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Had anyone predicted that new discoveries could be made in dynamics 
300 years after publication of Newton’s Principia, they would have 
been thought naive or foolish. Yet, in the decade 1977-1987, new 
phenomena in nonlinear dynamics were discovered, principal among 
these being chaotic and unpredictable behavior from apparently deter- 
ministic systems. Since publication in 1987 of Chaotic Vibrations, the 
first edition of this book, new discoveries in dynamics have been made 
in many of the sciences, including biology. And, what should be of 
special interest for the applied scientist or engineer is the emergence 
of applications of the new ideas in chaotic dynamics and fractals. 
Chaotic dynamics has been known to be a common occurrence in fluid 
mechanics, and turbulence remains one of the unsolved problems of 
classical physics. However, it is now generally accepted that unpre- 
dictable dynamics can be found quite easily in simple electrical and 
mechanical systems as well as in other physical systems. 

The purpose of this book is to help translate the new mathematical 
ideas in nonlinear dynamics into language that engineers and scientists 
can use and apply to physical systems. Many fine books have been 
written on chaos, fractals, and nonlinear dynamics (see e.g., Appendix 
D), but most have focused on the mathematical principles. Many 
readers of the first edition cited the inclusion of many physical exam- 
ples as an important feature of the book, and they have urged me to 
keep the physical nature of chaos as a hallmark of any new edition. 
The decision to make a substantial rewrite of Chaotic Vibrations was 



xvi PREFACE 

based on feedback from a number of readers. They asked for more 
tutorial material on maps or difference equations and fractals, and 
they wanted some problems so that the book could be used as a basis 
of a course. 

In this book I have tried to start from a background that a B.S. 
engineering or science graduate would have; namely, ordinary differ- 
ential equations and some intermediate-level dynamics and vibrations 
or system dynamics courses. I have also taken the view of an experi- 
mentalist, namely that the book should provide some tools to measure, 
predict, and quantify chaotic dynamics in physical systems. 

Chapter 1 includes an introduction to classical nonlinear dynamics; 
however, if the book is used as a text, additional supplemental material 
is recommended. Chapter 2 presents an experimentalist’s view of 
chaotic dynamics along with some simple tools such as the PoincarC 
map. Chapter 3 introduces maps and is entirely new. It is an attempt 
to summarize the basic concepts of coupled iterative difference equa- 
tions as they relate to chaotic dynamics. Chapter 4 is a much expanded 
litany of physical applications with lots of references to experimental 
observations of chaos along with the appropriate mathematical mod- 
els. Many readers have found the discussion of experimental methods 
(Chapter 5 )  to be useful, and this too has been expanded. If Chapter 
2 asks the question, “How do we recognize chaos?,’’ then in Chapter 
6 we ask, “How do we predict when chaos will occur?” Topics such 
as period doubling, homoclinic bifurcations, Shilni’kov chaos, and 
Lyaponov exponents are discussed here. The treatment of fractals has 
been much expanded in the new Chapter 7, including an introduction 
to multifractals. One of the new directions in chaos research has been 
in spatiotemporal dynamics. An introduction to some of the simple 
models of spatially extended systems including dynamics of chain 
systems and Lagrangian chaos are discussed in Chapter 8. Finally, in 
Appendix C, an expanded list of chaotic toys and experiments is 
presented; a guide to some of the more popular books on chaos and 
fractals is given in Appendix D. 

Although over 100 new references have been included in this new 
edition, it became clear that the tremendous growth in papers on chaos 
and fractals in the last few years would make it impossible to cover 
all the significant papers. I apologize to those researchers whose fine 
contributions have not been cited, especially those who took the time 
to send me papers, photos, and software. The inclusion of more of the 
papers from my own Cornell research laboratory must be interpreted 
as an author’s vanity and not any measure of their relative importance 
to the field. 
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I have written this new edition not only because of the success of 
the first, but because I believe the new ideas of chaos and fractals are 
important to the fields of applied and engineering dynamics. It is 
already evident that these new geometric and topological concepts 
have become part of the laboratory tools in dynamics analysis in 
the same way that Fourier analysis became an important part of 
engineering systems dynamics decades ago. Already, these tools have 
found application in areas such as machine noise, impact printer dy- 
namics, nonlinear circuit design, laser instabilities, mixing of chemi- 
cals, and even in understanding the dynamics of the human heart. This 
book is only an introduction to the subject, and it is hoped that 
interested students would be inspired to explore the more advanced 
aspects of chaos and fractals, not only for its potential application, 
but for the fascination and beauty of the basic mathematical ideas 
which underlie this subject. 
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INTRODUCTION: 
A NEW AGE OF DYNAMICS 

In the beginning, how !he heuu'ns and eurth rose out of chaos. 
J .  Milton 
Paradise Lost, 1665 

1.1 WHAT IS CHAOTIC DYNAMICS? 

For some, the study of dynamics began and ended with Newton's 
Law of F = mA. We were told that if the forces between particles and 
their initial positions and velocities were given, one could predict the 
motion or history of a system forever into the future, given a big 
enough computer. However, the arrival of large and fast computers 
has not fulfilled the promise of infinite predictability in dynamics. We 
now know that the motion of very simple dynamical systems cannot 
always be predicted far into the future. Such motions have been 
labeled chaotic, and their study has promoted a discussion of some 
exciting new mathematical ideas in dynamics. Three centuries after 
the publication of Newton's Principia (1687), it is appropriate that 
new phenomena have been discovered in dynamics and that new 
mathematical concepts from topology and geometry have entered this 
venerable science. 

1 



2 LNTRODUCTION: A NEW AGE OF DYNAMICS 

The nonscientific concept of chaos' is very old and is often associ- 
ated with a physical state or human behavior without pattern and out 
of control. The term chaos often stirs fear in humankind because it 
implies that governing laws or traditions no longer have control over 
events such as prison riots, civil wars, or a world war. Yet there is 
always the hope that some underlying force or reason is behind the 
chaos or can explain why seemingly random events appear unpre- 
dictable. 

In the physical sciences, the paragon of chaotic phenomena is turbu- 
lence. Thus, a rising column of smoke or the eddies behind a boat 
or aircraft wing* provide graphic examples of chaotic motion. For 
example, the flow pattern behind a cylinder (Figure 1-1) and the mixing 
of drops of color in paint (Color Plate 10) illustrate the basic nature of 
chaotic dynamics. The fluid mechanician, however, believes that these 
events are not random because the governing equations of physics for 
each fluid element can be written down. Also, at low velocities, the 
fluid patterns are quite regular and predictable from these equations. 
Beyond a critical velocity, however, the flow becomes turbulent. A 
great deal of the excitement in nonlinear dynamics today is centered 
around the hope that this transition from ordered to disordered flow 
may be explained or modeled with relatively simple mathematical 
equations. What we hope to show in this book is that these new ideas 
about turbulence extend to other problems in physics as well. It is the 
recognition that chaotic dynamics are inherent in all of nonlinear 
physical phenomena that has created a sense of revolution in physics 
today. 

We must distinguish here between so-called random and chaotic 
motions. The former is reserved for problems in which we truly do 
not know the input forces or we only know some statistical measures 
of the parameters. The term chaotic is reserved for those deterministic 
problems for which there are no random or unpredictable inputs or 

I The origin of the word chaos is a Greek verb which means to gape open and which 
was often used to refer to the primeval emptiness of the universe before things came 
into being (Encyclopaedia Britannica, Vol. 5 ,  p. 276). To the stoics, chaos was 
identified with water and the watery state which follows the periodic destruction of 
the earth by fire. In Metamorphoses, Ovid used the term to denote the raw and 
formless mass in which all is disordered and from which the ordered universe is 
created. A modern dictionary definition of chaos (Funk and Wagnalls) provides two 
meanings: (i) utter disorder and confusion and (ii) the unformed original state of the 
universe. 
* The reader should look at the beautiful collection of photos of fluid turbulent 
phenomena compiled by Van Dyke (1982). 



I .  I WHAT IS CHAOTIC DYNAMICS‘! 3 

Figure 1-1 
C .  Williamson. Cornell University.) 

Turbulent eddies in the flow of  fluid behind a cylinder. (Courtesy of  

parameters. The existence of chaotic or unpredictable motions from 
the classical equations of physics was known by Poincare.’ Consider 
the following excerpt from his essay on Science and Method: 

It may happen that small differences in the initial conditions produce 
very great ones in the final phenomena. A small error in the former will 
produce an enormous error in the latter. Prediction becomes impossible. 

’ Henri Poincare ( 1854-1912) was a French mathematician, physicist, and philosopher 
whose career spanned the grand age of  classical mechanics and the revolutionary ideas 
of relativity and quantum mechanics. H i s  work on problems of  celestial mechanics led 
him to qucstions of  dynamic stability and the problem of finding precise mathematical 
formulas for the dynamic history o f a  complcx system. In  the course of this research 
he invented the “the method of sections.” now known as the Poincnre section or 
PoincarP mup. See Holmes (1990b) for a modern discussion of Poincare’s work. 

An excellent discussion of  uncertainties and determinism and Poincare’s ideas on 
these subjects may be found in the very readable book by L. Brillouin (I9f3, Chap- 
ter 1x1. 



4 INTRODUCTION: A NEW AGE OF DYNAMICS 

In the current literature, chaotic is a term assigned to that class of 
motions in deterministic physical and mathematical systems whose 
time history has a sensitive dependence on initial conditions. 

Two examples of mechanical systems that exhibit chaotic dynamics 
are shown in Figure 1-2. The first is a thought experiment of an 
idealized billiard ball (rigid body rotation is neglected) which bounces 
off the sides of an elliptically shaped billiard table. When elastic impact 
is assumed, the energy remains conserved, but the ball may wander 
around the table without exactly repeating a previous motion for 
certain elliptically shaped tables. 

Another example, which the reader with access to a laboratory can 
see for oneself (see Appendix C), is the ball in a two-well potential 
shown in Figure 1-26. Here the ball has two equilibrium states when 
the table or base does not vibrate. However, when the table vibrates 
with periodic motion of large enough amplitude, the ball will jump 
from one well to the other in an apparently random manner; that is, 
periodic input of one frequency leads to a randomlike output with a 

(b) 

Figure 1-2 (a)  The motion of a ball after several impacts with an eliptically shaped 
billiard table. The motion can be described by a set of discrete numbers (si, c#J~) called 
a map. (b )  The motion of a particle in a two-well potential under periodic excitation. 
Under certain conditions, the particle jumps back and forth in a periodic way-that 
is, LRLR ... , or LLRLLR ... , and so on. For other conditions the jumping is 
chaotic-that is. it shows no pattern in the sequence of symbols L and R. 
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broad spectrum of frequencies. The generation of a continuous spec- 
trum of frequencies below the single input frequency is one of the 
characteristics of chaotic vibrations (Figure 1-3). 

Loss of information about initial conditions is another property of 
a chaotic system. Suppose one has the ability to measure a position 
with accuracy Ax and a velocity with accuracy Au. Then in the posi- 
tion-velocity plane (known as the phase plane) we can divide up the 
space into areas of size Ax Au as shown in Figure 1-4. If we are 
given initial conditions to the stated accuracy, we know the system is 
somewhere in the shaded box in the phase plane. But if the system is 
chaotic, this uncertainty grows in time to N ( t )  boxes as shown in 
Figure 1-46. The growth in uncertainty given by 

N = NOeh' (1-1.1) 

is another property of chaotic systems. The constant h is related to 
the concept of entropy in information theory (e.g., see Shaw, 1981, 
1984) and will also be related to another concept called the Lyapunou 
exponent (see Chapter 6) ,  which measures the rate at which nearby 
trajectories of a system in phase space diverge. A positive value 
of this Lyapunov exponent for a particular dynamical system is a 
quantitative measure of chaos. 



6 INTRODUCTION: A NEW AGE OF DYNAMICS 

(b) 

Figure 1-4 An illustration of the growth of uncertainty or  loss of information in a 
dynamical system. The black box at time f = i,, represents the uncertainty in initial 
conditions. 

Why Fractal Dynamics? 

The reader may ask: With predictability lost in chaotic systems, is 
there any  order left in the system'? For dissipative systems the answer 
is yes; there is an underlying structure to chaotic dynamics. This 
structure is not apparent by looking at the dynamics in the conven- 
tional way, that is, the output versus time or from frequency spectra. 
One must search for this order in phase space (position versus veloc- 
ity). There one will find that chaotic motion exhibits a new geometric 
property called frcictul structure. Examples of fractal patterns are 
illustrated in the color plates. Fractals are geometric structures that 
appear at many scales. One of the goals of this book is to teach how 
to discover the fractal structure in chaotic vibrations as well as to 
measure the loss of information in these randomlike motions. 

Why Study Chaotic Dynamics? 

The subject of chaos has certainly become newsworthy over the past 
few years-the study of mathematical chaos that is. Many popular 
magazines have carried articles on the new studies into mathematics 
of chaotic dynamics. But engineers have always known about 
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chaos-it was called noise or turbulence, and “fudge” factors or 
factors of safety were used to design around these apparent random 
unknowns that seem to crop up in every technical device. So what is 
new about chaos? 

First, the recognition that chaotic vibrations can arise in low-order, 
nonlinear deterministic systems raises the hope of understanding the 
source of randomlike noise and doing something about it. Second, the 
new discoveries in nonlinear dynamics bring with them new concepts 
and tools for detecting chaotic vibrations in physical systems and for 
quantifying this “deterministic noise” with new measures such as 
fractal dimensions and Lyapunov exponents. 

Since the turn of the century, mathematicians have also known that 
certain dynamical systems possessed irregular solutions. PoincarC, as 
noted in the above quote, was aware of chaotic solutions, as was 
Birkhoff in the early part of this century. Van der Pol and Van der Mark 
( 1927) reported “irregular noise” in experiments with an electronic 
oscillator in the magazine Nature. So what is new about chaos? 

What is new about chaotic dynamics is the discovery of a seemingly 
underlying order which holds out the promise of being able to predict 
certain properties of noisy behavior. Perhaps the greatest hope lies in 
the possibility of understanding turbulence in fluid, thermofluid, and 
thermochemical systems. Turbulence is one of the few remaining 
unsolved problems of classical physics, and the recent discovery of 
deterministic systems which exhibit chaotic oscillations has created 
much optimism about solving the mysteries of turbulence. But already 
this optimism has been tempered by the complexities of chaotic dy- 
namics in thermofluid systems, especially the spatial aspects of fluid 
flow as illustrated in Figure 1-1. However, there may be more immedi- 
ate payoffs in the study of chaotic phenomena in systems with fewer 
degrees of freedom, such as low-order nonlinear mechanical devices 
and nonlinear circuits. 

Sources of Chaos 

Chaotic vibrations occur when some strong nonlinearity exists. Exam- 
ples of nonlinearities in mechanical and electromagnetic systems in- 
clude the following: 

Gravitational forces in the solar system 
Nonlinear elastic or spring elements 
Nonlinear damping such as friction 
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Backlash, play, or limiters or bilinear springs 
Fluid-related forces 
Nonlinear boundary conditions 
Nonlinear feedback control forces in servosystems 
Nonlinear resistive, inductive, or capacitative circuit elements 
Diodes, transistors, and other active devices 
Electric and magnetic forces 
Nonlinear optical properties, lasers 

In mechanical continua, nonlinear effects arise from a number of 
different sources which include the following: 

1. Kinematics-for example, convective acceleration, Coriolis and 

2. Constitutive relations-for example, stress versus strain 
3. Boundary conditions-for example, free surfaces in fluids, de- 

4. Nonlinear body forces-for example, magnetic or electric forces 
5. Geometric nonlinearities associated with large deformations in 

centripetal accelerations 

formation-dependent constraints 

structural solids such as beams, plates and shells 

How such nonlinearities enter the laws of mechanics can be seen 
by looking at the equation of momentum balance in continuum me- 
chanics, 

v * t + f = p ($ + v .  v v )  (1-1.2) 

where t is the stress tensor, p is the density, and the right-hand side 
represents the acceleration. Nonlinearities can enter this equation 
through the stress-strain or stress-strain rate relations in the first left- 
hand term. Nonlinear body forces such as occur in magnetohydrody- 
namics or plasma physics can enter the body force term f. Finally, on 
the right-hand side of Eq. (1-1.2), we see an explicit nonlinear term in 
the convective acceleration. This term appears in many fluid flow 
problems and is one of the sources of turbulence in fluids. 

In the classic Navier-Stokes equations of fluid mechanics, derived 
from the momentum balance Eq. ( I -  I .2), one can see that the nonlin- 
earity resides in the convective acceleration or kinematic term: 
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where v is the kinematic viscosity and P is the pressure. The viscous 
term on the left-hand side is linear and is based on the assumption of 
a Newtonian fluid. 

One can imagine that if one goes beyond the study of the 
Navier-Stokes equation to include nonlinear viscous fluids (non-New- 
tonian fluids) or elastoplastic materials, there is a vast array of non- 
linear and chaotic phenomena to be discovered in mechanics, electro- 
magnetics, and acoustics. 

Where Have Chaotic Vibrations Been Observed? 

From the previous discussion, one can see that chaotic phenomena 
can be observed in many physical systems. Since the writing of the 
first edition of this book, many new phenomena have been reported 
in the scientific and engineering literature. A partial list of the physical 
systems known to exhibit chaotic vibrations includes the following: 

Selected closed- and open-flow fluid problems 
Selected chemical reactors 
Vibrations of buckled elastic structures 
Mechanical systems with play or backlash such as gears 
Flow-induced or aeroelastic problems 
Magnetomechanical actuators 
Large, three-dimensional vibrations of structures such as beams 

Systems with sliding friction 
Rotating or gyroscopic systems 
Nonlinear acoustic systems 
Simple forced circuits with diodes or p-n transistor elements 
Harmonically forced circuits with nonlinear capacitance and 

inductance elements 
Feedback control devices 
Laser and nonlinear optical systems 
Video feedback 

and shells 

Systems which are suspected of behaving in a chaotically dynamic 
way include: 
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A few objects in the solar system (e.g., Hyperion, Halley's comet) 
Cardiac oscillations 
Earthquake dynamics 
Extreme maneuver aircraft and ship dynamics 
Iterative optimal design algorithms 
Econometric models 

These are but a few of the many phenomena in which chaos has been 
uncovered. Descriptions of specific examples are given in Chapter 4. 
A question asked by most novices to the field of chaotic dynamics is: 
If chaos is so pervasive, why was it not seen earlier in experiments'? 
Two responses to this question come to mind. First, if one goes back 
and reads earlier papers on experiments in nonlinear vibrations, one 
often finds a brief mention of nonperiodic phenomena buried in a 
discussion of more classical nonlinear vibrations (see Chapter 4 for 
examples). Second, Joseph Keller, an applied mathematician at Stan- 
ford University, in responding to this question in a lecture, speculates 
that earlier scientists and engineers were taught almost exclusively in 
linear mathematical ideas, including linear algebra and differential 
equations. Hence, it was natural, Keller summarizes, that when ap- 
proaching dynamic experiments in the laboratory, they looked only 
for phenomena that fit the linear mathematical models. 

As to why theorists had not come upon those ideas earlier, there 
is evidence that some did, like Poincare and Birkhoff. And, those 
dynamicists working in energy-conserving systems (Hamiltonian dy- 
namics), especially theorists in the former Soviet Union, knew about 
stochastic behavior in certain theoretical models (see, e .g., Sagdeev 
et al., 1988). However, specific manifestations of chaotic solutions 
had to wait for the arrival of powerful computers with which to calcu- 
late the long time histories necessary to observe and measure chaotic 
behavior. Some day in the future an interesting history will be written 
on the interdependence between computer technology and the mathe- 
matics of fractal and nonlinear processes in the late 20th century. 

1.2 CLASSICAL NONLINEAR VIBRATION THEORY: 
A BRIEF REVIEW 

In this section, we present a short review of classical vibration theory, 
both linear and nonlinear. This is meant simply to define and review 
a few ideas in nonlinear dynamics concerning periodic vibration so we 
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may later be able to contrast these with chaotic vibration. Readers 
desiring more detailed discussion in classical nonlinear vibration 
should consult books such as Stoker (1950), Minorsky (1962), Nayfeh 
and Mook (1979), or Hagedorn (1988). We begin with a brief review 
of linear vibration concepts. 

Linear Vibration Theory 

The classic paradigm of linear vibrations is the spring-mass system 
shown in Figure 1-5 along with its electric circuit analog. When there 
is no disturbing force, the undamped system vibrates with a frequency 
that is independent of the amplitude of vibration: 

0 0  = (x)"' = (L)l'* LC (1-2.1) 

In this state, energy flows alternately between elastic energy in the 
spring (electric energy in the capacitor C )  and kinetic energy in the 
mass (magnetic energy in the inductor 15). The addition of damping 
c' # 0, R # 0) introduces decay in the free vibrations so that the 
amplitude of the mass (or charge in the circuit) exhibits the following 
time dependence: 

fbl 
Figure 1-5 ( a )  The classic, mechanical spring-mass-dashpot oscillator. (b )  The 
electrical circuit analog of a damped oscillator. 
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x ( t )  = A,e-Y‘cos[(of - y2)”2 t + cpO] (1-2.2) 

where 

C R 
y = ~  or y = z  

The system is said to be underdamped when y2 < w;, critically damped 
when y 2  = of, and overdamped when y2 > w;. 

One of the classic phenomena of linear vibratory systems is that of 
resonance under harmonic excitation. For this problem, the differen- 
tial equation that models the system is of the form (e.g., see Thompson, 
1965) 

x + 2y.i + w;x = fo cos at (1-2.3) 

If one fixes fo and varies the driving frequency a, the absolute 
magnitude of the steady-state displacement of the mass (after tran- 
sients have damped out) reaches a maximum close to the natural 
frequency wo, or more precisely at = (o; - Y ~ ) ” ~ .  This phenomenon 
is sketched in Figure 1-6. The effect is more pronounced when the 
damping is small. This is indeed the case in structural systems, and 
engineers are familiar with the problem of fatigue failures in structures 
and machines owing to large, resonance-excited vibrations. 

When a linear mechanical system has many degrees of freedom, 

a n 
Figure 1-6 Classical resonance curves (response amplitude versus frequency) for 
the forced motion of a damped linear oscillator for different values of the damping y .  
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one often models it as a coupled set of spring-mass oscillators leading 
to the phenomena of multiple resonant frequencies when the system 
is harmonically forced. This behavior has often led vibration analysts 
to assume that every peak in a vibration frequency spectrum is associ- 
ated with at least one mode of degree of freedom. In nonlinear vibra- 
tions, this is not the case. A one-degree-of-freedom nonlinear system 
can generate many frequency spectra in contrast to its linear counter- 
part, as was shown in Figure 1-3. In any event, the mathematical 
theory of linear systems is well understood and has been codified in 
sophisticated computer software packages. Nonlinear problems are 
another story. 

Nonlinear Vibration Theory 

Nonlinear effects can enter the problem in many ways. A classic 
example is a nonlinear spring where the restoring force is not linearly 
proportional to the displacement. For the case of a symmetric nonlin- 
earity (equal effects for compression or tension), the equation of mo- 
tion takes the following form: 

x + 2yx + a x  + p x ’  = f ( t> ( 1 -2.4) 

When the system is undamped andf(t) = 0, periodic solutions exist 
where the natural frequency increases with amplitude for /3 > 0. This 
model is often called a Duffing equation, after the mathematician who 
studied it. 

If the system is acted on by a periodic force, in the classical theory 
one assumes that the output will also be periodic. When the output 
has the same frequency as the force, the resonance phenomena for 
the nonlinear spring is shown in Figure 1-7. If the amplitude of the 
forcing function is held constant, there exists a range of forcing fre- 
quencies for which three possible output amplitudes are possible as 
shown in Figure 1-7. One can show that the dashed curve in Figure 
1-7 is unstable so that a hysteretic eflect occurs for increasing and 
decreasing frequencies. This is called ajump phenomenon and can be 
observed experimentally in many mechanical and electrical systems. 

Other periodic solutions can also be found such as subharmonic 
and superharmonic vibrations. If the driving force has the form& cos 
wt ,  then a subharmonic oscillation may take the form xo cos(wtln + p) 
plus higher harmonics (n is an integer). Subharmonics play an important 
role in prechaotic vibrations, as we shall see later. 
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Figure 1-7 Classical resonance curve for a nonlinear oscillator with a hard spring 
when the response is periodic with the same period as the driving force. [a and ,8 
refer to Eq. (1-2.41.1 

Nonlinear resonance theory depends on the assumption that peri- 
odic input yields periodic output. However, it is this postulate that 
has been challenged in the new theory of chaotic vibrations. 

Self-excited oscillations are another important class of nonlinear 
phenomena. These are oscillatory motions which occur in systems 
that have no periodic inputs or periodic forces. Several examples are 
shown in Figure 1-8. In the first, the friction created by relative motion 
between a mass and moving belt leads to oscillations. In the second 
example there exists the whole array of aeroelastic vibrations in which 
the steady flow of fluid past a solid object on elastic restraints produces 
steady-state oscillations. A classic electrical example is the vacuum 
tube circuit studied by Van der Pol and shown in Figure 1-9. 

In each case, there is a steady source of energy, a source of dissipa- 
tion, and a nonlinear restraining mechanism. In the case of the Van 
der Pol oscillator, the source of energy is a dc voltage. It manifests 
itself in the mathematical model of the circuit as a negative damping: 

x - yi(1 - px2)  + 0;x = 0 (1-2.5) 

For low amplitudes, energy can flow into the system, but at higher 
amplitudes the nonlinear damping limits the amplitude. 

