17.3 and 17.4.

We are now in a position to do some thermodynamics on our elastic
system. We will rewrite the first law of thermodynamics for this case as

dU = T dS + f dL. (17.6)

We can also obtain other thermodynamic potentials, such as the Helmholtz
function F = U − TS, so that dF = dU − T dS − S dT , and hence

dF = −S dT + f dL. (17.7)

Equation 17.7 implies that the entropy S is

S = −
(
∂F

∂T

)
L

, (17.8)

and similarly the tension f is

f =

(
∂F

∂L

)
T

. (17.9)
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A Maxwell-relation–type-step2 then leads to an expression for the2As in the case of a gas, the Maxwell
relation allows us to relate some differ-
ential of entropy (which is hard to mea-
sure experimentally, but is telling us
something fundamental about the sys-
tem) to a differential which we can mea-
sure in an experiment, here the change
in tension with temperature of a rod
held at constant length.

isothermal change in entropy on extension as(
∂S

∂L

)
T

= −
(
∂f

∂T

)
L

. (17.10)

The right-hand side of this equation was worked out in eqn 17.5, so that(
∂S

∂L

)
T

= AETαf , (17.11)

where A is the area (presumed not to change), and so stretching the rod
(increasing L) results in an increase in entropy if αf > 0. This is like
the case of an ideal gas for which(

∂S

∂V

)
T

=

(
∂p

∂T

)
V

> 0, (17.12)

so that expanding the gas (increasing V ) results in an increase in entropy.
If the entropy of the system goes up as it is expanded isothermally, then
heat must be absorbed. For the case of the elastic rod (assuming it is
not made of rubber), extending it isothermally (and reversibly) by ∆L
would then lead to an absorption of heat ∆Q given by

∆Q = T∆S = AETTαf∆L. (17.13)

Why does stretching a wire increase its entropy? Let us consider the

Fig. 17.2 Rubber consists of long-
chain molecules. (a) With no force
applied, the rubber molecule is quite
coiled up and the average end-to-end
distance is short, and the entropy is
large. This picture has been drawn
by taking each segment of the chain
to point randomly. (b) With a force
applied (about a vertical axis in this
diagram), the molecule becomes more
aligned with the direction of the ap-
plied force, and the end-to-end distance
is large, reducing the entropy (see Ex-
ercise 17.3).

case of a metallic wire. This contains many small crystallites which
have low entropy. The action of stretching the wire distorts those small
crystallites, and that increases their entropy and so heat is absorbed.3

3For example, the crystallites might
distort from cubic to tetragonal sym-
metry, thus lowering the entropy. In
addition, the stretching of the wire may
increase the volume per atom in the
wire and this also increases the entropy.

However, for rubber αf < 0, and hence an isothermal extension means
that heat is emitted. The action of stretching a piece of rubber at con-
stant temperature results in the alignment of the long rubber molecules,
reducing their entropy (see Fig. 17.2) and causing heat to be released.

Example 17.2

The internal energy U for an ideal gas does not change when it is ex-
panded isothermally. How does U change for an elastic rod when it is
extended isothermally?
Solution: The change in internal energy on isothermal extension can be
worked out from eqn 17.6 and eqn 17.11 by writing(

∂U

∂L

)
T

= T

(
∂S

∂L

)
T

+ f = f +ATETαf . (17.14)

This is the sum of a positive term expressing the energy going into the
rod by work and a term expressing the heat flow into the rod due to an
isothermal change of length. (For an ideal gas, a similar analysis applies,
but the work done by the gas and the heat that flows into it balance
perfectly, so that U does not change.)
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17.2 Surface tension

We now consider the case of a liquid surface with surface area A. Here
the expression for the work is given by

d̄W = γ dA, (17.15)

where γ is the surface tension.

r

p

Fig. 17.3 A spherical droplet of liq-
uid of radius r is suspended from a thin
pipe connected to a piston which main-
tains the pressure p of the liquid.

Consider the arrangement shown in Fig. 17.3. If the piston moves
down, work d̄W = F dx = +pdV is done on the liquid (which is assumed
to be incompressible). The droplet radius will therefore increase by an
amount dr such that dV = 4πr2 dr, and the surface area of the droplet
will change by an amount

dA = 4π(r + dr)2 − 4πr2 ≈ 8πr dr, (17.16)

so that
d̄W = γ dA = 8πγr dr. (17.17)

Equating this to d̄W = F dx = +pdV = p · 4πr2 dr yields

p =
2γ

r
. (17.18)

The pressure p in this expression is, of course, really the pressure dif-
ference between the pressure in the liquid and the atmospheric pressure
against which the surface of the drop pushes.

Example 17.3

What is the pressure of gas inside a spherical bubble of radius r?
Solution: The bubble (see Fig. 17.4) has two surfaces, and so the pressure
pbubble of gas inside the bubble, minus the pressure p0 outside the bubble,
has to support two lots of surface tension. Hence, assuming the liquid
wall of the bubble is thin (so that the radii of inner and outer walls are
both ≈ r),

r
p

p

Fig. 17.4 A bubble of radius r has an
inner and an outer surface.

pbubble − p0 =
4γ

r
. (17.19)

Notice that surface tension has a microscopic explanation. A molecule
in the bulk of the liquid is attracted to its nearest neighbours by inter-
molecular forces (which is what holds a liquid together), and these forces
are applied to a given molecule by its neighbours from all directions. One
can think of these forces almost as weak chemical bonds. The molecules
at the surface are only attracted by their neighbouring molecules in one
direction, back towards the bulk of the liquid, but there is no corre-
sponding attractive force out into the ‘wild blue yonder’. The surface
has a higher energy than the bulk because bonds have to be broken in
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order to make a surface, and γ tells you how much energy you need
to form unit area of surface (which gives an estimate of the size of the
intermolecular forces).

We can write the first law of thermodynamics for our surface of area
A as

dU = T dS + γ dA (17.20)

and similarly changes in the Helmholtz function can be written

dF = −S dT + γ dA, (17.21)

which yields the Maxwell relation(
∂S

∂A

)
T

= −
(
∂γ

∂T

)
A

. (17.22)

Equation 17.20 implies that(
∂U

∂A

)
T

= T

(
∂S

∂A

)
T

+ γ, (17.23)

and hence using eqn 17.22, we have that(
∂U

∂A

)
T

= γ − T

(
∂γ

∂T

)
A

, (17.24)

the sum of a positive term expressing the energy going into a surface
by work and a negative term expressing the heat flow into the surface
due to an isothermal change of area. Usually, the surface tension has a
temperature dependence as shown in Fig. 17.5, and hence (∂γ/∂T )A < 0,
so in fact both terms contribute a positive amount.

Heat ∆Q is given by

∆Q = T

(
∂S

∂A

)
T

∆A = −T∆A

(
∂γ

∂T

)
A

> 0, (17.25)

and this is absorbed on isothermally stretching a surface to increase its
area by ∆A. This quantity is positive and so heat really is absorbed.
Since

(
∂S
∂A

)
T

is positive, this shows that the surface has an additional
entropy compared to the bulk, in addition to costing extra energy.

T
T

Fig. 17.5 Schematic diagram of the
surface tension γ of a liquid as a func-
tion of temperature. Since γ must van-
ish at the boiling temperature Tb, we
expect that (∂γ/∂T )A < 0.

17.3 Paramagnetism

Consider a system of magnetic moments arranged in a lattice at temper-
ature T . We assume that the magnetic moments cannot interact with
each other. If the application of a magnetic field causes the magnetic
moments to line up, the system is said to exhibit paramagnetism. The
equivalent formulation of the first law of thermodynamics for a param-
agnet is

dU = T dS +B dm, (17.26)

where m is the magnetic moment and B is the magnetic field.4 The

4B is often known as the magnetic
flux density or the magnetic induc-
tion, but following common usage, we
refer to B as the magnetic field; see
Blundell (2001). The magnetic field
H (often called the magnetic field
strength) is related to B and the mag-
netization M by

B = µ0(H +M).
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magnetic moment m = MV , where M is the magnetization and V is
the volume. The magnetic susceptibility χ is given by

χ = limH→0
M

H
. (17.27)

For most paramagnets χ � 1, so that M � H and hence B = µ0(H +
M) ≈ µ0H. This implies that we can write the magnetic susceptibility
χ as

χ ≈ µ0M

B
. (17.28)

Paramagnetic systems obey Curie’s law which states that T

Fig. 17.6 The magnetic susceptibility
for a paramagnet follows Curie’s law
which states that χ ∝ 1/T .

χ ∝ 1

T
, (17.29)

as shown in Fig. 17.6, and hence(
∂χ

∂T

)
B

< 0, (17.30)

a fact that we will use below.

Example 17.4

Show that heat is emitted in an isothermal increase in B (a process
known as isothermal magnetization) but that temperature is reduced
for an adiabatic reduction in B (a process known as adiabatic demag-
netization). This coupling between thermal and

magnetic properties is known as the
magnetocaloric effect.

Solution: For this problem, it is useful to include the magnetic energy
−mB into the Helmholtz function, so we write it as

F = U − TS −mB. (17.31)

This implies that (assuming V is constant)

dF = −S dT −mdB, (17.32)

which yields the Maxwell relation(
∂S

∂B

)
T

=

(
∂m

∂T

)
B

≈ V B

µ0

(
∂χ

∂T

)
B

, (17.33)

which relates the isothermal change of entropy with field at constant
temperature to a differential of the susceptibility χ.

The heat absorbed in an isothermal change of B is

∆Q = T

(
∂S

∂B

)
T

∆B =
TV B

µ0

(
∂χ

∂T

)
B

∆B < 0, (17.34)

and since it is negative it implies that heat is actually emitted. The
change in temperature in an adiabatic change of B is(

∂T

∂B

)
S

= −
(
∂T

∂S

)
B

(
∂S

∂B

)
T

. (17.35)
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If we define CB = T
(

∂S
∂T

)
B

, the heat capacity at constant B, then
substitution of this and eqn 17.33 into eqn 17.35 yields(

∂T

∂B

)
S

= − TV B

µ0CB

(
∂χ

∂T

)
B

. (17.36)

Equation 17.30 implies that
(

∂T
∂B

)
S
> 0, and hence we can cool a ma-

terial using an adiabatc demagnetization, i.e. by reducing the magnetic
field on a sample while keeping it at constant entropy. This can yield
temperatures as low as a few milliKelvin for electronic systems and a
few microKelvin for nuclear systems.

Let us now consider why adiabatic demagnetization results in the cool-
ing of a material from a microscopic point of view. Consider a sample of
a paramagnetic salt, which contains N independent magnetic moments.
Without a magnetic field applied, the magnetic moments will point in
random directions (because we are assuming that they do not interact
with each other) and the system will have no net magnetization. An
applied field B will, however, tend to line up the magnetic moments and
produce a magnetization. Increasing temperature reduces the magne-
tization, and increasing magnetic field increases the magnetization. At
very high temperature, the magnetic moments all point in random direc-
tions and the net magnetization is zero (see Fig. 17.7(a)). The thermal
energy kBT is so large that all states are equally populated, irrespective
of whether or not the state is energetically favourable. If the magnetic
moments have angular momentum quantum number J = 1

2 they can
only point parallel or antiparallel to the magnetic field: hence there are
Ω = 2N ways of arranging up and down magnetic moments. Hence the
magnetic contribution to the entropy, S, is

S = kB ln Ω = NkB ln 2. (17.37)

In the general case of J > 1
2 , Ω = (2J + 1)N and the entropy is

S = NkB ln(2J + 1). (17.38)

At lower temperature, the entropy of the paramagnetic salt must reduce
as only the lowest energy levels are occupied, corresponding to the aver-
age alignment of the magnetic moments with the applied field increasing.
At very low temperature, all the magnetic moments will align with the
magnetic field to minimize their energy (see Fig. 17.7(b)). In this case
there is only one way of arranging the system (with all spins aligned) so
Ω = 1 and S = 0.

B

B

Fig. 17.7 (a) At high temperature, the
spins in a paramagnet are in random
directions because the thermal energy
kBT is much larger than the magnetic
energy mB. This state has high en-
tropy. (b) At low temperature, the
spins become aligned with the field be-
cause the thermal energy kBT is much
smaller than the magnetic energy mB.
This state has low entropy.

The procedure for magnetically cooling a sample is as follows. The
paramagnet is first cooled to a low starting temperature using liquid
helium. The magnetic cooling then proceeds via two steps (see also
Fig. 17.8).

The first step is isothermal magnetization. The energy of a para-
magnet is reduced by alignment of the moments parallel to a magnetic
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Fig. 17.8 The entropy of a paramag-
netic salt as a function of temperature
for several different applied magnetic
fields between zero and some maximum
value which we will call Bb. Magnetic
cooling of a paramagnetic salt from
temperature Ti to Tf is accomplished as
indicated in two steps: first, isothermal
magnetization from a to b by increasing
the magnetic field from 0 to Bb at con-
stant temperature Ti; second, adiabatic
demagnetization from b to c. The S(T )
curves have been calculated assuming
J = 1

2
. A term ∝ T 3 has been added

to these curves to simulate the entropy
of the lattice vibrations. The curve for
B = 0 is actually for small, but non-
zero, B to simulate the effect of a small
residual field.

field. At a given temperature the alignment of the moments may there-
fore be enhanced by increasing the strength of an applied magnetic field.
This is performed isothermally (see Fig. 17.8, step a→ b) by having the
sample thermally connected to a bath of liquid helium (the boiling point
of helium at atmospheric pressure is 4.2 K), or perhaps with the liquid
helium bath at reduced pressure so that the temperature can be less
than 4.2 K. The temperature of the sample does not change and the
helium bath absorbs the heat liberated by the sample as its energy and
entropy decrease. The thermal connection is usually provided by low-
pressure helium gas in the sample chamber which conducts heat between
the sample and the chamber walls, the chamber itself sitting inside the
helium bath. (The gas is often called ‘exchange’ gas because it allows
the sample and the bath to exchange heat.)

The second step is to thermally isolate the sample from the helium
bath (by pumping away the exchange gas). The magnetic field is then
slowly reduced to zero, slowly so that the process is quasistatic and the
entropy is constant. This step is called adiabatic demagnetization
(see Fig. 17.8, step b→ c) and it reduces the temperature of the system.
During the adiabatic demagnetization the entropy of the sample remains
constant; the entropy of the magnetic moments increases (because the
moments randomize as the field is turned down) and this is precisely
balanced by the decrease in the entropy of the phonons (the lattice
vibrations) as the sample cools. Entropy is thus exchanged between the
phonons and the spins.

There is another way of looking at adiabatic demagnetization: Con-
sider the energy levels of magnetic ions in a a paramagnetic salt which is
subjected to an applied magnetic field. The population of magnetic ions



190 Rods, bubbles and magnets

Fig. 17.9 Schematic diagram showing
the energy levels in a magnetic system
(a) initially, (b) following isothermal
magnetization and (c) following adia-
batic demagnetization.

E E E

in each energy level is given by the Boltzmann distribution, as indicated
schematically in Fig. 17.9(a). The rate at which the levels decrease in
population as the energy increases is determined by the temperature T .
When we perform an isothermal magnetization (increasing the applied
magnetic field while keeping the temperature constant) we are increas-
ing the spacing between the energy levels of the paramagnetic salt [see
Fig. 17.9(b)], but the occupation of each level is determined by the same
Boltzmann distribution because the temperature T is constant. Thus the
higher–energy levels become depopulated. This depopulation is the re-
sult of transitions between energy levels caused by interaction with the
surroundings which are keeping the system at constant temperature. In
an adiabatic demagnetization, the external magnetic field is reduced to
its original value, closing–up the energy levels again. However, because
the salt is now thermally isolated, no transitions between energy lev-
els are possible and the populations of each level remain the same [see
Fig. 17.9(c)]. Another way of saying this is that in an adiabatic process
the entropy S = −kB

∑
i Pi lnPi (eqn 14.48) of the system is constant,

and this expression only involves the probability Pi of occupying the ith
level, not the energy. Thus the temperature of the paramagnetic salt fol-
lowing the adiabatic demagnetization is lower because the occupancies
now correspond to a Boltzmann distribution with a lower temperature.

Does adiabatic demagnetization as a method of cooling have a limit?
At first sight it looks like the entropy forB = 0 would be S = NkB ln(2J+
1) for all temperatures T > 0 and therefore would fall to zero only at
absolute zero. Thus adiabatic demagnetization looks like it might work
as a cooling method all the way to absolute zero. However, in real para-
magnetic salts there is always some small residual internal field due to
interactions between the moments which ensures that the entropy falls
prematurely towards zero when the temperature is a little above abso-
lute zero (see Fig. 17.8). The size of this field puts a limit on the lowest
temperature to which the paramagnetic salt can be cooled. In certain
paramagnetic salts which have a very small residual internal field, tem-
peratures of a few milliKelvin can be achieved. The failure of Curie’s
law as we approach T = 0 is just one of the consequences of the third
law of thermodynamics which we will treat in the following chapter.
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Fig. 17.10 Entropy increases when (a)
a gas is expanded isothermally, (b) a
metallic rod is stretched isothermally.
Entropy decreases when (c) rubber is
stretched isothermally and (d) a para-
magnet is magnetized isothermally.

Chapter summary

• The first law for a gas is dU = T dS − pdV . An isothermal ex-
pansion results in S increasing (see Fig. 17.10(a)). An adiabatic
compression results in T increasing.

• The first law for an elastic rod is dU = T dS+f dL. An isothermal
extension of a metal wire results in S increasing (see Fig. 17.10(b))
but for rubber S decreases (see Fig. 17.10(c)). An adiabatic con-
traction of a metal wire results in T increasing (but for rubber T
decreases).

• The first law for a liquid film is dU = T dS + γ dA. An isothermal
stretching results in S increasing. An adiabatic contraction results
in T increasing.

• The first law for a magnetic system is dU = T dS +
B dm. An isothermal magnetization results in S decreasing (see
Fig. 17.10(d)). An adiabatic demagnetization results in T decreas-
ing.
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Exercises

(17.1) For an elastic rod, show that„
∂CL

∂L

«
T

= −T

„
∂2f

∂T 2

«
L

, (17.39)

where CL is the heat capacity at constant length
L.

(17.2) For an elastic rod, show that„
∂T

∂L

«
S

= −TAET αf

CL
. (17.40)

For rubber, explain why this quantity is positive.
Hence explain why, if you take a rubber band
which has been under tension for some time and
suddenly release the tension to zero, the rubber
band appears to have cooled.

(17.3) A rubber molecule can be modelled in one di-
mension as a chain consisting of a series of N =
N++N− links, where N+ links point in the +x di-
rection, while N− links point in the −x direction.
If the length of one link in the chain is a, show
that the length L of the chain is

L = a(N+ − N−). (17.41)

Show further that the number of ways Ω(L) of
arranging the links to achieve a length L can be
written as

Ω(L) =
N !

N+!N−!
, (17.42)

and also that the entropy S = kB ln Ω(L) can be
written approximately as

S = NkB

»
ln 2 − L2

2N2a2

–
(17.43)

when L � Na, and hence that S decreases as L
increases.

(17.4) The entropy S of a surface can be written as a
function of area A and temperature T . Hence show
that

dU = T dS + γ dA (17.44)

= CA dT +

»
γ − T

„
∂γ

∂T

«
A

–
dA.

(17.5) Consider a liquid of density ρ with molar mass M .
Explain why the number of molecules per unit area
in the surface is approximately

(ρNA/M)2/3. (17.45)

Hence, the energy contribution per molecule to the
surface tension γ is approximately

γ/(ρNA/M)2/3. (17.46)

Evaluate this quantity for water (surface tension
at 20◦C is approximately 72 mJ m−2) and express
your answer in eV. Compare your result with the
latent heat per molecule (the molar latent heat of
water is 4.4×104 J mol−1).

(17.6) For a stretched rubber band, it is observed exper-
imentally that the tension f is proportional to the
temperature T if the length L is held constant.
Prove that:
(a) the internal energy U is a function of temper-
ature only;
(b) adiabatic stretching of the band results in an
increase in temperature;
(c) the band will contract if warmed while kept
under constant tension.

(17.7) A soap bubble of radius R1 and surface tension γ
is expanded at constant temperature by forcing in
air by driving in a piston containing volume Vpiston

fully home. Show that the work ∆W needed to in-
crease the bubble’s radius to R2 is

∆W = p2V2 ln
p2

p1
+ 8πγ(R2

2 − R2
1)

+p0(V2 − V1 − Vpiston), (17.47)

where p1 and p2 are the initial and final pressures
in the bubble, p0 is the pressure of the atmosphere
and V1 = 4

3
πR3

1 and V2 = 4
3
πR3

2.
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In Chapter 13, we presented the second law of thermodynamics in var-
ious different forms. In Chapter 14, we related this to the concept of
entropy and showed that the entropy of an isolated system always either
stays the same or increases with time. But what value does the entropy
of a system take, and how can you measure it?

One way of measuring the entropy of a system is to measure its heat
capacity. For example, if measurements of Cp, the heat capacity at
constant pressure, are made as a function of temperature, then using

Cp = T

(
∂S

∂T

)
p

, (18.1)

we can obtain entropy S by integration, so that

S =

∫
Cp

T
dT. (18.2)

This is all very well, but when you integrate, you have to worry about
constants of integration. Writing eqn 18.2 as a definite integral, we have
that the entropy S(T ), measured at temperature T , is

S(T ) = S(T0) +

∫ T

T0

Cp

T
dT, (18.3)

where T0 is some different temperature (see Fig. 18.1). Thus it seems

T

Cp

T T

S T S T

Fig. 18.1 A graphical representation of
eqn 18.3.

that we are only able to learn about changes in entropy, for example
as a system is warmed from T0 to T , and we are not able to obtain an
absolute measurement of entropy itself. The third law of thermodynam-
ics, presented in this chapter, gives us additional information because it
provides a value for the entropy at one particular temperature, namely
absolute zero.

18.1 Different statements of the third law

Walter H. Nernst (1864–1941) (Fig. 18.2) came up with the first state-
ment of the third law of thermodynamics after examining data on chem-
ical thermodynamics and doing experiments with electrochemical cells.
The essential conclusion he came to concerned the change in enthalpy
∆H in a reaction (the heat of the reaction, positive if endothermic,
negative if exothermic; see Section 16.5), and the change in Gibbs’ func-
tion ∆G (which determines in which direction the reaction goes). Since
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G = H − TS, we expect that

∆G = ∆H − T∆S, (18.4)

so that as T → 0, ∆G→ ∆H. Experimental data showed that this was
true, but ∆G and ∆H not only came closer together on cooling, but
they approached each other asymptotically. On the basis of the data,
Nernst also postulated that ∆S → 0 as T → 0. His statement of the
third law, dating from 1906, can be written as

Nernst’s statement of the third law
Near absolute zero, all reactions in a system in internal equilibrium
take place with no change in entropy.

Fig. 18.2 W. Nernst
Max Planck (1858–1947) (Fig. 18.3) added more meat to the bones of
the statement by making a further hypothesis in 1911, namely that:

Planck’s statement of the third law
The entropy of all systems in internal equilibrium is the same at abso-
lute zero, and may be taken to be zero.

Fig. 18.3 M. Planck

Planck actually made his statement only about perfect crystals. How-
ever, it is believed to be true about any system, as long as it is in internal
equilibrium (i.e. that all parts of a system are in equilibrium with each
other). There are a number of systems, such as 4He and 3He, which
are liquids even at very low temperature. Electrons in a metal can be
treated as a gas all the way down to T = 0. The third law applies to all
of these systems. However, note that the systems have to be in inter-

nal equilibrium for the third law to apply. An example of a system not
in equilibrium is a glass, which has frozen-in disorder. For a solid, the
lowest–energy phase is the perfect crystal, but the glass phase is higher
in energy and is unstable. The glass phase will eventually relax back to
the perfect crystalline phase but it may take many years or centuries to
do this.

Planck’s choice of zero for the entropy was further motivated by the
development of statistical mechanics, a subject we will tackle later in
this book. It suffices to say here that the statistical definition of en-
tropy, presented in eqn 14.36 (S = kB ln Ω), implies that zero entropy
is equivalent to Ω = 1. Thus at absolute zero, when a system finds its
ground state, the entropy being equal to zero implies that this ground
state is non-degenerate.

At this point, we can raise a potential objection to the third law in
Planck’s form. Consider a perfect crystal composed of N spinless atoms.
We are told by the third law that its entropy is zero. However, let us
further suppose that each atom has at its centre a nucleus with angular
momentum quantum number I. If no magnetic field is applied to this
system, then we appear to have a contradiction. The degeneracy of the
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nuclear spin is 2I + 1 and if I > 0, this will not be equal to one. How
can we reconcile this with zero entropy since the non-zero nuclear spin
implies that the entropy S of this system should be S = NkB ln(2I+1),
to however low a temperature we cool it?

The answer to this apparent contradiction is as follows: in a real sys-
tem in internal equilibrium, the individual components of the system
must be able to exchange energy with each other, i.e. to interact with
each other. Nuclear spins actually feel a tiny, but non-zero, magnetic
field due to the dipolar fields produced each other, and this lifts the de-
generacy. Another way of looking at this is to say that the interactions
give rise to collective excitations of the nuclear spins. These collec-
tive excitations are nuclear spin waves, and the lowest–energy nuclear
spin wave, corresponding to the longest–wavelength mode, will be non-
degenerate. At sufficiently low temperatures (and this will be extremely
low!) only that long-wavelength mode will be thermally occupied and
the entropy of the nuclear spin system will be zero.

However, this example raises an important point. If we cool a crystal,
we will extract energy from the lattice and its entropy will drop towards
zero. However, the nuclear spins will still retain their entropy until
cooled to a much lower temperature (reflecting the weaker interactions
between nuclear spins compared to the bonds between atoms in the
lattice). If we find a method of cooling the nuclei, there might still be
some residual entropy associated with the individual nucleons. All these
thermodynamic subsystems (the electrons, the nuclear spins, and the
nucleons) are very weakly coupled to each other, but their entropies are
additive. Francis Simon (1893–1956) (Fig. 18.4) in 1937 called these
different subsystems ‘aspects’ and formulated the third law as follows:

Simon’s statement of the third law
The contribution to the entropy of a system by each aspect of the
system which is in internal thermodynamic equilibrium tends to zero
as T → 0.

Fig. 18.4 F. E. Simon
Simon’s statement is convenient because it allows us to focus on a

particular aspect of interest, knowing that its entropy will tend to zero
as T approaches 0, while ignoring the aspects that we don’t care about
and which might not lose their entropy until much closer to T = 0.

18.2 Consequences of the third law

Having provided various statements of the third law, it is time to exam-
ine some of its consequences.

• Heat capacities tend to zero as T → 0
This consequence is easy to prove. Any heat capacity C given by

C = T

(
∂S

∂T

)
=

(
∂S

∂lnT

)
→ 0, (18.5)
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because as T → 0, lnT → −∞ and S → 0. Hence C → 0.
Note that this result disagrees with the classical prediction of C =
R/2 per mole per degree of freedom. (We note for future reference
that this observation emphasizes the fact that the equipartition
theorem, to be presented in Chapter 19, is a high temperature
theory and fails at low temperature.)

• Thermal expansion stops

Since S → 0 as T → 0, we have for example that(
∂S

∂p

)
T

→ 0 (18.6)

as T → 0, but by a Maxwell relation, this implies that

1

V

(
∂V

∂T

)
p

→ 0 (18.7)

and hence the isobaric expansivity βp → 0.

• No gases remain ideal as T → 0
The ideal monatomic gas has served us well in this book as a
simple model which allows us to obtain tractable results. One
of these results is eqn 11.26, which states that for an ideal gas,
Cp − CV = R per mole. However, as T → 0, both Cp and CV

tend to zero, and this equation cannot be satisfied. Moreover, we
expect that CV = 3R/2 per mole, and as we have seen, this also
does not work down to absolute zero. Yet another nail in the coffin
of the ideal gas is the expression for its entropy given in eqn 16.82
(S = CV lnT +R lnV +constant). As T → 0, this equation yields
S → −∞, which is as far from zero as you can get!
Thus we see that the third law forces us to abandon the ideal gas
model when thinking about gases at low temperature. Of course,
it is at low temperature that the weak interactions between gas
molecules (blissfully neglected so far since we have modelled gas
molecules as independent entities) become more important. More
sophisticated models of gases will be considered in Chapter 26.

• Curie’s law breaks down

Curie’s law states that the susceptibility χ is proportional to 1/T
and hence χ → ∞ as T → 0. However, the third law implies that
(∂S/∂B)T → 0 and hence(

∂S

∂B

)
T

=

(
∂m

∂T

)
B

=
V B

µ0

(
∂χ

∂T

)
B

(18.8)

must tend to zero. Thus
(

∂χ
∂T

)
→ 0, in disagreement with Curie’s

law. Why does it break down? You may begin to see a theme
developing: it is interactions again! Curie’s law is derived by con-
sidering magnetic moments to be entirely independent, in which
case their properties can be determined by considering only the
balance between the applied field (driving the moments to align)
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and temperature (driving the moments to randomize). The sus-
ceptibility measures their infinitesimal response to an infinitesimal
applied field; this becomes infinite when the thermal fluctuations
are removed at T = 0. However, if interactions between the mag-
netic moments are switched on, then an applied field will have
much less of an effect because the magnetic moments will already
be driven into some partially ordered state by each other.
There is a basic underlying message here: the microscopic parts
of a system can behave independently at high temperature, where
the thermal energy kBT is much larger than any interaction energy.
At low temperature, these interactions become important and all
notions of independence break down. To paraphrase (badly) the
poet John Donne:

No man is an island, and especially not as T → 0.

• Unattainability of absolute zero

The final point can almost be elevated to the status of another
statement of the third law:

It is impossible to cool to T = 0 in a finite number of steps.

T

S
X

X

T

S

X

X

Fig. 18.5 The entropy as a function
of temperature for two different val-
ues of a parameter X. Cooling is pro-
duced by isothermal increases in X (i.e.
X1 → X2) and adiabatic decreases in
X (i.e. X2 → X1). (a) If S does not
go to 0 as T → 0 it is possible to cool
to absolute zero in a finite number of
steps. (b) If the third law is obeyed,
then it is impossible to cool to absolute
zero in a finite number of steps.

This is messy to prove rigorously, but we can justify the argument
by reference to Fig. 18.5, which shows plots of S against T for
different values of a parameter X (which might be magnetic field,
for example). Cooling is produced by isothermal increases in X
and adiabatic decreases in X. If the third law did not hold, it
would be possible to proceed according to Fig. 18.5(a) and cool all
the way to absolute zero. However, because of the third law, the
situation is as in Fig. 18.5(b) and the number of steps needed to
get to absolute zero becomes infinite.

Before concluding this chapter, we make one remark concerning Carnot
engines. Consider a Carnot engine, operating between reservoirs with
temperatures T
 and Th, having an efficiency which is equal to η =
1 − (T
/Th) (eqn 13.10). If T
 → 0, the efficiency η tends to 1. If you
operated this Carnot engine, you would then get perfect conversion of
heat into work, in violation of Kelvin’s statement of the second law of
thermodynamics. It seems at first sight that the unattainability of ab-
solute zero (a version of the third law) is a simple consequence of the
second law. However, there are difficulties in considering a Carnot en-
gine operating between two reservoirs, one of which is at absolute zero.
It is not clear how you can perform an isothermal process at absolute
zero, because once a system is at absolute zero it is not possible to get
it to change its thermodynamical state without warming it. Thus it
is generally believed that the third law is indeed a separate postulate
which is independent of the second law. The third law points to the fact
that many of our ‘simple’ thermodynamic models, such as the ideal gas
equation and Curie’s law of paramagnets, need substantial modification
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if they are to give correct predictions as T → 0. It is therefore oppor-
tune to consider more sophisticated models based upon the microscopic
properties of real systems, and that brings us to statistical mechanics,
the subject of the next part of this book.

Chapter summary

• The third law of thermodynamics can be stated in various ways:

• Nernst: Near absolute zero, all reactions in a system in internal
equilibrium take place with no change in entropy.

• Planck: The entropy of all systems in internal equilibrium is the
same at absolute zero, and may be taken to be zero.

• Simon: The contribution to the entropy of a system by each aspect
of the system which is in internal thermodynamic equilibrium tends
to zero as T → 0.

• Unattainability of T = 0: it is impossible to cool to T = 0 in a
finite number of steps.

• The third law implies that heat capacities and thermal expansivi-
ties tend to zero as T → 0.

• Interactions between the constituents of a system become impor-
tant as T → 0, and this leads to the breakdown of the concept of
an ideal gas and also the breakdown of Curie’s law.

Exercises

(18.1) Summarize the main consequences of the third law
of thermodynamics. Explain how it casts a shadow
of doubt on some of the conclusions from various
thermodynamic models.

(18.2) Recall from eqn 16.26 that

H = G − T

„
∂G

∂T

«
p

. (18.9)

Hence show that

∆G − ∆H = T

„
∂∆G

∂T

«
p

, (18.10)

and explain what happens to these terms as T →
0.



Part VII

Statistical mechanics

In this part we introduce the subject of statistical mechanics. This is
a thermodynamic theory in which account is taken of the microscopic
properties of individual atoms or molecules analysed in a statistical fash-
ion. Statistical mechanics allows macroscopic properties to be calculated
from the statistical distribution of the microscopic behaviour of individ-
ual atoms and molecules. This part is structured as follows:

• In Chapter 19, we present the equipartition theorem, a principle
that states that the internal energy of a classical system composed
of a large number of particles in thermal equilibrium will distribute
itself evenly among each of the quadratic degrees of freedom acces-
sible to the particles of the system.

• In Chapter 20 we introduce the partition function, which encodes
all the information concerning the states of a system and their
thermal occupation. Having the partition function allows you to
calculate all the thermodynamic properties of the system.

• In Chapter 21 we calculate the partition function for an ideal gas
and use this to define the quantum concentration. We show how the
indistinguishability of molecules affects the statistical properties
and has thermodynamic consequences.

• In Chapter 22 we extend our results on partition functions to sys-
tems in which the number of particles can vary. This allows us
to define the chemical potential and introduce the grand partition

function.

• In Chapter 23, we consider the statistical mechanics of light, which
is quantized as photons, introducing blackbody radiation, radiation

pressure, and the cosmic microwave background.

• In Chapter 24, we discuss the analogous behaviour of lattice vi-
brations, quantized as phonons, and introduce the Einstein model

and Debye model of the thermal properties of solids.
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Before introducing the partition function in Chapter 20, which will al-
low us to calculate many different properties of thermodynamic systems
on the basis of their microscopic energy levels (which can be deduced
using quantum mechanics), we devote this chapter to the equipartition
theorem. This theorem provides a simple, classical theory of thermal
systems. It gives remarkably good answers, but only at high tempera-
ture, where the details of quantized energy levels can be safely ignored.
We will motivate and prove this theorem in the following section, and
then apply it to various physical situations in Section 19.2, demonstrat-
ing that it provides a rapid and straightforward method for deriving
heat capacities. Finally, in Section 19.3, we will critically examine the
assumptions which we have made in the derivation of the equipartition
theorem.

19.1 Equipartition theorem

Very often in physics one is faced with an energy dependence which is
quadratic in some variable.1 An example would be the kinetic energy

1We will show later in Section 19.3 that
this quadratic dependence is very com-
mon; most potential wells are approx-
imately quadratic near the bottom of
the well.

EKE of a particle with mass m and velocity v, which is given by

EKE =
1

2
mv2. (19.1)

Another example would be the potential energy EPE of a mass suspended
at one end of a spring with spring constant k and displaced by a distance
x from its equilibrium point (see Figure 19.1). This is given by

x

m

k

v

Fig. 19.1 A mass m suspended on a
spring with spring constant k. The
mass is displaced by a distance x from
its equilibrium or ‘rest’ position.

EPE =
1

2
kx2. (19.2)

In fact, the total energy E of a moving mass on the end of a spring is
given by the sum of these two terms, so that

E = EKE + EPE =
1

2
mv2 +

1

2
kx2, (19.3)

and, as the mass undergoes simple harmonic motion, energy is exchanged
between EKE and EPE, while the total energy remains fixed.

Let us suppose that a system whose energy has a quadratic dependence
on some variable is allowed to interact with a heat bath. It is then able
to borrow energy occasionally from its environment, or even give it back
into the environment. What mean thermal energy would it have? The
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thermal energy would be stored as kinetic or potential energy, so if a
mass on a spring is allowed to come into thermal equilibrium with its
environment, one could in principle take a very big magnifying glass
and see the mass on a spring jiggling around all by itself owing to such
thermal vibrations. How big would such vibrations be? The calculation
is quite straightforward.

x

E

Fig. 19.2 The energy E of a system is
E = αx2.

Let the energy E of a particular system be given by

E = αx2, (19.4)

where α is some positive constant and x is some variable (see Fig. 19.2).
Let us also assume that x could in principle take any value with equal
probability. The probability P (x) of the system having a particular en-
ergy αx2 is proportional to the Boltzmann factor e−βαx2

(see eqn 4.13),
so that after normalizing, we have

P (x) =
e−βαx2∫∞

−∞ e−βαx2 dx
, (19.5)

and the mean energy is

〈E〉 =

∫ ∞

−∞
E P (x) dx

=

∫∞
−∞ αx2e−βαx2

dx∫∞
−∞ e−βαx2 dx

=
1

2β

=
1

2
kBT. (19.6)

This is a really remarkable result. It is independent of the constant α
and gives a mean energy which is proportional to temperature. The
theorem can be extended straightforwardly to the energy being the sum
of n quadratic terms, as shown in the following example.

Example 19.1

Assume that the energy E of a system can be given by the sum of n
independent quadratic terms, so that

E =
n∑

i=1

αix
2
i , (19.7)

where αi are constants and xi are some variables. Assume also that each
xi could in principle take any value with equal probability. Calculate
the mean energy.
Solution:

The mean energy 〈E〉 is given by

〈E〉 =

∫ ∞

−∞
· · ·
∫ ∞

−∞
E P (x1, x2, . . . xn) dx1 dx2 · · · dxn. (19.8)
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This now now looks quite complicated when we substitute in the prob-
ability as follows

〈E〉 =

∫∞
−∞ · · · ∫∞

−∞

(
n∑

i=1

αix
2
i

)
exp

(
−β∑n

j=1 αjx
2
j

)
dx1dx2 · · · dxn

∫∞
−∞ · · · ∫∞

−∞ exp
(
−β∑n

j=1 αjx2
j

)
dx1dx2 · · · dxn

,

(19.9)
where i and j have been used to distinguish different sums. This ex-
pression can be simplified by recognizing that it is the sum of n similar
terms (write out the sums to convince yourself):

〈E〉 =

n∑
i=1

∫∞
−∞ · · · ∫∞

−∞ αix
2
i exp

(
−β∑n

j=1 αjx
2
j

)
dx1dx2 · · · dxn∫∞

−∞ · · · ∫∞
−∞ exp

(
−β∑n

j=1 αjx2
j

)
dx1dx2 · · · dxn

,

(19.10)
and then all but one integral cancels between the numerator and denom-
inator of each term, so that

〈E〉 =

n∑
i=1

∫∞
−∞ αix

2
i exp

(−βαix
2
i

)
dxi∫∞

−∞ exp (−βαix2
i ) dxi

. (19.11)

Now each term in this sum is the same as the one treated above in
eqn 19.6. Hence

〈E〉 =

n∑
i=1

αi〈x2
i 〉 =

n∑
i=1

1

2
kBT

=
n

2
kBT. (19.12)

Each quadratic energy dependence of the system is called a mode of
the system (or sometimes a degree of freedom of the system). The
spring, our example at the beginning of this chapter, has two such modes.
The result of the example above shows that each mode of the system
contributes an amount of energy equal to 1

2kBT to the total mean energy
of the system. This result is the basis of the equipartition theorem,
which we state as follows:

Equipartition theorem:
If the energy of a classical system is the sum of n quadratic modes,
and that system is in contact with a heat reservoir at temperature T ,
the mean energy of the system is given by n× 1

2kBT .

The equipartition theorem expresses the fact that energy is ‘equally
partitioned’ between all the separate modes of the system, each mode
having a mean energy of precisely 1

2kBT .
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Example 19.2

We return to our example of a mass on a spring, whose energy is given by
the sum of two quadratic energy modes (see eqn 19.3). The equipartition
theorem then implies that the mean energy is given by

2 × 1

2
kBT = kBT. (19.13)

How big is this energy? At room temperature, kBT ≈ 4 × 10−21 J≈
0.025 eV which is a tiny energy. This energy isn’t going to set a 10 kg
mass on a stiff spring vibrating very much! However, the extraordinary
thing about the equipartition theorem is that the result holds indepen-

dently of the size of the system, so that kBT = 0.025 eV is also the mean
energy of an atom on the end of a chemical bond (which can be modelled
as a spring) at room temperature. For an atom, kBT = 0.025 eV goes
a very long way and this explains why atoms in molecules jiggle around
a lot at room temperature. We will explore this in more detail below.

19.2 Applications

We now consider four applications of the equipartition theorem.

19.2.1 Translational motion in a monatomic gas

The energy of each atom in a monatomic gas is given by

E =
1

2
mv2

x +
1

2
mv2

y +
1

2
mv2

z , (19.14)

where v = (vx, vy, vz) is the velocity of the atom (see Fig. 19.3). This
energy is the sum of three independent quadratic modes, and thus the
equipartition theorem gives the mean energy as

〈E〉 = 3 × 1

2
kBT =

3

2
kBT. (19.15)

This is in agreement with our earlier derivation of the mean kinetic
energy of a gas (see eqn 5.17).

Fig. 19.3 The velocity of a molecule in
a gas.19.2.2 Rotational motion in a diatomic gas

In a diatomic gas, there is an additional possible energy source to con-
sider, namely that of rotational kinetic energy. This adds two terms to
the energy

L2
1

2I1
+
L2

2

2I2
, (19.16)
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where L1 and L2 are the angular momenta along the two principal direc-
tions shown in Fig. 19.4 and I1 and I2 are the corresponding moments of
inertia. We do not need to worry about the direction along the diatomic
molecule’s bond, the axis labelled ‘3’ in Fig. 19.4. (This is because the
moment of inertia in this direction is very small (so that the correspond-
ing rotational kinetic energy is very large), so rotational modes in this
direction cannot be excited at ordinary temperature; such rotational
modes are connected with the individual molecular electronic levels and
we will therefore ignore them.)

The total energy is thus the sum of five terms, three due to transla-
tional kinetic energy and two due to rotational kinetic energy

E =
1

2
mv2

x +
1

2
mv2

y +
1

2
mv2

z +
L2

1

2I1
+
L2

2

2I2
, (19.17)

and all of these energy modes are independent of one another. Using the
equipartition theorem, we can immediately write down the mean energy
as

〈E〉 = 5 × 1

2
kBT =

5

2
kBT. (19.18)

L

L

Fig. 19.4 Rotational motion in a di-
atomic gas.

19.2.3 Vibrational motion in a diatomic gas

If we also include the vibrational motion of the bond linking the two
atoms in our diatomic molecule, there are two additional modes to
include. The intramolecular bond can be modelled as a spring (see
Fig. 19.5), so that the two extra energy terms are the kinetic energy due
to relative motion of the two atoms and the potential energy in the bond
(let us suppose it has spring constant k). Writing the positions of the
two atoms as r1 and r2 with respect to some fixed origin, the energy of
the atom can be written

m

m

k

r

r

Fig. 19.5 A diatomic molecule can be
modelled as two masses connected by a
spring.

E =
1

2
mv2

x +
1

2
mv2

y +
1

2
mv2

z +
L2

1

2I1
+
L2

2

2I2
+

1

2
µ(ṙ1 − ṙ2)

2 +
1

2
k(r1 −r2)

2,

(19.19)
where µ = m1m2/(m1 + m2) is the reduced mass2 of the system. The

2See Appendix G.

equipartition theorem just cares about the number of modes in the sys-
tem, so the mean energy is simply

〈E〉 = 7 × 1

2
kBT =

7

2
kBT. (19.20)

The heat capacity of the systems described above can be obtained
by differentiating the energy with respect to temperature. The mean
energy is given by

〈E〉 =
f

2
kBT, (19.21)

where f is the number of degrees of freedom. This equation implies that

CV per mole =
f

2
R, (19.22)
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and using eqn 11.28 we have

Cp per mole =

(
f

2
+ 1

)
R, (19.23)

from which we may derive

γ =
Cp

CV
=

( f
2 + 1)R

f
2R

= 1 +
2

f
. (19.24)

We can summarize our results for the heat capacity of gases, per atom/molecule,
as follows:

Gas Modes f 〈E〉 γ

Monatomic translational only 3 3
2kB

5
3

Diatomic translational and rotational 5 5
2kB

7
5

Diatomic translational, rotational and vibrational 7 7
2kB

9
7

19.2.4 The heat capacity of a solid

In a solid, the atoms are held rigidly in the lattice and there is no pos-
sibility of translational motion. However, the atoms can vibrate about
their mean positions. Consider a cubic solid in which each atom is con-
nected by springs (chemical bonds) to six neighbours (one above, one
below, one in front, one behind, one to the right, one to the left). Since
each spring joins two atoms, then if there are N atoms in the solid, there
are 3N springs (neglecting the surface of the solid, a reasonable approx-
imation if N is large). Each spring has two quadratic modes of energy
(one kinetic, one potential) and hence a mean thermal energy equal to
2 × 1

2kBT = kBT . Hence the mean energy of the solid is

〈E〉 = 3NkBT, (19.25)

and the heat capacity is ∂〈E〉/∂T = 3NkB. Because R = NAkB, the
molar heat capacity of a solid is then expected to be 3NAkB = 3R.

x

z

y

Fig. 19.6 In a cubic solid, each atom is
connected by chemical bonds, modelled
as springs, to six nearest neighbours,
two along each of the three Cartesian
axes. Each spring is shared between
two atoms.

19.3 Assumptions made

The equipartition theorem seems to be an extremely powerful tool for
evaluating thermal energies of systems. However, it does have some
limitations, and to discover what these are, it is worth thinking about
the assumptions we have made in deriving it.
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• We have assumed that the parameter for which we have taken the
energy to be quadratic can take any possible value. In the deriva-
tion, the variables xi could be integrated continuously from −∞
to ∞. However, quantum mechanics insists that certain quanti-
ties can only take particular ‘quantized’ values. For example, the
problem of a mass on a spring is shown by quantum mechanics
to have an energy spectrum which is quantized into levels given
by (n + 1

2 )�ω. When the thermal energy kBT is of the same or-
der, or lower than, �ω, the approximation made by ignoring the
quantized nature of this energy spectrum is going to be a very bad
one. However, when kBT 	 �ω, the quantized nature of the en-
ergy spectrum is going to be largely irrelevant, in much the same
way that you don’t notice that the different shades of grey in a
newspaper photograph are actually made up of lots of little dots if
you don’t look closely. Thus we come to an important conclusion:

The equipartition theorem is generally valid only at high temper-

ature, so that the thermal energy is larger than the energy gap
between quantized energy levels. Results based on the equipar-
tition theorem should emerge as the high-temperature limit of
more detailed theories.

x

V x

x

Fig. 19.7 V (x) is a function which is
more complicated than a quadratic but
which has a minimum at x = x0.

• Everywhere we have assumed that modes are quadratic. Is that
always valid? To give a concrete example, imagine that an atom
moves with coordinate x in a potential well given by V (x), which is
a function which might be more complicated than a quadratic (see
for example Fig. 19.7). At absolute zero, the atom finds a potential
minimum at say x0 (so that, for the usual reasons, ∂V/∂x = 0
and ∂2V/∂x2 > 0 at x = x0). At temperature T > 0, the atom
can explore regions away from x0 by borrowing energy of order
kBT from its environment. Near x0, the potential V (x) can be
expanded3 as

3Using a Taylor expansion; see Ap-
pendix B.

V (x) = V (x0) +

(
∂V

∂x

)
x0

(x− x0) +
1

2

(
∂2V

∂x2

)
x0

(x− x0)
2 + · · · ,
(19.26)

so that using
(

∂V
∂x

)
x0

= 0, we find that the potential energy is

V (x) = constant +
1

2

(
∂2V

∂x2

)
x0

(x− x0)
2 + · · · , (19.27)

which is a quadratic again. This demonstrates that the bottom
of almost all potential wells tends to be approximately quadratic
(this is known as the harmonic approximation).44The argument that the bottom of al-

most all potential wells tends to be
approximately quadratic could fail if
(∂2V/∂x2)x0 turned out to be zero.
This would happen if, for example,
V (x) = α(x− x0)4.

If the temperature gets too high, the system will be able to access
positions far away from x0 and the approximation of ignoring the
higher–order (cubic, quartic, etc.) terms (known as the anhar-
monic terms) in the Taylor expansion may become important.
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However, we have just said that the equipartition theorem is only
valid at high temperature. Thus we see that the temperature must
be high enough that we can safely ignore the quantum nature of
the energy spectrum, but not so high that we invalidate the ap-
proximation of treating the relevant potential wells as perfectly
quadratic. Fortunately there is plenty of room between these two
extremes.

19.4 Brownian motion

We close this chapter with one example in which the effect of the equipar-
tition of energy is encountered.

Example 19.3

Brownian motion:
In 1827, Robert Brown used a microscope to observe pollen grains jig-
gling about in water. He was not the first to make such an observation
(any small particles suspended in a fluid will do the same, and are very
apparent when looking down a microscope), but this effect has come to
be known as Brownian motion.

The motion is very irregular, consisting of translations and rotations,
with grains moving independently, even when moving close to each other.
The motion is found to be more active the smaller the particles. The
motion is also found to be more active the less viscous the fluid. Brown
was able to discount a ‘vital’ explanation of the effect, i.e. that the pollen
grains were somehow ‘alive’, but he was not able to give a correct ex-
planation. Something resembling a modern theory of Brownian motion
was proposed by Wiener in 1863, though the major breakthrough was
made by Einstein in 1905.

We will postpone a full discussion of Brownian motion until Chap-
ter 33, but using the equipartition theorem, the origin of the effect can
be understood in outline. Each pollen grain (of mass m) is free to
move translationally and so has mean kinetic energy 1

2m〈v2〉 = 3
2kBT .

This energy is very small, as we have seen, but leads to a measurable
amplitude of vibration for a small pollen grain. The amplitude of vibra-
tion is greater for smaller pollen grains because a mean kinetic energy
of 3

2kBT gives more mean square velocity 〈v2〉 to less massive grains.
The thermally excited vibrations are resisted by viscous damping, so
the motion is expected to be more pronounced in less viscous fluids.
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Chapter summary

• The equipartition theorem states that if the energy of a system is
the sum of n quadratic modes, and that the system is in contact
with a heat reservoir of temperature T , the mean energy of the
system is given by n× 1

2kBT .

• The equipartition theorem is a high–temperature result and gives
incorrect predictions at low temperature, where the discrete nature
of the energy spectrum cannot be ignored.

Exercises

(19.1) What is the mean kinetic energy in eV at room
temperature of a gaseous (a) He atom, (b) Xe
atom, (c) Ar atom and (d) Kr atom. [Hint: do
you have to do four separate calculations?]

(19.2) Comment on the following values of molar heat
capacity in J K−1 mol−1, all measured at constant
pressure at 298 K.

Al 24.35
Ar 20.79
Au 25.42
Cu 24.44
He 20.79
H2 28.82
Fe 25.10

Pb 26.44
Ne 20.79
N2 29.13
O2 29.36
Ag 25.53
Xe 20.79
Zn 25.40

[Hint: express them in terms of R; which of the
substances is a solid and which is gaseous?]

(19.3) A particle at position r is in a potential well V (r)
given by

V (r) =
A

rn
− B

r
, (19.28)

where A and B are positive constants and n > 2.
Show that the bottom of the well is approxi-
mately quadratic in r. Hence find the particle’s
mean thermal energy at temperature T above the
bottom of the well assuming the validity of the
equipartition theorem in this situation.

(19.4) In example 19.1, show that

〈x2
i 〉 =

kBT

2αi
. (19.29)

(19.5) If the energy E of a system is not quadratic, but
behaves like E = α|x| where α > 0, show that
〈E〉 = kBT .

(19.6) If the energy E of a system behaves like E = α|x|n,
where n = 1, 2, 3 . . . and α > 0, show that 〈E〉 =
ξkBT , where ξ is a numerical constant.

(19.7) A simple pendulum with length � makes an angle θ
with the vertical, where θ � 1. Show that it oscil-
lates with a period given by 2π

p
�/g. The pendu-

lum is now placed at rest and allowed to come into
equilibrium with its surroundings at temperature
T . Derive an expression for 〈θ2〉.
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The probability that a system is in some particular state α is given by
the Boltzmann factor e−βEα . We define the partition function1 Z by

1The partition function is given the
symbol Z because the concept was first
coined in German. Zustandssumme

means ‘sum over states’, which is ex-
actly what Z is. The English name
‘partition function’ reflects the way in
which Z measures how energy is ‘parti-
tioned’ between states of the system.

a sum over all the states of the Boltzmann factors, so that

Z =
∑
α

e−βEα (20.1)

where the sum is over all states of the system (each one labelled by α).
The partition function Z contains all the information about the energies
of the states of the system, and the fantastic thing about the partition
function is that all thermodynamical quantities can be obtained from it.
It behaves like a zipped-up and compressed version of all the properties of
the system; once you have Z, you only have to know how to uncompress
and unzip it to get functions of state like energy, entropy, Helmholtz
function, or heat capacity to simply drop out. We can therefore reduce
problem-solving in statistical mechanics to two steps:

Steps to solving statistical mechanics problems:

(1) Write down the partition function Z.
(see Section 20.1)

(2) Go through some standard procedures to obtain the functions of
state you want from Z.
(see Section 20.2)

We will outline these two steps in the sections that follow. Before we
do that, let us pause to notice an important feature about the partition
function.

• The zero of energy is always somewhat arbitrary: one can always
choose to measure energy with respect to a different zero, since it
is only energy differences which are important. Hence the parti-
tion function is defined up to an arbitary multiplicative constant.
This seems somewhat strange, but it turns out that many physical
quantities are related to the logarithm of the partition function
and therefore these quantities are defined up to an additive con-
stant (which might reflect, for example, the rest mass of particles).
Other physical quantities, however, are determined by a differen-
tial of the logarithm of the partition function and therefore these
quantities can be determined precisely.



210 The partition function

This point needs to be remembered whenever the partition function is
obtained.

Everything in this chapter refers to what is known as the single–
particle partition function. We are working out Z for one particle
of matter which may well be coupled to a reservoir of other particles,
but our attention is only on that single particle of matter. We will
defer discussion of how to treat aggregates of particles until the next
two chapters. With that in mind, we are now ready to write down some
partition functions.

20.1 Writing down the partition function

The partition function contains all the information we need to work out
the thermodynamical properties of a system. In this section, we show
how you can write down the partition function in the first place.

This procedure is not complicated! Writing down the partition func-
tion is nothing more than evaluating eqn 20.1 for different situations. We
demonstrate this for a couple of commonly encountered and important
examples.

Example 20.1

(a) The two-level system: (see Fig. 20.1(a))
Let the energy of a system be either −∆/2 or ∆/2. Then

Z =
∑
α

e−βEα = eβ∆/2 + e−β∆/2 = 2 cosh

(
β∆

2

)
, (20.2)

where the final result follows from the definition of coshx ≡ 1
2 (ex +e−x)

(see Appendix B).

E

E

h

Fig. 20.1 Energy levels of (a) a two-
level system and (b) a simple harmonic
oscillator.

(b) The simple harmonic oscillator: (see Fig. 20.1(b))
The energy of the system is (n+ 1

2 )�ω where n = 0, 1, 2, . . ., and hence

An alternative form of this result is
found by multiplying top and bottom

by eβ 1
2

�ω to obtain the result Z =
1/(2 sinh(β�ω/2)).

Z =
∑
α

e−βEα =

∞∑
n=0

e−β(n+ 1
2 )�ω = e−β 1

2 �ω
∞∑

n=0

e−nβ�ω =
e−

1
2 β�ω

1 − e−β�ω
,

(20.3)
where the sum is evaluated using the standard result for the sum of an
infinite geometric progress, see Appendix B.

Two further, slightly more complicated, examples are the set of N
equally spaced energy levels and the energy levels appropriate for the
rotational states of a diatomic molecule.
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Example 20.2

(c) The N-level system: (see Fig. 20.2(c))
Let the energy levels of a system be 0, �ω, 2�ω, . . . , (N − 1)�ω. Then

Z =
∑
α

e−βEα =

N−1∑
j=0

e−jβ�ω =
1 − e−Nβ�ω

1 − e−β�ω
, (20.4)

where the sum is evaluated using the standard result for the sum of a
finite geometric progress, see Appendix B.
(d) Rotational energy levels: (see Fig. 20.2(d))
The rotational kinetic energy of a molecule with moment of inertia I is
given by Ĵ2/2I, where Ĵ is the total angular momentum operator. The
eigenvalues of Ĵ2 are given by �

2J(J+1), where the angular momentum
quantum number, J , takes the values J = 0, 1, 2, . . . The energy levels
of this system are given by

EJ =
�

2

2I
J(J + 1), (20.5)

and have degeneracy 2J + 1. Hence the partition function is

Z =
∑
α

e−βEα =

∞∑
J=0

(2J + 1)e−β�
2J(J+1)/2I , (20.6)

where the factor (2J +1) takes into account the degeneracy of the level.

N
N

E

J
J

J

J

E

Fig. 20.2 Energy levels of (c) an N -
level system and (d) a rotational sys-
tem.

20.2 Obtaining the functions of state
Z

U
F

p

S
CV

H

Fig. 20.3 Given Z, it takes only a turn
of the handle on our ‘sausage machine’
to produce other functions of state.

Once Z has been written down, we can place it in our mathematical
sausage machine (see Fig. 20.3) which processes it and spits out fully-
fledged thermodynamical functions of state. We now outline the deriva-
tions of the components of our sausage machine so that you can derive
all these functions of state for any given Z.

• Internal energy U
The internal energy U is given by

U =

∑
iEie

−βEi∑
i e−βEi

. (20.7)

Now the denominator of this expression is the partition function
Z =

∑
i e−βEi , but the numerator is simply

−dZ

dβ
=
∑

i

Eie
−βEi . (20.8)
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Thus U = −(1/Z)(dZ/dβ), or more simply,

U = −d lnZ

dβ
. (20.9)

This is a useful form since Z is normally expressed in terms of β. If
you prefer things in terms of temperature T , then using β = 1/kBT
(and hence d/dβ = −kBT

2(d/dT )) one obtains

U = kBT
2 d lnZ

dT
. (20.10)

• Entropy S
Since the probability Pj is given by a Boltzmann factor divided
by the partition function (so that the sum of the probabilities is
one, as can be shown using eqn 20.1), we have Pj = e−βEj/Z and
hence

lnPj = −βEj − lnZ. (20.11)

Equation 14.48 therefore gives us an expression for the entropy as
follows:

S = −kB

∑
i

Pi lnPi

= kB

∑
i

Pi(βEi + lnZ)

= kB(βU + lnZ), (20.12)

where we have used U =
∑

i PiEi and
∑

i Pi = 1. Using β =
1/kBT we have that

S =
U

T
+ kB lnZ. (20.13)

• Helmholtz function F
The Helmholtz function is defined via F = U − TS, so using
eqn 20.13 we have that

F = −kBT lnZ. (20.14)

This can also be cast into the memorable form

Z = e−βF . (20.15)

Once we have an expression for the Helmholtz function, a lot of
things come out in the wash. For example, using eqn 16.19 we
have that

S = −
(
∂F

∂T

)
V

= kB lnZ + kBT

(
∂lnZ

∂T

)
V

, (20.16)

which, using eqn 20.10, is equivalent to eqn 20.13 above. This
expression then leads to the heat capacity, via (recall eqn 16.68)

CV = T

(
∂S

∂T

)
V

, (20.17)
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or one can use

CV =

(
∂U

∂T

)
V

. (20.18)

Either way,

CV = kBT

[
2

(
∂lnZ

∂T

)
V

+ T

(
∂2lnZ

∂T 2

)
V

]
. (20.19)

• Pressure p
The pressure can be obtained from F using eqn 16.20, so that

p = −
(
∂F

∂V

)
T

= kBT

(
∂lnZ

∂V

)
T

. (20.20)

Having got the pressure we can then write down the enthalpy and
the Gibbs function.

• Enthalpy H

H = U + pV = kBT

[
T

(
∂lnZ

∂T

)
V

+ V

(
∂lnZ

∂V

)
T

]
(20.21)

• Gibbs function G

G = F + pV = kBT

[
− lnZ + V

(
∂lnZ

∂V

)
T

]
(20.22)

Function of state Statistical mechanical expression

U −d lnZ

dβ
F −kBT lnZ

S = − (∂F
∂T

)
V

= U−F
T kB lnZ + kBT

(
∂lnZ

∂T

)
V

p = − ( ∂F
∂V

)
T

kBT

(
∂lnZ

∂V

)
T

H = U + pV kBT

[
T

(
∂lnZ

∂T

)
V

+ V

(
∂lnZ

∂V

)
T

]

G = F + pV = H − TS kBT

[
− lnZ + V

(
∂lnZ

∂V

)
T

]

CV =
(

∂U
∂T

)
V

kBT

[
2

(
∂lnZ

∂T

)
V

+ T

(
∂2lnZ

∂T 2

)
V

]

Table 20.1 Thermodynamic quantities derived from the partition function Z.
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These relations are summarized in Table 20.1. In practice, it is eas-
iest to only remember the relations for U and F , since the others can
be derived (using the relations shown in the left column of the table).
Now that we have described how the process works, we can set about
practising this for different partition functions.

Example 20.3

(a) Two-level system:
The partition function for a two-level system (whose energy is either
−∆/2 or ∆/2) is given by eqn 20.2, which states that

Z = 2 cosh

(
β∆

2

)
. (20.23)

Having obtained Z, we can immediately compute the internal energy U
and find that

U = −d lnZ

dβ
= −∆

2
tanh

(
β∆

2

)
. (20.24)

Hence the heat capacity CV is

CV =

(
∂U

∂T

)
V

= kB

(
β∆

2

)2

sech2

(
β∆

2

)
. (20.25)

The Helmholtz function is

F = −kBT lnZ = −kBT ln

[
2 cosh

(
β∆

2

)]
, (20.26)

and hence the entropy is

S =
U − F

T
= −∆

T
tanh

(
β∆

2

)
+ kB ln

[
2 cosh

(
β∆

2

)]
. (20.27)

These results are plotted in Fig. 20.4(a). At low temperature, the
system is in the lower level and the internal energy U is −∆/2. The
entropy S is kB ln Ω, where Ω is the degeneracy and hence Ω = 1 and so
S = kB ln 1 = 0. At high temperature, the two levels are each occupied
with probability 1

2 , U therefore tends to 0 (which is half-way between
−∆/2 and ∆/2), and the entropy tends to kB ln 2 as expected. The
entropy rises as the temperature increases because it reflects the freedom
of the system to exist in different states, and at high temperature the
system has more freedom (in that it can exist in either of the two states).
Conversely, cooling corresponds to a kind of ‘ordering’ in which the
system can only exist in one state (the lower), and this gives rise to a
reduction in the entropy.



20.2 Obtaining the functions of state 215

k T

C
V
/k

B

k T

S
k

k T

U

k T h

C
V
/k

B

k T h
S

k

k T h

U
h

Fig. 20.4 The internal energy U , the entropy S and the heat capacity CV for (a) the two-state system (with energy levels
±∆/2) and (b) the simple harmonic oscillator.