In the case of the Froude pendulum (e.g., see Minorsky, 1962, 
Chap. 28), the constant rotation of the motor provides an energy input. 
For small vibrations the nonlinear friction is modeled as negative 
damping, whereas for large vibrations the amplitude of the vibration 
is limited by the nonlinear term pb3:  

8 + a sin 8 = T~ + - pe2) (1-2.6) 
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t v  

(C) 

Figure 1-8 Example of self-excited oscillations: (a )  dry friction between a mass and 
moving belt; ( b )  aeroelastic forces on a vibrating airfoil; and (c) negative resistance 
in an active circuit element. 

The oscillatory motions of such systems are often called limit cycles. 
The phase plane trajectories for the Van der Pol equation is shown 
in Figure 1-10. Small motions spiral out to the closed asymptotic 
trajectory, whereas large motions spiral onto the limit cycle. (In Fig- 
ures 1-10 and 1-11, y = k.) 

Two questions are often asked when studying problems of this kind: 
( I )  What is the amplitude and frequency of the limit cycle vibrations? 
(2) For what parameters will stable limit cycles exist? 

In the case of the Van der Pol equation, it is convenient to normalize 
the dependent variable by and the time by o;' so the equation 
assumes the form 
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c- 
I P  = f (  Vp, VG) 

! 

)It I i vG : 

== + 
- & j ( l  - X * )  + x = 0 (1-2.7) 

where E = y / w o .  For small E ,  the limit cycle solution is a circle of 
radius 2 in the phase plane; that is, 

x = 2 cos t + * * *  (1-2.8) 

where the + indicates third-order harmonics and higher. When E 

is larger, the motion takes the form of relaxation oscillations shown 

Figure 
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1-10 Limit cycle solution in the phase plane for the Van der Pol oscillator. 
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Quasiperiodic Oscillators 

A more complicated problem is the case when a periodic force is 
added to the Van der Pol system: 

j i  - yk(1 - px?) + w;. = fo cos o,t ( I  -2.9) 

Because the system is nonlinear, superposition of free and forced 
oscillations is not valid. Instead, if the driving frequency is close to 
the limit cycle frequency, the resulting periodic motion will become 
entrained at the driving frequency. Frequency locking is a well-known 
classical phenomenon in nonlinear oscillations. 

When the difference between driving and free oscillation frequen- 
cies is large, a new phenomenon is possible in the Van der Pol sys- 
tem-combination oscillations-sometimes called almost periodic or 
yuasiperiodic solutions. Combination oscillation solutions take the 
form 

x = hi cos wit  + b2 cos ~ 2 t  (1-2.10) 

When wI and w2 are incommensurate, that is, w,/w2 is an irrational 
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number, the solution is said to be quasiperiodic. In the case of the 
Van der Pol equation [Eq. (1-2.9)], o2 = oo; this is the free oscillation 
limit cycle frequency (e.g., see Stoker, 1950, p. 166). 

More will be said about quasiperiodic vibrations later, but because 
they are not periodic, they may be mistaken for chaotic solutions, 
which they are not. [For one, the Fourier spectrum of Eq. (1-2.10) is 
just two spikes at w = oI , 02, whereas for chaotic solutions the 
spectrum is broad and continuous.] 

The phase plane portrait of (1-2.10) is not closed when o1 and 
o2 are incommensurate, so another method is used to portray the 
quasiperiodic function graphically. To do this we stroboscopically 
sample x ( t )  with a period equal to 27r/o, ; that is, let 

n27r t ,  = - 
01 

(1-2.11) 

and denote x(r , )  = x,, k(t,) = u,. Then Eq. (1-2.10) becomes 

27r no2 27r nu2 
01 " 1  

x, = b, f b,cos- , u, = -o,b2sin- ( 1-2.12) 

As n increases, the points x,, u, move around an ellipse in the 
stroboscopic phase plane (called a PoincarP map), as shown in Figure 
1-12. When w2/01  is incommensurate, the set of points {x,, u,} for 
n --j fill in a closed curve given by 

/ 

Figure 1-12 Stroboscopic plot of quasiperiodic solutions of the Van der Pol equation 
(Eq. (1-2.9)] in the Poincark plane X. 
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(1-2.13) 

Quasiperiodic oscillations also occur in systems with more than one 
degree of freedom. 

Dynamics of Lossless or Conservative Systems 

In some areas of physics, one can assume that there are no energy 
dissipation mechanisms. Furthermore, in many mechanical and elec- 
tromagnetic systems the forces and voltages can be derived from a 
potential energy function. Sometimes these systems are called conser- 
vative or Hamilronian dynamics after the great Irish dynamicist, Wil- 
liam R. Hamilton (1805-1865), whose mathematical formulation 
helped clarify the analysis of such systems. These systems exhibit a 
set of dynamic phenomena that are discussed in many of the classical 
and modern books on dynamics such as Goldstein (1980), Arnold 
(1978), and Sagdeev, Usikov, and Zaslavsky (1988). Among the inter- 
esting phenomena that differ from linear dynamics are nonlinear reso- 
nance, stochastic chaos, and diffusion in phase space. What further 
distinguishes conservative systems from dissipative oscillators is that 
there are no transient motions in the dynamics followed by limiting 
motions. In other words, there are no attractors in conservative dy- 
namics. Each initial condition results is a unique orbit, which may be 
periodic, quasiperiodic, or chaotic. However, the chaotic motion does 
not have the kind of fractal structure that we find in dissipative 
systems. 

Conservative or Hamiltonian dynamics is often used in applications 
to orbital dynamics in astronomy or the motions of charged particles 
in plasma devices or high-energy accelerators. Also, the mathematics 
of such lossless systems is sometimes used as the starting point in the 
analysis of systems with small dissipation. 

Nonlinear Resonance in Conservative Systems 

This is a phenomenon that is central to the study of conservative 
dynamics yet is not easily accessible to the novitiate. This is because 
some of the discoveries were only made in the second half of the 20th 
century and also because the phenomena is still coded by names of 
the theoreticians who made these discoveries such as Kolmogorov, 
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Arnold, and Moser (KAM theory). However, we will make an attempt 
at a brief description without the mathematical rigor. 

Resonance is a phenomenon that occurs between two or more 
coupled oscillating systems. Two models are the following: 

(1  -2.14) 

and 

By rewriting (1-2.15) we obtain a form similar to (1-2.14) 

(1  -2.15) 

(1-2.16) 

y + R2y = 0 

For example, for the rotation of a pendulum under gravity, we obtain 
V(x) = wi(1 - cos x), using nondimensional variables. The second 
model (1-2.15) is a special case of the first (1-2.14) where the second 
oscillator is uncoupled from the first. 

An example of a conservative system with periodic, quasiperiodic, 
and chaotic or stochastic motions can be found in the periodically 
forced pendulum. Different initial conditions can lead to all three types 
of motion as illustrated in Figure 1-13 for a fixed forcing amplitude 
and frequency. In this figure the continuous motion is replaced by a 
set of points (0, , b,) which represent the angular position and velocity 
at times synchronous with the phase of the driving force. Using this 
so-called Poincark section, periodic orbits show up as a finite set of 
points, quasiperiodic orbits show up as closed curves, and stochastic 
orbits show up as the diffuse set of points shown in Figure 1-13. These 
chaotic or stochastic orbits seem to be close to the saddle points of 
the unforced motions of the pendulum shown in Figure 1-13. As we 
shall see in Chapters 3 and 6, the existence of saddle points gives one 
a clue to the possibilities for chaos. 
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Poincare Map:Pendulum(A=0.05,~= 1.055) 

THETA 
Figure 1-13 Stroboscopic pictures [l , ,  = n(27r/fl)] of the dynamics of a periodically 
forced pendulum with no damping for different initial conditions. Isolated dots indicate 
periodic motion, continuous lines represent quasiperiodic motion, and a diffuse set 
of dots represents chaotic or stochastic orbits. (i + sin x = A sin wt) 

Frequency Spectra of Nonlinear Oscillators 

In the case of (1.2-15) when A = 0, the first oscillator can exhibit 
periodic oscillations as in a linear system, but the frequency depends 
on the initial conditions. Thus, for example, the Duffing oscillator 

.k + 0;x + px3 = 0 (1-2.17) 

(discussed above) has a continuous frequency spectrum shown in 
Figure 1-14a. The spectrum shown in Figure 1-146 is for a particle 
bouncing between two stationary walls (sometimes called a Fermi 
oscillator), where the frequency depends on the initial velocity, 

If we now couple this oscillator to a second oscillator, we see 
that it is very easy to get a resonance by choosing the right initial 
conditions. 

In a classical undamped linear oscillator with natural frequency wo 
and driving frequency R,  resonance occurs only when R = wo. (In 
many mechanical and civil engineering applications, resonance means 
that a small oscillator can easily drive a large structure into unwanted 
large-amplitude oscillations.) However, in a nonlinear oscillator, such 
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% 
(a) (b)  

Figure 1-14 (a )  Frequency spectrum for the free vibrations of the Duffing oscillator 
[Eq. (1-2.17)] without damping. X,,, represents the initial amplitude. (b )  Frequency 
spectrum of  a mass oscillating between two walls. V,, represents the initial velocity. 

as the Duffing example (1-2.17), one can often achieve resonance at 
either multiples or integer fractions (i.e., harmonics or subharmonics) 
of the driving frequency R by simply choosing the right amplitude A 
that produces a frequency of oscillation o ( A )  such that 

w ( A )  = ps l lq ,  or qo = pa (1 -2.18) 

Thus theoretically, the consequence of a continuous frequency spec- 
trum for the free oscillations is an injnite number of possible reso- 
nances in the driven oscillator problem (1-2.15). The same can be said 
for two coupled oscillators (1-2.14). 

For two coupled oscillators (e.g., two pendulums in Figure 1-15), 
we identify a measure of the amplitude of each oscillator J ,  , J 2  and 
the phase or relative time in the cycle of oscillation 6, , 02,  such that 
ol = 8,  , w2 = b2 are the frequencies. Then nonlinear resonance can 
occur when 

nb, = me2 (1-2.19) 

which can be satisfied by choosing the proper initial conditions JI0 
J Z 0 .  Thus, the resonance condition can be rewritten as 

As in the linear case, resonance means that energy can be easily 
exchanged between two systems, which can lead to interesting and 
perhaps even chaotic dynamics. A classic experiment in this phenome- 
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Figure 1-15 Schematic picture of the dynamics of two coupled oscillators. 

non is a compound pendulum with a 2 : 1 frequency ratio. Experimental 
models are described by Rott (1970) and in Appendix C. 

In general, when there are three or more coupled nonlinear oscilla- 
tors, each of which has some identifiable phase or angle variable ei 
such that b1 = wi is the frequency, then nonlinear resonance can occur 
when the following relation holds: 

nw, + rnw2 + . * -  + p a ,  = 0 ( 1  -2.2 1) 

where n, rn, p, and so on, are positive or negative integers. 
The consequences of nonlinear resonance in coupled oscillators 

are most profound and form the basis for understanding chaos in 
conservative or nondissipative dynamic systems. 

Torus Map 
The motion of two coupled oscillators can sometimes be visualized as 
a particle moving on a toroidal surface as shown in Figure 1-12. If 
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the particle motion on the torus consists of a position vector r ( t )  

r = R + p  

Here the motion around the major axis given by R(t) occurs at fre- 
quency w1 , whereas the motion around the minor axis described by 
p(t) has a frequency w 2 .  

The motion x ( t )  in Eq. (1-2.10) can then be thought of as two 
projections of this particle motion; that is, x ( t )  = A'(?) + ( ( t ) .  X ( t )  is 
the scalar projection of R onto the fixed plane Z shown in Figure 1-12, 
and t(t) is the projection p onto the horizontal plane. 

Another useful description of the dynamics is to only look at the 
points of penetration of the toroidal orbit onto the fixed plane C as it 
slices through one side of the torus. This is known as a synchronous 
point mapping (e.g., see Minorsky, 1962) or, in modern terms, a 
Poincare' m a p  as shown in Figure 1-12. To obtain an analytical expres- 
sion for this map, we define another state variable V ( t )  as simply the 
time derivative of the multifrequency motion x ( t )  = A l  cos w , t  + 
A,cos wzt .  Then one chooses a phase angle of the first oscillator (e.g., 
w,tn = 27rn). The phase plane dynamics are then described by two 
discrete time expressions (u,i = i ( t , ) )  

(1-2.22) 

Finally, by rescaling the vertical axis and using polar coordinates, 
one obtains a first-order difference equation-that is, define 

and 

More generally, one often finds a map of the form 

(1-2.23) 

(1-2.24) 

(P,i + I = (P,i + F(P0,) (1-2.25) 

with 



1.2 CLASSICAL NONLINEAR VIBRATION THEORY: A BRIEF REVIEW 25 

F(p, + 2n) = F(9, )  ( I  -2.26) 

This map is known as a circle map or is sometimes known as a twist 
mup. One can see that in the simplest case when F = 27rw2/w, and 
when wz/w, is irrational, the succession of points on the orbit will trace 
out a circle in the (x,, u,/w,)  plane. On the other hand, if w,/wz = p / q  
( p l q  are integers), then for Aq = v , , + ~  - p,,, the orbit will visit 
precisely “p” points around the circle. 

This discussion may seem like a complicated way to view the motion 
of two oscillators, but this model of toroidal motion and the resulting 
circle map has become an important conceptual as well as practical 
analytical tool to analyze complex dynamics of coupled systems, as 
will be shown in a later chapter. 

Local Geometric Theory of Dynamics 

Modern ideas about nonlinear dynamics are often presented in geomet- 
ric terms or pictures. For example, the motion of an undamped oscilla- 
tor, X + w0x = 0, can be represented in the phase plane (x, i) by an 
ellipse. In this picture, time is implicit and the time history runs 
clockwise around the ellipse. The size of the ellipse depends on the 
given initial conditions for (x, x). 

More generally for nonlinear problems, one first finds the equilib- 
rium points of the system and examines the motion around each 
equilibrium point. The local motion is characterized by the nature of 
the eigenvalues of the linearized system. Thus, if the dynamical model 
can be represented by a set of first-order differential equations 

x = f(x) ( 1  -2.27) 

where x represents a vector whose components are the state variables, 
then the equilibrium points are defined by x = 0, or 

f(x,) = 0 (1-2.28) 

For example, in the case of the harmonic oscillator, there is just 
one equilibrium pint at the origin x = (x, u E i), x,  = 0, u, = 0. To 
determine the nature of the dynamics about x = x,, one expands the 
function f(x) in a Taylor series about each equilibrium point x, and 
examines the dynamics of the linearized problem. 

To illustrate the method, consider the set of two first-order equa- 
tions: 
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(1-2.29) 

When time does not appear explicitly in the functions f( ) and 
g( ), the problem is called autonomous, The equilibrium points must 
satisfy two equations: f ( x , ,  y e )  = 0 and g(x,, y e )  = 0. Introducing 
small variables about each equilibrium point, that is, 

x = x e + r )  and y = y , + (  

the linearized system can be written in the form 

(1-2.30) 

where the derivatives are evaluated at the point (x,, y e ) .  
Some authors use the notation VF or DF, where F = (f, g ) ,  to 

represent the matrix of partial derivatives in Eq. (1-2.30). The nature 
of the motion about each equilibrium point is determined by looking 
for eigensolutions 

(1-2.31) 

where Q and p are constants. The motion is classified according to the 
nature of the two eigenvalues of DF [i.e., whether s is real or complex 
and whether Real(s) > 0 or < 0.1 

Sketches of trajectories in the phase plane for different eigenvalues 
are shown in Figure 1-16. For example, the saddle point is obtained 
when both eigenvalues s are real, but sI < 0 and s2 > 0. A spiral occurs 
when sI and s2 are complex conjugates. 

The stability of the linearized system (1-2.30) depends on the sign 
of Real(s). When one of the real parts of sI and s2 is positive, the 
motion about the equilibrium point is unstable. If the roots are not 
pure imaginary numbers, then theorems exist to show that the local 
motion of the linearized system is qualitatively similar to the original 
nonlinear system (1-2.29). Pure oscillatory motion in the linearized 
system (s = +io) requires further analysis to establish the stability of 
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Figure 1-16 Classical phase plane portraits near four different types of equilibrium 
points for a system of two time-independent differential equations. 

the nonlinear system. These ideas for a second-order system can be 
generalized to higher-dimensional phase spaces (e.g., see Arnold, 1978 
or Guckenheimer and Holmes, 1983). 

Bifurcations 

As parameters are changed in a dynamical system, the stability of the 
equilibrium points can change as well as the number of equilibrium 
points. The study of these changes in nonlinear problems as system 
parameters are varied is the subject of bifurcation theory. Values of 
these parameters at which the qualitative or topological nature of 
motion changes are known as critical or bifurcation values. 

As an example, consider the solutions to the undamped Duffing 
oscillator 

f + a x  + px3 = 0 (1-2.32) 

One can first plot the equilibrium points as a function of a. As a 
changes from positive to negative, one equilibrium point splits into 



28 INTRODUCTION: A NEW AGE OF DYNAMICS 

three points. Dynamically, one center is transformed into a saddle 
point at the origin and two centers (Figure 1-17). This kind of bifurca- 
tion is known as a pitchfork. Physically, the force - ( a x  + p x 3 )  
can be derived from a potential energy function. When a becomes 
negative, a one-well potential changes into a double-well potential 
problem. This represents a qualitative change in the dynamics, and 
thus a = 0 is a critical bifurcation value. 

Another example of a bifurcation is the emergence of limit cycles 
in physical systems. In this case, as some control parameter is varied, 
a pair of complex conjugate eigenvalues sI , s2 = +iw + y cross from 
the left-hand plane (y < 0, a stable spiral) into the right-hand plane 
( y  > 0, an unstable spiral) and a periodic motion emerges known as 

t 

Figure 1-17 Phase plane trajectories for an oscillator with a nonlinear restoring force 
[Duffing’s equation, Eq. (1-2.3211: (a )  Hard spring problem; a,p > 0. ( b )  Soft spring 
problem; a > 0, 0 < 0. (c )  Two-well potential; a < 0, p > 0. 
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t x p  Stable 

Stable 
+ 
a %- 

Figure 1-18 Bifurcation diagrams: ( a )  Pitchfork bifurcation for Duffing’s equation 
[Eq. ( I-2.32)]-transition from one to two stable equilibrium positions. ( h )  Hopf 
bifurcation-transition from stable spiral to limit cycle oscillation. 

a limit cycle. This type of qualitative change in the dynamics of a 
system is known as a Hopf  hifurcution and is illustrated in Figure 1-18. 

The theory we have just described is called a local analysis because 
it only tells what happens dynamically in the vicinity of each equilib- 
rium point. The piece de resistance in classical dynamical analysis is 
to piece together all the local pictures and describe a global picture of 
how trajectories move between and among equilibrium points. 

Such analysis is tractable when bundles of different trajectories 
corresponding to different initial conditions move more or less to- 
gether as a laminar fluid flow. Such is the case when the phase space 
has only two dimensions. However, when there are three or more 
first-order equations, the bundles of trajectories can split apart and 
get tangled up into what we now call chaotic motions. 

Strange Attractors 

From this brief review, one can see that there are three classic types 
of dynamical motion: 
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1. Equilibrium 
2. Periodic motion or a limit cycle 
3. Quasiperiodic motion 

These states are called attractors, because if some form of damping 
is present the transients decay and the system is “attracted” to one 
of the above three states. The purpose of this book is to describe 
another class of motions in nonlinear vibrations that is not one of the 
above classic attractors. This new class of motions is chaotic in the 
sense of not being predictable when there is a small uncertainty in the 
initial condition, and is often associated with a state of motion called 
a strange attractor. 

The classic attractors are all associated with classic geometric ob- 
jects in phase space, the equilibrium state is associated with a point, 
the periodic motion or limit cycle is associated with a closed curve, 
and the quasiperiodic motion is associated with a surface in a three- 
dimensional phase space. The “strange attractor,” as we shall see in 
later chapters, is associated with a new geometric object (new relative 
to what is now taught in classical geometry) called afractal set. In a 
three-dimensional phase space, the fractal set of a strange attractor 
looks like a collection of an infinite set of sheets or parallel surfaces, 
some of which are separated by distances which approach the infini- 
tesimal. This new attractor in nonlinear dynamics requires new mathe- 
matical concepts and a language to describe it as well as new experi- 
mental tools to record it and give it some quantitative measure. The 
relationship between bifurcations and chaos is discussed in a recent 
book by Thompson and Stewart (1986). 

1.3 MAPS AND FLOWS 

Mathematical models in dynamics generally take one of three forms: 
differential equations (or j lows),  difference equations (called maps), 
and symbol dynamic equations. 

The term flow refers to a bundle of trajectories in phase space 
originating from many contiguous initial conditions. The continuous 
time history of a particle is the most familiar example of a flow to 
those in engineering vibrations. However, certain qualitative and 
quantitative information may be obtained about a system by studying 
the evolution of state variables at discrete times. In particular, in this 
book we shall discuss how to obtain difference evolution equations 
from continuous time systems through the use of the PoincarC section. 
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These Poincart maps can sometimes be used to distinguish between 
various qualitative states of motion such as periodic, quasiperiodic, 
or chaotic. In some problems not only time is restricted to discrete 
values, but knowledge of the state variables may be limited to a fi- 
nite set of values or categories such as red or blue or zero or one. 
For example, in the double-well potential of Figure 1-26, one 
may be interested only in whether the particle is in the left or right 
well. Thus, an orbit in time may consist of a sequence of symbols 
LRRLRLLLR ... . A periodic orbit might be LRLR ... or LLRLLR 
. . . . In the new era of nonlinear dynamics, all three types of models 
are used to describe the evolution of physical systems. [See 
Crutchfield and Packard (1982) or Wolfram (1986) for a discussion of 
symbol dynamics.] 

In a periodically forced vibratory system, a PoincarC map may be 
obtained by stroboscopically measuring the dynamic variables at some 
particular phase of the forcing motion. In an n-state variable problem, 
one can obtain a Poincare section by measuring the n - 1 variables 
when the nth variable reaches some particular value or when the phase 
space trajectory crosses some arbitrary plane in phase space as shown 
in Figure 1-19 (see also Chapters 2 and 5). If one has knowledge of the 
time history between two penetrations of this plane, one can relate 
the position at t ,+  I to that at t ,  through given functions. For example, 
for the case shown in Figure 1-19, 

t” 

(1-3.1) 

Figure 1-19 
from a continuous time dynamical model. 

Poincare section: construction of a difference equation model (map) 
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The mathematical study of such maps is similar to that for differen- 
tial equations. One can find equilibrium or fixed points of the map, 
and one can classify these fixed points by the study of linearized maps 
about the fixed point. If x, + = f(x,) is a general map of say n variables 
represented by the vector x, then a fixed point satisfies 

The iteration of a map is often written f(f(x)) = fi2)(x). Using this 
notation, an “m-cycle” or m-periodic orbit is a fixed point that repeats 
after m iterations of the map, that is, 

x, = f’“’(X0) (1-3.3) 

Implied in these ideas is the notion that periodic motions in continu- 
ous time history show up as fixed points in the difference equations 
obtained from the PoincarC sections. Thus, the most generally ac- 
cepted paradigms for the study of the transition from periodic to 
chaotic motions is the study of simple one-dimensional and two-dimen- 
sional maps. (See Chapter 3 for a discussion of maps.) 

Three Paradigms for Chaos 

Perhaps the simplest example of a dynamic model that exhibits chaotic 
dynamics is the logistic equation or population growth model (e.g., 
see May, 1976): 

X, + 1 = U X ,  - bx: (1-3.4) 

The first term on the right-hand side represents a growth or birth 
effect, whereas the nonlinear term accounts for the limits to growth 
such as availability of energy or food. If the nonlinear term is neglected 
( b  = 0), the linear equation has an explicit solution: 

x,,1 = ax,; x, = xoan (1-3.5) 

This solution is stable for la1 < 1 and unstable for la1 > 1. In  the 
latter case, the linear model predicts unbounded growth, which is 
unrealistic. 

The nonlinear model (1-3.4) is usually cast in a nondimensional 
form: 
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xn I 

This equation has at least one equilibrium point, x = 0. For A > I ,  
two equilibrium points exist [i.e., solutions of the equation x = 
Ax( I - x)]. To determine the stability of a mapx,., = f ( x , ) ,  one looks 
at the value of the slope I f ’ (x) l  evaluated at the fixed point. The fixed 
point is unstable if I f ’ (  > 1. In  the case of the logistic equation [Eq. 
(1-3.6)] when I < A < 3, there are two fixed points, namely, x = 0 
and x = ( A  - l ) / A ;  the origin is unstable and the other point is stable. 

For A = 3, however, the slope at x = ( A  - 1)lA becomes greater 
than I ( f ”  = 2 - A )  and both equilibrium points become unstable. For 
parameter values of A between 3 and 4, this simple difference equation 
exhibits many multiple-period and chaotic motions. At A = 3, the 
steady solution becomes unstable, but a two-cycle or double-period 
orbit becomes stable. This orbit is shown in Figure 1-20. The value of 
x, repeats every two iterations. 

xn A 

Period-2 Penod-4 

w 
1 1 1 1 1 1 I I  t I I I  1 1  I I I I I ,  

Chaotic M 
n 

Figure 1-20 Possible solutions to the quadratic map [logistic equation (I-3.6)]. Top: 
Steady period- I motion. Middle: Period-2 and period-4 motions. Eorrorn : Chaotic 
motions. 
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For further increases of A ,  the period-2 orbit becomes unstable and 
a period-4 cycle emerges, only to bifurcate to a period-8 cycle for a 
higher value of A. This period-doubling process continues until A 
approaches the value A, = 3.56994 ... . Near this value, the sequence 
of period-doubling parameter values scales according to a precise law: 

(1-3.7) 

The limit ratio is called the Feigenbaum number, named after the 
physicist who discovered the properties of this map in 1978. (See 
Gleick, (1987), for the story of this discovery) 

Beyond h,, chaotic iterations can occur; that is, the long-term 
behavior does not settle down to any simple periodic motion. There 
are also certain narrow windows AA for A, < A < 4 for which periodic 
orbits exist. Periodic and chaotic orbits of the logistic map are shown 
in Figure 1-21 by plotting x,, I versus x,. 

This map is not only useful as a paradigm for chaos, but it has been 
shown that other maps x,, I = f ( x , ) ,  in whichf(x) is double or multiple 
valued, behave in a similar manner with the same scaling law (1-3.7). 
Thus, the phenomenon of period doubling or bifurcation parameter 
scaling has been called a universal property for certain classes of one- 
dimensional difference equation models of dynamical processes. 

/ 

Nonperiodic 
orbit 

L 
3 X n  

Figure 1-21 Graphical solution to a first-order difference equation. The example 
shown is the quadratic map (1-3.6). 
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Period doubling and Feigenbaum scaling (1-3.7) have been observed 
in many physical experiments (see Chapter 4). This suggests that for 
many continuous time history processes, the reduction to a difference 
equation through the use of the PoincarC section has the properties of 
the quadratic map (1-3.4I-hence the importance of maps to the study 
of differential equations. [See Chapter 3 for a further discussion of the 
logistic equation (1-3.4).] 

Henon and Horseshoe Maps 

Of course, most physical systems require more than one state variable, 
and it is necessary to study higher-dimensional maps. One extension 
of the Feigenbaum problem (1-3.6) is a two-dimensional map proposed 
by Henon (1976), a French astronomer: 

X,+I = 1 - a x , ? ,  + y ,  

Y ~ + I  = P X n  

(1-3.8) 

Note that if /3 = 0, we recover the quadratic map. When [PI < 1, the 
map contracts areas in the xy plane. It also stretches and bends areas 
in the phase plane as illustrated in Figure 1-22. This stretching, con- 
traction, and bending or folding of areas in phase space is analogous 
to the making of a horseshoe. Multiple iterations such as horseshoe 

I 

Figure 1-22 Transformation of a rectangular collection of initial conditions under an 
iteration of the second-order set of difference equations called a Henon map (1-3.8) 
showing stretching, contraction, and folding which leads to chaotic behavior (a = 
1.4, /3 = 0.3). 
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maps lead to complex orbits in phase space and loss of information 
about initial conditions and chaotic behavior. 

An illustration of the ability of a simple map to produce complex 
motions is provided in Figure 1-23. In one iteration of the map, a 
rectangular area is stretched in the vertical direction, contracted in 
the horizontal direction, and folded or bent into a horseshoe and 
placed over the original area. Thus, points originally in the area get 
mapped back onto the area, except for some points near the bend in 
the horseshoe. If one follows a group of nearby points after many 
iterations of this map, the original neighboring cluster of points gets 
dispersed to all sectors of the rectangular area. This is tantamount to 
a loss of information as to where a point originally started from. Also, 
the original area gets mapped into a finer and finer set of points, as 
shown in Figure 1-23. This structure has a fractal property that is a 
characteristic of a chaotic attractor which has been labeled “strange.” 
This fractal property of a strange attractor is illustrated in the Henon 
map, Figure 1-24. Blowups of small regions of the Henon attractor 
reveal finer and finer structure. This self-similar structure of chaotic 

X 

Fipre 1-23 The horseshoe map showing how stretching, contraction, and folding 
leads to fractal-like properties after many iterations of the map. 
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X 
(b )  

Figure 1-24 ( a )  The locus of points for a chaotic trajectory of the Henon map (a = 
1.4, p = 0.3). (6) Enlargement of strange attractor showing finer fractal-like structure. 
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attractors can often be revealed by taking Poincare maps of experimen- 
tal chaotic oscillators (see Chapters 2 and 5 ) .  The fractal property of 
self-similarity can be measured using a concept of fractal dimension, 
which is discussed in Chapter 7. 

It is believed by some mathematicians that horseshoe maps are 
fundamental to most chaotic differential and difference equation mod- 
els of dynamic systems (e.g., see Guckenheimer and Holmes, 1983). 
This idea is the centerpiece of a method developed to find a criterion 
for when chaotic vibrations are possible in a dynamical system and 
when predictability of future time history becomes sensitive to initial 
conditions. This Melnikov method has been used successfully to de- 
velop criteria for chaos for certain problems in one-degree-of-freedom 
nonlinear oscillation (e.g., see Chapter 6). 

The Lorenz Attractor and Fluid Chaos 

For many readers, the preceding discussion on maps and chaos may 
not be convincing as regards unpredictability in real physical systems. 
And were it not for the following example from fluid mechanics, 
the connection between maps, chaos, and differential equations of 
physical systems might still be buried in mathematics journals. In 
1963, an atmospheric scientist named E. N .  Lorenzof M.I.T. proposed 
a simple model for thermally induced fluid convection in the atmo- 
~ p h e r e . ~  Fluid heated from below becomes lighter and rises, whereas 
heavier fluid falls under gravity. Such motions often produce convec- 
tion rolls similar to the motion of fluid in a circular torus as shown in 
Figure 1-25. In Lorenz’s mathematical model of convection, three 
state variables are used (x, y, z). The variable x is proportional to the 
amplitude of the fluid velocity circulation in the fluid ring, while y and 
z measure the distribution of temperature around the ring. The so- 
called Lorenz equations may be derived formally from the Na- 
vier-Stokes partial differential equations of fluid mechanics (1-1.3) 
(e.g., see Chapter 4). The nondimensional forms of Lorenz’s equations 
are 

x = cr(y - x)  

y = px - y - xz 

i = xy - pz 

(1-3.9) 

Lorenz credits Saltzman (1962) with actually discovering nonperiodic solutions to 
the convection problem in which he used a system of the five first-order equations. 
Mathematicians, however. chose instead to study Lorenz’s simpler third-order set of 
equations (1-3.9). Thus flows the course of scientific destinies. 
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Figure 1-25 Top: Sketch of fluid streamlines in a convection cell for steady motions. 
Bottom: One-dimensional convection in a circular tube under gravity and thermal 
gradients. 

The parameters u and p are related to the Prandtl number and 
Rayleigh number, respectively, and the third parameter /? is a geomet- 
ric factor. Note that the only nonlinear terms are xz and xy in the 
second and third equations. 

For u = 10 and /? = 8/3 (a favorite set of parameters for experts 
in the field), there are three equilibria for p > 1 for which the origin 
is an unstable saddle (Figure 1-26). When p > 25, the other two 
equilibria become unstable spirals and a complex chaotic trajectory 
moves between all three equilibria as shown in Figure 1-27. It was 
Lorenz's insistence in the years following 1963 that such motions were 
not artifacts of computer simulation but were inherent in the equations 
themselves that led mathematicians to study these equations further 
(e.g., see Sparrow, 1982). Since 1963, hundreds of papers have been 
written about these equations, and this example has become a classic 
model for chaotic dynamics. These equations are also similar to those 
that model the chaotic behavior of laser devices (e.g., see Haken, 
1985). 

Systems of other third-order equations have since been found to 
exhibit chaotic behavior. For example, the forced motion of a nonlin- 
ear oscillator can be written in a form similar to that of (1-3.9); New- 



40 INTRODUCTION: A NEW AGE OF DYNAMICS 

Figure 1-26 Sketch of local motion near the three equilibria for the Lorenz equations 
[Eqs. (1-3.9)]. 

ton's law for a particle under a force F ( x ,  t )  is written 

m i  = F ( x ,  t )  ( I -3. I 0) 

To put (1-3.10) into a form for phase space study, we write y = i. 
Furthermore, if the mass is periodically forced, one can reduce the 
second-order nonautonomous system (1-3.10) to an autonomous sys- 
tem of third-order equations. Thus, we assume 

By defining z = wt and w = 27~/7, the resulting equations become 

(1-3.11) 

A specific case that has strong chaotic behavior is the Duffing 
oscillator F = -(ax + bx3 + cy)  (see Chapters 2 and 4). 
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Figure 1-27 Trajectory of a chaotic solution to the Lorenz equations for thermofluid 
convection [Eqs. (1-3.9)] (numerical integration). 

It is worth noting that for a two-dimensional phase space, solutions 
to autonomous systems cannot exhibit chaos because the solution 
curves of the “flow” cannot cross one another. However, in the forced 
oscillator or the three-dimensional phase space, these curves can 
become “tangled” and chaotic motions are possible. 

Quantum Chaos 

The focus of this book is unpredictability in classical Newtonian phys- 
ics. But, what about the possibility of quantum chaos? We have all 
learned in elementary physics that as one approaches the microscopic 
scale, the motion of a particle must be described by a wave packet 
whose amplitude gives the probability of locating the particle. Quan- 
tum mechanics tells one about the motion of these wave or probability 
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packets, but not about the precise motion of the particle. There is a 
transition region where both classical and quantum descriptions 
should give approximately the same answer. So, when a classical 
system exhibits chaotic dynamics near the quantum limit, the question 
naturally arises as to what would be the quantum description of this 
classical chaos. 

This should be a fundamental question in physics today. There are 
those who think it is (e.g., see Ford, 1988). But for others there is a 
belief that we still do not know if we have posed the question properly; 
that is, perhaps quantum chaos is a concept full of redundancy or 
is an oxymoron. After all, what does unpredictable unpredictability 
mean? Still some experiments both physical and computational have 
been performed (e.g., see Pool, 1989 and Koch, 1990) in an attempt 
to settle the question of quantum chaos. At the time of this writing 
(1991), however, the subject is still in debate. 

The existence or nonexistence of quantum chaos will not be re- 
solved in this book. The reader is referred to the publications of some 
of the notable participants in the debate (e.g., Jensen, 1989 and Ford, 
1988). One gets the feeling, however, that in the spirit of T. Kuhn’s 
theory of scientific revolutions, that physicists are still looking for 
the right “paradigm” for quantum chaos-that is, a kind of Lorenz 
quantum model. 

Closing Comments 

Dynamics is the oldest branch of physics. Yet 300 years after publica- 
tion of Newton’s Principia, new discoveries are still emerging. The 
ideas of Euler, Lagrange, Hamilton, and PoincarC that followed, once 
conceived in the context of planetary mechanics, have now tran- 
scended all areas of physics. As the new science of dynamics gave 
birth to the calculus in the 17th century, so today modern nonlinear 
dynamics has ushered in new ideas of geometry and topology, such 
as fractals, which the 2lst-century scientist must master to grasp the 
subject fully. 

The ideas of chaos go back in Western thought to the Greeks. But 
these ideas centered on the order in the world that emerged from a 
formless chaotic, fluid world in prehistory. G. Mayer-Kress (1985) of 
Los Alamos National Laboratory has pointed out that the idea of 
chaos in Eastern thought, such as Taoism, was associated with pat- 
terns within patterns, eddies within eddies as occur in the flow of fluids 
(e.g., see the Japanese kimono design in Figure 1-28). 
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Figure 1-28 
shi Motor Corp.) 

Fractal-like pattern in a Japanese kimono design. (Courtesy of Mitsubi- 

The view that order emerged from an underlying formless chaos 
and that this order is recognized only by predictable periodic patterns 
was the predominant view of 20th-century dynamics until the last two 
decades. What is replacing this view is the concept of chaotic events 
resulting from orderly laws, not a formless chaos, but one in which 
there are underlying patterns, fractal structures, governed by a new 
mathematical view of our “orderly” world. 

Since the first edition of this book was published, new discoveries 
continue to appear, such as multifractals, spatial complexity, and 
hyperchaos. The range of applications continues to grow. And, while 
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much has been learned since Feigenbaum’s period-doubling paper of 
1978, there is still an air of excitement in this field with regard to both 
the mathematical ideas and the new applications. 

PROBLEMS 

1-1 Consider an unforced bilinear oscillator, without damping, 
whose linear stiffness changes from k ,  for x < a. to k? for 
x 2 ao. 
(a) Sketch the flow lines in the phase plane (x, y = k) for dif- 

ferent initial conditions. 
(b) Sketch the frequency spectrum versus amplitude for k , ,  

k2 > 0, k l  < k2 and k , ,  k2 > 0, k ,  > k 2 .  What happens when 
k ,  < 0 and k2 > O? 

1-2 Sometimes the roll dynamics of a ship can be modeled by a 
particle of mass rn moving in a potential field with V ( x )  = 

ax2 - bx3;  a ,  b > 0 .  
(a) Find the fixed points of the motion and establish the local 

(b) Sketch the flow lines for different initial conditions when 

(c) Sketch the flow lines when there is small linear damping. 

1-3 Write the equation of motion for a ball bouncing on a horizontal 
surface with coefficient of restitution E < 1.  
(a) Sketch the phase plane motion. 
(b) Find a difference equation (map) that relates the velocity 

after impact at the (n + I)st bounce to that at the n th  
bounce. Is this a linear or nonlinear problem? What if the 
table vibrates with A cos Rt? 

1-4 Consider the two-dimensional, planar motion of a ball bouncing 
on a concave surface which is described by the function y = 
F ( x ) .  Assuming no loss of energy on impact, find the equations 
(a map) that relate the velocity and horizontal distance after 
impact at the (n + 1)st bounce to that of the n th  bounce. 

Using a calculator or personal computer, experimentally find 
the first four critical values for period doubling in the logistic 

stability. 

there is no damping. 

[See, for example, the work of Thompson et al. (1990).] 

1-5 
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equation, x,, I = Ax,,( 1 - x,,). Find the first two approximations 
to the Feigenbaum number. 

1-6 The following equation can be derived from the dynamics of an 
electron or proton in a circular accelerator (e.g., see Helleman, 
1980a): 

(a) Rewrite this equation as a set of first-order difference equa- 

(b) For b = 1, show that this equation is equivalent to a special 

(c) For b = 0, show that this equation reduces to the logistic 

1-7 Write down a set of three first-order differential equations which 
has a saddle-spiral fixed point at the origin and has bounded 
motion. Sketch a few flow lines in a two-dimensional projection. 
(A saddle-spiral has three eigenvalues of the form sI = - y  

1-8 The harmonic oscillator with a cubic nonlinearity R + 
oix + a x 3  = 0 is known to have periodic solutions whose pe- 
riod decreases with increase in amplitude. One classical tech- 
nique known as harmonic balance has been used to find the 
relationship between the period T and amplitude A by assuming 
that for A not too large the nonlinear oscillation remains approx- 
imately sinusoidal, i.e., x = A cos Rt  ( T  = 2 7 ~ / f l ) .  Assume this 
form and put it into the above nonlinear equation and require 
only that the cos Rt terms vanish. Show that the frequency 
spectrum is given by (see Figure 1-14a) 

tions. 

Henon map [Eq. (1-3.811. 

map [Eq. (1-3.6)]. 

S2.J = a * ip.1 

1-9 A dynamical system of even greater simplicity that exhibits 
period doubling and chaos is the set of three first-order differen- 
tial equations (Rossler, 1976a,b): 

.i= - y - z ,  y = x + a y ,  i = b + z ( x - c )  

(a) Show that forb = 2, c = 4, and 0 < a < 2, this system has 
two fixed points. 
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(b) For z small, show that the motion near the origin is an 
unstable spiral. 

(c) Suppose you know that these outward spiraling trajectories 
return to the origin. Can you make a sketch of the three- 
dimensional motion? [See also Chapter 12 of Thompson and 
Stewart (1986).] 

1-10 Use a small computer with numerical integration software (e.g., 
using a Runge-Kutta algorithm), choose b = 2, c = 4 for the 
Rossler attractor in problem 1-9, and explore the parameter 
regime 0.3 5 a I 0.4 and look for period doubling. For the case 
a = 0.398, plot a return map x , + ~  vs. x,. Compare with the 
logistic equation (1-3.6). 
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HOW TO IDENTIFY 
CHAOTIC VIBRATIONS 

“What will prove altogether remarkable is that some very simple 
schemes to produce erratic numbers behave identically to some of the 
erratic aspects of natural phenomena.” 

Mitchell Feigenbaum, 1980 

Theorists and experimentalists approach a dynamical problem from 
different sides: The former is given the equations and looks for solu- 
tions, whereas the latter is given the solution and is looking for the 
equations or mathematical model. 

In this chapter we present a set of diagnostic tests that can help 
identify chaotic oscillations and the models that describe them in 
physical systems. Although this chapter is written primarily for those 
not trained in the mathematical theory of dynamics, theoreticians may 
find it of interest to see how theoretical ideas about chaos are realized 
in the laboratory. In a later chapter (Chapter 6), we present some 
predictive criteria as well as more sophisticated diagnostic tests for 
chaos. This, however, requires some mathematical background, such 
as the theory of fractal sets (Chapter 7) and Lyapunov exponents 
(Chapter 6). 

Engineers often have to diagnose the source of unwanted oscilla- 
tions in physical systems. The ability to classify the nature of oscilla- 
tions can provide a clue as to how to control them. For example, if 
the system is thought to be linear, large periodic oscillations may be 
traced to a resonance effect. However, if the system is nonlinear, a 

47 
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limit cycle may be the source of periodic vibration, which in turn may 
be traced to some dynamic instability in the system. 

In order to identify nonperiodic or chaotic motions, the following 
checklist is provided: 

(a) Identify nonlinear elements in the system. 
(b) Check for sources of random input. 
(c) Observe time history of measured signal. 
(d) Look at phase plane history. 
(e) Examine Fourier spectrum of signal. 
(f) Take PoincarC map or return map of signal. 
(g) Vary system parameters (look for bifurcations and routes to 

chaos). 

In later chapters we discuss more advanced techniques. These 
include measuring two properties of the motion: fractal dimension 
and Lyapunov exponents. Also, probability density functions can be 
measured. 

In the following, we go through the above-cited checklist and de- 
scribe the characteristics of chaotic vibrations. To focus the discus- 
sion, the vibration of the buckled beam (double-well potential prob- 
lem) is used as an example to illustrate the characteristics of chaotic 
dynamics. 

A diagnosis of chaotic vibrations implies that one has a clear defini- 
tion of such motions. However, as research uncovers more complexi- 
ties in nonlinear dynamics, a rigorous definition seems to be limited 
to certain classes of mathematical problems. For the experimentalist, 
this presents a difficulty because his or her goal is to discover what 
mathematical model best fits the data. Thus at this stage of the subject, 
we will use a collection of diagnostic criteria as well as a variety of 
classes of chaotic motions (see Table 2-1). The experimentalist is 
encouraged to use two or more tests to obtain a consistent picture of 
the chaos. 

To help sort out the growing definitions and classes of chaotic 
motions, we list the most common attributes without mathematical 
formulas, but with the most successful diagnostic tools in parentheses. 

Characteristics of Chaotic Vibrations 

Sensitivity to changes in initial conditions [often measured by 
Lyapunov exponent (Chapter 6) and fractal basin boundaries 
(Chapter 7)J 
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TABLE 2-1 Classes of Motion in Nonlinear Deterministic Systems 

Regular Motion-Predictable: Periodic oscillations, quasiperiodic motion; not 
sensitive to changes in parameters or initial conditions 

Regular Motion-Unpredictable: Multiple regular attractors (e.g., more than one 
periodic motion possible); long-time motion sensitive to initial conditions 

Transient Chaos: Motions that look chaotic and appear to have characteristics of 
a strange attractor (as evidenced by Poincare maps) but that eventually settle 
into a regular motion 

Intermittent Chaos: Periods of regular motion with transient bursts of chaotic 
motion; duration of regular motion interval unpredictable 

Limited or Nurrow-Band Chaos: Chaotic motions whose phase space orbits 
remain close to some periodic or regular motion orbit; spectra often show 
narrow or limited broadening of certain frequency spikes 

Large-Scale or Broad-Band Chaos- W e d :  Dynamics can be described by orbits 
in a low-dimensional phase space 3 5 n < 7 (1-3 modes in mechanical 
systems), and usually one can measure fractal dimensions < 7; chaotic orbits 
traverse a broad region of phase space; spectra show broad range of frequencies 
especially below the driving frequency (if one is present) 

Large-Scale Chaos-Strong: Dynamics must be described in a high-dimensional 
phase space; large number of essential degrees of freedom present, spatial as 
well as temporal complexity; difficult to measure reliable fractal dimension; 
dynamical theories currently unavailahle 

Broad spectrum of Fourier transform when motion is generated by 
a single frequency [measured by fast Fourier transform (FFT) 
using modern electronic spectrum analyzers] 

Fractal properties of the motion in phase space which denote a 
strange attractor [measured by Poincare maps, fractal dimensions 
(Chapter 711 

Increasing complexity of regular motions as some experimental 
parameter is changed-for example, period doubling [often the 
Feigenbaum number can be measured (Chapters 1 ,  3, and 6)] 

Transient or intermittent chaotic motions; nonperiodic bursts of 
irregular motion (intermittency) or initially randomlike motion 
that eventually settles down into a regular motion [measurement 
techniques are few but include the average lifetime of the chaotic 
burst or transient as some parameter is varied; the scaling behav- 
ior might suggest the correct mathematical model (see Chap- 
ter 611 

Nonlinear System Elements 

A chaotic system must have nonlinear elements or properties. A linear 
system cannot exhibit chuoric vibrations. In a linear system, periodic 
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Input 1-1 output 

Periodic, Quasi-Periodic 

Subharmonic 

Chaotic 

Figure 2-1 Sketch of the input-output possibilities for linear and nonlinear systems. 

inputs produce periodic outputs of the same period after the transients 
have decayed (Figure 2-1). (Parametric linear systems are an excep- 
tion.) In mechanical systems, nonlinear effects include the following: 

1. Nonlinear elastic or spring elements 
2. Nonlinear damping, such as stick-slip friction 
3. Backlash, play, or bilinear springs 
4. Most systems with fluids 
5 .  Nonlinear boundary conditions 

Nonlinear elastic effects can reside in either material properties or 
geometric effects. For example, the relation between stress and strain 
in rubber is nonlinear. However, while the stress-strain law for steel 
is usually linear below the yield stress, large displacement bending of 
a beam, plate, or shell may exhibit nonlinear relations between the 
applied forces or moments and displacements. Such effects in mechan- 
ics due to large displacements or rotations are usually called geometric 
nonlinearities. 

In electromagnetic systems, nonlinear properties arise from the 
following: 

1. Nonlinear resistive, inductive, or capacitive elements 
2. Hysteretic properties of ferromagnetic materials 
3. Nonlinear active elements such as vacuum tubes, transistors, 

4. Moving media problems: for example, v x B voltages, where v 
and lasers 

is a velocity and B is the magnetic field 
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5. Electromagnetic forces: for example, F = J x B, where J is 
current and F = M . VB, where M is the magnetic dipole strength 

Common electric circuit elements such as diodes and transistors 
are examples of nonlinear devices. Magnetic materials such as iron, 
nickel, or ferrites exhibit nonlinear constitutive relations between the 
magnetizing field and the magnetic flux density. Some investigators 
have created negative resistors with bilinear current-voltage relations 
by using operational amplifiers and diodes (see Chapter 5 ) .  

The task of identifying nonlinearities in the system may not be easy: 
first, because we are often trained to think in terms of linear systems; 
and second, the major components of the system could be linear but 
the nonlinearity arises in a subtle way. For example, the individual 
elements of a truss structure could be linearly elastic, but the way 
they are fastened together could have play and nonlinear friction 
present; that is, the nonlinearities could reside in the boundary condi- 
tions. 

In the example of the buckled beam, identification of the nonlinear 
element is easy (Figure 2-2). Any mechanical device that has more than 
one static equilibrium position either has play, backlash, or nonlinear 
stiffness. In the case of the beam buckled by end loads (Figure 2-2a) ,  
the geometric nonlinear stiffness is the culprit. If the beam is buckled 
by magnetic forces (Figure 2-2b), the nonlinear magnetic forces are 
the sources of chaos in the system. 

Random Inputs 

In classical linear random vibration theory, one usually treats a model 
of a system with random variations in the applied forces or model 
parameters of the form 

where m,( t ) ,  c , ( l ) ,  k , ( t ) ,  and f , ( t )  are assumed to be random time 
functions with given statistical measures such as the mean or standard 
deviation. One then attempts to calculate the statistical properties of 
x ( t )  in terms of the given statistical measures of the random inputs. In 
chaotic vibrations there are no assumed random inputs; that is, the 
applied forces or excitation are assumed to be deterministic. 

By definition, chaotic vibrations arise from deterministic physical 
systems or nonrandom differential or difference equations. Although 
noise is always present in experiments, even in numerical simulations, 
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( 6 )  

Figure 2-2 Nonlinear, multiple equilibrium state problems: (a) buckling of a thin 
elastic beam column due to axial end loads and ( b )  buckling of an elastic beam due 
to nonlinear magnetic body forces. 

it is presumed that large nonperiodic signals do not arise from very 
small input noise. Thus, a large output-signal-to-input-noise ratio is 
required if one is to attribute nonperiodic response to a deterministic 
system behavior. 