The heat capacity is very small both (i) at low temperature (kBT �
∆) and (ii) at very high temperature (kBT 	 ∆), because changes in
temperature have no effect on the internal energy when (i) the temper-
ature is so low that only the lower level is occupied and even a small
change in temperature won’t alter that, and (ii) the temperature is so
high that both levels are occupied equally and a small change in tem-
perature won’t alter this. At very low temperature, it is hard to change
the energy of the system because there is not enough energy to excite
transitions from the ground state and therefore the system is ‘stuck’.
At very high temperature, it is hard to change the energy of the system
because both states are equally occupied. In between, roughly around a
temperature T ≈ ∆/kB, the heat capacity rises to a maximum, known
as a Schottky anomaly,2 as shown in the lowest panel of Fig. 20.4(a). 2Walter Schottky (1886–1976).
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This arises because at this temperature, it is possible to thermally
excite transitions between the two states of the system. Note, however,
that the Schottky anomaly is not a sharp peak, cusp or spike, as might
be associated with a phase transition (see Section 28.7), but is a smooth,
fairly broad maximum.
(b) Simple harmonic oscillator:
The partition function for the simple harmonic oscillator (from eqn 20.3)
is

Z =
e−

1
2 β�ω

1 − e−β�ω
. (20.28)

Hence (referring to Table 20.1), we find that U is given by

U = −d lnZ

dβ
= �ω

(
1

2
+

1

eβ�ω − 1

)
(20.29)

and hence that CV is

CV =

(
∂U

∂T

)
V

= kB(β�ω)2
eβ�ω

(eβ�ω − 1)2
. (20.30)

At high temperature, β�ω � 1 and so (eβ�ω−1) ≈ β�ω and so CV → kB

(the equipartition result). Similarly, U → �ω
2 + kBT ≈ kBT . The

Helmholtz function is (referring to Table 20.1)

F = −kBT lnZ =
�ω

2
+ kBT ln(1 − e−β�ω), (20.31)

and hence the entropy is (referring again to Table 20.1)

S =
U − F

T
= kB

(
β�ω

eβ�ω − 1
− ln(1 − e−β�ω)

)
. (20.32)

These results are plotted in Fig. 20.4(b). At absolute zero, only the
lowest level is occupied, so the internal energy is 1

2�ω and the entropy
is kB ln 1 = 0. The heat capacity is also zero. As the temperature
rises, more and more energy levels in the ladder can be occupied, and
U rises without limit. The entropy also rises (and follows a dependence
which is approximately kB ln(kBT/�ω) where kBT/�ω is approximately
the number of occupied levels). Both functions carry on rising because
the ladder of energy levels increases without limit. The heat capacity
rises to a plateau at CV = kB, which is the equipartition result (see
eqn 19.13).

The results for two further examples are plotted in Fig. 20.5 and are
shown without derivation. The first is an N -level system and is shown in
Fig. 20.5(a). At low temperature, the behaviour of the thermodynamic
functions resembles that of the simple harmonic oscillator, but at higher
temperature, U and S begin to saturate and CV falls, because the system
has a limited number of energy levels.



20.2 Obtaining the functions of state 217

k T

C
V
/k

B

k T

S
k

k T

U

k T

C
V
/k

B

k T
S

k

k T

U

Fig. 20.5 The internal energy U , the entropy S and the heat capacity CV for (a) the N -level system (the simulation is shown

for N = 20) and (b) the rotating diatomic molecule (in this case ∆ = �
2/2I where I is the moment of inertia).

The second plot in Fig. 20.5(b) is for the rotating diatomic molecule.
This resembles the simple harmonic oscillator at higher temperature
(the heat capacity saturates at CV = kB) but differs at low temperature
owing to the detailed difference in the structure of the energy levels. At
high temperature, the heat capacity is given by the equipartition result
(see eqn 19.13). This can be verified directly using the partition function
which, at high temperature, can be represented by the following integral:

Z =
∞∑

J=0

(2J + 1)e−β∆J(J+1) ≈
∫ ∞

0

(2J + 1)e−β∆J(J+1) dJ, (20.33)

where ∆ = �
2/2I. Using

d

dJ
e−β∆J(J+1) = −(2J + 1)β∆e−β∆J(J+1), (20.34)
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we have that

Z = −
[

1

β∆
e−β∆J(J+1)

]∞
0

=
1

β∆
. (20.35)

This implies that U = −d lnZ/dβ = 1/β = kBT and hence CV =
(dU/dT )V = kB.

20.3 The big idea

The examples above illustrate the ‘big idea’ of statistical mechanics: you
describe a system by its energy levels Eα and evaluate its properties by
following the prescription given by the two steps:

(1) Write down Z =
∑

α e−βEα .

(2) Evaluate various functions of state using the expressions in Ta-
ble 20.1.

And that’s really all there is to it!33Well, almost. The Schrödinger equa-
tion can only be solved for a few sys-
tems, and if you don’t know the energy
levels of your system, you can’t write
down Z. Fortunately, there are quite
a number of systems for which you can
solve the Schrödinger equation, some of
which we are considering in this chap-
ter, and they describe lots and lots of
important physical systems, enough to
keep us going in this book!

You can understand the results by comparing the energy kBT to the
spacings between energy levels.

• If kBT is much less than the spacing between the lowest energy
level and the first excited level then the system will sit in the
lowest level.

• If there are a finite set of levels and kBT is much larger than the
energy spacing between the lowest and highest levels, then each
energy level will be occupied with equal probability.

• If there are an infinite ladder of levels and kBT is much larger than
the energy spacing between adjacent levels, then the mean energy
rises linearly with T and one obtains a result consistent with the
equipartition theorem.

20.4 Combining partition functions

Consider the case when the energy E of a particular system depends on
various independent contributions. For example, suppose it is a sum of
two contributions a and b, so that the energy levels are given by Ei,j

where
Ei,j = E

(a)
i + E

(b)
j , (20.36)

and where E
(a)
i is the ith level due to contribution a and E

(b)
j is the jth

level due to contribution b, so the partition function Z is

Z =
∑

i

∑
j

e−β(E
(a)
i

+E
(b)
j

) =
∑

i

e−βE
(a)
i

∑
j

e−βE
(b)
j = ZaZb, (20.37)

so that the partition functions of the independent contributions multiply.
Hence also lnZ = lnZa+lnZb, and the effect on functions of state which
depend on lnZ is that the independent contributions add.
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Example 20.4

(i) The partition function Z for N independent simple harmonic oscil-
lators is given by

Z = ZN
SHO, (20.38)

where ZSHO = e−
1
2 β�ω/(1− e−β�ω), from eqn 20.3, is the partition func-

tion for a single simple harmonic oscillator.
(ii) A diatomic molecule with both vibrational and rotational degrees of
freedom has a partition function Z given by

Z = ZvibZrot, (20.39)

where Zvib is the vibrational partition function Zvib = e−
1
2 β�ω/(1 −

e−β�ω), from eqn 20.3, and Zrot is the rotational partition function

Zrot =
∑
α

e−βEα =

∞∑
J=0

(2J + 1)e−β�
2J(J+1)/2I . (20.40)

from eqn 20.6. For a gas of diatomic molecules, we would also need a
factor in the partition function corresponding to translational motion.
We will derive this in the following chapter.

Chapter summary

• The partition function Z =
∑

α e−βEα contains the information
needed to find many thermodynamic properties.

• The equations U = −d lnZ/dβ, F = −kBT lnZ, S = (U − F )/T ,
p = − ( ∂F

∂V

)
T
, H = U + pV , G = H − TS can be used to generate

the relevant thermodynamic properties from Z.

Exercises

(20.1) Show that at high temperature, such that kBT �
�ω, the partition function of the simple harmonic
oscillator is approximately Z ≈ (β�ω)−1. Hence
find U , C, F and S at high temperature. Repeat
the problem for the high temperature limit of the
rotational energy levels of the diatomic molecule
for which Z ≈ (β�

2/2I)−1 (see eqn 20.35).

(20.2) Show that

ln Pj = β(F − Ej). (20.41)

(20.3) Show that eqn 20.29 can be rewritten as

U =
�ω

2
coth

β�ω

2
, (20.42)
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and eqn 20.32 can be rewritten as

S = kB

»
�ω

2
coth

β�ω

2
− ln

„
2 sinh

β�ω

2

«–
.

(20.43)

(20.4) Show that the zero-point energy of a simple har-
monic oscillator does not contribute to its entropy
or heat capacity, but does contribute to its energy
and Helmholtz function.

(20.5) A spin- 1
2

paramagnet in a magnetic field B can be
modelled as a set of independent two-level systems
with energy −µBB and µBB (where µB ≡ e�/2m
is the Bohr magneton).
(a) Show that for one magnetic ion, the partition
function is

Z = 2 cosh(βµBB). (20.44)

(b) For N independent magnetic ions, the parti-
tion function ZN is ZN = ZN . Show that the
Helmholtz function is given by

F = −NkBT ln[2 cosh(βµBB)]. (20.45)

(c) Eqn 17.32 implies that the magnetic moment
m is given by m = −(∂F/∂B)T . Hence show that

m = NµB tanh(βµBB). (20.46)

Sketch m as a function of B.
(d) Show further that for small fields, µBB �
kBT ,

m ≈ Nµ2
BB/kBT. (20.47)

(e) The magnetic susceptibility is defined as χ ≈
µ0M/B (see Blundell (2001)) for small B. Hence
show that χ ∝ 1/T , which is Curie’s law.

(20.6) A certain magnetic system contains n independent
molecules per unit volume, each of which has four
energy levels given by 0, ∆− gµBB, ∆, ∆+ gµBB
(g is a constant). Write down the partition func-
tion, compute the Helmholtz function and hence
compute the magnetization M . Hence show that
the magnetic susceptibility χ is given by

χ = lim
B→0

µ0M

B
=

2ngµ2
B

kBT (3 + e∆/kBT )
. (20.48)

(20.7) The energy E of a system of three independent
harmonic oscillators is given by

E = (nx +
1

2
)�ω + (ny +

1

2
)�ω + (nz +

1

2
)�ω.

(20.49)
Show that the partition function Z is given by

Z = Z3
SHO, (20.50)

where ZSHO is the partition function of a simple
harmonic oscillator given in eqn 20.3. Hence show
that the Helmholtz function is given by

F =
3

2
�ω + 3kBT ln(1 − e−β�ω), (20.51)

and that the heat capacity tends to 3kB at high
temperature.

(20.8) The internal levels of an isolated hydrogen atom
are given by E = −R/n2 where R = 13.6 eV. The
degeneracy of each level is given by 2n2.
(a) Sketch the energy levels.
(b) Show that

Z =
∞X

n=1

2n2 exp

„
R

n2kBT

«
. (20.52)

Note that when T �= 0, this expression for Z di-
verges. This is because of the large degeneracy
of the hydrogen atom’s highly excited states. If
the hydrogen atom were to be confined in a box
of finite size, this would cut off the highly excited
states and Z would not then diverge.
By approximating Z as follows:

Z ≈
2X

n=1

2n2 exp

„
R

n2kBT

«
, (20.53)

i.e. by ignoring all but the n = 1 and n = 2 states,
estimate the mean energy of a hydrogen atom at
300 K.
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The partition function is a sum over all the states of a system of the
relevant Boltzmann factors. As we saw in Chapter 20, constructing the
partition function is the first step to deriving all the thermodynamic
properties of a system. A very important example of this technique is
the ideal gas. To determine the partition function of an ideal gas, we
have to know what the relevant energy levels are so that we can label the
states of the system. Our first step, outlined in the following section,
is to work out how many states lie in a certain energy or momentum
interval, and this leads us to the density of states to be defined below.

21.1 Density of states

Consider a cubical box of dimensions L×L×L and volume V = L3. The
box is filled with gas molecules, and we want to consider the momentum
states of these gas molecules. It is convenient to label each molecule (we
assume all have mass m) in the gas by its momentum p divided by �,
i.e. by its wave vector k = p/�. We assume that the molecules behave
like free particles inside the box, but that they are completely confined
within the walls of the box. Their wave functions are thus the solution
to the Schrödinger equation for the three-dimensional particle-in-a-box
problem.1We can hence write the wave function of a molecule with wave 1We here assume familiarity with basic

quantum mechanics.vector k as2
2This wave function is a sum of plane
waves travelling in opposite directions.
Thus, in this treatment, kx, ky and kz

can only be positive since negating any
of them results in the same probability
density |ψ(x, y, z)|2.

ψ(x, y, z) =
1

V 1/2
sin(kxx) sin(kyy) sin(kzz). (21.1)

The factor 1/V 1/2 is simply to ensure that the wave function is normal-
ized over the volume of the box, so that

∫ |ψ(x, y, z)|2 dV = 1. Since the
molecules are confined inside the box, we want this wave function to go
to zero at the boundaries of the box (the six planes x = 0, x = L, y = 0,
y = L, z = 0 and z = L) and this will occur if

kx =
nxπ

L
, ky =

nyπ

L
, kz =

nzπ

L
, (21.2)

where nx, ny and nz are integers. We can thus label each state by this
triplet of integers.

An allowed state can be represented by a point in three-dimensional
k-space , and these points are uniformly distributed [in each direction,
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points are separated by a distance π/L, see Fig. 21.1(a)]. A single point
in k-space occupies a volume

π

L
× π

L
× π

L
=
(π
L

)3

. (21.3)

Let us now focus on the magnitude of the wave vector given by k = |k|.
Allowed states with a wave vector whose magnitude lies between k and
k + dk lie on one octant of a spherical shell of radius k and thickness
dk (see Fig. 21.1(b)). It is just one octant since we only allow positive
wave vectors in this approach. The volume of this shell is therefore

1

8
× 4πk2 dk. (21.4)

The number of allowed states with a wave vector whose magnitude lies
between k and k + dk is described by the function g(k) dk, where g(k)
is the density of states. This number is then given by

g(k) dk =
volume in k-space of one octant of a spherical shell

volume in k-space occupied per allowed state
. (21.5)

This implies that

g(k) dk =
1
8 × 4πk2 dk

(π/L)3
=
V k2 dk

2π2
. (21.6)

Example 21.1

An alternative method of calculating eqn 21.6 is to centre the box of gas
at the origin, so that it is bounded by the planes x = ±L/2, y = ±L/2
and z = ±L/2, and to apply periodic boundary conditions.

Fig. 21.1 (a) States in k-space are sep-
arated by π/L. Each state occupies
a volume (π/L)3. (b) The density of
states can be calculated by considering
the volume in k-space between states
with wave vector k and states with wave
vector k+dk, namely 4πk2 dk. One oc-
tant of the sphere is shown. (c) In Ex-
ample 22.1, our alternative formulation
allows states in k-space to have posi-
tive or negative wave vectors and these
states are separated by 2π/L. Each
state now occupies a volume (2π/L)3.

In this case, the wave function is given by

ψ(x, y, z) =
1

V 1/2
eik·r =

1

V 1/2
eikxxeikyyeikzz. (21.7)

The periodic boundary conditions can now be applied:

ψ(
L

2
, y, z) = ψ(−L

2
, y, z), (21.8)

implies that

eikxL/2 = e−ikxL/2, (21.9)

and hence

kx =
2πnx

L
(21.10)

where nx is an integer. Similarly we have that

ky =
2nyπ

L
, and kz =

2nzπ

L
. (21.11)
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The points in k-space are now spaced twice as far apart compared to
our earlier treatment (see Fig. 21.1(c)), but nx, ny and nz can now be
positive or negative, meaning that a complete sphere of values in k-space
is used in this formalism. Thus the density of states is now

g(k) dk =
volume in k-space of a complete spherical shell

volume in k-space occupied per allowed state
. (21.12)

This implies that

g(k) dk =
4πk2 dk

(2π/L)3
=
V k2 dk

2π2
, (21.13)

as before in eqn 21.6.

Having calculated the density of states in eqn 21.6 (and identically in
eqn 21.13), we are now in a position to calculate the partition function
of an ideal gas.

21.2 Quantum concentration

The single-particle partition function3 for the ideal gas is given by a 3There is a distinction between the par-
tition function associated with ‘single-
particle states’ (where we focus our at-
tention only on a single particle in our
system, assuming it has freedom to ex-
ist in any state without having to worry
about not occupying a state which has
already been taken by another parti-
cle) and the partition function asso-
ciated with the whole system. This
point will be made clear in the follow-
ing section. However, we will introduce
the subscript 1 at this point to remind
ourselves that we are thinking about
single-particle states.

generalization of eqn 20.1 in which we replace the sum by an integral.
Hence we have

Z1 =

∫ ∞

0

e−βE(k) g(k) dk, (21.14)

where the energy of a single molecule with wave vector k is given by

E(k) =
�

2k2

2m
. (21.15)

Hence,

Z1 =

∫ ∞

0

e−β�
2k2/2mV k2 dk

2π2
=
V

�3

(
mkBT

2π

)3/2

, (21.16)

which can be written in the appealingly simple form

Z1 = V nQ, where nQ =
1

�3

(
mkBT

2π

)3/2

, (21.17)

where nQ is known as the quantum concentration. We can define
λth, the thermal wavelength, as follows:

λth = n
−1/3
Q =

h√
2πmkBT

, (21.18)

and hence we can also write

Z1 =
V

λ3
th

. (21.19)

Equation 21.17 (and 21.19) brings out the important fact that the par-
tition function is proportional to the volume of the system (and also
proportional to temperature to the power of 3/2). The importance of
this will be seen in the following section.
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21.3 Distinguishability

In this section, we want to attempt to understand what happens for
our gas of N molecules, moving on from considering only single–particle
states to considering the N -particle state. This is a surprisingly subtle
point and to see why, we study the following, much simpler, example.

Example 21.2

Consider a particle which can exist in two states. We model this particle
as a thermodynamic system in which the energy can be either 0 or ε.
The two states of the system are shown in Fig. 21.2(a) and the single-
partition function is

Z1 = e0 + e−βε = 1 + e−βε. (21.20)

Now consider two such particles which behave in the same way and let
us suppose that they are distinguishable (for example, they might have
different physical locations, or they might have some different attribute,
like colour). The possible states of the combined system are shown in
Fig. 21.2(b), and we have made them distinguishable in the diagram by
depicting them with different symbols. In this case we can write down
the two-particle partition function Z2 as a sum over those four possible
states, and hence

Z2 = e0 + e−βε + e−βε + e−2βε, (21.21)

and in this case we see that

Z2 = (Z1)
2. (21.22)

In much the same way, we could work out the N -particle partition func-
tion for N distinguishable particles and show that it is given by

ZN = (Z1)
N . (21.23)

Fig. 21.2 (a) A particle is described
by a two-state system with energy 0 or
ε. (b) The possible states for two such
particles if they are distinguishable. (c)
The possible states for two such parti-
cles if they are indistinguishable.

However, what happens if the particles are indistinguishable? Return-
ing to the combination of two systems, there are now only three possible
states of the combined system, as shown in Fig. 21.2(c). The partition
function is now

Z2 = e0 + e−βε + e−2βε �= (Z1)
2. (21.24)

What has happened is that (Z1)
2 correctly accounts for those states in

which the particles are in the same energy level, but has overcounted
(by a factor of 2) those states in which the particles are in different
energy levels. Similarly, for N indistinguishable particles, the N -particle
partition function ZN �= (Z1)

N because (Z1)
N overcounts states in which

all N particles are in different states by a factor of N !.
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Let us summarize the results of this example. If the N particles are
distinguishable, then we can write the N -particle partition function ZN

as
ZN = (Z1)

N . (21.25)

If they are indistinguishable, then it is much more complicated.4 How- 4Note that identical (and hence indis-
tinguishable) particles can be made to
be distinguishable if they are local-
ized. The particles can then be dis-
tinguished by their physical location.
Electrons in a gas are indistinguishable
if there is no means of labelling which
is which, but the electrons sitting in
a particular magnetic orbital, one per
atom of a magnetic solid, are distin-
guishable.

ever, we can make a rather crafty approximation, as follows. If it is
possible to ignore those configurations in which two or more particles
are occupying the same energy level, then we can assume exactly the
same answer as the distinguishable case and so we only have to worry
about the single overcounting factor which we make when we ignore in-
distinguishability. If we have N particles all in different states, then that
overcounting factor is N ! (the number of different arrangements of N
distinguishable particles on N distinct sites). Hence we can write the
N -particle partition function ZN for indistinguishable particles as

ZN =
(Z1)

N

N !
. (21.26)

This result has assumed that it is possible to ignore those states in
which two or more particles occupy the same energy level. When is this
approximation possible? We will have only one particle occupying any
given state if the system is in a regime when the number of available
states is much larger than the number of particles. So for the ideal gas,
we require that the number of thermally accessible energy levels must
be much larger than the number of molecules in the gas. This occurs
when n, the number density of molecules, is much less than the quantum
concentration nQ. Thus the condition for validity of eqn 21.26 for an
ideal gas is

n� nQ. (21.27)

If this condition holds, the N -particle partition function for an ideal gas
can be written as

ZN =
1

N !

(
V

λ3
th

)N

. (21.28)

The quantum concentration nQ is plotted in Fig. 21.3 for electrons,
protons, N2 molecules and C60 molecules (known as buckyballs). At
room temperature, the quantum concentration of N2 molecules is much
higher than the actual number density of molecules in air (≈ 1025 m−3)
and so the approximation in eqn 21.26 is a good one. Electrons in a
metal have a concentration ≈ 1029 m−3 which is larger than the quantum
concentration for electrons at room temperature, so the approximation
in eqn 21.26 will not work for electrons and their quantum properties
have to be considered in more detail.

21.4 Functions of state of the ideal gas

Having obtained the partition function of an ideal gas, we are now in
a position to use the machinery of statistical mechanics, developed in
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Fig. 21.3 The quantum concentration
nQ and thermal wavelength λth for
electrons, protons, N2 molecules and
buckyballs.

T

n

n

Chapter 20, to derive all the relevant thermodynamic properties. This
we do in the following example.

Example 21.3

The partition function for N molecules in a gas is given in eqn 21.28 by

ZN =
1

N !

(
V

λ3
th

)N

∝ (V T 3/2)N , (21.29)

since λth ∝ T−1/2. Hence we can write

lnZN = N lnV +
3N

2
lnT + constants. (21.30)

The internal energy U is given by

U = −d lnZN

dβ
=

3

2
NkBT, (21.31)

so that the heat capacity is CV = 3
2NkB in agreement with previous

results.
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The Helmholtz function is

F = −kBT lnZN = −kBTN lnV − kB
3N

2
T lnT − kBT × constants,

(21.32)
so that

p = −
(
∂F

∂V

)
T

=
NkBT

V
= nkBT, (21.33)

which is, reassuringly, the ideal gas equation. This also gives the en-
thalpy H via

H = U + pV =
5

2
NkBT. (21.34)

Before proceeding to the entropy, it is going to be necessary to worry
about what the constants are in eqn 21.30. Returning to eqn 21.29, we
write

lnZN = N lnV − 3N lnλth −N lnN +N

= N ln

(
V e

Nλ3
th

)
, (21.35)

where we have used Stirling’s approximation, lnN ! ≈ N lnN − N (see
eqn 1.17). Hence we can obtain the following expression for the Helmholtz
function F :

F = −NkBT ln

(
V e

Nλ3
th

)
= NkBT [ln(nλ3

th) − 1]. (21.36)

This allows us to derive the entropy S:

S =
U − F

T
=

3

2
NkB +NkB ln

(
V e

Nλ3
th

)

= NkB ln

(
V e5/2

Nλ3
th

)

= NkB

[
5

2
− ln(nλ3

th)

]
, (21.37)

and hence the entropy is expressed in terms of the thermal wavelength
of the molecules. We can also derive the Gibbs function G

G = H − TS =
5

2
NkBT −NkBT ln

(
V e5/2

Nλ3
th

)
= NkBT ln(nλ3

th). (21.38)
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Fig. 21.4 (a) Joule expansion of an
ideal gas (an irreversible process). (b)
Mixing of two different gases, equiva-
lent to the Joule expansion of each of
the gases (an irreversible process). (c)
Mixing of two identical gases, which is
clearly a reversible process – how can
you tell if they have been mixed?

S N k

S N k

S

21.5 Gibbs paradox

The expression for the entropy in eqn 21.37 is called the Sackur-Tetrode
equation and can be used to demonstrate the Gibbs paradox. Con-
sider the process shown in Fig. 21.4(a), namely the Joule expansion of
N molecules of an ideal gas. This is an irreversible process which halves
the number density n so that the increase in entropy is given by

∆S = Sfinal − Sinitial

= NkB

[
5

2
− ln(

n

2
λ3

th)

]
−NkB

[
5

2
− ln(nλ3

th)

]
= NkB ln 2, (21.39)

in agreement with eqn 14.29. This reflects the fact that, following the
Joule expansion, we have an uncertainty about each molecule as to
whether it is on the left or right-hand side of the chamber, whereas
beforehand there was no uncertainty (all molecules were on the left-
hand side). Hence the uncertainty is 1 bit per molecule, and hence
∆S/kB = N ln 2.

Now consider the situation depicted in Fig. 21.4(b) in which two dif-

ferent gases are allowed to mix following the removal of a partition which
separated them. This is clearly an irreversible process and is equivalent
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to the Joule expansion of each gas. Thus the entropy increase is

∆S = 2NkB ln 2. (21.40)

An apparently similar case is shown in Fig. 21.4(c), but this time the
two gases on either side of the partition are indistinguishable. Removing
the partition is now an eminently reversible operation so ∆S = 0. Yet,
it might be argued, is it not the case that the removal of the partition
simply allows the gases which were initially on either side of the parti-
tion to each undergo a Joule expansion? Surely, the change of entropy
would then be ∆S = 2NkB ln 2. This apparent paradox is resolved by
understanding that indistinguishable really means indistinguishable! In
other words, the case shown in Fig. 21.4(c) is fundamentally different

from that shown in Fig. 21.4(b). Removing the partition in the case
of Fig. 21.4(c) is a reversible operation since we have no way of losing
information about which side of the partition certain bits of gas are; this
is because all molecules of this gas look the same to us and we never
had such information in the first place. Hence ∆S = 0.

Gibbs resolved this paradox himself by realising that indistinguisha-
bility was fundamental and that all states of the system that differ only
by a permutation of identical molecules should be considered as the same
state. Failure to do this results in an expression for the entropy which
is not extensive (see Exercise 21.2, which was the original manifestation
of the Gibbs paradox).

21.6 Heat capacity of a diatomic gas

The energy of a diatomic molecule in a gas can be written using eqn 19.19
as the sum of three translational, two rotational and two vibrational
terms, giving seven modes in total. The equipartition theorem shows
that the mean energy per molecule at high temperature is therefore
7
2kBT (see eqn 19.20). Because the modes are independent, the parti-
tion function of a diatomic molecule, Z, can be written as the product
of partition functions for the translational, rotational and vibrational
modes as

Z = ZtransZvibZrot, (21.41)

where Ztrans = V/λ3
th from eqn 21.19, Zvib = e−

1
2 β�ω/(1− e−β�ω), from

eqn 20.3, and Zrot is the rotational partition function

Zrot =
∑
α

e−βEα =
∞∑

J=0

(2J + 1)e−β�
2J(J+1)/2I , (21.42)

from eqn 20.6. Thus the mean energy U of such a diatomic molecule is
given by U = −d lnZ/dβ and is the sum of the energies of the individual
modes. Similarly, the heat capacity CV is the sum of the heat capacities
of the individual modes. This gives rise to the behaviour shown in
Fig. 21.5 in which the heat capacity goes through a series of plateaus:
at any non-zero temperature, all the translational modes are excited (a



230 Exercises

Fig. 21.5 The molar heat capacity at
constant volume of a diatomic gas as a
function of temperature.

failure of the ideal gas model, because CV should go to zero as T → 0, see
Chapter 18) and CV = 3

2R (for one mole of gas); above T ≈ �
2/2IkB the

rotational modes are also excited and CV rises to 5
2R; above T ≈ �ω/kB,

the vibrational modes are excited and hence CV rises to 7
2R.

Chapter summary

• For an ideal gas Z = V/λ3
th where λth = h/

√
2πmkBT is the

thermal wavelength.

• The quantum concentration nQ = 1/λ3
th.

• The N -particle partition function ZN = (Z1)
N/N ! for indistin-

guishable particles in the low-density case when n/nQ � 1 so that
nλ3

th � 1.

Exercises

(21.1) Show that the single-partition function Z1 of a
two-dimensional gas confined in an area A is given
by

Z1 =
A

λ2
th

, (21.43)

where λth = h/
√

2πmkBT .

(21.2) Show that S as given by eqn 21.37 (the Sackur-
Tetrode equation) is an extensive quantity, but
that the entropy of a gas of distinguishable par-
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ticles is given by

S = NkB

»
3

2
− ln(λ3

th/V )

–
, (21.44)

and show that this quantity is not extensive. This
non-extensive entropy provided the original ver-
sion of the Gibbs paradox.

(21.3) Show that the number of states in a gas with en-
ergies below Emax is

Z √
2mEmax/�2

0

g(k) dk =
V

6π2

„
2mEmax

�2

«3/2

.

(21.45)
Putting Emax = 3

2
kBT , show that the number of

states is ΞV nQ where Ξ is a numerical constant of
order unity.

(21.4) An atom in a solid has two energy levels: a ground
state of degeneracy g1 and an excited state of de-
generacy g2 at an energy ∆ above the ground state.
Show that the partition function Zatom is

Zatom = g1 + g2e
−β∆. (21.46)

Show that the heat capacity of the atom is given
by

C =
g1g2∆

2e−β∆

kBT 2(g1 + g2e−β∆)2
. (21.47)

A monatomic gas of such atoms has a partition
function given by

Z = ZatomZN , (21.48)

where ZN is the partition function due to the
translational motion of the gas atoms and is given
by ZN = (1/N !)[V/λ3

th]N . Show that the heat ca-
pacity of such as gas is

C = N

»
3

2
kB +

g1g2∆
2e−β∆

kBT 2(g1 + g2e−β∆)2

–
. (21.49)

T

C
p

R
Fig. 21.6 The heat capacity of hydrogen gas as a func-
tion of temperature.

(21.5) Explain the behaviour of the experimental heat
capacity (measured at constant pressure) of hy-
drogen (H2) gas shown in Fig. 21.6.

(21.6) Show that the single–particle partition function Z1

of a gas of hydrogen atoms is given approximately
by

Z1 =
V eβR

λ3
th

, (21.50)

where R = 13.6 eV and the contribution due to
excited states has been neglected.
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We now want to consider systems which can exchange particles with
their surroundings and we will show in this chapter that this feature
leads to a new concept known as the chemical potential. Differences
in the chemical potential drive the flow of particles from one place to
another in much the same way as differences in temperature drive the
flow of heat. The chemical potential turns up in chemical reactions
(hence the name) because if you are doing a reaction such as

2H2 + O2 → 2H2O, (22.1)

you are changing the number of particles in your system (3 molecules on
the left, 2 on the right). However, as we shall see, the chemical potential
applies to more than just chemical systems. It is connected with con-
servation laws, so that particles such as electrons (which are conserved)
and photons (which are not) have different chemical potentials and this
has consequences for their behaviour.

22.1 A definition of the chemical potential

If you add a particle to a system, then the internal energy will change
by an amount which we call the chemical potential µ. Thus the first
and second laws of thermodynamics expressed in eqn 14.18 must, in the
case of changing numbers of particles, be modified to contain an extra
term, so that

dU = TdS − pdV + µdN, (22.2)

where N is the number of particles in the system.1 This means that we1If we are dealing with discrete par-
ticles, then N is an integer and can
only change by integer amounts; hence
using calculus expressions like dN is
a bit sloppy, but this is an indiscre-
tion for which we may be excused if
N is large. However, there exist sys-
tems such as quantum dots which are
semiconductor nanocrystals whose size
is a few nanometres. Quantum dots are
so small that µ jumps discontinuously
when you add one electron to the quan-
tum dot.

can write an expression for µ as a partial differential of U as follows:

µ =

(
∂U

∂N

)
S,V

. (22.3)

However, keeping S and V constant is a difficult constraint to apply, so it
is convenient to consider other thermodynamic potentials. Equation 22.2
together with the definitions F = U − TS and G = U + pV − TS imply
that

dF = −pdV − SdT + µdN, (22.4)

dG = V dp− SdT + µdN, (22.5)
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and hence we can make the more useful definitions:

µ =

(
∂F

∂N

)
V,T

or (22.6)

µ =

(
∂G

∂N

)
p,T

. (22.7)

The constraints of constant p and T are experimentally convenient for
chemical systems and so eqn 22.7 will be particularly useful.

22.2 The meaning of the chemical
potential

What drives a system to form a particular equilibrium state? As we
have seen in Chapter 14, it is the second law of thermodynamics which
states that entropy always increases. The entropy of a system can be
considered to be a function of U , V and N , so that S = S(U, V,N).
Therefore, we can immediately write down

dS =

(
∂S

∂U

)
N,V

dU +

(
∂S

∂V

)
N,U

dV +

(
∂S

∂N

)
U,V

dN. (22.8)

Equation 22.2 implies that

dS =
dU

T
+
pdV

T
− µdN

T
. (22.9)

Comparison of eqn 22.8 and 22.9 implies that we can therefore make the
following identifications:(

∂S

∂U

)
N,V

=
1

T
,

(
∂S

∂V

)
N,U

=
p

T
,

(
∂S

∂N

)
U,V

= −µ

T
. (22.10)

Now consider two systems which are able to exchange heat or particles
between them. If we write down an expression for dS, then we can use
the second law of thermodynamics in the form dS ≥ 0 to determine the
equilibrium state. We repeat this analysis for two cases as follows:

• The case of heat flow

U U

U

Fig. 22.1 Two systems which are able
to exchange heat with each other.

Consider two systems which are able to exchange heat with each
other while remaining thermally isolated from their surroundings
(see Fig. 22.1). If system 1 loses internal energy dU , system 2 must
gain internal energy dU . Thus the change of entropy is

dS =

(
∂S1

∂U1

)
N,V

dU1 +

(
∂S2

∂U2

)
N,V

dU2

=

(
∂S1

∂U1

)
N,V

(−dU) +

(
∂S2

∂U2

)
N,V

(dU)

=

(
− 1

T1
+

1

T2

)
dU ≥ 0. (22.11)
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So dU > 0, i.e. energy flows from 1 to 2, when T1 > T2. As
expected, equilibrium is found when T1 = T2, i.e. when the tem-
peratures of the two systems are equal.

• The case of particle exchange

Now consider two systems which are able to exchange particles
with each other, but remain isolated from their surroundings (see
Fig. 22.2). If system 1 loses dN particles, system 2 must gain dN
particles. Thus the change of entropy is

dS =

(
∂S1

∂N1

)
U,V

dN1 +

(
∂S2

∂N2

)
U,V

dN2

=

(
∂S1

∂N1

)
U,V

(−dN) +

(
∂S2

∂N2

)
U,V

(dN)

=

(
µ1

T1
− µ2

T2

)
dN ≥ 0 (22.12)

Assuming that T1 = T2, we find that dN > 0 (so that particles flow
from 1 to 2) when µ1 > µ2. Similarly, if µ2 < µ1, then dN < 0.
Hence equilibrium is found when µ1 = µ2, i.e. when the chemi-
cal potentials are the same for each system. This demonstrates
that chemical potential plays a similar rôle in particle exchange as
1/temperature does in heat exchange.

N N

N

Fig. 22.2 Two systems which are able
to exchange particles with each other.

Example 22.1

Find the chemical potential for an ideal gas.
Solution:

We use eqn 22.6 (µ = (∂F/∂N)V,T ), which relates µ to F , together with
eqn 21.36, which gives an expression for F , namely

F = NkBT [ln(nλ3
th) − 1]. (22.13)

Recalling also that n = N/V , we find that

µ = kBT [ln(nλ3
th) − 1] +NkBT

(
1

N

)
, (22.14)

and hence

µ = kBT ln(nλ3
th). (22.15)

In this case, comparison with eqn 21.38 shows that µ = G/N . We will
see in Section 22.5 that this property has more general applicability than
just this specific case.
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22.3 Grand partition function

In this section we will introduce a version of the partition function we
met in Chapter 20 but now generalized to include the effect of variable
numbers of particle. To do this, we have to generalize the canonical
ensemble we met in Chapter 4 to the case of both energy and particle
exchange.

Let us write the entropy S as a function of internal energy U and
particle number N . Consider a small system with fixed volume V and
with energy ε and containing N particles, connected to a reservoir with
energy U−ε and N −N particles (see Fig. 22.3). We assume that U 	 ε
and N 	 N . Using a Taylor expansion, we can write the entropy of the
reservoir as

S(U − ε,N −N) = S(U,N ) − ε

(
dS

dU

)
N ,V

−N

(
dS

dN
)

U,V

, (22.16)

and using the differentials defined in eqn 22.10, we have that

S(U − ε,N −N) = S(U,N ) − 1

T
(ε− µN). (22.17)

The probability P (ε,N) that the system chooses a particular macrostate
is proportionality to the number Ω of microstates corresponding to that
microstate, and using S = kB ln Ω we have that

P (ε,N) ∝ eS(U−ε,N−N)/kB ∝ eβ(µN−ε). (22.18)

This is known as the Gibbs distribution and the situation is known as

N

Fig. 22.3 A small system with energy ε
and containing N particles, connected
to a reservoir with energy U − ε and
N −N particles.

the grand canonical ensemble. In the case in which µ = 0, this reverts
to the Boltzmann distribution (the canonical ensemble). Normalizing
this distribution, we have that the probability of a state of the system
with energy Ei and with Ni particles is given by

Pi =
eβ(µNi−Ei)

Z , (22.19)

where Z is a normalization constant. The normalization constant is
known as the grand partition function Z, which we write as follows:

Z =
∑

i

eβ(µNi−Ei), (22.20)

which is a sum over all states of the system. The grand partition function
Z can be used to derive many thermodynamic quantities, and we write
down the most useful equations here without detailed proof.2 2See Exercise 22.4.

N =
∑

i

NiPi = kBT

(
∂lnZ
∂µ

)
β

, (22.21)

U =
∑

i

EiPi = −
(
∂lnZ
∂β

)
µ

+ µN, (22.22)
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and

S = −kB

∑
i

Pi lnPi =
U − µN + kBT lnZ

T
. (22.23)

For convenience, let us summarize the various ensembles considered in
statistical mechanics.

(1) The microcanonical ensemble: an ensemble of systems which
all have the same fixed energy. The entropy S is related to the
number of microstates by S = kB ln Ω, and hence by

Ω = eβTS . (22.24)

(2) The canonical ensemble: an ensemble of systems, each of which
can exchange its energy with a large reservoir of heat. As we shall
see, this fixes (and defines) the temperature of the system. Since
F = −kBT lnZ, the partition function is given by

Z = e−βF , (22.25)

where F is the Helmholtz function.

(3) The grand canonical ensemble: an ensemble of systems, each
of which can exchange both energy and particles with a large reser-
voir. This fixes the system’s temperature and chemical potential.
By analogy with the canonical ensemble, we write the grand par-
tition function as

Z = e−βΦG , (22.26)

where ΦG is the grand potential, which we discuss in the next
section.

22.4 Grand potential

Using eqn 22.26, we have defined a new state function, the grand poten-
tial ΦG, by

ΦG = −kBT lnZ. (22.27)

Rearranging eqn 22.23, we have that

−kBT lnZ = U − TS − µN, (22.28)

and hence
ΦG = U − TS − µN = F − µN. (22.29)

The grand potential has differential dΦG given by

dΦG = dF − µdN −N dµ, (22.30)

and, substituting in eqn 22.4, we therefore have

dΦG = −S dT − pdV −N dµ, (22.31)
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and this leads to the following equations for S, p and N :

S = −
(
∂ΦG

∂T

)
V,µ

, (22.32)

p = −
(
∂ΦG

∂V

)
T,µ

, (22.33)

N = −
(
∂ΦG

∂µ

)
T,V

. (22.34)

Example 22.2

Find the grand potential for an ideal gas, and show that eqns 22.33 and
22.34 lead to the correct expressions for p and N .
Solution:

Using eqns 21.36 and 22.15 we have that

ΦG = NkBT [ln(nλ3
th) − 1] −NkBT ln(nλ3

th)

= −NkBT, (22.35)

and using the ideal gas equation (pV = NkBT )) this becomes

ΦG = −pV. (22.36)

We can check that eqn 22.34 leads to the correct value of p by evaluating(
∂ΦG

∂µ

)
T,V

=

(
∂ΦG

∂N

)
T,V

(
∂N

∂µ

)
T,V

, (22.37)

and since
(

∂ΦG

∂N

)
T,V

= −kBT (from eqn 22.35) and
(

∂µ
∂N

)
T,V

= kBT/N

we have that (
∂ΦG

∂µ

)
T,V

= −kBT × N

kBT
= −N, (22.38)

justifying eqn 22.34. Similarly,3 3Using the reciprocity theorem, with T
held constant for all terms.(

∂ΦG

∂V

)
T,µ

= −
(
∂ΦG

∂µ

)
T,V

(
∂µ

∂V

)
T,ΦG

= N

(
∂µ

∂V

)
T,ΦG

(22.39)

and since the constraint of constant T and constant ΦG = −NkBT
means constant T and N , and using N = nV , we can use eqn 22.15 to
obtain (

∂µ

∂V

)
T,N

= kBT

(
∂ln(Nλ3

th/V )

∂V

)
T,N

= −kBT

V
, (22.40)

and eqn 22.39 becomes(
∂ΦG

∂V

)
T,µ

= −NkBT

V
= −p, (22.41)

thus justifying eqn 22.33.
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22.5 Chemical potential as Gibbs function
per particle

If we scale a system by a factor λ, then we expect all the extensive44The distinction between intensive and
extensive variables is discussed in Sec-
tion 11.1.2.

variables will scale with λ, thus

U → λU, S → λS, V → λV, N → λN, (22.42)

and writing the entropy S as a function of U , V and N , we have

λS(U, V,N) = S(λU, λV, λN), (22.43)

so that differentiating with respect to λ we have

S =
∂S

∂(λU)

∂(λU)

∂λ
+

∂S

∂(λV )

∂(λV )

∂λ
+

∂S

∂(λN)

∂(λN)

∂λ
, (22.44)

so that setting λ = 1 and using eqn 22.10, we have that

S =
U

T
+
pV

T
− µN

T
, (22.45)

and hence
U − TS + pV = µN. (22.46)

We recognize the left-hand side of this equation as the Gibbs function,
and so we have

G = µN. (22.47)

This gives a new interpretation for the chemical potential: by rearrang-
ing the above equation, one has that

µ =
G

N
, (22.48)

so that the chemical potential µ can be thought of as the Gibbs function
per particle.

This analysis also implies that the grand potential ΦG = F − µN =
U − TS − µN can be rewritten (using eqn 22.46) as

ΦG = −pV . (22.49)

This equation has been demonstrated to be correct for the specific ex-
ample of the ideal gas (see eqn 22.36), but we have now shown that it
is always correct if entropy is an extensive property.

22.6 Many types of particle

If there is more than one type of particle, then one can generalize the
treatment in Section 22.5, and write

dU = TdS − pdV +
∑

i

µidNi, (22.50)
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where Ni is the number of particles of species i and µi is the chemical
potential of species i. Correspondingly, we have the equations

dF = −pdV − SdT +
∑

i

µidNi, (22.51)

dG = V dp− SdT +
∑

i

µidNi, (22.52)

and in particular, when the pressure and temperature are held constant
we have that

dG =
∑

i

µidNi. (22.53)

This generalization will be useful in our treatment of chemical reactions
in Section 22.8. In the following section, we make the connection between
µ and the conservation of particle number.

22.7 Particle number conservation laws

Imagine that one has a set of particles in a box in which particle number
is not conserved. This means that we are free to create or destroy par-
ticles at will. There might be an energy cost associated with doing this,
but provided we have energy to ‘pay’ for the particles, no conservation
laws would be broken. In this case, the system will try to minimize its
availability (see Section 16.5) and if the constraints are that the box has
fixed volume and fixed temperature, then the appropriate availability is
the Helmholtz function5 F . The system will therefore choose a number 5If the constraints were constant pres-

sure and temperature, we would be
dealing with G not F ; see Section 16.5.

of particles N by minimizing F with respect to N , i.e.(
∂F

∂N

)
V,T

= 0. (22.54)

This means that, from eqn 22.6,

µ = 0. (22.55)

We arrive at the important result that, for a set of particles with no
conservation law concerning particle number, the chemical potential µ
is zero. One example of such a particle is the photon.6 6Strictly this is only for photons in a

vacuum, which the following example
will assume. Photons can under some
circumstances have a non-zero chemi-
cal potential. For example, if electrons
and holes combine in a light-emitting
diode, it may be that the chemical po-
tential of the electrons µe, from the
conduction band, is not balanced by
the chemical potential of the holes µh,
from the valence band, and this leads to
light with a non-zero chemical potential
µγ = µe + µh.

To understand this further, let us consider a set of particles for which
particle number is a conserved quantity. Consider a gas of electrons.
Electrons do have a conservation law: electron number has to be con-
served, so the only way of annihilating an electron is by reacting it with
a positron7 via the reaction

7A positron e+ is an antielectron.

e− + e+ � γ, (22.56)

where γ denotes a photon. Thus imagine that our box contains N−
electrons and N+ positrons. We are constrained by our conservation
law to fix the number N = N+ −N−, which also serves to ensure that
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charge is conserved. The system is at fixed T and V , and hence we
should minimize F with respect to any variable, so let us choose N− as
a variable to vary. Thus (

∂F

∂N−

)
V,T,N

= 0. (22.57)

In this case, F is the sum of a term due to the Helmholtz function for
the electrons and one for the positrons. Thus(

∂F

∂N−

)
V,T,N+

+

(
∂F

∂N+

)
V,T,N−

dN+

dN−
= 0. (22.58)

Now we have that (
∂F

∂N−

)
V,T,N+

= µ−, (22.59)

the chemical potential of the electrons, while(
∂F

∂N+

)
V,T,N−

= µ+, (22.60)

the chemical potential of the positrons. Moreover, since

dN−
dN+

= 1, (22.61)

we have that
µ+ + µ− = 0. (22.62)

We are ignoring the chemical potential of the photons, since this is zero
because photons do not have a conservation law.8

8Again, this is true for most circum-
stances, the photons from a light-
emitting diode being a notable coun-
terexample.

22.8 Chemical potential and chemical
reactions

We next want to consider how the chemical potential can be used to de-
termine the equilibrium position of a chemical reaction. Before proceed-
ing, we will prove an important result concerning the way the chemical
potential of an ideal gas depends on pressure.

Example 22.3

Derive an expression for the dependence of the chemical potential of an
ideal gas on pressure at fixed temperature.
Solution:

Equation 22.15 and the ideal gas equation (p = nkBT ) imply that

µ = kBT ln

(
λ3

th

kBT

)
+ kBT ln p. (22.63)
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It is useful to compare the chemical potential at standard temperature
(298 K) and pressure (p� = 1 bar = 105 Pa), which we denote by µ�,
with the chemical potential measured at some other pressure p. Here
the symbol � denotes the value of a function measured at standard
temperature and pressure. The chemical potential µ(p) at pressure p is
then given by

µ(p) = µ� + kBT ln
p

p�
. (22.64)

Chemists often define their chemical potentials as the Gibbs function
per mole, rather than per particle. In those units, one would have

µ(p) = µ� +RT ln
p

p�
. (22.65)

Another way of solving this is to use the
equation for the change in Gibbs func-
tion dG = V dp−S dT , which when the
temperature is constant is dG = V dp.
This can be integrated to give

G(p) = G� +

Z p�

p
V dp

and hence

G(p) = G� + nmRT ln
p

p�

for nm moles of gas. Equation 22.65
then follows.

We are now ready to think about a simple chemical reaction. Consider
the chemical reaction

A � B. (22.66)

The symbol � indicates that in this reaction it is possible to have both
the forward reaction A→B and the backward reaction B→A. If we have
a container filled with a mixture of A and B, and we leave it to react
for a while, then depending on whether A→B is more or less important
than B→A, we can determine the equilibrium concentrations of A and
B. For gaseous reactions, the concentration of A (or B) is related to
that species’ partial pressure9 pA (or pB). We define the equilibrium 9The partial pressure of a gas in a mix-

ture is what the pressure of that gas
would be if all other components sud-
denly vanished. Dalton’s law states
that the total pressure of a mixture of
gases is equal to the sum of the individ-
ual partial pressures of the gases in the
mixture (see Section 6.3).

constant K as the ratio of these two partial pressures at equilibrium,
i.e.

K =
pA

pB
. (22.67)

When K 	 1, the backwards reaction dominates and our container will
be mainly filled with A. When K � 1, the forwards reaction dominates
and our container will be mainly filled with B.

The change in Gibbs function as this reaction proceeds is

dG = µA dNA + µB dNB. (22.68)

However, since an increase in B is always accompanied by a correspond-
ing decrease in A, we have that

dNB = −dNA, (22.69)

and hence
dG = (µA − µB) dNB. (22.70)

Let us now denote the total molar Gibbs function change in a reaction
by the symbol ∆rG. For a gaseous reaction, eqn 22.65 implies that

∆rG = ∆rG
� +RT ln

pA

pB
, (22.71)
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where ∆rG
� is the difference between the molar chemical potentials of

the two species. When ∆rG > 0, the forward reaction A → B occurs
spontanously. When ∆rG < 0, the backward reaction B → A occurs
spontanously. Equilibrium occurs when ∆rG = 0, and substituting this
into eqn 22.71 and using eqn 22.67 shows that

lnK = −∆rG
�

RT
. (22.72)

Hence there is a direct relationship between the equilibrium constant
of a reaction and the difference in chemical potentials (measured under
standard conditions) of the product and reactant.1010The reactant is defined to be the

chemical on the left-hand side of the re-
action; the product is defined to be the
chemical on the right-hand side of the
reaction.

It is useful to generalize these ideas to the case in which the chemical
reaction is a bit more complicated than A � B. A general chemical
reaction, with p reactants and q products, can in general be written in
the form

p∑
j=1

(−νj)Aj →
p+q∑

j=p+1

(+νj)Aj , (22.73)

where the νj coefficients are here defined to be negative for the reactants
and where Aj represents the jth substance. This can be rearranged to
give

0 →
p+q∑
j=1

νjAj . (22.74)

Example 22.4

Equation 22.53 can be applied to chemical reactions, such as

N2 + 3H2 → 2NH3. (22.75)

This can be cast into the general form of eqn 22.74 by writing

ν1 = −1, ν2 = −3, ν3 = 2. (22.76)

In a chemical system in equilibrium at constant temperature and pres-
sure we have that the Gibbs function is minimized and so eqn 22.53 gives

p+q∑
j=1

µjdNj = 0, (22.77)

where Nj is the number of molecules of type Aj . In order to keep the
reaction balanced, the dNj must be proportional to νj and hence

p+q∑
j=1

νjµj = 0. (22.78)

This equation is very general.
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Example 22.5

For the chemical reaction

N2 + 3H2 → 2NH3,

eqn 22.78 implies that

−µN2
− 3µH2

+ 2µNH3
= 0. (22.79)

One can generalize the previous definition of the equilibrium constant
for a gaseous reaction in eqn 22.67 (for a simple A � B reaction) to the
the following expression (for our general reaction in eqn 22.74):

K =

p+q∏
j=1

(
pj

p�

)νj

. (22.80)

Example 22.6

For the chemical reaction

N2 + 3H2 → 2NH3,

the equilibrium constant is

K =
(pNH3

/p�)2

(pN2
/p�)(pH2

/p�)3
=
p2
NH3

p�2

pN2
p3
H2

. (22.81)

Equilibrium, given by eqn 22.78, implies that

p+q∑
j=1

νj

(
µ�

j +RT ln
pj

p�

j

)
= 0 (22.82)

and writing

∆rG
� =

p+q∑
j=1

νjµ
�

j , (22.83)

we have that

∆rG
� +RT

p+q∑
j=1

νj ln
pj

p�

j

= 0 (22.84)

and hence
∆rG

� +RT lnK = 0, (22.85)
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or equivalently

lnK = −∆rG
�

RT
, (22.86)

in agreement with eqn 22.72 (which was proved only for the simple
reaction A � B).

Since lnK = −∆rG
�/RT , we have that

d lnK

dT
= − 1

R

d(∆rG
�/T )

dT
, (22.87)

and using the Gibbs–Helmholtz relation (eqn 16.26) this becomes

d lnK

dT
=

∆rH
�

RT 2
. (22.88)

Note that if the reaction is exothermic under standard conditions, then
∆rH

� < 0 and henceK decreases as temperature increases. Equilibrium
therefore shifts away from the products of the reaction.

If on the other hand the reaction is endothermic under standard condi-
tions, then ∆rH

� > 0 and hence K increases as temperature increases.
Equilibrium therefore shifts towards the products of the reaction.

This observation agrees with Le Chatelier’s principle which states
that ‘a system at equilibrium, when subjected to a disturbance, responds
in such a way as to minimize that disturbance’. In this case an exother-
mic reaction produces heat and this can raise the temperature, which
then slows the forward reaction towards the products. In the case of
an endothermic reaction, heat is absorbed by the reactants and this
can lower the temperature which would speed up the forward reaction
towards the products.

Equation 22.88 can be written in the following form:

d lnK

d(1/T )
= −∆rH

�

R
, (22.89)

which is known as the van ’t Hoff equation.11 This implies that a11Jacobus Henricus van ’t Hoff (1852–
1911). graph of lnK against 1/T should yield a straight line whose gradient is

−∆rH
�/R. This fact is used in the following example.

Example 22.7

Consider the dissociation reaction of molecular hydrogen into atomic
hydrogen, i.e. the reaction

H2 → H · + H· (22.90)
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The equilibrium constant for this reaction is plotted in Fig. 22.4. The
plot of K against T emphasizes that the ‘equilibrium for this reaction
is well and truly on the left’, meaning that the main constituent is H2;
molecular hydrogen is only very slightly dissociated even at 2000 K.
Plotting the same data as lnK against 1/T yields a straight-line graph
whose gradient yields −∆H�/R for this reaction. For these data we
find that ∆H� is about 440 kJ mol−1. This is positive and hence the
reaction is endothermic, which makes sense because you need to heat
H2 to break the molecular bond. This corresponds to a bond enthalpy
per hydrogen molecule of (440 kJ mol−1/NAe) ≈ 4.5 eV.

T

K

T

K

T

Fig. 22.4 The equilibrium constant for
the reaction H2 → H · +H·, as a func-
tion of temperature. The same data are
plotted in two different ways.

Chapter summary

• An extra term is appropriately introduced into the combined first
and second law to give dU = TdS − pdV + µdN , and this allows
for cases in which the number of particles can vary.

• µ is the chemical potential, which can be expressed as µ =
(

∂G
∂N

)
p,T

.
It is also the Gibbs function per particle.

• For a system which can exchange particles with its surroundings,
the chemical potential plays a similar rôle in particle exchange as
temperature does in heat exchange.

• The grand partition function Z is given by Z =
∑

i eβ(µNi−Ei).

• The grand potential is ΦG = −kBT lnZ = U − TS − µN = −pV .

• µ = 0 for particles with no conservation law.

• For a chemical reaction dG =
∑
µj dNj = 0 and hence∑

νjµj = 0.

• The equilibrium constantK can be written as lnK = −∆rG
�/RT .

• The temperature dependence of K follows d lnK/dT =
∆rH

�/RT 2.

Further reading

• Baierlein (2001) and Cook and Dickerson (1995) are both excellent articles concerning the nature of the chemical
potential.

• Atkins and de Paulo (2006) contains a treatment of the chemical potential from the perspective of chemistry.
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Exercises

(22.1) Maximize the entropy S = −kB

P
i Pi ln Pi, where

Pi is the probability of the ith level being occu-
pied, subject to the constraints that

P
Pi = 1,P

PiEi = U and
P

PiNi = N to rederive the
grand canonical ensemble.

(22.2) The fugacity z is defined as z = eβµ. Using
eqn 22.15, show that

z = nλ3
th (22.91)

for an ideal gas, and comment on the limits z � 1
and z � 1.

(22.3) Estimate the bond enthalpy of Br2 using the data
plotted in Fig. 22.5.

T

K

T

Fig. 22.5 The equilibrium constant for the reaction
Br2 → Br · +Br·, as a function of temperature.

(22.4) Derive eqns 22.21, 22.22 and 22.23.

(22.5) If the partition function ZN of a gas of N indis-
tinguishable particles is given by ZN = ZN

1 /N1,
where Z1 is the single–particle partition function,
show that the chemical potential is given by

µ = −kBT ln
Z1

N
. (22.92)

(22.6) (a) Consider the ionization of atomic hydrogen,
governed by the equation

H � p+ + e−, (22.93)

where p+ is a proton (equivalently a posi-
tively ionized hydrogen) and e− is an elec-
tron. Explain why

µH = µp + µe. (22.94)

Using the partition function for hydrogen
atoms from eqn 21.50, and using eqn 22.92,
show that

−kBT ln
Zp

1

Np
−kBT ln

Ze
1

Ne
= −kBT ln

ZH
1

NH
eβR,

(22.95)
where Zx

1 and Nx are the single–particle par-
tition function and number of particles for
species x, and where R = 13.6 eV. Hence
show that

nenp

nH
=

(2πmekBT )3/2

h3
e−βR, (22.96)

where nx = Nx/V is the number density
of species x, stating any approximations you
make. Equation 22.96 is known as the Saha
equation.

(b) Explain why charge neutrality implies that
ne = np and conservation of nucleons implies
nH + np = n, where n is the total number
density of hydrogen (neutral and ionised).
Writing y = np/n as the degree of ioniza-
tion, show that

y2

1 − y
=

e−βR

nλ3
th

, (22.97)

where λth is the thermal wavelength for the
electrons. Find the degree of ionization of
a cloud of atomic hydrogen at 1000 K and
density 1020 m−3.

(c) Equation 22.97 shows that the degree of ion-
ization goes up when the density n goes
down. Why is that?
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In this chapter, we will consider the thermodynamics of electromagnetic
radiation. It was Maxwell who realized that light was an electromagnetic
wave and that the speed of light, c, could be expressed in terms of funda-
mental constants taken from the theories of electricity and magnetism.
In modern notation, this relation is

c = 1/
√
ε0µ0, (23.1)

where ε0 and µ0 are the permittivity and permeability of free space
respectively. Later, Planck realized that light behaved not only like a
wave but also like a particle. In the language of quantum mechanics,
electromagnetic waves can be quantized as a set of particles which are
known as photons. Each photon has an energy �ω where ω = 2πν is
the angular frequency.1 Each photon has a momentum �k where k is the

1ν is the frequency. The energy can
also be expressed as hν. Recall also
that � = h/(2π).

wave vector.2 The ratio of the energy to the momentum of a photon is

2The wave vector k = 2π/λ where λ is
the wavelength.

ω

k
= 2πν × λ

2π
= νλ = c. (23.2)

Electromagnetic radiation is emitted from any substance at non-zero
temperature. This is known as thermal radiation. For objects at room
temperature, you may not have noticed this effect because the frequency
of the electromagnetic radiation is low and most of the emission is in
the infrared region of the electromagnetic spectrum. Our eyes are only
sensitive to electromagnetic radiation in the visible region. However,
you may have noticed that a piece of metal in a furnace glows ‘red hot’
so that, for such objects at higher temperature, your eyes are able to
pick up some of the thermal radiation.3 3Your eyes can pick up a lot of the ther-

mal radiation if they are assisted by in-
frared goggles.

This chapter is all about the properties of this thermal radiation.
We will begin in Sections 23.1–23.4 by restricting ourselves to simple
thermodynamics arguments to derive as much as we can about thermal
radiation without going into the gory details, in much the same way as
was originally done in the nineteenth century. This approach doesn’t get
us the whole way, but provides a lot of insight. Then in Sections 23.5–
23.6, we will use the more advanced statistical mechanical techniques
introduced in the previous chapters to do the job properly. The final
sections concern the thermal radiation that exists in the Universe as a
remnant of the hot Big Bang and the effect of thermal radiation on the
behaviour of atoms and hence the operation of the laser.
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23.1 The classical thermodynamics of
electromagnetic radiation

In this section, we will consider the thermodynamics of electromagnetic
radiation from a classical standpoint, although we will allow ourselves
the post-nineteenth century luxury of considering the electromagnetic
radiation to consist of a gas of photons. First we will consider the effect
of a collection of photons on the surroundings which contain it. Let us
consider the surroundings to be a container of volume V , which in this
subject is termed a ‘cavity’, which is held at temperature T . The photons
inside the cavity are in thermal equilibrium with the cavity walls, and
form electromagnetic standing waves. The walls of the cavity, shown

Fig. 23.1 A cavity of photons whose
walls are diathermal, meaning they are
in thermal contact with their surround-
ings, so that the temperature within
may be controlled.

in Fig. 23.1, are made of diathermal material (i.e. they transmit heat
between the gas of photons inside the cavity and the surroundings). If n
photons per unit volume comprise the gas of photons in the cavity then
the energy density u of the gas may be written as:

u =
U

V
= n�ω, (23.3)

where �ω is the mean energy of a photon. From kinetic theory (eqn 6.15),
the pressure p of a gas of particles is 1

3nm〈v2〉. For photons, we replace
〈v2〉 in this formula by c2, the square of the speed of light. Interpreting
mc2 as the energy of a photon, we then have that p is one third of the
energy density. Thus

p =
u

3
, (23.4)

which is different from the expression in eqn 6.25 (p = 2u/3) from the
kinetic theory of gases, a point which we will return to in Section 25.2
(see eqn 25.21).4 Equation 23.4 gives an expression for the radiation4The factor of two difference arises

from writing the kinetic energy as mc2

and not as 1
2
m〈v2〉, and thus reflects

the difference in form between the equa-
tion for the relativistic energy of a pho-
ton and that for the kinetic energy of a
non-relativistic particle.

pressure due to the electromagnetic radiation. Also from kinetic theory
(eqn 7.6), the flux Φ of photons on the walls of their container, that is
to say the number of photons striking unit area of their container per
second, is given by

Φ =
1

4
nc, (23.5)

where c is the speed of light. From this, and eqn 23.3, we can write the
power incident per unit area of cavity wall, due to the photons, as

P = �ωΦ =
1

4
uc. (23.6)

This relation will be important as we now derive the Stefan–Boltzmann
law, which relates the temperature of a body to the energy flux radiating
from it in the form of electromagnetic radiation. We can derive this using
the first law of thermodynamics in the form dU = TdS − pdV to give(

∂U

∂V

)
T

= T

(
∂S

∂V

)
T

− p

= T

(
∂p

∂T

)
V

− p, (23.7)
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where the last equality follows from using a Maxwell relation. The left-
hand side of eqn 23.7 is simply5the energy density u. Hence, using 5This should be obvious since it is the

definition of energy density. However,
if you want to convince yourself, notice
that differentiating U = uV with re-
spect to V yields„

∂U

∂V

«
T

= u+ V

„
∂u

∂V

«
T

= u,

because
“

∂u
∂V

”
T

= 0 since u, an energy

density, is independent of volume.

eqn 23.7, together with eqn 23.4, we obtain

u =
1

3
T

(
∂u

∂T

)
V

− u

3
. (23.8)

Rearranging gives:

4u = T

(
∂u

∂T

)
V

, (23.9)

from which follows

4
dT

T
=

du

u
. (23.10)

Equation 23.10 may be integrated to give:

u = AT 4, (23.11)

where A is a constant of the integration with units J K−1 m−3. We can
now use eqn 23.6 to give us the power incident6 per unit area.7 6Note that when the cavity is in equi-

librium with the radiation inside it, the
power incident is equal to the power
emitted; hence the expression for P ex-
presses the power emitted by the sur-
face and the power incident on the sur-
face.
7The power per unit area is equal to an
energy flux.

P =
1

4
uc =

(
1

4
Ac

)
T 4 = σT 4, (23.12)

where the term in brackets, σ = 1
4Ac, is known as the Stefan–Boltzmann

constant. Equation 23.12 is known as the Stefan–Boltzmann law or
sometimes as Stefan’s law. For the moment, we have no idea what
value the constant σ takes and this is something that was originally
determined from experiment. In Section 23.5, using the techniques of
statistical mechanics, we will derive an expression for this constant.

23.2 Spectral energy density

The energy density u of electromagnetic radiation is a quantity which
tells you how many Joules are stored in a cubic metre of cavity. What
we want to do now is to specify in which frequency ranges that energy
is stored. All of this will fall out of the statistical mechanical treatment
in Section 23.5, but we want to continue to apply a classical treatment
to see how far we can get. To do this, consider two containers, each
in contact with thermal reservoirs at temperature T and joined to one
another by a tube, as illustrated schematically in Fig. 23.2. The system
is allowed to come to equilibrium.

T T

Fig. 23.2 Two cavities at temperature
T, one is lined with soot and the other
with a mirror coating.