Observation of Time History 

Usually, the first clue that the experiment has chaotic vibrations is the 
observation of the signal amplitude with time on a chart recorder or 
oscilloscope (Figure 2-3). The motion is observed to exhibit no visible 
pattern or periodicity. This test is not foolproof, however, because a 
motion could have a long-period behavior that is not easily detected. 
Also, some nonlinear systems exhibit quasiperiodic vibrations where 
two or more incommensurate periodic signals are present. 
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Time 

' - ' ' I  " 
Figure 2-3 Time history of chaotic motions of a buckled elastic beam showing jumps 
between the two stable equilibrium states. 

Phase Plane 

Consider a one-degree-of-freedom mass with displacement x ( t )  and 
velocity u ( t ) .  Its equation of motion, from Newton's law, can be 
written in the form 

i = U  

1 
m u = - f ( x ,  u ,  t )  

where m is the mass and f is the applied force. The phase plane is 
defined as the set of points (x, u ) .  (Some authors use the momentum 
mu instead of u . )  When the motion is periodic (Figure 2-4a), the phase 
plane orbit traces out a closed curve which is best observed on an 
analog or digital oscilloscope. For example, the forced oscillations of 
a linear spring-mass-dashpot system exhibit an elliptically shaped 
orbit. However, a forced nonlinear system with a cubic spring element 
may show an orbit which crosses itself but is still closed. This can 
represent a subharmonic oscillation as shown in Figure 2-4a. 

Systems for which the force does not depend explicitly on time-for 
example,f = f ( x ,  u )  in Eq. (2-l)-are called autonomous. For autono- 
mous nonlinear systems (no harmonic inputs), periodic motions are 
referred to as limit cycles and also show up as closed orbits in the 
phase plane (see Chapter 1). 

Chaotic motions, on the other hand, have orbits which never close 
or repeat. Thus, the trajectory of the orbits in the phase plane will 
tend to fill up a section of the phase space as in Figure 2-4b. Although 
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- 
-0.6 0.0 0.5 1 .o 

POS 
( b )  

Figure 2-4 ( a )  Period-2 motion for forced motion of  a buckled beam in the phase 
plane (bending strain versus strain rate). (b)  Chaotic trajectory for forced motion of 
a buckled beam. 
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this wandering of orbits is a clue to chaos, continuous phase plane 
plots provide very little information and one must use a modified phase 
plane technique called Poincare' maps (see below). 

Often, one has only a single measured variable u( t ) .  If u( t )  is a 
velocity variable, then one can iFtegrate u ( t )  to get x(t) so that the 
phase plane consists of points [Jo u dt, u ( t ) ] .  

Pseudo-Phase Space Method. Another technique that has been used 
when only one variable is measured is the time-delayed pseudo-phase- 
plane method (also called the embedding space method). For a one 
degree-of-freedom system with measurement x ( t ) ,  one plots the signal 
versus itself but delayed or advanced by a fixed time constant: [ x ( t ) ,  
x ( t  + T)]. The idea here is that the signal x(t + T) is related to i ( t )  
and should have properties similar to those in the classic phase plane 
[ x ( t ) ,  i ( t ) ] .  In Figure 2-5 we show a pseudo-phase-plane orbit for a 
harmonic oscillator for different time delays. If the motion is chaotic, 
the trajectories do not close (Figure 2-6). The choice of Tis not crucial, 
except to avoid a natural period of the system. When the state variables 
are greater than two (e.g., position, velocity, time, or forcing phase), 
the higher-dimensional pseudo-phase-space trajectories can be 
constructed using multiple delays. For example, a three-dimen- 
sional space can be constructed using a vector with components (x(t), 
x(t + T ) ,  x ( t  + 2T)).  More will be said about this technique in Chap- 
ter 5 .  

Fourier Spectrum and Autocorrelation 

One of the clues to detecting chaotic vibration is the appearance of a 
broad spectrum of frequencies in the output when the input is a single- 
frequency harmonic motion or is dc (Figure 2-7). This characteristic 
of chaos becomes more important if the system is of low dimension 
(e.g., one to three degrees of freedom). Often, if there is an initial 
dominant frequency component wO, a precursor to chaos is the appear- 
ance of subharmonics wo/n in the frequency spectrum (see below). In 
addition to woln, harmonics of this frequency will also be present of 
the form mwo/n (m,  n = 1 , 2 , 3 ,  ... ). An illustration of this test is shown 
in Figure 2-7. Figure 2-7a shows a single spike in both the driving 
force and the response of a buckled beam. Figure 2-7b shows a broad 
spectrum, indicating possible chaotic motions. 

One must be cautioned against concluding that multiharmonic out- 
puts imply chaotic vibrations, because the system in question might 
have many hidden degrees of freedom of which the observer is un- 
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Figure 2-5 (a) Phase-plane trajectory of Duffing oscillator (1-2.4); a = - 1 p = I .  
( b )  Pseudo-phase-plane trajectory for the periodic oscillator in (a) for two delay times. 
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Figure 2-6 (a )  Phase-plane trajectory for chaotic motion of a particle in a two-well 
potential (buckled beam) under periodic forcing (1-2.4); a = - 1, p = 1 .  (b )  Pseudo- 
phase-plane trajectory of chaotic motion in (a). 
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FREQUENCY - 

I 1 1 I I I 1 1 I I I 
(6) 

Figure 2-7 (a)  Frequency spectrum of buckled elastic beam for low-amplitude excita- 
tion-linear periodic response. (b )  Frequency spectrum of buckled elastic beam for 
larger excitation-broad-band response of beam due to chaotic vibration. 

aware. In large-degree-of-freedom systems, the use of the Fourier 
spectrum may not be of much help in detecting chaotic vibrations 
unless one can observe changes in the spectrum as one varies some 
parameter such as driving amplitude or frequency. 

Another useful measure of the predictability of the motion is an 
autocorrelation function 

where Tis very large compared to the dominant periods in the motion. 
An autocorrelation of a periodic signal produces a periodic function 
A ( T )  as shown in Figure 2-8a. But A ( T )  for a chaotic or random signal 
shows A ( T ) +  0, for T > T ,  where T ,  is some characteristic time (Figure 
2%). Modern signal processing electronics can calculate A ( T )  as well 
as the Fourier transform in real time as the data is gathered. Hence, 
both tools are useful for experimental bifurcation studies because one 
can look for qualitative changes in A ( T )  as some parameter is varied. 
The characteristic time T ,  is a measure of the time the motion can be 
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Figure 2-8 (a)  Autocorrelation function for periodic motions. ( b )  Autocorrelation 
function for a chaotic signal. 
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predicted in the future, and is believed by some researchers to be 
related to the Lyapunov exponent (see Chapter 6). 

Poincare Maps and Return Maps 

In the mathematical study of dynamical systems, a map refers to a 
time-sampled sequence of data { x ( t  I) ,  x ( t 2 ) ,  . . . , x( t , ) ,  .. . , x ( t N ) }  with 
the notation x, = x( t , ) .  A simple deterministic map is one in which 
the value of x,+ can be determined from the values of x,. This is often 
written in the form (see Chapter 3) 

This can be recognized as a difference equation. The idea of a map 
can be generalized to more than one variable. Thus, x, could represent 
a vector with M components x, = ( Y l , , ,  Y2, ,  ... , YM,) and Eq. (2-2) 
could represent a system of M equations. 

For example, suppose we consider the motion of a particle as 

(b)  

Figure 2-9 ( a )  Phase-plane PoincarC map showing a period-3 subharmonic motion of 
a periodically forced buckled beam. ( b )  Chaotic motion near a period-3 subharmonic. 
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displayed in the phase plane ( x ( t ) ,  i ( f ) ) .  However, ifinstead of looking 
at the motion continuously, we look only at the dynamics at discrete 
times, then the motion will appear as a sequence of dots in the phase 
plane (Figures 1-19 and 2-9). lfx, = x(t, , )  and yn = i ( t f l ) ,  this sequence 
of points in phase plane represents a two-dimensional map: 

When the sampling times 1, are chosen according to certain rules, to 
be discussed below, this map is called a PoincurP mup.  

Poincare Maps for Forced Vibration Systems. When there is a driving 
motion of period T ,  a natural sampling rule for a Poincare map is to 
choose I,, = nT + To. This allows one to distinguish between periodic 
motions and nonperiodic motions. For example, if the sampled har- 
monic motion shown in Figure 2-4a is synchronized with its period, 
its “map” in the phase plane will be two points. If the output, however, 
were a subharmonic of period 3,  the PoincarC map would consist of a 
set of three points as shown in Figure 2-9a. 

Another nonchaotic Poincare map is shown in Figure 2- 10, where 
the motion consists of two incommensurate frequencies 

I ” = x  

Figure 2-10 Phase-plane Poincare map showing a quasiperiodic motion of a periodi- 
cally forced two-degree-of-freedom beam in a two-well magnetic potential. 
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x ( t )  = C,sin(o,t + d , )  + C2sin(02t + d2) (2-4) 

where w J o 2  is an irrational number. If one samples at a period corre- 
sponding to either frequency, the map in the phase plane will become 
a continuous closed figure or orbit. This motion is sometimes called 
almost-periodic or quasiperiodic motion or “motion on a torus” and 
is not considered to be chaotic (see also Figure 1-12). 

Finally if the Poincark map does not consist of either a finite set of 
points (Figure 2-9a) or a closed orbit (Figure 2-10), the motion may be 

(4 
Figure 2-11 (a) Poincare map of chaotic motion of a buckled beam with low damping. 
(6, c) PoincarC map of chaotic motion of a buckled beam for higher damping showing 
fractal-like structure of a strange attractor. [From Moon (1980a) with permission of 
ASME, copyright 1980.1 



HOW TO IDENTIFY CHAOTLC VIBRATIONS 63 

chaotic (Figure 2- I 1). Here we must distinguish between damped 
and undamped systems. In undamped or lightly damped systems the 
Poincare map of chaotic motions often appear as a cloud of unorga- 
nized points in the phase plane (Figure 2- l la ) .  Such motions are 
sometimes called stochastic (e.g., see Lichtenberg and Lieberman, 
1983). In damped systems the Poincare map will sometimes appear as 
an infinite set of highly organized points arranged in what appear to 
be parallel lines as shown in Figure 2-1 Ib,c. In numerical simulations, 
one can enlarge a portion of the Poincare map (see Figure 2-12) and 
observe further structure. If this structured set of points continues to 
exist after several enlargements then the map is said to be fractal- 
like, and one says the motion behaves as a strange attractor. This 
embedding of structure within structure is often referred to as a Cantor 
set (see Chapter 7) .  

The appearance of fractal-like or Cantor-set-like patterns in the 
Poincare map of a vibration history is a strong indicator of chaotic 
motions. The classes of patterns of PoincarC maps are listed in Ta- 
ble 2-2. 

Poincare Maps in Autonomous Systems. Steady-state vibrations can 
also be generated without periodic or random inputs if the motion 
originates from a dynamic instability such as wind-induced flutter in 
an elastic structure (Figure 2-13) or a temperature-gradient-induced 
convective motion in a fluid or gas (e.g., Benard convection, Figure 
1-25). One is then led to ask how to choose the sampling times in a 
Poincare map. Here the discussion gets a little abstract. 

Consider the lowest-order chaotic system governed by three first- 
order differential equations (e.g., the Lorenz equations of Chapter 1 ) .  
In an electromechanical system the variables x ( t ) ,  y ( t ) ,  and z ( t )  could 
represent displacement, velocity, and control force as in a feedback- 

TABLE 2-2 Classification of Poincare Maps 

Finite number of points: periodic or subharmonic oscillation 
Closed curue: quasiperiodic, two incommensurate frequencies present 
Open curue: suggest modeling as a one-dimensional map; try plotting x ( t )  versus 

Fractal collection ofpoints: strange attractor in three phase-space dimensions 
Fuzzy cdlection ofpoints: (i) dynamical systems with too much random or noisy 

input; ( i i )  strange attractor but system has very small dissipation-use 
Lyapunov exponent test; (iii) strange attractor in phase space with more than 
three dimensions-try multiple PoincarC map; (iv) quasiperiodic motion with 
three or more dominant incommensurate frequencies 

x ( t  + T )  
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controlled system. We then imagine the motion as a trajectory in a 
three-dimensional phase space (Figure 2-14). A PoincarC map can be 
defined by constructing a two-dimensional oriented surface in this 
space and looking at the points (x,, y,, z,) where the trajectory pierces 
this surface. For example, we can choose a plane n l x  + n2y + n3z  = 
c with normal vector n = (n l ,  n2, n 3 ) .  As a special case, choose points 

X 

Figure 2-12 Poincad map of chaotic vibration of a forced nonlinear oscillation 
showing self-similar structure at finer and finer scales. 
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Y 
I 

X 
Figure 2-12 (Conrinrred) 

where .Y = 0. Then the Poincare map consists of points which pierce 
this plane with the same sense; that is, if s ( r )  represents a unit vector 
along the trajectory, s(t,,) - n must always have the same sign. 

This definition of the Poincare map actually includes the case when 
the system is periodically forced. Consider, for example, a forced 
nonlinear oscillator with equations of motion 

Fluid -- ----- -- 
Elastic plate 

+ 
Y 

Gas 

Ib) 
Figure 2-13 
and ( h )  gas Row over a liquid interface. 

Examples of self-excited vibrations: (a )  fluid flow over an elastic plate 
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t' 

Figure 2-14 Sketch of time evolution trajectories of a third-order system of equations 
and a typical Poincare plane. 

Then this system can be made to look like an autonomous one by 
defining 

and 

X = y  (2-8) 

i = o  (2-10) 

jJ  = F(x ,  y )  + focos z (2-9) 

Thus, a natural sampling time is chosen when z = constant. This 
system can be thought of as a cylindrical phase space where the values 
of z are restricted: 0 5 z I 27r. A picture of several PoincarC maps is 
then given as in Figure 2-15 for different values of z (see also Chapter 
5 ,  Figure 5-7). 

Reduction of Dynamics to One-Dimensional Maps. In Chapter I we 
saw that simple one-dimensional maps or difference equations of the 
form x,+~ = f ( x , )  can exhibit period-doubling bifurcations and chaos 



HOW TO IDENTIFY CHAOTIC VIBRATIONS 67 

Figure 2-15 Sketch of a strange attractor for a forced nonlinear oscillator: product 
space of the Poincark plane and the phase of the forcing excitation. 

when the functionf(x) has at least one maximum (or minimum), as in 
Figure 1-2 1. Period-doubling phenomena have been observed in so 
many different complex physical systems (fluids, lasers, p-n elec- 
tronic junctions) that in many cases the dynamics may sometimes be 
modeled as a one-dimensional map. This is especially possible in 
systems with significant dissipation. To check this possibility, one 
samples some dynamic variable using a PoincarC section as discussed 
above; that is, x, = x ( t  = t,,). Then one plots each x, against its 
successor value x ,+~ .  This is sometimes called a return map.  Two 
criteria must be met to declare the system chaotic. First, the points 
x,, I versus x, must appear to be clustered in some apparent functional 
relation; and second, this function f ( x )  must be multivalued-such 
as when it has a maximum or a minimum. If this be the case, one then 
attempts to fit a polynomial function to the data and uses this mapping 
to do numerical experiments or analysis along the lines of the quadratic 
map (Chapters 1 and 3). Examples of this technique may be found in 
Shaw (1984) in the problem of a dripping faucet and in Rollins and 
Hunt (1982) in an experiment with a varactor diode in an electrical 
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circuit (see also Chapter 3 for a discussion of these problems). This 
technique is discussed further in Chapter 5. An example using experi- 
mental data from the vibration of a levitated magnet over a high- 
temperature superconductor is shown in Figure 2-16 (see Moon, 1988). 

Bifurcations: Routes to Chaos 

Periodic to Chaotic Motions Through Parameter Changes. In con- 
ducting any of these tests for chaotic vibrations, one should try to 
vary one or more of the control parameters in the system. For example, 
in the case of the buckled structure (Figure 2-2), one can vary either 
the forcing amplitude or forcing frequency, or in the case of the 
nonlinear circuit, one can vary the resistance. The reason for this 
procedure is to see if the system has steady or periodic behavior for 
some range of the parameter space. In this way, one can have confi- 
dence that the system is in fact deterministic and that there are no 
hidden inputs or sources of truely random noise. 

In changing a parameter, one looks for a pattern of periodic re- 
sponses. One characteristic precursor to chaotic motion is the appear- 
ance of subharmonic periodic vibrations. There may in fact be many 
patterns of prechaos behavior. Several models of prechaotic behavior 
have been observed in both numerical and physical experiments (see 
Gollub and Benson, 1980 or Kadanoff, 1983). 

Period-Doubling Route to Chaos. Period doubling in physical sys- 
tems have been observed experimentally in all branches of classical 
physics, chemistry, and biology as well as in many technical devices. 
Although this route to chaos in ubiquitous in science, it is by no 
means the only path to unpredictable dynamics. In the period-doubling 
phenomenon, one starts with a system with a fundamental periodic 
motion. Then as some experimental parameter is varied, say A, the 
motion undergoes a bifurcation or change to a periodic motion with 
twice the period of the original oscillation. As A is changed further, 
the system bifurcates to periodic motions with twice the period of the 
previous oscillation. One outstanding feature of this scenario is that 
the critical values of A at which successive period doublings occur 
obey the following scaling rule (see also Chapters 1 and 3): 

An - An-’+ i3  = 4.6692016 (2-1 1 )  
A n + ]  - An 

as n -+ 6. (This is called the Feigenbaum number, named after the 
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Figure 2-16 (a)  Sketch of vibrating magnet near a high-temperature superconducting 
material. (b )  Return map based on the amplitude signal from the strain gage. [From 
Moon (1988) with permission of North-Holland Publishing Company.] 
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physicist who discovered this scaling behavior.) In practice, this limit 
approaches 6 by the third or fourth bifurcation. 

This process will accumulate at a critical value of the parameter, 
after which the motion becomes chaotic. 

This phenomenon has been observed in a number of physical sys- 
tems as well as numerical simulations. The most elementary mathe- 
matical equation that illustrates this behavior is a first-order difference 
equation (see Chapters 1 and 3): 

(2- 12) 

As the system parameter is changed beyond the critical value, 
chaotic motions exist in a band of parameter values. However, these 
bands may be of finite width; that is, as the parameter is varied, 
periodic windows may develop. Periodic motions in this regime may 
again undergo period-doubling bifurcations, again leading to chaotic 
motions (see Section 6.3). 

The period-doubling model for the route to chaos is an elegant, 
aesthetic model and has been described in many popular articles. 
However, while many physical systems exhibit properties similar to 
those of (2-12), many other systems do not. Nevertheless, when cha- 
otic vibrations are suspected in a system, it is worthwhile checking to 
see if period doubling is present. 

Bifurcation Diagrams. A widely used technique for examining the 
prechaotic or postchaotic changes in a dynamical system under param- 
eter variations is the bifurcation diagram (an example is shown in 
Figure 2-17). Here some measure of the motion (e.g., maximum ampli- 
tude) is plotted as a function of a system parameter such as forcing 
amplitude or damping constant. If the data are sampled using a Poin- 
care map, it is very easy to observe period doubling and subharmonic 
bifurcations as shown in the experimental data for a nonlinear circuit 
from a paper by Bryant and Jeffries (1984a,b) at the University of 
California, Berkeley. However, when the bifurcation diagram loses 
continuity, it may mean either quasiperiodic motion or chaotic motion 
and further tests are required to classify the dynamics. 

Quasiperiodic Route to Chaos. Although period doubling is the most 
celebrated scenario for chaotic vibration, there are several other 
schemes that have been studied and observed. In one proposed by 
Newhouse et al. (1978), they imagine a system which undergoes suc- 
cessive dynamic instabilities before chaos. For example, suppose a 
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Figure 2-17 Experimental bifurcation diagram for a periodically forced nonlinear 
circuit with a p-n junction; periodically sampled current versus drive ampltiude 
voltage. [From Van Buskirk and Jeffries (1985) with permission of The American 
Physical Society, copyright 198% J 

system is initially in a steady state and becomes dynamically unstable 
after changing some parameter (e.g., flutter). As the motion grows, 
nonlinearities come into effect and the motion becomes a limit cycle. 
Such transitions are called Hopfb[furcations in mathematics (e.g., see 
Abraham and Shaw, 1983). If after further parameter changes the 
system undergoes two more Hopf bifurcations so that three simultane- 
ous coupled limit cycles are present, chaotic motions become possible. 

Thus, the precursor to such chaotic motion is the presence of two 
simultaneous periodic oscillations. When the frequencies of these 
oscillations, ol and w2, are not commensurate, the observed motion 
itself is not periodic but is said to be quasiperiodic [see Eq. (2-4)]. As 
discussed above, the PoincarC map of a quasiperiodic motion is a 
closed curve in the phase plane (Figure 2-10). Such motions are imag- 
ined to take place on the surface of a torus where the PoincarC map 
represents a plane which cuts the torus (see Figure 2-18). If w, and o2 
are incommensurate, the trajectories fill the surface of the torus. If 
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I Poincare plane J 
Figure 2-18 Sketch illustrating the coupled motion of two oscillators and the Poincare 
plane used to detect a quasiperiodic route to chaos. 

w,/w2 is a rational number, the trajectory on the torus will eventually 
close, although it might perform many orbits in both angular directions 
of the torus before closing. In the latter case the Poincare map will 
become a set of points generally arranged in a circle. Chaotic motions 
are often characterized in such systems by the breakup of the quasipe- 
riodic torus structure as the system parameter is varied (Figure 2-19). 

Evidence for the three-frequency transition to chaos have been 
observed in flow between rotating cylinders (Taylor-Couette flow) 
where vortices form with changes in the rotation speed. Three Fourier 
spectra from one such experiment are shown in Figure 2-20. In  the 
top figure, one periodic motion appears to be present. In the middle 
figure, two major motions are evident. In the bottom figure, we have 
the sign of an increase in broad-band noise which is characteristic of 
chaotic behavior. 

Inrermifrency. In a third route to chaos, one observes long periods of 
periodic motion with bursts of chaos. This scenario is called intermit- 
tency. As one varies a parameter, the chaotic bursts become more 
frequent and longer (e.g., see Manneville and Pomeau, 1980). Evi- 
dence for this model for prechaos has been claimed in experiments on 
convection in a cell (closed box) with a temperature gradient (called 
Rayfeigh-Benard convection) (see Figure 2-2 I ) .  Some models for 
intermittency predict that the average time of the regular or laminar 
phase of the motion (7) will scale in a precise way as some system 
parameter is varied; for example, 

1 
(A - A,.)”’ (7) = (2- 13) 

where A, is the value at which the periodic motion becomes chaotic. 
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Figure 2-19 (a)  Poincark section of a quasiperiodic motion in Rayigh-Benard 
thermal convection with a frequency ratio close to oJw2 = 2.99. (b)  Breakup of the 
torus surface prior to the onset of chaos. [From Berg6 (1982).] 

It should be noted that for some physical systems, one may observe 
all three patterns of prechaotic oscillations and many more depending 
on the parameters of the problem. The benefit in identifying a particu- 
lar prechaos pattern of motion with one of these now "classic" models 
is that a body of mathematical work on each exists which may offer 
better understanding of the chaotic physical phenomenon under study. 
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Figure 2-20 Evidence for the three-frequency transition to chaos in the flow between 
rotating cylinders (Taylor-Couette flow); the rotation difference increases from top 
to bottom. [From Swinney and Gullub (1978).1 

Quasiperiodicity and Mode-Locking 

One phenomenon that sometimes appears in searching for patterns of 
dynamic behavior in periodically driven systems is mode-locking . This 
behavior typically occurs in physical systems with natural limit cycle 
generators, such as negative resistance circuits, unstable control sys- 
tems, aeroelastic oscillators, biochemical and chemical oscillators, 

Figure 2-21 Sketch of the time history for intermittent-type chaos. 
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and thermofluid convections, such as a Rayleigh-Benard cell. Sup- 
pose, for example, such a system exhibits a natural periodic limit cycle 
of frequency q and is then perturbed by an external periodic force of 
frequency w2. Then one can ask, at what frequency will the combined 
system oscillate? 

A very nice review of the phenomena of mode-locking and quasipe- 
riodicity is given in Glazier and Libchaber (1988). 

The early observation of mode-locking or frequency-locking goes 
back to the Dutch physicist Christiaan Huygens (1629-1695), who 
observed how two pendulum clocks attached to a common structure 
become synchronized. Glazier and Libchaber (1988) give many mod- 
ern references of experimental observations of mode-locking in physi- 
cal and biological systems including chemistry, solid-state physics, 
fluid mechanics, and biology. 

In certain problems, mode locking can be observed fairly easily. 
One example is shown in Figure 2-22, which shows experimental 
data of a biological oscillator excited by a periodic electrical stimulus 

o 1 @) Cycles 
I 1  

Figure 2-22 Phase-locked oscillations between a periodic electrical stimulus (upper 
spikes on traces), and self-oscillations of a group of chick heart cells. (Top) N :  M = 
I :  I . ( M i d d k )  N : M  = 2 :  I . ( B o r r o r n ) N : M  = 2:3.[FrornGueveraetal.(1990)with 
permission of Harcourt Brace Jovanovich, Inc.] 
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(Guevara et al., 1990). Without the stimulus, the oscillator, which is 
a collection of cells from a chick heart, will produce a periodic train 
of electrical pulses called action potentials. When the periodic external 
stimulus is applied in very short time durations, one can observe the 
two types of signals in the output as shown in Figure 2-22. In a 
mode-locked condition, for every N stimuli pulses there are M action 
potentials. Shown in Figure 2-22 are ratios N :  M of I : 1 ,  2 : 1 ,  2 : 3. 

If the frequency of the stimulus is changed in a small way, the ratio 
N :  M is preserved-this is the mode-locking. If the change in the 
control frequency is sufficiently large, then the motion may become 
quasiperiodic or may become locked in another N : M  ratio. Thus, 
there is a j n i t e  width of the control frequency w N :  = A f i  in which 
the N:  M ratio is fixed. This width, oN: M ,  then depends on the strength 
or amplitude of the control stimulus. Plotted in the plane of control 
amplitude and frequency, each fixed N : M mode-locking regime looks 
like a wedge shaped region as shown in Figure 2-23. 

These mode-locking regimes are called Arnold tongues in honor of 
the Soviet dynamicist who provided the mathematical theory. The 
data in Figure 2-23 are from an experiment involving thermofluid 
convection in mercury in a small box with external excitation provided 
by a magnetic body force. One can see that the width of the tongues 
grows with the strength of the periodic stimulus. At a certain amplitude 
these tongues overlap, creating hysteresis and the possibility of cha- 

Frequency Ra t io  R 
Figure 2-23 Experimental Arnold torques in the driving amplitude-frequency plane 
for thermal convection in mercury (Rayleigh-Benard motion) driven periodically by 
passing electric current through the mercury in the presence of a small magnetic field. 
The insets show the relative widths near the golden mean uG and the silver mean u , ~ .  
[From Glazier and Libchaber (1988) 0 1988 IEEE.] 
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otic dynamics. Within each tongue one can also have period doubling 
in which the mode-locked ratio goes to 2N : 2 M ,  4N : 4M, and so on. 

The phenomena of mode-locking and quasiperiodicity can often be 
modeled by a one-dimensional map called the circle map (1-2.25) (see 
also Chapter 3): 

On+, = 8, + R + K sin 8,, (mod 2n) 

where the angular variable 8 is periodic in 27r radians. This model 
comes from a geometric view of the driven pendulum as the motion 
of a particle on a torus as discussed in Chapter 1 and in Figure 2-18. 

Transient Chaos 

Sometimes chaotic vibrations appear for some parameter changes but 
eventually settle into a periodic or quasiperiodic motion after a short 
time. According to Grebogi et al. (1983b), such transient chaos is a 
consequence of a crisis or the sudden disappearance of sustained 
chaotic dynamics. Thus, experiments and numerical simulation should 
be allowed to run for a time after one thinks the system is in chaos 
even if the Poincare map seems to be mapping out a fractal structure 
characteristic of strange attractors. 

Transient problems are important in technical dynamics. New meth- 
ods of characterizing transient chaotic behavior and unpredictability 
have recently received attention. See e.g. the work of Tel (1990). 

Conservative Chaos 

Although much of the new excitement about nonlinear dynamics has 
focused on chaotic dynamics in dissipative systems, chaotic behavior 
in nondissipative or so-called conservative systems had been known 
for some time. In fact, the search for solutions to the equations of 
celestial mechanics in the late 19th century led mathematicians like 
Poincare to speculate that many dynamic problems were sensitive to 
initial conditions and hence were unpredictable in the details of the 
motions of orbiting bodies. 

The study of chaotic dynamics in energy-conserving systems, while 
not the principal focus of this book, has received much attention in the 
literature and sometimes is found under the heading of “Hamiltonian 
Dynamics,” which refers to the methods of Hamilton (and also Jacobi) 
that are used to solve nonlinear problems in multi-degree-of-freedom 
nondissipative systems [e.g., see Chapter 1 ; also see the excellent 
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monographs by Lichtenberg and Lieberman ( 1983) and by Rasband 
(1990)l. 

Examples of conservative systems in the physical world include 
orbital problems in celestial mechanics and the behavior of particles 
in electromagnetic fields. Hence, much of the work in this field has 
been done by those interested in plasma physics, astronomy, and 
astrophysics (e.g., see Sagdeev et al., 1988 and Zaslavsky et al., 1991). 

Although most earth-bound dynamics problems have some energy 
loss, some, like structural systems or microwave cavities, have very 
little damping and over a finite period of time can behave like a 
conservative or  Hamiltonian system. An example might be the vibra- 
tion of an orbiting space structure. Also, conservative system dynam- 
ics provides a limiting case for small damping dynamic analysis. Thus, 
while we do not attempt to present a rigorous or lengthy summary of 
Hamiltonian dynamics, it is useful to discuss the general features of 
these problems. 

Typically, energy-conserving systems can exhibit the same types 
of bounded vibratory motion as lossy systems including periodic, 
subharmonic, quasiperiodic, and chaotic motions. One of the main 
differences, however, between vibrations in lossy and lossless prob- 
lems is that chaotic orbits in lossy systems exhibit a fractal structure 
in the phase space whereas chaotic orbits in lossless systems do not. 

Chaotic orbits in conservative systems tend to visit all parts of a 
subspace of the phase space uniformly; that is, they exhibit a uniform 
probability density over restricted regions in the phase space. Thus, 
lossless systems exhibit PoincarC maps different from those of lossy 
problems. However, the use of Lyapunov exponents as a measure of 
nearby orbit divergence is still valid. An example of a system with no 
dissipation is the ball bouncing on an elastic table where the table is 
moving and the impact is assumed to be lossless or elastic. Details of 
this problem are discussed in Chapter 3. 

Lyapunov Exponents and Fractal Dimensions 

The tests for chaotic vibrations described in this chapter are mainly 
qualitative and involve some judgment and experience on the part of 
the investigator. Quantitative tests for chaos are available and have 
been used with some success. Two of the most widely used criteria 
are the Lyapunov exponent (see Chapter 6) and the fractal dimension 
(see Chapter 7). In summary, these two indicators are currently inter- 
preted as follows: 
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1. Positive Lyapunov exponents imply chaotic dynamics. 
2. Fractal dimension of the orbit in phase space implies the exis- 

The Lyapunov exponent test can be used for both dissipative or 
nondissipative (conservative) systems, whereas the fractal dimension 
test only makes sense for dissipative systems. 

The Lyapunov exponent test measures the sensitivity of the system 
to changes in initial conditions. Conceptually, one imagines a small 
ball of initial conditions in phase space and looks at its deformation 
into an ellipsoid under the dynamics of the system. If dis the maximum 
length of the ellipsoid and do is the initial size of the initial condition 
sphere, the Lyapunov exponent A is interpreted by the equation 

tence of a strange attractor. 

One measurement, however, is not sufficient, and the calculation must 
be averaged over different regions of phase space. This average can 
be represented by 

A more detailed discussion is given in Chapter 6 along with references. 
The fractal dimension is related to the discussion of the horseshoe 

map in Chapter 1. There we saw that in a chaotic dynamic system, 
regions of phase space are stretched, contracted, folded, and re- 
mapped onto the original space. This remapping for dissipative sys- 
tems leaves gaps in the phase space. This means that orbits tend to 
fill up less than an integer subspace in phase space. The fractal dimen- 
sion is a measure of the extent to which orbits fill a certain subspace, 
and a noninteger dimension is a hallmark of a strange attractor. There 
are many definitions of fractal dimension, but the most basic one is 
derived from the notion of counting the number of spheres N of size 
E needed to cover the orbit in phase space. Basically, N ( E )  depends 
on the subspace of the orbit. If it is a periodic or limit cycle orbit, then 
N ( E )  = E - ' .  When the motion lies on a strange attractor, N ( E )  E - ~  

or 
log N 

d = lim 
/V+x log( 1 l E )  

Further discussion is given in Chapter 7. 
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Although both quantitative tests can be automated using computer 
control, experience and judgment are still required to provide a conclu- 
sive assessment as to whether the motion is chaotic or a strange 
attractor. Finally, almost all physical examples of strange attractors 
have been found to be chaotic; that is, noninteger d implies A > 0. 
However, a few mathematical models and physical problems have 
been studied where one does not imply the other. 

Strange-Nonchaotic Motions 

As more research is done in the field of modern nonlinear dynamics, 
discoveries are made of new categories of motions. We have seen 
the list grow from periodic, subharmonic, quasiperiodic, intermittent, 
chaotic, and hyperchaotic to spatially and temporally chaotic dynam- 
ics. However, nearly a decade ago J. Yorke and coworkers at the 
University of Maryland suggested that a new type of motion was 
possible, namely, strange nonchaotic motions-that is, motions which 
were geometrically fractal in the phase space, but whose Lyapunov 
exponents were not positive. 

At the time, almost all the dynamic models with physical relevance 
and dissipation exhibited at least one positive Lyapunov when the 
attractor looked fractal. And to some extent the terms chaotic and 
strange attractor were often used interchangeably. The original exam- 
ple of Grebogi, Ott et al., in 1984, of a strange-nonchaotic attractor, 
however, looked to many to be a singular case, not relevant to phys- 
ical problems. However, through a series of papers this group has 
amassed convincing evidence for this type of dynamic, which is 
especially relevant to the systems which exhibit multiple sources 
of oscillation (either forced or autonomous) and exhibit quasiperiodic 
motion [e.g., see Grebogi et al. (1984), Ding et al. (1989a,b), and 
Ditto et al. (1990)l. 

We will not discuss the theory of such motions in great depth, 
but we will summarize one of the experimental examples for which 
strange-nonchaotic motions are thought to occur. 

Strange-nonchaotic attractors are difficult to diagnose experimen- 
tally because reliable methods for calculating Lyapunov exponents 
are not readily available. However, another tool that has been used is 
the scaling properties of the Fourier spectrum of the time series (Ditto 
et al., 1990). Define IS(w)l as Fourier transform of the signal sampled 
at one of the forcing frequencies. Then the spectral distribution func- 
tion N ( s )  is defined as the number of peaks in the IS(w>l with amplitude 
greater than s. For two-frequency quasiperiodic attractors, N - In s. 
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For three-frequency quasiperiodic attractors, N - [In s]', and for 
strange-nonchaotic motions, N - s -", 1 < a < 2. 

The experiment described in Ditto et al. (1990) consists of a thin 
elastica clamped at the base and initially buckled under gravity. The 
material used was an amorphous magnetostrictive ribbon called MET- 
GLAS which exhibits large changes in the effective Young's modulus 
in a magnetic field. The ribbon was placed in a vertical magnetic field 
which had two frequency components 

B = B,cos w , t  + B,cos 0 2 t  

where B , ,  B 2  - 0.5-0.9 Oe. The data recorded the change in curvature 
of the ribbon near the clamped end. Evidence for strangeness was 
obtained by taking a Poincare section triggered on one of the 
driving frequencies. The two-frequency quasiperiodic motion 
exhibited a closed circular figure. However, the surface of section 
of the so-called strange-nonchaotic motion showed a fractal-like 
pattern. The spectral distribution function (Figure 2-24) showed 
the theoretical scaling N - spa  for strange-nonchaotic motions with 
a = 1.25. 
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Figure 2-24 Spectral distribution function N ( s )  for a buckled magnetoelastic cantile- 
a vertical magnetic field H = H,cos w , t  + Hzcos w2f with 0 2  = 

The upper curve is for strange-nonchaotic motion ( H I  = 
0.71, H? = 0.80), and the lower curve is for quasiperiodic motion ( H  = 0.71, H 2  = 
0.53). [From Ditto et al. (1990).] 
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It is clear that further research will be needed to better define these 
peculiar motions. But there is now evidence that the new world of 
nonlinear dynamics has a growing list of new species of complex 
motion. 

For a numerical study of strange-nonchaotic motion in a Van der 
Pol oscillator, the reader should see the paper by Kapitaniak et al. 
(1990). 

PROBLEMS 

2-1 

2-2 

2-3 

2-4 

2-5 

Use the definition of a linear operator to show that the equation 
for the motion of a damped pendulum ij + c4 + b sin q = 0 is 
nor linear. 

Consider a ball bouncing between two walls (neglect gravity) 
for which one wall has a small periodic motion. Show that the 
dynamics is not governed by a linear operator. 

Sketch the power spectrum density of 
(a) (cos 

(b) (cos?] 

Consider the output of a nonlinear oscillator to have a primary 
frequency component plus a subharmonic: 

If one defines a second state variable .i = y ,  then when will the 
orbit as plotted in the phase plane (x, y )  show a double loop? 
Will this be any different if the signal had primary and harmonic 
components (i.e., o, 2o)? 

Suppose that the output ofa dynamical system has two frequency 
components, that is, 

x ( f )  = A cos olt + B cos(02t + +) 

(a) If one takes a PoincarC map on the phase w l t ,  show that the 
map (x, y = i) is an ellipse when w l / 0 2  is incommensurate. 
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(b) Describe the map dynamics if wl/w2 = p / q ,  where p and q 

(c) What does the map look like in the phase plane (x, y )  if there 

2-6 A return map, x,+ I versus x,,, shows a bilinear relationship 

are integers. 

is a third frequency w 3 ?  

a + bx, x <  1 

c - dx, X >  1 
F(x) = 

If b > 0, d > 0, show that the Lyapunov exponent is posi- 
tive when b, d > 1. Sketch a few iterations of the map in the 

2-7 A damped harmonic oscillator (series circuit of inductor, capaci- 
tor and resistor) can be represented mathematically by the fol- 
lowing differential equation and solution: 

(x,, + I 9 x,) plane. 

Sketch the solution in the phase plane (x, y = i). Define a 
PoincarC section when x > 0, y = 0. Assume that y is small 
(y2  << 1) and show that the resulting map takes the form x,+ I = 
Ax,, , and A < 1. Can you estimate A? 

2-8 Pseudo-Phase Plane. The equation for a linear harmonic oscilla- 
tor (spring and mass or inductor and capacitor circuit) is given 
by i + x = 0. The solutions for this equation can be represented 
in the phase plane by an ellipse written in parametric form: 

x = A s i n t ,  y = x = A c o s t  

Derive an expression for the solution x = A sin t in terms of 
pseudo-phase-plane variables (x, x’), where x’ = x(t + T). Plot 
this expression for different values of T. 
[Answer: (x’ - x cos T)* = (A2 - x2)sin2T.] 
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3 
MODELS FOR CHAOS; MAPS 
AND FLOWS 

All the richness in the natural world is not a consequence of complex 
physical law, but arises from the repeated application of simple laws. 

L. P. Kadanoff’ 

3.1 INTRODUCTION 

To those of us educated in the physical sciences, the infinitesimal 
differential calculus was the first abstract mathematical tool that one 
struggled with on the road to understanding mathematical physics. 
Later, we learned to model the world with the calculus of differential 
equations. In this view, the physical world was reduced to sets of 
differential equations: the Navier-Stokes equation of fluid mechanics ; 
the equations for elasticity for solids and structures such as beams, 
plates, and shells; Maxwell’s equations for electromagnetics; and the 
heat equation for thermal problems. The solutions of these differential 
equations are drawn in phase space as continuous orbits. A bundle of 
such trajectories, corresponding to different initial conditions, gener- 
ates orbits that look like the flow of a fluid-hence the modern term, 
flows, to describe the dynamics of continuous time systems. Thus it 
comes with some surprise to many in the physical sciences that some 

L. P. Kadanoff is a physicist at the University of Chicago. Quote taken from Physics 
Today, March 1991, page 9. 
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Figure 3-1 Sketch showing the relation between a continuous time orbit in a 3-D 
phase space and a 2-D discrete time point mapping. 

dynamical phenomena can be exactly represented by finite time differ- 
ence equations, or maps as they are now called. 

However, for students of the biological and social sciences, the 
dynamic laws are more often posed as relationships between events 
at discrete time intervals, and the use of difference equations is more 
natural (e.g., see May, 1976, 1987). After all, the events of birth and 
death or the publication of unemployment statistics occur at specific 
times. 

Today, however, the study of modern dynamics in the physical 
sciences requires a working knowledge of iterated maps, especially to 
understand the basic nature of chaotic behavior. As illustrated in 
Chapter 2, the Poincard section of the dynamics of a physical system 
described by three first-order differential equations naturally leads to 
a discrete time map on the plane as illustrated in Figure 3-1. Thus, we 
begin with the study of two coupled nonlinear difference equations or 
second-order maps. 

The Geometry of Mappings: Maps on the Plane 

The dynamics of maps can be described both geometrically and alge- 
braically. We will first take a look at the qualitative properties of 
maps and then look at more specific examples for more quantitative 
information. 
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By a mapping we mean a transformation of a contiguous set of 
points from one set of positions to another. The dynamic evolution of 
a particular initial point under repeated application of this transforma- 
tion is called an iterated map or simply a map. We begin with a 
discussion of maps on the plane or of two-dimensional (2-D) maps 
which are written as a set of two coupled difference equations. 

For most of the maps discussed in this book we assume that they 
can be written in explicit form,! that is, 

(3-1.1) 

We also assume that each point (x, , y , )  has a unique iterate and that 
each iterate (x ,+  I ,  y,, I )  has a unique antecedent. This implies that an 
inverse mapping can be found: 

(3-1.2) 

For example, in the case of the most general form of a quadratic, 
polynomial, area-preserving mapping of the plane (see Henon, 1969), 
one can find F1, G - '  quite easily; that is, suppose 

x,+ ] = F ( x , ,  y,) = x,,cos Q - (Y,  - x,)sin 2 

y , ,+  I = G(x,, , y,) = x,,sin Q + (Y ,  - x,)COS 2 

a 

a 
(3-1.3) 

Then it  can be shown that the inverse is given by 

x, = x,+ lcos Q + y , ,  ,sin a 

y, = -xnt Is ina  + y,+Icosa  + ( ~ , + ~ c o s a  + ~ , + ~ s i n a ) '  

Area-preserving mappings arise in the dynamics of conservative or 
so-called Hamiltonian dynamics. 

When the functions F ,  G are continuous and differentiable, the 
change in the transformation of a small differential area under one 

Although this form is convenient for mathematical analysis, there are many problems 
where the relation between x,,+, and x, is implicit. One example is a mass bouncing 
between two periodically oscillating walls. 
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iteration of the mapping is measured by the Jacobian, defined by the 
determinate 

aF aF I -  - 
ax ay 

J = l  ac aG 
(3-1.4) 

Jdx dy 

Sometimes the following notation is used: 

Area-preserving maps have I J (  = I as one can check by the above 
example of Henon (1969). When dissipation is present in physically 
relevant maps, IJ( < 1 ,  or areas contract under the mapping. 

Impact Oscillator Maps 

There are many examples in physics and engineering where the dy- 
namics of a particle are linear within finite time intervals and where 
energy is put in or taken out in very short time periods between these 
linear dynamic intervals. Such examples arise in particle accelerators, 
or in the motion of two gears with play between the teeth. 

As an example of how a 2-D map can arise in dynamics, we consider 
the motion of an oscillator under periodic impacts (Figure 3-2). 

An analysis of a general impact oscillator has been given by Helle- 
man (1980a) based on the motion of a proton in intersecting storage 
rings. A similar problem involving a particle in a plasma may be found 
in Sagdeev et  al. (1988). The basic equation in these problems is a 
linear oscillator which is periodically impacted at time intervals of 
2nnlR in which the momentum change depends on the motion: 

x + w;x = f ( x ,  c s(r - 2nn/R) (3-1.5) 

where 6(t - T ~ )  is the classical delta function whose integral is unity. 
Between impulses the solution is proportional to A cos(wot + q0). 
Piecing together these linear solutions using the above equation, one 
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Figure 3-2 A linear oscillator with periodic, amplitude-dependent impulse forces. 

can show that the displacement after impact x, and the velocity after 
each impact u, = x ( t ; )  satisfy the following difference equations: 

x,+ I = x,cos p + u,(sin p)loo 

u,+ I = -x,wosin p + u,cos p + f ( x , +  I )  
(3-1.6) 

where p = 2 7 r 0 0 / ~ .  It is easy to show that this is an area-preserving 
map, that is, J = 1. 

Classification of Map Dynamics 

We describe here a few typical motions of discrete time dynamical 
systems. In particular we focus on 2-D maps in the plane. As discussed 
above, they arise quite naturally from a Poincart map of three-state 
variable continuous time dynamics. 

Fixed Points. As the term implies, iteration of the map at a fixed point 
or equilibrium point x, brings the system to the same point in one time 
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cycle, that is, 

For example, in the case of the cubic map 

F = y ,  G = ax - bx’ + cy (3-1.8) 

given by Holmes (1979) in the study of chaos in a buckled beam, the 
fixed points are found from the equations 

X e  = Y e ,  y e  = ax, - bx: + cye (3- 1.9) 

Cycfe Points. Cycle points are similar to fixed points except that 
the dynamics undergo several iterations before returning to the fixed 
point, that is, 

x,+, = x, or x, = F ( m ) ( ~ , )  (3-1.10) 

Note that, as illustrated in Figure 3-3, each of the m points in the 
cycle is a cycle point. 

The so-called Standard map appears in many applications in phys- 
ics, including accelerator particle dynamics (Lichtenberg and Lieber- 

“2 

=* 
Figure 3-3 An rn-cycle orbit of a 2-D map. 
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man, 1983) as well as the dynamics of a bouncing particle on a vibrating 
surface (Holmes, 1982). In this map the state variables (cp,, u,) repre- 
sent the time or phase of impact (mod 27~)  and the velocity after 
impact. Thus, the map operates on a cylindrical phase plane: 

(3-1.11) 

where 0 < a 5 1.  When a = 1 there is no energy dissipation and the 
map is area-preserving. 

If this transformation is defined by T, then the fixed points of 
the period-2 motion are the fixed points of T 2  where the superscript 
indicates that the mapping is applied twice. The equations which 
determine these points for the standard map are given by 

Thus we have four equations in four unknowns. The details of the 
solution can be found in Holmes (1982). 

Two examples of cycle points are shown graphically in Figure 
3-4a,b. One is for the standard map and the other is for the quadratic 
map discussed by Henon (1969). In the case of the quadratic map there 
are two sets of cycle-3 points. These are the fixed points of 
the transformation T 3 .  The set with the ellipses around each point 
are called centers and are stable, whereas the set with what looks like 
two crossed curves going through them are saddle points and are un- 
stable. 

Quasiperiodic Motions 

As discussed in Chapter 1, when two oscillators have incommensurate 
frequencies, the combined motion in a map describes an elliptic-type 
orbit in the map as shown in Figure 1-13. In the case of multiple- 
period fixed points or cycles, each of the fixed points in the cycle is 
surrounded by ellipse-shaped curves. In a quasiperiodic motion close 
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Stable 
; c ,-..> -. /cycle Point 

._ - _ -  __--  
( h )  

Figure 3-4 (a)  Standard map (no dissipation) showing cycle points. (b )  Quadratic 
map of Henon (1969) showing three-cycle points. 
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to these fixed points, the orbit will visit each of the ellipses in turn, 
slowly mapping out a closed curve after many iterations of the map. 

Stochastic Orbits 

In the case of conservative or area-preserving maps (Hamiltonian 
system), a chaotic orbit often occurs near a saddle point and the orbit 
is characterized by a uniformly dense collection of points with no 
apparent order. An example is shown in Figure 3-5. These chaotic 
orbits can have positive Lyapunov exponents, indicating a sensitive 
dependence on initial conditions, but the orbit does not exhibit fractal 
structure as in a dissipative map. 

Fractal Orbits 

These motions are typical for dissipative maps; that is, 

Parametric Pendulum Gam=0.05 w=2.0 

---- 

THETA 
Figure 3-5 Poincare map of a parametrically forced pendulum showing periodic 
orbits (po in t \ ) ,  quasiperiodic orbits (( losed curues), and stochastic orbits (diffuse ser 
of  point^). Relative change in length, y = 0.05; (forcing frequency) o = 2.0. 



94 MODELS FOR CHAOS; MAPS AND FLOWS 

0.5 1.0 1.5 - 0 . 6 t '  I '  I ' ' ' ' ' ' ' ' ' ' ' ' ' " ' ' ' ' ' 
-1.5 -1.0 -0.5 

Figure 3-6 The Henon map (1-3.8) showing fractal structure. a = 1.4; p = 0.3. 

Examples include the Henon map [Eq. (1-3.8)] shown in Figures 1-24, 
3-6, and the standard map [Eq. (3-1.11)] shown in Figure 3-11. Al- 
though the motion is unpredictable, the orbit traces out an infinite set 
of curves which may be viewed by looking at finer and finer scales as 
in Figure 1-24. 

3.2 LOCAL STABILITY OF 2-D MAPS 

As in the analysis of dynamics governed by ordinary differential equa- 
tions, the dynamic behavior of systems described by sets of difference 
equations can be analyzed by looking at linearized maps near the fixed 
points, Let us assume that the origin is a fixed point; then for a 2-D 
map [Eq. (3.1-l)] the linear map takes the form 

where 

(3-2.1) 

aF aF 

ax ay 
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and the derivatives of the nonlinear map functions are evaluated at 
(0, 0). 