The thermal reservoirs are at the same temperature T and so we know
from the second law of thermodynamics that there can be no net heat
flow from either one of the bodies to the other. Therefore there can
be no net energy flux along the tube, so that the energy flux from the
soot-lined cavity along the tube from left to right must be balanced by
the energy flux from the mirror-lined cavity along the tube from right to
left. Equation 23.12 thus tells us that each cavity must have the same
energy density u. This argument can be repeated for cavities of different
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shape and size as well as different coatings. Hence we conclude that
u is independent of shape, size or material of the cavity. But maybe
one cavity might have more energy density than the other at certain
wavelengths, even if it has to have the same energy density overall?
This is not the case, as we shall now prove. First, we make a definition.

• The spectral energy density uλ is defined as follows: uλdλ isuλ has units Jm−3 m−1.

the energy density due to those photons which have wavelengths
between λ and λ+ dλ. The total energy density is thenWe can also define a spectral density

in terms of frequency ν, so that uνdν is
the energy density due to those photons
which have frequencies between ν and
ν + dν.

u =

∫
uλ dλ. (23.13)

Now imagine that a filter, which only allows a narrow band of radiation
at wavelength λ to pass, is inserted at point A in Fig. 23.2 and the
system is left to come to equilibrium. The same arguments listed above
apply in this case: there is no net energy flux from one cavity to the
other and hence the specific internal energy within a narrow wavelength
range is the same for each case:

usoot
λ (T ) = umirror

λ (T ). (23.14)

This demonstrates that the spectral internal energy has no dependence
on the material, shape, size or nature of a cavity. The spectral energy
density is thus a universal function of λ and T only.

23.3 Kirchhoff’s law

We now wish to discuss how well particular surfaces of a cavity will
absorb or emit electromagnetic radiation of a particular frequency or
wavelength. We therefore make the following additional definitions:

• The spectral absorptivity αλ is the fraction of the incidentαλ is dimensionless.

radiation which is absorbed at wavelength λ.

• The spectral emissive power eλ of a surface is a function sucheλ has units W m−2 m−1.

that eλ dλ is the power emitted per unit area by the electromag-
netic radiation having wavelengths between λ and λ+ dλ.

Using these definitions, we may now write down the form for the power
per unit area absorbed by a surface, if the incident spectral energy den-
sity is uλdλ, as follows: (

1

4
uλdλ c

)
αλ. (23.15)

The power per unit area emitted by a surface is given by

eλdλ. (23.16)

In equilibrium, the expressions in eqns 23.15 and 23.16 must be equal,
and hence

eλ

αλ
=
c

4
uλ. (23.17)
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Equation 23.17 expresses Kirchhoff’s law, which states that the ratio
eλ/αλ is a universal function of λ and T . Therefore, if you fix λ and
T , the ratio eλ/αλ is fixed and hence eλ ∝ αλ. In other words ‘good
absorbers are good emitters’ and ‘bad absorbers are bad emitters’.

Example 23.1

Dark coloured objects which absorb most of the light that falls on them
will be good at emitting thermal radiation. One has to be a bit careful
here because you have to be sure about which wavelength you are talking
about. A better statement of Kirchhoff’s laws would be ‘good absorbers
at one wavelength are good emitters at the same wavelength’.

For example, a white coffee mug absorbs poorly in visible wavelengths
so looks white. A black, but otherwise identical, coffee mug absorbs
well in visible wavelengths so looks black. Which one is best at keeping
your coffee warm? You might conclude that it is the white mug because
‘poor absorbers are poor emitters’ and that the mug will lose less heat
by thermal radiation. However, a hot mug emits radiation mainly in the
infrared region of the electromagnetic spectrum,8 and so the mug being 8See Appendix D.

white in the visible is immaterial; what you need to know is what ‘colour’
each mug is in the infrared, i.e. measuring their absorption spectra at
infrared wavelengths will tell you about their emission properties there.

A perfect black body is an object which is defined to have αλ = 1
for all λ. Kirchhoff’s law expressed in eqn 23.17 tells us that for this
maximum value of α, a black body is the best possible emitter. It is
often useful to think of a black body cavity which is an enclosure
whose walls have αλ = 1 for all λ and which contains a gas of photons
at the same temperature as the walls, due to emission and absorption
of photons by the atoms in the walls. The gas of photons contained in
the black body cavity is known as black body radiation.

Example 23.2

The temperature of the Earth’s surface is maintained by radiation from
the Sun. By making the approximation that the Sun and the Earth
behave as black bodies, show that the ratio of the Earth’s temperature
to that of the Sun is given by

TEarth

TSun
=

√
RSun

2D
, (23.18)

where RSun is the radius of the Sun and the Earth–Sun separation is D.
Solution:
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The Sun emits a power equal to its surface area 4πR2
Sun multiplied by

σT 4
Sun. This power is known as its luminosity L (measured in Watts),

so that
L = 4πR2

SunσT
4
Sun. (23.19)

At a distance D from the Sun, this power is uniformly distributed over
a sphere with surface area 4πD2, and the Earth is only able to ‘catch’
this power over its projected area πR2

Earth. Thus the power incident on
the Earth is

power incident = L

(
πR2

Earth

4πD2

)
. (23.20)

The power emitted by the Earth, assuming it has a uniform temperature
TEarth and behaves as a black body, is simply σT 4

Earth multiplied by the
Earth’s surface area 4πR2

Earth, so that

power emitted = 4πR2
EarthσT

4
Earth (23.21)

Equating eqn 23.20 and eqn 23.21 yields the desired result.
Putting in the numbersRSun = 7×108 m, D = 1.5×1011 m and TSun =

5800 K yields TEarth = 280 K, which is not bad given the crudeness of
the assumptions.

23.4 Radiation pressure

To summarize the results of the earlier sections in this chapter, for black
body radiation we have:

power radiated per unit area P =
1

4
uc = σT 4, (23.22)

energy density in radiation u =

(
4σ

c

)
T 4, (23.23)

pressure on cavity walls p =
u

3
=

4σT 4

3c
. (23.24)

If, however, one is dealing with a beam of light, in which all the photons
are going in the same direction (rather than in each and every direction
as we have in a gas of photons) then these results need to be modified.
The pressure exerted by a collimated beam of light can be calculated
as follows: a cubic metre of this beam has momentum n�k = n�ω/c,
and this momentum is absorbed by a unit area of surface, normal to the
beam, in a time 1/c. Thus the pressure is p = [n�ω/c]/[1/c] = n�ω = u.
A cubic metre of the beam has energy n�ω, so the power P incident on
unit area of surface is P = n�ω/(1/c) = uc. Hence, we have

power radiated per unit area P = uc = σT 4, (23.25)

energy density in radiation u =
(σ
c

)
T 4, (23.26)

pressure on cavity walls p = u =
σT 4

c
. (23.27)
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It is worth emphasising that electromagnetic radiation exerts a real pres-
sure on a surface and this can be calculated using eqn 23.24 or eqn 23.27
as appropriate. An example of a calculation of radiation pressure is
given below.

Example 23.3

Sunlight falls on the surface of the Earth with a power per unit area equal
to P = 1370 W m−2. Calculate the radiation pressure and compare it to
atmospheric pressure.
Solution:

Sunlight on the Earth’s surface consists of photons all going in the
same direction,9 and hence we can use 9We make this approximation because

the Sun is sufficiently far from the
Earth, so that all the rays of light ar-
riving on Earth are parallel.p =

P

c
= 4.6µPa, (23.28)

which is more than ten orders of magnitude lower than atmospheric
pressure (which is ∼ 105 Pa).

23.5 The statistical mechanics of the
photon gas

Our argument so far has only used classical thermodynamics. We have
been able to predict that the energy density u of a photon gas behaves as
AT 4 but we have been able to say nothing about the constant A. It was
only through the development of quantum theory that it was possible to
derive what A is, and we will present this in what follows. The crucial
insight is that electromagnetic waves in a cavity can be described by
simple harmonic oscillators. The angular frequency ω of each mode of
oscillation is related to the wave vector k by

k

Fig. 23.3 The relation between ω and
k, for example that in eqn 23.29, is
known as a dispersion relation. For
light (plotted here) this relation is very
simple and is called non-dispersive be-
cause both the phase velocity (ω/k) and
the group velocity (dω/dk) are equal.

ω = ck (23.29)

(see Fig. 23.3) and hence the density of states10 of electromagnetic waves

10This treatment is similar to the anal-
ysis in Section 21.1 for the ideal gas.

as a function of wave vector k is given by

g(k) dk =
4πk2 dk

(2π/L)3
× 2, (23.30)

where the cavity is assumed to be a cube of volume V = L3 and the factor
2 corresponds to the two possible polarizations of the electromagnetic
waves. Thus

g(k) dk =
V k2 dk

π2
, (23.31)
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and hence the density of states g(ω), now written as a function of fre-
quency using eqn 23.29, is

g(ω) = g(k)
dk

dω
=
g(k)

c
, (23.32)

and hence

g(ω) dω =
V ω2 dω

π2c3
. (23.33)

We can derive U for the photon gas by using the expression for U for a
single simple harmonic oscillator in eqn 20.29 to give

U =

∫ ∞

0

g(ω) dω �ω

(
1

2
+

1

eβ�ω − 1

)
. (23.34)

This presents us with a problem since the first part of this expression,
due to the sum of all the zero-point energies, diverges:∫ ∞

0

g(ω) dω
1

2
�ω → ∞. (23.35)

This must correspond to the energy of the vacuum, so after swallowing
hard we redefine our zero of energy so that this infinite contribution is
swept conveniently under the carpet. We are therefore left with

U =

∫ ∞

0

g(ω) dω
�ω

eβ�ω − 1
=

V �

π2c3

∫ ∞

0

ω3 dω

eβ�ω − 1
. (23.36)

If we make the substitution x = �βω, we can rewrite this as

U =
V �

π2c3

(
1

�β

)4 ∫ ∞

0

x3 dx

ex − 1
=

(
V π2k4

B

15c3�3

)
T 4, (23.37)

and hence u = U/V = AT 4. Here, use has been made of the integral∫ ∞

0

x3 dx

ex − 1
= ζ(4)Γ(4) =

π4

15
, (23.38)

which is proved in Appendix C.4 (see eqn C.25). This therefore estab-
lishes that the constant A = 4σ/c is given by

A =
π2k4

B

15c3�3
, (23.39)

and hence the Stefan–Boltzmann constant11 σ is11If you prefer to use h, rather than �,
the Stefan–Boltzmann constant is
written as

σ =
2π5k4

B

15c2h3
.

σ =
π2k4

B

60c2�3
= 5.67 × 10−8 W m−2 K−4. (23.40)

23.6 Black body distribution

The expression in eqn 23.36 can be rewritten as

u =
U

V
=

∫
uω dω, (23.41)
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Fig. 23.4 The black body distribution of spectral energy density, plotted for 200 K, 250 K and 300 K as a function of (a)
frequency and (b) wavelength. The upper scale shows the frequency in inverse centimetres, a unit beloved of spectroscopists.

where uω is a different form of the spectral energy density (written this
time as a function of angular frequency ω = 2πν). It thus takes the form

uω =
�

π2c3
ω3

eβ�ω − 1
. (23.42)

This spectral energy density function is known as a black body dis-
tribution. We can also express this in terms of frequency ν by writing
uω dω = uν dν, and using ω = 2πν and hence dω/dν = 2π. This yields

uν =
8πh

c3
ν3

eβhν − 1
. (23.43)

This function is plotted in Fig. 23.4(a). Similarly, we can transform this
into wavelength, by writing uν dν = uλ dλ, and using ν = c/λ and hence
dν/dλ = −c/λ2. This yields an expression for uλ as follows:

uλ =
8πhc

λ5

1

eβhc/λ − 1
. (23.44)

This is shown in Fig. 23.4(b).
We note several features of this black body distribution.

• At low frequency (i.e. long wavelength), when hν/kBT � 1, the
exponential term can be written as

eβhν ≈ 1 +
hν

kBT
, (23.45)
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and hence

uν → 8πkBTν
2

c3
, (23.46)

and equivalently

uλ → 8πkBT

λ4
. (23.47)

These two expressions are different forms of the Rayleigh–Jeansu

Fig. 23.5 The black body energy
density uλ (thick solid line), to-
gether with the Rayleigh–Jeans equa-
tion (eqn 23.47) which is the long-
wavelength limit of the black body dis-
tribution.

law, and were derived in the nineteenth century before the advent
of quantum mechanics. As that might imply, Planck’s constant h
does not appear in them. These expressions are the correct limit
of the black body distribution, as shown in Fig. 23.5. They created
problems at the time, because if you take the Rayleigh–Jeans form
of uλ and assume it is true for all wavelengths, and then try and
integrate it to get the total internal energy U , you find that

U =

∫ ∞

0

uλ dλ =

∫ ∞

0

8πkBT dλ

λ4
→ ∞. (23.48)

This apparent divergence in U was called the ultraviolet catas-
trophe, because integrating down to small wavelengths (towards
the ultraviolet) produced a divergence. In fact, such high–energy
electromagnetic waves are not excited because light is quantized
and it costs too much energy to produce an ultraviolet photon
when the temperature is too low. Of course, using the correct
black body uλ from eqn 23.44, the correct form

U =

∫ ∞

0

uλ dλ =
4σ

c
T 4 (23.49)

is obtained.

• One can also define the radiance (or surface brightness) Bν as
the flux of radiation per steradian (the unit of solid angle, abbre-
viated to sr) in a unit frequency interval. This function gives the
power through an element of unit area, per unit frequency, from an
element of solid angle. The units of radiance are W m−2 Hz−1 sr−1.
Because there are a total of 4π steradians, we have that1212Note that if we divide the energy den-

sity by the time taken for unit volume
of photons to pass through unit area of
surface, namely 1/c, we have the energy
flux.

Bν(T ) =
c

4π
uν(T ) =

2h

c2
ν3

eβhν − 1
. (23.50)

By analogy, Bλ, with units W m−2 m−1 sr−1, is defined by

Bλ(T ) =
c

4π
uν(T ) =

2hc2

λ5

1

eβhc/λ − 1
. (23.51)

• Wien found experimentally in 1896, before the advent of quantum
mechanics, that the product of the temperature and of the wave-
length at which the maximum of the black body distribution uλ

is found is a constant. This is a statement of what is known as
Wien’s law. The constant can be given as follows:

λmaxT = a constant. (23.52)
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Wien’s law follows from the fact that λmax can be determined by
the condition duλ/dλ = 0, and applying this to eqn 23.44 leads
to βhc/λmax = a constant. Hence λmaxT is a constant, which
is Wien’s law. The law tells us that at room temperature, ob-
jects which are approximately black bodies will radiate the most
at wavelength λmax ≈ 10µm, which is in the infrared region of the
electromagnetic spectrum, as demonstrated in Fig. 23.4(b).
One can easily show13 that the maximum in uν occurs at a fre- 13See Exercise 23.2.

quency given by
hν

kBT
= 2.82144 (23.53)

and the maximum in uλ occurs at a wavelength given by

hc

λkBT
= 4.96511. (23.54)

This can be used to show that the product λT is given by

λT =

{
5.1 mm K at the maximum of uν(T ),
2.9 mm K at the maximum of uλ(T ).

(23.55)

These maxima do not occur at the same place for each distribution
because one is measured per unit frequency interval and the other
per unit wavelength interval, and these are different.14 14The difference between dν and dλ is

derived as follows:

c = νλ,

and hence
ν = c/λ,

so that
dν = − c

λ2
dλ.

Figure 23.6(a) shows how the shape of the distribution changes with
temperature for uν and Fig. 23.6(b) for uλ on log-log scales. These dia-
grams show how the peak of the black body distribution lies in the optical
region of the spectrum for temperatures of several thousand Kelvin, but
in the microwave region for a temperature of a few Kelvin. This fact
is very relevant for the black body radiation in the Universe, which we
describe in the following section.

23.7 Cosmic Microwave Background
radiation

In 1978, Penzias and Wilson of Bell Labs, New Jersey, USA won the No-
bel Prize for their serendipitous discovery (in 1963–1965) of seemingly
uniform microwave emission coming from all directions in the sky which
has come to be known as the cosmic microwave background (CMB).
Remarkably, the spectral shape of this emission exhibits, to high pre-
cision, the distribution for black body radiation of temperature 2.7 K
(see Fig. 23.7) with a peak in the emission spectrum at a wavelength of
about 1 mm. It is startling that the radiation is uniform, or isotropic,
to better than 1 part in 105 (meaning that its spectrum and intensity is
almost the same if you measure in different directions in the sky). This
is one of the key pieces of evidence in favour of the hot Big Bang model
for the origin of the Universe. It implies that there was a time when all
of the Universe we see now was in thermal equilibrium.15

15Note that different black body distri-
butions, that is multiple curves corre-
sponding to regions at a variety of dif-
ferent temperatures, do not superpose
to form a single black body distribu-
tion.
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uu

Fig. 23.6 The black body distribution of spectral energy density, plotted on a logarithmic scale for four different temperatures
as a function of (a) frequency and (b) wavelength.

We can make various inferences about the origin of the Universe from
observations of the cosmic microwave background. It can be shown that
the energy density of radiation in the expanding Universe falls off as
the fourth power of the scale factor (which you can think of as the
linear magnification factor describing the separation of a pair of marker
galaxies in the Universe, a quantity which increases with cosmic time).
From the Stefan–Boltzmann law, the energy density of radiation falls
off as T 4, so temperature and scale-factor are inversely proportional to
one another, so the Universe cools as it expands. Conversely, when
the Universe was much younger, it was much smaller and much hotter.
Extrapolating back in time, one finds that temperatures were such that
physical conditions were very different. For example, it was too hot for
matter to exist as atoms, and everything was ionized. Further back in
cosmic time still, even quarks and hadrons, the sub-structure of protons
and neutrons were thought to be dissociated.

23.8 The Einstein A and B coefficients

If a gas of atoms is subjected to thermal radiation, the atoms can re-
spond by making transitions between different energy levels. We can
think about this effect in terms of absorption and emission of photons
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B

Fig. 23.7 The experimentally deter-
mined spectrum of the cosmic mi-
crowave background (data courtesy
NASA).

by the atom. The atoms are sitting in a bath of photons which we call
the radiation field and it has an energy density uω given by eqn 23.42.
In this section, we will consider the effect of this radiation field on the
transitions between atomic energy levels by modelling the atom as a sim-
ple two-level system. Consider the two-level system shown in Fig. 23.8
which comprises two energy levels, a lower level 1 and an upper level 2,
separated by an energy �ω. In the absence of the radiation field, atoms
in the upper level can decay to the lower level by the process of spon-
taneous emission of a photon [Fig. 23.8(a)]. The number of atoms in
the upper level, N2, is given by solving a simple differential equation

dN2

dt
= −A21N2, (23.56)

where A21 is a constant. This expresses simply that the decay rate
depends on the number of atoms in the upper level. The solution of this
equation is

N2(t) = N2(0)e−t/τ , (23.57)

where τ ≡ 1/A21 is the natural radiative lifetime of the upper level.

N A

N B u

N B u

Fig. 23.8 Transitions for a two-level
system: (a) spontaneous emission of a
photon; (b) absorption of a photon; (c)
stimulated emission of a photon.

In the presence of a radiation field of energy density uω, two further
processes are possible:

• An atom in level 1 can absorb a photon of energy �ω and will end
up in level 2 [Fig. 23.8(b)]. This process is called absorption,
and will occur at a rate which is proportional both to uω and to
the number of atoms in level 1. Thus the rate can be written as
N1B12uω, where B12 is a constant.
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• Quantum mechanics allows the reverse process to occur. Thus
an atom in level 2 can emit a photon of energy �ω as a direct
result of the radiation field, and the atom will end up in level 1
[Fig. 23.8(c)]. In terms of individual photons, this process involves
two photons: the presence of a first photon in the radiation field
(which is absorbed and then re-emitted) stimulates the emission
by the atom of an additional photon. This process is called stim-
ulated emission, and will occur at a rate which is proportional
both to uω and to the number of atoms in level 2. Thus the rate
can be written as N2B21uω where B21 is a constant.

The constants A21, B12 and B21 are called the Einstein A and B
coefficients. To summarize, our three processes are:

(1) spontaneous emission (one photon emitted);

(2) absorption (one photon absorbed);

(3) stimulated emission (one photon absorbed, two photons emitted).

In the steady state, with all three processes occurring simultaneously,
we must have

N2B21uω +N2A21 = N1B12uω. (23.58)

This can be rearranged to give

uω =
A21/B21

(N1B12/N2B21) − 1
. (23.59)

If the system is in thermal equilibrium, then the relative populations of
the two levels must be given by a Boltzmann factor, i.e.

N2

N1
=
g1
g2

e−β�ω, (23.60)

where g1 and g2 are the degeneracies of levels 1 and 2 respectively.
Substitution of eqn 23.60 into eqn 23.59 yields

uω =
A21/B21

(g1B12/g2B21)e−β�ω − 1
, (23.61)

and comparison with eqn 23.42 yields the following relations between
the Einstein A and B coefficients:

B21

B12
=
g1
g2

and A21 =
�ω3

π2c3
B21. (23.62)

Example 23.4

When will a system of atoms in a radiation field exhibit gain, i.e. pro-
duce more photons than they absorb?

Solution: The atoms will produce more photons than they absorb if
the rate of stimulated emission is greater than the absorption rate, and
this will occur if

N2B21uω > N1B12uω, (23.63)
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which implies that
N2

g2
>
N1

g1
. (23.64)

This means that we need to have a population inversion, so that the
number of atoms (‘the population’) in the upper state (per degenerate
level) exceeds that in the lower state. This is the principle behind the
operation of the laser (a word that stands for light amplification by
stimulated emission of radiation). However, in our two-level system
such a population inversion is not possible in thermal equilibrium. For
laser operation, it is necessary to have further energy levels to provide
additional transitions: these can provide a mechanism to ensure that
level 2 is pumped (fed by transitions from another level, keeping its
population high) and that level 1 can drain away (into another lower
level, so that level 1 has a low population).

Chapter summary

• The power emitted per unit area of a black body surface at tem-
perature T is given by σT 4, where

σ =
π2k4

B

60c2�3
= 5.67 × 10−8 W m−2 K−4.

• Radiation pressure p due to black body photons is equal to u/3
where u is the energy density. Radiation pressure due to a colli-
mated beam of light is equal to u.

• The spectral energy density uω takes the form of a black body
distribution. This form fits well to the experimentally measured
form of the cosmic microwave background. It is also important in
the theory of lasers.

Further reading

• A discussion of lasers may be found in Foot (2004), chapters 1 and 7.

• More information concerning the cosmic microwave background is in Liddle (2003) chapter 10 and Carroll and
Ostlie (1996) chapter 27.
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Exercises

(23.1) The temperature of the Earth’s surface is main-
tained by radiation from the Sun. By making the
approximation that the Sun is a black body, but
now assuming that the Earth is a grey body with
albedo A (this means that it reflects a fraction A
of the incident energy), show that the ratio of the
Earth’s temperature to that of the Sun is given by

TEarth = TSun(1 − A)1/4

r
RSun

2D
, (23.65)

where RSun is the radius of the Sun and the Earth–
Sun separation is D.

(23.2) Show that the maxima in the functions uν and
uλ can be computed by maximising the function
xα/(eα − 1) for α = 3 and α = 5 respectively.
Show that this implies that

x = α(1 − e−x). (23.66)

This equation can be solved by iterating

xn = α(1 − e−xn−1); (23.67)

now show that (using an initial guess of x1 = 1)
this leads to the values given in eqns 23.53 and
23.54.

(23.3) The cosmic microwave background (CMB) radia-
tion has a temperature of 2.73 K.
(a) What is the photon energy density in the Uni-
verse?
(b) Estimate the number of CMB photons which
fall on the outstretched palm of your hand every
second.
(c) What is the average energy due to CMB radia-
tion which lands on your outstretched palm every
second?
(d) What radiation pressure do you feel from CMB
radiation?

(23.4) What is the ratio of the number of photons from
the Sun to the number of CMB photons which irra-
diate your outstretched hand every second (during
the daytime!)?

(23.5) Thermal radiation can be treated thermodynam-
ically as a gas of photons with internal energy
U = u(T )V and pressure p = u(T )/3, where u(T )
is the energy density. Show that:

(a) the entropy density s is given by s = 4p/T ;

(b) the Gibbs function G = 0;

(c) the heat capacity at constant volume Cv = 3s
per unit volume;

(d) the heat capacity at constant pressure, Cp, is
infinite. (What on earth does that mean?)

(23.6) Ignoring the zero-point energy, show that the par-
tition function Z for a gas of photons in volume V
is given by

ln Z = − V

π2c3

Z ∞

0

ω2 ln(1 − e−�ωβ) dω, (23.68)

and hence, by integrating by parts, that

ln Z =
V π2(kBT )3

45�3c3
. (23.69)

Hence show that

F = −4σV T 4

3c
(23.70)

S =
16σV T 3

3c
(23.71)

U =
4σV T 4

c
(23.72)

p =
4σT 4

3c
, (23.73)

and hence that U = −3F , pV = U/3 and S =
4U/3T .

(23.7) Show that the total number N of photons in black
body radiation contained in a volume V is

N =

Z ∞

0

g(ω) dω

e�ω/kBT − 1
=

2ζ(3)

π2

„
kBT

�c

«3

V,

(23.74)
where ζ(3) = 1.20206 is a Riemann-zeta function
(see Appendix C.4). Hence show that the average
energy per photon is

U

N
=

π4

30ζ(3)
kBT = 2.701kBT, (23.75)

and that the average entropy per photon is

S

N
=

2π4

45ζ(3)
kB = 3.602kB. (23.76)

The result for the internal energy of a photon gas
is therefore U = 2.701NkBT , whereas for a clas-
sical ideal gas one obtains U = 3

2
NkBT . Why

should the two results be different? Compare the
expression for the entropy of a photon gas with
that for an ideal gas (the Sackur-Tetrode equa-
tion); what is the physical reason for the differ-
ence?
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In a solid, energy can be stored in vibrations of the atoms which are
arranged in a lattice.1 In the same way that photons are quantized

1We assume a crystalline solid, though
analogous results can be derived for
non-crystalline solids. A lattice is
a three-dimensional array of regularly
spaced points, each point coinciding
with the mean position of the atoms in
the crystal.

electromagnetic waves that describe the elementary excitations of the
electromagnetic field, phonons are the quantized lattice waves that de-
scribe the elementary excitations of vibrations of the lattice. Rather
than treating the vibration of each individual atom, our focus is on the
normal modes of the system which oscillate independently of each other.
Each normal mode can be treated as a simple harmonic oscillator, and
thus can contain an integer number of energy quanta. These energy
quanta can be considered discrete ‘particles’, known as phonons. The
thermodynamic properties of a solid can therefore be calculated in much
the same way as was done for photons in the previous chapter – by eval-
uating the statistical mechanics of a set of simple harmonic oscillators.
The problem here is more complex because of the dispersive nature of
lattice waves, but two models (the Einstein model and the Debye model)
are commonly used to describe solids and we evaluate each in turn in
the following two sections.

24.1 The Einstein model

The Einstein model treats the problem by making the assumption that
all vibrational modes of the solid have the same frequency ωE. There are
3N such modes2 (each atom of the solid has three vibrational degrees 2Strictly speaking, a solid has 3N − 6

vibrational modes, since although each
atom can move in one of three direc-
tions (hence 3N degrees of freedom)
one has to subtract 6 modes which cor-
respond to translation and rotation of
the solid as a whole. When N is large,
as it will be for any macroscopic sam-
ple, a correction of 6 modes is irrele-
vant.

of freedom). We will assume that these normal modes are independent
and do not interact with each other. In this case, the partition function
Z can be written as the product

Z =
3N∏
k=1

Zk, (24.1)

where Zk is the partition function of a single mode. Hence, the logarithm
of the partition function is a simple sum over all the modes of the system:

lnZ =

3N∑
k=1

lnZk. (24.2)

Each mode can be modelled as a simple harmonic oscillator, so we can
use the expression in eqn 20.3 to write down the partition function of a
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single mode as

Zk =

∞∑
n=0

e−(n+ 1
2 )�ωEβ =

e−
1
2 �ωEβ

1 − e−�ωEβ
. (24.3)

This expression is independent of k because all the modes are identical,
and so the partition function is Z = (Zk)3N and hence

lnZ = 3N

[
−1

2
�ωE − ln(1 − e−�ωEβ)

]
, (24.4)

and so the internal energy U is

U = −
(
∂lnZ

∂β

)
=

3N

2
�ωE +

3N

1 − e−�ωEβ
�ωEe−�ωEβ

=
3N

2
�ωE +

3N�ωE

e�ωEβ − 1
. (24.5)

In fact, we could have got immediately to eqn 24.5 simply by multiply-
ing 3N by the expression in eqn 20.29, but we have taken a longer route
to reiterate the basic principles. Writing �ωE = kBΘE defines a tem-
perature ΘE which scales with the vibrational frequency in the Einstein
model. This allows us to rewrite eqn 24.5 asRecall that NAkB = R.

U = 3RΘE

[
1

2
+

1

eΘE/T − 1

]
, (24.6)

where U is now per mole of solid. In the high–temperature limit, U →
3RT because

1

eΘE/T − 1
→ T

ΘE
as T → ∞. (24.7)

Example 24.1

Derive the molar heat capacity of an Einstein solid as a function of
temperature, and show how it behaves in the low– and high–temperature
limits.
Solution:

Using the expression for the molar internal energy in eqn 24.6, one can
use C =

(
∂U
∂T

)
to show that33For a solid, CV ≈ Cp, and so the sub-

script will be omitted.

C = 3RΘE
−1

(eΘE/T − 1)2
eΘE/T

[
−ΘE

T 2

]
,

= 3R
x2ex

(ex − 1)2
, (24.8)

where x = ΘE/T .

• As T → 0, x→ ∞ and C → 3Rx2e−x.

• As T → ∞, x→ 0 and C → 3R.
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The high–temperature result is known as the Dulong–Petit rule.4 4The Dulong–Petit rule is named after
P.L. Dulong and A.T. Petit who mea-
sured it in 1819. It agrees with our ex-
pectations based on the equipartition
theorem, see eqn 19.25.

In summary, the molar heat capacity of an Einstein solid falls off very
fast at low temperature (because it will be dominated by the e−ΘE/T

term), but saturates to a value of 3R at high temperature.

24.2 The Debye model

The Einstein model makes a rather gross assumption that the normal
modes of a solid all have the same frequency. It is clearly better to
assume a distribution of frequencies. Hence, we would like to choose a
function g(ω) which is the density of vibrational states. The number
of vibrational states with frequencies between ω and ω + dω should be
given by g(ω) dω and we require that the total number of normal modes
be given by ∫

g(ω) dω = 3N. (24.9)

The Einstein model took the density of states to be simply a delta func-
tion, i.e.

gEinstein(ω) = 3Nδ(ω − ωE), (24.10)

as shown in Fig. 24.1, but we would now like to do better.

g

Fig. 24.1 The density of states for the
Einstein model, using eqn 24.10.

The next simplest approximation is to assume that lattice vibrations
correspond to waves, all with the same speed vs, which is the speed of
sound in the solid. Thus we assume that

ω = vsq, (24.11)

where q is the wave vector of the lattice vibration.5 The density of states 5P. Debye (1884–1966) introduced this
model in 1912, but assumed that a solid
was a continuous elastic medium with a
linear dispersion relation. We will im-
prove on this dispersion relation in Sec-
tion 24.3.

of lattice vibrations in three dimensions as a function of q is given by

g(q) dq =
4πq2 dq

(2π/L)3
× 3, (24.12)

where the solid is assumed to be a cube of volume V = L3 and the factor
3 corresponds to the three possible ‘polarizations’ of the lattice vibration
(one longitudinal and two transverse polarizations are possible for each
value of q). Thus

g(q) dq =
3V q2 dq

2π2
, (24.13)

and hence

g(ω) dω =
3V ω2 dω

2π2v3
s

. (24.14)

Because there is a limit (3N) on the total number of modes, we will now

g

Fig. 24.2 The density of states for the
Debye model, using eqn 24.14.

assume that lattice vibrations are possible up to a maximum frequency
ωD known as the Debye frequency. This is defined by∫ ωD

0

g(ω) dω = 3N, (24.15)
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which, using eqn 24.14, implies that

ωD =

(
6Nπ2v3

s

V

)1/3

. (24.16)

This allows us to rewrite eqn 24.14 as

g(ω) dω =
9Nω2 dω

ω3
D

. (24.17)

The density of states for the Debye model is shown in Fig. 24.2. We also
define the Debye temperature6

6Some example Debye temperatures
are shown in the following table:

material ΘD (K)

Ne 63
Na 150
NaCl 321
Al 394
Si 625
C (diamond) 1860

The Debye temperature is higher for
harder materials, since the bonds are
stiffer and the phonon frequencies cor-
respondingly higher.

ΘD by

ΘD =
�ωD

kB
, (24.18)

which gives the temperature scale corresponding to the Debye frequency.
We are now ready to roll up our sleeves and tackle the statistical me-
chanics of this model.

Example 24.2

Derive the molar heat capacity of a Debye solid as a function of temper-
ature.
Solution:

To obtain C = (∂U/∂T ), we first need to obtain U which we can do by
one of two methods.
Method 1 (Starting from the partition function.)
We begin by writing down the logarithm of the partition function as
follows:

lnZ =

∫ ωD

0

dω g(ω) ln

[
e−

1
2 �ωβ

1 − e−�ωβ

]
. (24.19)

This integral looks a bit daunting, but we can do it by integrating by
parts:

lnZ = −
∫ ωD

0

1

2
�ωg(ω) dω −

∫ ωD

0

g(ω) ln(1 − e−�ωβ) dω. (24.20)

The first term of eqn 24.20 is easily evaluated to be − 9
8N�ωDβ while the

second term we will leave unevaluated for the moment. Thus we have

lnZ = −9

8
N�ωDβ − 9

ω3
D

∫ ωD

0

ω2 ln(1 − e−�ωβ) dω. (24.21)

Now we can use U = −∂ lnZ/∂β, and hence we find that

U =
9

8
N�ωD +

9N�

ω3
D

∫ ωD

0

ω3 dω

e�ωβ − 1
. (24.22)
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Method 2 (Using the expression for U of a simple harmonic oscillator.)
We can derive the internal energy U by using the expression for U for a
single simple harmonic oscillator in eqn 20.29 to give

U =

∫ ωD

0

g(ω) dω �ω

(
1

2
+

1

eβ�ω − 1

)
, (24.23)

which results in eqn 24.22 after substituting in eqn 24.17 and integrating.
Obtaining C
The heat capacity can be derived from C =

(
∂U
∂T

)
and hence, using

eqn 24.22, we have that

C =
9N�

ω3
D

∫ ωD

0

−ω3 dω

(e�ωβ − 1)2
e�ωβ

(
− �ω

kBT 2

)
. (24.24)

Making the substitution x = �βω, and hence xD = �βωD, eqn 24.24 can
be rewritten as

C =
9R

x3
D

∫ xD

0

x4ex dx

(ex − 1)2
. (24.25)

T

C
R

T

C
R

T

Fig. 24.3 The molar specific heat ca-
pacity for the Einstein solid and the
Debye solid, according to eqn 24.8 and
eqn 24.25 respectively. The inset shows
the same information on a log–log scale,
illustrating the difference between the
low temperature specific heat capacities
of the two models. The Debye model
predicts a cubic temperature depen-
dence at low temperature according to
eqn 24.28, as shown by the dotted line.
The figure is drawn with ΘE = ΘD.

The expression in eqn 24.25 is quite complicated and it is not obvious,
just by looking at the equation, what the temperature dependence of the
heat capacity will be. This is because xD = �ωDβ is temperature depen-
dent and hence both the prefactor 9/x3

D and the integral are temperature
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dependent. The full temperature dependence is plotted in Fig. 24.3, but
the following example shows how to obtain the high-temperature and
low-temperature limiting behaviours analytically.

Example 24.3

Show how the molar heat capacity of a Debye solid, derived in eqn 24.25,
behaves in the low– and high–temperature limits.
Solution:

• At high temperature, x → 0 and hence ex − 1 → x. Hence, the
heat capacity C behaves as

C → 9R

x3
D

∫ xD

0

x4

x2
dx = 3R, (24.26)

which is the equipartition result (Dulong–Petit rule, eqn 19.25)
again.

• At low temperature, x becomes very large and ex 	 1. The heat
capacity is given byHere we can use the integralZ ∞

0
x4ex dx/(ex − 1)2 = 4π4/15

which is derived in the Appendix B,
see eqn C.31.

C → 9R

x3
D

∫ ∞

0

x4ex dx

(ex − 1)2
=

12Rπ4

5x3
D

. (24.27)

Thus an expression for the low temperature heat capacity of a solid
is

C = 3R× 4π4

5

(
T

ΘD

)3

. (24.28)

This demonstrates that the molar heat capacity of a Debye solid satu-
rates to a value of 3R at high temperature and is proportional to T 3 at
low temperature.

24.3 Phonon dispersionm m m m m m

Fig. 24.4 A monatomic linear chain.

We have so far assumed that the phonon dispersion relation is given by
eqn 24.11. In this section, we will improve on this substantially. Let us
first consider the vibrations on a monatomic linear chain of atoms, each
atom with mass m connected to its nearest neighbour by a spring with
force constant K (see Fig. 24.4). The displacement from the equilibrium
position of the nth mass is given the symbol un. Hence, the equation of
motion of the nth mass is given by

mün = K(un+1−un)−K(un−un−1) = K(un+1−2un+un−1). (24.29)

In order to solve this equation, we must attempt to look for wave-like
solution. A trial normal mode solution un = exp[i(qna− ωt)] yields

−mω2 = K(eiqa − 2 + e−iqa), (24.30)
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and hence

mω2 = 2K(1 − cos qa), (24.31)

which simplifies to

ω2 =
4K

m
sin2(qa/2), (24.32)

and hence

ω =

(
4K

m

)1/2

| sin(qa/2)|. (24.33)

This result is plotted in Fig. 24.5. In the long-wavelength limit when
qa→ 0, we have that ω → vsq, where

vs = a

(
K

m

)1/2

, (24.34)

and hence eqn 24.11 is obtained in this limit.

qaa

Fig. 24.5 The dispersion relation for
a monatomic linear chain, given in
eqn 24.33.

Fig. 24.6 The phonon dispersion in copper (Cu). Because Cu is a three-dimensional metal, the phonon dispersion has to
be evaluated in three dimensions, and it is here shown as a function of wave vector in different directions. Along the (101)
direction, bands can be seen which look somewhat like the simple monatomic chain. Both longitudinal (L) and transverse
(T) modes are present. The wave vector q is plotted in units of π/a where a is the lattice spacing. The data shown are from
Svensson et al., Phys. Rev. B 155, 619 (1967), and are obtained using inelastic neutron scattering. In this technique, a beam
of slow neutrons is scattered from the sample and the changes in both the energy and momentum of the neutrons are measured.
This can be used to infer the energy �ω and momentum �q of the phonons. Copyright (1967) by the American Physical Society.

The measured phonon dispersion for copper (Cu), which is a monatomic
metal with a face-centred cubic structure, is shown in Fig 24.6 and
demonstrates that for small wave vectors (long wavelengths) the an-
gular frequency ω is indeed proportional to the wave vector q and hence
ω = vsq is a good approximation in this limit. However, there are both
longitudinal and transverse modes present and so in the Debye model
one would need to use a suitably modified sound speed.7 Where the

7Usually what is used in the expression
for the Debye frequency is

3

v3s
=

2

v3s,T
+

1

v3s,L

where vs,T and vs,L are the transverse
and longitudinal sound speeds respec-
tively. The weighting of 2:1 is be-
cause there are two orthogonal trans-
verse modes and only one longitudinal
mode.

bands flatten over, peaks can be seen in the phonon density of states
because states are uniformly distributed in wave vector and so will be
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concentrated at energies corresponding to regions in the dispersion rela-
tion which are horizontal. This is illustrated in Fig. 24.7, and you can
compare each peak in this graph with a flattening of the band in some
part of the dispersion relation shown in Fig. 24.6. The phonon den-
sity of states clearly follows a quadratic dependence at low frequency,
corresponding to the non-dispersive parts of the dispersion relation.

g

Fig. 24.7 The density of states g(ω)
for the phonons in copper. The curve
is obtained by numerical analysis of the
measured phonon dispersion relation.
Data from Svensson et al., Phys. Rev.
B 155, 619 (1967). Copyright (1967)
by the American Physical Society.

M M Mm m m

Fig. 24.8 A diatomic linear chain.

If the solid contains more than one crystallographically independent
dinstinct atom per unit cell, the situation is a little more complicated.
To gain insight into this problem, one can solve the diatomic linear
chain problem (see Fig. 24.8) which is composed of an alternating series
of two different atoms. The dispersion relation for this is plotted in
Fig. 24.9, and shows two branches. The acoustic branch is very similar
to the monatomic linear chain dispersion and near q = 0 corresponds to
neighbouring atoms vibrating almost in phase (and the group velocity
near q = 0 is the speed of sound in the material, hence the adjective
‘acoustic’). The modes of vibration in the acoustic branch are called
acoustic modes. The optic branch has non-zero ω at q = 0 and near
q = 0 corresponds to vibrations in which neighbouring atoms vibrating
almost out of phase. The modes of vibration in the optic branch are
called optic modes. It is called an optic branch because, if the chain
contains ions of different charges, an oscillation with small q causes an
oscillating electric dipole moment which can couple with electromagnetic
radiation.

qaa

Fig. 24.9 The dispersion relation for a
diatomic linear chain. The lower curve
is the acoustic branch, the upper curve
is the optic branch.

An example of such a phonon dispersion in which optic modes are
present is provided by germanium (Ge), shown in Fig. 24.10. Although
all the atoms in Ge are identical, there are two crystallographically dis-
tinct atomic sites and hence an optic branch is observed in the phonon
dispersion. These data have also been measured by inelastic neutron
scattering.

Fig. 24.10 The measured phonon dis-
persion relation in germanium. B. N.
Brockhouse, Rev. Mod. Phys. 74, 1131
(2002). Copyright (2002) by the Amer-
ican Physical Society.

Though the phonon dispersion relations of real solids are more com-
plicated than the linear relation, ω = vsq, assumed by the Debye model,
they are linear at low frequency. With this relationship we have that the
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phonon dispersion relation is approximately quadratic at low frequency.
At low temperature (where only low–energy, i.e. low–frequency, phonons
can be excited), the heat capacity of most solids therefore shows the De-
bye T 3 behaviour. In practice, the acoustic modes of a solid can be well
described by the Debye model, while the optic modes (whose frequen-
cies do not vary much with wave vector) are quite well described by the
Einstein model.

Chapter summary

• A phonon is a quantized lattice vibration.

• The Einstein model of a solid assumes that all phonons have the
same frequency.

• The Debye model allows a range of phonon frequencies up to a
maximum frequency called the Debye frequency. The density of
states is quadratic in frequency, and this assumes that ω = vsq.

• The dispersion relation of a real solid is more complicated and
may contain acoustic and optic branches. It can be experimentally
determined using inelastic neutron scattering.

• The heat capacity of a three-dimensional solid is proportional to
T 3 at low temperature and saturates to a value of 3R at high
temperature.

Further reading

A wonderful introduction to waves in periodic structures may be found in Brillouin (1953). Useful information about
phonons may be found in Ashcroft and Mermin (1976) chapters 22–24, Dove (2003) chapters 8 and 9 and Singleton
(2001) Appendix D.

Exercises

(24.1) A primitive cubic crystal has lattice parameter
0.3 nm and Debye temperature 100 K. Estimate
the maximum phonon frequency in Hz and the
speed of sound in m s−1.

(24.2) Show that eqn 24.22 can be rewritten as

U =
9

8
NA�ωD +

9RT

x3
D

Z xD

0

x3 dx

ex − 1
, (24.35)

by making the substitution x = �βω, and hence
xD = �βωD.

(24.3) Show that the Debye model of a d-dimensional
crystal predicts that the low temperature heat ca-
pacity is proportional to T d.

(24.4) Show that the density of states of lattice vibrations
on a monatomic linear chain (see Section 24.3) is
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given by g(ω) = (2/πa)[ω2 − 4K/m]1/2. Sketch
g(ω) and comment on the singularity at ω =
4K/m.

(24.5) Generalize the treatment of a monatomic linear
chain to the transverse vibrations of atoms on
a (two-dimensional) square lattice of atoms and
show that

ω =

„
2K

m

«1/2

[2 − cos qxa − cos qya], (24.36)

and derive an expression for the speed of sound.

(24.6) Show that the dispersion relation for the diatomic
chain shown in Fig. 24.8 is

ω2

K
=

„
1

M
+

1

m

«
±

"„
1

M
+

1

m

«2

− 4

Mm
sin2 qa

#1/2

.

(24.37)

(24.7) The treatment of the monatomic linear chain in
Section 24.3 included only nearest-neighbour in-
teractions. Show that if a force constant Kj links
an atom with one j atoms away, then the disper-
sion relation becomes

ω2 =
4K

m

X
j

Kj sin2 jqa

2
. (24.38)

A measurement is made of ω(q). Show that the
force constants can be obtained from ω(q) using

Kj = −ma

2π

Z π
a

− π
a

dq ω2(q) cos jqa. (24.39)



Part VIII

Beyond the ideal gas

In this part we introduce various extensions to the ideal gas model which
allow us to take account of various complications which make the subject
of thermal physics more rich and interesting, but of course also slightly
more complicated! This part is structured as follows:

• In Chapter 25, we study the consequences of allowing the dispersion

relation, the equation which connects energy and momentum, to
be relativistic. We examine the differences between the relativistic
and non-relativistic cases.

• In Chapter 26, we introduce several equations of state which take
into account the interactions between molecules in a gas. These
include the van der Waals model, the Dieterici model and the virial

expansion. We discuss the law of corresponding states.

• In Chapter 27 we discuss how to cool real gases using the Joule-

Kelvin expansion and the operation of a liquefier.

• In Chapter 28 we discuss phase transitions, discussing latent heat

and deriving the Clausius-Clapeyron equation. We discuss the
criteria for stability and metastability and derive the Gibbs phase

rule. We introduce colligative properties and classify the different
types of phase transition.

• In Chapter 29 we examine the effect that exchange symmetry has
on the quantum wave functions of collections of identical particles.
This allows us to introduce bosons and fermions, which can be
used to describe the Bose–Einstein distribution and Fermi–Dirac

distribution respectively.

• In Chapter 30, we show how the results of the previous chapter
can be applied to quantum gases, and we consider non-interacting
fermion and boson gases and discuss Bose–Einstein condensation.
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In this chapter we will repeat our derivation of the partition function
for a gas, and hence of the other thermodynamic properties which can
be obtained from it, but this time include relativistic effects. We will
see that this leads to some subtle changes in these properties which
have profound consequences. First we will review the full relativistic
dispersion relation for particles with non-zero mass and then derive the
partition function for ultrarelativistic particles.

25.1 Relativistic dispersion relation for
massive particles

In deriving the partition function for a gas, we assumed that the kinetic
energy E of a molecule of mass m was equal to p2/2m, where p is the
momentum (and using p = �k, we wrote down E(k) = �

2k2/2m; see
eqn 21.15). This is a classical approximation valid only when p/m � c
(where c is the speed of light), and in general we should use the rela-
tivistic formula

p

E

E pc

E p m mc

mc

Fig. 25.1 The dispersion relation of a
particle with mass (thick solid line) ac-
cording to eqn 25.1. The dashed line
is the non-relativistic limit (p � mc).
The dotted line is the ultrarelativistic
limit (p� mc).

E2 = p2c2 +m2c4, (25.1)

where m is now taken to be the rest mass, i.e. the mass of the molecule
in its rest frame. This is plotted in Fig. 25.1. When p � mc (the
non-relativistic limit) this reduces to

E =
p2

2m
+mc2, (25.2)

which is identical to our classical approximation E = p2/2m apart from
the extra constant mc2 (the rest mass energy), which just defines a
new ‘zero’ for the energy (see Fig. 25.1). In the case p 	 mc (the
ultrarelativistic limit), eqn 25.1 reduces to

E = pc, (25.3)

which is the appropriate relation1 for photons (this is the straight line1The relation between E and p is
known as a dispersion relation. By
scaling E = �ω and p = �k by a fac-
tor � we have a relation between ω and
k, which is perhaps more familiar as a
dispersion relation from wave physics.

in Fig. 25.1).

25.2 The ultrarelativistic gas

Let us now consider a gas of particles with non-zero mass in the ultra-
relativistic limit which means that E = pc. Such a linear dispersion
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relation means that some of the algebra in this chapter is actually much
simpler than we had to deal with for the partition function in the non-
relativistic case where the dispersion relation is quadratic. Using the
ultrarelativistic limit means that all the particles (or at the very least,
the vast majority of them), will be moving so quickly that their kinetic
energy is much greater than their rest mass energy.2 Using the ultra- 2Note however that we are ignoring any

quantum effects which may come into
play; these will be considered in Chap-
ter 30.

relativstic limit E = pc = �kc, we can write down the single-particle
partition function

Z1 =

∫ ∞

0

e−β�kcg(k) dk, (25.4)

where we recall that (eqn 21.6)

g(k) dk =
V k2 dk

2π2
, (25.5)

and so, using the substitution x = β�kc, we have

Z1 =
V

2π2

(
1

β�c

)3 ∫ ∞

0

e−xx2 dx, (25.6)

and recognizing that the integral is 2!, we have finally that

Z1 =
V

π2

(
kBT

�c

)3

. (25.7)

Notice immediately that we find that Z1 ∝ V T 3, whereas in the non-
relativistic case we had that Z1 ∝ V T 3/2. We can also write eqn 25.7 in
a familiar form

Z1 =
V

Λ3
, (25.8)

where Λ is not the same as the expression for the thermal wavelength in
eqn 21.18, but is given by Equivalently, one can write

Λ =
hc

2π1/3kBT
,

Λ =
�cπ2/3

kBT
, (25.9)

It now becomes a simple exercise to determine all the properties of the
ultrarelativistic gas using our practiced methods of partition functions.

Example 25.1

Find U , CV , F , p, S, H and G for an ultrarelativistic gas of indistin-
guishable particles.
Solution:
The N -particle partition function ZN is given by3 3This is assuming the density is not

so high that this approximation breaks
down.

ZN =
ZN

1

N !
, (25.10)

and hence
lnZN = N lnV + 3N lnT + constants. (25.11)
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The internal energy U is given by

U = −d lnZN

dβ
= 3NkBT, (25.12)

which is different from the non-relativistic case (which gave U = 3
2NkBT ).

The heat capacity CV is

CV =

(
∂U

∂T

)
V

, (25.13)

and hence is given by4 CV = 3NkB. The Helmholtz function is4Notice that this does not agree with
the equipartition theorem, which would
predict CV = 3

2
NkB, half of the value

that we have found. Why does the
equipartition theorem fail? Because the
dispersion relation is not a quadratic
one (i.e. E ∝ p2), as is needed for the
equipartition theorem to hold, but in-
stead is a linear one (E ∝ p).

F = −kBT lnZN = −kBTN lnV − 3NkBT lnT − kBT × constants,
(25.14)

so that

p = −
(
∂F

∂V

)
T

=
NkBT

V
= nkBT, (25.15)

which is the ideal gas equation,5 as for the non-relativistic case. This

5Note that we have p = nkBT for both
the non-relativistic and ultrarelativis-
tic cases. This is because Z1 ∝ V
in both cases; hence ZN ∝ V N and
F = −kBTN lnV+(other terms not in-
volving V ), so that p = −(∂F/∂V )T =
nkBT .

also gives the enthalpy H via

H = U + pV = 4NkBT. (25.16)

As we found for the non-relativistic case, getting the entropy involves
bothering with what the constants are in eqn 25.11. Hence, let us write
this equation as

lnZN = N lnV − 3N ln Λ −N lnN +N

= N ln

(
1

nΛ3

)
+N, (25.17)

where n = N/V , so we immediately have (using the usual statistical
mechanics manipulations listed in Table 20.1):

F = −kBT lnZN

= NkBT [ln(nΛ3) − 1], (25.18)

S =
U − F

T
= NkB ln[4 − ln(nΛ3)], (25.19)

G = H − TS = 4NkBT −NkBT [4 − ln(nΛ3)]

= NkBT ln(nΛ3). (25.20)

The results from this problem are summarized in Table 25.1.

One consequence of these results is that the pressure p is related to
the energy density u = U/V using

p =
u

3
, (25.21)

which is very different from the non-relativistic case p = 2u/3 (see
eqn 6.25). This has some rather dramatic consequences for the structure
of stars (see Section 35.1.3).
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Property Non-relativistic ultrarelativistic

Z1
V

λ3
th

V

Λ3

λth =
h√

2πmkBT
Λ =

�cπ2/3

kBT

U 3
2NkBT 3NkBT

H 5
2NkBT 4NkBT

p
NkBT

V

NkBT

V

=
2u

3
=
u

3
F NkBT [ln(nλ3

th) − 1] NkBT [ln(nΛ3) − 1]

S NkB[52 − ln(nλ3
th)] NkB[4 − ln(nΛ3)]

G NkBT ln(nλ3
th) NkBT ln(nΛ3)

Adiabatic expansion V T 3/2 = constant V T 3 = constant

pV 5/3 = constant pV 4/3 = constant

Table 25.1 The properties of non-relativistic and ultrarelativistic monatomic gases
of indistinguishable particles of mass m.

25.3 Adiabatic expansion of an
ultrarelativistic gas

We will now consider the adiabatic expansion of an ultrarelativistic
monatomic gas. This means that we will keep the gas thermally iso-
lated from its surroundings and no heat will enter or leave. The entropy
stays constant in such a process, and hence (from Table 25.1) so does
nΛ3 which implies that

V T 3 = constant, (25.22)

or equivalently (using pV ∝ T )

pV 4/3 = constant. (25.23)

This implies that the adiabatic index γ = 4/3. This contrasts with
the non-relativstic cases (for which V T 3/2 and pV 5/3 are constants, and
γ = 5/3).
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Example 25.2

An example of the adiabatic expansion of an ultrarelativistic gas relates
to the expansion of the Universe. If the Universe expands adiabatically
(how can heat enter or leave it when it presumably doesn’t have any ‘sur-
roundings’ by definition?) then we expect that an ultrarelativistic gas
inside the Universe, such as the cosmic microwave background photons,66See Section 23.7.

behaves according to
V T 3 = constant, (25.24)

where T is the temperature of the Universe and V is its volume. Hence

T ∝ V −1/3 ∝ a−1, (25.25)

where a is the scale factor7 of the Universe (V ∝ a3). Thus the temper-7See Section 23.7.

ature of the cosmic microwave background is inversely proportional to
the scale factor of the Universe.

A non-relativistic gas in the Universe would behave according to

V T 3/2 = constant, (25.26)

in which case
T ∝ V −2/3 ∝ a−2, (25.27)

so the non-relativistic gas would cool faster than the cosmic microwave
background as the Universe expands.

We can also work out the density ρ of both types of gas as a function of
the scale factor a. For the adiabatic expansion of a gas of non-relativistic
particles, the density ρ ∝ V −1 (because the mass stays constant) and
hence

ρ ∝ a−3. (25.28)

For relativistic particles,

ρ =
u

c2
, (25.29)

where u = U/V is the energy density. Now u = 3p (by eqn 25.21) and
since p ∝ V −4/3 for relativistic particles, we have that

ρ ∝ a−4. (25.30)

Thus the density drops off faster for a gas of relativistic particles than
it does for non-relativistic particles, as the Universe expands.88This is because, for both cases, you

have the effect of volume dilution due
to the Universe expanding which goes
as a3; but only for the relativistic case
do you have an energy loss (and hence
a density loss) due to the Universe ex-
panding, giving an extra factor of a.

The Universe contains both matter (mostly non-relativistic) and pho-
tons (clearly ultrarelativistic). This simple analysis shows that as the
Universe expanded, the matter cooled faster than the photons, but the
density of the matter decreases less quickly than that due to the photons.
The density of the early Universe is said to be radiation dominated
but as time has passed the Universe has become matter dominated
as far as its density (and hence expansion dynamics) is concerned.
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Chapter summary

• Using the ultrarelativistic dispersion relation E = pc, rather
than the non-relativistic dispersion relation E = p2/2m, leads
to changes in various thermodynamic functions, as listed in Ta-
ble 25.1.

Exercises

(25.1) Find the phase velocity and the group velocity
for a relativistic particle whose energy E is E2 =
p2c2 + m2

0c
4 and examine the limit p � mc and

p � mc.

(25.2) In D dimensions, show that the density of states
of particles with spin-degeneracy g in a volume V
is

g(k) dk =
gV DπD/2kD−1 dk

Γ(D
2

+ 1)(2π)D
. (25.31)

You may need to use the fact that the volume of
a sphere of radius r in D dimensions is (see Ap-
pendix C.8)

2πD/2rD

Γ(D
2

+ 1)
. (25.32)

(25.3) Consider a general dispersion relation of the form

E = αps, (25.33)

where p is the momentum and α and p are con-
stants. Using the result of the previous question,

show that the density of states as a function of
energy is

g(E) dE =
gV DπD/2

hDαD/ssΓ(D
2

+ 1)
E

D
s
−1 dE.

(25.34)
Hence show that the single-particle partition func-
tion takes the form

Z1 =
V

λD
, (25.35)

where λ is given by

λ =
h

π1/2

„
α

kBT

«1/s
"

Γ(D
2

+ 1)

Γ(D
s

+ 1)

#1/D

. (25.36)

Show that this result for three dimensions (D = 3)
agrees with (i) the non-relativistic case when s = 2
and (ii) the ultrarelativistic case when s = 1.
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In this book we have spent a lot of time considering the so-called ideal
(sometimes called ‘perfect’) gas, which has an equation of state given by

pV = nmolesRT, (26.1)

where nmoles is the number of moles, or equivalently by

pVm = RT, (26.2)

where Vm = V/nmoles is the molar volume (i.e. the volume occupied by
1 mole). This equation of state leads to isotherms as plotted in Fig. 26.1.
However, real gases don’t behave quite like this, particularly when the

V

p

T
T

T

Fig. 26.1 Isotherms of the ideal gas for
three different temperatures T3 > T2 >
T1.

pressure is high and the volume is small. For a start, if you get a real
gas cold enough it will liquefy, and this is something that the ideal gas
equation does not predict or describe. In a liquid, the intermolecular
attractions, which we have so far preferred to ignore, are really signif-
icant. In fact, even before the gas liquefies, there are departures from
ideal-gas behaviour. This chapter deals with how this additional element
of real behaviour can be modelled, by introducing various extensions to
the ideal gas model, including those introduced by van der Waals (Sec-
tion 26.1) and Dieterici (Section 26.2). An alternative series expansion
approach is the so-called virial expansion in Section 26.3. Many similar
systems behave in similar ways once the differences in the magnitude of
the intermolecular interactions have been factored out by some appro-
priate scaling. This forms the basis of the law of corresponding states

in Section 26.4.

26.1 The van der Waals gas

The most commonly used model of real gas behaviour is the van der
Waals gas. This is the simplest real gas model which includes the
two crucial ingredients we need: (i) intermolecular interactions (gas
molecules actually weakly attract one another) and (ii) the non-zero
size of molecules (gas molecules don’t have freedom to move around in
all the volume of the container, because some of the volume is occupied
by the other gas molecules!). Like the ideal gas, the van der Waals gas is
only a model of real behaviour, but by being a slightly more complicated
description than the ideal gas (more complicated in the right way!) it is
able to describe more of the physical properties exhibited by real gases.
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Origin of the a/V 2
m term

Assume nmoles moles of gas in volume V . The number of nearest neigh-
bours is proportional to nmoles/V , and so attractive intermolecular in-
teractions lower the total potential energy by an amount proportional
the number of atoms multiplied by the number of nearest neighbours,
i.e. we can write the energy change as

an2
moles

V
, (26.3)

where a is a constant. Hence, if you change V , the energy changes by
an amount

−an
2
molesdV

V 2
, (26.4)

but this energy change can be thought of as being due to an effective
pressure peff , so that the energy change would be −peff dV . Hence

peff = −an
2
moles

V 2
= − a

V 2
m

. (26.5)

The pressure p that you measure is the sum of the pressure pideal

neglecting intermolecular interactions and peff . Therefore

pideal = p− peff = p+
a

V 2
m

(26.6)

is the pressure which you have to enter into the formula for the ideal
gas,

pidealVm = RT, (26.7)

making the correction Vm → Vm − b to take account of the excluded
volume. This yields (

p+
a

V 2
m

)
(Vm − b) = RT, (26.8)

in agreement with eqn 26.10. This equation of state can also be justified
from statistical mechanics as follows: taking the expression for the
partition function of N molecules in a gas, ZN = (1/N !)(V/λ3

th)N , we
replace the volume V by V − nmolesb, the volume actually available
for molecules to move around in; we also include a Boltzmann factor
e−β(−an2

moles/V ) to give

ZN =
1

N !

(
V − nmolesb

λ3
th

)N

eβan2
moles/V , (26.9)

which after using F = −kBT lnZN and p = −(∂F/∂V )T yields the
van der Waals equation of state.
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The equation of state for a van der Waals gas is

(
p+

a

V 2
m

)
(Vm − b) = RT. (26.10)

In this equation, the constant a parameterizes the strength of the in-
termolecular interactions, while the constant b accounts for the volume
excluded owing to the finite size of molecules. If a and b are both set
to zero, we recover the equation of state for an ideal gas, pVm = RT .
Moreover, in the low-density limit (when Vm 	 b and Vm 	 (a/p)1/2)
we also recover the ideal gas behaviour. However, when the density is
high, and we try to make Vm approach b, the pressure p shoots up.1 The1To understand this, consider eqn 26.10

at some fixed T . When Vm → b, the
term (Vm − b) is very small, and hence
(p+a/V 2

m) ≈ (p+a/b2) is very big and
hence p increases.

motivation for the a/V 2
m term in the van der Waals model is outlined in

the box on page 281.

V

p

b

Fig. 26.2 Isotherms of the van der Waals gas. Isotherms towards to the top right of the graph correspond to higher temperatures.
The dashed line shows the region in which liquid and vapour are in equilibrium (see the end of Section 26.1). The thick line is
the critical isotherm and the dot marks the critical point.
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Multiplying eqn 26.10 by V 2 for one mole of van der Waals gas (where
Vm = V ), we have

pV 3 − (pb+RT )V 2 + aV − ab = 0, (26.11)

which is a cubic equation in V . The equation of state of the van der
Waals gas is plotted in Fig. 26.2 for various isotherms. As the temper-
ature is lowered, the isotherms change from being somewhat ideal-gas
like, at the top right of the figure, to exhibiting an S-shape with a min-
imum and a maximum (as expected for a general cubic equation) in
the lower left of the figure. This provides us with a complication: the
isothermal compressibility (eqn 16.71) is κT = − 1

V (∂V/∂p)T , and for
the ideal gas this is always positive (and equal to the pressure of the
gas). However, for the van der Waals gas, when the isotherms become
S-shaped, there is a region when the gradient (∂V/∂p)T is positive and
hence the compressibility κT will be negative. This is not a stable situ-
ation: a negative compressibility means that when you try to compress
the gas it gets bigger! If a pressure fluctuation momentarily increases
the pressure, the volume increases (rather than decreases) and negative
work is done on the gas, providing energy to amplify the pressure fluctu-
ation; thus a negative compressibility means that the system is unstable
with respect to fluctuations. The problem starts when the isotherms
become S-shaped, and this happens when the temperature is lower than
a certain critical temperature. This temperature is that of the criti-
cal isotherm, which is indicated by the thick solid line in Fig. 26.2.
This does not have a maximum or minimum but shows a point of inflec-
tion, known as the critical point, and which is marked by the dot on
Fig. 26.2.