The analysis of linear maps is straightforward and can be found in 
several texts (e.g., see Bender and Orzag, 1978). One begins by guess- 
ing at a power-law type 
tions takes the form 

of solution which for linear difference equa- 

(3-2.2) 

Substitution of this solution into the linear equations (3-2.1) leads 
to the following eigenvalue problem: 

ra (d - A) ]{::I = O 

or 

A2 - (a + d)A + ad - cb = 0 (3-2.3) 

These equations establish the stability criteria for a linear map. 

[A[  < 1:  

IAI > 1: 

\A( = 1:  

Solution is stable 
Nonlinear system is stable 
Solution is unstable 
Nonlinear system is unstable 
Solution is neutrally stable 
Stability of nonlinear system depends on nonlin- 

ear terms in map. 

Similar to the analysis for differential equations, one must find 
the corresponding eigenvectors along with determination of the two 
eigenvalues, A. When these vectors exist, they establish the directions 
along which simple multiplicative dynamics x,+ I = Ax, takes place. 
For an arbitrary initial condition, however, the total solution takes the 
form 

x, = clA;ell + c2A;e2, (3-2.4) 

when A , ,  Az are distinct. Here (e l l ,  ezl) is the eigenvector correspond- 



96 MODELS FOR CHAOS; MAPS AND FLOWS 

Yn 

" 

Figure 3-7 Fixed points of 2-D maps: (a) stable node, (b)  unstable node, (c)  saddle 
point, ( d )  spiral points. 
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ing to the eigenvalue A,. Rules for special cases for identical eigenval- 
ues can be found in Bender and Orzag (1978). 

A few classic examples of local fixed point dynamics of 2-D maps 
are worth mentioning and are illustrated in Figure 3-7. 

I .  Stable Node, IAl [ ,  (A2[ < I (Both Real). If 0 < A l  < 1, then for 
initial conditions along the corresponding eigenvector direction the 
motion moves toward the origin without changing sign. However, if 
A l  or A2 < 0, then the motion can flip between positive and negative 
eigen-directions while still moving closer to the fixed point. 

IZ. Unstable Node, \ A I ( ,  [A2  > I (Both Real). The same comments 
in case I hold except the motion moves away from the fixed point 
and the motion is called unstable. 

I I I .  Saddle Point, \ A , \ ,  < I ,  [A2[ > 1 (Both Real). Initial conditions 
along the A l  eigenvector result in inward motion; however, and small 
component along the A2 eigenvector takes the total solution away from 
the origin and the solution is unstable. 

IV.  A , ,  A2 = (Y * ip = pe"9. These fixed points are known as 
stable or unstable spirals depending on whether p < 1 or p > 1. 
Sometimes the term stable or unstable focus is used. Note that al- 
though these solutions are analogous to oscillatory motion in differen- 
tial equations, one can have oscillating map solutions in cases I, 11, 
and 111 as well as in spiral solutions. 

When ( A [  > I or (A1 < I ,  these points are known as hyperbolic points 
and the stability of the linearized map gives a good picture of the 
stability of the nonlinear map in the neighborhood of the fixed point. 

When [A1 = 1, however, these points are sometimes called elliptic 
points, and the stability of the nonlinear map depends on the terms of 
higher order than the linear ones. 

When one has multiple-period fixed points or an N-cycle point, the 
stability can be determined by looking at the linearized map of the TN 
map at one of the cycle points. 

Finally, to get a complete picture of the dynamics of nonlinear 
maps, one must look at how sets of points transform under the map. 
This is the subject of the next section. 

3.3 GLOBAL DYNAMICS OF 2-D MAPS 

In the previous section we looked at the dynamics of specific trajecto- 
ries in the neighborhood of a fixed point. Here we examine how the 
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map transforms a set of contiguous points under one or more itera- 
tions. In particular, it is a special type of 2-D map called a horseshoe 
or baker’s map that produces stretching and folding and is thought to 
be the fundamental mechanism for the creation of chaotic dynamics. 

in the following we will look at simple maps that produce transla- 
tion, dilatation, shearing, stretching, and folding. The first four effects 
can be accomplished with a linear map. 

Linear Transformation 

A general linear transformation takes the form 

x,+, = b + A X, (3-3.1) 

where the constant vector b and the elements of the matrix A are 
assumed to be real. The constant b represents a uniform translation. 
To examine the effect of A, consider the case b = 0, and consider the 
following special cases (see Figure 3-8). 

A = [i s] (dilatation) (3-3.2) 

In this case, an area contracts or expands uniformly such that circles 
remain circles. This is similar to the uniform thermal expansion of a 
material due to heating. Areas change by a factor det A = r2 under 
each iteration of the map. 

(ii) A = [ 5 %] (stretching s > 1, contraction c < 1) (3-3.3) 

Under this transformation, a small square is deformed into a rectan- 
gular shape, with the x-axis direction being stretched by a factor s > 
1 while the y-axis direction is contracted by a factor c < 1. The change 
of area, det A = sc, depends on the relative amounts of stretching 
and contracting. For conservative dynamics, sc = 1. 

(iii) (rotation) 1 A = [cosa -sina 
sina cosa 

(3-3.4) 

This operation rotates areas around the origin by an angle a. Areas 
are preserved-that is, det A = 1. 
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> > 

Figure 3-8 Geometric properties of four linear transformations. 
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(pure shear transformation) (3-3.5) 
A = [:, f ]  (iv) 

This is a horizontal shearing operation which moves the points in 
the upper half-plane to the right and which moves those in the lower 
half-plane to the left. A square area becomes a rhombus, and areas 
remain preserved under this transformation-that is, det A = 1. 
However, this deformation is identical to case ii-that is, a combined 
stretching and contraction along 45" directions with sc = 1. 

(v) A =  [' "1 (reflection about y-axis) (3-3.6) 
0 - 1  

Our final example is a simple reflection about the y-axis. This can 
be generalized by using a composition of two linear mappings. First 
define T I  as a reflection about the y-axis, then define T2 as a rotation 
a to obtain a mapping 

or 

1 cosa -sina] [i -3 = [ cos a 
sina cosa 

sin a 
sina -cosa 

A = [  

Generalizations of the other mappings (i-iv) can be done in a similar 
way and are left as an exercise. 

Folding in 2-D Maps-Horseshoes 
A simple quadratic map that produces folding as in Figure 1-22 is a 
map similar to but slightly different from Eq. (3-1.3): 

(3-3.7) 

This map is area-preserving-that is, J = 1. However, a thin rectangu- 
lar area centered on the x-axis is deformed into the shape of a horse- 
shoe under one iteration. 
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Composition of Maps-Henon Map 

When two transformations TI, T2 are performed on a set of points, we 
denote the operation by T2 0 TI and call this a composition. 

The now classic paradigm of a strange attractor generated by a 
simple 2-D quadratic difference equation is the Henon map (Henon, 
1976) introduced in Chapter 1:  

2 Xntl  = 1 + yn - a x n  

Y n + l  = P X n  
(3-3.8) 

This map is area-contracting provided that 0 < p < 1. 

T5 0 T4 0 T3 0 T2 0 TI defined as follows (see Figure 3-9): 
This map can be seen as a composition of five transformations 

TI: b = (0, 1) (translation) 

T2: X n t l  = X n ,  Y n + l  = Y n  - a n  (folding) 

T,: A = [ '1 (rotation, a = -7d2) 
- 1  0 

T4: A = [' "1 (reflection) 
0 - 1  

T5: A = [: ;] (con traction) 

As discussed in Chapter 1, repeated applications of this map leads 
to a multiple stretching and folding and the fractal properties of a 
strange attractor. 

The Horseshoe Map 
The previous example of a horseshoe mapping uses a continuous 
quadratic polynomial function. However, a conceptually simpler map- 
ping was proposed by Smale in 1962 as a model for complex dynamics, 
as previously discussed in Chapter 1 (Figure 1-23). A similar transfor- 
mation is the baker's map (see Chapter 6 (6-4.26)) which is analogous 
to rolling, cutting and folding of pastry or bread dough (Figure 6-33). 
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3.4 SADDLE MANIFOLDS, TANGLES, AND CHAOS 

As a prelude to Chapter 6 (“Criteria for Chaotic Vibrations”), it can 
be said that one of the keys to the kingdom of chaos is the search 
for the existence of horseshoe-like maps. In many systems, strange 
attractors are organized around saddle-type fixed points-that is, 
points at which orbits come into a small region of phase space along 
a stable manifold and go out along paths close to an unstable manifold. 
This saddle-type fixed point creates the contraction and stretching 
mechanisms for a horseshoe map. The nonlinear aspect of the map is 
required to produce the folding or bending mechanism of the horseshoe 
map. Repeated iteration of the stretching, contracting, and folding of 
regions of phase space lead to unpredictability and, in the case of 
dissipative systems, lead to the fractal nature of the dynamics in the 
map. 

Thus the calculation of fixed points and determining the nature of 
their stability is no mere academic exercise, but can be used along 
with computational tools to give a clue to the nature of the chaotic 
attractor. This is illustrated for the case of the standard map [Eqs. 
( 3 . 1 - 1  l)] which has been used to study the dynamics of a ball bouncing 
on a vibrating surface (e.g., see Guckenheimer and Holmes, 1983). In 
this model, x ,  represents the phase in the driving period at which the 
ball hits the table (mod 27r), and y represents the velocity of the ball 
after impact. The PoincarC map is taken at the point of contact resulting 
in the following difference equations: 

This map is a variation of impact oscillator maps [Eqs. (3.1-6)]. 
The Jacobian of this map is a, which represents the loss of energy 

on impact. Here a < 1 and areas are contracted with each iteration of 
the map. 

One can show that fixed points of this map are given by 

y e  = 2mn 

- I  (a - 1)2mn 
x, = cos [ ] 

(3-4.2) 

[See Holmes (1982) for a more complete description.] 
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The stability of each fixed point can be ascertained by looking at 
the eigenvalues of the linearized Jacobian matrix of the map 

(3-4.3) 

In this problem there are two eigenvalues at each fixed point A,, h2 
and there are two eigenvectors whose direction is given by 

7 = (A - 1)X 

To take a specific example, consider the fixed point (xe, ye) = 
( ~ 1 2 ,  0) of the map (3-4.1) for which 

A* - (1  + (Y + y)A + (Y = 0 

One can show that both eigenvalues are real and that A, > I ,  A, < I ,  
which implies a saddle-type fixed point. Figure 3-10 shows the direc- 
tion of the stable and unstable manifolds at the point (7r/2, 0). How- 
ever, to determine the shape of these manifolds far from the fixed 
point, one must use numerical methods. 

To numerically calculate the unstable manifold, we note that a map 
does not generate a continuous orbit. To generate the manifold, one 
must generate a large number of orbits, each originating near the fixed 
point with coordinates satisfying Yo = (Al - l )Xo.  

To numerically determine the stable manifold, we solve the inverse 
map, choose initial conditions along the stable direction of the saddle, 
and iterate backwards in time. The inverse map is given by 

y n - ,  = - y n  1 + -cosx" Y a a (3-4 9 4) 

for n = 0, - 1 ,  -2 ,  .... A large number of initial conditions (say 
100-200), each chosen close to the fixed point and orbits iterated (say 
10-20 times), will generate a collection of points that lie approximately 
on each of the two manifolds of the saddle point. 

The results of such a calculation for the (7~/2, 0) fixed point of the 
standard map are shown in Figure 3-10 for a dissipation parameter of 
(Y = &and forcing amplitude values y = 2,3 .3 ,6 .  The first case shows 
these two manifolds to be nonintersecting. However, for y = 3.3, we 
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Figure 3-10 Stable and unstable manifolds of the standard map (3-4.1) at (7d2,O) for 
(a)  y = 2, ( 6 )  y = 3.3,  and (c )  y = 6. 

105 



106 MODELS FOR CHAOS; MAPS AND FLOWS 

Figure 3-11 Collection of points from multiple iterations of the standard map (3-4.1) 
from a single initial condition (y  = 6). 

see that they are almost touching. This is a critical case because there 
is a theorem attributed to Poincark that says if they intersect once, 
they will intersect an infinite number of times (see Chapter 6 for more 
discussion). Note that for flows, such intersection is not allowed, 
except at fixed points, but for maps it’s O.K. 

It is this tangling of manifolds that is believed to create the horseshoe 
maps which are necessary for certain kinds of chaos. For y = 6 it is 
clear that these two manifolds have indeed intersected many times. 

In fact, in the region y - 6, the standard map yields a strange 
attractor which can be verified by iterating the map (3-4.1) many times 
from one initial condition (Figure 3-11). What is remarkable about 
Figure 3-1 1 is that the shape of the strange attractor for y = 6 is very 
close to the shape of the unstable manifold for the same value. This 
is believed by theorists to be more than coincidental-namely, that 
for many chaotic attractors the chaos is organized by the unstable 
manifold of a saddle-type fixed point. 

3.5 FROM 2-D TO 1-D MAPS 

When time is a continuous variable, the description of chaotic dynam- 
ics requires three state variables, and a PoincarC section naturally 
leads to a two-dimensional iterated map. The question then arises: 
Under what conditions can this two-dimensional description be further 
reduced to a single, first-order difference equation or 1-D map? To 
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illustrate this question and give a clue to its answer, we offer two 
examples, namely, the kicked rotor oscillator and the Henon map. 

The Kicked Rotor 

As we have seen in the examples of the horseshoe map (Figure 1-23) 
or the logistic equation [Eq. (1-3.6)] in Chapter 1, the nature of the 
chaotic dynamics is best uncovered by taking a Poincare section of a 
continuous time flow in phase space. However, for most differential 
equation models of physical systems, it is impossible to obtain analyti- 
cal results. Again, we look at a variation of the impact map. In the 
example considered here, we imagine a rotor with rotary intertia J and 
damping c which is subject to both a steady torque coo and a periodic 
series of pulsed torques as shown in Figure 3-12 (see also Schuster, 
1984). The equation of motion representing the change in angular 
momentum of the rotor is given by 

+ I  

J&J + c o  = coo + T(8)  2 6(t - n ~ )  (3-5.1) 
n =  --I 

The term 6(t - n ~ )  represents the classical delta function which is 
zero everywhere except at the t = n7 and whose area is unity. Thus, 
for times n~ - E < t c n7 + E ,  where E << 1, the angular momentum 
change is given by 

For example, if the torque is created by a vertical force as shown 
in Figure 3-12, then the pulsed torque is proportional for T(8) = 
Fosin 8. 

Figure 3-U Rotor with viscous damping and periodically excited torque studied by 
Zaslavsky (1978). 
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When T(8) = 0, Eq. (3-5.1) has a steady solution o = wo, 8 = mot. 
To obtain a PoincarC map, we take a section right before each pulsed 

torque. Thus, we define 8, = 8(r = nr - E ) ,  E + 0’. One can 
relate ( O n ,  wn)  to (8,+ w,+ I )  by solving the linear differential equation 
between pulses and using the jump in angular momentum condition 
(3-5.2) across the pulse. Between pulses, the rotation rate has the 
following behavior: 

Carrying out this procedure, one can derive the following exact 
PoincarC map for the system (3-5.1): 

(3-5.4) 

These equations were first derived by the Soviet physicist Zaslavsky 
(1978) to treat the nonlinear interaction between two oscillators in 
plasma physics. In this mechanical analog of this problem, wo repre- 
sents the frequency of one uncoupled oscillator [see also Ott (1981) 
for a derivation]. 

This two-dimensional map is often nondimensionalized using 

e n  

21r 
x, = - (mod 1) 

For T(0)  = Fosin 8 and E = Fo/Jwo,  Eqs. (3-5.4) then become 

Y , + ~  = e-r(y ,  + ~sin2.rrx,) (3-5.5) 

where the braces { } indicate that only the fractional part is used (i.e., 
mod 1 or 0 5 8 I 2n). Also, K = ~ n / 2 7 ~ ,  r = c d J ,  and R = W ~ T .  

Here y ,  measures the departure of the speed from the unperturbed 
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equilibrium speed w = wo. Note that this map contracts areas for I' > 
0 and preserves areas for r = 0. 

This system of two difference equations has been found to exhibit 
chaotic solutions only if the following conditions are satisfied when E 

is small: 

(3-5.6) 

A typical case is shown in Figure 3-13 for the parameters r = 5, 

The problem of a kicked or pulsed double rotor with two degrees 
E = 0.3,n = 100, and K = 9. 

of freedom has been investigated by Kostelich et al. (1985, 1987). 

Circle Map 
A simpler version of the Zaslavsky map for two coupled oscillators 
can be obtained by letting the damping become larger, r >> 1. In this 
limit, one can ignore the changes in w or y (note that Ay is small in 
Figure 3-13). This leads to a one-dimensional map known as a circle 
map : 

R K  (3-5.7) 

This equation has received extensive study (e.g., see Rand et al., 
1982) and is a model for the quasiperiodic oscillation between two 
oscillators with uncoupled (K = 0) frequencies in the ratio a. In this 

't 
I I 

0.002 - 1  

0- 

I I 
I I 
0 0.5 1 x  

w 

Figure 3-13 Strange attractor for the Zaslavsky map (3-5.4) for the kicked rotor in 
Figure 3-12: x represents angular rotation (mod I ) ,  and y represents the angular 
velocity. 
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example, one can see the steps that lead from the physics to an exact 
2-D map and then to an approximate I-D map (3-5.7). 

The Henon Map 

Earlier we saw that the quadratic, dissipative map (3.3-8) contracted 
area proportional to the constant p. This results in a strange attractor 
with fractal structure and a fractal dimension, d ,  with 1 < d < 2. 
However, as /3 + 0, the coupling between the two variables x, y 
becomes weaker. Also, one can see from the chaotic attractor that the 
points seem to be distributed along a one-dimensional curve in the 
plane and d - 1 (see Figure 3-14). 

In the limit of small p,  the Henon map becomes asymptotic to a 
curve in the x-y plane given by 

For small p ,  y becomes small and the Henon map approaches the one- 
dimensional quadratic map 

2 X,+I = 1 - a x ,  

which is similar to the logistic map (1-3.6). 

Experimental Evidence for Reduction of 2-D to 1-D Maps 

There is much experimental evidence to date to support the proposi- 
tion that many chaotic physical phenomena can be approximately 
modeled by one-dimensional maps of the form (see Figure 2-16) 

This evidence comes in two forms: (i) calculation of F(x,) from 
measurement of a single state variable and (ii) reduction of 2-D Poinc- 
art5 map data to a first-order map. 

An example of the former is the experimental work of a group at 
the University of Texas (Roux et al., 1983) who have measured the 
dynamics of chemical reactors. One famous example is the Belou- 
sov-Zhabotinski reactor which involves over a dozen reactions. In 
spite of the complexity of this system, a simple experimental return 
map was measured as shown in Figure 3-15 and is similar in form to 
a quadratic map. 
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Figure 3-14 (a ,b)  Henon maps (1-3.8) for two different control parameters a = 1.4, 
/3 = 0.05. 

The second example is taken from control theory in which a mass 
is shuttled back and forth by a servomotor as shown in Figure 3-16a 
(Golnaraghi and Moon, 1991). The position is controlled by an error 
signal which is the difference between a desired periodic motion of 
the mass and the actual position. 
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X” 

Figure 3-15 Representation of the chemical dynamics of the Belousov-Zhabotinski 
reaction using a 1-D map. [From Roux et al. (19831.1 

Nonlinearity arises from the motion constraints near the end of its 
travel. When the control gain exceeds some limit, the mass becomes 
chaotic. However, the Poincard map triggered off the periodic control 
signal appears to be one-dimensional, as shown in Figure 3-16b. A 
return map reveals a noninvertible 1-D piecewise linear map, as shown 
in Figure 3-16c. Another example for a friction oscillator is shown in 
Figure 5-17. 

The reduction of dynamical behavior from complex systems to a 
1-D map is more than just academic interest. The simple map, once 
determined, can serve as an information compression coding 
from which properties such as the probability density distribution 
or the Lyapunov exponent can be obtained by simply iterating 
the map. 

Obtaining dynamical information from a 1-D map for a physical 
system is many orders of magnitude faster than trying to integrate the 
partial or ordinary differential equations that describe the underlying 
physics. 
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3.6 PERIOD-DOUBLING ROUTE TO CHAOS 

If Chaos Theory is the study of the pathways from simple to complex 
dynamics, then period doubling must be considered one of the princi- 
pal routes to chaotic behavior in physical systems with nonlinearities. 
Periodic doubling is a phenomenon in which the period of repetition 
of a cyclic dynamic process doubles with the change of some control 
parameter, and continues to double at successively closer parameter 
values until the period is so long it is practically aperiodic. This 
phenomenon has been reported in hundreds of published experimental 
papers and in dozens of different physical and even biological systems 
where strong nonlinearities are present. 

Much of the theory of periodic doubling is based on the study of 
first-order difference equations 

and in particular the study of the quadratic map or so-called “logistic’’ 
equation of ecological modeling: 

X , t l  = - x,) (3-6.2) 

Here the growth or birth rate of a species in the next generation is 
proportional to A, while the quadratic decay or “death” in the species 
is governed by the nonlinear term. 

The core of the mathematical theory is associated with the work of 
Mitchell Feigenbaum, formerly of Los Alamos National Laboratory 
and now at Rockefeller University in New York City. Feigenbaum 
(1980), however, attributes the qualitative observation of periodic 
doubling in equations of the above form (3-6.2) to the earlier work of 
Metropolis, Stein, and Stein (1973). A later paper ofRobert May (1976) 
of Princeton University described some of the qualitative results in 
equations of mathematical biology. 

However, it was Feigenbaum (1978) who derived quantitative mea- 
sures of the period doubling phenomenon. Furthermore, it was his 
assertion that these measures could be observed in physical systems 
with more complex mathematical description than (3.6-2) that led 
experimentalists on the quest for universal measures of the steps on 
the period-doubling route to chaos. It will take later historians of 
science to discover who first observed this phenomenon, but the 
avalanche of observations began around the time of observations 
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reported in fluids by Libchaber and Maurer (1978) and in electronic 
circuits by Linsay (1981). 

There are many excellent mathematical descriptions of this phe- 
nomenon, and we shall not attempt to describe all the details here. 
[The previously cited paper by Feigenbaum (1980) is an excellent 
readable source, however.] Because this book emphasizes the physi- 
cal and experimental aspects of chaos, we shall focus mainly on those 
results of the theory that are relevant to the observation and under- 
standing of period doubling in physical systems. 

Qualitative Features of Period Doubling 

One of the distinguishing features of this book is the attempt to de- 
scribe the distinctive patterns of different dynamic phenomena in a 
visual way that dynamicists can recognize from computer or oscillo- 
scope images of dynamic data. In the case of period doubling associ- 
ated with continuous time dynamics, there are six common displays 
of this phenomena: 

1. Time history 
2. Phase plane 
3. PoincarC map 
4. Fourier transform 
5. Autocorrelation 
6. Probability density function 

These different data processing and display techniques are common 
for many modern computer and dynamic signal analyzers. An example 
is shown in Figure 3-17 for a nonlinear electronic circuit [see Chapter 
4 and Matsumoto et al. (1985)l. 

In the continuous time domain, the change from period-1 to pe- 
riod-2 motion clearly shows the doubling of the fundamental period. 
The phase plane shows a qualitative change from one orbit to two 
overlapping orbits. Also the Poincare map changes from one to two 
periodic points. 

The Fourier transform, usually performed experimentally with a 
discrete fast Fourier transform (FFT) chip, shows the halving of the 
fundamental frequency oo = 2 7 r / ~ ~ .  In further period doublings, say 
in period 2 n ,  not only will wo/2n be present, but equally likely one will 
see other harmonics rnwo/2n. The autocorrelation function is related to 
the FFT and is qualitatively similar to the time domain representation. 
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Figure 3-17 Experimental tools for observing period-doubling bifurcations. (a)  Time 
history; (6) Phase plane; (c)  Fourier transform; (4 Probability density function. 
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Figure 3-17 (Continued) 
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Finally, one can sometimes perform a probability density calcula- 
tion with electronic spectrum analyzers or computers. In period dou- 
bling, the classic two-spike signature for a sine wave oscillation 
changes to a four-spike picture indicating four vertical tangents in the 
phase-space representation of the period-doubled waveform. 

Poincare Maps and Bifurcation Diagrams 

A more informative representation of period doubling in a continuous 
time system can often be presented by plotting the discrete Poincare 
map measures of the signal as one slowly changes one of the control 
parameters. The Poincare map of the base period signal is represented 
by one point in the x-axis, whereas the PoincarC map for the period- 
doubled map shows up as two points on the x-axis. 

In a bifurcation diagram, one plots the Poincare map of the x-axis 
versus a control parameter A. This can be easily done in computer 
simulation of iterated maps, such as for the logistic map shown in 
Figure 3-18. This diagram shows the values of the control parameter 
at which the motion changes from a period-n to a period-2n oscillation 
as well as shows the regions where suspected chaos may be found. 

T - F  L O I  ! , I , , I , , 1 , 1 , , , , 

I 

A 

Figure 3-18 Period-doubling bifurcations for the logistic map (3-6.2). 
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Quantitative Measures of Period Doubling 

In this section we illustrate the nature of the quantitative analysis of 
period-doubling bifurcations using the logistic map. The reader should 
consult more mathematical books on the subject for a more rigorous 
treatment (e.g., see Devaney, 1989). 

A general quadratic map takes the form 

x , + ~  = u + bx, + cx; 

When b > 0, c < 0, one can rescale this equation into the standard 
form (3-6.2) 

The basic analysis of Eq. (3-6.2) usually involves the following pro- 
cedure. 