Example 26.1

Find the temperature Tc, pressure pc and volume Vc at the critical point
of a van der Waals gas, and calculate the ratio pcVc/RTc.
Solution:

The equation of state for one mole of van der Waals gas can be rewritten
with p as the subject as follows:

p =
RT

V − b
− a

V 2
. (26.12)

The point of inflection can be found by using(
∂p

∂V

)
T

= − RT

(V − b)2
+

2a

V 3
= 0 (26.13)

and (
∂2p

∂V 2

)
T

=
2RT

(V − b)3
− 6a

V 4
= 0. (26.14)



284 Real gases

Equation 26.13 implies that

RT =
2a(V − b)2

V 3
, (26.15)

while eqn 26.14 implies that

RT =
3a(V − b)3

V 4
, (26.16)

and equating these last two equations gives

3(V − b)

V
= 2, (26.17)

which implies that V = Vc, where Vc is the critical volume given by

Vc = 3b. (26.18)

Substituting this back into eqn 26.14 yields RT = 8a/27b and hence
T = Tc where Tc is the critical temperature given by

Tc =
8a

27Rb
. (26.19)

Substituting our expressions for Vc and Tc back into the equation of
state for a van der Waals gas gives the critical pressure pc as

pc =
a

27b2
. (26.20)

We then have that
pcVc

RTc
=

3

8
= 0.375, (26.21)

independent of both a and b. At the critical point,(
∂p

∂V

)
Tc

= 0, (26.22)

and hence the isothermal compressibility diverges since

κT = − 1

V
(∂V/∂p)T → ∞. (26.23)

We have found that the compressibility κT is negative when T < Tc

and so the system is then unstable. Let us now examine the isotherms
below the critical temperature. Since the constraints in an experiment
are often those of constant pressure and temperature, it is instructive
to examine the Gibbs function for the van der Waals gas, which we
can obtain as follows. The Helmholtz function F is related to p by
p = −(∂F/∂V )T and so (for 1 mole)

F = f(T ) −RT ln(V − b) − a

V
, (26.24)
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p pc

G
V

V
c

Fig. 26.3 The behaviour of the volume
V and Gibbs function G of a van der
Waals gas as a function of pressure at
T = 0.9Tc.



286 Real gases

where f(T ) is a function of temperature. Hence the Gibbs function is

G = F + pV = f(T ) −RT ln(V − b) − a

V
+ pV, (26.25)

and this is plotted as a function of pressure p in the lower half of Fig. 26.3
for a temperature T = 0.9Tc, i.e. below the critical temperature. What
is found is that the Gibbs function becomes multiply valued for cer-
tain values of pressure. Since a system held at constant temperature
and pressure will minimize its Gibbs function, the system will normally
ignore the upper loop of the Gibbs function, i.e. the path BXYB in
Fig. 26.3, and proceed from A to B to C as the pressure is reduced. The
upper part of Fig. 26.3 also shows the corresponding behaviour of the
volume as a function of pressure for this same temperature. We see here
that the two points B1 and B2 on the curve representing the volume
correspond to the single point B on the curve representing the Gibbs
function. Since the Gibbs function is the same for these two points,
phases corresponding to these two points can be in equilibrium with
each other. The point B is thus a two-phase region in which gas and liq-
uid coexist together. Thus liquid (with a much smaller compressibility)
is stable in the region A→B and gas (with a much larger compressibility)
is stable in the region B→C.

V

G

Fig. 26.4 The Gibbs function for dif-
ferent pressures for the van der Waals
gas with T/Tc = 0.9. The line corre-
sponding to highest (lowest) pressure is
at the top (bottom) of the figure. The
thick solid line corresponds to the crit-
ical pressure pc.

The line BX represents a metastable state, in this case superheated
liquid. The line BY represents another metastable state, supercooled
gas. These metastable states are not the phase corresponding to the
lowest Gibbs function of the system for the given conditions of tempera-
ture and pressure. They can, however, exist for limited periods of time.
The dependence of the Gibbs function on volume for various pressures,
expressed in eqn 26.25 and plotted Fig. 26.4, helps us to understand why.
At high pressure, there is a single minimum in the Gibbs function corre-
sponding to a low–volume state (the liquid). At low pressure, there is a
single minimum in the Gibbs function corresponding to a high–volume
state (the gas). At the critical pressure (the thick solid line in Fig. 26.4)
there are two minima, corresponding to the coexisting liquid and gas
states. If you take gas initially at low pressure and raise the pressure,
then when you reach the critical pressure, the system will still be in
the right-hand minimum of the Gibbs function. Raising the pressure
above pc would make the left-hand minimum (liquid state) the more
stable state, but the system might be stuck in the right-hand minimum
(gaseous state) because there is a small energy barrier to surmount to
achieve the true stable state. The system is thus, at least temporarily,
stuck in a metastable state.

Of course, the triangle BXY vanishes for temperatures above the crit-
ical temperature and then there is simply a crossover between a system
with low compressibility to one with progressively higher compressibility
as the pressure is reduced. When T > Tc, the sharp distinction between
liquid and gas is lost and you cannot really tell precisely where the sys-
tem stops being liquid and starts being a gas. This is a point we will
return to in Section 28.7.

We have noted that at points B1 and B2 in Fig. 26.5 we have phase
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V

p

Fig. 26.5 The Maxwell construction
for the van der Waals gas. Phase coex-
istence occurs between points B1 and
B2 when the shaded areas are equal.
The dotted line shows the locus of
such points for different temperatures
(and is identical to the dashed line in
Fig. 26.2).

coexistence because the Gibbs function is equal at these points. In
general, we can always write that the Gibbs function at some pressure
p1 is related to the Gibbs function at some pressure p0 by

G(p1, T ) = G(p0, T ) +

∫ p1

p0

(
∂G

∂p

)
T

dp, (26.26)

and since (
∂G

∂p

)
T

= V, (26.27)

we have

G(p1, T ) = G(p0, T ) +

∫ p1

p0

V dp. (26.28)

Applying this equation between the points B1 and B2 we have that

G(pB2
, T ) = G(pB1

, T ) +

∫ B2

B1

V dp (26.29)

and since G(pB1
, T ) = G(pB2

, T ), we have that∫ B2

B1

V dp = 0. (26.30)

This result gives us a useful way of identifying the points B1 and B2, as
illustrated in Fig. 26.5. These two points show phase coexistence when
the two shaded areas are equal, and this follows directly from eqn 26.30.
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Fig. 26.6 The p–T phase diagram for
a van der Waals gas.

T T

p
p

The horizontal dashed line separating the two equal shaded areas in
Fig. 26.5 is known as the Maxwell construction.

The dotted line in Fig. 26.5 shows the locus of such points of coexis-
tence for different temperatures (and is identical to the dashed line in
Fig. 26.2). This allows us to plot the phase diagram shown in Fig. 26.6,
which shows p against T . The line of phase coexistence is shown, ending
in the critical point at T = Tc and p = pc. At fixed pressure, the stable
low–temperature state is the liquid, while the stable high–temperature
state is the gas. Note that when p > pc and T > Tc, there is no sharp
phase boundary separating gas from liquid. Thus it is possible to ‘avoid’
a sharp phase transition between liquid and gas by, for example, start-
ing with a liquid, heating it at low pressure to above Tc, isothermally
pressurizing above pc, and then isobarically cooling to below Tc and ob-
taining a gas. We will consider these transitions between different phases
in more detail in Chapter 28.

26.2 The Dieterici equation

The van der Waals equation of state can be written in the form

p = prepulsive + pattractive, (26.31)

where the first term is a repulsive hard sphere interaction

prepulsive =
RT

V − b
, (26.32)

which is an ideal-gas-like term but with the denominator being the vol-
ume available to gas molecules, namely that of the container V minus
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that of the molecules, b. The second term is the attractive interaction

pattractive = − a

V 2
. (26.33)

There have been other attempts to model non-ideal gases. In the Berth-
elot equation, the attractive force is made temperature-dependent by
writing

pattractive = − a

TV 2
. (26.34)

Another approach is due to Dieterici,2 who in 1899 proposed an alter- 2Conrad Dieterici (1858–1929)

native equation of state in which he wrote that

p = prepulsive exp
(
− a

RTV

)
, (26.35)

and using eqn 26.32 this leads to

p(Vm − b) = RT exp

(
− a

RTVm

)
, (26.36)

which is the Dieterici equation, here written in terms of the molar vol-
ume. The constant a is, again, a parameter which controls the strength
of attractive interactions. Isotherms of the Dieterici equation of state are
shown in Fig. 26.7; they are similar to the ones for the van der Waals gas
(Fig. 26.2), showing a very sudden increase in pressure as V approaches
b.

Vr

pr

b

Fig. 26.7 Isotherms for the Dieterici
equation of state.

The critical point can be identified for this model by evaluating(
∂2p

∂V 2

)
T

=

(
∂p

∂V

)
T

= 0, (26.37)

and this yields (after a little algebra)

Tc =
a

4Rb
, pc =

a

4e2b2
, Vc = 2b, (26.38)

for the critical temperature, pressure and volume, and hence

pcVc

RTc
=

2

e2
= 0.271. (26.39)

This value agrees well with those listed in Table 26.1 (and is better
than the van der Waals result, which is 0.375, as shown in eqn 26.21).

Ne Ar Kr Xe

pcVc/RTc 0.287 0.292 0.291 0.290

Table 26.1 The values of pcVc/RTc for various noble gases.
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26.3 Virial expansion

Another method to model real gases is to take the ideal gas equation and
modify it using a power series in 1/Vm (where Vm is the molar volume).
This leads to the following virial expansion:

pVm

RT
= 1 +

B

Vm
+

C

V 2
m

+ · · · (26.40)

In this equation, the parameters B, C, etc. are called virial coefficients
and can be made to be temperature dependent (so that we will denote
them by B(T ) and C(T )). The temperature at which the virial coeffi-
cient B(T ) goes to zero is called the Boyle temperature TB since it is
the temperature at which Boyle’s law is approximately obeyed (neglect-
ing the higher–order virial coefficients), as shown in Fig. 26.8.

T

B T

T

Fig. 26.8 The temperature depen-
dence of the virial coefficient B.

Example 26.2

Express the van der Waals equation of state in terms of a virial ex-
pansion and hence find the Boyle temperature in terms of the critical
temperature.
Solution:

The van der Waals equation of state can be rewritten as

pV =
RT

V − b
+

a

V 2
=
RT

V

(
1 − b

V

)−1

+
a

V 2
, (26.41)

and using the binomial expansion, the term in brackets can be expanded
into a series, resulting in

pV

RT
= 1 +

1

V

(
b− a

RT

)
+

(
b

V

)2

+

(
b

V

)3

+ · · · , (26.42)

which is in the same form as the virial expansion in eqn 26.40 with

B(T ) = b− a

RT
. (26.43)

The Boyle temperature TB is defined by B(TB) = 0 and hence

TB =
a

bR
, (26.44)

and hence using eqn 26.19 we have that

TB =
27Tc

8
. (26.45)
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The additional terms in the virial expansion give information about
the nature of the intermolecular interactions. We can show this using
the following argument, which shows how to model intermolecular inter-
actions in the dilute gas limit using a statistical mechanical argument.3 3This argument is a little more tech-

nical than the material in the rest of
this chapter and can be skipped at first
reading.

The total internal energy U of the molecules (each with mass m) in a
gas can be written as

U = UK.E. + UP.E., (26.46)

where the kinetic energy UK.E. is given by a sum over all N molecules

UK.E. =

N∑
i=1

p2
i

2m
, (26.47)

where pi is the momentum of the ith molecule, and the potential energy
is given by

UP.E. =
∑
i�=j

1

2
V(|ri − rj |), (26.48)

where V(|ri − rj |) is the potential energy between the ith and jth
molecules and the factor 1

2 is to avoid double counting of pairs of molecules
in the sum. The partition function Z is then given by

Z =

∫
· · ·
∫

d3r1 · · · d3rN d3p1 · · · d3pN e−β[UK.E.({pi})+UP.E.({ri})]

= ZK.E.ZP.E., (26.49)

where the last equality follows because the integrals in momentum and
in position variables are separable. Now ZK.E. is the partition function
for the ideal gas which we have already derived (Chapter 21) and which
leads to the ideal gas equation pV = RT , so we focus entirely on ZP.E.

which is given by

ZP.E. =
1

V N

∫
· · ·
∫

d3r1 · · · d3rN e−βUP.E. , (26.50)

where we have included the factor 1/V N so that when UP.E. = 0 then
ZP.E. = 1. Hence

ZP.E. =
1

V N

∫
· · ·
∫

d3r1 · · · d3rN e−
β
2

P
i�=j

1
2V(|ri−rj |), (26.51)

and adding one and subtracting one from this equation,4 we have 4This trick is done because we know
that later we will want to play with
the log of the partition function, and
ln(1 + x) ≈ x for x � 1, so having Z
in the form one plus something small is
convenient.

ZP.E. = 1 +
1

V N

∫
· · ·
∫

d3r1 · · · d3rN

[
e−

β
2

P
i�=j

1
2V(|ri−rj |) − 1

]
.

(26.52)
We presume that the intermolecular interactions are only significant for
molecules which are virtually touching, so the integrand is appreciably
different from zero only when two molecules are very close together.
If the gas is dilute this condition of two molecules being close will only
happen relatively rarely, and so we will assume that this condition occurs
only for one pair of molecules at any one time. There are N ways of
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picking the first molecule for a collision, and N − 1 ways of picking the
second molecule for a collision, and since we don’t care which is the
‘first’ molecule and which is the ‘second’, the number of ways to select
a pair of molecules from N molecules is

N(N − 1)

2
, (26.53)

which is approximately N2/2 when N is large. Writing r for the coor-
dinate separating these two molecules, we then have

ZP.E. ≈ 1 +
N2

2V N

∫
· · ·
∫

d3r1 · · · d3rN

[
e−βV(r) − 1

]
. (26.54)

Since the integral depends only on the separation r of these two molecules,
we can integrate out the other N − 1 volume coordinates (resulting in
integrals equal to unity multiplied by the volume V ) and obtain

ZP.E. ≈ 1 +
N2

2V N

∫
d3r

[
e−βV(r) − 1

]
, (26.55)

and writing B(T ) (the virial coefficient) as

B(T ) =
N

2

∫
d3r

[
1 − e−βV(r)

]
, (26.56)

we have that

ZP.E. ≈ 1 − NB(T )

V
, (26.57)

and hence

F = −kBT lnZ

= −kBT ln(ZK.E.ZP.E.)

= F0 +
NkBTB(T )

V
, (26.58)

where F0 is the Helmholtz function of the ideal gas and the last equality
is accomplished using ln(1 + x) ≈ x for x � 1. Hence, we can evaluate
the pressure p as follows:

p = −
(
∂F

∂V

)
T

=
NkBT

V
+
NkBTB(T )

V 2
. (26.59)

Rearranging, we have that for one mole of gas

pV

RT
= 1 +

B(T )

V
, (26.60)

which is of the form of the virial expansion in eqn 26.40 but with only
a single non-ideal term.

B

T T

Fig. 26.9 The temperature depen-
dence of the virial coefficient B(T ) in
argon. Argon has a boiling point at at-
mospheric pressure of Tb = 87 K and
the critical point is at Tc = 151 K and
pc = 4.86 MPa.

The temperature dependence of the virial coefficient B(T ) for argon
is shown in Fig. 26.9. It is large and negative at low temperatures but
changes sign (at the Boyle temperature) and then becomes small and
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positive at higher temperatures. We can understand this from the ex-
pression for B(T ) which is given in eqn 26.56. This is an integral of
the function 1 − e−βV(r), which is shown in Fig. 26.10(b). At low tem-
peratures, the integral of this function is dominated by the negative
peak which is centred around rmin, the minimum in the potential well
(corresponding to the particles spending more time with this intermolec-
ular spacing). Hence B(T ) is negative and large at low temperatures.
As temperature increases, the peak in this function broadens out as
molecules spend more time a long way from each other, resulting in
a weakened average potential energy. Here, the effect of the positive
plateau below rmin begins to dominate the integral and B changes sign.

r

r

r

r

r

Fig. 26.10 The upper graph, (a),
shows the intermolecular potential en-
ergy V(r). The integrand in eqn 26.56
is 1 − e−βV(r) and this is plotted in
the lower graph, (b), for different val-
ues of β. The solid curve shows a value
with large β (low temperature) and the
other curves show the effect of reduc-
ing β (raising the temperature), where
in order of decreasing β the lines are
dashed, dotted, long-dashed, and dot-
dashed.
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26.4 The law of corresponding states

For different substances, the size of the molecules (which controls b in
the van der Waals model) and the strength of the intermolecular inter-
actions (which controls a in the van der Waals model) will vary, and
hence their phase diagrams will be different. For example, the critical
temperatures and pressures for different gases are different. However,
the phase diagram of substances should be the same when plotted in
reduced coordinates, which can be obtained by dividing a quantity
by its value at the critical point. Hence, if we replace the quantities
p, V, T by their reduced coordinates p̃, Ṽ , T̃ defined by

p̃ =
p

pc
, Ṽ =

V

Vc
, T̃ =

T

Tc
, (26.61)

then phase diagrams of materials which are not wholly different from
one another should lie on top of each other. This is called the law of
corresponding states.

Example 26.3

Express the equation of state of the van der Waals gas in reduced coor-
dinates.
Solution:

Substituting eqns 26.61 into eqn 26.10 we find that

pcp̃ =
RTcT̃

VcṼ − b
− a

V 2
c Ṽ

2
, (26.62)

and this can be rearranged to give(
p̃+

3

Ṽ 2

)
=

8T̃

3Ṽ − 1
. (26.63)

The law of corresponding states works well in practice for real experi-
mental data, since the intermolecular potential energies are usually of a
similar form in different substances, as shown in Fig. 26.10(a). There is
a repulsive region at small distances, a stable minimum at a separation
rmin corresponding to a potential well depth of −ε, and then a long-
range attractive region at larger distances. For different molecules, the
length scale rmin and the energy scale ε may be different, but these two
parameters together are sufficient to give a reasonable description of the
intermolecular potential energy. The parameter rmin sets the scale of
the molecular size and the parameter ε sets the scale of the intermolec-
ular interactions. Dividing p, V and T by their values at the critical
point removes these scales and allows the different phase diagrams to be
superimposed.
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T
T

Fig. 26.11 The liquid–gas coexistence
for a number of different substances can
be superimposed once they are plotted
in reduced coordinates. The solid line is
a scaling relation. This plot is adapted
from Guggenheim (1945).

An example of this for real data is shown in Fig. 26.11. The form of
the liquid–gas coexistence is different in detail from that predicted by
the van der Waals equation, but shows that the underlying behaviour in
different real systems is similar and shows ‘universal’ features.

Chapter summary

• Attractive intermolecular interactions and the non-zero size of
molecules lead to departures from ideal gas behaviour.

• The van der Waals equation of state is(
p+

a

V 2
m

)
(Vm − b) = RT.

• The Dieterici equation of state is

p(Vm − b) = RT e−a/RTVm .

• The virial expansion of a gas can be written as

pVm

RT
= 1 +

B

Vm
+

C

V 2
m

+ · · ·

• The law of corresponding states implies that if the variables p, V
and T are scaled by their values at the critical point, the behaviour
of different gases in these scaled variables is often very similar to
that of other gases scaled in the same way.
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Exercises

(26.1) Show that the isothermal compressibility κT of a
van der Waals gas can be written as

κT =
4b

3R
(T − Tc)

−1. (26.64)

Sketch the temperature dependence of κT and ex-
plain what happens to the properties of the gas
when the temperature is lowered through the crit-
ical temperature.

(26.2) The equation of state of a certain gas is p(V −b) =
RT , where b is a constant. What order of magni-
tude do you expect b to be? Show that the internal
energy of this gas is a function of temperature only.

(26.3) Show that the Dieterici equation of state,

p(V − b) = RT e−a/RTV ,

can be written in reduced units as

P̃ (2Ṽ − 1) = T̃ exp

»
2

„
1 − 1

T̃ Ṽ

«–
,

where P̃ = P/Pc, T̃ = T/Tc Ṽ = V/Vc, and
(Pc, Tc, Vc) is the critical point.

(26.4) Show that the isobaric expansivity βp of the van
der Waals gas is given by

βp =
1

T

„
1 +

b

V − b
− 2a

pV 2 + a

«−1

. (26.65)

What happens to this quantity close to the critical
point?

(26.5) Show that eqn 26.9 leads to

U =
3

2
RT − a

V
, (26.66)

for one mole of gas.

(26.6) The total energy of one mole of a van der Waals
gas can be written as

U =
f

2
RT − a

V
, (26.67)

where f is the number of degrees of freedom (see
eqn 19.22). Show that

CV =
f

2
R (26.68)

and

Cp − CV ≈ R +
2a

TV
. (26.69)
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In Chapter 26, we considered how to model the properties of real gases
using various corrections to the ideal gas model. In this chapter, we
will use these results to explore some of the deviations from ideal gas
behaviour which can be observed in practice, in particular with changes
in the behaviour of a Joule expansion. Then we will introduce the Joule–
Kelvin throttling process (which has no effect on an ideal gas, but which
can lead to cooling of a real gas) and discuss how real gases can be
liquefied.

27.1 The Joule expansion

We have discussed the properties of non-ideal gases in some detail. In
this section, we will see how the intermolecular interactions in such gases
lead to departures from ideal-gas behaviour for the Joule expansion. Re-
call from Section 14.4 that a Joule expansion is an irreversible expansion
of a gas into a vacuum which can be accomplished by opening a tap con-
necting the vessel containing gas and an evacuated vessel (see Fig. 27.1).
The entire system is isolated from its surroundings and so no heat enters
or leaves. No work is done, so the internal energy U is unchanged. We
are interested in finding out whether the gas warms, cools or remains at
constant temperature in this expansion.

Fig. 27.1 The Joule expansion: (a) be-
fore opening the tap and (b) after open-
ing the tap.

To answer this, we define the Joule coefficient µJ using

µJ =

(
∂T

∂V

)
U

, (27.1)

where the constraint of constant U is relevant for the Joule expansion.
This partial differential can be transformed using eqn 16.67 and the
definition of CV to give

µJ = −
(
∂T

∂U

)
V

(
∂U

∂V

)
T

= − 1

CV

(
∂U

∂V

)
T

. (27.2)

Now the first law, dU = TdS − pdV , implies that(
∂U

∂V

)
T

= T

(
∂S

∂V

)
T

− p, (27.3)

and using a Maxwell relation (eqn 16.53) this becomes(
∂U

∂V

)
T

= T

(
∂p

∂T

)
V

− p, (27.4)
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and hence

µJ = − 1

CV

[
T

(
∂p

∂T

)
V

− p

]
. (27.5)

For an ideal gas, p = RT/V , (∂p/∂T )V = R/V , and hence µJ =
0. Hence, as we found in Section 14.4, the temperature of an ideal
gas is unchanged in a Joule expansion. For real gases, you always get
cooling because of the attractive effect of interactions. This is because
CV > 0 and (∂U/∂V )T > 0 and so µJ = − 1

CV
(∂U/∂V )T < 0. This

can be understood physically as follows: when a gas freely expands into
a vacuum, the time-averaged distance between neighbouring molecules
increases and the magnitude of the potential energy resulting from the
attractive intermolecular interactions is reduced. However, this potential
energy is a negative quantity (because the interactions are attractive)
and so the potential energy is actually increased (because it is made less
negative).1 Since U must be unchanged in a Joule expansion (no heat1Of course, at very high densities, the

intermolecular interactions become re-
pulsive rather than attractive, but at
such a density one is probably dealing
with a solid rather than a gas.

enters or leaves and no work is done), the kinetic energy must be reduced
(by the same amount by which the potential energy rises) and hence the
temperature falls.

Example 27.1

Evaluate the Joule coefficient for a van der Waals gas.
Solution:

The equation of state is p = RT/(V − b) − a/V 2 and so(
∂p

∂T

)
V

=
R

V − b
, (27.6)

and hence

µJ = − 1

CV

[
RT

V − b
− RT

V − b
+

a

V 2

]
= − a

CV V 2
. (27.7)

The temperature change in a Joule expansion from V1 to V2 can be
evaluated simply by integrating the Joule coefficient as follows:

∆T =

∫ V2

V1

µJ dV = −
∫ V2

V1

1

CV

[
T

(
∂p

∂T

)
V

− p

]
dV. (27.8)

Example 27.2

Evaluate the change in temperature for a van der Waals gas which un-
dergoes a Joule expansion from volume V1 to volume V2.
Solution:

Using eqn 27.8, we have that

∆T = − a

CV

∫ V2

V1

dV

V 2
= − a

CV

(
1

V1
− 1

V2

)
< 0 (27.9)
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since V2 > V1 in an expansion.

27.2 Isothermal expansion

Consider the isothermal expansion of a non-ideal gas. Equation 27.4
states that (

∂U

∂V

)
T

= T

(
∂p

∂T

)
V

− p, (27.10)

so that the change of U in an isothermal expansion is

∆U =

∫ V2

V1

[
T

(
∂p

∂T

)
V

− p

]
dV. (27.11)

• For an ideal gas2, ∆U = 0. 2For an ideal gas, p = RT/V ,
(∂p/∂T )V = R/V , and hence

T
“

∂p
∂T

”
V

− p = 0.
• For a van der Waals gas, ∆U =

∫ V2

V1

a
V 2 dV = a(1/V1 − 1/V2).

Note that U depends on a, not b (it is influenced by the intermolecular
interactions but does not ‘care’ that they have non-zero size). Note also
that for large volumes, U becomes independent of V and one recovers
the ideal gas limit.

Example 27.3

Calculate the entropy of a van der Waals gas.
Solution:

The entropy S can be written as a function of T and V so that S =
S(T, V ). Hence

dS =

(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV

=
CV

T
dT +

(
∂p

∂T

)
V

dV, (27.12)

where eqns 16.68 and 16.53 have been used to obtain the second line.
For the van der Waals gas, we can write (∂p/∂T )V = R/(V − b), and
hence we have that

S = CV lnT +R ln(V − b) + constant. (27.13)

Note that the entropy depends on the constant b, but not a. Entropy
‘cares’ about the volume occupied by the molecules in the gas (because
this determines how much available space there is for the molecules
to move around in, and this in turn determines the number of possible
microstates of the system) but not about the intermolecular interactions.
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27.3 Joule–Kelvin expansion

The Joule expansion is a useful conceptual process, but it is not much
practical use for cooling gases. Gas slightly cools when it is expanded
into a second evacuated vessel, but what do you do with it then? What
is wanted is some kind of flow process where warm gas can be fed into
some kind of a ‘cooling machine’ and cold gas (or better still, cold liq-
uid) emerges from the other end. Such a process was discovered by
James Joule and William Thomson (later Lord Kelvin) and is known as
a Joule–Thomson expansion or a Joule–Kelvin expansion.

Consider a steady flow process in which gas at high pressure p1 is
forced through a throttle valve or a porous plug to a lower pressure p2.
This is illustrated in Fig. 27.2. Consider a volume V1 of gas on the
high–pressure side. Its internal energy is U1. To push the gas through
the constriction, the high pressure gas behind it has to do work on it
equal to p1V1 (since the pressure p1 is maintained on the high–pressure
side of the constriction). The gas expands as it passes through to the
low–pressure region and now occupies volume V2 which is larger than
V1. It has to do work on the low–pressure gas in front of it which is
at pressure p2 and hence this work is p2V2. The gas may change its
temperature in the process and hence its new internal energy is U2. The
change in internal energy (U2 − U1) must be equal to the work done on
the gas (p1V1) minus the work done by the gas (p2V2). Thus

U1 + p1V1 = U2 + p2V2 (27.14)

or equivalently
H1 = H2, (27.15)

so that it is enthalpy that is conserved in this flow process.

V Vp p

Fig. 27.2 A throttling process.
Since we are now interested in how much the gas changes temperature

when we reduce its pressure at constant enthalpy, we define the Joule–
Kelvin coefficient by

µJK =

(
∂T

∂p

)
H

. (27.16)

This can be transformed using the reciprocity theorem (eqn C.42) and
the definition of Cp to give

µJK = −
(
∂T

∂H

)
p

(
∂H

∂p

)
T

= − 1

Cp

(
∂H

∂p

)
T

. (27.17)

Now the relation dH = TdS + V dp implies that(
∂H

∂p

)
T

= T

(
∂S

∂p

)
T

+ V, (27.18)

and using a Maxwell relation (eqn 16.54) this becomes(
∂H

∂p

)
T

= −T
(
∂V

∂T

)
p

+ V, (27.19)
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and hence

µJK =
1

Cp

[
T

(
∂V

∂T

)
p

− V

]
(27.20)

The change in temperature for a gas following a Joule–Kelvin expansion
from pressure p1 to pressure p2 is given by

∆T =

∫ p2

p1

1

Cp

[
T

(
∂V

∂T

)
p

− V

]
dp. (27.21)

Since dH = TdS + V dp = 0, the entropy change is

∆S = −
∫ p2

p1

V

T
dp, (27.22)

and for an ideal gas this is R ln(p1/p2) > 0. Thus this is an irreversible
process.

p p

T
T

Fig. 27.3 The inversion curve of the
van der Waals gas is shown as the
heavy dashed line. The isenthalps
(lines of constant enthalpy) are shown
as thin solid lines. When the gradi-
ents of the isenthalps on this diagram
are positive, then cooling can be ob-
tained when pressure is reduced at con-
stant enthalpy (i.e. in a Joule–Kelvin
expansion). Also shown (as a solid line
near the bottom left-hand corner of the
graph which terminates at the dot) is
the line of coexistence of liquid and gas
(from Fig. 26.6) ending in the critical
point (p = pc, T = Tc, shown by the
dot).

Whether the Joule–Kelvin expansion results in heating or cooling is
more subtle and in fact µJK can take either sign. It is convenient to
consider when µJK changes sign, and this will occur when µJK = 0, i.e.
when T (∂V/∂T )p − V = 0, or equivalently(

∂V

∂T

)
p

=
V

T
. (27.23)
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4He H2 N2 Ar CO2

43 204 607 794 1275

Table 27.1 The maximum inversion temperature in Kelvin for several gases.

This equation defines the so-called inversion curve in the T–p plane.
This is plotted for the van der Waals gas in Fig. 27.3 as a heavy solid
line. The lines of constant enthalpy are also shown and their gradients
change sign when they cross the inversion curve. When the gradient of
the isenthalps on this diagram are positive, then cooling can be obtained
when pressure is reduced at constant enthalpy (i.e. in a Joule–Kelvin
expansion).

A crucial parameter is the maximum inversion temperature, below
which the Joule–Kelvin expansion can result in cooling. These are listed
for several real gases in Table 27.1. In the case of helium, this temper-
ature is 43 K, so helium gas must be cooled to below this temperature
by some other means before it can be liquefied using the Joule–Kelvin
process.

27.4 Liquefaction of gases

For achieving the liquefaction of gases, the Joule–Kelvin process is ex-
tremely useful, though it must be carried out below the maximum inver-
sion temperature of the particular gas in question. A schematic diagram
of a liquefier is shown in Fig. 27.4. High–pressure gas is forced through
a throttle valve, resulting in cooling by the Joule–Kelvin process. Low–
pressure gas plus liquid results, and the process is made more efficient
by use of a counter-current heat exchanger by which the outgoing cold
low–pressure gas is used to precool the incoming warm high pressure
gas, helping to ensure that by the time it reaches the throttle valve the
incoming high–pressure gas is already as cool as possible and at least at
a temperature such that the Joule–Kelvin effect will result in cooling.

Fig. 27.4 A schematic diagram of a liq-
uefier.

liquefier
compressed gas exhaust gas

liquid

h T p
y

h T p

y
h T p

Fig. 27.5 A block diagram of the liq-
uefaction process.

We can consider the liquefier as a ‘black box’ into which you put 1 kg
of warm gas and get out y kg of liquid, as well as (1 − y) kg of exhaust
gas (see Fig. 27.5). The variable y is the efficiency y of a liquefier, i.e.
the mass fraction of incoming gas which is liquefied. Since enthalpy is
conserved in a Joule–Kelvin process, we have that

hi = yhL + (1 − y)hf , (27.24)

where hi is the specific enthalpy of the incoming gas, hL is the specific
enthalpy of the liquid, and hf is the specific enthalpy of the outgoing
gas. Hence the efficiency y is given by

y =
hf − hi

hf − hL
(27.25)
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For an efficient heat exchanger, the temperature of the compressed gas Ti

and the exhaust gas Tf will be the same. We also have that pf = 1 atm,
and TL is fixed (because the liquid will be in equilibrium with its vapour).
Therefore hf and hL are fixed. The only parameter to vary is then hi

and to maximize y we must minimize hi, i.e.(
∂hi

∂pi

)
Ti

= 0 (27.26)

and since (∂h/∂p)T = −(1/Cp)µJK, we therefore require that

µJK = 0. (27.27)

This means that it is best to work the liquefier right on the inversion
curve (µJK = 0) for maximum efficiency.

Most gases could be liquefied by the end of the nineteenth century,
but the modern form of gas liquefier dates back to the work of the Ger-
man chemist Karl von Linde (1842–1934) who commercialized liquid-air
production in 1895 using the Joule–Kelvin effect with a counter-current
heat exchanger (as shown in Fig. 27.4; this is known as the Linde pro-
cess) and discovered various uses of liquid nitrogen. James Dewar
(1842–1923) was the first to liquefy hydrogen using the Linde process in
1898, and in 1899 got it to go solid. Dewar was also the first, in 1891,
to study the magnetic properties of liquid oxygen. The Dutch physicist
Heike Kamerlingh Onnes (1853–1926) was the first to produce liquid he-
lium in 1908 by a similar process, precooling the helium gas using liquid
hydrogen. Using liquid helium, he then discovered superconductivity in
1911, and was awarded the Nobel Prize in 1913 for ‘his investigations
on the properties of matter at low temperatures which led, inter alia, to
the production of liquid helium’.

Chapter summary

• The Joule expansion results in cooling for non-ideal gases because
of the attractive interactions between molecules.

• The entropy of a gas depends on the non-zero size of molecules.

• The Joule–Kelvin expansion is a steady flow process in which en-
thalpy is conserved. It can result in either warming or cooling of
a gas. It forms the basis of many gas liquefaction techniques.
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Exercises

(27.1) (a) Derive the following general relations

(a)

„
∂T

∂V

«
U

= − 1

CV

»
T

„
∂p

∂T

«
V

− p

–
,

(b)

„
∂T

∂V

«
S

= − 1

CV
T

„
∂p

∂T

«
V

,

(c)

„
∂T

∂p

«
H

=
1

Cp

"
T

„
∂V

∂T

«
p

− V

#
.

In each case the quantity on the left hand side is
the appropriate thing to consider for a particular
type of expansion. State what type of expansion
each refers to.
(b) Using these relations, verify that for an ideal
gas (∂T/∂V )U = 0 and (∂T/∂p)H = 0, and that
(∂T/∂V )S leads to the familiar relation pV γ =
constant along an isentrope.

(27.2) In a Joule–Kelvin liquefier, gas is cooled by ex-
pansion through an insulated throttle – a simple
but inefficient process with no moving parts at low
temperature. Explain why enthalpy is conserved
in this process. Deduce that„

∂T

∂P

«
H

=
1

CP

»
T

„
∂V

∂T

«
P

− V

–
.

Estimate the highest starting temperature at
which the process will work for helium at low den-
sities, on the following assumptions:
(i) the pressure is given at low densities by a virial
expansion of the form

PV

RT
= 1 +

“
b − a

RT

” „
1

V

«
+ · · · ,

and
(ii) the Boyle temperature a/bR (the temperature
at which the second virial coefficient vanishes) is
known from experiment to be 19 K for helium.

[Hint: One method of solving this problem is
to remember that p is easily made the subject
of the equation of state and one can then use
(∂V/∂T )p = −(∂p/∂T )V /(∂p/∂V )T .]

(27.3) For a gas obeying Dieterici’s equation of state

p(V − b) = RT e−a/RTV ,

for 1 mole, prove that the equation of the inversion
curve is

p =

„
2a

b2
− RT

b

«
exp

„
1

2
− a

RTb

«
,

and hence find the maximum inversion tempera-
ture Tmax.

(27.4) Show that the equation for the inversion curve of
the Dieterici gas in reduced units is

P̃ = (8 − T̃ ) exp

»
5

2
− 4

T̃

–
,

and sketch it in the T̃–P̃ plane.

(27.5) Why is enthalpy conserved in steady flow pro-
cesses? A helium liquefier in its final stage of liq-
uefaction takes in compressed helium gas at 14 K,
liquefies a fraction α, and rejects the rest at 14 K
and atmospheric pressure. Use the values of en-
thalpy H of helium gas at 14 K as a function of
pressure p in the table below to determine the in-
put pressure which allows α to take its maximum
value, and determine what this value is.

p (atm) 0 10 20 30 40

H (kJ kg−1) 87.4 78.5 73.1 71.8 72.6

[Enthalpy of liquid helium at atmospheric pressure
= 10.1 kJ kg−1].
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In this chapter we will consider phase transitions, in which one ther-
modynamic phase changes into another. An example would be the tran-
sition from liquid water to gaseous steam which occurs when you boil
a kettle of water. If you start with cold water, and warm it in the ket-
tle, all that happens initially is that the water gets progressively hotter.
However, when the temperature of the water reaches 100◦C interesting
things begin to happen. Bubbles of gas form with different sizes, making
the kettle considerably noisier, and water molecules begin to leave the
liquid surface in large quantities and steam is emitted. The transition
between different phases is very sudden. It is only when the boiling
point is reached that liquid water becomes thermodynamically unstable
and gaseous water, steam, becomes thermodynamically stable. In this
chapter, we will look in detail at the thermodynamics of this and other
phase transitions.

28.1 Latent heat

To increase the temperature of a substance, one needs to apply heat,
and how much heat is needed can be calculated from the heat capacity
because adding heat to the substance increases its entropy. The gradient
of entropy with temperature is related to the heat capacity via

Cx = T

(
∂S

∂T

)
x

, (28.1)

where x is the appropriate constraint (e.g. p, V , B etc). Now consider
two phases which are in thermodynamic equilibrium at a critical tem-
perature Tc. Very often, it is found that to change from phase 1 to
phase 2 at a constant temperature Tc, you need to supply some extra
heat, known as the latent heat L, which is given by

L = ∆Qrev = Tc(S2 − S1), (28.2)

where S1 is the entropy of phase 1 and S2 is the entropy of phase 2.
This, together with eqn 28.1, implies that there will be a spike in the
heat capacity Cx as a function of temperature.

An example of a phase transition which involves a latent heat is the
liquid–gas transition. The entropy as a function of temperature for H2O
is shown in Fig. 28.1. The entropy is shown to change discontinuously
at the phase transition. The heat capacity1 Cp of the liquid phase,

1We use Cp because the constraint usu-
ally applied in the laboratory is that of
constant pressure.
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Fig. 28.1 The entropy of H2O as a
function of temperature. The boiling
point is Tb = 373 K.

S

L Tb

water

steam

Tb

water, is about 75 J K−1 mol−1 (equivalent to about 4.2 kJ kg−1 K−1) at
temperatures below the boiling point Tb, and this is responsible for the
gradient of S(T ) below the transition (because ∆S =

∫
Cp dT/T ), while

the heat capacity of the gaseous phase, steam, is about 34 J K−1 mol−1,
and this is responsible for the gradient in S(T ) above the transition.
The sudden, discontinuous change in S which occurs at Tb is a jump of
magnitude L/Tb, where L is the latent heat, equal to 40.7 kJ mol−1 (or
equivalently 2.26 MJ kg−1).

Example 28.1

If it takes 3 minutes to boil a kettle of water which was initially at 20◦C,
how much longer will it take to boil the kettle dry?
Solution:

Using the data above, the energy required to raise water from 20◦C to
100◦C is 80 × 4.2 = 336 kJ kg−1. The energy required to turn it into
steam at 100◦C is 2.26 MJ kg−1, which is 6.7 times as big. Therefore it
would take 6.7×3 ≈ 20 minutes to boil the kettle dry (though, of course,
having an automatic switch-off mechanism saves this from happening!).
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Let us now perform a rough estimate for the entropy discontinuity at
a vapour2–liquid transition. The number of microstates Ω available to 2The word vapour is a synonym for gas,

but is often used when conditions are
such that the substance in the gas can
also exist as a liquid or solid; if T <
Tc, the vapour can be condensed into
a liquid or solid with the application of
pressure.

a single gas molecule is proportional to its volume,3 and hence the ratio

3Recall from Section 21.1 that one mi-
crostate occupies a volume in k-space
equal to (2π/L)3 ∝ V , and hence the
density of states is proportional to the
system volume V .

of Ω for one mole of vapour and one mole of liquid is

Ωvapour

Ωliquid
=

(
Vvapour

Vliquid

)NA

. (28.3)

Hence
Ωvapour

Ωliquid
=

(
ρliquid

ρvapour

)NA

∼ (103)NA , (28.4)

since the density of the vapour is roughly 103 times smaller than the
density of the liquid. Hence, using S = kB ln Ω, we have that the entropy
discontinuity is approximately

Remember that R = NAkB.∆S = ∆(kB ln Ω) = kB ln(103)NA = R ln 103 ≈ 7R, (28.5)

so that
L ≈ 7RTb. (28.6)

This relationship is known as Trouton’s rule, and is an empirical rela-
tionship which has been noticed for many systems, although it is usually
stated with a slightly different prefactor:

L ≈ 10RTb. (28.7)

The fact that the latent heat is slightly larger than expected from our
simple argument stems from the fact that the latent heat also involves
a contribution from the attractive intermolecular potential. However,
the law of corresponding states4 implies that if substances have similar 4See Section 26.4.

shaped intermolecular potentials then certain properties should scale in
the same way, so we do expect L/RTb to be a constant.

Ne Ar Kr Xe He H2O CH4 C6H6

Tb (K) 27.1 87.3 119.8 165.0 4.22 373.15 111.7 353.9
L (kJ mol−1) 1.77 6.52 9.03 12.64 0.084 40.7 8.18 30.7
L/RTb 7.85 8.98 9.06 9.21 2.39 13.1 8.80 10.5

Table 28.1 The values of Tb, L and L/RTb for several common substances.

This can be tested for various real substances (see Table 28.1) and
indeed it is found that for many substances the ratio L/RTb is around 8–
10, confirming Trouton’s empirical rule. Notable outliers include helium
(He) for which quantum effects are very important (see Chapter 30)
and water5 (H2O), which is a polar liquid (because the water molecule 5Water being a special case has a lot

of consequences; see, for example, Sec-
tion 37.3.

has a dipole moment) and which therefore possesses a rather different
intermolecular potential.
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28.2 Chemical potential and phase
changes

We have seen in Section 16.5 that the Gibbs function is the quantity
that must be minimized when systems are held at constant pressure and
temperature. In Section 22.5 we found that the chemical potential is
the Gibbs function per particle. We were also able to write in eqn 22.52
that

dG = V dp− SdT +
∑

i

µidNi. (28.8)

Now consider the situation in Figure 28.2 in which N1 particles of phase

Fig. 28.2 Two phases in equilibrium
at constant pressure (the constraint of
constant pressure is maintained by the
piston).

1 are in equilibrium with N2 particles of phase 2. Then the total Gibbs
free energy is

Gtot = N1µ1 +N2µ2, (28.9)

and since we are in equilibrium we must have

dGtot = 0, (28.10)

and hence
dGtot = dN1µ1 + dN2µ2 = 0. (28.11)

But if we increase the number of particles in phase 1, the number of
particles in phase 2 must decrease by the same amount, so that dN1 =
−dN2. Hence we have that

µ1 = µ2. (28.12)

Thus in phase equilibrium, each coexisting phase has the same chemical
potential. The lowest µ phase is stable. Along a line of coexistence
µ1 = µ2.

28.3 The Clausius–Clapeyron equation
T T T

p

p p

Fig. 28.3 Two phases in the p–T plane
coexist at the phase boundary, shown
by the solid line.

We now want to find the equation which describes the phase boundary
in the p–T plane (see Fig. 28.3). This line of coexistence of the two
phases is determined by the equation

µ1(p, T ) = µ2(p, T ). (28.13)

If we move along this phase boundary, we must also have

µ1(p+ dp, T + dT ) = µ2(p+ dp, T + dT ), (28.14)

so that when we change p to p+ dp and T to T + dT we must have

dµ1 = dµ2. (28.15)

This implies that (using eqns 16.22 and 22.48)

−s1dT + v1dp = −s2dT + v2dp, (28.16)
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where s1 and s2 are the entropy per particle in phases 1 and 2, and v1
and v2 are the volume per particle in phases 1 and 2. Rearranging this
equation therefore gives that

dp

dT
=
s2 − s1
v2 − v1

. (28.17)

If we define the latent heat per particle as l = T∆s, we then have that

dp

dT
=

l

T (v2 − v1)
, (28.18)

or equivalently
dp

dT
=

L

T (V2 − V1).
(28.19)

which is known as the Clausius–Clapeyron equation. This shows
that the gradient of the phase boundary of the p–T plane is purely
determined by the latent heat, the temperature at the phase boundary
and the difference in volume between the two phases.6 6This can be obtained from the differ-

ence in densities.

Example 28.2

Derive an equation for the phase boundary of the liquid and gas phases
under the assumptions that the latent heat L is temperature inde-
pendent, that the vapour can be treated as an ideal gas, and that
Vvapour = V 	 Vliquid.
Solution:

Assuming that Vvapour = V 	 Vliquid and that pV = RT for one mole,
the Clausius–Clapeyron equation becomes

dp

dT
=

Lp

RT 2
. (28.20)

This can be rearranged to give

dp

p
=
LdT

RT 2
, (28.21)

and hence integrating we obtain

ln p = − L

RT
+ constant. (28.22)

Hence the equation of the phase boundary is

p = p0 exp

(
− L

RT

)
, (28.23)

where the exponential looks like a Boltzmann factor e−βl with l = L/NA,
the latent heat per particle.

Remember again that R = NAkB.
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The temperature dependence of the latent heat of many substances
cannot be neglected. As an example, the temperature dependence of
the latent heat of water is shown in Fig. 28.4 and this shows a weak
temperature dependence. A method of treating this is outlined in the
following example.

Example 28.3

Evaluate the temperature dependence of the latent heat along the phase
boundary in a liquid–gas transition and hence deduce the equation of
the phase boundary including this temperature dependence.
Solution:

Along the phase boundary, we can write that the gradient in the tem-
perature is (see Fig. 28.5)

d

dT
=

(
∂

∂T

)
p

+
dp

dT

(
∂

∂p

)
T

. (28.24)

Hence, applying this to the quantity ∆S = Sv − SL = L/T where theT

L

Fig. 28.4 The temperature depen-
dence of the latent heat of water. The
solid line is according to eqn 28.30.

subscripts v and L refer to vapour and liquid respectively, we have that

d

dT

(
L

T

)
=

(
∂(∆S)

∂T

)
p

+
dp

dT

(
∂(∆S)

∂p

)
T

=
Cpv − CpL

T
+

[(
∂Sv

∂p

)
T

−
(
∂SL

∂p

)
T

]
dp

dT
,(28.25)

so that

T

p

T

p T T

Fig. 28.5 The phase boundary.

d

dT

(
L

T

)
=
Cpv − CpL

T
−
[
∂

∂T
(Vv − VL)

]
dp

dT
. (28.26)

Using Vv 	 VL and pVv = RT , we have that

d

dT

(
L

T

)
=
Cpv − CpL

T
− R

p
× Lp

RT 2
, (28.27)

and expanding
d

dT

(
L

T

)
=

1

T

dL

dT
− L

T 2
, (28.28)

yields
dL = (Cpv − CpL) dT, (28.29)

so that
L = L0 + (Cpv − CpL)T. (28.30)

Thus the latent heat contains a linear temperature dependence and this
is shown by the solid line in Fig. 28.4. The negative slope is due to the
fact that CpL > Cpv. Substituting this value of L into eqn 28.19 yields
the equation of the phase boundary:

p = p0 exp

(
− L0

RT
+

(Cpv − CpL) lnT

R

)
. (28.31)
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We can also use the Clausius–Clapeyron equation to derive the phase
boundary of the liquid–solid coexistence line, as shown in the following
example.

Example 28.4

Find the equation in the p–T plane for the phase boundary between the
liquid and solid phases of a substance.
Solution:

The Clausius–Clapeyron equation (eqn 28.19) can be rearranged to give

dp =
LdT

T∆V
, (28.32)

and neglecting the temperature dependence of L and ∆V , we find that
this integrates to

p = p0 +
L

∆V
ln

(
T

T0

)
, (28.33)

where T0 and p0 are constants such that (T, p) = (T0, p0) is a point on
the phase boundary. The volume change ∆V on melting is relatively
small, so that the gradient of the phase boundary in the p–T plane is
very steep.

T T

p
p

solid liquid

gas

Fig. 28.6 A schematic phase diagram
of a (hypothetical) pure substance.

A phase diagram of a hypothetical pure substance is shown in Fig. 28.6
and shows the solid, liquid and gaseous phases coexisting with the phase
boundaries calculated from the Clausius–Clapeyron equation. The three
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phases coexist at the triple point. The solid-liquid phase boundary is
very steep, reflecting the large change in entropy in going from liquid to
solid and the very small change in volume. This phase boundary does
not terminate, but continues indefinitely. By way of contrast, the phase
boundary between liquid and gas terminates at the critical point, as
we have seen in Section 26.1. (We will have more to say about this
observation in Section 28.7.) Note also that, at temperatures close to
the triple point, the latent heat of sublimation (changing from solid
to gas) is equal to the sum of the latent heat of melting (solid→liquid)7

7The latent heat of melting is some-
times known as the latent heat of fu-
sion.

and the latent heat of vapourisation (liquid→gas).88This fact will be used in Exercise 28.5.

T

p

gas

liquidsolid

Fig. 28.7 The phase diagram of H2O showing the solid (ice), liquid (water) and
gaseous (steam) phases. The horizontal dashed line corresponds to atmospheric pres-
sure, and the normally experienced freezing and boiling points of water are indicated
by the open circles.

Fig. 28.8 Schematic diagram of hydro-
gen bonding in water.

The gradient of the liquid–solid coexistence line is normally positive
because most substances expand when they melt. A notable counterex-
ample is water, which slightly shrinks when it melts. Hence, the gradient
of the ice-water coexistence line is negative (see Fig. 28.7; because the
solid-liquid line is so steep, it is not easy to see that the slope is neg-
ative). This effect occurs because of the hydrogen bonding9in water

9A hydrogen bond is a weak attractive
interaction between a hydrogen atom
and a strongly electronegative atom
such as oxygen or nitrogen. The elec-
tron cloud around the hydrogen nucleus
is attracted by the electronegative atom
and leaves the hydrogen with a par-
tial positive charge, and because of its
size this results in a large charge den-
sity. Hydrogen bonding is responsible
for the linking of the base pairs in DNA
and the structure of many proteins. It
is also responsible for the high boil-
ing point of water (which given its low
molecular mass would be expected to
boil at much lower temperatures than
it does).

(see Fig. 28.8) which results in a rather open structure of the ice crystal
lattice. This collapses on melting, resulting in a slightly denser liquid.
This result has many consequences: for example, icebergs float on the
ocean and ice cubes float in your gin and tonic. The pressure dependence
of the coexistence line means that pressing ice can cause it to melt, an
effect which is responsible for the movement of glaciers, which can press
against rock, melt near the region of contact with the rock, and slowly
creep downhill.
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28.4 Stability & metastability

We have seen in Section 28.2 that the phase with the lowest chemical
potential µ is the most stable. Let us see how the phase transition varies
as a function of pressure. Since µ is the Gibbs function per particle,
eqn 16.24 implies that (

∂µ

∂p

)
T

= v, (28.34)

where v is the volume per particle. Since v > 0, the gradient of the
chemical potential with pressure must always be positive. The behaviour
of µ as a function of pressure as one crosses the phase transition between
the liquid and gas phases is shown in Fig. 28.9. This figure shows that
the phase which is stable at the highest pressure must therefore have
the smallest volume. This of course makes sense since, when you apply
large pressure, you expect the smallest space-occupying phase to be the
most stable.

p

Fig. 28.9 The chemical potential as a
function of pressure.

We can also think about µ as a function of temperature. Equa-
tion 16.23 implies that (

∂µ

∂T

)
p

= −s, (28.35)

where s is the entropy per particle. Since µ > 0, the gradient of µ as a
function of temperature must always be negative. The behaviour of µ as
a function of temperature as you cross the phase transition between the
liquid and gas phases is shown in Fig. 28.10. This figure shows that the
phase which is stable at the highest temperature must therefore have
the highest entropy. This makes sense because G = H − TS and so at
higher temperature, you minimize G by maximizing S.

T

Fig. 28.10 The chemical potential as a
function of temperature.

This also shows that as you warm a substance through its boiling
point, it is possible to momentarily continue on the curve corresponding
to µliq and to form superheated liquid which is a metastable state.
Although for temperatures above the boiling point it is the gaseous state
which is thermodynamically stable (i.e. has the lowest Gibbs function),
there may be reasons why this state cannot be formed immediately and
the liquid state persists. Similarly, if you cool a gas below the boiling
point, it is possible to momentarily continue on the curve corresponding
to µgas and to form supercooled vapour, which is a metastable state.
Again, this is not the thermodynamically stable state of the system but
there may be reasons why the liquid state cannot nucleate immediately
and the gaseous state persists.

Let us now try and fathom the reason why the thermodynamically
most stable state sometimes doesn’t form. Consider a liquid with pres-
sure pliq in equilibrium with a vapour at pressure p. The chemical po-
tentials of the liquid and vapour must be equal. Now imagine that the
liquid pressure slightly increases to pliq + dpliq. If the vapour is still in
equilibrium with the liquid, then its pressure must increase to p + dp
and we must have that(

∂µliq

∂pliq

)
T

dpliq =

(
∂µvap

∂p

)
T

dp, (28.36)
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so that the chemical potentials of the liquid and vapour are still equal.
Using eqn 28.34, this implies that

vliqdpliq = vvapdp, (28.37)

where vliq is the volume per particle occupied by the liquid and vliq is
the volume per particle occupied by the gas. Hence multiplying this by
NA and using pV = RT for one mole of the gas, we find that

Vliqdpliq =
RTdp

p
, (28.38)

where Vliq is the molar volume of the liquid. We can use this to find
the dependence of the vapour pressure10 on the pressure in the liquid at10The vapour pressure of a liquid

(or a solid) is the pressure of vapour
in equilibrium with the liquid (or the
solid).

constant temperature. Integrating eqn 28.38 leads to

p = p0 exp

(
Vliq∆pliq

RT

)
, (28.39)

where ∆pliq is the extra pressure applied to the liquid, p0 is the vapour
pressure of the gas with no excess pressure applied to the liquid and p is
the vapour pressure of the gas with excess pressure ∆pliq in the liquid.

This result can be used to derive the vapour pressure of a droplet of
liquid. Recall from eqn 17.18 that the excess pressure in a droplet of
liquid of radius r can be obtained as

∆pliq =
2γ

r
, (28.40)

where γ is the surface tension. Hence we find that

p = p0 exp

(
2γVliq

rRT

)
, (28.41)

which is known as Kelvin’s formula. This formula shows that small
droplets have a very high vapour pressure, and this gives some under-
standing about why the vapour sometimes doesn’t condense when you
cool it through the boiling temperature. Small droplets initially begin to
nucleate, but have a very high vapour pressure and therefore instead of
growing can evaporate. This stabilises the vapour, even though it is the
thermodynamically stable phase. The thermodynamic driving force to
condense is overcome by the tendency to evaporate. This effect occurs
very often in the atmosphere which contains water vapour which has
risen to an altitude where it is sufficiently cold to condense into water
droplets, but the droplets cannot form owing to this tendency to evapo-
rate. Clouds do form through the nucleation of droplets on minute dust
particles which have sufficient surface area for the liquid to condense
and then grow above the critical size.

A similar effect occurs for superheated liquids. The pressure of liquid
near a vapour-filled cavity of radius r is less than that in the bulk liquid
according to

∆pliq = −2γ

r
, (28.42)
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and hence the vapour pressure inside the cavity follows:

p = p0 exp

(
−2γVliq

rRT

)
. (28.43)

Thus the vapour pressure inside a cavity is lower than one might ex-
pect. As you boil a liquid, any bubble of vapour which does form tends
to collapse. This means the liquid can become superheated and kineti-
cally stable above its boiling point, even though the vapour is the true
thermodynamic ground state. The only bubbles which then do survive
are very large ones, and this causes the violent bumping which can be
observed in boiling liquids. This can be avoided by boiling liquids with
small pieces of glass or ceramic, so that there are plenty of nucleation
centres for small bubbles to form.

Example 28.5

A bubble chamber is used in particle physics to detect electrically
charged subatomic particles. It consists of a container filled with a su-
perheated transparent liquid such as liquid hydrogen, at a temperature
just below its boiling point. The motion of the charged particle is suffi-
cient to nucleate a string of bubbles of vapour which display the track of
the particle. A magnetic field can be applied to the chamber so that the
shape of the curved tracks of the particle can be used to infer its charge
to mass ratio. Its invention in 1952 earned Donald Glaser (1926–) the
1960 Nobel Prize for Physics.

Example 28.6

Calculate the Gibbs function for a droplet of liquid of radius r (and
hence surface area A = 4πr2) in equilibrium with vapour. Assume
the temperature is such that the liquid is the thermodynamically stable
phase.
Solution:

Writing the number of particles (of mass m) in the liquid and vapour as
Nliq and Nvap respectively, the change in Gibbs function is

dG = µliq dNliq + µvap dNvap + γ dA, (28.44)

where γ is the surface tension. Since particles must be conserved,
dNvap = −dNliq. Differentiating A = 4πr2 yields dA = 8πr dr, and
writing ∆µ = µvap − µliq (which will be positive since the liquid is the
thermodynamically stable phase) we have

dG =

(
8πγr − 4πr2∆µρliq

m

)
dr, (28.45)
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where ρliq is the density of the liquid. This can be integrated to yield

G(r) = G(0) + 4πγr2 − 4π∆µρliq

3m
r3, (28.46)

and hence equilibrium is established when dG/dr = 0, and this occurs
at the critical radius r∗ given by

r∗ =
2γm

ρliq∆µ
. (28.47)

This function is sketched in Fig. 28.11 and shows that r∗ is indeed a
stationary point, but is a maximum in G, not a minimum! Thus r = r∗

is a point of unstable equilibrium. If r < r∗, the system can minimize G
by shrinking r to zero, i.e. the droplet evaporates. If r > r∗, the system
can minimize G by the droplet growing to infinite size.r r

G
r

G
G

Fig. 28.11 The Gibbs function of
the droplet as a function of ra-
dius, plotted in units of G0 =
16πγ3m2/(3(ρliq∆µ)2).

This effect occurs as water condenses in a cloud. The large droplets
keep the partial pressure of the water vapour low. The smaller droplets
therefore evaporate and the water can transfer from the smaller to the
larger droplets.

28.5 The Gibbs phase rule

In this section, we want to find out how much freedom a system has
to change its internal parameters while keeping the different substances
in various combinations of phases in equilibrium with each other. We
want to include the possibility of having mixtures of different substances,
and we will call the different substances components. A component is
a chemically independent constituent of the system. To keep track of
the number of molecules in these different components, we introduce
the mole fraction xi which is defined to be the ratio of the number of
moles, ni, of the ith substance, divided by the total number of moles n,
so that

xi =
ni

n
. (28.48)

By definition, we have that ∑
xi = 1. (28.49)

Each of the components can be in different phases (where here we mean
phases such as ‘solid’, ‘liquid’ and ‘gas’, but we might also wish to include
other possibilities, such as ‘ferromagnetic’ and ‘paramagnetic’ phases, or
‘superconducting’ and ‘non-superconducting’ phases). We denote by the
symbol F the number of degrees of freedom the system has while keeping
the different phases in equilibrium, and it is this quantity we now want
to calculate, following a method introduced by Gibbs.

Consider a multicomponent system, containing C components. Each
component can be in any one of P different phases. The system is
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characterized by the intensive variables, the pressure p, the temperature
T and the mole fractions of C − 1 of the components (we don’t need all
C of them, since

∑C
i=1 xi = 1) for each of the P phases, so that is

2 + P (C − 1) (28.50)

variables. If the phases of each component are in equilibrium with one
another, then we must have, as i runs from 1 to C,

µi(phase 1) = µi(phase 2) = · · · = µi(phase P ), (28.51)

which gives us P − 1 equations to solve for each component, and hence
C(P − 1) equations to solve for each of the C components.

The number of degrees of freedom F the system has is given by the dif-
ference between the number of variables and the number of constraining
equations to solve. Hence F = [P (C − 1) + 2] − C(P − 1), and thus

F = C − P + 2 (28.52)

which is known as the Gibbs phase rule.

Example 28.7

For a single–component system, C = 1 and hence F = 3 − P . Thus:

• If there is one phase, F = 2, and the whole p–T plane is accessible.

• If there are two phases, F = 1, and these two phases can only
coexist at a common line of coexistence in the p–T plane.

• If there are three phases, F = 0, and these three phases can only
coexist at a common point of coexistence in the p–T plane (the
triple point).

For a two–component system, C = 2 and hence F = 4 − P . If we fix
the pressure, then the number of remaining degrees of freedom F ′ =
F − 1 = 3 − P . Having fixed the pressure, we have two variables which
are temperature T and the mole fraction x1 of the first component (the
mole fraction of the second component being given by 1 − x1). Thus:

• If there is one phase, F = 2, and the whole x1–T plane is accessible.

• If there are two phases, F = 1, and these two phases can only
coexist at a common line of coexistence in the x1–T plane.

• If there are three phases, F = 0, and these three phases can only
coexist at a common point of coexistence in the x1–T plane.

The Gibbs phase rule is of great use in interpreting complex phase
diagrams of mixtures of substances.
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28.6 Colligative properties

When a liquid of a particular material (we will call it A) has another
species, B, dissolved in it, the chemical potential of A is decreased. The
result of this is that the boiling point of the liquid A is elevated and
the freezing point of the liquid is depressed compared to that of the
pure liquid. These effects are known as colligative properties.11 The11The word colligative means a collec-

tion of things fastened together. magnitude of the effect can be worked out from the reduction of the
chemical potential.

The liquid which is the main compo-
nent is known as the solvent, while
the material which is dissolved in it is
known as the solute.

Example 28.8

Find the chemical potential of a solvent A with a solute B dissolved in
it. The mole fraction of the solvent is xA.
Solution:

Recall from eqn 22.65 that the chemical potential of a gas (let us call it
a gas of molecules of A) with pressure p∗A is given by

µ
(g)∗
A = µ�

A +RT ln
p∗A
p�
, (28.53)

where the superscript (g) indicates gas and the superscript * indicates
that we are dealing with a pure substance. If this is in equilibrium with
the liquid form of A, then we also have

µ
(
)∗
A = µ�

A +RT ln
p∗A
p�
, (28.54)

where the superscript (�) indicates liquid. Now imagine that we mix
some B molecules into the liquid. The mole fraction of A, xA, is now
less than one. The chemical potential of A in the liquid is now still equal
to the chemical potential of A in the gas, but the gas has a different
vapour pressure pA (no asterisk because we are no longer dealing with
pure substances). Thus

µ
(
)
A = µ

(g)
A = µ�

A +RT ln
pA

p�
. (28.55)

Equations 28.54 and 28.55 give that

µ
(g)
A = µ

(
)∗
A +RT ln

pA

p∗A
. (28.56)

The vapour pressure of A in the mixed system can be estimated using
Raoult’s law, which states that pA = xAp

∗
A (i.e. that the vapour pres-

sure of A is proportional to its mole fraction). Hence eqn 28.56 becomes

µ
(
)
A = µ

(
)∗
A +RT lnxA. (28.57)

Since xA < 1, we find that µ
(
)
A < µ

(
)∗
A and so the chemical potential is

indeed depressed compared to the pure case.
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We can now derive formulae to describe the colligative properties.
Equation 28.57 can be rewritten as

lnxA =
∆Gvap

RT
, (28.58)

where ∆Gvap = µ
(g)∗
A − µ

(
)∗
A . When xA = 1, then equilibrium between

vapour and liquid occurs at a temperature T ∗ given by (using eqn 28.58
with xA = 1)

∆Gvap(T ∗)
RT ∗ = 0, (28.59)

which implies that (recall that G = H − TS)

∆Hvap(T ∗) − T ∗∆Svap(T ∗) = 0. (28.60)

When xB = 1 − xA is very small, then we have that

ln(1 − xB) ≈ −xB, (28.61)

and hence eqn 28.58 implies that

−xB =
∆Gvap

RT
=

1

R
[∆Hvap(T ) − T∆Svap(T )] , (28.62)

and assuming that ∆Hvap and ∆Svap are only weakly temperature-
dependent, this yields

−xB =
∆Hvap

R

(
1

T ∗ − 1

T

)
≈ ∆Hvapδ

RT ∗2 (T − T ∗). (28.63)

Hence T − T ∗, the elevation in boiling point, is given approximately by

T − T ∗ ≈ RT ∗2xB

∆Hvap
. (28.64)

It is often written T − T ∗ = KbxB, where Kb ≈ RT ∗2/∆Hvap is known
as the ebullioscopic constant. For water, Kb = 0.51 K mol−1 kg−1.
There is a similar effect on the depression of the freezing point. One can
show similarly that the freezing point is depressed by an amount T ∗ −
T = KfxB where Kf ≈ RT ∗2/∆Hfus is the cryoscopic constant. The
salt water in the oceans freezes at a lower temperature than fresh water.
The effect is also relevant for salt being put on pavements (sidewalks)
in winter to stop them becoming icy.