1.  Find fixed points of F(x,) and some of the two-cycle iterates 

2. Establish the stability of these fixed points. 
3. Examine the relationship between the critical bifurcation values 

of the control parameter ( A , ,  A,, A3, ... , A,). 
4. Determine the limit point A, at which the first chaotic dynamics 

results. 
5. Look at scaling properties of the successive period-2n orbits. 
6. Look at the scaling of the spectral properties of the period-2n 

F2" = F(F2"-*(x , ) ) .  

orbits. 

As described earlier, the fixed or equilibrium points of a discrete 
iterated map may be found by finding those values of the state variable 
where x,,+~ = x, for a fixed control parameter, that is, 

In general, there is more than one equilibrium point. For the logistic 
map, these points are given by 

, (A > 1) 
A - 1  

x, = - A x, = 0, 
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Thus, for A < 1 the only fixed point of the map is at the origin. When 
the control parameter A is increased to a value greater than 1 ,  a pe- 
riod-l or period-n orbit may be possible. In an n-orbit, the map will 
produce a sequence of points 

( ~ 0 ,  X I ,  ~ 2 9  9 xn-1, xn = ~ 0 )  

In the case of a period-2 motion we have the orbit (xo ,  x I ,  x 2  = x,) 
where 

X I  = F(x,) = F ( F ( x , ) )  = FZ(X,) 

x2 = F ( x , )  = F(F(x2))  = FZ(X2) 

=1 I2 I 

Figure 3-19 Comparison of the period-I and period-2 maps for the logistic equation 
(3-6.2). 
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and 

P(x)  = A’ ~ ( l  - x ) [ l  - X X ( 1  - x)] 

One of the fixed points of F 2 ( x )  is x = 0. However, two of the other 
three fixed points of F*(x)  give us the orbit points of the period-2 map. 
This is clearly shown in Figure 3-19. From this figure, one can see that 
one of the fixed points of F * ( x )  is unstable IdF21dxl > 1 while the other 
two points give the stable orbit points of the period-2 cycle of F(x) .  

This pattern continues as A is increased through higher period- 
doubling bifurcations. At each critical value of A, the stable fixed 

I 
/ 

Figure 3-20 Comparison of period-2 and period-4 maps for the logistic equation 
(3-6.2). [From Feigenbaum (1980).] 
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points of the previous period-2n map become unstable and the next 
higher-order period-2(n + 1) map throws off two new fixed points 
which become the new orbit points of the next period-doubling orbit. 
An example for the transition from period 2 to period 4 is shown in 
Figure 3-20. 

Scaling Properties of Period-Doubling Maps 

Feigenbaum Numbers. Perhaps one of the notable discoveries of the 
theory of chaotic dynamics was a set of scaling relationships for the 
period-doubling route to chaos that could be tested in computer or 
physical experiments. Using both computational evidence and analy- 
sis, Feigenbaum proposed that the bifurcation values of the control 
parameter of the logistic map, A,, converge in an exponential way as 
one approaches the limiting value Ax at which chaotic dynamics de- 
velop; that is 

A, - A, = cS-”  (3-6.3) 

If one knows three consecutive values of the period-doubling bifurca- 
tion parameter, A n - l ,  A,, A , + l ,  then the number 8 can be found: 

An - A n - 1  

W X A n t l  - An 
6 = lim 

S = 4.6692016 ... 
(3-6.4) 

What is remarkable is that Feigenbaum showed that this value is 
universal within a class of maps x, I = F(x , ) ,  where F ( x )  has a smooth 
maximum. [Another technical requirement involves an operator on 
F ( x )  called the Schwartzean derivative; see Feigenbaum (1980) or, 
e.g., Rasband (1990).] He also proposed that in physical systems that 
undergo such period-doubling phenomena, the above limit of 6 should 
also hold. This is a remarkable assertion. However, the experimental 
evidence does not always provide one with a large number of measur- 
able period-doubling bifurcations (five or six seem to be the experimen- 
tal limit). In spite of this, there is good reason to believe that this 
scaling number is correct in physical problems. 

Amplitude Scaling. Amplitude scaling has to do with a comparison of 
features of the 2(n + 1) period doubling as compared with the ampli- 
tude features of the 2n period doubling. There are several ways to 
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describe this scaling. To choose one, let's examine the bifurcation 
diagram for the logistic map (3-6.2) shown in Figure 3-21 which plots 
the amplitudes of the cycle points as a function of the control parame- 
ter A. One can see that within each period-doubling region there is a 
2n cycle which has a cycle point at the midpoint x = f. These particular 
cycles have been called supercycles. Then we define an amplitude 
measure a, as shown in Figure 3-21 where a l  = x2 - x l ,  a2 = x2 - 
x4, and so on. Feigenbaum discovered that the ratio a,la,+l has a 
limiting value 

(3-6.5) 

Another way to describe this scaling is to notice that each minor 
period-doubling pitchfork can be mapped onto the preceding pitchfork 
by simply blowing up the minor bifurcation region by the factor 2.50. 
This idea is related to the mathematical concept of renormalization 
[e.g., see Chapter 6 or Feigenbaum (1980)l. 

The third way to see this scaling is when period doubling occurs in 
a continuous time system. Here the period doubling produces ripple 
modulation on the fundamental periodic signal. The ratio of one of the 

4 A3 x 
Figure 3-21 
tudes of supercycles. 

Bifurcation diagram of the logistic map (3-6.2) showing relative ampli- 
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ripples in the period 2(n + 1) cycle to a ripple in the 2n cycle is given 
by the factor 2.5.  

Again, the significance of the ratio is that if period doubling occurs 
in a dissipative system with an underlying hump map, then this prop- 
erty will result regardless of the particular shape of the 1-D mapping 
function F ( x ) .  

Subharmonic Spectra Scaling 

The scaling of the amplitudes in successive period-doubling regimes 
has as a consequence a related scaling property in the Fourier spectra 
of the dynamic signals. This is illustrated in Figure 3-22. Again Feigen- 
baum (1980) has shown that the successive subharmonic spectra peaks 
in the Fourier transform will be 8.2 db below the previous subharmonic 
peaks. This result has been confirmed in a number of experiments 
(e.g., see Libchaber et al., 1980) as shown in Figure 3-23. 

Symbol Sequences in Period Doubling 

In many experimental problems we have only qualitative information 
about the dynamics; for example, a rotor turns clockwise or counter- 
clockwise or a particle moves to the left side or the right side in some 
mechanical system. In such problems one can use what is called 

fo fo fo -- 
8 4  2 

f0 Frequency 

Figure 3-22 Universal scaling of the fourier transformation amplitudes for the logistic 
map (3-6.2). 
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Figure 3-23 Universal scaling of FFT spectra for Rayleigh-Benard thermal convec- 
tion. [From Libchaber et al. (1980).] 

course-graining; that is, we divide up the state space into a course 
grid. In the case of the logistic map (3.6-2) the obvious course-graining 
are the two intervals I,: 0 I x < 4 and I,: 4 < x 5 1. Then one can 
code the dynamics by a sequence of symbols Lor R indicating whether 
the motion is in the I,  or l2  interval. Thus, a period-2 orbit might be 
LRLRLR ... , or a period-3 orbit might be LRRLRR .... 

In early work in the 1970s, Metropolis, Stein, and Stein (1973) 
showed that as the control parameter is varied for different hump 
maps, the sequence of symbol sequences is the same. A list of such 
symbol sequences is given in Table 3-1 for the logistic map and for the 
map derived from a tent map for a friction oscillator (Feeny and Moon, 
1989). In  the friction oscillator the course-graining or partitioning is 
associated with sticking (S) or slipping (N) motions. 

This is then another indication of the existence of the underlying 
order in 1-D map models of deterministic dynamical systems which 
exhibit chaotic behavior. 

Period Doubling in Conservative Systems 

The scaling behavior of the control parameter values at which period 
doubling occurs and the resulting Feigenbaum number (3-6.4) were 
derived for a dynamical system with dissipation. When the system is 
nondissipative, however, one gets a different “Feigenbaum” number. 
This has been illustrated in a paper by Helleman (1980a) and elsewhere 
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TABLE 3-1 Symbol Sequences 

Friction 
Oscillator' (Y cos 

f + 251 + x -t q ( x ) f ( i )  = 

Period Symbol Sequence a 

1 
4* 
8* 

10 
6 
7 
5 
7 
3 
6* 

N 1.36 
NSN 1.38 
N SN NNSN 1.3925 
NSNNNSNSN 1.4064 
NSNNN 1.415 
NSNNNN 1.45415 
NSNN 1.4737 
NSNNSN 1.4909 
NS 1.535 
NS-NS 1.551 

5 NSSN 1.5973 

4 NSS 1.695 

5 NSSS 1.833 

Period Symbol Sequence A 

2 
4* 
8* 

10 
6 
7 
5 
7 
3 
6* 
7 
5 
7 
6 
7 
4 
7 
6 
7 
5 
7 
6 
7 

R 
RLR 
RLRRRLR 
RLRRRLRLR 
RLRRR 
RLRRRR 
RLRR 
RLRRLR 
RL 
RLLRL 
RLLRLR 
RLLR 
RLLRRR 
RLLRR 
RLLRRL 
RLL 
RLLLRL 
RLLLR 
RLLLRR 
RLLL 
RLLLLR 
RLLLL 
RLLLLL 

3.2360680 
3.4985617 
not listed 
not listed 
3.6275575 
3.7017692 
3.7389 149 
3.7742 142 
3.83 1874 I 
3.8445688 
3.8860459 
3.9057065 
3.922 I934 
3.9375364 
3.9510322 
3.9602701 
3.9689769 
3.9777664 
3.9847476 
3.9902670 
3.9945378 
3.9975831 
3.999397 I 

Legend: N = No-stick 
S = Stick 
R = Right half 
L = Left half 

Source: 'Feeny and Moon (1992b); 'Schuster (1988). 

(e.g., see Benettin et al., 1980a) by an example for a two-dimensional 
conservative map: 

X,+I = Y ,  
(3-6.6) 

Yntl = -x, + 2 Y J C  + Y,) 

Helleman derived this equation from the motion of a proton in a 
storage ring with periodic impulses. He thus found an exact map for 
a nonlinear, second-order forced system by integrating the equation 
of motion between impulses. 
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That the map is conservative can be proved by looking at the change 
of area of a small parallelepiped in one iteration of the map. The 
change in area is measured by the determinate of the Jacobian matrix, 
(3-1.4) which can be shown to be unity for this map. 

It can be shown that iterations of this map yield a multiperiodic 
orbit for c I - 1. In fact, the transitions from one to two periodic and 
from two to four periodic, and so on, are given by 

as the reader can verify on a calculator or small personal computer. 
For large k ,  this sequence of critical bifurcation parameters has the 

relationship 

Ck - C, + Af6: (3-6.7) 

where 6, = 8.7210 from numerical experiments. This value differs 
from the Feigenbaum value of 4.6692 found for the logistic map. It is 
believed that 6, is “universal” for all conservative maps. 

3.7 THE MEASURE OF CHAOS; LYAPUNOV EXPONENTS 

Chaos in deterministic systems implies a sensitive dependence on 
initial conditions. This means that if two trajectories start close to one 
another in phase space, they will move exponentially away from each 
other as the map is iterated. If do is a measure of the initial distance 
between two starting points, at a later time the distance may be written 
in the form 

dn = do2A” (3-7.1) 

(The choice of base 2 is convenient, but arbitrary.) However, in most 
physical problems the motion is bounded, and dn cannot go to infinity. 
Thus, the exponent A must be averaged over the trajectory, that is, 

In the case of a one-dimensional map, 

xn+ I = f ( x J  
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an explicit rule can be derived. At the nth iteration choose 

don = E 

Thus (3-7.1) becomes 

An illustrative example is the Bernoulli map 

x ,+~  = Zr, (mod 1 )  

as shown in Figure 3-24. Here (mod 1) means 

x(mod 1) = x - Integer(x) 

(3-7.2) 

(3-7.3) 

Figure 3-24 Bernoulli map (3-7.3). 
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This map is multivalued and is chaotic. Except for the switching 
value x = 4, l f ’ l  = 2 .  Applying the definition (3-7.3) we find A = 1. 
Thus, on the average, the distance between points on nearby trajector- 
ies grows as 

The units of A are one bit per iteration. One interpretation of A is 
that information about the initial state is lost at the rate of one bit per 
iteration. To see this, write xn  in binary notation, that is, 

and x (mod I )  means I .  101001 (mod I )  = 0.101001. Thus, the map 2xn 
(mod 1)  moves the decimal point to the right and drops the integer 
value. So if we start out with m significant decimal places of informa- 
tion, we lose one for each iteration; that is, we lose one bit of informa- 
tion. After m iterations we have lost knowledge of the initial state of 
the system. 

Another example is the tent map: 

As in the Bernoulli map (3-7.31, If’(x)l = 2 r  is a constant and the 
Lyapunov exponent is found to be (Lichtenberg and Lieberman, 1983, 
pp. 416-417) 

A = log 2r  (3-7.5) 

When 2r  > I ,  A > 0 and the motion is chaotic, but when 2r C 1, 
A < 0 and the orbits are regular; in fact, all points in 0 < x < 1 are 
attracted to x = 0 (Schuster, 1984, p. 22) .  

Our final example is the logistic equation (3.6-2) 

This map may become chaotic when a > 3.57. This can be verified by 
numerical calculation of the Lyapunov exponent as a function of a as 
shown in Figure 3-25. Beyond a = 3.57, the Lyapunov exponent is 
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Figure 3-25 Lyapunov exponent for the logistic map x, +, = ax,(l - x,) as a function 
of the control parameter a. 

positive except within multiperiod windows 3.57 < a < 4. When 
a = 4, it has been shown that A = In 2. It has been shown (see 
Schuster, 1984) that this value can be derived analytically by finding 
a transformation of the tent map for r = 1 into the logistic map. 

Probability Density Function for Maps 

Living and designing in the face of uncertainty is part of the everyday 
world. We often deal with natural unpredictability such as the weather 
with probability measures. Thus, it is natural to seek probabilistic 
descriptors when deterministic systems are in a state of dynamical 
chaos. Such statistical tools are widely used in the random excitation 
of linear systems. However, probabilistic mathematics for chaotic 
dynamics of nonlinear systems are not readily available. One excep- 
tion is the case of systems governed by a first-order difference equation 
or map. 

Our discussion of probability measures for one-dimensional maps 
can only be introductory. However, some mathematical language is 
necessary and useful if one wishes to read more advanced treatments 
of the subject. For a first-order map, this description involves a func- 
tion P ( x )  called the probability densityfunction (PDF), where x is the 
state variable that governs the map 
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Because x is a continuous variable, P(x)  dx is the probability that 
the dynamical orbit will occur between (x, x + d x ) .  The domain of 
the variable x over which P(x)  # 0 is sometimes called the support of 
the probability measure. One complication in chaotic systems is that 
the support is sometimes fractal. In this case, P ( x )  is not a continuous 
function. However, in practical systems there is always a small amount 
of noise which tends to smooth out the fractal nature of P(x) .  Thus, 
when an integration of P(x)  makes sense, the probability of an orbit 
occurring between xl 5 x, I x2 is given by 

P[xI ,  x2] = P ( x )  dx 
X I  

(3-7.6) 

and 

In statistical theory, one can have time-varying probabilistic mea- 
sures. However, in this book we assume that some chaotic attractor 
exists and that P(x)  is a so-called invariant measure; that is, it is a 
property of the attractor that does not change with time. 

Several examples of invariant measures or PDFs for one-dimen- 
sional maps have been discovered analytically. Two such cases are 
the tent map and the logistic map: 

Tent Map: X,+I = rxn,  x, < 1 
X,+I = r - rx, ,  

P(x)  = I 

x,+ I = 4x,( 1 - x,,) 

x, 2 +; r > 1 (3-7.7) 

Logistic Map: 

1 P(x) = 
7 r w  

(3-7.8) 

Both maps are sometimes called one-hump maps, and the PDF can 
be derived from a functional equation. Consider a general one-hump 
map shown in Figure 3-26. Then orbits that arrive in the differential 
domain between (x, x + dx) have two preimages x1 and x2 where 

x = F(xJ = F(x2) 
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Figure 3-26 Hump map showing two preimage contributions to the probability den- 
sity functions. 

Assuming that F(x)  is continuous and differentiable at xI , x2, one 
can easily show that the PDF must satisfy the following functional 
equation: 

(3-7.9) 

For the tent map with r = 2, F'(x )  = 2 and 

where xI = 2x, x2 = 2 - 2x. It is easy to see that P ( x )  = constant is 
a solution. 

This idea can be extended to multihump maps using the idea that 
the probability of orbits arriving in the vicinity of x is the sum of the 
probabilities that they originated in the multiple preimages of the 
map F(x) .  

Numerical Calculation of PDF 
A fairly obvious way to calculate an approximation to P(x)  is to divide 
up or partition the domain of x into N cells of size Ax, and then run 
the map for several thousand iterations, counting the number of times 
Ni an orbit enters the ith cell. The set of numbers, sometimes called 
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a histogram {P;; i = 1, ..., N}, is given by 

P; = N;IN 

The histogram is then considered to be an approximation to P(x) .  This 
technique is sometimes called course-graining. This method runs into 
problems when the support of P ( x )  is fractal. However, the set of 
numbers {Pi }  may still be a good approximation to P(x)  when the map 
is subject to a small amount of noise, that is, 

where r)(x,,) is a small random variable. Such noise is present not only 
in physical systems but also in computing machines, which are always 
limited to a finite precision. 

The effect of small amounts of random noise on the dynamics of 
one-dimensional maps has been studied by several authors. Two 
graphs from a study by Crutchfield et al. (1982) shown in Figure 3-27 
show the effect of noise on the PDF for the logistic map, when the 
control parameter is slightly larger than the critical parameter for 
chaos. Notice the smoothing of the peaks due to noise. These data 
were generated by partitioning the line [0, I ]  into lo3 bins and using 
lo6 iterations. 

The extension of the analytical method such as (3-7.9) to two- or 
higher-dimensional maps and flows requires other mathematical tools 
such as the Fokker-Planck equations (e.g., see Gardiner, 1985). How- 
ever, the course-graining numerical technique is often straightforward 
and can be implemented computationally as well as in experimental 
measurements (e.g., see Chapters 2 and 5 ) .  

r = 3.59687 

In P(X) 

0 X X 1 

Figure 3-27 (a,b) The effect of a small amount of noise on the probability density 
function for the logistic map (3-6.2). [From Crutchfield et al. (19821.1 
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PDF and Lyapunov Exponents 
As discussed above, the Lyapunov exponent is often calculated as a 
time average of the slope of the map function F’(x)  = dF/dx: 

1 
A = ~2 ln(F‘(x)l (3-7.11) 

where A > 0 defines chaos. 
When one has a probability distribution function for the map, the 

Lyapunov exponent can sometimes be calculated using a space aver- 
age, that is, 

A = J . P(x)  lnlF’(x)l dx 
0 

(3-7.12) 

In the case of the tent map for r = 2, P(x) = 1 ,  )F’(x)l = 2, and A = 
In 2. When the base of the logarithm is 2, then A represents the loss 
of 1 bit of information per cycle of the map. 

3.8 3-D FLOWS; MODELS AND MAPS 

Dynamical models using differential equations occur naturally in the 
physical sciences because the equations of classical physics have been 
formulated in terms of partial differential equations. With suitable 
spatial assumptions, the equations of mass balance, energy, momen- 
tum, and electromagnetics can be reduced to a set of coupled ordinary 
differential equations. The simplest set which can exhibit chaotic 
solutions is a set of three; 

(3-8.1) 

The dynamics can be visualized by constructing a “velocity” vector 
field at every point in the three-dimensional phase space (x, y ,  z); that 
is, V = (i, y, i) = (F, G, H). The rate of change of volume in this 
phase space is given by the divergence of this vector field: 

(3-8.2) 
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For dissipative problems V * V < 0, whereas for conservative problems 
v . v = o .  

In this section we examine a few examples of three-dimensional 
flows and show how the dynamics generates two- and one-dimensional 
maps. It is also a good exercise to interpret discrete time fixed points 
and map dynamics in terms of the original 3-D flow geometry. For 
example, a cycle-3 fixed point of a 2-D map may imply three loops of 
a period-3 subharmonic orbit in the 3-D flow. Or, if a closed orbit 
exists in a 2-D map, then the underlying flow may exhibit a quasiperi- 
odic motion in 3-D that moves on a toroidal surface. 

Lorenz Model for Fluid Convection 

One of the first models shown to exhibit chaotic behavior in numerical 
simulation was a fluid convection model of E. Lorenz of M.I.T. (1963) 
as described briefly in Chapter 1. In this model, x ( t )  represents a 
measure of the fluid velocity, and y ( t ) ,  Z(t)  represent measures of the 
spatial temperature distribution in the fluid layer under gravity. The 
equations were derived in a more complex form by Saltzman (1961) 
(see also Chapter 4) and were simplified by Lorenz as follows: 

,i = a ( y  - x )  

y = rx - y - x z  

i =  - 6 z - t ~ ~  

(3-8.3) 

These equations are derived from the energy and momentum balance 
relations for the fluid. 

Here (T represents the Prandtl number, which is a ratio of kinematic 
viscosity to thermal conductivity; r is called a Rayleigh number and 
is proportional to the temperature difference between the upper and 
lower surfaces of the fluid; and 6 is a geometric factor. Note that the 
only nonlinear terms are two quadratic polynomials. 

The general form of these equations also serves as a simple model 
for complex dynamics in certain laser devices (e.g., see Haken, 1985). 

The dynamics of this system can be visualized in a 3-D phase space 
(x, y, z )  (Figure 1-27) using a “velocity” field (i, y, i) given by the 
right-hand side of (3-8.3). The divergence of this “velocity” field 
shows that differential volume elements of phase space are uniformly 
contracting, that is, 

v * V = - ( ( ~ + 6 + 1 )  (3-8.4) 
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A typical set of values for the study of this equation is a = 10, 
b = #, 1 < r I 28, which are the ones studied by Lorenz. Unfortu- 
nately, these nondimensional groups do not relate to real geoconvec- 
tion flow parameters. However, these parameters can be replicated 
in a laboratory convection experiment called a thermosyphon (see 
Chapter 4). 

Many authors have reproduced and extended the original analyses 
of Lorenz. Below is a summary of some of these results using Y as a 
control variable. 

The fixed points of the flow are found by setting ,i = y = z = 0 and 
are given by 

The stability of the fixed point at the origin may be found by solving 
the following eigenvalue problem: 

(A + a) - 0  

det [ - r  (A + 1) 

0 0 (A + b) 

(a + 1 )  1 
2 - 2  

A =  --+- [(a + 112 - 4a(l  - ,)I”* (3-8.6) 

For r < 1 the origin is the only fixed point, but when r > 1 two other 
fixed points are born as given above. The stability of these points can 
be studied by looking at the linearized equation near each of these 
fixed points. 

Also, the global dynamics are bounded in a finite volume (sphere) 
of phase space (e.g., see Berg6 et al., 1985). 

As one increases the temperature difference between upper and 
lower surfaces (i.e., by increasing r ) ,  the following dynamical bifurca- 
tions occur: 

I .  0 < r < 1 .  There is only one stable fixed point at the origin. 
11. 1 < r < 1.346. Two new stable nodes are born and the origin 

becomes a saddle with a one-dimensional, unstable manifold (Figure 
3-28). 
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c 
(a )  (b)  

Figure 3-28 The nature of three fixed points of the Lorenz equations (1-3.9) for pre- 
chaos values of the control parameter t. ( a )  1 < r < 1.346. (6) r > 1.346. 

111. I .346 < r < 13.926. At the lower value the stable nodes become 
stable spirals. 

IV. 13.926 < r < 24.74. Unstable limit cycles are born near each 
of the spiral nodes, and the basins of attraction of each of the two 
fixed points become intertwined. The steady-state motion is sensitive 
to initial conditions. 

V.  24.74 < r .  All three fixed points become unstable. Chaotic mo- 
tions result. 

The dynamic orbit shown in Figure 1-27 is best viewed “live” on 
a computer graphics terminal. There one can see the interplay between 
the unstable spirals. 

Lorenz Maps. One of the remarkable features of the Lorenz study in 
1963 was not only his use of computer simulation to demonstrate 
unpredictable dynamics, but also his use of a discrete time map to 
show the underlying nature of this chaos. Observing the two spiral 
motions alternating back and forth, Lorenz asked if the local z maxi- 
mum of one circuit 2, could be a predictor of the next relative maxi- 
mum z value 2, + I . The numerical data are reproduced in Figure 3-29, 
and it is clear that this is similar to a tent map (3-7.7) studied earlier. 



z.+1 

2 

\ 

. 
Figure 3-29 One-dimensional map of Lorenz based on the relative maximum values 
t, of the time integration of the thermal convection model equation (3-8.3). 

Note that this “mapping” is not a classic PoincarC map because the 
trajectories do not penetrate a surface of section. 