Adding a small quantity of solute to a solvent increases the entropy of
the solvent because the solute atoms are randomly located in the solvent.
This means that there is a weaker tendency to form a gas (which would
increase the solvent’s entropy) because the entropy of the solvent has
been increased anyway. This results in an elevation of the boiling point.
Similarly, this additional entropy opposes the tendency to freeze and the
freezing point is depressed.



320 Phase transitions

Fig. 28.12 Ehrenfest’s classification of
phase transitions. (a) First-order phase
transition. (b) Second-order phase
transition. The critical temperature Tc

is marked by a vertical dotted line in
each case.
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28.7 Classification of phase transitions

Paul Ehrenfest (1880–1933) proposed a classification of phase transitions
which goes as follows: the order of a phase transition is the order of
the lowest differential of G (or µ) which shows a discontinuity at Tc.
Thus first-order phase transitions involve a latent heat because the
entropy (a first differential of G) shows a discontinuity. The volume is
also a first differential of G and this also shows a discontinuous jump.
The heat capacity is a second differential of G and thus it shows a sharp
spike, as does the compressibility. This is illustrated in Fig. 28.12(a).
Examples of first-order phase transitions include the solid–liquid transi-
tion, the solid–vapour transition, and the liquid–vapour transition.

By Ehrenfest’s classification, a second-order phase transition has
no latent heat because the entropy does not show a discontinuity (and
neither does the volume – both are first differentials of G), but quantities
like the heat capacity and compressibility (second differentials of G) do.
This is illustrated in Fig. 28.12(b). Examples of second-order phase
transitions include the superconducting transition, or the order–disorder
transition in β-brass.

However, a big problem with the approach we have been using so far
in studying phase transitions is that one key approximation made in
thermodynamics, namely that the number of particles is so large that
average properties such as pressure and density are well defined, breaks
down at a phase transition. Fluctuations build up near a phase transition
and so the behaviour of the system does not follow the expectations of
our analysis very close to the phase transition temperature. This critical
region is characterized by fluctuations, at all length scales. For example,
when a saucepan of water is heated, the water warms quite quietly and
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unobtrusively until near the boiling point when it makes a great deal of
noise and bubbles violently.12 We have already analysed the behaviour 12A visual demonstration of this is

found in the phenomenon known as
critical opalescence which is the
blurring and clouding of images seen
through a volume of gas near its crit-
ical point. This occurs because density
fluctuations are strong near the critical
point and give rise to large variations
in refractive index.

of the formation of bubbles in Section 28.4. Therefore, it has been found
that Ehrenfest’s approach is rather too simple. We will have more to
say concerning fluctuations in Chapters 33 and 34.

A more modern approach to classifying phase transitions simply dis-
tinguishes between those which show a latent heat, for which Ehrenfest’s
term “first-order phase transition” is retained, and those which do not,
which are called a continuous phase transition (and include Ehren-
fest’s phase transitions of second order, third order, fourth order, etc,
all lumped together).

Example 28.9

• The liquid–gas phase transition is a first-order transition, except
at the critical point where the phase transition involves no latent
heat and is a continuous phase transition.

• A ferromagnet13 such as iron loses its ferromagnetism when heated 13A ferromagnet is a material contain-
ing magnetic moments which are all
aligned in parallel below a transition
temperature called the Curie temper-
ature. Above this temperature, the
magnetic moments become randomly
aligned. This state is known as the
paramagnetic state.

to the Curie temperature, TC (a particular example of a critical
temperature). This phase transition is a continuous phase tran-
sition, since there is no latent heat. The magnetization is a first
differential of the Gibbs function and does not change discontinu-
ously at TC. The specific heat CB , at constant magnetic field B,
has a finite peak at TC.

A further classification of phase transitions involves the notion of sym-
metry breaking. Figure 28.13 shows atoms in a liquid and in a solid.
As a liquid cools there is a very slight contraction of the system but it
retains a very high degree of symmetry. However, below the melting
temperature, the liquid becomes a solid and that symmetry is broken.
This may at first sight seem surprising because the picture of the solid
‘looks’ more symmetrical than that of the liquid. The atoms in the solid
are all symmetrically lined up while in the liquid they are all over the
place. The crucial observation is that any point in a liquid is, on av-
erage, exactly the same as any other. If you average the system over
time, each position is visited by atoms as often as any other. There
are no unique directions or axes along which atoms line up. In short,
the system possesses complete translational and rotational symmetry.
In the solid, however, this high degree of symmetry is nearly all lost.
The solid drawn in Fig. 28.13 still possesses some residual symmetry:
rather than being invariant under arbitrary rotations, it is invariant un-
der four-fold rotations (π/2, π, 3π/2, 2π); rather than being invariant
under arbitrary translations, it is now invariant under a translation of
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an integer combination of lattice basis vectors. Therefore not all sym-
metry has been lost but the high symmetry of the liquid state has been,
to use the technical term, ‘broken’. It is impossible to change symmetry
gradually. Either a particular symmetry is present or it is not. Hence,
phase transitions are sharp and there is a clear delineation between the
ordered and disordered states.

Fig. 28.13 The liquid–solid phase
transition. Top: The high temperature
state (statistically averaged) has com-
plete translational and rotational sym-
metry. Bottom: These symmetries are
broken as the system becomes a solid
below the critical temperature Tc.

Not all phase transitions involve a change of symmetry. Consider
the liquid–gas coexistence line again (see Fig. 28.7). The boundary line
between the liquid and gas regions is terminated by a critical point.
Hence it is possible to ‘cheat’ the sharp phase transition by taking a
path through the phase diagram which avoids a discontinuous change.
For temperatures above the critical temperature (647 K for water) the
gaseous and liquid states are distinguished only by their density. The
transition between a gas and a liquid involves no change of symmetry
and therefore it is possible to avoid it by working round the critical
end point. In contrast, the solid–liquid transition involves a change of
symmetry and consequently there is no critical point for the melting
curve.

Symmetry-breaking phase transitions include those between the ferro-
magnetic and paramagnetic states (in which the low–temperature state
does not possess the rotational symmetries of the high–temperature
state) and those between the superconducting and normal metal states
of certain materials (in which the low–temperature state does not pos-
sess the same symmetry in the phase of the wavefunction as the high
temperature state).

The concept of broken symmetry is very wide–ranging and is used
to explain how the electromagnetic and weak forces originated. In the
early Universe, when the temperature was very high, it is believed that
the electromagnetic and weak forces were part of the same, unified, elec-
troweak force. When the temperature cooled14 to below about 1011 eV

14In other words when kBT was lower
than this energy, corresponding to a
temperature T ∼ 1015 K.

a symmetry was broken and a phase transition occured, via what is
known as the Higgs mechanism, and the W and Z bosons (medi-
ating the weak force) acquired mass while the photon (mediating the
electromagnetic force) remained massless. It is suggested that, at even
earlier times, when the temperature of the Universe was around 1021 eV,
the electroweak and strong forces were unified, and as the Universe ex-
panded and its temperature lowered, another symmetry-breaking tran-
sition caused them to appear as different forces.
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Chapter summary

• The latent heat is related to the change in entropy at a first–order
phase transition.

• The Clausius–Clapeyron equation states that

dp

dT
=

L

T (V2 − V1)
,

and this can be used to determine the shape of the phase boundary.

• The Kelvin formula states that the pressure in a droplet is given
by

p = p0 exp

(
2γVliq

rRT

)
.

• The Gibbs phase rule states that F = C − P + 2.

• Dissolving a solute in a solvent results in the elevation of the sol-
vent’s boiling point and a depression of its freezing point.

• A first–order phase transition involves a latent heat while a con-
tinuous phase transition does not.

• Certain phase transitions involve the breaking of symmetry.

Further reading

More information on phase transitions may be found in Binney et al. (1992), Yeomans (1992), Le Bellac (2004),
Blundell (2001) and Anderson (1984).

Exercises

(28.1) When lead is melted at atmospheric pressure, the
melting point is 327.0◦C, the density decreases
from 1.101×104 to 1.065×104 kg m−3 and the la-
tent heat is 24.5 kJ kg−1. Estimate the melting
point of lead at a pressure of 100 atm.

(28.2) Some tea connoisseurs claim that a good cup of tea
cannot be brewed with water at a temperature less
than 97◦C. Assuming this to be the case, is it pos-
sible for an astronomer, working on the summit of
Mauna Kea in Hawaii (elevation 4194 m, though
you don’t need to know this to solve the problem)

where the air pressure is 615 mbar, to make a good
cup of tea without the aid of a pressure vessel?

(28.3) The gradient of the melting line of water on a
p−T diagram close to 0◦ C is −1.4 × 107 PaK−1.
At 0◦ C, the specific volume of water is 1.00 ×
10−3 m3 kg−1 and of ice is 1.09 × 10−3 m3 kg−1.
Using this information, deduce the latent heat of
fusion of ice.
In winter, a lake of water is covered initially by
a uniform layer of ice of thickness 1 cm. The air
temperature at the surface of the ice is −0.5◦C. Es-
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timate the rate at which the layer of ice begins to
thicken, assuming that the temperature of the wa-
ter just below the ice is 0◦C. You can also assume
steady state conditions and ignore convection.
The temperature of the water at the bottom of the
lake, depth 1 m, is maintained at 2◦C. Find the
thickness of ice which will eventually be formed.ˆ
The thermal conductivity of ice is 2.3 W m−1 K−1

and of water is 0.56 W m−1 K−1.
˜

(28.4) (a) Show that the temperature dependence of the
latent heat of vaporization L is given by the fol-
lowing expression:

d

dT

„
L

T

«
=

Cpv − CpL

T
(28.65)

+

»„
∂Sv

∂p

«
T

−
„

∂SL

∂p

«
T

–
dp

dT
.

In this equation, Sv and SL are the entropies of the
vapour and liquid and Cpv and CpL are the heat
capacities of the vapour and liquid. Hence show
that L = L0+L1T where L0 and L1 are constants.
(b) Show further that when the saturated vapour
of an incompressible liquid is expanded adiabati-
cally, some liquid condenses out if

CpL + T
d

dT

„
L

T

«
< 0

where CpL is the heat capacity of the liquid (which
is assumed constant) and L is the latent heat of
vaporisation.
(Hint: consider the gradient of the phase bound-
ary in the p–T plane and the corresponding curve
for adiabatic expansion.)

(28.5) The equilibrium vapour pressure p of water as a
function of temperature is given in the following
table:

T (◦C) p (Pa)

0 611
10 1228
20 2339
30 4246
40 7384
50 12349

Deduce a value for the latent heat of evaporation
Lv of water. State clearly any simplifying assump-
tions that you make.
Estimate the pressure at which ice and water are
in equilibrium at −2◦C given that ice cubes float
with 4/5 of their volume submerged in water at
the triple point (0.01◦C, 612 Pa).
[Latent heat of sublimation of ice at the triple
point, Ls = 2776 × 103 J kg−1.]

(28.6) It is sometimes stated that the weight of a skater
pressing down on their thin skates is enough to
melt ice, so that the skater can glide around on
a thin film of liquid water. Assuming an ice rink
at −5◦C, do some estimates and show that this
mechanism won’t work. [In fact, frictional heating
of ice is much more important, see S.C. Colbeck,
Am. J. Phys. 63, 888 (1995) and S. C. Colbeck,
L. Najarian, and H. B. Smith Am. J. Phys. 65,
488 (1997).]
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In this chapter, we are going to consider the way in which quantum

mechanics changes the statistical properties of gases. The crucial in-
gredient is the concept of identical particles. The results of quantum
mechanics show that there are two types of identical particle: bosons
and fermions. Bosons can share quantum states, while fermions cannot
share quantum states. Another way of stating this is to say that bosons
are not subject to the Pauli exclusion principle, while fermions are.
This difference in ability to share quantum states (arising from what we
shall call exchange symmetry) has a profound effect on the statistical
distribution of these particles over the energy states of the system. This
distribution over energy states is called the statistics of these particles,
and we will demonstrate the effect of exchange symmetry on statistics.
However, it can also be shown that another difference between bosons
and fermions is the type of spin angular momentum that they may pos-
sess. This is enshrined in the spin-statistics theorem, which we will
not prove but which states that bosons have integer spin while fermions
have half-integer spin.

Example 29.1

• Examples of bosons include: photons (spin 1), 4He atoms (spin 0).

• Examples of fermions include: electrons (spin 1
2 ), neutrons (spin

1
2 ), protons (spin 1

2 ), 3He atoms (spin 1
2 ), 7Li nuclei (spin 3

2 ).

29.1 Exchange and symmetry

In this section, we will argue why a two-particle wave function can be
either symmetric or antisymmetric under exchange of particles. Consider
two identical particles, one at position r1 and the other at position r2.
The wave function which describes this is ψ(r1, r2). We now define an
exchange operator P̂12 which exchanges particles 1 and 2. Thus

P̂12ψ(r1, r2) = ψ(r2, r1). (29.1)
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Since the particles are identical, we also expect that the Hamiltonian Ĥ
which describes this two-particle system must commute with P̂12, i.e.

[Ĥ, P̂12] = 0, (29.2)

so that the energy eigenfunctions must be simultaneously eigenfunctions
of the exchange operator. However, because the particles are identical,
swapping them over must have no effect on the probability density. Thus

|ψ(r1, r2)|2 = |ψ(r2, r1)|2. (29.3)

If P̂12 is a Hermitian1 operator, it must have real eigenvalues, so we1A Hermitian operator has real eigen-
values, so is useful for representing
real physical quantities in quantum me-
chanics.

expect that P̂12ψ = λψ, where λ is a real eigenvalue. Equation 29.3
shows that the only solution to this is λ = ±1, i.e.

P̂12ψ(r1, r2) = ψ(r2, r1) = ±ψ(r1, r2). (29.4)

The wave function must therefore have one of two types of exchange
symmetry, as follows:

• The wave function is symmetric under exchange of particles:

ψ(r2, r1) = ψ(r1, r2), (29.5)

and the particles are called bosons.

• The wave function is antisymmetric under exchange of particles:

ψ(r2, r1) = −ψ(r1, r2), (29.6)

and the particles are called fermions.

This argument is valid for particles in three dimensions, the situation
we usually encounter in our three-dimensional world, but fails in two
dimensions. This occurs because you have to be a bit more careful than
we’ve been here about how you exchange two particles. This point is
rather an esoteric one, but the interested reader can follow up this point
in the box on page 327 and in the further reading.

29.2 Wave functions of identical particles

In the previous section, we wrote down a two-particle wave function
ψ(r2, r1) which labelled the particles according to their position. How-
ever, there are lots more ways in which one could label a particle, such
as which orbital state it is in, or what its momentum is. To keep things
completely general, we will label the particles according to their state in
a more abstract way. The effect on the statistics will then be more trans-
parent, and is demonstrated by the following example (on page 328).
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Anyons

The argument that we have used to describe ex-
change symmetry is, in fact, only strictly valid in
three dimensions. In two dimensions, there are fur-
ther possibilities other than fermions and bosons. For
the interested reader, we give a more detailed descrip-
tion in this box.

We begin by noticing that eqn 29.3 allows the so-
lution ψ(r2, r1) = eiθψ(r1, r2), where θ is a phase
factor. Thus exchanging identical particles means
that the wave function acquires a phase θ. Defining
r = r2−r1, the action of exchanging the position co-
ordinates of two particles involves letting this vector
execute some path from r to −r, but avoiding the
origin so that the two particles do not ever occupy
the same position.

Fig. 29.1 Paths in r-space,
for the three-dimensional
case, corresponding to (a)
no exchange of particles
and (b) exchange of parti-
cles.

We therefore can imag-
ine the exchange of parti-
cles as a path in r-space.
Without loss of generality,
we can keep |r| fixed, so
that in the process of ex-
changing the two particles,
they move relative to each
other at a fixed separation.
Thus, for the case of three
dimensions, the path is on
the surface of a sphere in
r-space. Since the two par-
ticles are identical, oppo-
site points on the surface
of the sphere are equiva-
lent and must be identified
(giving r-space the topol-
ogy of, what is known as,
real two-dimensional pro-
jective space). It turns out
that all paths on this sur-
face fall into two classes:

ones which are contractible to a point [and thus cor-
respond to no exchange of particles, yielding θ =
0 to ensure the wavefunction is single-valued; see
Fig. 29.1(a)] and those which are not [and thus cor-
respond to exchange of particles; see Fig. 29.1(b)].
For this latter case we have to assign θ = π, so
that two exchanges correspond to no exchange, i.e.

eiθeiθ = 1, so that θ = π. This argument thus jus-
tifies that the phase factor eiθ = ±1, giving rise to
bosons (eiθ = +1) and fermions (eiθ = −1).

Fig. 29.2 Paths in
r-space, for the two-
dimensional case, corre-
sponding to (a) no ex-
change, (b) a single ex-
change and (c) two ex-
changes of particles.

However, the argument fails
in two dimensions. In the
two-dimensional case, the path
is on a circle in r-space in
which opposite points on the
circle are equivalent and are
identified. In this case, the
paths in r-space can wind
round the origin an inte-
ger number of times. This
means that two successive ex-
changes of the particles [as
shown in Fig. 29.2(c)] are
not topologically equivalent to
zero exchanges [if performed
by winding round the ori-
gin in the same direction, as
shown in Fig. 29.2(a)] and
thus the phase θ can take any
value. (In this case, r-space
has the topology of real one-
dimensional projective space,
which is the same as that of
a circle.) The resulting par-
ticles have more complicated
statistical properties than ei-

ther bosons or fermions and are called anyons (be-
cause θ can take ‘any’ value). Since θ/π is no longer
forced to be ±1, and can take any fractional value
in between, anyons can have fractional statistics.
The crucial distinction between r-space in two and
three dimensions is that the removal of the origin in
two-dimensional space makes the space multiply con-
nected (allowing paths which wind around the ori-
gin), whereas three-dimensional space remains singly
connected (and a path which tries to wind round the
origin can be deformed into one which does not).

We live in a three-dimensional world, so is any of
this relevant? In fact, anyons turn out to be impor-
tant in the fractional quantum Hall effect, which
occurs in certain two-dimensional electron systems
under high magnetic field. For more details concern-
ing anyons, see the further reading.
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Example 29.2

Imagine that a particle can exist in one of two states, which we will label
|0〉 and |1〉. We now consider two such particles, and describe their joint
state by a product state. Thus

|0〉|1〉 (29.7)

describes the state in which the first particle is in state 0 and the second
particle is in state 1. What are the possible states for this system if the
particles are (a) distinguishable, (b) indistinguishable, but classical, (c)
indistinguishable bosons, and (d) indistinguishable fermions?
Solution:

(a) Distinguishable particles:
There are four possible states, which are

|0〉|0〉, |1〉|0〉, |0〉|1〉, |1〉|1〉 (29.8)

(b) Indistinguishable, but classical, particles:
There are now only three possible states, which are

|0〉|0〉, |1〉|0〉, |1〉|1〉 (29.9)

Since the particles are indistinguishable, there is no way of distin-
guishing the state |1〉|0〉 from |0〉|1〉.

(c) Indistinguishable bosons:
There are also only three possible states. Clearly both |0〉|0〉 and
|1〉|1〉 are eigenstates of the exchange operator, but |1〉|0〉 and |0〉|1〉
are not. However, if we make a linear combination22This example demonstrates quantum–

mechanical entanglement. The states
of the two particles are entangled, in
the sense that if one particle is in the
|0〉 state, the other particle has to be in
the |1〉 state, and vice versa.

1√
2

(|1〉|0〉 + |0〉|1〉) , (29.10)

this will be an eigenstate of the exchange operator with eigenvalue
1. Thus the three possible states are:

|0〉|0〉, |1〉|1〉, 1√
2

(|1〉|0〉 + |0〉|1〉) . (29.11)

(d) Indistinguishable fermions:
No two fermions can be in the same quantum state (by the Pauli
exclusion principle), so |0〉|0〉 and |1〉|1〉 are not allowed. Thus only
one state is possible, which is

1√
2

(|1〉|0〉 − |0〉|1〉) . (29.12)

This wave function is an eigenstate of the exchange operator with
eigenvalue −1.
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In general, for fermions, the requirement that P̂12|ψ〉 = −|ψ〉 means
that if |ψ〉 is a two-particle state consisting of two particles in the same

quantum state, i.e. if ψ = |ϕ〉|ϕ〉, then

P̂12|ϕ〉|ϕ〉 = |ϕ〉|ϕ〉 = −|ϕ〉|ϕ〉, (29.13)

so that
|ϕ〉|ϕ〉 = 0, (29.14)

i.e. the doubly-occupied state cannot exist. This, again, illustrates the
Pauli exclusion principle, namely that two identical fermions cannot
coexist in the same quantum state.

29.3 The statistics of identical particles

In the last section, we have demonstrated that exchange symmetry has
an important effect on the statistics of two identical particles. Now we
want to do the same for cases in which we have many more than two
identical particles. Our derivation will be easiest if we do this by finding
the grand partition function Z (see Section 22.3) for a system comprised
either of fermions or bosons. In this approach, the the total number of
particles is not fixed, and this is an easy constraint to apply as we shall
see. If one is treating a system in which the number of particles is fixed,
we can always fix it at the end of our calculation. Our method will
be to use the expression Z =

∑
α eβ(µNα−Eα) (from eqn 22.20). Here,

α denotes a particular state of the system. We assume that there are
certain possible quantum states in which to place our particles, and that
the energy cost of putting a particle into the ith state is given by Ei. We
will put ni particles into the ith state; here ni is called the occupation
number of the ith state. A particular configuration of the system is
then described by the product[

eβ(µ−E1)
]n1 ×

[
eβ(µ−E2)

]n2 × · · · =
∏

i

eniβ(µ−Ei). (29.15)

The grand partition function is the sum of such products for all sets of
occupation numbers which are allowed by the symmetry of the particles.
Hence

Z =
∑
{ni}

∏
i

eniβ(µ−Ei), (29.16)

where the symbol {ni} denotes a set of occupation numbers allowed by
the symmetry of the particles.

Fortunately, the total number of particles
∑

i ni does not have to be
fixed,3 because that would have been a fiddly constraint to apply to this 3The total number of particles is not

fixed in the grand canonical ensemble,
which is the one we are using here.

expression. In fact, we will only be considering two cases: fermions, for
which {ni} = {0, 1} (independent of i), and bosons, for which {ni} =
{0, 1, 2, 3, . . .} (independent of i). This allows us to factor out the terms
in the product for each state i and hence write

Z =
∏

i

∑
{ni}

eniβ(µ−Ei). (29.17)
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Example 29.3

Evaluate lnZ for a gas of (i) fermions and (ii) bosons.
Solution:

(i) For fermions, each state can either be empty or singly occupied, so
that {ni} = {0, 1}, and hence eqn 29.17 becomes

Z =
∏

i

1 + eβ(µ−Ei). (29.18)

Hence
lnZ =

∑
i

ln(1 + eβ(µ−Ei)). (29.19)

(ii) For bosons, each state can contain any integer number of particles,
so that {ni} = {0, 1, 2, 3, . . .}, and hence eqn 29.17 becomes

Z =
∏

i

1 + eβ(µ−Ei) + e2β(µ−Ei) + · · · (29.20)

and therefore, by summing this geometric series, we have that

Z =
∏

i

1

1 − eβ(µ−Ei)
, (29.21)

and hence
lnZ = −

∑
i

ln(1 − eβ(µ−Ei)). (29.22)

Summarizing the results of the previous example, we can write

lnZ = ±
∑

i

ln(1 ± eβ(µ−Ei)), (29.23)

where the ± sign means + for fermions and − for bosons.
The number of particles in each energy level is given by

〈ni〉 = − 1

β

(
∂lnZ
∂Ei

)
=

eβ(µ−Ei)

1 ± eβ(µ−Ei)
, (29.24)

and hence dividing top and bottom by eβ(µ−Ei) gives

〈ni〉 =
1

eβ(Ei−µ) ± 1
, (29.25)

where, again, the ± sign means + for fermions and − for bosons.
If µ and T are fixed for a particular system, eqn 29.25 shows that the

mean occupation of the ith state, 〈ni〉, is a function only of the energy Ei.
It is therefore convenient to consider the distribution function f(E)
for fermions and bosons, which is defined to be the mean occupation of
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E

f
E

E

Fig. 29.3 The Fermi–Dirac and Bose–
Einstein distribution functions.

a state with energy E. We can therefore immediately write down the
distribution function f(E) for fermions as

f(E) =
1

eβ(E−µ) + 1
, (29.26)

which is known as the Fermi–Dirac distribution function, and for
bosons as

f(E) =
1

eβ(E−µ) − 1
, (29.27)

which is known as the Bose–Einstein distribution function. Some-
times the term on the right-hand side of eqn 29.26 is referred to as the
Fermi factor and the term on the right-hand side of eqn 29.27 is re-
ferred to as the Bose factor. These are sketched in Fig. 29.3. Note that
in the limit β(E−µ) 	 1, both functions tend to the Boltzmann distri-
bution e−β(E−µ). This is because this limit corresponds to low-density
(µ small) and here there are many more states thermally accessible to
the particles than there are particles; thus double occupancy never oc-
curs and the requirements of exchange symmetry become irrelevant and
both fermions and bosons behave like classical particles. The differences,
however, are particularly felt at high density. In particular, note that the
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distribution function for bosons diverges when µ = E. Thus for bosons,
the chemical potential must always be below, even if only slightly, the
lowest–energy state. If it is not, then the lowest–energy state would be-
come occupied with an infinite number of particles, which is unphysical.
The implications for the properties of quantum gases will be considered
in the next chapter.

Chapter summary

• The wave function of a pair of bosons is symmetric under exchange
of particles, while the wave function of a pair of fermions is anti-
symmetric under exchange of particles.

• Bosons can share quantum states, while fermions cannot share
quantum states.

• Bosons obey Bose–Einstein statistics, given by

f(E) =
1

eβ(µ−E) − 1
,

while fermions obey Fermi–Dirac statistics, given by

f(E) =
1

eβ(µ−E) + 1
.

Further reading

More information about anyons may be found in Canright and Girvin (1990), Rao (1992) and in the collection of
articles in Shapere and Wilczek (1989).

Exercises

(29.1) Differentiate between particles that obey Bose–
Einstein and Fermi–Dirac statistics, giving two ex-
amples of each.

(29.2) For the particles considered in Example 29.2, what
is the probability that both particles are in the |0〉
state when (a) distinguishable, (b) indistinguish-
able, but classical, (c) indistinguishable bosons,
and (d) indistinguishable fermions?

(29.3) By rewriting the Fermi–Dirac function

f(E) =
1

eβ(E−µ) + 1
(29.28)

as

f(E) =
1

2

„
1 − tanh

1

2
β(E − µ)

«
, (29.29)

show that f(E) is symmetric about E = µ and
sketch it. Find simplified expressions for f(E)
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when (i) E � µ, (ii) E � µ and (iii) E is very
close to µ.

(29.4) Are identical particles always indistinguishable?

(29.5) Hydrogen (H2) gas can exist in two forms. If
the proton spins are in an exchange symmetric
triplet (S = 1) state, it is known as ortho-
hydrogen. If the proton spins are in an exchange
antisymmetric singlet (S = 0) state, it is known
as para-hydrogen. The symmetry of the total
wave function must be antisymmetric overall, so
that the rotational part of the wave function must
be antisymmetric for orthohydrogen (so that the
angular momentum quantum number J is 1, 3,
5, . . .) or symmetric for parahydrogen (so that
J = 0, 2, 4, . . .) The proton separation in hydrogen
is 7.4 × 10−11 m. Estimate the spacing in Kelvin
between the ground state and first excited state in
parahydrogen.
Show that the ratio f of ortho-hydrogen to para-
hydrogen is given by

f = 3

P
J=1,3,5,...(2J + 1)e−J(J+1)�

2/2IkBTP
J=0,2,4,...(2J + 1)e−J(J+1)�2/2IkBT ,

(29.30)
and find f at 50 K.

(29.6) In this exercise, we derive Fermi–Dirac and Bose–
Einstein statistics using the microcanonical en-
semble.
(a) Show that the number of ways of distributing
nj fermions among gj states with not more than
one particle in each is

Ωj =
gj !

nj(gj − nj)!
. (29.31)

Here, j labels a particular group of states. Hence
the entropy S is given by

S = kB ln

"Y
j

gj !

nj(gj − nj)!

#
. (29.32)

Hence show (using Stirling’s approximation) that

S = −kB

X
j

gj [n̄j ln n̄j + (1 − n̄j) ln(1 − n̄j)],

(29.33)
where n̄j = nj/gj are the mean occupation num-
bers of the quantum states. Maximize this ex-
pression subject to the constraint that the total
energy E and number of particles N are constant,
and hence show that

n̄j =
1

eα+βEj + 1
. (29.34)

(b) Show that the number of ways of distribut-
ing nj bosons among gj states with any number of
particles in each is

Ωj =
(gj + nj − 1)!

nj(gj − nj)!
. (29.35)

Hence show that

S = kB

X
j

gj [(1 + n̄j) ln(1 + n̄j) − n̄j ln n̄j ].

(29.36)
Maximize this expression subject to the constraint
that the total energy E and number of particles N
are constant, and hence show that

n̄j =
1

eα+βEj − 1
. (29.37)
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Albert Einstein (1879–1955)

Albert Einstein’s academic career began badly.

Fig. 29.4 Albert
Einstein

In 1895, he failed to get into
the prestigious Eidgenössische
Technische Hochschule (ETH)
in Zürich, and was sent to
nearby Aarau to finish sec-
ondary school. He enrolled at
ETH the following year, but
failed to get a teaching assis-
tant job there after his de-
gree. After teaching maths at a
technical schools in Winterthur
and Schaffhausen, Einstein fi-
nally landed a job at a patent

office in Bern in 1902 and was to stay there for seven
years. Though Einstein was present in the office, his
mind was elsewhere and he combined the day job
with doctoral studies at the University of Zürich.

In 1905 this unknown patent clerk published his
doctoral thesis (which derived a relationship between
diffusion and frictional forces, and which contained a
new method to determine molecular radii) and also
published four revolutionary papers in the journal
Annalen der Physik. The first paper proposed that
Planck’s energy quanta were real entities and would
show up in the photoelectric effect, work for which
he was awarded the 1921 Nobel Prize. The citation
stated that the prize was “for his services to Theo-
retical Physics, and especially for his discovery of the
law of the photoelectric effect”. The second paper
explained Brownian motion on the basis of statisti-
cal mechanical fluctuations of atoms. The third and
fourth papers introduced his special theory of rela-
tivity and his famous equation E = mc2. Any one of
these developments alone was sufficient to earn him
a major place in the history of physics; the combined
achievement led to more modest immediate rewards:
the following year, Einstein was promoted by the
patent office to “technical examiner second class”.
Einstein only became a professor (at Zürich) in 1909,
moving to Prague in 1911, ETH in 1912 and Berlin
in 1914.

In 1915, Einstein presented his general theory of
relativity, which included gravity. The consequences
of this theory include the phenomena of gravitational

lensing and gravitational waves, and the general the-
ory of relativity is of fundamental importance in mod-
ern astrophysics. In the 1920’s, Einstein battled with
Bohr on the interpretation of quantum theory, a sub-
ject which he had helped found through his work
on the photoelectric effect. Einstein did not believe
quantum theory to be complete, while completeness
was the central thesis of Bohr’s Copenhagen inter-
pretation. Einstein seemed to lose the battles, but
his criticisms illuminated the understanding of quan-
tum mechanics, particularly concerning the nature of
quantum entanglement. Einstein also contributed to
quantum statistical mechanics through his work on
Bose–Einstein statistics (see the biography of Bose).

The rise of Nazi Germany led to Einstein’s depar-
ture in 1933 from the country of his birth, and af-
ter receiving offers from Jerusalem, Leiden, Oxford,
Madrid and Paris, he settled on Princeton where he
remained for the rest of his life. When he arrived
there in 1935, and was asked what he would require
for his study, he is reported to have replied “A desk,
some pads and a pencil, and a large wastebasket to
hold all of my mistakes.”

In 1939, following persuasion from Szilárd, he
played a crucial rôle in alerting President Roosevelt
to the theoretical possibility of nuclear weapons being
developed based on the discovery of nuclear fission
and the need for the Allies to have this before the
Nazis; this eventually led to the Manhattan project
and the development of the atomic bomb. Einstein’s
final years were spent in an unsuccessful search for a
grand unified theory which would combine the fun-
damental forces into a single theory.

Interstingly, Einstein said that his search for the
principle of relativity had been motivated by his
yearning for a grand universal principle which was
on same the level of the second law of thermodynam-
ics. He saw many theories of physics as construc-
tive, such as the kinetic theory of gases, which build
up a description of complex behaviour from a simple
scheme of mechanical and diffusional processes. In-
stead, he was after something much grander, in which
many subtle consequences followed from a single uni-
versal principle. His model was thermodynamics, in
which everything flowed from a fundamental princi-
ple about increase of entropy. Thus in some sense,
thermodynamics was the template for relativity.
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Satyendranath Bose (1894–1974)

Satyendranath Bose was born in Calcutta and grad-
uated from the Presidency College there in 1915.

Fig. 29.5 S. Bose

He was appointed to Calcutta’s
new research institute, Univer-
sity College, in 1917 along with
M. N. Saha and, the following
year, C. V. Raman. All three
were to make pioneering contri-
butions to physics. Four years
later, Bose moved to the Uni-
versity of Dacca as Reader of
Physics (though he returned to
Calcutta in 1945). Bose had
a prodigious memory and was
legendary for giving highly pol-

ished lectures without consulting any notes.
In 1924, Bose sent a paper to Einstein in Berlin,

together with a handwritten covering letter:

Respected Sir: I have ventured to send
you the accompanying article for your

perusal and opinion. I am anxious to
know what you think of it. You will see
that I have tried to deduce the coefficient
of 8πν2/c3 in Planck’s Law independent
of the classical electrodynamics, only as-
suming that the ultimate elementary re-
gions in the phase-space has the content
h3.

Bose had treated black body radiation as a photon
gas, using phase space arguments; Planck’s distribu-
tion came simply from maximising the entropy. Ein-
stein was impressed and translated Bose’s paper into
German and submitted it to Zeitschrift für Physik

on Bose’s behalf. Einstein followed up Bose’s work
in 1924 by generalising it to non-relativistic parti-
cles with non-zero mass and in 1925 he deduced the
phenomenon now known as Bose–Einstein conden-
sation. This purely theoretical proposal was a full
thirteen years before Fritz London proposed inter-
preting the superfluid transition in 4He as just such
a Bose–Einstein condensation.

Enrico Fermi (1901–1954)

Enrico Fermi was born in Rome and gained a degree

Fig. 29.6 E. Fermi

at the University of Pisa in 1922.
He spent a brief period work-
ing with Born and then returned
to Italy, first as a lecturer in
Florence (where he worked out
‘Fermi statistics’, the statisti-
cal mechanics of particles sub-
ject to the Pauli exclusion prin-
ciple) and then as a professor
of physics at Rome in 1927. In
Rome, Fermi made important
contributions, including the the-
ory of beta decay, the demon-
stration of nuclear transforma-

tion in elements subjected to neutron bombardment,
and the discovery of slow neutrons. These results
demonstrate Fermi’s extraordinary ability to excel
in both theory and experiment. Though extremely
adept at detailed mathematical analysis, Fermi dis-

liked complicated theories and had an aptitude for
getting the right answer simply and quickly using the
most efficient method possible.

Fermi was awarded the Nobel Prize in 1938 for
his “demonstrations of the existence of new radioac-
tive elements produced by neutron irradiation, and
for his related discovery of nuclear reactions brought
about by slow neutrons”. After picking up his prize
in Stockholm, he emigrated to the United States.
He was one of the first to realize the possibility of
a chain reaction in uranium, demonstrating the first
self-sustaining nuclear reaction in a squash court near
the University of Chicago in December 1942. Follow-
ing this event, a coded phone call was sent to the
leaders of the Manhattan project, with the message:
‘The Italian navigator has landed in the new world...
The natives were very friendly’.

Fermi became a major player in the Manhattan
project, and following the end of World War II he
remained in Chicago, working in high energy physics
and cosmic rays until his untimely death due to stom-
ach cancer.
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Paul Dirac (1902–1984)

Paul Adrien Maurice Dirac was brought up in
Bristol by his English mother and Swiss father.
His father insisted that only French was spoken
at the dinner table, a stipulation that left Dirac
with something of a distaste for speaking at all.

Fig. 29.7 P.A.M.
Dirac

He read engineering at Bristol
University, graduating in 1921,
and then took another degree
in maths and got a first in
1923. This led him to doc-
toral research in Cambridge un-
der the supervision (if one can
use such a word of what was
rather a tenuous relationship)
of Fowler. During this period,
Dirac’s brother committed sui-
cide and Dirac broke off con-
tact with his father; this all con-
tributed to making Dirac even

more socially withdrawn. In 1925, he read Heisen-
berg’s paper on commutators and realized the con-
nection with Poisson brackets from classical mechan-
ics. His Ph.D. thesis, submitted the following year,
was entitled simply Quantum Mechanics. In 1926,
Dirac showed how the antisymmetry of the wave
function under particle exchange led to statistics
which were identical to those derived by Fermi. Parti-
cles obeying such Fermi–Dirac statistics Dirac called
(generously) ‘fermions’, while those obeying Bose–
Einstein statistics were ‘bosons’.

After having spent time with Bohr in Copenhagen,
Born in Göttingen and Ehrenfest in Leiden, Dirac
returned to Cambridge in 1927 to take up a fellow-
ship at St John’s College. His famous Dirac equation
(which predicted the existence of the positron) ap-
peared in 1928 and his book, The Principles of Quan-

tum Mechanics (still highly readable, and in print),
in 1930. In 1932 he was appointed to the Lucasian
chair (held before by Newton, Airy, Babbage, Stokes

and Larmor, and later by Hawking) and the following
year he shared the Nobel Prize with Schrödinger “for
the discovery of new productive forms of atomic the-
ory”. Following a sabbatical visit to work with Eu-
gene Wigner at Princeton, Dirac married Wigner’s
sister Margrit in 1937. In 1969, Dirac retired from
Cambridge and moved to Tallahassee, Florida, where
he became a professor at FSU.

Dirac had a very high view of mathematics, stating
in the preface to his 1930 book that it was “the tool
specially suited for dealing with abstract concepts of
any kind and there is no limit to its power in this
field.” Later he remarked that in science “one tries
to tell people, in such a way as to be understood
by everyone, something that no one ever knew be-
fore. But in poetry, it’s the exact opposite.” Clarity
for Dirac was fundamental, as was beauty, as it was
“more important to have beauty in one’s equations
that to have them fit experiment.” Failure to match
the results of experimental data can be rectified by
further experiment, or by the sorting out of some mi-
nor feature not taken into account that subsequent
theoretical development will resolve; but for Dirac,
an ugly theory could never be right.

Dirac said “I was taught at school never to start
a sentence without knowing the end of it.” This ex-
plains a lot. Dirac’s famously taciturn and precise
nature spawned many “Dirac stories”. Dirac once fell
asleep during someone else’s lecture, but woke dur-
ing a moment when the speaker was getting stuck
in a mathematical derivation, muttering: “Here is
a minus sign where there should be a plus. I seem
to have dropped a minus sign somewhere.” Dirac
opened one eye and interjected: “Or an odd number
of them.” One further example concerns a conference
lecture he himself gave, following which a questioner
indicated that he had not followed a particular part
of Dirac’s argument. A long silence ensued, broken fi-
nally by the chairman asking if Professor Dirac would
deal with the question. Dirac responded, “It was a
statement, not a question.”
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Exchange symmetry affects the occupation of allowed states in quantum
gases. If the density of the gas is very low, such that nλ3

th � 1, we
can ignore this and forget about exchange symmetry; this is what we do
for gases at room temperature. But if the density is high, the effects of
exchange symmetry become very important and it really starts to matter
whether the particles you are considering are fermions or bosons. In this
chapter, we consider quantum gases in detail and explore the possible
effects that one can observe.

30.1 The non-interacting quantum fluid

We first consider a fluid composed of non-interacting particles. To keep
things completely general for the moment, we will consider particles with
spin S. This means that each allowed momentum state is associated
with 2S + 1 possible spin states.1 If we can ignore interactions between 1If the spin is S, there are 2S + 1

possible states corresponding to the z-
component of angular momentum be-
ing −S,−S + 1, . . . S.

particles, the grand partition function Z is simply the product of single–
particle partition functions, so that

Z =
∏
k

Z2S+1
k , (30.1)

where
Zk = (1 ± e−β(Ek−µ))±1 (30.2)

is a single particle partition function and where the ± sign is + for
fermions and − for bosons.2 2These results follow directly from

eqns 29.18 and 29.20.

Example 30.1

Find the grand potential for a three-dimensional gas of non-interacting
bosons and fermions with spin S.
Solution:

The grand potential ΦG is obtained from eqn 30.1 as follows:

ΦG = −kBT lnZ
= ∓kBT (2S + 1)

∑
k

ln(1 ± e−β(Ek−µ))

= ∓kBT (2S + 1)

∫ ∞

0

ln(1 ± e−β(E−µ)) g(E) dE, (30.3)
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where g(E) is the density of states, which can be derived as follows.
States in k-space are uniformly distributed, and so

g(k) dk =
4πk2 dk

(2π/L)3
× (2S + 1) =

(2S + 1)V k2 dk

2π2
, (30.4)

where (2S+1) is the spin degeneracy factor and V = L3 is the volume.
Using E = �

2k2/2m we can transform this into

g(E) dE =
(2S + 1)V E1/2 dE

(2π)2

(
2m

�2

)3/2

, (30.5)

and hence

ΦG = ∓kBT
(2S + 1)V

(2π)2

(
2m

�2

)3/2 ∫ ∞

0

ln(1±e−β(E−µ))E1/2 dE, (30.6)

which after integrating by parts yields

ΦG = −2

3

(2S + 1)V

(2π)2

(
2m

�2

)3/2 ∫ ∞

0

E3/2 dE

e−β(E−µ) ± 1
. (30.7)

The grand potential evaluated in the previous example can be used
to derive various thermodynamic functions for fermions and bosons.33Note that in the derived expressions,

the ± sign means + for fermions and −
for bosons.

Another way to get to the same result is to evaluate the mean occupation
nk of a state with wave vector k, which is given by

nk = kBT
∂

∂µ
Zk =

1

eβ(Ek−µ) ± 1
, (30.8)

and then use this expression to derive directly quantities such as

N =
∑

k

nk =

∫ ∞

0

g(E) dE

eβ(Ek−µ) ± 1
, (30.9)

and

U =
∑

k

nkEk =

∫ ∞

0

E g(E) dE

eβ(Ek−µ) ± 1
. (30.10)

For reasons which will become more clear below, we will write eβµ as
the fugacity z, i.e.

z = eβµ . (30.11)

These give expressions for N and U as follows:

N =

[
(2S + 1)V

(2π)2

(
2m

�2

)3/2
]∫ ∞

0

E1/2 dE

z−1eβE ± 1
(30.12)

and

U =

[
(2S + 1)V

(2π)2

(
2m

�2

)3/2
]∫ ∞

0

E3/2 dE

z−1eβE ± 1
. (30.13)
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One problem with all these types of formula, such as eqns 30.7, 30.12
and 30.13, is that to simplify them any further, you have to do a difficult
integral. Fortunately, we can show that these integrals are related to the
polylogarithm function Lin(x) (see Appendix C.5), so that∫ ∞

0

En−1 dE

z−1eβE ± 1
= (kBT )nΓ(n)[∓Lin(∓z)], (30.14)

where Γ(n) is a gamma function. This result is proved in the appendix
(eqn C.36). The crucial thing to realize is that Lin(z) is just a numerical
function of z, i.e. of the temperature and the chemical potential. This
integral then allows us to establish, after a small amount of algebra, that
the number N of particles is given by

N =
(2S + 1)V

λ3
th

[∓Li3/2(∓z)], (30.15)

and the internal energy U is given by

U =
3

2
kBT

(2S + 1)V

λ3
th

[∓Li5/2(∓z)]

=
3

2
NkBT

Li5/2(∓z)
Li3/2(∓z) . (30.16)

We will use these equations in subsequent sections. Note also that we
have from eqns 30.7 and 30.13 that

ΦG = −2

3
U. (30.17)

Example 30.2

Evaluate N , U and ΦG (from eqns 30.15, 30.16 and 30.17) in the high-
temperature limit.
Solution:

In the high–temperature limit, namely βµ� 1, we can use the fact that
Lin(z) ≈ z when |z| � 1. Hence

N ≈ (2S + 1)V

λ3
th

, (30.18)

U ≈ 3

2
NkBT, (30.19)

ΦG ≈ −NkBT. (30.20)

These three equations are reassuringly familiar. The equation for N
shows that the number density of particles N/V is such that, on aver-
age, 2S+1 particles (one for each spin state) occupy a volume λ3

th. The
equation for U asserts that the energy per particle is the familiar equipar-
tition result 3

2kBT . The equation for ΦG, together with ΦG = −pV (from
eqn 22.49) yields the ideal gas law pV = NkBT .
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30.2 The Fermi gas

What we have done so far is to consider bosons and fermions on an equal
footing. Let us now restrict our attention to a gas of fermions (known as
a Fermi gas) and to get a feel for what is going on, let us also consider
T = 0. Fermions will occupy the lowest–energy states, but we can only
put one fermion in each state, and thus only 2S+1 in each energy level.
The fermions will fill up the energy levels until they get to an energy
EF, known as the Fermi energy, which is the energy of the highest
occupied state at a temperature of absolute zero.4 Thus we define4The highest filled energy level at T =

0 is known as the Fermi level, though
this can be a misleading term as, for
example in semiconductors, there may
not be any states at the chemical poten-
tial (which lies somewhere in the energy
gap).

EF = µ(T = 0). (30.21)

This makes sense because µ(T = 0) = ∂E/∂N , which gives µ(T = 0) =
E(N) − E(N − 1) = EF. At absolute zero, we have that β → ∞, and
hence the occupation nk is given by

nk =
1

eβ(Ek−µ) + 1
= θ(µ− EF), (30.22)

where θ(x) is a Heaviside step function.5 At absolute zero, therefore,5The Heaviside step function θ(x) is de-
fined by

θ(x) =


0 x < 0
1 x > 0

It is plotted in Fig. 30.1.

x

x

Fig. 30.1 The Heaviside step function.

the number of states is given by

N =

∫ kF

0

g(k) d3k, (30.23)

where kF is the Fermi wave vector, defined by

EF =
�

2k2
F

2m
. (30.24)

Hence the number of fermions N is given by

N =
(2S + 1)V

2π2

k3
F

3
, (30.25)

so that writing n = N/V , we have

kF =

[
6π2n

2S + 1

]1/3

, (30.26)

and hence

EF =
�

2

2m

[
6π2n

2S + 1

]2/3

. (30.27)

Example 30.3

Evaluate kF and EF for spin-1
2 particles.

Solution:

When S = 1
2 , 2S + 1 = 2 and hence eqns 30.26 and 30.27 become

kF =
[
3π2n

]1/3
, (30.28)

and

EF =
�

2

2m

[
3π2n

]2/3
. (30.29)
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Fig. 30.2 (a) The Fermi function f(E)
defined by eqn 29.26. The thick line
is for T = 0. The step function is
smoothed out as the temperature is in-
creased (shown as thinner lines). The
temperatures shown are T = 0, T =
0.01µ/kB, T = 0.05µ/kB and T =
0.1µ/kB. (b) The density of states
g(E) for a non-interacting fermion gas
in three dimensions is proportional to
E1/2. (c) f(E)g(E) for the same tem-
peratures as in (a).

At T = 0, the distribution function f(E) is a Heaviside step function,
taking the value 1 for E < µ and 0 for E > µ. This step is smoothed
out as the temperature T increases, as shown in Fig. 30.2(a). The den-
sity of states g(E) for a non-interacting fermion gas in three dimensions
is proportional to E1/2 (as shown in eqn 30.4) and this is plotted in
Fig. 30.2(b). The product of f(E)g(E) gives the actual number distri-
bution of fermions, and this is shown in Fig. 30.2(c). The sharp cutoff
you would expect at T = 0 is smoothed over an energy scale kBT around
the chemical potential µ.

The electrons in a metal can be treated as a non-interacting gas of
fermions. Using the number density n of electrons in a metal, one can
calculate the Fermi energy using eqn 30.29, and some example results
are shown in Table 30.1. The Fermi energies are all several eV; convert-
ing each number into a temperature, the so-called Fermi temperature
TF = EF/kB, yields values of several tens of thousands of Kelvin. Thus
the Fermi energy is a large energy scale, and hence for most metals the
Fermi function is close to a step function, at pretty much all tempera-
tures below their melting temperature. In this case, the electrons in a
metal are said to be in the degenerate limit.

The pressure of these electrons is given (by using eqns 22.49 and 30.17)
as

p =
2U

3V
, (30.30)
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n EF
2
3nEF B

(1028 m−3) (eV) (109N m−2) (109N m−2)

Li 4.70 4.74 23.8 11.1
Na 2.65 3.24 9.2 6.3
K 1.40 2.12 3.2 3.1
Cu 8.47 7.00 63.3 137.8
Ag 5.86 5.49 34.3 103.6

Table 30.1 Properties of selected metals

as is appropriate for non-relativistic electrons (see Table 25.1). The
mean energy of the electrons at T = 0 is given by

〈E〉 =

∫ EF

0
Eg(E) dE∫ EF

0
g(E) dE

, (30.31)

which with g(E) ∝ E1/2 gives 〈E〉 = 3
5EF. Writing U = n〈E〉, we have

that the bulk modulus B is

B = −V ∂p

∂V
=

10U

9V
=

2

3
nEF. (30.32)

This expression is evaluated in Table 30.1 and gives results which are of
the same order of magnitude as experimental values.

The next example computes an integral which is useful for considering
analytically the effect of finite temperature.

Example 30.4

Evaluate the integral I =

∫ ∞

0

φ(E)f(E) dE as a power series in tem-

perature.
Solution:

Consider the function ψ(E) =
∫ E

0
φ(E′) dE′, which is defined so that

φ(E) = dψ/dE and therefore

I =

∫ ∞

0

dψ

dE
f(E) dE = [f(E)φ(E)]

∞
0 −

∫ ∞

0

ψ(E)
df

dE
dE

= −
∫ ∞

0

ψ(E)
df

dE
dE. (30.33)

Now put x = (E − µ)/kBT and hence

df

dE
= − 1

kBT

ex

(ex + 1)2
. (30.34)
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Writing ψ(E) as a power series in x as

ψ(E) =

∞∑
s=0

xs

s!

(
dsψ

dxs

)
x=0

, (30.35)

we can express I as a power series of integrals as follows:

I =

∞∑
s=0

1

s!

(
dsψ

dxs

)
x=0

∫ ∞

−EF/kBT

xsex dx

(ex + 1)2
. (30.36)

The integral part of this can be simplified by replacing6 the lower limit 6This approximation is valid when
kBT � EF.by −∞. It vanishes for odd s, but for even s∫ ∞

−∞

xsex dx

(ex + 1)2
= 2

∫ ∞

0

xsex dx

(ex + 1)2

= 2

∫ ∞

0

dx

∞∑
n=0

exxs × [(n+ 1)(−1)n+1e−nx
]

= 2

∞∑
n=1

(−1)n+1n

∫ ∞

0

xse−nx dx

= 2(s!)

∞∑
n=1

(−1)n+1

ns

= 2(s!)(1 − 21−s)ζ(s), (30.37)

where ζ(s) is the Riemann zeta function.
Thus the integral is

I =
∞∑

s=0,s even
2

(
dsψ

dxs

)
x=0

(1 − 21−s)ζ(s)

= ψ +
π2

6

(
d2ψ

dx2

)
x=0

+
7π4

360

(
d4ψ

dx4

)
x=0

+ · · ·

=

∫ µ

−∞
φ(E) dE +

π2

6
(kBT )2

(
dφ

dE

)
E=µ

(30.38)

+
7π4

360
(kBT )4

(
d3φ

dE3

)
E=µ

+ . . .

This expression is known as the Sommerfeld formula.

Having derived the Sommerfeld formula, we can now evaluate N and
U quite easily. Let us choose S = 1

2 , just to make the equations a little
less cumbersome. Then

N =
V

2π2

(
2m

�2

)3/2 ∫ ∞

0

E1/2f(E) dE

=
V

3π2

(
2m

�2

)3/2

µ3/2

[
1 +

π2

8

(
kBT

µ

)2

+ . . .

]
, (30.39)
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which implies that

µ(T ) = µ(0)

[
1 − π2

12

(
kBT

µ(0)

)2

+ . . .

]
. (30.40)

In fact, equating EF and µ is good to 0.01% for typical metals even at
room temperature, although it is worthwhile keeping in the back of one’s
mind that the two quantities are not the same.

We can also compute the heat capacity of electrons in a metal by a
similar technique, as shown in the following example.

Example 30.5

Compute the heat capacity of non-interacting free electrons in a three-
dimensional metal.
Solution:

U =
V

2π2

(
2m

�2

)3/2 ∫ ∞

0

E3/2f(E) dE

=
V

5π2

(
2m

�2

)3/2

µ(T )5/2

[
1 +

5π2

8

(
kBT

µ(0)

)2

+ . . .

]

=
3

5
Nµ(T )

[
1 +

π2

2

(
kBT

µ(0)

)2

+ . . .

]

=
3

5
Nµ(0)

[
1 +

5π2

12

(
kBT

µ(0)

)2

+ . . .

]
(30.41)

and hence

CV =
3

2
NkB

(
π2

3

kBT

µ(0)

)
+O(T 3). (30.42)

Thus the contribution to the heat capacity from electrons is linear in
temperature (recall from Chapter 24 that the heat capacity from lattice
vibrations (phonons) is proportional to T 3 at low temperature) and will
therefore dominate the heat capacity of a metal at very low tempera-
tures.

The Fermi surface is the set of points in k-space whose energy is
equal to the chemical potential. If the chemical potential lies in a gap77The periodic potential which exists in

crystalline metals can lead to the for-
mation of energy gaps, i.e. intervals in
energy in which there are no allowed
states.

between energy bands, then the material is a semiconductor or an in-
sulator and there will be no Fermi surface. Thus a metal is a material
with a Fermi surface.
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30.3 The Bose gas

For the Bose gas (a gas composed of bosons), we can use our expressions
for N and U in eqns 30.15 and 30.16 to give

N =
(2S + 1)V

λ3
th

Li3/2(z) (30.43)

and

U =
3

2
NkBT

Li5/2(z)

Li3/2(z)
. (30.44)

Example 30.6

Evaluate eqns 30.43 and 30.44 for the case µ = 0.
Solution:

If µ = 0 then z = 1. Now Lin(1) = ζ(n) where ζ(n) is the Riemann zeta
function. Therefore

N =
(2S + 1)V

λ3
th

ζ

(
3

2

)
(30.45)

and

U =
3

2
NkBT

ζ( 5
2 )

ζ( 3
2 )
. (30.46)

The numerical values are ζ( 3
2 ) = 2.612, ζ( 5

2 ) = 1.341, and hence we have
that ζ(5

2 )/ζ( 3
2 ) = 0.513.

Note that these results will not apply to photons because we have
assumed at the beginning that E = �

2k2/2m, whereas for a photon
E = �kc. This is worked through in the following example.

Example 30.7

Rederive the equation for U for a gas of photons using the formalism of
this chapter.
Solution:

The density of states is g(k) dk = (2S + 1)V k2 dk/(2π2). A photon has
a spin of 1, but the 0 state is not allowed, so the spin degeneracy factor
(2S + 1) is in this case only 2. Using E = �kc we arrive at

g(E) dE =
V

π2�3c3
E2 dE, (30.47)

and hence

U =

∫ ∞

0

E g(E) dE =
V

π2�3c3

∫ ∞

0

E3 dE

z−1eβE − 1
, (30.48)
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and using ∫ ∞

0

E3 dE

z−1eβE − 1
= (kBT )4Γ(4)Li4(z), (30.49)

and recognizing that z = 1 because µ = 0 and hence Li4(z) = ζ(4) =
π4/90, and using Γ(4) = 3! = 6, we have that

U =
V π2

15�3c3
(kBT )4, (30.50)

which agrees with eqn 23.37.

For Bose systems with a dispersion relation like E = �
2k2/2m (i.e.

for a gapless dispersion, where the lowest–energy level, corresponding to
k = 0 or infinite wavelength, is at zero energy), the chemical potential
has to be negative. If it were not, the level at E = 0 would have infinite
occupation. Thus µ < 0, and hence the fugacity z = eβµ must lie in the
range 0 < z < 1. But what value will the chemical potential take?

Equation 30.45 can be rearranged to give

nλ3
th

2S + 1
= Li3/2(z), (30.51)

and here we hit an uncomfortable problem. The left-hand side can be
increased if n = N/V increases or if T decreases (because λth ∝ T−1/2).
We can plug numbers for n and T into the left-hand side and then read
off a value for z from the graph in Fig. 30.3, which shows the behaviour
of the function Li3/2(z) (and also Li5/2(z)). As we raise n or decrease
T , we make the left-hand side of eqn 30.51 bigger and hence z bigger,
so that µ becomes less negative, approaching 0 from below. However, if

nλ3
th

2S + 1
> ζ( 3

2 ) = 2.612, (30.52)

there is no solution to eqn 30.51. What has happened?

30.4 Bose–Einstein condensation (BEC)

The solution to the conundrum raised in the previous section is remark-
ably subtle, but has far-reaching consequences. As the chemical po-
tential has become closer and closer to zero energy, approaching this
from below, the lowest energy level has become macroscopically occu-
pied. The reason our mathematics has broken down is that our usual,
normally perfectly reasonable, approximation in going from a sum to an
integral in evaluating our grand partition function is no longer valid.

In fact, we can see when this fails using a rearranged version of
eqn 30.52. Failure occurs when we fall below a temperature Tc given
by

kBTc =
2π�

2

m

(
n

2.612(2S + 1)

)2/3

. (30.53)
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z

n(
z) z

z

Fig. 30.3 The functions Li3/2(z) and
Li5/2(z). For z � 1 (the classical
regime), Lin(z) ≈ z. Also, Lin(1) =
ζ(n).

We can perform a corrected analysis of the problem as follows. We
separate N into two terms:

N = N0 +N1, (30.54)

where N0 is

N0 =
1

1 − eβµ
=

z

1 − z
, (30.55)

the number of particles in the ground state, and N1 is our original inte-
gral representing all the other states. Thus above Tc,

N = N1 =
(2S + 1)V

λ3
th

Li3/2(z), (30.56)

but below Tc, N1 is fixed to be

N1 =
(2S + 1)V

λ3
th

Li3/2(1), (30.57)

so that the concentration of particles in the excited state is

n1 ≡ N1

V
=

(2S + 1)ζ( 3
2 )

λ3
th

. (30.58)

Any remaining particles must be in the ground state, so that

n ≡ N

V
=

(2S + 1)ζ( 3
2 )

λth(Tc)3
. (30.59)
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Hence
n0

n
=
n− n1

n
= 1 −

(
T

Tc

)3/2

. (30.60)

This function is plotted in Fig. 30.4 and shows how the number of

T T

n
n

Fig. 30.4 The number of particles in
the ground state as a function of tem-
perature, after eqn 30.60.

particles in the ground state grows as the temperature is cooled below
Tc. This macroscopic occupation of the ground state is known as Bose–
Einstein condensation.8 Note that this transition is not driven by

8This is often abbreviated to BEC.

interactions between particles (as we had for the liquid-gas transition);
we have so far only considered non-interacting particles; the transition is
driven purely by the requirements of exchange symmetry on the quantum
statistics of the bosons.

The term ‘condensation’ often implies a condensation in space, as
when liquid water condenses on a cold window in a steamy bathroom.
However, for Bose–Einstein condensation it is a condensation in k-space,
with a macroscopic occupation of the lowest energy state occurring below
Tc.

Example 30.8

Find the internal energy U(T ) at temperature T for the Bose gas.
Solution:

The internal energy of the system only depends on the excited states,
since the macroscopically occupied ground state has zero energy. Since
z = 1 for T ≤ Tc, we have that

U =
3

2
N1kBT

ζ( 5
2 )

ζ( 3
2 )

=
3

2
NkBT

ζ( 5
2 )

ζ( 3
2 )

(
T

Tc

)3/2

= 0.77NkBTc

(
T

Tc

)5/2

. (30.61)

For T > Tc we have (from eqn 30.46)

U =
3

2
NkBT

Li5/2(z)

Li3/2(z)
. (30.62)

This example gives the high–temperature results as a function of the
fugacity, but z is temperature-dependent. For a system with a fixed
number N of bosons, we can extract z via N/V = (2S + 1)Li3/2(z)/λ

3
th

and equating this with eqn 30.59 yields

T

Tc
=

[
ζ( 3

2 )

Li3/2(z)

]
, (30.63)
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U
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k
T

Nk
T

T T
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V

/(
N

k B
) Nk

z

Fig. 30.5 The (a) fugacity, (b) inter-
nal energy and (c) heat capacity for a
system of bosons as a function of tem-
perature.

which although it cannot be straightforwardly inverted to make z the
subject, does show how z is related to T above Tc. (Below Tc, z is
practically one.)

The fugacity z, internal energy U and heat capacity CV , calculated
for non-interacting bosons, are plotted in Fig. 30.5. The fugacity is
obtained by numerical inversion of eqn 30.63; it rises up towards unity
as you cool, and below Tc is not actually one but very close to it. The
internal energy U in Fig. 30.5(a) is obtained from eqn 30.62, while the
heat capacity CV is plotted from eqn 30.66, to be proven in the exercises
at the end of this chapter.

The Indian physicist S. N. Bose wrote to Einstein in 1924 describing
his work on the statistical mechanics of photons. Einstein appreciated
the significance of this work and used Bose’s approach to predict what
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is now called Bose–Einstein condensation.
In late 1930’s, it was discovered that liquid 4He becomes a superfluid

when cooled below about 2.2 K. Superfluidity is a quantum-mechanical
state of matter with very unusual properties, such as the ability to flow
through very small capillaries with no measurable viscosity. Specula-
tion arose as to whether this state of matter was connected with Bose–
Einstein condensation.

Example 30.9

Estimate the Bose–Einstein condensation temperature for liquid 4He,
given that mHe ≈ 4mp and that the density ρ ≈ 145 kg m−3.
Solution:

Using n = ρ/m, eqn 30.53 yields Tc ≈ 3.1 K which is remarkably close
to the experimental value of the superfluid transition temperature.

Despite the agreement between this estimate and the experimental
value, things are a bit more complicated. The particle density of 4He
is very high and interactions between helium atoms cannot be ignored;
4He is a strongly interacting Bose gas, and therefore the predictions of
the theory outlined in this chapter have to be modified.

Fig. 30.6 Observation of Bose–
Einstein condensation by absorption
imaging. The data are shown as
shadow pictures (upper panel) and
as a three-dimensional plot (lower
panel); the blackness of the shadow
in the upper panel is here represented
by height in the lower panel. These
pictures measure the slow expansion
of the trapped atoms observed after a
0.006 s time of flight, and thus measure
the momentum distribution inside the
cloud. The left-hand picture shows
an expanding cloud cooled to just
above the transition point. In the
right-hand picture we see the velocity
distribution well below Tc where
almost all the atoms are condensed
into the zero-velocity peak. (Image
courtesy W. Ketterle.)

A more suitable example of Bose–Einstein condensation is provided by
the very dilute gases of alkali metal atoms9 that can be prepared inside

9Alkali atoms are in Group I of the pe-
riodic table and include Li, Na, K, Rb
and Cs.

magnetic ion traps. The atoms, usually about 104–106 of them, can
be trapped and cooled using the newly developed techniques of laser
cooling. These alkali atoms have a single electronic spin due to their
one valence electron and this can couple with the non-zero nuclear spin.
Each atom therefore has a magnetic moment and thus can be trapped
inside local minima of magnetic field. The density of these ultracold
atomic gases inside the traps are very low, more than seven orders
of magnitude lower than that in 4He, though their masses are higher.
The Bose–Einstein condensation temperature is therefore also very low,
typically 10−8–10−6 K, but these temperatures can be reached using
laser cooling. The low density precludes significant three-body collisions
(in which two atoms bind with the third taking away the excess kinetic
energy, thus causing clustering), but two-body collisions do occur which
allow the cloud of atoms to thermalize. Example data are shown in
Fig. 30.6 from one such experiment which clearly show that below a
critical temperature Bose–Einstein condensation is taking place.10

10The 2001 Nobel Prize was awarded to
Eric Cornell and Carl Wieman (who did
the experiment with rubidium atoms)
and to Wolfgang Ketterle (who did it
with sodium atoms).

Superfluidity is also found in these ultracold atomic gases; it turns out
that the very weak interactions that exist between the alkali atoms are
important for this to occur (a non-interacting Bose gas does not show
superfluidity). Other experiments have explored the intriguing conse-
quences of macroscopic quantum coherence, the property that in
the condensed state all the atoms exist in a coherent quantum superpo-
sition.
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Electrons do not exhibit Bose–Einstein condensation because they are
fermions, not bosons, but they can show other condensation effects such
as superconductivity. In a superconductor, a weak attractive inter-
action (which can be mediated by phonons) allows pairs of electrons to
form Cooper pairs. A Cooper pair is a boson, and the Cooper pairs
themselves can form a coherent state below the superconducting transi-
tion temperature. Many common superconductors can be described in
this way using the BCS theory of superconductivity,11 though many 11BCS is named after its discover-

ers, John Bardeen, Leon Cooper, and
Robert Schrieffer.

newly discovered superconductors, such as the high-temperature su-
perconductors which are ceramics, do not seem to be described by this
model.

Chapter summary

• Non-interacting bosons can be described using the equations

N =
(2S + 1)V

λ3
th

[∓Li3/2(∓z)],

U =
3

2
NkBT

Li5/2(∓z)
Li3/2(∓z) ,

ΦG = −2

3
U.

• In a Fermi gas (a gas of fermions), electrons fill states up to EF at
absolute zero. At non-zero temperature, electrons with kBT of EF

are important in determining the properties.

• The results for a Fermi gas can be applied to the electrons in a
metal.

• In a Bose gas, Bose–Einstein condensation can occur below a tem-
perature given by

kBTc =
2π�

2

m

(
n

2.612(2S + 1)

)2/3

.

• The results for a Bose gas can be applied to liquid 4He and dilute
ultracold atomic gases.

Further reading

For further information, see Ashcroft and Mermin (1976), Annett (2004), Foot (2004), Ketterle (2002) and Pethick
and Smith (2002).
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Exercises

(30.1) Show that in the classical limit, when the fugac-
ity z = eβµ � 1, z is the ratio of the thermal
volume to the volume per particle of a single-spin
excitation.

(30.2) Show that the pressure p exerted by a Fermi gas
at absolute zero is

p =
2

5
nEF, (30.64)

where n is the number density of particles.

(30.3) Show that for a gas of fermions with density of
states g(E), the chemical potential is given by

µ(T ) = EF − π2

6
(kBT )2

g′(EF)

g(EF)
+ . . . (30.65)

(30.4) Show that the heat capacity of a system of non-
interacting bosons is given by

CV =
15

4

ζ( 5
2
)

ζ( 3
2
)
NkB

„
T

Tc

«3/2

, T < Tc,

CV =
3

2
NkB

„
5

2

Li5/2(z)

Li3/2(z)
− 3

2

Li3/2(z)

Li1/2(z)

«
,

T > Tc. (30.66)

(30.5) Show that Bose–Einstein condensation does not
occur in two dimensions.

(30.6) In Bose–Einstein condensation, the ground state
becomes macroscopically occupied. What about
the first excited state, which might be only a small
energy above the ground state; is it also macro-
scopically occupied?



Part IX

Special topics

In this final part, we apply some of the material presented earlier in this
book to some specialized topics. This part is structured as follows:

• In Chapter 31 we describe sound waves and prove that these are
adiabatic. We derive an expression for the speed of sound in a
fluid.

• A particular type of sound wave is the shock wave, and we consider
such waves in Chapter 32. We define the Mach number and derive
the Rankine–Hugoniot conditions, which allow us to consider the
changes in density and pressure at a shock front.

• In Chapter 33, we examine how fluctuations can be studied in
thermodynamics and lead to effects such as Brownian motion. We
consider the linear response of a system to a generalized force and
derive the fluctuation–dissipation theorem.

• In Chapter 34, we discuss non-equilibrium thermodynamics and
show how fluctuations lead to the Onsager reciprocal relations,
which connect certain kinetic coefficients. We apply these ideas to
thermoelectric phenomena and briefly discuss time-reversal sym-

metry.

• In Chapter 35, we consider the physics of stars and study how
gravity, nuclear reactions, convection and conduction all lead to
the observed properties of stellar material.

• In Chapter 36 we discuss what happens to stars when they run out
of fuel, and consider the properties of white dwarfs, neutron stars

and black holes.

• In Chapter 37, we apply thermal physics to the atmosphere, at-
tempting to understand how solar energy keeps the Earth at a
certain temperature, the rôle played by the greenhouse effect and
how mankind may be causing climate change.
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31.1 Sound waves under isother-
mal conditions 355

31.2 Sound waves under adiabatic
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Chapter summary 359

Further reading 360
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Sound waves can be propagated in various fluids, such as liquids or gases,
and consist of oscillations in the local pressure and density of the fluid.
They are longitudinal waves (in which the displacement of molecules
from their equilibrium positions is in the same direction as the wave
motion) and can be described by alternating regions of compression and
rarefaction (see Fig. 31.1). The speed at which sound travels through a
material is therefore related to the material’s compressibility (measured
by its bulk modulus, see below) as well as to its inertia (represented by
its density). In this chapter, we will show that the speed of sound vs is
given by

Fig. 31.1 A sound wave in a fluid is
a longitudinal wave consisting of com-
pressions and rarefactions.

vs =

√
B

ρ
, (31.1)

where vs is the speed of sound and B is the bulk modulus of the
material. The bulk modulus describes how much the volume of the
fluid will change with changing pressure, so it is defined as the pressure
increment dP divided by the fractional volume increment dV/V ; since
a pressure increase usually results in a volume decrease the definition is
therefore

B = −V ∂p

∂V
, (31.2)

in order to ensure that B > 0. It is also helpful to write the bulk
modulus in terms of density rather than volume. Density ρ and volume
V are related, for a fixed mass of material M , by

ρ =
M

V
, (31.3)

which means that fractional changes in density and in pressure are re-
lated by

B = −ρ∂p
∂ρ
. (31.4)

Later in this chapter we will see how to derive the equation for the
speed of sound which is quoted in eqn 31.1, but first we are going to
see how it works for two different possible constraints introduced in the
previous chapter, adiabatic and isothermal. These constraints determine
the way in which we evaluate the partial differential in eqn 31.4.
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31.1 Sound waves under isothermal
conditions

We first begin by supposing that sound waves propagate under isother-
mal conditions. Simple differentiation of the ideal gas equation (eqn 6.20)
at constant temperature gives that1 1For an ideal gas at constant temper-

ature, pV is a constant and hence p ∝
V −1. This implies that

dp/p = −dV/V,

and hence

−V
„
∂p

∂V

«
T

= p.

BT = −V
(
∂p

∂V

)
T

= p, (31.5)

where the subscript T indicates that it is the temperature which is held
constant (isothermal conditions).

Thus, using eqn 31.1, and then substituting in eqn 6.15 and writing
the density as ρ = nm, we may write

vs =

√
BT

ρ
=

√
p

ρ
=

√
1
3nm〈v2〉

ρ
=

√
〈v2〉
3
. (31.6)

This implies that we can write

vs =
√

〈v2
x〉, (31.7)

where vx is as defined in eqn 5.15. This implies that the sound speed
is very similar to the mean molecular speed in a given direction and is
consistent with molecular interactions being the mediator of bulk sound
waves.

31.2 Sound waves under adiabatic
conditions

A gas under adiabatic conditions obeys eqn 12.15 (pV γ is constant) and
hence p ∝ V −γ so that

dp

p
= −γ dV

V
, (31.8)

and hence the adiabatic2 bulk modulus BS is 2The subscript S is because the entropy
S is constant in an adiabatic process.

BS = −V
(
∂p

∂V

)
S

= γp. (31.9)

Hence the equation for sound speed under these conditions then becomes

vs =

√
γp

ρ
=

√
γ〈v2〉

3
. (31.10)

Comparison of the sound speed under isothermal and adiabatic con-
ditions (i.e. eqns 31.6 and 31.10) tell us that the speed under adiabatic
conditions is γ1/2 times faster than it would be under isothermal condi-
tions.
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Example 31.1

What is the temperature dependence of the speed of sound assuming
adiabatic conditions?
Solution:

The relationship between the sound speed vs and the mean square speed
of molecules in air 〈v2〉 given in eqn 31.10 enables us to relate the sound
speed in air to its temperature. Using 〈v2〉 = 3kBT/m, we have that

vs =

√
γ〈v2〉

3
=

√
γkBT

m
. (31.11)

This shows that the speed of sound is a function of temperature and mass
alone.3 It is unsurprising that the speed of sound, i.e. the speed at which3Note that γ can be weakly tempera-

ture dependent. a pressure disturbance can be propagated, follows the same temperature
dependence as the mean molecular speed since the molecular collision
rates that govern the propagation of disturbances are proportional to
the mean molecular speed.

31.3 Are sound waves in general adiabatic
or isothermal?

Because of the ideal gas law, one would expect that at the compressions
in a sound wave the temperature rises, while at the rarefactions there
is cooling. If there were sufficient time for thermal equilibration to take
place as the sound wave passes (i.e. as the compressions and rarefactions
reverse positions) then the wave would be isothermal. However, if there
is insufficient time, then the wave is said to be adiabatic since there is
no time for heat to flow.

To establish whether sound waves are usually likely to be adiabatic
or isothermal, we are going to consider how far thermal changes can
propagate in comparison with the length scale of a sound wave. The
latter is given by the wavelength4 λ of the sound wave, which is related4Do not confuse λ as wavelength with λ

as mean free path. The context should
indicate which is meant.

to the angular frequency ω in a medium with sound speed vs, by

λ =
2πvs
ω

. (31.12)

The distance over which a thermal wave can propagate is the skin depth
δ which we met in eqn 10.22. Thus the characteristic depth to which
heat diffuses in a certain time T (using T = 2π/ω for the ‘thermal wave’
which is driven at frequency ω) is given by

δ2 =
2D

ω
=
DT

π
. (31.13)

The frequency dependence of these two length scales, the wavelength of
the sound wave and the skin depth or propagation distance of the heat
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wave driven at the same frequency, is shown in Fig. 31.2. In different
frequency ranges, either λ or δ will be larger because they have a different
frequency dependence (λ ∝ ω−1 and δ ∝ ω−1/2). In the high–frequency
regime, for which λ < δ, the heat wave has propagated over a larger
distance so any sound waves would be isothermal. In the low–frequency
regime, for which λ > δ, the sound waves would be adiabatic.

Fig. 31.2 Propagation distance of a
sound wave and of a thermal wave as
a function of frequency. In the region
where λ < δ the sound waves would
be isothermal and in the region where
λ > δ the sound waves would be adia-
batic.

In fact, it turns out that the latter situation is usually satisfied in
practice and sound waves are adiabatic. You can demonstrate this by
substituting typical values for D and ω into eqn 31.13 to estimate δ and
show that the wavelength of a sound wave will exceed the skin depth.
In fact, for these typical values of δ, the wavelengths required to be in
the isothermal regime are so tiny that they are smaller than the mean
free path of the molecules in the gas (see Exercise 31.3).

Example 31.2

What is the speed of sound in a relativistic gas?
Solution:

For a non-relativistic gas we have from eqn 6.15 that p = 1
3nm〈v2〉.

Using ρ = nm, we can write this as p = 1
3ρ〈v2〉. For a relativistic gas,

this should be replaced by

p =
1

3
ρc2, (31.14)

where c is the speed of light. Since ρ ∝ 1/V , we have that B = p and
hence

vs =
√
B/ρ =

c√
3
. (31.15)

31.4 Derivation of the speed of sound
within fluids

The speed of sound formula in eqn 31.1 can be derived by combining two
equations, the continuity equation and the Euler equation (see boxes on
page 358), to give a wave equation whose speed can be clearly identi-
fied. These equations are fully three dimensional, and a derivation for
three dimensions is straightforward. However, fluids such as air cannot
transmit shear and so no transverse waves can be propagated, only longi-
tudinal waves. For this reason, we will just present the one-dimensional
derivation appropriate for longitudinal waves; this is illustrative and
perfectly analogous to the three-dimensional version.

The continuity equation in one dimension (see box on page 358) is
given by

∂(ρu)

∂x
= −∂ρ

∂t
. (31.16)
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The continuity equation
The continuity equation for a fluid (that is, for a liquid or a gas) can
be derived in a similar manner to the diffusion equation, eqn 9.35. The
mass flux out of a closed surface S is∫

S

ρu · dS, (31.17)

where ρ is the density and u is the local fluid velocity. This flux must
be balanced by the rate of decrease of fluid concentration inside the
volume: ∫

S

ρu · dS = − ∂

∂t

∫
V

ρdV. (31.18)

The divergence theorem then implies that∫
V

∇ · (ρu)dV = −
∫

V

∂ρ

∂t
dV (31.19)

and hence

∇ · (ρu) = −∂ρ
∂t
, (31.20)

or in one dimension that

∂(ρu)

∂x
= −∂ρ

∂t
. (31.21)

The Euler equation
The force per unit mass on an element of fluid owing to a pressure
gradient ∇p is −(1/ρ)∇p. This leads to the Euler equation:

−1

ρ
∇p =

Du

Dt
, (31.22)

where Du/Dt is the local acceleration of the fluid, described in the
co-moving frame of the fluid via the convective derivative

DX

Dt
≡ ∂X

∂t
+ (u · ∇)X. (31.23)

Here, DX/Dt is the rate of change of property X with time following
the fluid. Thus, eqn 31.22 becomes

−1

ρ
∇p =

∂u

∂t
+ (u · ∇)u, (31.24)

or in one dimension

−1

ρ

∂p

∂x
=
∂u

∂t
+ u

∂u

∂x
. (31.25)
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Euler’s equation for a fluid in one dimension (see box on page 358) is

−1

ρ

∂p

∂x
=
∂u

∂t
+ u

∂u

∂x
. (31.26)

Equation 31.16 may be expanded as

∂(ρu)

∂x
= u

∂ρ

∂x
+ ρ

∂u

∂x
= −∂ρ

∂t
. (31.27)

Dividing through by ρ and writing s = δρ/ρ yields

u
∂s

∂x
+
∂u

∂x
= −∂s

∂t
. (31.28)

For small-amplitude sound waves, any terms which are second order in
u, such as u∂s/∂x, may be neglected so that eqn 31.27 becomes

∂u

∂x
= −∂s

∂t
. (31.29)

Again neglecting terms which are second order in u, one finds that
eqn 31.26 becomes

∂u

∂t
= −1

ρ

∂p

∂x
. (31.30)

In terms of a bulk modulus defined in eqn 31.4, we may re-write
eqn 31.30 as

∂u

∂t
= −B

ρ

∂s

∂x
, (31.31)

and then eliminating u from this equation and from eqn 31.29 we have
a one-dimensional wave equation:

∂2s

∂x2
=

ρ

B

∂2s

∂t2
. (31.32)

This has solutions which may be recognized as travelling waves of the
form

s ∝ ei(kx−ωt), (31.33)

for which the wave speed is then given by substituting eqn 31.33 into
eqn 31.32 and obtaining

vs =
ω

k
=

√
B

ρ
. (31.34)

Chapter summary

• The speed of sound is defined by vs =
√
B/ρ, where B is given by

B = −V ∂p/∂V .

• For adiabatic sound waves the speed of sound is given by
vs =

√
γ〈v2〉/3 =

√
γkT/m.

• In a relativistic gas, the speed of sound is given by
vs = c/

√
3.
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Further reading

Faber (1995) has a good discussion of sound waves in gases and liquids and is a useful primer on fluid dynamics in
general.

Exercises

(31.1) The speed of sound in air at 0◦C is 331.5 m s−1.
Estimate the speed of sound at an aircraft’s cruis-
ing altitude where the temperature is −60◦C.

(31.2) Calculate the speed of sound in nitrogen at 200◦C.

(31.3) For sound waves in air of frequency (a) 1 Hz and
(b) 20 kHz estimate both the wavelength λ of the
sound wave and the skin depth δ (the characteris-
tic depth to which a thermal wave of this frequency
will diffuse). Hence show that sound waves are in-
variably adiabatic and not isothermal. For what
frequency would δ = λ?

(31.4) The speed of sound in air, hydrogen and car-
bon dioxide at 0◦C is 331.5 m s−1, 1270 m s−1 and

258 m s−1 respectively. Explain the relative mag-
nitude of these values.

(31.5) Breathing helium gas can result in your voice
sounding higher (do not try this as asphyxiation
is a serious risk); explain this effect (and note that
the actual pitch of the voice is not higher).

(31.6) Estimate the time taken for a sound wave to cross
the Sun using eqn 31.11, assuming that the aver-
age temperature of the Sun is 6 × 106 K. [Assume
that the Sun is mostly ionized hydrogen (protons
plus electrons) so that the average mass per par-
ticle is about mp/2. The radius R� of the Sun is
6.96×108 m.]
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Shock waves (known for short as shocks) occur when a disturbance
is propagating through a medium faster than the sound speed of the
medium. In this chapter we are going to consider the nature of shocks
in gases and the thermodynamic properties of the gas on either side of
such a shock.

32.1 The Mach number

Fig. 32.1 The propagation of a shock
wave for subsonic and supersonic flows.
(a) M = 0.8, (b) M = 1, (c) M = 1.2,
(d) M = 1.4.

The Mach number M of a disturbance is defined to be the ratio of the
speed w at which the disturbance is passing through a medium to the
sound speed vs of the medium. Thus we have

M =
w

vs
. (32.1)

When M > 1, the disturbance is called a shock front and the speed
of the disturbance is supersonic. The development of a shock wave
can be seen in Fig. 32.1, which shows wavefronts from a moving point
source. The point source, moving at speed w, emits circular wavefronts
and these wavefronts overlap constructively to form a single conical–
shaped wavefront when w > vs, i.e. when M ≥ 1 (the cone looks like the
two sides of a triangle in the figure, which is necessarily printed in two
dimensions!). The semi-angle of the cone decreases as M increases. This
shock wave is responsible for the sonic ‘boom’ which can be heard when a
supersonic aircraft passes overhead (a double boom is often heard owing
to the fact that shock waves originate from both the nose and the tail of
the aircraft). Because the semi-angle of the cone decreases for very high
speeds, a very fast aircraft at high altitude does not produce a boom at
ground level because the cone does not intersect the ground.

32.2 Structure of shock waves

What is actually going on at a shock front? In order to establish the
thermodynamic properties either side of a shock front, it is helpful to
treat it as a mathematical discontinuity across which there is an abrupt
change in the values of the properties because of the motion of the
shock. In reality, the width of the shock front is finite but its detailed
structure does not matter for our purposes although we will discuss it
briefly in Section 32.4. Figure 32.2 illustrates the velocities of unshocked
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and shocked gas with respect to a shock front (illustrated as a grey
rectangle in each frame). This is shown for the two frames of reference
in which it is convenient to work for these situations: the rest frame of
the unshocked gas and the rest frame of the shock front (which we shall
call the shock frame).

In the rest frame of the undisturbed gas, the shock front moves at
velocity w while the gas through which the shock has already passed
moves at velocity w2 (where w2 < w). There is a shock because the
shock front propagates at speed w > vs1, where vs1 is the sound speed
in the unshocked gas. If w 	 vs1 then there is said to be a strong
shock whereas if w is just a little above vs1 then there is said to be a
weak shock.

In the shock frame, the gas through which the shock front has passed
moves away from the shock at velocity v2 while the as-yet undisturbed
gas moves towards it at velocity v1. Therefore, v1 = w, since this is the
speed at which the undisturbed gas enters the shock front. In the same
frame, the speed at which the shocked gas leaves the back of the shock
is given by

v2 = w − w2. (32.2)

w w

Fig. 32.2 Structure of a shock front in the rest frame of the undisturbed gas and
in the rest frame of the shock front (which we call the shock frame). The terms
‘upstream’ and ‘downstream’ are best understood in the rest frame of the shock: in
this frame, the shock is stationary and high–velocity gas (velocity v1), which is yet to
be disturbed by the shock front, streams towards the shock front (from ‘upstream’)
from region 1, while slower (velocity v2) shocked gas moves away (‘downstream’) in
region 2. Region 1 contains gas with lower internal energy, temperature, entropy,
pressure and density but higher velocity and hence bulk kinetic energy than region 2.
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32.3 Shock conservation laws

To establish the physical properties of the gas before and after the pas-
sage of the shock, we have to think about the conservations laws, of mass,
momentum and energy, either side of the shock front. It is most conve-
nient at this point to work in the shock frame (right panel of Fig. 32.2).
We then have the following three conservation equations:

• The conservation of mass is applied by stating that the mass flux
Φm, that is the mass crossing unit area in unit time, is equal on
either side of the shock. Denoting the upstream region by 1 and
the downstream region by 2, we may write

ρ2v2 = ρ1v1 = Φm. (32.3)

• The conservation of momentum requires that the momentum flux
should be continuous; this means that the force per unit area plus
the rate at which momentum is transported across unit area should
be matched on either side of the shock front, giving

p2 + ρ2v
2
2 = p1 + ρ1v

2
1 . (32.4)

• The conservation of energy requires that the rate at which gas
pressure does work per unit area (given by pv) and the rate of
transport of internal and kinetic energy per unit area ((ρũ+ 1

2ρv
2)v,

where ũ is the internal energy per unit mass) is constant across a
shock, which gives

p2v2 +

(
ρ2ũ2 +

1

2
ρ2v

2
2

)
v2 = p1v1 +

(
ρ1ũ1 +

1

2
ρ1v

2
1

)
v1. (32.5)

The following example illustrates a simple algebraic manipulation of
two of the conservation laws.

Example 32.1

Rearrange eqn 32.3 and eqn 32.4 to show that

Φ2
m = (p2 − p1)/(ρ

−1
1 − ρ−1

2 ), (32.6)

and hence find an expression for v2
1 − v2

2 in terms of pressures and den-
sities.
Solution:

Equation 32.3 implies that vi = ρ−1
i Φm. This, together with eqn 32.4,

can be simply rearranged to give

p2 − p1 = ρ1v
2
1 − ρ2v

2
2 = Φ2

m(ρ−1
1 − ρ−1

2 ), (32.7)

and the desired result follows. The final step can be achieved by writing

v2
1 − v2

2 = (v1 − v2)(v1 + v2) = Φ2
m(ρ−1

1 − ρ−1
2 )(ρ−1

1 + ρ−1
2 ), (32.8)

and substitution of eqn 32.7 yields

v2
1 − v2

2 = (p2 − p1)(ρ
−1
1 + ρ−1

2 ). (32.9)
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32.4 The Rankine–Hugoniot conditions

Having written down the conservation laws, we now wish to solve these
simultaneously to find the pressures, densities and temperatures on ei-
ther side of the shock front.1 We will treat the gas as an ideal gas, so1The derivation in this section is noth-

ing more than algebraic manipulations
following from the conservation laws,
but we give it in full since it is some-
what fiddly. If you are not concerned
with these details, you can skip straight
to equation 32.19.

that the internal energy per unit mass, ũ, is given by (see eqn 11.36)

ũ =
p

(γ − 1)ρ
. (32.10)

Rearranging this gives p = (γ− 1)ρũ and substituting this into eqn 32.5
gives

γρ2v2ũ2 +
1

2
v2
2 = γρ1v1ũ1 +

1

2
v2
1 . (32.11)

Dividing the left-hand side by ρ2v2 and the right-hand side by ρ1v1 (and
eqn 32.3 implies that these two factors are equal) and using eqn 32.10
yields

γ p2

(γ − 1)ρ2
+

1

2
v2
2 =

γ p1

(γ − 1)ρ1
+

1

2
v2
1 . (32.12)

Using eqn 32.9, and multiplying by γ− 1, this can be rearranged to give

2γ(p1ρ
−1
1 − p2ρ

−1
2 ) + (γ − 1)(p2 − p1)(ρ

−1
1 + ρ−1

2 ). (32.13)

Hence, we have that

ρ−1
2

ρ−1
1

=
(γ + 1)p1 + (γ − 1)p2

(γ − 1)p1 + (γ + 1)p2
. (32.14)

Substitution into eqn 32.6 gives

Φ2
m =

p2 − p1

ρ−1
1 [1 − ρ−1

2 /ρ−1
1 ]

=
1

2
ρ1[(γ − 1)p1 + (γ + 1)p2], (32.15)

and hence

v2
1 = Φ2

mρ
−2
1 =

1

2
ρ−1
1 [(γ − 1)p1 + (γ + 1)p2]. (32.16)

We would like to express everything in terms of the Mach number M1 of
the shock, and recalling that M1 = v1/vs1 and vs1 =

√
γp1/ρ1, we have

that

M2
1 =

ρ1v
2
1

γp1
. (32.17)

Susbtitution of eqn 32.17 into eqn 32.16 gives

ρv2
1 = M2

1 γp1 =
1

2
[(γ − 1)p1 + (γ + 1)p2], (32.18)

and rearranging gives our desired equation relating the pressure on either
side of the shock front:

p2

p1
=

2γM2
1 − (γ − 1)

γ + 1
. (32.19)
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Substitution of eqn 32.19 into eqn 32.14, and using eqn 32.3, gives an
equation for the ratio of the densities (and velocities) on either side of
the shock:

ρ2

ρ1
=
v1
v2

=
(γ + 1)M2

1

2 + (γ − 1)M2
1

. (32.20)

Equations 32.19 and 32.20 are known as the Rankine–Hugoniot con-
ditions and describe the physical properties of material on other side
of the shock front. The results are plotted in Fig. 32.3.

M

p p T T

Fig. 32.3 The Rankine–Hugoniot con-
ditions for a shock front as a function of
Mach number M1, where γ is assumed
to take the value 5/3 (this is the value γ
takes for a non-relativistic, monatomic
gas).

Example 32.2

What are the ranges of values that can be taken by the following quan-
tities for a shock front? (i) ρ2/ρ1, (ii) v2/v1 and (iii) p2/p1.
Solution:

When M1 = 1, each of these quantities takes the value unity. In the
limit as M1 → ∞, we find that

ρ2

ρ1
→ γ + 1

γ − 1
, (32.21)

v2
v1

→ γ − 1

γ + 1
, (32.22)

p2

p1
→ 2γM2

1

γ + 1
, (32.23)

so that ρ2/ρ1 and v2/v1 both saturate (at values of 4 and 1/4 respectively
in the case of γ = 5/3) but p2/p1 can increase without limit. This is
demonstrated in Fig. 32.3.

Example 32.3

Show that for a monatomic gas, the ratio ρ2/ρ1 can never exceed 4 and
v2/v1 can never be lower than 1

4 .
Solution:

Equation 32.21, together with γ = 5/3 for a monatomic gas, shows that
ρ2/ρ1 can never exceed (γ + 1)/(γ − 1) = 4. Since v2/v1 = ρ1/ρ2, this
ratio can never be lower than 1

4 .

The Rankine–Hugoniot conditions, eqns 32.19 and 32.20 together with
eqn 32.29, as they stand permit expansive shocks, that is with a re-
versal of roles for the two regions pictured in Fig. 32.2. The physical
picture here would be that subsonically moving hot gas expands at a
shock front and accelerates to become supersonic cool gas, i.e. internal
energy would convert to bulk kinetic energy at the shock front. Such
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a situation is forbidden by the second law of thermodynamics (Chap-
ter 14), which says that entropy can only increase. The second law,
together with the Rankine–Hugoniot conditions only permit compres-
sive shocks in which the shock speed (w) exceeds the sound speed vs1,
i.e. the Mach number M1 > 1. In the shock frame, the flow ahead
of the shock (‘upstream’) is supersonic and the flow behind the shock
(‘downstream’) is subsonic.

For a shock to be compressive means that, p2 > p1 and ρ2 > ρ1 (which
is of course consistent with v2 < v1). The ideal gas equation implies that
p/ρ ∝ T and hence that

T2

T1
=
p2/ρ2

p1/ρ1
. (32.24)

This can be used to show that

T2 > T1, (32.25)

so that a shock wave not only slows the gas but also that it heats it up,
thus converting kinetic energy into thermal energy. The conversion of
ordered energy into random motion occurs via collisions. The thickness
of a shock front is thus usually of the order of the collisional mean free
path.

We would expect from this that entropy increases as kinetic energy is
converted into heat. The entropy increase to the gas downstream of the
shock compared with that upstream is straightforwardly computed by
using the relationship we established in eqn 16.93, namely

S = CV ln

(
p

ργ

)
+ constant. (32.26)

Hence, the difference in entropy ∆S between the two regions is given by

∆S = S2 − S1 = CV ln

[
P2

P1

(
ρ1

ρ2

)γ]
. (32.27)

When we substitute eqns 32.19 and 32.20 into eqn 32.27 we obtain the
following expression for the entropy difference across a shock:

∆S = CV ln

[
2γM2

1 − (γ − 1)

γ + 1

] [
2 + (γ − 1)M2

1

(γ + 1)M2
1

]γ

. (32.28)

This equation can be used to show that ∆S > 0, so that entropy always
increases as gas is shocked. Equation 32.28 is plotted in Fig. 32.4.

Fig. 32.4 The entropy change ∆S in
units of R for one mole of gas, as a func-
tion of Mach number M1.

Chapter summary

• Shock waves occur when a disturbance is propagating through a
medium at a speed w which is faster than the sound speed of the
medium vs.

• The Mach number M = w/vs.

• Shocks convert kinetic energy into thermal energy.
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Further reading

Faber (1995) contains useful information on shocks in fluids.

Exercises

(32.1) Show that the semi-angle of the cone of the shock
waves shown in Fig. 32.1 is given by sin−1(1/M),
where M is the Mach number.

(32.2) Use eqn 32.24 to show that

T2

T1
=

[2γM2
1 − (γ − 1)][2 + (γ − 1)M2

1 ]

(γ + 1)2M2
1

, (32.29)

and hence for M1 � 1 we have that

T2

T1
→ 2γ(γ − 1)M2

1

(γ + 1)2
. (32.30)

(32.3) For a shock wave in a monatomic gas show that

ρ2

ρ1
→ 4,

p2

p1
→ 5

4
M2

1 ,
T2

T1
→ 5

32
M2

1 ,

(32.31)
in the limit M1 � 1.

(32.4) Air is mostly nitrogen (N2) and oxygen (O2),
which are both diatomic gases and for which γ =
7/5. Show that in this case, in the limit M1 � 1
we have that

ρ2

ρ1
→ 6,

p2

p1
→ 7

6
M2

1 ,
T2

T1
→ 7

36
M2

1 .

(32.32)

(32.5) Show that in the limit as the Mach number of a
shock becomes large, the increase in entropy from
the upstream material flowing into the shock to
the downstream material flowing away from it is
given by

∆S = CV ln

»
2γM2

1

γ + 1

– „
γ − 1

γ + 1

«γ

. (32.33)
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Our treatment of the thermodynamic properties of thermal systems has
assumed that we can replace quantities such as pressure by their average
values. Even though the molecules in a gas hit the walls of their container
stochastically, there are so many of them that the pressure does not
appear to fluctuate. But with very small systems, these fluctuations can
become important. In this chapter, we consider these fluctuations in
detail. A useful insight comes from the fluctuation–dissipation theorem,
which is derived from the assumption that the response of a system in
thermodynamic equilibrium to a small external perturbation is the same
as its response to a spontaneous fluctuation. This implies that there is
a direct relation between the fluctuation properties of a thermal system
and what are known as its linear response properties.

33.1 Brownian motion

We introduced Brownian motion in Section 19.4. There we showed that
the equipartition theorem implies that the translational motion of par-
ticles at temperature T fluctuates since each particle must have mean
kinetic energy given by 1

2m〈v2〉 = 3
2kBT . Einstein, in his 1905 paper

on Brownian motion, noted that the same random forces which cause
Brownian motion of a particle would also cause drag if the particle were
pulled through the fluid.

Example 33.1

Find the solution to the equation of motion (known as the Langevin
equation) for the velocity v of a particle of mass m which is given by

mv̇ = −αv + F (t), (33.1)

where α is a damping constant (arising from friction), F (t) is a random
force whose average value over a long time period, 〈F 〉, is zero.
Solution:

Note first that in the absence of the random force, eqn 33.1 becomes

mv̇ = −αv, (33.2)
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which has solution

v(t) = v(0) exp[−t/(mα−1)], (33.3)

so that any velocity component dies away with a time constant given by
m/α. The random force F (t) is necessary to give a model in which the
particle’s motion does not die away.

To solve eqn 33.1, write v = ẋ and premultiply both sides by x. This
leads to

mxẍ = −αxẋ+ xF (t). (33.4)

Now
d

dt
(xẋ) = xẍ+ ẋ2, (33.5)

and hence we have that

m
d

dt
(xẋ) = mẋ2 − αxẋ+ xF (t). (33.6)

We now average this result over time. We note that x and F are uncorre-
lated, and hence 〈xF 〉 = 〈x〉〈F 〉 = 0. We can also use the equipartition
theorem, which here states that

1

2
m〈ẋ2〉 =

1

2
kBT. (33.7)

Hence, using eqn 33.7 in eqn 33.6, we have

m
d

dt
〈xẋ〉 = kBT − α〈xẋ〉, (33.8)

or equivalently (
d

dt
+
α

m

)
〈xẋ〉 =

kBT

m
, (33.9)

which has a solution

〈xẋ〉 = Ce−αt/m +
kBT

α
. (33.10)

Putting the boundary condition that x = 0 when t = 0, one can find
that the constant C = −kBT/α, and hence

〈xẋ〉 =
kBT

α
(1 − e−αt/m). (33.11)

Using the identity
1

2

d

dt
〈x2〉 = 〈xẋ〉, (33.12)

we then have

〈x2〉 =
2kBT

α

[
t− m

α
(e−αt/m)

]
. (33.13)

When t� m/α,

〈x2〉 =
kBTt

2

m
, (33.14)

while for t	 m/α,

〈x2〉 =
2kBTt

α
. (33.15)

Writing1 〈x2〉 = 2Dt, where D is the diffusion constant, yields D = 1See Appendix C.12.

kBT/α.



370 Brownian motion and fluctuations

If a steady force F had been applied instead of a random one, then the
terminal velocity (the velocity achieved in the steady state, with v̇ = 0)
of the particle could have been obtained from

mv̇ = −αv + F = 0, (33.16)

yielding v = α−1F , and so α−1 plays the rôle of a mobility (the ratio
of velocity to force). It is easy to understand that the terminal ve-
locity should be limited by frictional forces, and hence depends on α.
However, the previous example shows that the diffusion constant D is
proportional to kBT and also to the mobility α−1. Note that the diffu-
sion constant D = kBT/α is independent of mass. The mass only enters
in the transient term in eqn 33.13 (see also eqn 33.14) that disappears
at long times.

Remarkably, we have found that the diffusion rate D, describing the
random fluctuations of the particle’s position, is related to the fric-
tional damping α. The formula D = kBT/α is an example of the
fluctuation–dissipation theorem, which we will prove later in the chapter
(Section 33.6).

As a prelude to what will come later, the following example considers
the correlation function for the Brownian motion problem.

Example 33.2

Derive an expression for the velocity correlation function 〈v(0)v(t)〉
for the Brownian motion problem.Correlation functions are discussed in

more detail in Section 33.6. The ve-
locity correlation function 〈v(0)v(t)〉 is
defined by

lim
T→∞

1

T

Z T/2

−T/2
dt′ v(t′)v(t+ t′),

and describes how well, on average, the
velocity at a certain time is correlated
with the velocity at a later time.

Solution:

The rate of change of v is given by

v̇(t) =
v(t+ τ) − v(t)

τ
(33.17)

in the limit in which τ → 0. Inserting this into eqn 33.1 and premuli-
plying by v(0) gives

v(0)v(t+ τ) − v(0)v(t)

τ
= − α

m
v(0)v(t) +

v(0)F (t)

m
. (33.18)

Averaging this equation, and noting that 〈v(0)F (t)〉 = 0 because v and
F are uncorrelated, yields

〈v(0)v(t+ τ)〉 − 〈v(0)v(t)〉
τ

= − α

m
〈v(0)v(t)〉, (33.19)

and taking the limit in which τ → 0 yields

d

dt
〈v(0)v(t)〉 = − α

m
〈v(0)v(t)〉, (33.20)

and hence
〈v(0)v(t)〉 = 〈v(0)2〉e−αt/m. (33.21)
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This example shows that the velocity correlation function decays to
zero as time increases at exactly the same rate that the velocity itself
relaxes (see eqn 33.3).

33.2 Johnson noise

We now consider another fluctuating system: the noise voltage which is
generated across a resistor of resistance R by thermal fluctuations. Let
us suppose that the resistor is connected to a transmission line of length
L which is correctly terminated at each end, as shown in Fig. 33.1.2 2We will give a method of calculating

the noise voltage that may seem a little
artificial at first, but provides a conve-
nient way of calculating how the resis-
tor can exchange energy with a thermal
reservoir. A more elegant approach will
be done in Example 33.9.

Because the transmission line is matched, it should not matter whether
it is connected or not. The transmission line can support modes of wave
vector k = nπ/L and frequency ω = ck, and therefore there is one mode
per frequency interval ∆ω given by

∆ω =
cπ

L
. (33.22)

By the equipartition theorem, each mode has mean energy kBT , and

R

R

Fig. 33.1 The equivalent circuit to con-
sider the Johnson noise across a re-
sistor. The resistor is connected to a
matched transmission line which is cor-
rectly terminated, hence the presence
of the second resistor; one can consider
the noise voltage as being an alternat-
ing voltage source which is connected
in series with the second resistor.

hence the energy per unit length of transmission line, in an interval ∆ω,
is given by

kBT
∆ω

cπ
. (33.23)

Half this energy is travelling from left to right, and half from right to
left. Hence, the mean power incident on the resistor is given by

1

2π
kBT∆ω, (33.24)

and in equilibrium this must equal the mean power dissipated by the
resistor, which is given by

〈I2R〉. (33.25)

In the circuit, we have I = V/(2R) and hence

〈V 2〉
4R

= 〈I2R〉 =
1

2π
kBT∆ω, (33.26)

and hence

〈V 2〉 =
2

π
kBTR∆ω, (33.27)

which, using ∆ω = 2π∆f , can be written in the form

〈V 2〉 = 4kBTR∆f. (33.28)

This expression is known as the Johnson noise produced across a resis-
tor in a frequency interval ∆f . It is another example of the connection
between fluctuations and dissipation, since it relates fluctuating noise
power (〈V 2〉) to the dissipation in the circuit (R).

We can derive a quantum mechanical version of the Johnson noise
formula by replacing kBT by �ω/(eβ�ω − 1), which yields

〈V 2〉 =
2R

π

�ω∆ω

eβ�ω − 1
. (33.29)



372 Brownian motion and fluctuations

33.3 Fluctuations

In this section, we will consider the origin of fluctuations and show how
much freedom a system has to allow the functions of state to fluctuate.
We will focus on one such function of state, which we will call x, and
ask the question: if the system is in equilibrium, what is the probabil-
ity distribution of x? Let us suppose that the number of microstates
associated with a system characterised by this parameter x and having
energy E (which we will consider fixed3) is given by3This part of the argument assumes

that we are working in the microcanon-
ical ensemble (see Section 4.6). Ω(x,E). (33.30)

If x were constrained to this value, the entropy S of the system would
be

S(x,E) = kB ln Ω(x,E), (33.31)

which we could write equivalently as Ω(x,E) = eS(x,E)/kB . If x were not
constrained, its probability distribution function would then follow the
function p(x), where

p(x) ∝ Ω(x,E) = eS(x,E)/kB . (33.32)

At equilibrium the system will maximize its entropy, and let us suppose
that this occurs when x = x0. Hence(

∂S(x,E)

∂x

)
= 0 when x = x0. (33.33)

Let us now write a Taylor expansion of S(x,E) around the equilibrium
point x = x0:

S(x,E) = S(x0, E)+

(
∂S

∂x

)
x=x0

(x−x0)+
1

2

(
∂2S

∂x2

)
x=x0

(x−x0)
2+· · · .
(33.34)

which with eqn 33.33 implies that

S(x) = S(x0) +
1

2

(
∂2S

∂x2

)
x=x0

(x− x0)
2 + · · · (33.35)

Hence, defining ∆x = x− x0, we can write the probability function as a
Gaussian,

p(x) ∝ exp

(
− (∆x)2

2〈(∆x)2〉
)
, (33.36)

where

〈(∆x)2〉 = − kB(
∂2S
∂x2

)
E

. (33.37)

This equation shows that if the entropy S changes rapidly as a function
of x, we are more likely to find the system with x close to x0. This
makes sense.
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Example 33.3

Let x be the internal energy U for a system with fixed volume. Using
T = (∂U/∂S)V , we have that(

∂2S

∂U2

)
V

=

(
∂(1/T )

∂U

)
V

= − 1

T 2CV
, (33.38)

and hence

〈(∆U)2〉 = − kB(
∂2S
∂U2

)
V

= kBT
2CV . (33.39)

So if a system is in contact with a bath at temperature T , there is a non-
zero probability that we may find the system away from the equilibrium
internal energy: thus U can fluctuate. The size of the fluctuations is
larger if the heat capacity is larger.

Both the heat capacity CV and the internal energy U are extensive
parameters and therefore they scale with the size of the system. The
r.m.s. fluctuations of U scale with the square root of the size of the
system, so the fractional r.m.s. fluctuations scale with the size of the
system to the power − 1

2 . Thus if the system has N atoms, then

C ∝ N, U ∝ N
√

〈(∆U)2〉 ∝
√
N, (33.40)

and √〈(∆U)2〉
U

∝ 1√
N
. (33.41)

Hence as N → ∞, we can ignore fluctuations. Fluctuations are more
important in small systems. However, note that at a critical point for a
first-order phase transition, C → ∞ and hence

〈(∆U)2〉
U

→ ∞. (33.42)

Hence fluctuations become divergent at the critical point and cannot be
ignored, even for large systems.

33.4 Fluctuations and the availability

We now generalize an argument presented in Section 16.5 to the case in
which numbers of particles can fluctuate. Consider a system in contact
with a reservoir. The reservoir has temperature T0, pressure p0 and
chemical potential µ0. Let us consider what happens when we transfer
energy dU , volume dV and dN particles from the reservoir to the system.
The internal energy of the reservoir changes by dU0, where

dU0 = −dU = T0 dS0 − p0(−dV ) + µ0(−dN), (33.43)
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where the minus signs express the fact that the energy, volume and
number of particles in the reservoir are decreasing. We can rearrange
this expression to give the change of entropy in the reservoir as

dS0 =
−dU − p0dV + µ0dN

T0
. (33.44)

If the entropy of the system changes by dS, then the total change of
entropy dStot is

dStot = dS + dS0, (33.45)

and the second law of thermodynamics implies that dStot ≥ 0. Using
eqn 33.44, we have that

dStot = −dU − T0dS + p0dV − µ0dN

T0
, (33.46)

which can be written as

dStot = −dA

T0
, (33.47)

where A = U − T0S + p0V − µ0N is the availability (this generalizes
eqn 16.32).

We now apply the concept of availability to fluctuations. Let us sup-
pose that the availability depends on some variable x, so that we can
write a function A(x). Equilibrium will be achieved when A(x) is mini-
mized (so that Stot is maximized, see eqn 33.47) and let us suppose that
this occurs when x = x0. Hence we can similarly write A(x) in a Taylor
expansion around the equilibrium point and hence

A(x) = A(x0) +
1

2

(
∂2A

∂x2

)
x=x0

(∆x)2 + · · · , (33.48)

so that we can recover the probability distribution in eqn 33.36 with

〈(∆x)2〉 = − kBT0(
∂2A
∂x2

) . (33.49)

Example 33.4

A system with a fixed number N of particles is in thermal contact with a
reservoir at temperature T . It is surrounded by a tensionless membrane
so that its volume is able to fluctuate. Calculate the mean square volume
fluctuations. For the special case of an ideal gas, show that 〈(∆V )2〉 =
V 2/N .
Solution:

Fixing T and N means that U can fluctuate. Fixing N implies that
dN = 0 and hence we have that

dU = TdS − pdV. (33.50)
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Changes in the availability therefore follow:

dA = dU − T0dS + p0dV = (T − T0)dS + (p0 − p)dV, (33.51)

and hence (
∂A

∂V

)
T,N

= p0 − p (33.52)

and (
∂2A

∂V 2

)
T,N

= −
(
∂p

∂V

)
T,N

. (33.53)

Hence

〈(∆V )2〉 = −kBT0

(
∂V

∂p

)
T,N

. (33.54)

For an ideal gas, (∂V/∂p)T,N = −NkBT/p
2 = −V/p, and hence

〈(∆V )2〉 =
V 2

N
. (33.55)

Equation 33.55 implies that the fractional volume fluctuations follow√〈(∆V )2〉
V

=
1

N1/2
. (33.56)

Thus for a box containing 1024 molecules of gas (a little over a mole of
gas), the fractional volume fluctuations are at the level of one part in
1012.

We can derive other similar expressions for other fluctuating variables,
including

〈(∆T )2〉 =
kBT

2

CV
, (33.57)

〈(∆S)2〉 = kBCp, (33.58)

〈(∆p)2〉 =
kBTκS

CV
, (33.59)

where κS is the adiabatic compressibility (see eqn 16.72).

33.5 Linear response

In order to understand in more detail the relationship between fluctua-
tions and dissipation, it is necessary to consider how systems respond to
external forces in a rather more general way. We consider a displacement
variable x(t) that is the result of some force f(t), and require that the
product xf has the dimensions of energy. (We will say that x and f are
conjugate variables if their product has the dimensions of energy.)
We assume that the response of x to a force f is linear (so that, for
example, doubling the force doubles the response), but there could be
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some delay in the way in which the system responds. The most general
way of writing this down is as follows: we say that the average value
of x at time t is denoted by 〈x(t)〉f (the subscript f reminds us that a
force f has been applied) and is given by

〈x(t)〉f =

∫ ∞

−∞
χ(t− t′)f(t′) dt′, (33.60)

where χ(t− t′) is a response function. This relates the value of x(t) to
a sum over values of the force f(t′) at all other times. Now it makes sense
to sum over past values of the force, but not to sum over future values
of the force. This will force the response function χ(t− t′) to be zero if
t < t′. Before seeing what effect this has, we need to Fourier transform
eqn 33.60 to make it simpler to deal with. The Fourier transform of x(t)
is given by the function x̃(ω) given by

x̃(ω) =

∫ ∞

−∞
dt e−iωtx(t). (33.61)

The inverse transform is then given by

x(t) =
1

2π

∫ ∞

−∞
dω eiωtx̃(ω). (33.62)

The expression in eqn 33.60 is a convolution of the functions χ and f ,
and hence by the convolution theorem we can write this equation in
Fourier transform form as

〈x̃(ω)〉f = χ̃(ω)f̃(ω). (33.63)

This is much simpler than eqn 33.60 as it is a product, rather than a
convolution. Note that the response function χ̃(ω) can be complex. The
real part of the response function gives the part of the displacement
which is in phase with the force. The imaginary part of the response
function gives a displacement with is π

2 out of phase with the force.
It corresponds to dissipation because the external force does work on
the system at a rate given by the force multiplied by the velocity, i.e.
f(t)ẋ(t), and this work is dissipated as heat. For f(t) and ẋ(t) to be in
phase, and hence give a non-zero average, f(t) and x(t) have to be π

2
out of phase (see Exercise 33.2).

We can build causality into our problem by writing the response func-
tion as

χ(t) = y(t)θ(t), (33.64)

where θ(t) is a Heaviside step function (see Fig. 30.1) and y(t) is a
function which equals χ(t) when t > 0 and can equal anything at all when
t < 0. For the convenience of the following derivation, we will set y(t) =
−χ(|t|) when t < 0, making y(t) an odd function (and, importantly,
making ỹ(ω) purely imaginary). By the inverse convolution theorem,
the Fourier transform of χ(t) is given by the convolution

χ̃(ω) =
1

2π

∫ ∞

−∞
dω′θ̃(ω′ − ω)ỹ(ω′). (33.65)
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Writing the Heaviside step function as

θ(t) =

{
e−εt t > 0
0 t < 0

, (33.66)

in the limit in which ε→ 0 its Fourier transform is given by

θ̃(ω) =

∫ ∞

0

dt e−iωte−εt =
1

iω + ε
=

ε

ω2 + ε2
− iω

ω2 + ε2
. (33.67)

Thus, taking the limit ε→ 0, we have that

θ̃(ω) = πδ(ω) − i

ω
. (33.68)

Substituting this into eqn 33.65 yields4 4The symbol P denotes the Cauchy
principal value of the integral. This
means that an integral whose integrand
blows up at some value is evaluated us-
ing an appropriate limit. For example,R 1
−1 dx/x is undefined since 1/x → ∞

at x = 0, but

P
Z 1

−1

dx

x
= lim

ε→0+

„Z −ε

−1

dx

x
+

Z 1

ε

dx

x

«

= 0.

χ̃(ω) =
1

2
ỹ(ω) − i

2π
P
∫ ∞

−∞

ỹ(ω′) dω′

ω′ − ω
. (33.69)

We now write χ̃(ω) in terms of its real and imaginary parts:

χ̃(ω) = χ̃′(ω) + iχ̃′′(ω), (33.70)

and since ỹ(ω) is purely imaginary, eqn 33.69 yields

iχ̃′′(ω) =
1

2
ỹ(ω), (33.71)

and hence

χ̃′(ω) = P
∫ ∞

−∞

dω′

π

χ̃′′(ω′)
ω′ − ω

. (33.72)

This is one of the Kramers–Kronig relations which connects the real
and imaginary parts of the response function.5 Note that our derivation 5The other Kramers–Kronig relation is

derived in Exercise 33.3.has only assumed that the response is linear (eqn 33.60) and causal, so
that the Kramers-Kronig relations are very general.

By putting ω = 0 into eqn 33.72, we obtain another very useful result:

χ̃′(0) = P
∫ ∞

−∞

dω′

π

χ̃′′(ω′)
ω′ . (33.73)

Sometimes the response function is called a generalized susceptibil-
ity, and the zero frequency real part, χ̃′(0), is called the static sus-
ceptibility. As discussed above, the imaginary part of the response
function, χ̃′′(ω), corresponds to the dissipation of the system. Equa-
tion 33.73 therefore shows that the static susceptibility (the response at
zero frequency) is related to an integral of the total dissipation of the
system.
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Example 33.5

Find the reponse function for the damped harmonic oscillator (mass m,
spring constant k, damping α) whose equation of motion is given by

mẍ+ αẋ+ kx = f (33.74)

and show that eqn 33.73 holds.
Solution:

Writing the resonant frequency ω2
0 = k/m, and writing the damping

γ = α/m, we have

ẍ+ γẋ+ ω2
0x =

f

m
, (33.75)

and Fourier transforming this gives immediately that

χ̃(ω) =
x̃(ω)

f̃(ω)
=

1

m

[
1

ω2
0 − ω2 − iωγ

]
. (33.76)

Hence, the imaginary part of the response function is

χ̃′′(ω) =
1

m

[
ωγ

(ω2 − ω2
0)2 + (ωγ)2

]
, (33.77)

and the static susceptibility is

χ̃′(0) =
1

mω2
0

=
1

k
. (33.78)

The real and imaginary parts of χ̃(ω) are plotted in Fig. 33.2(a). The
imaginary part shows a peak near ω0. Equation 33.77 shows that

Fig. 33.2 (a) The real and imaginary
parts of χ̃(ω) as a function of ω. (b) An
illustration of eqn 33.73 for the damped
harmonic oscillator.

χ̃′′(ω)/ω = (γ/m)[(ω2 − ω2
0) + (ωγ)2] and straightforward integration

shows that
∫∞
−∞(χ̃′′(ω)/ω) dω = π/(mω2

0) = πχ̃′(0) and hence that
eqn 33.73 holds. This is illustrated in Fig. 33.2(b).

33.6 Correlation functions

Consider a function x(t). Its Fourier transform6 is given by6See Appendix C.11.

x̃(ω) =

∫ ∞

−∞
dt e−iωtx(t), (33.79)

as before, and we define the power spectral density as 〈|x̃(ω)|2〉. This
function shows how much power is associated with different parts of the
frequency spectrum. We now define the autocorrelation function
Cxx(t) by

Cxx(t) = 〈x(0)x(t)〉 =

∫ ∞

−∞
x∗(t′)x(t′ + t) dt′. (33.80)
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The notation here is that the double subscript means we are measur-
ing how much x at one time is correlated with x at another time. (We
could also define a cross-correlation function Cxy(t) = 〈x(0)y(t)〉 which
measures how much x at one time is correlated with a different vari-
able y at another time.) The autocorrelation function is connected to
the power spectral density by the Wiener–Khinchin theorem7 which 7Norbert Wiener (1894–1964);

Alexsandr Y. Khinchin (1894–1959).
The proof of this theorem is given in
Appendix C.11.

states that the power spectral density is given by the Fourier transform
of the autocorrelation function:

〈|x̃(ω)|2〉 = C̃xx(ω) =

∫ ∞

−∞
e−iωt〈x(0)x(t)〉dt (33.81)

The inverse relation also must hold:

〈x(0)x(t)〉 =
1

2π

∫ ∞

−∞
eiωt〈|x̃(ω)|2〉dω, (33.82)

and hence for t = 0 we have that

〈x(0)x(0)〉 =
1

2π

∫ ∞

−∞
〈|x̃(ω)|2〉dω, (33.83)

or, more succinctly,

〈x2〉 =
1

2π

∫ ∞

−∞
C̃xx(ω) dω. (33.84)

This is a form of Parseval’s theorem that states that the integrated
power is the same whether you integrate over time or over frequency.8 8Parseval’s theorem is actually noth-

ing more than Pythagoras’ theorem in
an infinite-dimensional vector space. If
you think of the function x(t), or its
transform x̃(ω), as a single vector in
such a space, then the square of the
length of the vector is equal to the
sum of the squares on the ‘other sides’,
which in this case is the sum of the
squares of the components (i.e. an inte-
gral of the squares of the values of the
function).

Example 33.6

A random force F (t) has average value given by

〈F (t)〉 = 0 (33.85)

and its autocorrelation function is given by

〈F (t)F (t′)〉 = Aδ(t− t′), (33.86)

where δ(t− t′) is a Dirac delta function.9 Find the power spectrum. 9See Appendix C.10.

Solution:

By the Wiener–Khinchin theorem, the power spectrum is simply the
Fourier transform of the autocorrelation function, and hence

〈|F (ω)|2〉 = A (33.87)

is a flat power spectrum.
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This demonstrates that if the random force F (t) has zero autocorre-
lation, it must have infinite frequency content.

Example 33.7

Find the velocity autocorrelation for the Brownian motion particle gov-
erned by eqn 33.1 where the random force F (t) is as described in the
previous example, i.e. with 〈F (t)F (t′)〉 = Aδ(t − t′). Hence relate the
constant A to the temperature T .
Solution:

Equation 33.1 states that

mv̇ = −αv + F (t), (33.88)

and the Fourier transform of this equation is

ṽ(ω) =
F̃ (ω)

α− imω
. (33.89)

This implies that the Fourier transform of the velocity autocorrelation
function is

C̃vv(ω) = 〈|v(ω)|2〉 =
A

α2 +m2ω2
, (33.90)

using the result of eqn 33.87. The Wiener–Khinchin theorem states that

C̃vv(ω) =

∫
e−iωt〈v(0)v(t)〉dt, (33.91)

and hence
C̃vv(t) = 〈v(0)v(t)〉 = 〈v2〉e−αt/m, (33.92)

in agreement with eqn 33.21 derived earlier using another method. Par-
seval’s theorem (eqn 33.84) implies that

〈v2〉 =

∫ ∞

−∞

dω

2π
C̃vv(ω) =

A

2mα
. (33.93)

Equipartition, which gives that 1
2m〈v2〉 = 1

2kBT , leads immediately to

A = 2αkBT. (33.94)

Let us next suppose that the energy E of a harmonic system is given
by E = 1

2αx
2 (as in Chapter 19). The probability P (x) of the system

taking the value x is given by a Boltzmann factor e−βE and hence

P (x) = N e−βαx2/2, (33.95)

where N is a normalization constant. Now we apply a force f which is
conjugate to x so that the energy E is lowered by xf . The probability
P (x) becomes

P (x) = N e−β(αx2/2−xf), (33.96)
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and by completing the square, this can be rewritten as

P (x) = N ′e−
βα
2 (x− f

a
)2 , (33.97)

where N ′ is a different normalization constant. This equation is of the
usual Gaussian form

P (x) = N ′e−(x−〈x〉f )2/2〈x2〉, (33.98)

where 〈x〉f = f/a and 〈x2〉 = 1/βα. Notice that 〈x〉f is telling us about
the average value of x in response to the force f , while 〈x2〉 = kBT/α is
telling us about fluctuations in x. The ratio of these two quantities is
given by

〈x〉f
〈x2〉 = βf. (33.99)

Now 〈x〉f is the average value x takes when a force f is applied, and we
know that 〈x〉f is related10to f by the static susceptibility by 10Here we are making the assumption

that the linear response function χ̃(ω)
governs both fluctuations and the usual
response to perturbations.

〈x〉f
f

= χ̃′(0), (33.100)

so that eqn 33.99 can be rewritten as

〈x2〉 = kBT χ̃
′(0). (33.101)

Equation 33.101 thus relates 〈x2〉 to the static susceptibility of the sys-
tem. Using eqn 33.73, we can express this relationship as

〈x2〉 = kBT

∫ ∞

−∞

dω′

π

χ̃′′(ω′)
ω′ , (33.102)

and together with eqn 33.84, this motivates

C̃xx(ω) = 2kBT
χ̃′′(ω)
ω , (33.103)

which is a statement of the fluctuation–dissipation theorem. This
shows that there is a direct connection between the autocorrelation func-
tion of the fluctuations, C̃xx(ω), and the imaginary part χ̃′′(ω) of the
response function which is associated with dissipation.

Example 33.8

Show that eqn 33.103 holds for the problem considered in Example 33.5.
Solution:

Recall from Example 33.7 that

C̃xx(ω) =

∫
e−iωt〈x(0)x(t)〉dt = 〈|x̃(ω)|2〉 = A|χ(ω)|2, (33.104)
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and hence using χ̃(ω) from eqn 33.76 and A from eqn 33.94, we have
that

C̃xx(ω) =
2γkBT

m

[
1

(ω2 − ω2
0)2 + (ωγ)2

]
. (33.105)

Equation 33.77 shows that

2kBT
χ̃′′(ω)

ω
=

2γkBT

m

[
1

(ω2 − ω2
0)2 + (ωγ)2

]
, (33.106)

and hence eqn 33.103 holds.

Example 33.9

Derive an expression for the Johnson noise across a resistor R using the
circuit in Fig. 33.3 (which includes the small capacitance across the ends
of the resistor).

R
C

Q

Q

V

I

Fig. 33.3 Circuit for analysing John-
son noise across a resistor.

Solution:

Simple circuit theory yields

V + IR =
Q

C
. (33.107)

The charge Q and voltage V are conjugate variables (their product has
dimensions of energy) and so we write

Q̃(ω) = χ̃(ω)Ṽ (ω), (33.108)

where the response function χ̃(ω) is given for this circuit by

χ̃(ω) =
1

C−1 − iωR
. (33.109)

Hence χ̃′′(ω) is given by

χ̃′′(ω) =
ωR

C−2 + ω2R2
. (33.110)

At low frequency (ω � 1/RC, and since the capacitance will be small,
1/RC will be very high so that this is not a severe resistriction) we
have that χ̃′′(ω) → ωRC2. Thus the fluctuation–dissipation theorem
(eqn 33.103) gives

C̃QQ(ω) = 2kBT
χ̃′′(ω)

ω
= 2kBTRC

2. (33.111)

Because Q = CV for a capacitor, correlations in Q and V are related by

C̃V V (ω) =
C̃QQ(ω)

C2
, (33.112)
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and hence
C̃V V (ω) = 2kBTR. (33.113)

Equation 33.84 implies that

〈V 2〉 =
1

2π

∫ ∞

−∞
C̃V V (ω) dω, (33.114)

and hence if this integral is carried out, not over all frequencies, but
only in a small interval ∆f = ∆ω/(2π) about some frequency ±ω0 (see
Fig. 33.4),

〈V 2〉 = 2CV V (ω)∆f = 4kBTR∆f, (33.115)

in agreement with eqn 33.28.

CVV

Fig. 33.4 The voltage fluctuations
〈V 2〉 in a small frequency interval ∆f =
∆ω/(2π) centred on ±ω0 are due to
the part of the C̃V V (ω) shown by the
shaded boxes. One can imagine that
the noise is examined through a fil-
ter which only allows these frequen-
cies through, so that the integral in
eqn 33.114 only picks up the regions
shown by the shaded boxes.

We close this chapter by remarking that our treatment so far ap-
plies only to classical systems. The quantum mechanical version of the
fluctuation–dissipation theorem can be evaluated by replacing kBT , the
mean thermal energy in a classical system, by

�ω

(
n(ω) +

1

2

)
≡ �ω

2
coth

β�ω

2
, (33.116)

which is the mean energy in a quantum harmonic oscillator. In eqn 33.116,

n(ω) =
1

eβ�ω − 1
(33.117)

is the Bose factor, which is the mean number of quanta in the harmonic
oscillator at temperature T . Hence, in the quantum mechanical case,
eqn 33.103 is replaced by

C̃xx(ω) = �χ̃′′(ω) coth
β�ω

2
. (33.118)

At high temperature, coth(β�ω/2) → 2/(β�ω) and we recover eqn 33.103.
The quantum mechanical version of eqn 33.102 is

〈x2〉 =
�

2

∫ ∞

−∞
dω′ χ̃′′(ω′) coth

β�ω

2
. (33.119)
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Chapter summary

• The fluctuation–dissipation theorem implies that there is a direct
relation between the fluctuation properties of the thermal system
(e.g. the diffusion constant) and its linear response properties (e.g.
the mobility). If you’ve characterised one, you’ve characterised the
other.

• Fluctuations are more important for small systems than for large
systems, though are always dominant near the critical point of a
phase transition, even for large systems.

• Fluctuations in a variable x are given by

〈(∆x)2〉 = −kBT0/(∂
2A/∂x2).

• A response function is defined by

〈x(t)〉f =

∫ ∞

−∞
χ(t− t′)f(t′) dt′,

and causality implies the Kramers–Kronig relations.

• The Fourier transform of the correlation function gives the power
spectrum. This allows us to show that

〈x2〉 =
1

2π

∫ ∞

−∞
C̃xx(ω) dω.

• The fluctuation–dissipation theorem states that

C̃xx(ω) = 2kBT
χ̃′′(ω)

ω
,

and relates the autocorrelation function to the dissipations via the
imaginary part of the response function.
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Further reading

A good introduction to fluctuations and response functions can be found in Chaikin and Lubensky (1995). Another
useful source of information is chapter 12 of Landau and Lifshitz (1980).

Exercises

(33.1) If a system is held at fixed T , N and p, show that
the fluctuations in a variable x are governed by the
probability function

p(x) ∝ e−G(x)/kBT , (33.120)

where G(x) is the Gibbs function.

(33.2) A system has displacement x̃(ω) = χ̃(ω)f̃(ω) in
response to a force f̃(ω). Show that if the force is
given by f(t) = f0 cos ωt, the average power dissi-

pated is 1
2
f2
0 ωχ̃′′(ω).

(33.3) Repeat the derivation that led to eqn 33.72 (one
of the Kramers–Kronig relations), but this time
set y(−t) = y(t), so that ỹ(ω) is purely real. In
this case, prove the other Kramers–Kronig relation
which states that

χ̃′′(ω) = −P
Z ∞

−∞

dω′

π

χ̃′(ω′)

ω′ − ω
. (33.121)
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Much of the material in this book has been concerned with the proper-
ties of systems in thermodynamic equilibrium, in which the functions of
state are time-independent. However, we have also touched upon trans-
port properties (see Chapter 9) which deal with the flow of momentum,
heat or particles from one place to another. Such processes are usu-
ally irreversible and result in entropy production. In this chapter, we
will use the theory of fluctuations developed in Chapter 33 to derive a
general relation concerning different transport processes, and apply it
to thermoelectric effects. We conclude the chapter by discussing the
asymmetry of time.

34.1 Entropy production

Changes in the internal energy density u of a system are related to
entropy density s, number Nj of particles of type j and electric charge
density ρe by the combined first and second law of thermodynamics,
which states that

du = Tds+
∑

j

µjdNj + φdρ, (34.1)

where µj is the chemical potential of atoms of type j and φ is the elec-
tric potential. Rearranging this equation to make entropy changes the
subject gives

ds =
1

T
du−

∑
j

(µj

T

)
dNj − φ

T
dρe, (34.2)

and this is of the form
ds =

∑
k

φk dρk, (34.3)

where ρk is a generalized density and φk = ∂s/∂ρk is the corresponding
generalized potential. Possible values for these variables are listed in
Table 34.1. Each of the generalized densities are subject to a continuity
equation of the form

∂ρk

∂t
+ ∇ · Jk = 0, (34.4)

where Jk is a generalized current density. We can associate each of these
currents with a flow of entropy which itself measured by the entropy
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ρk φk ∇φk

energy u 1/T ∇(1/T )
number of particles of type j Nj µj/T ∇(µj/T )
charge density ρe −φe/T −∇(φe/T )

Table 34.1 Terms in eqn 34.3.

current density Js. This will be subject to its own continuity equation
which states that the local entropy production rate Σ is given by

Σ =
∂s

∂t
+ ∇ · Js. (34.5)

We can relate the entropy current density Js to the other current den-
sities via the following equation:

Js =
∑

k

φkJk. (34.6)

Inserting this into eqn 34.5 yields

Σ =
∑

k

φkρ̇k + ∇ ·
(∑

k

φkJk

)
. (34.7)

Now some straightforward vector calculus, and use of eqn 34.4, yields

∇ ·
(∑

k

φkJk

)
=

∑
k

∇φk · Jk +
∑

k

φk∇ · Jk

=
∑

k

∇φk · Jk +
∑

k

φk(−ρ̇k), (34.8)

and hence

Σ =
∑

k

∇φk · Jk. (34.9)

This equation relates the local entropy production rate Σ to the gener-
alized current densities Jk and the generalized force fields ∇φk.

34.2 The kinetic coefficients

Very often the response of a system to a force is to produce a steady
current. For example, a constant electric field applied to an electrical
conductor produces an electric current; a constant temperature gradient
applied to a thermal conductor produces a flow of heat. Assuming a
linear response, one can write in general that the generalized current
density J i is related to the generalized force fields by the equation

J i =
∑

j

Lij∇φj , (34.10)
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where the coefficients Lij are called kinetic coefficients.

Example 34.1

Recall the equation for heat flow (eqn 9.15):

J = −κ∇T. (34.11)

This can be cast into the form

Ju = Luu∇(1/T ), (34.12)

where Luu = κT 2.

Equation 34.10 implies that the local entropy production Σ is given
by

Σ =
∑
ij

∇φi Lij ∇φj . (34.13)

The second law of thermodynamics can be stated in the form that en-
tropy must increase globally. However, entropy can go down in one place
if it goes up at least as much somewhere else. Equation 34.5 relates
the entropy produced locally in a small region to the entropy which is
transported into or out of that region (perhaps by matter, charge, heat,
or some combination of these, being imported or exported). An even
stronger statement can be made by insisting that not only is the global
entropy change always positive but that so is the local equilibrium pro-
duction rate: Σ ≥ 0. Equation 34.13 then implies that Lij must be
positive-definite matrix (all its eigenvalues must be positive). A fur-
ther statement about Lij can be made which follows from Onsager’s
reciprocal relations, which state that

Lij = Lji. (34.14)

We will prove these relations, first derived by Lars Onsager (Fig. 34.1)
in 1929, in the following section.

Fig. 34.1 Lars Onsager (1903–1976).

34.3 Proof of the Onsager reciprocal
relations

Near an equilibrium state, we define the variable αk = ρk − ρeqm
k , which

measures the departure of the kth density variable from its equilibrium
value. The probability of the system having density fluctuations given
by α = (α1, α2, . . . αm) can be written as

P (α) ∝ e∆S/kB . (34.15)
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We assume that the probability P is suitably normalized, so that∫
P dα = 1. (34.16)

The entropy change for a fluctuation ∆S is a function of α which we can
express using a Taylor expansion in α. There are no linear terms since
we are measuring departures from equilibrium, where S is maximized,
and hence we write

∆S = −1

2

∑
ij

gijαiαj , (34.17)

where gij = (∂2∆S/∂αi∂αj)α=0. Thus we can write the logarithm of
the probability as

lnP =
∆S

kB
+ constant, (34.18)

and hence
∂lnP

∂αi
=

1

kB

∂∆S

∂αi
. (34.19)

The next part of the proof involves working out a couple of averages of
a fluctuation of one of the density variables with some other quantity.

(1) We begin by deriving an expression for 〈(∂S/∂αi)αj〉:〈
∂S

∂αi
αj

〉
= kB

〈
∂lnP

∂αi
αj

〉

= kB

∫
∂lnP

∂αi
αjP dα

= kB

∫
∂P

∂αi
αj dα (34.20)

= kB

(∫
dα′ [Pαj ]

∞
−∞ −

∫
∂αj

∂αi
P dα

)
.

In this equation, dα′ = dα1 · · · dαj−1dαj+1 · · · dαm, i.e. the prod-
uct of all the dαi except dαj . The term [Pαj ]

∞
∞ is zero because

P ∝ exp[− 1
2kB

∑
ij gijαiαj ] and hence goes to zero as αj → ±∞.

Using ∂αj/∂αi = δij , we can therefore show that〈
∂S

∂αi
αj

〉
= −kBδij . (34.21)

(2) We now derive an expression for 〈αiαj〉:
∂∆S

∂αi
= −

∑
k

gikαk, (34.22)

and hence ∑
k

gik〈αkαj〉 = −
〈
∂S

∂αi
αj

〉
= kBδij . (34.23)

Hence
〈αiαj〉 = kB(g−1)ij . (34.24)
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Example 34.2

Show that 〈∆S〉 = −mkB/2, explain the sign of the answer, and inter-
pret the answer in terms of the equipartition theorem.
Solution:

〈∆S〉 =

〈
−1

2

∑
ij

gijαiαj

〉
= −1

2

∑
ij

gij〈αiαj〉 = −kB

2

m∑
i=1

δii = −mkB

2
.

(34.25)
The equilibrium configuration, α = 0, corresponds to maximum entropy,
so 〈∆S〉 should be negative; a fluctuation corresponds to a statistically
less likely state. If the system has m degrees of freedom, then its mean
thermal energy is mkBT/2, which is equal to −T 〈∆S〉.

We are now in a position to work out some correlation functions of the
fluctuations. We now make the crucial assumption that any microscopic
process and its reverse process take place on average with the same
frequency. This is the principle of microscopic reversibility. This
implies that

〈αi(0)αj(t)〉 = 〈αi(0)αj(−t)〉
= 〈αi(t)αj(0)〉. (34.26)

Subtracting 〈αi(0)αj(0)〉 from both sides of eqn 34.26 yields

〈αi(0)αj(t)〉 − 〈αi(0)αj(0)〉 = 〈αi(t)αj(0)〉 − 〈αi(0)αj(0)〉. (34.27)

Dividing eqn 34.27 by t and factoring out common factors gives〈
αi(0)

[
αj(t) − αj(0)

t

]〉
=

〈[
αi(t) − αi(0)

t

]
αj(0)

〉
, (34.28)

and in the limit as t→ 0, this can be written

〈αiα̇j〉 = 〈α̇iαj〉. (34.29)

Now, assuming that the decay of fluctuations is governed by the same
laws as the macroscopic flows as they respond to generalized forces, so
that we can use the kinetic coefficients Lij to describe the fluctuations,
we have that

α̇ =
∑

k

Lik
∂S

∂αk
(34.30)

and hence substituting into eqn 34.29 yields〈
αi

∑
k

Ljk
∂S

∂αk

〉
=

〈∑
k

Lik
∂S

∂αk
αj

〉
, (34.31)
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which simplifies to∑
k

Ljk

〈
αi

∂S

∂αk

〉
=
∑

k

Lik

〈
∂S

∂αk
αj

〉
. (34.32)

Using the relation in eqn 34.21, we have that∑
k

Ljk(−kBδik) =
∑

k

Lik(−kBδjk) (34.33)

and hence we have the Onsager reciprocal relations:

Lji = Lij . (34.34)

34.4 Thermoelectricity

In this section we apply the Onsager reciprocal relations and the other
ideas developed in this chapter to the problem of thermoelectricity
which describes the relationship between flows of heat and electrical
current. It is not surprising that heat current and electrical currents
in metals should be related; both result from the flow of electrons and
electrons carry both charge and energy.

Consider two dissimilar metals A and B, with different work functions1 1The work function of a metal is the
minimum energy needed to remove an
electron from the Fermi level to a point
in the vacuum well away from the sur-
face.

and chemical potentials, whose energy levels are shown schematically
in Fig. 34.2(a). These two metals are connected together, as shown in
Fig. 34.2(b), and both held at the same temperature T . Because initially
µA �= µB, some electrons will diffuse from A and diffuse into B, resulting
in a small build up of positive charge on A and a small build up of
negative charge on B. This will lead to a small electric field across the
junction of A and B that will oppose any further electrons moving into
B. Once equilibrium is established, the chemical potential in A and B
must equalize and hence µA = µB, see Section 22.2.

Fig. 34.2 (a) Two dissimilar metals
with different work functions wA and
wB and chemical potentials µA = −wA

and µB = −wB. (b) Metals A and B,
held at the same temperature, are con-
nected together.

No voltage develops between the ends of the metals if they remain at
the same temperature, but if the ends of A and B are at different tem-
peratures, there will be a voltage difference. Electrons respond both to
an applied electric field E and a gradient in the chemical potential ∇µ,
the former producing a drift current and the latter a diffusion cur-
rent. Near the junction between A and B shown in Fig. 34.2(b), these
two currents coexist but are equal and opposite and therefore precisely
cancel in equilibrium, if A and B are held at the same temperature.
Thus a voltmeter responds not to the integrated electric field given by∫

E · dl (34.35)

around a circuit, but rather to ∫
E · dl, (34.36)

where

E = E +
1

e
∇µ (34.37)
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is the electromotive field, which combines the effects of the fields driv-
ing the drift and diffusion currents. We thus write the current densities
for charge and heat, Je and JQ, in terms of the electromotive field and
temperature gradient which drive them, in the following general way:

Je = LEEE + LET∇T, (34.38)

JQ = LTEE + LTT∇T. (34.39)

Here the kinetic coefficients LEE , LET , LTE and LTT are written using
the symbol L rather than L because we haven’t yet written them in
the form of eqn 34.10. To work out what these coefficients are, let us
examine some special cases:

• No temperature gradient:

If ∇T = 0, then we expect that

Je = σE, (34.40)

where σ is the electrical conductivity, and hence we identify LEE =
σ from eqn 34.38. In this case, the heat current density is given
by eqn 34.39 and hence

JQ = LTEE =
LTE
LEE

Je = ΠJe, (34.41)

where Π = LTE/LEE is known as the Peltier coefficient. (The
Peltier coefficient has dimensions of energy/charge, and so is mea-
sured in volts.) Thus, an electrical current is associated with a
heat current, and this is known as the Peltier effect.22J. C. A. Peltier (1785–1845) first ob-

served the effect in 1834.

Fig. 34.3 A junction between wires of
different metals, A and B, carrying an
electrical current has a discontinuous
jump in its heat current. This is the
Peltier effect.

J J

J J

Consider an electrical current Je flowing along a wire of metal A
and then via a junction to a wire of metal B, as shown in Fig. 34.3.
The electrical current must be the same in both wires, so the heat
current must exhibit a discontinuous jump at the junction. This
jump is given by (ΠA −ΠB)Je, and this result in the liberation of
heat

ΠABJe (34.42)

at the junction, where ΠAB = ΠA −ΠB. If ΠAB < 0 this results in
cooling, and this is the principle behind Peltier cooling in which
heat is removed from a region by putting it in thermal contact
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with a junction between dissimilar wires and passing a current
along the wires (see see Fig. 34.4). Of course, the heat removed
is simultaneously liberated elsewhere in the circuit, as shown in
Fig. 34.4. The Peltier heat flow is reversible and so if the electrical
currents are reversed, then so are the heat flows.

I

Fig. 34.4 In this circuit, ΠAB < 0,
so that for the current direction shown,
the junction on the right-hand side ab-
sorbs heat while the junction on the
left–hand side liberates heat.

• No electrical current:

If Je = 0, then
JQ = −κ∇T, (34.43)

where κ is the thermal conductivity. However, we also have an
electric field E given by

E = ε∇T (34.44)

where ε is the Seebeck coefficient3 or the thermopower (units

3T. J. Seebeck (1770–1831) discovered
this in 1821.

V K−1). Thus a thermal gradient is associated with an electric
field: this is called the Seebeck effect. Equation 34.38 and
eqn 34.44 imply that

ε = −LET

LEE
. (34.45)

A circuit which consists of a single material with a temperature
gradient around it would produce a voltage given by∮

E · dl = ε

∮
∇T · dl = 0. (34.46)

T

T

T

Fig. 34.5 Thermocouple circuit for
measuring the differences between ther-
moelectric voltages.

T T

TT

Fig. 34.6 Equivalent thermocouple cir-
cuit.

To observe the thermopower, one needs a circuit containing two
different metals: this is known as a thermocouple and such a
circuit is shown in Fig. 34.5. An equivalent circuit is shown in
Fig. 34.6. Thus the Seebeck e.m.f. (electromotive force) ∆φS mea-
sured by the voltmeter in the circuit in Fig. 34.6 is given by

∆φS = −
∫

E · dl

=

∫ T1

T0

εBdT +

∫ T2

T1

εAdT +

∫ T0

T2

εBdT

=

∫ T2

T1

(εA − εB)dT, (34.47)

and we write

εA − εB =
dφS

dT
. (34.48)

Example 34.3

Derive an expression for κ in terms of the kinetic coefficients.
Solution:

Substitution of eqn 34.45 into eqn 34.44 yields

E = −LET

LEE
∇T. (34.49)
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Putting this into eqn 34.39 implies that

JQ =

(LEELTT − LTELET

LEE

)
∇T, (34.50)

and hence comparison with eqn 34.43 yields

κ = −
[LEELTT − LTELET

LEE

]
. (34.51)

Putting eqns 34.38 and 34.39 into the form of eqn 34.10, we have

Je = LEE∇(−φ/T ) + LET∇(1/T ), (34.52)

JQ = LTE∇(−φ/T ) + LTT∇(1/T ), (34.53)

where

LEE = TLEE ,
LTE = TLTE ,
LET = −T 2LET ,

LTT = −T 2LTT . (34.54)

The Onsager reciprocal relation in this case thus implies that

LTE = LET , (34.55)

and hence LTE = −TLET , so that

Π = Tε. (34.56)

This yields
ΠAB = T (εA − εB) (34.57)

which is known as Thomson’s second relation.4 It is a very good4William Thomson, also known as Lord
Kelvin (1824–1907). Thomson’s proof
was, of course, not based on the On-
sager reciprocal relations and is some-
what suspect.

example of the power of Onsager’s approach: we have been able to relate
the Peltier and Seebeck coefficients on the basis of Onsager’s general
theorem concerning the symmetry of general kinetic coefficients.

There is one other thermoelectric effect which we wish to consider. If
the thermopower ε is temperature dependent, then there will even be
heat liberated by an electric current which flows in a single metal. This
heat is known as Thomson heat.5 An electrical current Je corresponds5Lord Kelvin again!

to a heat current JQ = ΠJe (by eqn 34.41). The heat liberated at a
particular point per second is therefore given by the divergence of JQ

and hence
∇ · JQ = ∇ · (εTJe), (34.58)

using eqn 34.56. If no charges build up, then Je is divergenceless and
hence

∇ · JQ = Je · ∇(εT ) = Je · ε∇T + Je · T∇ε. (34.59)
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Writing ∇ε = (dε/dT )∇T and using eqn 34.44, we have finally that

∇ · JQ = Je · E + τJe · ∇T, (34.60)

which is the sum of a resistive heating term (Je · E) and a thermal
gradient term (τJe · ∇T ). In this equation, the Thomson coefficient
τ is given by

τ = T
dε

dT
. (34.61)

The Thomson coefficient is the heat generated per second per unit cur-
rent per unit temperature gradient.

Equation 34.57 implies that

T
d

dT

(
ΠAB

T

)
= τA − τB, (34.62)

and this implies that

dΠAB

dT
+ εA − εB = τA − τB, (34.63)

which is known as Thomson’s first relation.

34.5 Time reversal and the arrow of time

The proof of the Onsager reciprocal relations rested upon the hypoth-
esis of microscopic reversibility. This makes some degree of sense since
molecular collisions and processes are based upon laws of motion which
are themselves symmetric under time reversal. The heat produced in
the Peltier effect considered in the previous section is reversible (one
has to simply reverse the current) and this adds to our feeling that we
are dealing with underlying reversible processes. But of course, that is
not the whole story. The second law of thermodynamics insists that en-
tropy never decreases and in fact increases in irreversible processes. This
presents us with a dilemma since to explain this we have to understand
why microscopic time-symmetric laws generate a Universe in which time
is definitely asymmetric: eggs break but do not unbreak; heat flows from
hot to cold and never the reverse; we remember the past but not the
future. In our Universe, +t is manifestly different from −t.

This problem afflicted Boltzmann when he tried to prove the sec-
ond law on the basis of classical mechanics and derived his famous H-
theorem, which showed how the Maxwell–Boltzmann distribution of
velocities in a gas would emerge as a function of time on the basis of
molecular collisions. One hypothesis which had gone into his proof was
the innocent looking principle of molecular chaos (the stoßzahlansatz)
which states that the velocities of molecules undergoing a collision are
statistically indistinguishable from those of any pair of molecules in the
gas selected at random. However, this cannot be right; Boltzmann’s
approach showed how molecules retain correlations in their motion fol-

lowing a collision and this ‘memory’ of the collision is progressively re-
distributed among the molecular velocities until they adopt the most
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likely Maxwell–Boltzmann distribution. However, because the under-
lying dynamics are time symmetric, before a collision molecules must
possess pre-collisional correlations, which are “harbingers of collisions
to come”.6 This makes a nonsense of the stoßzahlansatz.6This wonderful phrase is used by

Lockwood (2005). It seems more likely that the source of the time asymmetry is not in
the dynamics but in the boundary conditions. If we watch an irreversible
process, we are watching how a system prepared in a low-entropy state
evolves to a state of higher entropy. For example, in a Joule expansion,
it is the experimenter who prepares the two chambers appropriately in
a low-entropy state (by producing entropy elsewhere in the Universe,
pumping gas out from the second chamber). There is a boundary condi-
tion at the start, putting all the gas in one chamber in a non-equilibrium
state, but not at the end. This lopsided nature of the boundary con-
ditions results in asymmetric time evolution. Thus the operation of
the second law of thermodynamics in our Universe may come about be-
cause the Universe was prepared in a low-entropy state; in this view, the
boundary condition of the Universe is therefore the driving force for the
asymmetry in time. Or is it that it is something to do with the opera-
tion of the microscopic laws, which leads to the asymmetry in the flow of
time? Not perhaps as Boltzmann attempted, using classical mechanics,
but at the quantum mechanical (or possibly at the quantum-gravity7)7Wild speculations about quantum

gravity are possible since we have, at
present, no adequate theory of quan-
tum gravity.

level? These questions are far from being resolved. We are so familiar
with the arrow of time that we perhaps are not struck more often how
odd it is and how much it is out of alignment it is with our present
understanding of the reversible, microscopic laws of physics.

Chapter summary

• The local entropy production Σ is given by

Σ =
∑

k

∇φk · Jk =
∑
ij

∇φiLij∇φj ≥ 0

• The Onsager reciprocal relations state that Lij = Lji.

• The Peltier effect is the liberation of heat at a junction owing to
the flow of electrical current.

• The Seebeck effect is the development of a voltage in a circuit
containing a junction between two metals owing to the presence of
a temperature gradient between them.

• Onsager’s reciprocal relations rest on the principle of microscopic
reversibility. The arrow of time, which shows the direction in which
irreversible processes occur, may result from the asymmetry in the
boundary conditions applied to a system.
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Further reading

• A good introduction to non-equilibrium thermodynamics may be found in Kondepudi and Prigogine (1998),
Plischke and Bergersen (1989) and chapter 12 of Landau and Lifshitz (1980).

• The problem of the arrow of time is discussed in a highly readable and thought-provoking fashion in Lockwood
(2005).

Exercises

(34.1) If a system is held at fixed T , N and p, show that
the fluctuations in a variable x are governed by the
probability function

p(x) ∝ e−G(x)/kBT , (34.64)

where G(x) is the Gibbs function.

(34.2) For the thermoelectric problem considered in Sec-
tion 34.4, show that

LEE = Tσ, (34.65)

LET = T 2εσ, (34.66)

LTE = T 2εσ, (34.67)

LTT = κT 2 + ε2T 3σ. (34.68)

(34.3) At 0◦C the measured Peltier coefficient for a Cu–
Ni thermocouple is 5.08 mV. Hence estimate the
Seebeck coefficient at this temperature and com-
pare your answer with the measured value of
20.0 µV K−1.

(34.4) (a) Explain why the thermopower is a measure of
the entropy per carrier.

(b) Consider a classical gas of charged particles
and explain why the thermopower ε should
be of the order of kB/e = 87 µV K−1 and be
independent of temperature T .

(c) In a metal, the measured thermopower is
much less than 87 µV K−1 and decreases as
the metal is cooled. Give an argument for
why one might expect the thermopower to
behave as

ε ≈ kB

e

kBT

TF
, (34.69)

where TF is the Fermi temperature.

(d) In a semiconductor, the measured ther-
mopower is much larger than 87 µV K−1 and
increases as the metal is cooled. Give an ar-
gument for why one might expect the ther-
mopower to behave as

ε ≈ kB

e

Eg

2kBT
, (34.70)

where Eg is the energy gap of the semicon-
ductor.

(e) Since thermopower is a function of the en-
tropy of the carriers, the third law of thermo-
dynamics leads one to expect that it should
go to zero as T → 0. Is this a problem for
the semiconductor considered in (d)?
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In this chapter we apply some of the concepts of thermal physics de-
veloped earlier in this book to stellar astrophysics. Astrophysics is
the study of the physical properties of the Universe and the objects
therein. In this field, we make the fundamental assumption that the
laws of physics, including those governing the properties of atoms and
gravitational and electromagnetic fields, which are all largely obtained
from experiment on Earth, are valid throughout the entire Universe,
way beyond the confines of the Solar System where they have been well
tested. It is further assumed that the fundamental constants do not vary
in time and space.

The Universe contains a great many galaxies.1 Each of these galaxies1There are thought to be at least 1018

galaxies in the observable Universe. On
average, a galaxy might contain 1011

stars.

contain a great many stars which are born out of the condensation of the
denser gas in the interstellar medium2. Gravitational collapse pro-

2The interstellar medium is the dilute
gas, dust and plasma which exists be-
tween the stars within a galaxy.

duces extremely high temperatures permitting fusion to take place and
hence the radiation of energy. Stars live and evolve, seeming to follow the
laws of physics with impressive obedience, changing size, temperature
and luminosity.3 Ultimately stars die, some exploding as supernovae3Luminosity is a term used to mean en-

ergy radiated per unit time, i.e. power,
and has the units of watts. In astro-
physics, one often uses spectral lumi-
nosity (which is often what astrophysi-
cists mean when they say luminosity),
which is the power radiated per unit en-
ergy band or per wavelength interval or
per frequency interval, and so in the lat-
ter case have units W Hz−1.

and returning their mass (at least partially) to the Galactic4 interstellar

4The adjective Galactic pertains to our
own Galaxy, the Milky Way, while the
adjective galactic pertains to galaxies in
general.

medium.
The star about which we know the most is the Sun. It seems to

be a rather average star in our Galaxy, and some of its properties are
summarized in the following box. The first three properties are measured
while the remaining ones are model-dependent.

Solar quantities:

mass M	 1.99 × 1030 kg
radius R	 6.96 × 108 m
luminosity L	 3.83 × 1026 W
effective temperature Teff 5780 K
age t	 4.55 × 109 yr
central density ρc 1.45 × 105 kg m−3

central temperature Tc 15.6 × 106 K
central pressure pc 2.29 × 1016 Pa

Stellar astrophysics, the subject of this chapter, is a very interesting
field because using fairly simple physics, we can make predictions which
can be tested observationally. We will consider the main processes which
determine the properties of stars (Section 35.1 gravity, Section 35.2 nu-
clear reactions and Section 35.3.2 heat transfer) and, importantly, derive
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the main equations of stellar structure used to model stars. We will not,
however, address more complicated issues such as magnetic fields in stars
or detailed particle physics. In the following chapter, we will consider
what happens to stars at the ends of their lives.

35.1 Gravitational interaction

The fundamental force which causes stars to form and which produces
huge pressures and temperatures in the centre of stars is gravity. In this
section, we explore how the effect of gravity governs the behaviour of
stars.

35.1.1 Gravitational collapse and the Jeans
criterion

How do stars form in the first place? In order for a gas cloud to condense
into stars, the cloud must be sufficiently dense that attractive gravita-
tional forces predominate over the pressure (which is proportional to the
internal energy) otherwise the cloud would expand and disperse. The
critical condition for condensation, i.e. for a gas cloud to be gravita-
tionally bound, is that the total energy E must be less than zero. Now
E = U + Ω, where U is the kinetic energy and Ω is the gravitational
potential energy. To be gravitationally bound requires E < 0 and hence
−Ω > U . The gravitational potential energy is negative, and hence the
condition for condensation is

|Ω| > U. (35.1)

Now consider a spherical gas cloud of radius R and mass M which
is in thermal equilibrium at temperature T . The cloud consists of N
particles, each assumed to be of the same type and of mass m = M/N .
The gravitational potential energy of this cloud is given by

Ω = −f GM
2

R
, (35.2)

where G is the gravitational constant and f is a factor of order unity
which reflects the density profile within the cloud.5 For simplicity, we 5For a spherical cloud of uniform den-

sity, f = 3
5
. For a spherical shell, f = 1.will set f = 1 in what follows. The thermal kinetic energy U of the

cloud is found by assuming that each particle contributes 3
2kBT , so that

U =
3

2
NkBT. (35.3)

Thus making use of eqn 35.1, a gas cloud will collapse if its mass M
exceeds the Jeans mass6 MJ given by 6Sir James Jeans (1877–1946).

MJ =
3kBT

2Gm
R. (35.4)

Thus the Jeans mass is the minimum mass of a gas cloud that will col-
lapse under gravity. Increasing the temperature T causes the particles
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to move faster and thus makes it harder for the cloud to collapse; in-
creasing the mass m of each particle favours gravitational collapse. The
condition

M > MJ (35.5)

is known as the Jeans criterion. It is often helpful to write the Jeans
mass in terms of the density ρ of the cloud given by

ρ =
M

4
3πR

3
, (35.6)

assuming spherical symmetry. This can be rearranged to give

R =

(
3M

4πρ

) 1
3

, (35.7)

and hence the Jeans criterion can be written as

R > RJ =

(
9kBT

8πGmρ

)1/2

, (35.8)

where RJ is the Jeans length. Substitution of eqn 35.8 into eqn 35.4
yields another expression for the Jeans mass:

MJ =

(
3kBT

2Gm

)3/2(
3

4πρ

)1/2

. (35.9)

Equivalently, one may also write that a cloud of mass M will condense
if its average density exceeds

ρJ =
3

4πM2

[
3kBT

2Gm

]3

, (35.10)

where ρJ is known as the Jeans density.

Example 35.1

What is the Jeans density of a cloud composed of hydrogen atoms and
with total mass M	 at 10 K?
Solution:

Using eqn 35.10,

ρJ =
3

4πM2	

[
3kB × 10

2GmH

]3

≈ 5 × 10−17 kg m−3, (35.11)

which corresponds to about 3 × 1010 particles per cubic metre.
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35.1.2 Hydrostatic equilibrium

As we have seen, gravity is responsible for gas clouds condensing into
stars. It also contributes to the pressure inside a star. Consider a spher-
ical body of gas of mass M and radius R, in which the only forces acting
are due to gravity and internal pressure. The mass enclosed by a spher-
ical shell of radius r is

m(r) =

∫ r

0

ρ(r′)4πr′ 2dr′, (35.12)

where ρ(r) is the density of the star at radius r, and so is responsible
for a gravitational acceleration given by

g(r) =
Gm(r)

r2
. (35.13)

R

r
r

Fig. 35.1 Schematic illustration of a
star of mass M and total radius R.
Consider a small element at radius r
from the centre having area ∆A per-
pendicular to the radius. We denote
the pressure on the inner surface of the
element at radius r as p and that at
radius r + ∆r as p+ (dp/dr)∆r.

In equilibrium, this is balanced by the internal pressure p of the star.
Consider a small volume element at radius r extending to r + ∆r and
having cross-sectional area ∆A. The force on the element due to the
pressure either side is given by[

p(r) +
dp

dr
∆r

]
∆A− p(r)∆A =

dp

dr
∆r∆A. (35.14)

The gravitational attraction of the mass m(r) within radius r is equal
to g(r)ρ(r)∆r∆A = g(r)∆M . Since the mass of the element ∆M is
given by ρ(r)∆r∆A, the inward acceleration of any element of mass at
distance r from the centre due to gravity and pressure is

−d2r

dt2
= g(r) +

1

ρ(r)

dp

dr
. (35.15)

If the star is gravitationally stable it is said to be in hydrostatic
equilibrium and an elemental volume will undergo no acceleration to-
wards the centre of the star since the gravitational acceleration g(r) =
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Gm(r)/r2 will be balanced by the increased pressure on the inner sur-
face compared with that on the outer surface. If this is true for all r
then the left-hand side of eqn 35.15 will be zero, enabling us to rewrite
this in a form known as the equation of hydrostatic equilibrium.

dp

dr
= −Gm(r)ρ(r)

r2
. (35.16)

The equation of hydrostatic equilibrium is one of the fundamental
equations satisfied by static stellar structures.

35.1.3 The virial theorem

The virial theorem relates the average pressure (related to the internal
kinetic energy) needed to support a self-gravitating system, thus balanc-
ing the gravitational potential energy with the kinetic energy. To derive
this we first need to relate pressure to internal kinetic energy. Recall
from Section 11.3 that the adiabatic index γ is used to describe the re-
lation between the pressure and the volume of a gas during adiabatic
compression or expansion, i.e. when the internal energy changes solely
because of the work done on it. For such a process, pV γ is a constant,
and so we may write

0 = γ
dV

V
+

dp

p
. (35.17)

Hence we can write

d(pV ) = pdV + V dp = −(γ − 1)pdV. (35.18)

If we denote the internal energy due to translational kinetic energy by
dU then

dU = −pdV, (35.19)

and hence

dU =
1

γ − 1
d(pV ). (35.20)

If the adiabatic index is a constant (which is not the case if different
energy levels, for example rotational and vibrational, become excited)
then this equation simply integrates to

U =
pV

γ − 1
. (35.21)

Hence the internal energy density u = U/V is given by

u =
p

γ − 1
. (35.22)

Example 35.2

Use eqn 35.22 to derive the energy density of a gas of (i) non-relativistic
particles (γ = 5

3 ) and (ii) relativistic particles (γ = 4
3 ).
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Solution:

Straightforward substitution into eqn 35.22 yields

u =
3

2
p for γ = 5

3 , (35.23)

u = 3p for γ = 4
3 , (35.24)

in agreement with eqns 6.25 and 25.21.

The next part of the derivation of the virial theorem proceeds by
multiplying both sides of the hydrostatic equation (eqn 35.16) by 4πr3

and integrating with respect to r from r = 0 to r = R. This leads to∫ R

0

4πr3
dp

dr
dr = −

∫ R

0

Gm(r)ρ(r)

r
4πr2dr, (35.25)

which becomes

[
p(r)4πr3

]R
0
− 3

∫ R

0

p(r) 4πr2dr = −
∫ m=M

m=0

Gm(r)

r
dm. (35.26)

The first term on the left-hand side is zero, because the surface of a star
is defined to be at the radius where the pressure has fallen to zero. The
second term on the left-hand side is equal to −3〈p〉V , where V is the
star’s entire volume and 〈p〉 is the average pressure. The right-hand side
is the gravitational potential energy of the star, Ω, so eqn 35.26, which
came from the equation of hydrostatic equilibrium, leads us to

〈p〉V = −Ω

3
, (35.27)

which is a statement of the virial theorem. Equation 35.27 substituted
into eqn 35.21 [which implies that 〈p〉V = (γ − 1)U ] yields

3(γ − 1)U + Ω = 0, (35.28)

which is another statement of the virial theorem. The total energy E is
the sum of the potential energy Ω and the kinetic energy U , i.e.

E = U + Ω. (35.29)

Putting together eqns 35.28 and 35.29 gives

E = (4 − 3γ)U =
3γ − 4

3(γ − 1)
Ω. (35.30)

Example 35.3

Use eqns 35.28 and 35.30 to relate U , Ω and E for a gas of (i) non-
relativistic particles (γ = 5

3 ) and (ii) relativistic particles (γ = 4
3 ).
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Solution:

(i) For a gas of non-relativistic particles, we have (using γ = 5
3 in

eqns 35.28 and 35.30) that

2U + Ω = 0, (35.31)

and hence

E = −U =
Ω

2
. (35.32)

Since the kinetic energy U is positive, the total energy E is neg-
ative thus the system is bound. Moreover, this shows that if the
total energy E of a star decreases, this corresponds to a decrease in
the gravitational potential energy Ω, but an increase in the kinetic
energy U . Since U is directly related to the temperature T , we
conclude that a star has a ‘negative heat capacity’: as a star radi-
ates energy (E decreases), it contracts and heats up! This allows
the nuclear heating process to be, to some extent, self-regulating.
If a star loses energy from its surface, it contracts and heats up;
therefore nuclear burning can increase, leading to an expansion,
which cools the stellar core.

(ii) For a gas of relativistic particles, we have that (using γ = 4
3 in

eqns 35.28 and 35.30)
U + Ω = 0, (35.33)

and hence
E = 0. (35.34)

Because the total energy is zero, a gravitationally bound state is
not stable.

35.2 Nuclear reactions

The energy production in a star is dominated by nuclear reactions.
These reactions are fusion processes, in which two or more nuclei com-
bine and release energy. This is often called nuclear burning, though
note that it is not burning in the conventional sense (we normally use
the term burning to denote a chemical reaction with atmospheric oxy-
gen; here we are talking about nuclear fusion reactions). Young stars are
composed mainly of hydrogen, and the most important fusion reaction is
hydrogen burning via the so-called PP chain, the first part of which
is known as PP1 and is described in eqns 35.35. In these equations, 1H is
hydrogen, 2D is deuterium, γ is a photon and 3He and 4He are isotopes
of helium.

1H + 1H → 2D + e+ + ν;
2D + 1H → 3He + γ;

3He + 3He → 4He + 1H + 1H. (35.35)
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This process releases 26.5 MeV of energy (of which about 0.3 MeV is
carried away by the neutrino ν) by converting four 1H to one 4He. When
helium becomes sufficiently abundant in the star, it too can burn in
further cycles. Additional reactions can occur involving carbon and
nitrogen to produce oxygen, which catalyse a further helium–burning
reaction and is called the CNO cycle. This complex series of reactions,
and other such cycles which can produce elements as heavy as Fe, are
now quite well understood, and can be used to understand the observed
abundance of various chemical elements in the Universe, and to then
infer primordial abundances.

We will not examine the details of these reactions here, but suffice to
say that when hydrogen is transmuted into iron via various complicated
reaction pathways, the maximum possible energy release is equivalent
to about 0.8% of the converted mass. In other words, the mass defect
is 0.008. Hence the total energy available to the Sun can be estimated
as 0.008M	c2, leading to an estimated solar lifetime tlifetime

	 given by

tlifetime
	 ∼ 0.008M	c2

L	
∼ 1011 years. (35.36)

The current age of the Sun is estimated to be 4.55×109 years, and hence
the very rough estimate of the total solar lifetime is not obviously un-
realistic. In fact, the long lifetimes of stars can only be explained by
nuclear reactions.

35.3 Heat transfer

We have just seen that the release of nuclear energy is responsible for
much of the energy radiated from stars. Energy is also released (or
absorbed) owing to gravitational contraction (or expansion). A small
mass dm makes a contribution dL to the total luminosity L of a star
given by

dL = εdm, (35.37)

where ε is the total power released per unit mass by nuclear reactions
and gravity. For a spherically symmetric star, the luminosity dL(r) of a
thin shell of radius dr (and mass dm = 4πr2ρdr), and writing ε = ε(r),
is

dL(r)

dr
= 4πr2ρε(r). (35.38)

How the luminosity varies with radius depends on how the heat is trans-
ported to the surface of the star, either by photon diffusion or by con-
vection. We consider each of these in turn.

35.3.1 Heat transfer by photon diffusion

The passage of photons through a star towards its surface is a diffusive
process and is precisely analogous to thermal conductivity via the free
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electrons in a metal. As such, we may use eqn 9.14 to describe the radial
heat flux J(r)

J(r) = −κphoton

(
∂T

∂r

)
, (35.39)

where κphoton is the thermal conductivity (see Section 9.2) due to pho-
tons in the star. Treating the photons as a classical gas, we can use a
result from the kinetic theory of gases, eqn 9.18, to write

κphoton =
1

3
Cl〈c〉, (35.40)

where C here is the heat capacity of the photon gas per unit volume,
l is the mean free path7 for photons and 〈c〉 is the mean speed of the7We have used the symbol l for mean

free path in this section so as to keep
the symbol λ for wavelength.

particles in the ‘gas’, which here can be equated to the speed of light c.
The heat capacity per unit volume C may be obtained from the energy
density of a gas of photons in thermal equilibrium at temperature T ,
which is given by

u =
4σ

c
T 4 (35.41)

and from which we may derive the heat capacity per unit volume C =
du/dT as

C =
16σ

c
T 3. (35.42)

We next turn to the mean free path of the photons. This is determined
by any process which results in photons being absorbed or scattered.
Consider a beam of light with intensity Iλ at wavelength λ. The change
in intensity dIλ of this beam as it travels through the stellar material is
proportional to its intensity Iλ, the distance it has travelled ds, and the
density of the gas ρ. So we have

dIλ = −κλρIλds, (35.43)

where the minus sign above shows that the intensity decreases with
distance due to absorption. The constant κλ is called the absorption
coefficient or opacity. Equation 35.43 integrates to a dependence on
distance of the form Iλ(s) = Iλ(0)e−s/l where l = 1/(κλρ) is the mean
free path. Hence we obtain a new and useful expression for the thermal
conductivity of a gas of photons by substituting eqn 35.42 into eqn 35.40:

κ =
16

3

σT 3

κ(r)ρ(r)
. (35.44)

The total radiative flux at radius r is 4πr2J(r) and this is equal to L(r).
Hence using eqn 35.39 and 35.44, we can write

L(r) = −4πr2
16σ[T (r)]3

3κ(r)ρ(r)

dT

dr
. (35.45)

For many stars, the dominant heat transfer mechanism is radiative
diffusion, which crucially depends on the temperature gradient dT/dr.
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We can now summarize the main equations of stellar structure which we
have obtained so far.

Equations of stellar structure

dm(r)

dr
= 4πr2ρ(r) (35.12)

dp(r)

dr
= −Gm(r)ρ(r)

r2
(35.16)

dL(r)

dr
= 4πr2ρε(r) (35.38)

dT

dr
= − 3κ(r)ρ(r)L(r)

64πr2σ[T (r)]3
(35.45)

In these equations, the energy release due to nuclear reactions, ε(r), may
need to be corrected for a term which includes the release of gravitational
potential energy. Under certain circumstances, this term may in fact be
dominant.8 These equations ignore convection, which we will consider 8One also has to consider the heat ca-

pacity of the stellar material whenever
the stellar structure changes.

in the following section.

35.3.2 Heat transfer by convection

If the temperature gradient exceeds a certain critical value then the heat
transfer in a star is governed by convection. The following analysis was
first produced by Schwarzschild9 in 1906. 9Karl Schwarzschild (1873–1916).

Consider a parcel of stellar material at radius r having initial values
of density and pressure ρ∗(r) and p∗(r) respectively. The parcel subse-
quently rises by a distance dr through ambient material of density and
pressure ρ(r) and p(r). Initially the parcel is in pressure equilibrium
with its surroundings and so p∗(r) = p(r); it initially has the same den-
sity as its surroundings, and hence ρ∗(r) = ρ(r). We will assume that
the parcel rises adiabatically, and hence p∗ρ

−γ
∗ is constant10 where γ is 10This follows from pV γ being con-

stant; see eqn 12.15.the adiabatic index. The parcel will be buoyant and will continue to rise
if its density is lower than that of its surroundings (see Fig. 35.2), i.e.
convection is possible if p p

Fig. 35.2 A parcel of stellar material
(of density ρ∗) will rise in its surround-
ings (density ρ) if ρ∗ < ρ. This is the
condition for convection to occur.

ρ∗ < ρ, (35.46)

which implies that
dρ∗
dr

<
dρ

dr
. (35.47)

Because the parcel rises adiabatically, the constancy of p∗ρ
−γ
∗ implies

that
1

p∗
dp∗
dr

=
γ

ρ∗
dρ∗
dr

. (35.48)

We can treat the ambient material as an ideal gas (so that p ∝ ρT ; see
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eqn 6.18) and hence
1

p

dp

dr
=

1

ρ

dρ

dr
+

1

T

dT

dr
. (35.49)

Substituting eqns 35.48 and 35.49 into eqn 35.47 leads to

1

γ

ρ∗
p∗

dp∗
dr

<
ρ

p

dp

dr
− ρ

T

dT

dr
. (35.50)

Since pressure equilibration happens very rapidly, we can assume that
p(r) = p∗(r). Moreover, ρ∗ ≈ ρ to first order, and hence(

1

γ
− 1

)
dp

dr
< − p

T

dT

dr
, (35.51)

and thus
dT

dr
<

(
1 − 1

γ

)
T

p

dp

dr
(35.52)

is the condition for convection to occur. In fact, both temperature and
pressure decrease with increasing distance from the centre in a star;
hence both the temperature and pressure gradients are negative. Thus,
it is more convenient to write the condition for convection to occur as∣∣∣∣dTdr

∣∣∣∣ >
(

1 − 1

γ

)
T

p

∣∣∣∣dpdr
∣∣∣∣ . (35.53)

In this equation, the pressure gradient is governed by hydrostatic equi-
librium, which we met in eqn 35.16. This equation shows that convection
will occur if the temperature gradient is very large, or because γ becomes
close to 1 (which makes the right-hand side of the equation small) and
occurs when a gas becomes partially ionized (see Exercise 35.5).

35.3.3 Scaling relations

To find the detailed pressure and temperature dependences inside a star
requires one to simultaneously solve eqns 35.12, 35.16, 35.38 and 35.45
(these are tabulated in the box at the end of Section 35.3.1) with a
realistic form of the opacity κ(r). This is very complicated and has to be
performed numerically. However, we can gain considerable insight into
general trends by deriving scaling relations. To do this, we assume
that the principle of homology applies, which says that if a star of total
mass M expands or contracts, its physical properties change by the same
factor at all radii. This means that the radial profiles as a function of
the fractional mass is the same for all stars, the only difference being a
constant factor which depends on the mass M . For example, this implies
that a pressure interval dp scales in exactly the same way as the central
pressure pc, and that the density profile ρ(r) scales in the same way
as the mean density ρ. The following example demonstrates the use of
the principle of homology in deriving scaling relations for various stellar
properties.
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Example 35.4

Using the principle of homology for a star of total mass M and radius
R, show that (a) p(r) ∝ R−4 and (b) T (r) ∝ R−1.
Solution:

(a) The equation for hydrostatic equilibrium, eqn 35.16, states that

dp

dr
=
Gm(r)ρ(r)

r2
, (35.54)

so using ρ ∝MR−3 and writing dp/dr = pc/R, we deduce that

pc

R
∝M2R−5. (35.55)

Equation 35.55 means that pc ∝ M2R−4, and using the principle
of homology,

p(r) ∝M2R−4 (35.56)

(b) We next consider a relationship for scaling the temperature through-
out a star. Our starting point this time is the ideal gas law, which
we met in eqn 6.18, from which we may write the following:

T (r) ∝ p(r)

ρ(r)
. (35.57)

Using ρ ∝MR−3 and eqn 35.56, we have

T (r) ∝MR−1. (35.58)

Hence as the star shrinks, its central temperature increases. Note
that this does not give information on the surface temperature
T (R), since this depends on the precise form of T (r).

For a low–mass star, the opacity κ(r) increases with density and de-
creases with temperature roughly according to

κ(r) ∝ ρ(r)T (r)−3.5, (35.59)

which is known as Kramers opacity.11 In this case, scaling yields (via 11H. A. Kramers (1894–1952).

ρ ∝MR−3 and eqn 35.58)

κ(r) ∝M−2.5R0.5. (35.60)

For a very massive star, in which electron scattering dominates the opac-
ity, κ(r) is a constant.
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Example 35.5

Determine the scaling of the luminosity L with M and R for (a) a low–
mass star and (b) a high–mass star.
Solution: By the principle of homology, a temperature increment dT
scales in the same way as T , which eqn 35.58 gives as T (r) ∝MR−1. An
increment in radius, however, scales with radius, i.e. dR ∝ R. Therefore
the temperature gradient follows dT/dr ∝MR−1/R, giving

dT

dr
∝MR−2. (35.61)

Equation 35.45 becomes

L(r)

r2
∝ − T (r)3

ρ(r)κ(r)

dT

dr
, (35.62)

and hence in case (a), for which κ(r) ∝ ρ(r)T (r)−3.5, we find

L(r) ∝ M5.5

R0.5
. (35.63)

The assumption of homology means that if the luminosity at any radius
r scales as M5.5R−0.5, then the surface luminosity scales in this way, so
we may write

L ∝ M5.5

R0.5
. (35.64)

For case (b), since κ(r) is a constant, we find L(r) ∝M3 and hence

L ∝M3. (35.65)

The Hertzsprung–Russell diagram12 is a plot of the luminosity of12Ejnar Hertzsprung 1873–1967, Henry
Norris Russell 1877–1957. a collection of stars against its effective surface temperature Teff , where

the latter quantity is obtained by measuring the colour of a star, and
hence the wavelength of its peak emission which is inversely proportional
to Teff by Wien’s law. Fig 35.3 shows a Hertzsprung–Russell diagram
for a selection of stars in our Galaxy. The most striking feature of
this diagram is the main sequence, which represents stars which are
burning mainly hydrogen; this is how almost all stars spend most of
their ‘active’ life. The correlation between L and Teff occurs because
both quantities depend on the star’s mass. Empirically it is found that,
for main sequence stars, L ∝ Ma, where a is a positive constant which
takes a value of about 3.5 (which is intermediate between the value
of 5.5 for low–mass stars and 3 for massive stars which we found in
Example 35.5). Note that the lifetime of a star must be proportional to
M/L (since the total mass M measures how much ‘fuel’ is ‘on board’)
and hence is proportional to M1−a. Hence more massive stars burn up
faster than less massive stars.
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L
L

Fig. 35.3 A schematic Hertzsprung–
Russell diagram (image courtesy of the
Open University).

The Hertzsprung-Russell diagram in Fig. 35.3 also shows various red
giants, which are stars that have exhausted their supply of hydrogen
in their cores. Red giants are very luminous due to a very hot inert
helium core (far hotter than in a main-sequence star) which causes the
hydrogen shell around it (which undergoes nuclear fusion) to greatly
expand; the surface is very large and cooler, leading to a lower surface
temperature. Eventually, the temperature in the helium core rises so
high that beryllium and carbon can be formed; the outer part of the core
can be ejected leading to the formation of a nebula, and the remaining
core can collapse to form a white dwarf. White dwarfs, which are not
very luminous but have a high surface temperature, will be described in
the following chapter. It is expected that our own Sun will eventually
pass through a red–giant phase, the core of which will ultimately become
a white dwarf.
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Chapter summary

• A gas cloud will condense if its density is below the Jeans density.

• The equation of hydrostatic equilibrium is

dp(r)

dr
= −Gm(r)ρ(r)

r2
.

• The luminosity obeys

dL(r)

dr
= 4πr2ρε(r).

• The temperature profile inside a star obeys

dT

dr
= − 3κ(r)ρ(r)L(r)

64πr2σ[T (r)]3
.

• The virial theorem states that

〈p〉V = −Ω

3
and 3(γ − 1)U + Ω = 0.

Further reading

Recommended texts on stellar physics include Binney & Merrifield (1998), Prialnik (2000) Carroll & Ostlie (1996)
and Zeilik & Gregory (1998).

Exercises

(35.1) Estimate the number of protons in the Sun.

(35.2) Find the critical density for condensation of a
cloud of molecular hydrogen gas of total mass
1000M� at 20 K, expressing your answer in num-
ber of molecules per cubic metre. How would this
answer change if (a) the mass of the cloud was only
one solar mass, (b) the temperature was 100 K?

(35.3) Assume that the density of baryonic matter in the
Universe is 3×10−27 kg m−3 and that the distance
to the edge of the Universe is given by cτ where τ
is the age of the Universe, 13 × 109 years and c is
the speed of light. Given that a typical galaxy has
a mass 1011M�, estimate the number of galaxies

in the observable Universe. Estimate how many
protons there are in the observable Universe, stat-
ing all your assumptions.

(35.4) Show that for a uniform density cloud in eqn 35.2,
f = 3/5.

(35.5) Consider a gas consisting of neutral hydrogen
atoms with number density n0, protons of num-
ber density n+, and electrons with number density
ne = n+. The ionization potential is χ. Find the
adiabatic index γ.

(35.6) Show that for low–mass stars, the luminosity L
scales with the effective surface temperature Teff

and mass M according to L ∝ M11/5T
4/5
eff .
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When a star is near the end of its lifetime, and all of its fuel is used up,
there is no longer enough outward pressure due to radiation to resist the
inward pull of gravity and the star starts to collapse again. However,
there is another source of internal pressure. The electrons inside a star,
being fermions, are subject to the Pauli exclusion principle and take
unkindly to being squashed into a small space. They produce an outward
electron degeneracy pressure which we calculate in the following
section. This concept leads to white dwarfs (Section 36.2) and, for the
case of neutron degeneracy pressure, neutron stars (Section 36.3). More
massive stars can turn into black holes (Section 36.4). We consider how
mass can accrete onto such objects in Section 36.5 and conclude the
chapter by considering the entropy of a black hole in Section 36.6.

36.1 Electron degeneracy pressure

Using the results from Chapter 30 concerning fermion gases, we can
write the Fermi momentum pF as

pF = �(3π2n)1/3, (36.1)

where n is the number density of electrons, so that equivalently n can
be written as

n =
1

3π2

(pF

�

)3

. (36.2)

If we assume that the electrons behave non-relativistically, the Fermi
energy is

EF =
p2
F

2me
, (36.3)

and the average internal energy density u is

u =
3

5
nEF =

3�
2

10me
(3π2)2/3n5/3. (36.4)

This gives an expression for the electron degeneracy pressure pelectron

(using eqn 6.25) as

pelectron =
2

3
u =

�
2

5me
(3π2)2/3n5/3. (36.5)

We can relate the number density of electrons, n, to the density ρ of the
star by the following argument. If the star contains nuclei with atomic
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number Z and mass number A, each nucleus has mass Amp and positive
charge +Ze (where −e is the charge of an electron). For charge balance,
for every nucleus there must be Z electrons. Hence, by ignoring the
mass of the electrons themselves (which is much less than the mass of
the nuclei), n is given byNote that our expression for the elec-

tron degeneracy pressure is inversely
proportional to the electron mass me.
This is why we have worried about
electron degeneracy pressure, and not
proton or neutron degeneracy pressure,
since the pressure produced by neu-
trons and protons is much smaller be-
cause they are more massive.

n ≈ Zρ

Amp
. (36.6)

Putting this into eqn 36.5, we find that the electron degeneracy pressure
pelectron ∝ ρ5/3.

This outward electron degeneracy pressure must balance the inward
pressure due to the gravitational force. This pressure, which we will here
denote by pgrav, is related by eqn 35.27 to the gravitational potential
energy Ω, which is given by

Ω = −3GM2

5R
, (36.7)

so that

pgrav =
Ω

3V
= −G

5

(
4π

3

)1/3

M2/3ρ4/3, (36.8)

where we have used ρ = M/V and R3 = 3M/(4πρ) to obtain the final
result.

Note the important results that, for non-relativistic electrons:

• The outward pressure is pelectron ∝ ρ5/3.

• The inward pressure is pgrav ∝ ρ4/3.

This leads to a stable situation since, if a star supported only by elec-
tron degeneracy pressure begins to shrink so that ρ begins to increase,
the outward pressure pelectron increases faster than pgrav, producing an
outward restoring force.

Example 36.1

What is the condition for balancing pelectron and pgrav?
Solution:

We set
pelectron = pgrav, (36.9)

and using eqns 36.5 and 36.8 this implies that

ρ =
4G3M2m3

e

27π3�6

(
Amp

Z

)5

. (36.10)
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36.2 White dwarfs

A star supported from further collapse only by electron degeneracy pres-
sure is called a white dwarf1 and is the fate of many stars once they 1White dwarfs are called dwarfs be-

cause they are small and white because
they are hot and luminous.

have exhausted their nuclear fuel. Equation 36.10 shows that

ρ ∝M2, (36.11)

which together with ρ ∝M/R3 implies that

R ∝M−1/3. (36.12)

This implies that the radius of a white dwarf decreases as the mass
increases.

Example 36.2

What is the electron degeneracy pressure for relativistic electrons?
Solution:

The Fermi energy is now
EF = pFc, (36.13)

and the average internal energy density is

u =
3

4
nEF =

3c�

4
(3π2)1/3n4/3. (36.14)

The pressure pelectron now follows from eqn 25.21 and is

p =
u

3
=
c�

4
(3π2)1/3n4/3. (36.15)

Note the important result that, for relativistic electrons:

• The outward pressure is pelectron ∝ ρ4/3.

• The inward pressure is pgrav ∝ ρ4/3.

This leads to a unstable situation, since now if a star begins to shrink,
so that ρ begins to increase, the outward pressure pelectron increases at
exactly the same rate as pgrav. Electron degeneracy pressure cannot halt
further collapse.

We can estimate the mass above which the electrons in a white dwarf
will behave relativistically. This will occur when

pF � mec, (36.16)

and hence when

n �
1

3π2

(mec

�

)3

, (36.17)
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or equivalently

ρ �

(
Amp

Z

)
1

3π2

(mec

�

)3

. (36.18)

Substituting in eqn 36.10 for ρ in this equation, and then rearranging,
yields

M �

(
Z

Amp

)2
3
√
π

2

(
�c

G

)3/2

≈ 1.2M	, (36.19)

assuming that Z/A = 0.5 (appropriate for hydrogen). A more exact
treatment leads to an estimate around 1.4M	. This is known as the
Chandrasekhar limit2, and is the mass above which a white dwarf is2Subrahmanyan Chandrasekhar 1910–

1995 no longer stable. Above the Chandrasekhar limit, the electron degener-
acy pressure is no longer sufficient to support the star against gravita-
tional collapse.

Fig. 36.1 Sirius is the brightest star
in the night sky, but is actually a bi-
nary star. What you see with the naked
eye is the bright normal star ‘Sirius A’,
but the small star in orbit around it,
known as ‘Sirius B’ (discovered by Al-
van G. Clark in 1862), is a white dwarf.
Because a white dwarf is so dense, it
is very hot and can emit X-rays. The
X-ray image shown in the figure was
taken with the High Resolution Cam-
era on the Chandra satellite. In this
X-ray image the white dwarf Sirius B is
much brighter than Sirius A. The bright
‘spokes’ in the image are produced by
X-rays scattered by the support struc-
ture of a diffraction grating which was
in the optical path for this observation.
(Image courtesy of NASA.)

White dwarfs are fairly common and it is believed that most small and
medium-size stars will end up in this state, often after going through a
red-giant phase. The first-discovered white dwarf was Sirius B, the so-
called dark companion of Sirius A (the brightest star visible in the night
sky, to be found in the costellation of Canis Major), and which is shown
in an X-ray image in Fig. 36.1. Though Sirius B is much less bright
in the visible region of the spectrum, it is a stronger emitter of X-rays
because of its high temperature and thus appears as the brighter object
in the X-ray image.

36.3 Neutron stars

Once a star is more massive than about 1.4M	, electrons behave rela-
tivistically and cannot prevent further collapse. However, the star will
contain neutrons and these will still be non-relativistic since the neu-
tron mass is larger than the electron mass. Neutrons are fermions and
their pressure, albeit lower than the electron pressure below the Chan-
drasekhar limit, will follow ρ5/3 and therefore can balance the inward
gravitational pressure. Free neutrons decay with a mean lifetime of
about 15 minutes, but in a star one has to consider the equilibrium

n � p+ + e− + νe. (36.20)

Because the electrons are relativistic, their Fermi energy is proportional
to pF ∝ n1/3, while the neutrons are non-relativistic and so their Fermi
energy is proportional to p2

F ∝ n2/3. Thus at high density, an equi-
librium can be established in the reaction in eqn 36.20. This implies
that the Fermi momentum of the electrons is much smaller than that of
the neutrons, and hence the number density of electrons will be much
smaller than that of the neutrons. This moves the equilibrium towards
the left-hand side of eqn 36.20.

A compact object composed mainly of neutrons is called a neutron
star. The first observational evidence of such an object came from
the discovery of pulsars by Jocelyn Bell Burnell in 1967. These were
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soon identified as rapidly rotating neutron stars which emit beams of
radiation from their north and south magnetic poles. If their axis of
rotation is not aligned with the poles, then lighthouse-type sweeping
beams are produced as they rotate. When these intersect with the line
of sight of an observer, pulses of radiation with a regular frequency are
seen. The physical mechanism by which the radiation is emitted from
pulsars is currently the subject of active research.

Neutron stars are thought to form from the collapsed remnant of a
very massive star after a supernova explosion. Even though the mass
of a neutron star is a few solar masses, they are very compact, having
radii in the range 10–20 km (see Exercise 36.3). One such neutron star
is found at the centre of the Crab Nebula, in the constellation of Taurus.
This object is 6500 light years from us and is the remnant of a supernova
explosion which was was recorded by Chinese and Arab astronomers in
1054 as being visible during daylight for over three weeks. The neutron
star at the centre currently rotates at a rate of thirty times per second.

Fig. 36.2 The Crab Nebula, as seen
by the VLT telescope in Paranal, Chile.
At the centre of the nebula is a neutron
star. (Figure courtesy European South-
ern Observatory.)



418 Compact objects

Example 36.3

Estimate the minimum rotation period τ of a pulsar of radius R and
mass M .
Solution:

For a neutron star rotating at ω = 2π/τ , the gravitational force at the
equator GM/R2 must be bigger than the centrifugal force ω2R, so that

τ = 2π

√
R3

GM
. (36.21)

By analogy with a white dwarf, the mass M of a neutron star follows
M ∝ R−1/3, so that more massive neutron stars are smaller than lighter
ones. When the mass of a neutron star becomes very large, the neutrons
behave relativistically and the neutron star becomes unstable.

Example 36.4

Above what mass will a neutron star become unstable?
Solution:

The high gravitational fields and compact nature of neutron stars mean
that we really ought to include the effects of general relativity and the
strong nuclear interactions. However, ignoring these, we can make an
estimate on the basis that the neutron star will become unstable when
the neutrons themselves become relativistic. By analogy with eqn 36.19,
and taking Z/A = 1, we have the maximum mass3 as3Including general relativity reduces

the maximum mass to about 0.7M�,
but including a more realistic equation
of state raises the maximum mass up
again, to somewhere around 2–3M�.

M �
3
√
π

2m2
p

(
�c

G

)3/2

≈ 5M	. (36.22)

36.4 Black holes

If a neutron star undergoes gravitational collapse, there is no other pres-
sure to balance the gravitational attraction and the gravitational collapse
of the star is total. The result is a black hole. To treat black holes
properly requires general relativity, but we can derive a few results about
them using simple arguments. The escape velocity vesc at the surface of
a star can be obtained by equating kinetic energy 1

2mv
2
esc to the magni-

tude of the gravitational potential energy GMm/R so that

vesc =

√
2GM

R
. (36.23)
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For a black hole of mass M , the escape velocity reaches the speed of
light, c, at the Schwarzschild radius4 RS given by 4Karl Schwarzschild 1873-1916

RS =
2GM

c2
. (36.24)

This result seems to imply that photons from a black hole cannot escape
and the black hole appears black to an observer. Actually this is not
quite true for two reasons, one practical and one esoteric.

(1) Matter falling into a black hole is ripped apart by the enormous
gravitational tidal forces, well before it enters the event horizon5 5An event horizon is a mathematical,

rather than physical, surface surround-
ing a black hole within which the escape
velocity for a particle exceeds the speed
of light — making escape impossible.

at the Schwarzschild radius. This results in powerful emission of
X-rays and radiation at other wavelengths. Supermassive black
holes at the centres of certain galaxies, the most luminous active
galactic nuclei having masses � 108M	, are responsible for the
most powerful sustained electromagnetic radiation in the Universe.

(2) Even neglecting this powerful observed emission, there is believed
to be weak emission of radiation from black holes due to quantum
fluctuations close to the event horizon. This Hawking radiation
can be thought of as resulting from vacuum fluctuations which
produce particle–antiparticle pairs in which one half of the virtual
pair falls into the black hole and the other half escapes. Because it
emits energy, a black hole must have a temperature. The Hawk-
ing temperature TH of a black hole of mass M is given by

kBTH =
�c3

8πGM
, (36.25)

so that as the black hole loses energy owing to Hawking radiation
it becomes hotter. It also loses mass and this is termed black
hole evaporation. If we ignore all other processes, the lifetime
of a black hole can be estimated using

dM

dt
c2 = −4πR2

SσT
4
H, (36.26)

which leads to a lifetime which is proportional to M3. Thus small
black holes evaporate due to Hawking radiation much faster than
very massive ones.

36.5 Accretion

Black holes and neutron stars increase their mass as matter falls on to
them. There is, however, a maximum rate of this accretion of mass
onto any compact object. This occurs because the higher the rate of
accretion, the greater the luminosity due to the infalling matter, and
hence a higher outward radiation flux. Therefore the radiation pressure
increases, pushing outwards on any further matter attempting to fall
inwards and accrete. To analyse this situation, consider a piece of matter
accreting onto a star at radius R. This piece of matter has density ρ,
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and volume dAdR. The gravitational force dragging it towards the star
is

−GM
R2

ρdAdR. (36.27)

However, the radiation from the luminosity L of the stellar object pro-
duces a radiation pressure on the falling matter which results in an
outward force equal to

L

4πR2c
dA× κρdR, (36.28)

where the factor κρdR is the fraction of radiant energy absorbed in the
matter. The piece of matter will be able to accrete onto the star if the
gravitational force dominates, so that

GM

R2
ρdAdR >

L

4πR2c
dA× κρdR, (36.29)

so that

L < Ledd =
4πGMc

κ
, (36.30)

where Ledd is the Eddington luminosity6. If the luminosity L is6Arthur Stanley Eddington 1882-1944

entirely produced by accreting matter, then L = GMṀ/R, so that
there is a maximum rate of accretion given by

Ṁedd =
4πcR

κ
. (36.31)

This assumes spherically symmetric accretion and luminosity. Many
compact objects actually accrete mass at a rate above the Eddington
limit given by eqn 36.31, by accreting near the object’s equator but
radiating photons from the object’s polar regions.

36.6 Black holes and entropy

In this section we consider the entropy of black holes. If we ignore the
quantum mechanical Hawking radiation, the mass of a black hole can
only increase since mass can enter but not leave. This means that the
event horizon expands and the area A of the horizon, given by 4πR2

S,
only increases. It turns out that the area of an event horizon can be
associated with its entropy S according to

S = kB
A

4l2P
, (36.32)

where lP = (G�/c3)1/2 is the Planck length, a result obtained by
Hawking and Bekenstein.7 The entropy (and hence the area) of a black7The presence of a factor � belies the

fact that this is a classical result. En-
tropy of even classical systems is essen-
tially a count over states, and the un-
derlying states are quantum in nature.

hole increases in all classical processes, as it should according to the
second law of thermodynamics. Since all information concerning matter
is lost when it falls into a black hole, the entropy of a black hole can
be thought of as a large reservoir of missing information. Information
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can be measured in bits, and relating information to entropy (see Chap-
ter 15) implies that for a black hole, one bit corresponds to four Planck
areas (where the Planck area is l2P). This is indicated schematically in
Fig. 36.3.

The entropy of the black hole measures the uncertainty concerning
which of its internal configurations are realized. We can speculate that
a particular black hole may have been formed from a collapsing neu-
tron star, the collapse of a normal star, or (somewhat improbably) the
collapse of a giant cosmic spaghetti monster: we have no way of telling
which, because all of this information has become completely inaccessi-

ble to us and all we can measure is the black hole’s mass, charge and
angular momentum. Information about the black hole’s past history or
its current chemical composition is hidden from our eyes.

As the mass M of a black hole increases, so too does RS and hence
so does S. Therefore the maximal limit of entropy (and hence informa-
tion) for any ordinary region of space is directly proportional not to the
region’s volume, but to its area. This is a counterexample to the usual
rule that entropy is an extensive property, being proportional to volume.
Although the entropy of a black hole increases in all classical processes,
it decreases in the quantum mechanical black hole evaporation due to
Hawking radiation. Finding out what has happened to the information
in black hole evaporation, and whether information can ever escape from
a black hole, is a current conundrum in black hole physics.

Fig. 36.3 The entropy of a black hole
is proportional to its area A. This cor-
responds to a quantity of information
such that one bit is ‘stored’ in four
Planck areas across the surface of the
black hole.

It is useful to consider what happens when a body containing ordi-
nary entropy falls into a black hole. The ordinary body has entropy for
the usual reasons, namely that it can exist in a wide variety of different
configurations and its entropy expresses our uncertainty in knowledge of
its precise configuration. All that entropy seems at first sight to have
been lost when the body falls into the black hole, since it can now only
exist in one single configuration: the state of being annihilated! It there-
fore appears that the entropy of the Universe has gone down. However,
the increase in mass of the black hole leads to an increase in the black
hole’s area and hence in its entropy. It turns out that this more than
compensates for any entropy apparently ‘lost’ by matter falling into the
black hole. This motivates Bekenstein’s generalized second law of ther-
modynamics, which states that the sum of the usual entropy of matter
in the Universe plus the entropy of the black holes never decreases.

36.7 Life, the Universe and Entropy

We often hear it said that we receive our energy from the Sun. This
is true, but though Earth receives about 1.5×1017 W of energy, mainly
in ultraviolet and visible photons (radiation corresponding to the tem-
perature on the surface of the Sun), the planet ultimately radiates it
again as infrared photons (radiation corresponding to the temperature
in Earth’s atmosphere8). If we did not do this, our planet would get 8See Chapter 37.

progressively warmer and warmer and so for the conditions on Earth
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to be approximately time independent, we require that the total solar
energy arriving at Earth must balance the total energy leaving Earth.
The crucial point is that the frequency of radiation coming in is higher
than that going out; a visible or ultraviolet photon thus has more en-
ergy than an infrared photon. Thus fewer photons arrive than leave.
The entropy per photon is a constant, independent of frequency, so that
by having fewer high–energy photons coming in and a larger number of
lower-energy photons leaving, the incoming energy is low-entropy energy
while the energy that leaves is high entropy. Thus the Sun is, for planet
Earth, a convenient low-entropy energy source and the planet benefits
from this incoming flux of low-entropy energy. This allows acorns to
grow into oak trees, a process which in itself corresponds to a decrease
in entropy but which can occur because a greater increase of entropy
occurs elsewhere. When we digest food, and our body builds new cells
and tissue, we are extracting some low-entropy energy from the plant
and animal matter which we have eaten, all of which derives from the
Sun. Similarly, the process of evolution over million of years, in which
the complexity of life on Earth has increased with time, is driven by this
flux of solar low-entropy energy.

Since the Universe is bathed in 2.7 K black body radiation, the Sun,
with its 6000 K surface temperature, is clearly in a non-equilibrium state.
The ‘ultimate equilibrium state’ of the Universe would be everything
sitting at some uniform, low temperature, such as 2.7 K. During the
Sun’s lifetime, almost all its low-entropy energy will be dissipated, filling
space with photons; they will travel through the Universe and eventually
interact with matter. The resulting high-entropy energy will tend to
eventually feed into the cosmic slush of the ultimate equilibrium state.
However, it is in the process of these interacting with matter that fun
can begin: life is a non-equilibrium state, and prospers on Earth through
non-equilibrium states that are driven by the constant influx of low–
entropy energy.

The origin of the Sun’s low entropy is of course gravity. The Sun
has gravitationally condensed from a uniform hydrogen cloud which is
a source of low entropy as far as gravity is concerned (the operation of
gravity is to cause such a cloud to condense and the entropy increases
as the particles clump together). The clouds of gas of course came from
the matter dispersed in the Big Bang. A crucial insight is to realize that
although the matter and electromagnetic degrees of freedom in the early
Universe were in thermal equilibrium (i.e. in a thermalized, high-entropy
state, and thus producing the almost perfectly uniform cosmic microwave
background we see today), the gravitational degrees of freedom were
not thermalized. These unthermalized gravitational degrees of freedom
provided the reservoir of low entropy which could drive gravitational
collapse, and hence lead to the emission of low-entropy energy from
stars which can, in favourable circumstances, drive life itself.
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Chapter summary

• Electron degeneracy pressure is proportional to ρ5/3 for non-
relativistic electrons and to ρ4/3 for relativistic electrons. In the
former case, it can balance the gravitational pressure, which is
proportional to ρ4/3.

• A white dwarf is stable up to 1.4M	 and is supported by electron
degeneracy pressure. Its radius R depends on mass M as R ∝
M−1/3.

• For 1.4M	 < M � 5M	, electrons behave relativistically, but a
star can be supported by neutron degeneracy pressure, resulting
in the formation of a neutron star. These are very compact and
rotate with a period ∝ R3/2M−1/2.

• The Schwarzschild radius RS of a black hole is
√

2GM/c2.

• The maximum accretion rate for spherically symmetric accretion
is given by the Eddington limit Ṁedd = 4πcR/κ.

• A black hole has entropy S/kB = A/(4l2P) so that one bit of infor-
mation can be associated with four Planck areas.

Further reading

More information may be found in Carroll & Ostlie (1996), Cheng (2005), Prialnik (2000), Perkins (2003) and Zeilik
& Gregory (1998).

Exercises

(36.1) Show that for a white dwarf MV is a constant.

(36.2) Estimate the radius of a white dwarf with mass
M�.

(36.3) Estimate the radius of a neutron star with mass
2M� and calculate its minimum rotation period.

(36.4) What is the Schwarzschild radius of a black hole
with mass (i) 10M�, (ii) 108M� and (iii) 10−8M�?

(36.5) For a black hole of mass 100M�, estimate the
Schwarzschild radius, the Hawking temperature
and the entropy.
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The atmosphere is the layer of gases gravitationally bound to the
Earth, composed of ∼ 78% N2, 21 % O2 and very small amounts of
other gases. The Earth has radius R⊕ = 6378 km, and atmospheric
pressure at sea-level is p = 105 Pa, and hence the mass Matmos of the
atmosphere is given by

Matmos =
4πR2

⊕p
g

= 5 × 1018 kg. (37.1)

Thus, Matmos/M⊕ ∼ 10−6, where M⊕ is the mass of the Earth1. The1The mass of the Earth is M⊕ =

5.97 × 1024 kg. atmosphere is able to exchange thermal energy with the ocean (whose
mass is considerably larger (≈ 1021 kg) than that of the atmosphere)
and also with space (absorbing ultraviolet and visible radiation from the
Sun, and emitting infrared radiation). In this chapter, we will examine
briefly a few of the thermodynamic properties of the atmosphere. More
details on all of these issues may be found in the further reading at the
end of the chapter.

37.1 Solar energy

Energy is continuously pumped into the atmosphere by the Sun. The
luminosity of the Sun is L	 = 3.83 × 1026 W and can be related to the
Sun’s effective surface temperature T	 via

L	 = 4πR2
	σT

4
	, (37.2)

where R	 = 6.96 × 108 m is the solar radius. This gives T	 ≈ 5800 K.
The power incident on unit area on the equator of the Earth at a dis-
tance from the Sun equal to one astronomical unit (approximately
the Earth–Sun distance, equal to 1.496 × 1011 m) is

S =
L	

4πR2
ES

= 1.36 kW m−2, (37.3)

and is called the solar constant. The Earth absorbs energy at a rate
πR2

⊕S(1 − A) where A ≈ 0.31 is the Earth’s albedo, defined as the
fraction of solar radiation reflected. The Earth emits radiation at a rate
given by 4πR2

⊕σT
4
E, where TE is the radiative temperature of the

Earth, sometimes called the radiometric temperature of the Earth.
Balancing the power absorbed with the power emitted yields

πR2
⊕S(1 −A) = 4πR2

⊕σT
4
E, (37.4)
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S R R

Fig. 37.1 Schematic illustration of (a)
the solar power received on the Earth’s
surface and (b) the power radiated from
the Earth as a result of its illumination
by the Sun.

and hence

TE = T	

(
R	

2RES

)1/2

(1 −A)1/4, (37.5)

and this leads to TE ≈ 255 K, which is ∼ −20◦ C. This is much lower
than the mean surface temperature, which is ∼ 283 K. This is because
most of the thermal radiation into space comes from high up in the
atmosphere, where the temperature is lower than it is at the surface.

Example 37.1

How large a solar panel do you need to drive a television (which needs
100 W to run) on a sunny day, assuming that the solar panel operates
at 15 % efficiciency?
Solution:

Assuming that you have the full S = 1.36 kW m−2 at your disposal, the
area needed is

100W

0.15 × 1.36 × 103 W m−2
≈ 0.5m2. (37.6)

37.2 The temperature profile in the
atmosphere

In this section we wish to derive the dependence of the temperature T
as a function of height z above the ground. In the lowest region of the
atmosphere, the temperature profile is governed by the adiabatic lapse
rate (see Section 12.4), whose derivation we will briefly review. Consider
a fixed mass of dry air which retains its identity as it rises. If it does
not exchange heat with its surroundings (d̄Q = 0) it can be treated
adiabatically. Its change of enthalpy dH is given by

dH = CpdT = d̄Q+ V dp, (37.7)
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and hence
CpdT = V dp. (37.8)

Pressure p can be related to height z using the hydrostatic equation
which we met in eqn 4.23,

dp = −ρgdz, (37.9)

and this leads to
dT

dz
= −ρgV

Cp
= − g

cp
≡ −Γ, (37.10)

where cp = Cp/ρV is the specific heat capacity of dry air at constant
pressure. We define Γ = g/cp to be the adiabatic lapse rate.

Considerable heat transfer takes place within the lowest ∼ 10 km of
the atmosphere, which is termed the troposphere. Air is warmed by
contact with the Earth’s surface and absorption of solar energy. The
heating of the air drives the temperature gradient |dT/dz| to be larger
than |Γ|, making it unstable to these convection currents. When the
temperature gradient vertically upwards from the Earth becomes too
great (so that air at low altitudes is too warm and air higher up is too
cool) then convection will take place, just as we learned it takes place
within the interior of stars (Section 35.3.2). As the air rises into lower–
pressure regions, it cools owing to adiabatic expansion. This instability
to convection is why this region of the atmosphere is termed the name
troposphere (the name comes from the Greek tropos, meaning ‘turn-
ing’). Moreover, if the temperature gradient as a function of latitude is
similarly too great, when combined with the Coriolis2 force due to the2The Coriolis force arises because the

Earth is rotating. A description of this
may be found in Andrews (2000) and
in books on mechanics.

rotation of Earth, the atmosphere exhibits baroclinic instability, giv-
ing rise to cyclones and anticyclones which can transport considerable
energy between the equator and the poles.

At the top of the troposphere, there is an interface region called the
tropopause, where there is no convection. Vertically above this is the
next layer, called the stratosphere, and in the lowest part of this layer
temperature is often invariant with height z (see Fig. 37.2). The at-
mosphere becomes ‘stratified’ into layers which tend not to move up or
down, but just hang there (‘in much the same way that bricks don’t’, to
borrow a phrase from Douglas Adams). The stratosphere is ‘optically
thin’ and hence absorbs little energy from the incoming solar radiation.
If the stratosphere has absorptivity ε, it will absorb energy radiated
at infrared wavelengths from the Earth’s surface at the rate εσT 4

E per
unit area, where TE is the effective radiative temperature of the Earth
(including the troposphere).

If the temperature of the stratosphere is Tstrat, it will emit (mainly
infrared) radiation at a rate εσT 4

strat from its upper surface and εσT 4
strat

from its lower surface i.e. at a total rate of 2εσT 4
strat, and hence

Tstrat =
TE

21/4
. (37.11)

The effective radiative temperature of the Earth is ∼ 250 K, and this
yields Tstrat ∼ 214 K, not far from what is observed.
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Tstrat TE T

10

z (km)

T z
Fig. 37.2 Diagramatic form of a very
simple model of the troposphere and
the stratosphere. For real data, see
Taylor (2005).

At higher altitudes in the stratosphere, the temperature starts ris-
ing with increasing height, owing to absorption of ultraviolet radia-
tion in the ozone3 layer, reaching around 270 K. At about 50 km is the 3Ozone is the name given to the O3

molecule.stratopause, which is the interface between the stratosphere and the
mesosphere. In the mesosphere, the temperature falls again owing to
the absence of ozone, bottoming out below 200 K at ∼ 90 km, roughly the
location of the mesopause. Above this is the thermosphere, where
the temperature rises very high (to above 1000◦C) owing to very ener-
getic solar photons and cosmic ray particles which cause dissociation of
molecules in the upper atmosphere.

37.3 The greenhouse effect

The different molecules which are found in the atmosphere respond dif-
ferently to incident radiation from the Earth, which is at infrared wave-
lengths (see Fig. 37.3). The main constituents of air are N2 and O2. Both
these molecules are composed of two identical atoms and are termed
diatomic homonuclear molecules. They do not couple directly to
infrared radiation because any vibrations of such molecules do not pro-
duce a dipole moment4, but rather they can only stretch along the 4A molecule is said to have a dipole mo-

ment if there is charge separation across
the molecule. Dipole moment is a vec-
tor quantity, and if two charges +q and
−q are separated by a distance D then
it takes the value qD in the direction
from the negative charge towards the
positive charge. A molecule can possess
a permanent dipole moment, or have
one induced by a vibrational mode.

bond. However, for heteronuclear molecules like CO2, the situation
is different. Two of the vibrational modes of CO2, which is a lin-
ear molecule, are the asymmetric stretch mode (at ∼ 5µm) and the
bending mode (at ∼ 15–20µm). These are both infrared active be-
cause they correspond to a change in dipole moment when the vibration
takes place. The symmetric stretch mode is not infrared active.

Water (H2O) behaves similarly to CO2, but because H2O is a bent
molecule with a permanent dipole moment, all three normal modes of
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Fig. 37.3 This graph shows a black
body spectrum at 255 K analogous
to radiation emitted from the Earth.
Shown above are cartoons of relevant
normal modes of the CO2 and H2O
molecules. The grey vertical arrows
indicate the relevant vibrational wave-
lengths.

u

vibration are infrared active, although the symmetric stretch and bend-
ing modes are at high frequencies (< 3µm). The antisymmetric stretch
mode (at ∼ 3µm) is relevant to atmospheric absorption. These vibra-
tional modes are sketched in Fig. 37.3.

The strong infrared absorption of gases like CO2 and H2O (but not
N2 and O2) gives rise to the greenhouse effect.5 This effect depends5The term ‘greenhouse effect’ was

coined in 1827 by Jean Baptiste Joseph
Fourier, whom we met on page 101.

on very small concentrations of these heteronuclear molecules, or green-
house gases, in the atmosphere. Greenhouse gases are capable of ab-
sorbing radiation emitted by the Earth, and produce strong absorption
in the emitted spectrum as shown in Fig. 37.4.

What this means is that the radiation at these wavelengths, which
would pass out of the atmosphere in the absence of the greenhouse gases,
is retained in the atmosphere: the greenhouse gases act as a ‘winter
coat’ at these particular wavelengths and increase the temperature at
the Earth’s surface. To some extent, of course, this is a good thing as
this planet would be a very cold place without any of the winter coat
effect of H2O, CO2 and the other greenhouse gases. However, too much
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Fig. 37.4 Thermal radiation in the in-
frared emitted from the Earth’s sur-
face and atmosphere (see Fig. 37.1)
as observed over the Mediterrean Sea
from the Nimbus 4 satellite by Hanel
et al (1971). The atmosphere is
not transparent around 9.5 microns or
around 15 microns owing to absorption
by ozone (O3) and by CO2 respec-
tively. This figure is reproduced from
Houghton (2005).

winter coat when it is not needed will elevate the temperature of the
planet, with potentially disastrous consequences.

There is now much accumulated evidence from independent measure-
ments that the concentrations of greenhouse gases and in particular CO2

are changing6 as a result of human activity and, further, are giving rise 6CO2 levels are rising at a rate unprece-
dented in the last 20 million years.to global warming (the elevation of the temperature of Earth’s atmo-

sphere, see Fig. 37.5) and consequent climate change. This is termed
anthropogenic climate change, with anthropogenic meaning ‘having
its origins in the activities of humans’.

Fig. 37.5 Variations in the globally
averaged near-surface air temperature
over the last 40 years; reproduced by
kind permission of P. Jones of the Cli-
mate Research Unit, University of East
Anglia.

When one considers that over the last few hundred years, since the
industrial revolution, we have released into the atmosphere fossil fuels
which were laid down over a few hundred million years it is perhaps
unsurprising that the small changes in the chemical composition of the
Earth’s atmosphere this brings can have considerable influence on cli-
mate. The immense heat capacity of the oceans means that the full
consequences of global warming and consequent climate change do not
instantly become apparent7. Already however these are significant as 7This is explored more in Exercise 37.3.

can be seen in Fig. 37.5, which shows measurements of globally aver-
aged temperatures since 1861.

Predictions of global warming are complicated because this is a multi-
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parameter problem which depends on boundary conditions which them-
selves cannot be known exactly; for example, the details of cloud cover
cannot be predicted with detailed accuracy. Clouds play a part in the
Earth’s radiation balance because they reflect some of the incident radi-
ation from the Sun but they also absorb and emit thermal radiation and
have the same winter coat insulating effect as greenhouse gases. In ad-
dition, the presence of water vapour (water in gaseous form as distinct
from water droplets in a cloud) plays an important rôle as a green-
house gas. Furthermore, as the atmosphere heats up, so it can hold
more water vapour before it begins to condense out as liquid droplets8.8It is helpful to consider the capac-

ity of the atmosphere to ‘hold’ increas-
ing water vapour as its temperature
increases in terms of the phase dia-
gram for water (shown in Fig. 28.7): on
the phase boundary between gas and
liquid, p increases with increasing T .
Here, p should be interpreted as the
partial pressure of water vapour i.e. a
measure of how much water vapour is
present. Fig. 28.7 shows that as tem-
perature increases, a larger partial pres-
sure of water vapour can be attained
before condensation takes place.

This increased capacity further increases the winter coat effect. The in-
creasing presence of CO2 in the atmosphere thus gives rise to a positive
feedback mechanism: as the global temperature rises, the atmosphere
can hold a greater amount of H2O before saturation and precipitation9 is

9Precipitation is any form of water that
falls from the sky, such as rain, snow,
sleet and hail.

reached. This leads to an even larger greenhouse effect from atmospheric
H2O.

These and other feedback effects will influence the future of this planet.
There is a competition between positive feedback effects (i.e. warming
triggering further warming, as ice cover on the planet is reduced, more
land is exposed that being less reflective absorbs heat more quickly) and
negative feedback effects (e.g. higher temperatures will tend to promote
the growth rate of plants and trees which will increase their intake of
CO2.) but it seems that positive feedback effects have a much greater
effect.

Fig. 37.6 CO2 emissions in 2000 from
different countries or groups of coun-
tries in tonnes per capita versus their
population in millions. Data from
Grubb (2003).

It is also difficult to forecast accurately future trends in the world’s
human population, especially in developing countries that are, in addi-
tion, becoming increasingly industrialized. It is also difficult to make
precise predictions about the economies of developed and developing
worlds and their reliance on fossil fuels rather than carbon neutral10

10Carbon neutral (sometimes referred
to as ‘zero carbon’) means that there
is no net input of CO2 into the atmo-
sphere as a result of that particular en-
ergy supply. energy supplies. Figure 37.6 gives some sense of the uncertainty in fu-
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ture CO2 production: the width of each bar represents the population
of each nation (or group of nations) in millions and the height repre-
sents the CO2 emission per capita. Both the rate of change of width
and the rate of change of height of each bar are uncertain, but it seems
highly likely that increasing population and increasing industrialization
will lead to increasing CO2 production worldwide.

However, although many of these factors are uncertain, a very wide
range of plausible input models for global warming (covering extremes
such as a world with a continuously increasing population to one which
has emphasis on local solutions to economic, social and environmen-
tal sustainability) predict a temperature rise of at least two degrees in
2100 compared with that in the first half of the twentieth century (see
Fig. 37.7).

Fig. 37.7 Predictions of global warm-
ing from a wide range of different in-
put models. Data from Cubasch et
al. (2001) and figure from Houghton
(2005).

Some consequences of global warming are already apparent: at the
time of writing we have observed a 0.6◦C rise in the annual average global
temperature, a 1.8◦C rise in the average Arctic temperature, 90% of the
planet’s glaciers have been retreating since 1850 and Arctic sea-ice has
reduced by 15–20 %. One of the predicted consequences of global warm-
ing is the rise of 2◦C in the average global temperature (see Fig. 37.7)
by the second half of this century. This will promote the melting of the
Greenland ice and cause sea water to expand. Both effects will lead to
a significant rise in sea–level and consequent reduction of habitable land
on the planet.
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Chapter summary

• Earth receives about 1.4 kW per m2 from the Sun as radiation.

• The presence of some CO2 molecules in the atmosphere keeps Earth
from being a much colder place to inhabit.

• The CO2 concentrations in the atmosphere have increased signifi-
cantly since the industrial revolution.

• Increasing CO2 in the atmosphere catalyses the increasing temper-
ature of the atmosphere, by promoting the presence in the atmo-
sphere of another greenhouse gas, H2O vapour.

• Although there are considerable uncertainties in the time scales
over which global warming will take place, it seems hard to avoid
the conclusion that significant and devastating global warming has
begun.

Further reading

• The International Panel on Climate Change: http://www.ipcc.ch

• The Climate Research Unit: http://www.cru.uea.ac.uk

• Climate prediction for everyone: http://www.climateprediction.net

• Useful background reading and an introduction to the physics of atmospheres may be found in Andrews (2000),
Taylor (2005) and Houghton (2005)

Exercises

(37.1) What is the average power per unit area of Earth
received from the Sun per year (a) on the equator,
(b) at 35◦ latitude and (c) over all the Earth?

(37.2) Given the mass of Earth’s atmosphere at the start
of this chapter, estimate its heat capacity.

(37.3) Given the mass of Earth’s ocean at the start of
this chapter, find its heat capacity. Compare your
answer with that for the previous question.

(37.4) Suppose that the Earth did not have any atmo-
sphere, and neglecting any thermal conduction be-

tween the oceans and the land, estimate how long
would it take for the power from the Sun to bring
the ocean to the boil. State any further assump-
tions that you make.

(37.5) The total annual energy consumption at the start
of the 21st century is about 13 TW (13×1012 W).
If the efficiency of a solar panel is 15%, what area
of land would you need to cover with solar panels
(a) at the equator and (b) at 35◦ latitude, to sup-
ply the energy needs for the Earth’s population?

http://www.ipcc.ch
http://www.cru.uea.ac.uk
http://www.climateprediction.net


AFundamental constants

Bohr radius a0 5.292 × 10−11 m
speed of light in free space c 2.9979 × 108 m s−1

Electronic charge e 1.6022 × 10−19 C
Planck constant h 6.626 × 10−34 J s

h/2π = � 1.0546 × 10−34 J s
Boltzmann constant kB 1.3807 × 10−23 J K−1

electron rest mass me 9.109 × 10−31 kg
proton rest mass mp 1.6726 × 10−27 kg
Avogadro number NA 6.022 × 1023 mol−1

standard molar volume 22.414 × 10−3 m3 mol−1

molar gas constant R 8.315 J mol−1 K−1

fine structure constant
e2

4πε0�c
= α (137.04)−1

permittivity of free space ε0 8.854 × 10−12F m−1

magnetic permeability µ0 4π × 10−7Hm−1

of free space
Bohr magneton µB 9.274 × 10−24 Am2 or J T−1

nuclear magneton µN 5.051 × 10−27 Am2 or J T−1

neutron magnetic moment µn −1.9130µN

proton magnetic moment µp 2.7928µN

Rydberg constant R∞ 1.0974 × 107 m−1

R∞hc 13.606 eV
Stefan constant σ 5.671 × 10−8 W m−2 K−4

gravitational constant G 6.673 × 10−11 Nm2 kg−2

mass of the Sun M	 1.99 × 1030 kg
mass of the Earth M⊕ 5.97 × 1024 kg
radius of the Sun R	 6.96 × 108 m
radius of the Earth R⊕ 6.378 × 106 m
1 astronomical unit 1.496 × 1011 m
1 light year 9.460 × 1015 m
1 parsec 3.086 × 1016 m

Planck length

√
�G

c3
= lP 1.616 × 10−35 m

Planck mass

√
�c

G
= mP 2.176 × 10−8 kg

Planck time lP/c = tP 5.391 × 10−44 s



B Useful formulae

(1) Trigonometry:

eiθ = cos θ + i sin θ

sin θ =
eiθ − e−iθ

2i

cos θ =
eiθ + e−iθ

2

sin(θ + φ) = sin θ cos φ + cos θ sin φ

cos(θ + φ) = cos θ cos φ − sin θ sin φ

tan θ = sin θ/ cos θ

cos2 θ + sin2 θ = 1

cos 2θ = cos2 θ − sin2 θ

sin 2θ = 2 cos θ sin θ

(2) Hyperbolics:

sinhx =
ex − e−x

2

cosh x =
ex + e−x

2

cosh2 x − sinh2 x = 1

cosh 2x = cosh2 x + sinh2 x

sinh 2x = 2 cosh x sinhx

tanhx = sinh x/ cosh x

(3) Logarithms:

logb(xy) = logb(x) + logb(y)

logb(x/y) = logb(x) − logb(y)

logb(x) =
logk(x)

logk(b)

ln(x) ≡ loge(x) where e= 2.71828182846 . . .

(4) Geometric progression
N -term series:

a+ar+ar2+· · ·+arN−1 = a
N−1∑
n=0

rn =
a(1 − rN )

1 − r
.

∞-term series:

a + ar + ar2 + · · · = a

∞∑
n=0

rn =
a

1 − r
.

(5) Taylor and Maclaurin series
A Taylor series of a real function f(x) about a
point x = a is given by

f(x) = f(a)+(x−a)

(
df

dx

)
x=a

+
(x − a)2

2!

(
d2f

dx2

)
x=a

+. . .

If a = 0, the expansion is a Maclaurin series

f(x) = f(0)+x

(
df

dx

)
x=0

+
x2

2!

(
d2f

dx2

)
x=0

+. . .

(6) Some Maclaurin series (valid for |x| < 1):

(1 + x)n = 1 + nx +
n(n − 1)

2!
x2

+
n(n − 1)(n − 2)

3!
x3 + · · ·

(1 − x)−1 = 1 + x + x2 + x3 + · · ·

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

sin x = x − x3

3!
+

x5

5!
− · · ·

cos x = 1 − x2

2!
+

x4

4!
− · · ·

tan x = x +
x3

3
+

2x5

15
+ · · ·
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tanhx = x− x3

3
+

2x5

15
− · · ·

tanh−1 x = x+
x3

3
+
x5

5
+
x7

7
+ · · ·

ln(1 + x) = x− x2

2
+
x3

3
− · · ·

(7) Integrals: Indefinite (with a > 0):∫
dx

x2 + a2
=

1

a
tan−1 x

a∫
dx

x2 − a2
=

1

2a
ln

∣∣∣∣x− a

x+ a

∣∣∣∣∫
dx√
x2 + a2

= sinh−1 x

a∫
dx√
x2 − a2

=

{
cosh−1 x

a if x > a

− cosh−1 x
a if x < −a∫

dx√
a2 − x2

= sin−1 x

a

(8) Vector operators:

• grad acts on a scalar field to produce a
vector field:

gradφ = ∇φ =

(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
• div acts on a vector field to produce a

scalar field:

divA = ∇ · A =
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z

• curl acts on a vector field to produce an-
other vector field:

curlA = ∇×A =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
Ax Ay Az

∣∣∣∣∣∣
where φ(r) and A(r) are any given scalar and
vector field respectively.

(9) Vector identities:

∇ · (∇φ) = ∇2φ

∇× (∇φ) = 0

∇ · (∇× A) = 0

∇ · (φA) = A · ∇φ+ φ∇ · A
∇× (φA) = φ∇× A − A ×∇φ

∇× (∇× A) = ∇(∇ · A) −∇2A

∇ · (A × B) = B · ∇ × A − A · ∇ × B

∇(A · B) = (A · ∇)B + (B · ∇)A

+ A × (∇× B) + B × (∇× A)

∇× (A × B) = (B · ∇)A − (A · ∇)B

+ A(∇ · B) − B(∇ · A)

These identities can be easily proved by appli-
cation of the alternating tensor and use of the
summation convention. The alternating tensor
εijk is defined according to:

εijk =




1 if ijk is an even permutation of 123
−1 if ijk is an odd permutation of 123
0 if any two of i, j or k are equal

so that the vector product can be written

(A × B)i = εijkAjBk.

The summation convention is used here, so that
twice repeated indices are assumed summed.
The scalar product is then

A · B = AiBi.

Use can be made of the identity

εijkεilm = δjlδkm − δjmδkl

where δij is the Kronecker delta given by

δij =

{
1 i = j
0 i �= j

The vector triple product is given by

A × (B × C) = (A · C)B − (A · B)C.

(10) Cylindrical coordinates:

∇2φ =
1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2
∂2φ

∂φ2
+
∂2φ

∂z2

∇φ =

(
∂φ

∂r
,
1

r

∂φ

∂φ
,
∂φ

∂z

)

(11) Spherical polar coordinates:

∇2φ =
1

r2
∂

∂r

(
r2
∂φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)

+
1

r2 sin2 θ

∂2φ

∂φ2

∇φ =

(
∂φ

∂r
,
1

r

∂φ

∂θ
,

1

r sin θ

∂φ

∂φ

)
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C.1 The factorial integral

One of the most useful integrals in thermodynamics problems is the
following one (which is worth memorizing):

n! =

∫ ∞

0

xne−x dx (C.1)

• This integral is simple to prove by induction as follows: First,
show that it is true for the case n = 0. Then assume it is true
for n = k and prove it is true for n = k + 1. (Hint: integrate
(k + 1)! =

∫∞
0
xk+1e−x dx by parts.)

• It allows you to define the factorial of non-integer numbers. This
is so useful that the integral is given a special name, the gamma
function. The traditional definition of the gamma function is

Γ(n) =

∫ ∞

0

xn−1e−x dx (C.2)

so that Γ(n) = (n− 1)!, i.e. the factorial function and the gamma
function are ‘out of step’ with each other, a rather confusing fea-
ture. The gamma function is plotted in Fig. C.1 and has a sur-
prisingly complicated structure for negative n. Selected values of
the gamma function are listed in Table C.1. The gamma function
will appear again in later integrals.

z − 3
2 − 1

2
1
2 1 3

2 2 5
2 3 4

Γ(z) 4
√

π
3 −2

√
π

√
π 1

√
π

2 1 3
√

π
4 2 6

Table C.1 Selected values of the gamma function. Other values can be generated
using Γ(z + 1) = zΓ(z).

C.2 The Gaussian integral

The Gaussian is a function of the form e−αx2

, which is plotted in
Fig. C.2. It has a maximum at x = 0 and a shape which has been
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n

n

Fig. C.1 The gamma function Γ(n)
showing the singularities for integer val-
ues of n ≤ 0. For positive, integer n,
Γ(n) = (n− 1)!.

likened to that of a bell. It turns up in many statistical problems, of-
ten under the name of the normal distribution. The integral of a
Gaussian is another extremely useful integral:∫ ∞

−∞
e−αx2

dx =

√
π

α
. (C.3)

x

x

Fig. C.2 A Gaussian e−αx2
.

• It can be proved by evaluating the two-dimensional integral∫ ∞

−∞
dx

∫ ∞

−∞
dy e−α(x2+y2) =

(∫ ∞

−∞
dx e−αx2

)(∫ ∞

−∞
dy e−αy2

)
= I2, (C.4)

where I is our desired integral. We can evaluate the left-hand side
using polar coordinates, so that

I2 =

∫ 2π

0

dθ

∫ ∞

0

dr re−αr2

, (C.5)

which with the substitution z = αr2 (and hence dz = 2αr dr) gives

I2 = 2π × 1

2α

∫ ∞

0

dz e−z =
π

α
, (C.6)
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and hence I =
√
π/α is proved.

• Even more fun begins when we employ a cunning stratagem: we
differentiate both sides of the equation with respect to α. Because
x does not depend on α, this is easy to do. Hence (d/dα)e−αx2

=
−x2e−αx2

and (d/dα)
√
π/α = −√

π/2α3/2 so that

∫ ∞

−∞
x2e−αx2

dx =
1

2

√
π

α3
. (C.7)

• This trick can be repeated with equal ease. Differentiating again
gives ∫ ∞

−∞
x4e−αx2

dx =
3

4

√
π

α5
. (C.8)

• Therefore we have a way of generating the integrals between −∞
and ∞ of x2ne−αx2

, where n ≥ 0 is an integer.1 Because these1A general formula is

Z ∞

−∞
x2ne−αx2

dx =
(2n)!

n!22n

r
π

α2n+1
,

for integer n ≥ 0.

functions are even, the integrals of the same functions between 0
and ∞ are just half of these results:∫ ∞

0

e−αx2

dx =
1

2

√
π

α
,

∫ ∞

0

x2e−αx2

dx =
1

4

√
π

α3
,

∫ ∞

0

x4e−αx2

dx =
3

8

√
π

α5
.

• To integrate x2n+1e−αx2

between −∞ and ∞ is easy: the functions
are all odd and so the integrals are all zero. To integrate between 0
and ∞, start off with

∫∞
0
xe−αx2

dx which can be done by noticing

that xe−αx2

is almost what you get when you differentiate e−αx2

.
All the odd powers of x can now be obtained2 by differentiating2A general formula is

Z ∞

0
x2n+1e−αx2

dx =
n!

2αn+1
,

for integer n ≥ 0.

that integral with respect to α. Hence,

Another method of getting these inte-
grals is to make the substitution y =
αx2 and turn them into the factorial
integrals considered above. This is all
very well, but you need to know things
like (− 1

2
)! =

√
π to proceed.

∫ ∞

0

xe−αx2

dx =
1

2α
,

∫ ∞

0

x3e−αx2

dx =
1

2α2
,

∫ ∞

0

x5e−αx2

dx =
1

α3
.

• A useful expression for a normalized Gaussian (one whose integral
is unity) is

1√
2πσ2

e−(x−µ)2/2σ2

. (C.9)

This has mean 〈x〉 = µ and variance 〈(x− 〈x〉)2〉 = σ2.
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C.3 Stirling’s formula

The derivation of Stirling’s formula proceeds by using the integral ex-
pression for n! in eqn C.1, namely

n! =

∫ ∞

0

xne−x dx. (C.10)

We will play with the right-hand side of this integral and develop an
approximation for it. We notice that the integrand xne−x consists of a
function which increases with x (the function xn) and a function which
decreases with x (the function e−x), and so it must have a maximum
somewhere (see Fig. C.3(a)). Most of the integral is due to the bulge
around this maximum, so we will try to approximate this region around
the bulge. As we are eventually going to take logs of this integral, it is
natural to work with the logarithm of this integrand, which we will call
f(x). Hence we define the function f(x) by

ef(x) = xne−x (C.11)

This implies that f(x) is given by

x

x
n

e-x

x
n e-x

x

n lnx

f=n lnx x

x

1 n

Fig. C.3 (a) The integrand xne−x

(solid line) contains a maximum. (b)
The function f(x) = −x + n lnx (solid
line) which is the natural logarithm of
the integrand. The dotted line is the
Taylor expansion around the maximum
(from eqn C.15). These curves have
been plotted for n = 3, but the ability
of the Taylor expansion to model the
solid line improves as n increases. Note
that (b) shows the natural logarithm of
the curves in (a).

f(x) = n lnx− x, (C.12)

which is sketched in Fig. C.3(b). When the integrand has a maximum, so
will f(x). Hence the maximum of the integrand, and also the maximum
of this function f(x), can be found using

df

dx
=
n

x
− 1 = 0, (C.13)

which implies that the maximum in f is at x = n. We can differentiate
again and get

d2f

dx2
= − n

x2
. (C.14)

Now we can perform a Taylor expansion3 around the maximum, so that

3See Appendix B.f(x) = f(n) +

(
df

dx

)
x=n

(x− n) +
1

2!

(
d2f

dx2

)
x=n

(x− n)2 + · · ·

= n lnn− n+ 0 × (x− n) − 1

2

n

n2
(x− n)2 + · · ·

= n lnn− n− (x− n)2

2n
+ · · · (C.15)

The Taylor expansion approximates f(x) by a quadratic (see the dotted
line in Fig. C.3) and hence ef(x) approximates to a Gaussian.4 Putting 4See Appendix C.2.

this as the integrand in eqn C.1, and removing from this integral the
terms which do not depend on x, we have

n! = en ln n−n

∫ ∞

0

e−(x−n)2/2n+··· dx. (C.16)
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The integral in this expression can be evaluated with the help of eqn C.3
to be∫ ∞

0

e−(x−n)2/2n+··· dx ≈
∫ ∞

−∞
e−(x−n)2/2n dx =

√
2πn. (C.17)

(Here we have used the fact that it doesn’t matter if you put the lower
limit of the integral as −∞ rather than 0 since the integrand, e−(x−n)2/2n,
is a Gaussian centred at x = n with a width that scales as

√
n so that

the contribution to the integral from the region between −∞ and 0 is
vanishingly small as n becomes large.) We have that

n! ≈ en ln n−n
√

2πn, (C.18)

and hence
lnn! ≈ n lnn− n+ 1

2 ln 2πn, (C.19)

which is one version of Stirling’s formula. When n is very large, this
can be written

lnn! ≈ n lnn− n, (C.20)

which is another version of Stirling’s formula.

Fig. C.4 Stirling’s approximation for
lnn!. The dots are the exact results.
The solid line is according to eqn C.19,
while the dashed line is eqn C.20. The
inset shows the two lines for larger val-
ues of n and demonstrates that as n be-
comes large, eqn C.20 becomes a very
good approximation.

n

n

.......
.....

....
....

....
....

....
...

...
...

...
...

...

n

n

The approximation in eqn C.19 is very good, as can be seen in Fig. C.4.
The approximation in eqn C.20 (the dotted line in Fig. C.4) slightly
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underestimates the exact result when n is small, but as n becomes large
(as is often the case in thermal physics problems) it becomes a very good
approximation (as shown in the inset to Fig. C.4).

C.4 Riemann zeta function

The Riemann zeta function ζ(s) is usually defined by

ζ(s) =

∞∑
n=1

1

ns
, (C.21)

and converges for s > 1 (see Fig. C.5). For s = 1 it gives a divergent
series. Some useful values are listed in Table C.2.

s

s

Fig. C.5 The Riemann zeta function
ζ(s) for s > 1.

s ζ(s)

1 ∞
3
2 ≈ 2.612
2 π2/6 ≈ 1.645
5
2 ≈ 1.341
3 ≈ 1.20206
4 π4/90 ≈ 1.0823
5 ≈ 1.0369
6 π6/945 ≈ 1.017

Table C.2 Selected values of the Riemann zeta function.

Our reason for introducing the Riemann zeta function is that it is
involved in many useful integrals. One such is the Bose integral IB(n)
defined by

IB(n) =

∫ ∞

0

dx
xn

ex − 1
. (C.22)

We can evaluate this as follows:

IB(n) =

∫ ∞

0

dx
xne−x

1 − e−x

=

∫ ∞

0

dxxn
∞∑

k=0

e−(k+1)x

=

∞∑
k=0

1

(k + 1)n+1

∫ ∞

0

dy yne−y

= ζ(n+ 1)Γ(n+ 1). (C.23)

Thus we have that

IB(n) =

∫ ∞

0

dx
xn

ex − 1
= ζ(n+ 1)Γ(n+ 1). (C.24)
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So for example,∫ ∞

0

dx
x3ex

ex − 1
= ζ(4) Γ(4) =

π4

90
× 3! =

π4

15
. (C.25)

Another useful integral can be derived as follows. Consider the integral

I =

∫ ∞

0

dx
xn−1

eax − 1
. (C.26)

This can be evaluated easily by making the substitution y = ax, yielding

I =
1

an

∫ ∞

0

dy
yn−1

ey − 1
. (C.27)

Now, differentiating I with respect to a using eqn C.26 gives

dI

da
= −

∫ ∞

0

dx
xneax

(eax − 1)2
, (C.28)

while using eqn C.27 yields

dI

da
= − n

an+1

∫ ∞

0

dy
yn−1

ey − 1
. (C.29)

These two expressions should be the same, and hence equating them
and putting a = 1 yields

∫ ∞

0

dx
xnex

(ex − 1)2
= n ζ(n) Γ(n). (C.30)

So for example,∫ ∞

0

dx
x4ex

(ex − 1)2
= 4ζ(4) Γ(4) = 4 × π4

90
× 3! =

4π4

15
. (C.31)

C.5 The polylogarithm

The polylogarithm function Lin(z) (also known as Jonquiére’s func-
tion) is defined as

Lin(z) =

∞∑
k=1

zk

kn
, (C.32)

where z is in the open unit disc in the complex plane, i.e. |z| � 1.
The definition over the whole complex plane follows via the process of
analytic continuation. The polylogarithm is useful in the evaluation of
integrals of Bose–Einstein and Fermi–Dirac distribution functions. First
note that we can write

1

z−1ex − 1
=

ze−x

1 − ze−x
=

∞∑
m=0

(ze−x)m+1, (C.33)
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i.e. as a geometric progression. Hence we can evaluate the following
integral: ∫ ∞

0

xn−1 dx

z−1ex − 1
=

∞∑
m=0

∫ ∞

0

xn−1((ze−x)m+1,

=

∞∑
m=0

zm+1

∫ ∞

0

xn−1e−(m+1)x

=

∞∑
m=0

zm+1

(m+ 1)n

∫ ∞

0

yn−1e−y

= Γ(n)

∞∑
m=0

zm+1

(m+ 1)n

= Γ(n)

∞∑
k=1

zk

kn

= Γ(n)Lin(z). (C.34)

Similarly one can show that∫ ∞

0

xn−1 dx

z−1ex + 1
= −Γ(n)Lin(−z). (C.35)

Combining these equations, one can write in general that

∫ ∞

0

xn−1 dx

z−1ex ± 1
= ∓Γ(n)Lin(∓z) . (C.36)

Note that when |z| � 1, only the first term in the series in eqn C.32
contributes, and

Lin(z) ≈ z. (C.37)

Note also that

Lin(1) =
∞∑

k=1

1

kn
= ζ(n), (C.38)

where ζ(n) is the Riemann zeta function (eqn C.21).

C.6 Partial derivatives

Consider x as a function of two variables y and z. This can be written
x = x(y, z), and we have that

dx =

(
∂x

∂y

)
z

dy +

(
∂x

∂z

)
y

dz. (C.39)

But rearranging x = x(y, z) can lead to having z as a function of x and
y so that z = z(x, y), in which case

dz =

(
∂z

∂x

)
y

dx+

(
∂z

∂y

)
x

dy. (C.40)
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Substituting C.40 into C.39 gives

dx =

(
∂x

∂z

)
y

(
∂z

∂x

)
y

dx+

[(
∂x

∂y

)
z

+

(
∂x

∂z

)
y

(
∂z

∂y

)
x

]
dy.

The terms multiplying dx give the reciprocal theorem

(
∂x

∂z

)
y

=
1(

∂z
∂x

)
y

, (C.41)

and the terms multiplying dz give the reciprocity theorem

(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1. (C.42)

C.7 Exact differentials

An expression such as F1(x, y) dx + F2(x, y) dy is known as an exact
differential if it can be written as the differential

df =

(
∂f

∂x

)
dx+

(
∂f

∂y

)
dy, (C.43)

of a differentiable single-valued function f(x, y). This implies that

F1 =

(
∂f

∂x

)
F2 =

(
∂f

∂y

)
, (C.44)

or in vector form, F = ∇f . Hence the integral of an exact differential
is path-independent, so that [where 1 and 2 are shorthands for (x1, y1)
and (x2, y2)]∫ 2

1

F1(x, y) dx+F2(x, y) dy =

∫ 2

1

F ·dr =

∫ 2

1

df = f(2)−f(1), (C.45)

and the answer depends only on the initial and final states of the system.
For an inexact differential this is not true and knowledge of the initial
and final states is not sufficient to evaluate the integral: you have to
know which path was taken.

For an exact differential the integral round a closed loop is zero:∮
F1(x, y) dx+ F2(x, y) dy =

∮
F · dr =

∮
df = 0, (C.46)

which implies that ∇× F = 0 (by Stokes’ theorem) and hence(
∂F2

∂x

)
=

(
∂F1

∂y

)
or

(
∂2f

∂x∂y

)
=

(
∂2f

∂y∂x

)
. (C.47)

For thermal physics, a crucial point to remember is that functions of

state have exact differentials.
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C.8 Volume of a hypersphere

A hypersphere in D-dimensions and with radius r is described by the
equation

D∑
i=1

x2
i = r2. (C.48)

It has volume VD given

VD = αrD, (C.49)

where α is a numerical constant which we will now determine.
Consider the integral I given by

I =

∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxD exp

(
−

D∑
i=1

x2
i

)
. (C.50)

This can be evaluated as follows:

I =

[∫ ∞

−∞
dx e−x2

]D

= πD/2. (C.51)

Alternatively, we can evaluate it in hyperspherical polars as follows:

I =

∫ ∞

0

dVD e−r2

, (C.52)

where the volume element is given by dVD = αDrD−1 dr. Hence, equat-
ing eqn C.51 and eqn C.52 we have that

πD/2 = αD

∫ ∞

0

dr rD−1e−r2

, (C.53)

and hence

α =
2πD/2

DΓ(D/2)
. (C.54)

Hence we obtain the volume of a hypersphere in D-dimensions as

VD =
2πD/2rD

Γ(D
2 + 1)

. (C.55)

C.9 Jacobians

Let x = g(u, v) and y = h(u, v) be a transformation of the plane. Then
the Jacobian of this transformation is

∂(x, y)

∂(u, v)
=

∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ =
∂x

∂u

∂y

∂v
− ∂x

∂u

∂y

∂u
. (C.56)



446 Useful mathematics

Example C.1

The Jacobian of the polar coordinate transformation x(r, θ) = r cos θ
and y(r, θ) = r sin θ is

∂(x, y)

∂(r, θ)
=

∣∣∣∣ ∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣ =

∣∣∣∣ cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r (C.57)

If g and h have continuous partial differentials such that the Jacobian
is never zero, we then have∫ ∫

R

f(x, y) dxdy =

∫ ∫
S

f(g(u, v), h(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv (C.58)

So in our example, we would have∫ ∫
R

f(x, y) dxdy =

∫ ∫
S

f(g(r, θ), h(r, θ))r dr dθ. (C.59)

The Jacobian of the inverse transformation is the reciprocal of the
Jacobian of the original transformation.∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ =
1∣∣∣∂(u,v)

∂(x,y)

∣∣∣ , (C.60)

which is a consequence of the fact that the determinant of the inverse
of a matrix is the reciprocal of the determinant of the matrix. Other
useful identities are

∂(x, y)

∂(u, v)
= −∂(y, x)

∂(u, v)
=
∂(y, x)

∂(v, u)
, (C.61)

∂(x, y)

∂(x, y)
= 1, (C.62)

∂(x, y)

∂(x, z)
=

(
∂y

∂z

)
x

, (C.63)

and
∂(x, y)

∂(u, v)
=
∂(x, y)

∂(a, b)
/
∂(a, b)

∂(u, v)
. (C.64)

Quick exercise:
The Jacobian can be generalized to three-dimensions, as

∂(x, y, z)

∂(u, v, w)
=

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣ . (C.65)

Show that for the transformation of spherical polars x = r sin θ cosφ,
y = r sin θ sinφ, z = r cos θ, the Jacobian is

∂(x, y, z)

∂(r, θ, φ)
= r2 sin θ. (C.66)
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C.10 The Dirac delta function

The Dirac delta function δ(x− a) centred at x = a is zero for all x not
equal to a, but its area is 1. Hence∫ ∞

−∞
δ(x− a) = 1. (C.67)

Because the Dirac delta function is such a narrow ‘spike’, integrals of the
Dirac delta function multiplied by any other function f(x) are simple to
do: ∫ ∞

−∞
f(x)δ(x− a) = f(a). (C.68)

C.11 Fourier transforms

Consider a function x(t). Its Fourier transform is defined by

x̃(ω) =

∫ ∞

−∞
dt e−iωtx(t). (C.69)

The inverse transform is

x(t) =
1

2π

∫ ∞

−∞
dω eiωtx̃(ω). (C.70)

We now state some useful results concering Fourier transforms.

• The Fourier transform of a delta function δ(t− t′) is given by∫ ∞

−∞
dt e−iωtδ(t− t′) = e−iωt′ , (C.71)

and putting this into the inverse transform shows that∫ ∞

−∞
dω ei(ω−ω′)t = 2πδ(ω − ω′), (C.72)

which is an identity which will be useful later.

• The Fourier transform of ẋ(t) is iωx̃(ω), and so differential equa-
tions can be Fourier transformed into algebraic equations.

• Parseval’s theorem states that∫ ∞

−∞
dt|x(t)|2 =

1

2π

∫ ∞

−∞
dω|x̃(ω)|2. (C.73)

• The convolution h(t) of two functions f(t) and g(t) is defined by

h(t) =

∫ ∞

−∞
dt′ f(t− t′)g(t′). (C.74)

The convolution theorem states that the Fourier transform of
h(t) is then given by the multiplication of the Fourier transforms
of f(t) and g(t), i.e.

h̃(ω) = f̃(ω)g̃(ω). (C.75)
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• We now prove the Wiener–Khinchin theorem (mentioned in Sec-
tion 33.6. Using the inverse Fourier transform, we can write the
correlation function Cxx(t) as

Cxx(t) =

∫ ∞

−∞
x∗(t′)x(t′ + t) dt′ (C.76)

=

∫ ∞

−∞
dt′
[

1

2π

∫ ∞

−∞
dω e−iωt′ x̃∗(−ω)

]
[

1

2π

∫ ∞

−∞
dω′ e−iω(t+t′)x̃(ω′)

]

=

∫ ∞

−∞
dt′ e−i(ω′−ω)t′

(
1

2π

)2 ∫ ∞

−∞
dω∫ ∞

−∞
dω′ eiω′tx̃∗(−ω)x̃(ω),

and using eqn C.72, this reduces to

Cxx(t) =
1

2π

∫ ∞

−∞
dω eiωtx̃∗(−ω)x̃(ω), (C.77)

i.e. the inverse Fourier transform of |x̃(ω)|2.

C.12 Solution of the diffusion equation

The diffusion equation
∂n

∂t
= D

∂2n

∂x2
(C.78)

can be solved by Fourier transforming n(x, t) using

ñ(k, t) =

∫ ∞

−∞
dx e−ikxn(x, t), (C.79)

so that

−ikñ(k, t) =

∫ ∞

−∞
dx e−ikx ∂n(x, t)

∂x
. (C.80)

Hence eqn C.78 becomes

∂ñ(k, t)

∂t
= −Dk2ñ(k, t), (C.81)

which is now a simple first-order differential equation whose solution is

ñ(k, t) = ñ(k, 0) e−Dk2t. (C.82)

Inverse Fourier transforming then yields

n(x, t) =
1

2π

∫ ∞

−∞
dx eikx e−Dk2tñ(k, 0). (C.83)

In particular, if the initial distribution of n is given by

n(x, 0) = n0δ(x), (C.84)
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then

ñ(k, 0) = n0, (C.85)

and hence

n(x, t) =
n0√
4πDt

e−x2/(4Dt). (C.86)

This equation is plotted in Fig. C.6 and describes a Gaussian whose
width increases with time. Note that 〈x2〉 = 2Dt.

Fig. C.6 Equation C.86 plotted for
various values of t. At t = 0, n(x, t)
is a delta function at the origin, i.e.
n(x, 0) = n0δ(x). As t increases, n(x, t)
becomes broader and the distribution
spreads out.

Quick exercise:
Repeat this in three dimensions for the diffusion equation

∂n

∂t
= D∇2n (C.87)

and show that if n(0, t) = n0δ(r) then

n(r, t) =
n0√
4πDt

e−r2/(4Dt). (C.88)

C.13 Lagrange multipliers

Fig. C.7 We wish to find the maxi-
mum of the function f subject to the
constraint that g = 0. This occurs at
the point P at which one of the con-
tours of f and the curve g = 0 touch
tangentially.

The method of Lagrange multipliers5 is used to find the extrema 5Joseph-Louis Comte de Lagrange
(1736–1813).of a function of several variables subject to one or more constraints.

Suppose we wish to maximize (or minimize) a function f(x) subject to
the constraint g(x) = 0. Both f and g are functions of the N variables
x = (x1, x2, . . . , xN ). The maximum (or minimum) will occur when one
of the contours of f and the curve g = 0 touch tangentially; let us call
the set of points at which this occurs P (this is shown in Fig. C.7 for a
two-dimensional case). Now ∇f is a vector normal to the contours of f
and ∇g is a vector normal to the curve g = 0, and these two vectors will
be parallel to each other at P. Hence

∇[f + λg] = 0, (C.89)
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where λ is a constant, called the Lagrange multiplier. Thus we have N
equations to solve:

∂F

∂xk
= 0, (C.90)

where F = f + λg. This allows us to find λ and hence identify the
(N − 2)-dimensional surface on which f is extremized subject to the
constraint g = 0.

If there are M constraints, so that for example gi(x) = 0 where i =
1, . . . ,M , then we solve eqn C.90 with

F = f +
M∑
i=1

λigi, (C.91)

where λ1, . . . , λM are Lagrange multipliers.

Example C.2

Find the ratio of the radius r to the height h of a cylinder which max-
imizes its total surface area subject to the constraint that its volume is
constant.
Solution:

The volume V = πr2h and area A = 2πrh + 2πr2, so we consider the
function F given by

F = A+ λV, (C.92)

and solve

∂F

∂h
= 2πr + λπr2 = 0, (C.93)

∂F

∂r
= 2πh+ 4πr + 2λπrh = 0, (C.94)

which yields λ = −2/r and hence h = 2r.



D
The electromagnetic

spectrum

Fig. D.1 The electromagnetic spectrum. The energy of a photon is shown as a temperature T = E/kB in K and as an energy

E in eV. The corresponding frequency f is shown in Hz and, because the unit is often quoted in spectroscopy, in cm−1. The
cm−1 scale is marked with some common molecular transitions and excitations (the typical range for molecular rotations and
vibrations are shown, together with the C–H bending and stretching modes). The energy of typical π and σ bonds are also
shown. The wavelength λ = c/f of the photon is shown (where c is the speed of light). The particular temperatures marked
on the temperature scale are TCMB (the temperature of the cosmic microwave background), the boiling points of liquid helium
(4He) and nitrogen (N2), both at atmospheric pressure, and also the value of room temperature. Other abbreviations on this
diagram are IR = infrared, UV = ultraviolet, R = red, G = green, V = violet. The letter H marks 13.6 eV, the magnitude of the
energy of the 1s electron in hydrogen. The frequency axis also contains descriptions of the main regions of the electromagnetic
spectrum: radio, microwave, infrared (both ‘near’ and ‘far’), optical and UV.



E
Some thermodynamical

definitions

• System = whatever part of the Universe we select.

• Open systems can exchange particles with their surroundings.

• Closed systems cannot.

• An isolated system is not influenced from outside its boundaries.

• Adiathermal = without flow of heat. A system bounded by
adiathermal walls is thermally isolated. Any work done on such
a system produces adiathermal change.

• Diathermal walls allow flow of heat. Two systems separated by
diathermal walls are said to be in thermal contact.

• Adiabatic = adiathermal and reversible (often used synonymously
with adiathermal).

• Put a system in thermal contact with some new surroundings.
Heat flows and/or work is done. Eventually no further change
takes place: the system is said to be in a state of thermal equi-
librium.

• A quasistatic process is one carried out so slowly that the sys-
tem passes through a series of equilibrium states so is always in
equilibrium. A process which is quasistatic and has no hysteresis
is said to be reversible.

• Isobaric = at constant pressure.

• Isochoric = at constant volume.

• Isenthalpic = at constant enthalpy.

• Isentropic = at constant entropy.

• Isothermal = at constant temperature.



F
Thermodynamic expansion

formulae

(∗)T (∗)P (∗)V (∗)S (∗)U (∗)H (∗)F

(∂G) −1 −S/V κS − αV αS − Cp/T S(Tα− Pκ) S(Tα− 1) S − P (κS − V α)
−Cp + PV α −Cp

(∂F ) −κP −(S/V ) − Pα κS αS − pκCV /T S(Tα− Pκ) S(Tα− 1) 0
−PκCV −P (κCV + V α)

(∂H) Tα− 1 Cp/V −κCV − V α −Cp/T P (κCV + V α) 0
−Cp

(∂U) Tα− pκ (Cp/V ) − Pα −κCV −PκCV /T 0

(∂S) α Cp/TV −κCV /T 0

(∂V ) κ α 0

(∂P ) −1/V 0

Table F.1 Expansion formulae for first-order partial derivatives of thermal variables.
(After E. W. Dearden, Eur. J. Phys. 16 76 (1995).)

Table F.1 contains a listing of various partial derivatives, some of
which have been derived in this book. To evaluate a partial differential,
one has to take the ratio of two terms in this table using the equation(

∂x

∂y

)
z

≡ (∂x)z

(∂y)z
. (F.1)

Note that (∂A)B ≡ −(∂B)A.

Example F.1

To evaluate the Joule-Kelvin coefficient:

µJK =

(
∂T

∂P

)
H

=
(∂T )H

(∂P )H
= − (∂H)T

(∂H)p
=
V (Tα− 1)

Cp
. (F.2)



G Reduced mass

Consider two particles with masses m1 and m2 located at positions r1

and r2 and held together by a force F(r) that depends only on the
distance r = |r| = |r1 − r2| (see Fig G.1).

r

r

F

F

Fig. G.1 The forces exerted by two
particles on one another.

Thus we have

m1r̈1 = F (r), (G.1)

m2r̈2 = F (r), (G.2)

(G.3)

and hence
r̈ = (m−1

1 +m−1
2 )F (r) (G.4)

which can be written
µr̈ = F (r), (G.5)

where µ is the reduced mass given by

1

µ
=

1

m1
+

1

m2
, (G.6)

or equivalently

µ =
m1m2

m1 +m2
. (G.7)



HGlossary of main symbols

α damping constant

αλ spectral absorptivity

β = 1/(kBT )

γ adiabatic index

γ surface tension

Γ(n) gamma function

δ skin depth

ε Seebeck coefficient

ε0 permittivity of free space

ζ(s) Riemann zeta function

η viscosity

θ(x) Heaviside step function

κ thermal conductivity

Λ relativistic thermal wavelength

λ mean free path

λ wavelength

λth thermal wavelength

µ chemical potential

µ0 permeability of free space

µ� chemical potential at STP

µJ Joule coefficient

µJK Joule-Kelvin coefficient

ν frequency

π = 3.1415926535 . . .

Π momentum flux

Π Peltier coefficient

ρ density

ρ resistivity

ρJ Jeans density

Σ local entropy production

σ standard deviation

σ collision cross-section

σp Prandtl number

τ mean scattering time

τxy shear stress across xy plane

ΦG grand potential

Φ flux

χ magnetic suseptibility

χ(t− t′) response function

χ(t) response function

ψ(r) wave function

Ω solid angle

Ω potential energy

Ω(E) number of microstates with energy E

ω angular frequency

A availability

A area

A albedo

A21 Einstein coefficient

A12 Einstein coefficient

B12 Einstein coefficient

B bulk modulus

B magnetic field

BT bulk modulus at constant temperature

BS bulk modulus at constant entropy

Bν radiance or surface brightness in a frequency interval

Bλ radiance or surface brightness in a wavelength interval

B(T ) virial coefficient as a function of T

C heat capacity

C number of chemically distinct constituents

C capacitance

CMB cosmic microwave background

c speed of light

c specific heat capacity

D coefficient of self-diffusion

E electric field

E electromotive field

E energy

EF Fermi energy

e = 2.7182818 . . .

eλ spectral emissive power

F Helmholtz function

F number of degrees of freedom
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f frequency

f(v) speed distribution function

f(E) distribution function, Fermi function

G gravitational constant

G Gibbs function

g gravitational acceleration on Earth’s surface

g degeneracy

g(k) density of states as a function of wave vector

g(E) density of states as a function of energy

H enthalpy

H magnetic field strength

I current

I moment of inertia

J heat flux

K equilibrium constant

Kb ebullioscopic constant

Kf cryoscopic constant

k wave vector

kB Boltzmann constant

kF Fermi wave vector

L latent heat

L luminosity

Ledd Eddington luminosity

L� luminosity of the Sun

Lij kinetic coefficients

Lin(z) polylogarithm function

lP Planck length

M magnetization

M Mach number

M� mass of the Sun

M⊕ mass of the Earth

MJ Jeans mass

m magnetic moment

m mass of particle or system

N number of particles

NA Avogadro number

n number density (number per unit volume)

nm number of moles

nQ quantum concentration

P number of phases present

P (x) probability of x

P Cauchy principal value

P̂12 exchange operator

pF Fermi momentum

p pressure

p� standard pressure (1 atmosphere)

Q heat

q phonon wave vector

R gas constant

R resistance

R� radius of the Sun

R⊕ radius of the Earth

S spin

S entropy

STP standard temperature and pressure

T temperature

TB Boyle temperature

Tb temperature at boiling point

TC Curie temperature

Tc critical temperature

TF Fermi temperature

t time

U internal energy

u internal energy per unit volume

ũ internal energy per unit mass

uλ spectral energy density

V speed of particle

v speed of particle

〈v〉 mean speed of particle

〈v2〉 mean squared speed of particlep〈v2〉 root mean squared (r.m.s.) speed of particle

vs speed of sound

W work

Z partition function

Z1 partition function for single-particle state

Z grand partition function

z fugacity
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