In later work, however, researchers did find a PoincarC map (e.g., 
see Guckenheimer and Holmes, 1983 and Sparrow, 1982). This map 
is shown schematically in Figure 3-30. A plane z = r - 1 contains the 

Figure 3-30 PoincarC plane for the construction of a return map using the flow 
generated by the Lorenz equation [Eq. (3-8.311. 
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Yn 

Figure 3-31 Poincark map of the Lorenz equations based on the section shown in 
Figure 3-30. 

two fixed points. When the trajectory penetrates this plane, the point 
is projected onto a line connecting the two fixed points from which 
one obtains a one-dimensional map similar to the one shown in Figure 
3-31. This map is similar to the Bernoulli map (3-7.3). In both cases, 
it is remarkable that such complex dynamics can be reduced to one- 
dimensional maps. 

Duffing’s Equation and the “Japanese Attractor” 

A classic differential equation that has been used to model the nonlin- 
ear dynamics of mechanical and electrical systems is the harmonic 
oscillator with a cubic nonlinearity: 

,t + y i  + a x  + px3 = F cos Rf (3-8.7) 

This equation has been named after G. Duffing, a German electrical 
engineer/mathematician who studied it in the 1930s. With a = 0, it is 
a model for a circuit with a nonlinear inductor (see Chapter 4); and 
with a < 0, p > 0, it is a model for the postbuckling vibrations of an 
elastic beam column under compressive loads. We will focus on the 
case of a = 0, which has been extensively studied by a group of 
engineers at  Kyoto University for several decades first under the 
leadership of C. Hayashi (see Hayashi, 1985) and then under Professor 
Y. Ueda (e.g., see Ueda, 1979, 1991). This equation can be written as 
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a set of three first-order nondimensional differential equations: 

. i = y  

j ,  = -ky - x3 + B C O S ~ ~ T Z  (3-8.8) 

i = 1 (mod I )  

The (mod 1) indicates that the phase space has a cylindrical geometry. 
If we construct a set of vectors (i, y,  i) on a three-dimensional grid, 

we can imagine the flow of a fluid. This is the modern geometric view 
of solutions of differential equations as a flow in a 3-D vector space in 
contrast to the algebraic methods many learned prior to the 1980s. 

One of the ways to produce a map is to look at the penetration of 
these flow trajectories through the planes z = 0, I ,  2, . . . (in Cartesian 
representation Figure 3-32) or through z = 0 plane in the cylindrical 
space representation. Shown in Figure 3-32 are three trajectories: One 
is a fixed point, one lies on the stable manifold of the saddle point of 
the map, and the other goes through the unstable manifold of the map. 

Ueda and his co-workers not only were one of the first to observe 
chaotic solutions of the Duffing equation (using analog computers), 
but were one of the first to relate the tangling of the stable and unstable 
manifolds of stable points of stroboscopic maps to the formation of a 

Figure 3-32 Three traljectories in the phase space of a periodically forced oscillator 
originating from stable and unstable manifolds and the saddle point of a Poincark 
map. 
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strange attractor. An example of this is shown in Figure 3-33, which 
was obtained from analog and digital simulation of (3-8.7). Such maps, 
originating from differential equations, are not as easy to generate 
or analyze as those calculated directly from difference equations. 
Nevertheless, this example shows the importance of discrete time 
maps to the understanding of continuous time dynamics. It also shows 
the role of the unstable manifolds in Poincare maps as organizing 
topologies for strange attractors. 

Figure 3-33 Strange attractors for periodically forced Duffing oscillator (3-8.8) for a 
circuit with a nonlinear inductor. [From Ueda (19791.1 
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A Map from a 4-D Conservative Flow 

The following example illustrates two ideas relating to flows and maps. 
The first is the idea of chaos in lossless systems sometimes called 
conservative or Hamiltonian dynamics (see also Chapter I ) .  The sec- 
ond idea is how one can obtain a 2-D map from dynamics in a 4-D 
phase space. Another lesson from this example is that because there 
are no attractors in conservative systems, each initial condition results 
in a unique type of motion, namely, periodic, quasiperiodic, or sto- 
chas tic (chaotic). 

The example is illustrated in Figure 3-34, which shows a particle on 
a rotary base (Cusumano, 1990). The motion of the particle is confined 
to a vertical plane that is fixed to the rotating base. In Figure 3-34a 
the restoring force on the rotating particle is a linear spring, whereas in 
Figure 3-34b,c the restoring force is gravity. This problem introduces 
inertial nonlinearities, commonly known as centripetal and Coriolis 
accelerations which appear in Newton’s laws of motion when written 
in polar, spherical, or path coordinates. Leaving the derivation of the 
equations of motion as an exercise, one can obtain two coupled sec- 
ond-order differential equations from a Lagrange’s equation formula- 
tion of the problem with the spherical angles q l ,  q2 as generalized 
coordinates, nondimensionalized for unit mass and unit radius: 

where E represents the ratio of base inertia to particle inertia E = 
J / M L 2  and ol, w2 are the uncoupled natural frequencies of the oscilla- 
tors when q1 , q2 are small. 

Ostensibly it would appear that the dynamics would naturally be 
described in a 4-D phase space. But, because energy is conserved, 
there is an added constraint which can be easily shown to be given by 

[ E  + sin2q1]G: + 4: + w:qi + E W : ~ ;  = 2E = constant (3-8.10) 

where E is the total kinetic and potential energies. 
Using this expression, one can eliminate one of the four phase- 

space variables, say q 2 ,  to obtain a continuous time motion in a 3-D 
space ( q l ,  ql , q2).  To obtain a 2-D map, one sets q2 = 0, q 2  > 0 to 
obtain a discrete time mapping in the plane (ql  , q2).  This procedure 
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Figure 3-34 Three two-degree-of-freedom oscil\ators with inertial nonlinearities. 
[From Cusumano (1990).1 

was carried out for the above equations by integrating them (in the 
form of first-order equations) and then saving ( q , ,  q2)  when q2 = 0, 
G2 > 0. These calculations were part of a Ph.D. dissertation of J. 
Cusumano (1990) in his study of the out-of-plane chaotic dynamics of 
an elastic torsion beam (see Cusumano and Moon, 1990) in which this 
model was used as a simple two-mode approximation to the original 
partial differential equation. 
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The results of these calculations are shown in Figure 3-35 for in- 
creasing values of the energy E. Note that for a given energy there are 
many types of orbits, possibly depending on the initial conditions. 

Of particular note are the motions near the origin. For small energy, 
there are quasiperiodic motions about the origin. However, for larger 
energy the origin becomes unstable and two stable out-of-plane quasi- 
periodic motions exist away from the origin. Finally, for higher ener- 
gies the map shows a diffuse set of points which indicate stochastic 
or chaotic dynamics and which wander about the phase space in an 

O., 

Pl 

-0. 

Figure 3-35 Poincare map for the lossless system shown in Figure 3-34 for two values 
of the initial energy. [From Cusurnano (19901.1 (Note. p ,  = 4,) 
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unpredictable way. This chaos, however, does not exhibit any fractal 
structure which is found in dissipative dynamical systems. 

PROBLEMS 

3-1 Investigate the properties of the cubic map (see Holmes, 1979) 

xnt i  = Y n  

- 3 
~ , t  I - - bx,+,, + &j-+, - Y ,  

Find the fixed points and determine their stability as a function 
of the parameters b, d. Iterate this map for b = 0.2, d = 2.5, 
2.65, 2.77. Can you find a strange attractor? 

3-2 Find a 2-D linear transformation that takes a northwest square 
whose sides are parallel to the x, y-axes and transforms it into 
a diamond-shaped region. 

3-3 Classify the fixed points of a 2-D map for the four cases of local 
transformation matrices. Sketch a few orbits for each case. 

3-4 Find a transformation that converts the logistic map (3-6.2) into 
a linear mod 1 map. (Hint: Use a trigonometric identity.) 

3-5 Show that the Henon map deforms a centered rectangle into a 
horseshoe-type region as shown in Figure 1-23. What happens 
to a northwest corner rectangle under one iteration of the map? 

3-6 (a) Calculate the Jacobian determinant (3-1.4) for the cubic 
map in Problem 3-1. For what value of b will this map be 
area preserving? 

(b) Show that the 2-D map (3-1.3) is area-preserving. 

3-7 For what values of R, K l r  will the circle map (3-5.7) have period- 
1 fixed points? 
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3-8 A first-order difference equation similar to the logistic map 
(3-6.2) is the sine map x,+ I = A sin v x ,  , 0 I x,, 5 1. Show under 
what conditions this map has two fixed points in 0 < x < 1. Also 
show that the stretching rate at the nonzero fixed point, xl ,  is 
given by IF’(x)l = r ( A 2  - xi ) ’ ’ * .  Estimate the value of A at 
which this map period doubles. [Hint: When does (F’(x) l  = I ? ]  

3-9 Investigate the fixed points and stability as a function of the 
control parameter of the cubic map 

3-10 Derive a 2-D map for a mass rattling between two walls with 
perfect impact. Assume the two walls move coherently with a 
small sinusoidal vibration. 

3-11 Show that the standard map (3-1.11) has a saddle point on u = 
0. Derive expressions for the two eigenvectors representing 
the unstable and stable manifolds. (See also Section 2.4 in 
Guckenheimer and Holmes, 1983.) 

3-12 Calculate the value of the Rayleigh number in the Lorenz equa- 
tions (3-8.3) at which the origin becomes unstable, and find the 
two fixed points away from the origin. 

3-13 Using a computer, integrate the Lorenz equations (3-8.3) in 
the chaotic parameter regime and find a Poincare map as the 
trajectories penetrate a plane containing the two unstable fixed 
points. 
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CHAOS IN PHYSICAL SYSTEMS 

The world is  what it is and I am what I am .... This out there and this 
in me, all this, everything, the resultant of inexplicable forces. A chaos 
whose order is beyond comprehension. Beyond human comprehension. 

Henry Miller 
Black Spring 

4.1 NEW PARADIGMS IN DYNAMICS 

In his book The Structure of Scientijic Revolutions, Thomas Kuhn 
(1962) argues that major changes in science occur not so much when 
new theories are advanced but when the simple models with which 
scientists conceptualize a theory are changed. A conceptual model or 
problem that embodies the major features of a whole class of problems 
is called a paradigm. In vibrations, the spring-mass model represents 
such a paradigm. In nonlinear dynamics the motion of the pendulum 
and the three-body problem in celestial mechanics represent classical 
paradigms. 

The theory that new models are precursors for major changes in 
scientific or mathematical thinking has no better example than the 
current revolution in nonlinear dynamics. Here the two principal para- 
digms are the Lorenz attractor [Eq. (1-3.911 and the logistic equation 
[Eq. (1-3.6)]. Many of the features of chaotic dynamics are embodied 
in these two examples, such as divergent trajectories, subharmonic 
bifurcations, period doubling, PoincarC maps, and fractal dimensions. 
Just as the novitiate in linear vibrations had to master the subtleties 
of the spring-mass paradigm to understand vibrations of complex 

147 
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systems, so the budding nonlinear dynamicist of today must under- 
stand the phenomena embedded in the Lorenz and logistic models. 
Other lesser paradigms are also important in dynamical systems, in- 
cluding the forced motions of the Van der Pol equation (1-2.5). the 
Duffing oscillator models (1-2.4) of Ueda and Holmes (see below, this 
chapter), the two-dimensional map of Henon (l-3.8), and the circle 
map (3-5.7). 

The implication of this minor revolution in physics means that in 
this new age of dynamics we will observe dynamical phenomena and 
conduct dynamics experiments in physical systems from a vastly new 
perspective. Old experiments will be viewed in a new light while new 
dynamical phenomena remain to be discovered. 

To date, there have appeared many fine books on the subject of 
chaos. Most of these, however, focus almost entirely on the mathemat- 
ical analysis of chaotic dynamics. In this chapter, we survey a variety 
of mathematical and physical models which exhibit chaotic vibrations. 
An attempt is made to describe the physical nature of the chaos in 
these examples, as well as to point out the similarities and differences 
between the physical problems and their more mathematical chaos 
paradigms mentioned above. 

Early Observations of Chaotic Vibrations 

Early scholars in the fields of electrical and mechanical vibrations 
rarely mention nonperiodic, sustained oscillations with the exception 
of problems relating to fluid turbulence. Yet chaotic motions have 
always existed, Experimentalists, however, were not trained to recog- 
nize them. Inspired by theoreticians, the engineer or scientist was 
taught to look for resonances and periodic vibrations in physical exper- 
iments and to label all other motions as “noise.” 

Joe Keller, a mathematician at Stanford University, has speculated 
on the reason for the apparent myopic vision of experimental scientists 
as regards chaotic phenomena in the last century. He notes that the 
completeness and beauty of linear differential equations led to its 
domination of the mathematical training of most scientists and engi- 
neers. 

Examples of nonperiodic oscillations can be found in the literature, 
however. Three cases are cited here. First, Van der Pol and Van der 
Mark (1927), in a paper on oscillations of a vacuum tube circuit, make 
the following remark at the end of their paper: “Often an irregular 
noise is heard in the telephone receiver before the frequency jumps.” 
No explanation is offered for these events; and in classical treatises 
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on the Van der Pol oscillator, no further mention is made of “irregular 
noises. 

One of the more interesting stories of observing chaotic oscillations 
before the age of chaos theory is told by Professor Yoshisuke Ueda 
of Kyoto University.’ Professor Ueda was the student ofavery famous 
professor of nonlinear electrical circuits, C. Hayashi, whose well- 
known treatise is referenced at the end of this book. Ueda tells of 
collecting data on an analog computer in November of 1961 when he 
accidently came upon a nonperiodic signal from the simulation of 
frequency entrainment on a second-order, nonlinear, periodically 
driven oscillator. At the time, they assumed that nonperiodic motions 
were always quasiperiodic. But,  Ueda’s analysis at the time showed 
that instead of a nice closed Poincare section, characteristic of quasi- 
periodicity, he got a ragged picture, what he calls a “shattered egg.” 
However, Ueda’s attempts to get his famous professor to acknowledge 
his observations or publish them met with no success. He attempted 
to publish some of these results in 1971 in Japan when he was a new 
professor at Kyoto, but he again met with resistance. Not until 1978 
did his famous “Japanese Attractor” paper get published in Transac- 
tions of’ tho 1nstiti.rtion of Elrc*tric~al Engineers in Japan [reprinted in 
English in the lntu-national Joi4rnrrl of Non-Linear Mechanics, 20 

The moral of this story is clear: Even in one of the most advanced 
laboratories in nonlinear circuits, chaotic dynamics were rejected 
because they did not fit in with the mathematical theories of the times. 
(As evidence of the advanced nature of the experiments at Kyoto, 
Professor Abe Hack invented an automatic Poincare-map-generating 
circuit in 1966 to be used with the analog computer.) 

In a third example, Tseng and Dugundji (1971) studied the nonlinear 
vibrations of a buckled beam. The beam was rigidly clamped at both 
ends and then compressed to buckling. This created an arched struc- 
ture. When the beam was vibrated transverse to its length and the 
acceleration forces increased, snap-through occurred. In this regime, 
intermittent oscillations were observed as well as subharmonic re- 
sponses. The analysis in the paper, however, only dealt with periodic 
vibrations. 

Many readers may recall similar phenomena in scientific experi- 
ments that they have done or have seen in engineering practice. Cha- 

,, 

(1980), 481-4911. 

I This lecture was given by Professor Ucda at the International Symposium “The 
Impact o f c h a o s  on Science and Society,” 15-17 April 1991, organized by the United 
Nations University and the University of Tokyo. 
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otic noise has always been around in engineering devices, such as 
static in old radios and chatter in loose-fitting gears, but until recently 
we had no models or mathematics to simulate or describe it. 

4.2 PARTICLE AND RIGID BODY SYSTEMS 

Multiple-Well Potential Problems 

A system with a finite number of equilibrium states can often be 
described by a multiple-well potential energy function V(x) where, for 
a particle with unit mass, the equation of motion takes the form 

X + VV(X) = F(x, X, t )  (4-2.1) 

where x represents the position of the particle in the configuration 
space, V V  represents the gradient operator, and F(x, i, t )  repre- 
sents additional forcing and dissipation forces. These systems are 
good candidates for chaotic vibrations because the unforced problem 
F = 0 has one or more saddle points in the phase space which can 

magnets 

Figure 4-1 Sketch of a pendulum with a ferromagnetic end mass oscillating above 
four permanent magnets. Model for a two-degree-of-freedom four-well potential oscil- 
lator. 
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lead to horseshoes in the Poincare map of the system. A sketch of a 
mechanical system with a four-well potential is shown in Figure 4-1 
for a spherical pendulum under gravity with four permanent magnets 
underneath the bob. 

Double- Well Potential Problems. The forced vibrations of a buckled 
beam were modeled using a Duffing-type equation by Holmes (1979), 
who showed in analog computer studies that chaotic vibrations were 
possible. The nondimensional equation derived by Holmes is 

(4-2.2) 1 
2 

.i + y i  - -x( l  - 2) =focoswt 

where x represents the lateral motion of the beam [Here a simple one- 
mode model is used to represent the beam as in Moon and Holmes 
(1979).] This equation can also model a particle in a two-well potential 
(Figure 1-2). This model has been used to study plasma oscillations 
(e.g., see Mahaffey, 1976). Chaotic solutions obtained from an analog 
computer are shown in Figure 4-2. An experimental realization of this 
model was discussed in Chapter 2. A Fourier spectrum based on 
solutions to this equation (Figure 2-7) shows a continuous spectrum 
of frequencies which is characteristic of chaotic motions. A Poincare 

Two well potential 
"strange" attractor vibrations 

Magnetoelastic beam 
experiment 

y = 0.0036, f = 0.035, w = 0.89 

Analog computer y = 0.045, f = 0.28, w = 0.84 

Figure 4-2 Chaotic vibrations of a periodically forced buckled beam: comparison of 
analog computer simulation and experimental measurements. [From Moon and 
Holmes (1979).] 
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map of the strange attractor is shown in Figure 4-3. Fractal dimensions 
for chaotic solutions are discussed in later chapters. Numerical studies 
of the double-well problem have also been published by Dowel1 and 
Pezeshki (1986), Moon and Li (1985a,b), and Ueda et al. (1986). 

In a similar example, Clemens and Wauer (1981) have analyzed 
the snap-through oscillation of a one-hinged arch. Their equation takes 
the form 

my + y j  + 2k 1 - ( ,,*) y = f&in of (4-2.3) 
1 

(b2 + Y 1 

When only cubic nonlinearities are retained, this equation assumes 
the form (4-2.2) for the two-well potential Duffing oscillator. In an 
other two-well problem, Shaw and Shaw (1989) has studied the forced 
vibration of an inverted pendulum with amplitude constraints. 

Chaotic motions of an elastoplastic arch have been studied by Pod- 
dar et al. (1986). Once the length of the arch is longer than the distance 
between the pinned ends, there will be two equilibrium positions. 
Forced excitation can then result in unpredictable jumping from one 
arched position to another (see also Symonds and Yu,  1985). 

Y 
Figure 4-3 Poincark map of chaotic solutions to the forced two-well potential oscilla- 
tor; 15,000 points. 
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Three- and Four-Well Potential Problems. Chaotic dynamics of a 
particle in three-well and four-well potentials have been studied both 
experimentally and analytically in M.S. and Ph.D. dissertations of 
G.-X.  Li (see Li and Moon, 1990a.b). A brief discussion of these 
problems is given in Chapters 6 and 7. A three-well problem can easily 
be created experimentally by placing three permanent magnets below 
a cantilevered beam (see Figure 2-2). A four-well potential can also 
be created by placing four magnets below a spherical pendulum. In 
this case, the number of degrees-of-freedom is two (Figure 4-1). 

Chaotic Dynamics in the Solar System 

The first firm test of the Newtonian model of the physical dynamical 
world was the correct prediction of the motions of the planets. And, 
for more than two centuries, students of physics have been taught the 
predictable nature of Newton's orbital dynamics. The time history of 
the planets in our solar system has been used to measure the history 
of our world. For over three decades, orbital dynamics has been used 
to predict with remarkable accuracy the motions of our rockets and 
satellites. Now, more than three centuries after the publication of the 
Principicr, some are challenging the notion of absolute predictability 
in the motions of some of the objects in our solar system. How can 
this be'? 

The law of the gravitational force of attraction of Newton is in- 
versely proportional to the square of the distance between masses, 
and thus i t  would appear to be strongly nonlinear. For two masses 
under mutual attraction, however, the problem can be reduced to a 
single mass problem moving around a fixed center. Furthermore, a 
change of variable transforms the nonlinear problem into the linear 
harmonic oscillator (e.g., see Goldstein, 1980). However, when three 
or more celestial bodies interact, then stochastic dynamics are pos- 
sible. 

Another departure from the classical Newton orbital problem is the 
effect of mass distribution. When the mass of the planet or moon 
has certain symmetrics, then one can reduce the problem to the inter- 
action of point masses. However, for irregularly shaped objects, the 
angular displacements add complexity similar to that of spinning top 
dynamics. 

In the following, a few examples of rigid body and orbital dynamics 
are described which may provide clues to chaos in the solar system. 
An example of chaotic fluid flow on Jupiter may be found in the work 
of Marcus (1988) as well as Meyers et al. (1989). 
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Chaotic Tumbling of Hyperion. The NASA mission of Voyager 2 
transmitted pictures of an irregularly shaped satellite of Saturn called 
Hyperion. The pioneering work of J. Wisdom of M.I.T. showed how 
this nonsymmetric celestial object could exhibit chaotic tumbling in 
its elliptical orbit around Saturn. 

It is well known that an elongated satellite such as a dumbell-shaped 
object orbiting in a circular orbit could exhibit oscillating planar rotary 
motions about an axis through the center of mass and normal to the 
plane of the orbit, with a period l/G smaller than the orbital period. 

When the satellite is asymmetric with three different moments of 
inertia, A < B < C, Wisdom et al. (1984) show that the planar dynamics 
are described by 

d28 w; - + -sin 2(8 - f )  = 0 
dt2 2r3 

(4-2.4) 

where time is normalized by the orbital period T = 27r and where r ( t )  
and f ( t )  are 27r periodic [e.g., see Thompson (1989a for a review of 
this work]. Here w; = 3(B - A ) / C ,  r is the radius to the center of 
mass, and 8(r) measures the orientation of the long axes of the satellite. 
The termf(t) is called the true anomaly of the orbit. 

This equation is similar to that of a parametrically forced pendulum 
which has been found to exhibit chaotic dynamics. However complex 
the planar oscillations may be, Wisdom et al. (1984) show that these 
planar motions can become unstable with the possibility of three- 
dimensional tumbling of the satellite in its orbit around Saturn. Imagine 
living on such a world where the Saturn rise and set are unpredictable 
and where definitions of east and west, defined on Earth by the fixed 
axes of rotation, would be hard to determine by intuition. 

Chaotic Orbits of Halley’s Comet. The dynamics of a celestial object 
such as Halley’s comet about the sun can be approximately described 
by a two-body problem which is fully integable. However, the motions 
of several planets, namely, Jupiter and Saturn, can exert perturbations 
on the orbit of Halley’s comet when there is a close encounter with 
these planets. This can be seen as an analogy to a pendulum that 
receives a series of short time perturbations similar to that of the 
kicked rotor problem. 

In a recent paper, Chirikov and Vecheslavov (1989) have used 
this technique of reducing the dynamics of Halley’s comet under the 
influence of Jupiter to a two-dimensional iterated map. 
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The determination of possible chaotic dynamics requires a large 
number of observations. Given the limited number of orbital periods 
in our lifetime of many of the celestial objects in our solar system, the 
only tool that we have is to perform a simulation backwards and 
forwards in time. If one uses the differential equations of Newton for 
each of the relevant celestial bodies, the calculation using digital 
computers becomes extremely time-consuming. One solution is to 
construct an electronic Orrery or a dedicated analog or digital com- 
puter in which the equations are hard-wired into the electronics. An- 
other solution is to replace the coupled ordinary differential equations 
with coupled iterated maps. 

Sketching only the barest outline of the problem, x, is chosen to 
represent the relative phase of the orbit of Jupiter at which Halley’s 
comet reaches its perihelion. Between encounters the comet is as- 
sumed to have an energy proportional to 0,. Using observations of 
Halley’s comet, Chirikov and Vecheslavov (1989), derive a 2-D map 
of the form 

(4-2.5) 

where F ( x )  is the saw-tooth function shown in Figure 4-4a. Iteration 
of this map for certain initial conditions leads to the stochastic orbit 
shown in Figure 4-46. 

Pendulum Problems 

Forced Single-Degree-of-Freedom Pendulum. The classical pendu- 
lum has a restoring force or torque that is proportional to the sine of 
the angular displacement, 0 (Figure 4-5). This implies that there are 
two equilibrium positions 8 = 0, 7 ~ .  In  the case of zero forcing, there 
is both a center and a saddle point in the phase plane. As with multiple- 
potential well problems, saddles often are clues to the existence of 
horseshoe maps in the Poincare section when periodic forcing is added 
to the problem. (See Figures 1-13, 3-5.) 

Chaos in a Pendulum. The motion of a particle in both space-periodic 
and time-periodic force fields serves as a model for several problems 
in physics. These include the classical pendulum, a charged particle 
in a moving electric field, synchronous rotors, and Josephson junc- 
tions. For example, the equation for the nonlinear dynamics of a 
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Jupiter 
-0.01 

(0 ) 

0.35 1 

Hallcy map 

0.20 .-I 
0 1 .o x 

( 6 )  
Figure 4-4 (a) Mapping function (4-2.5) for a model of Halley's comet perturbed by 
the orbit of Jupiter. (b) Iteration of the map (4-2.5). [From Chirikov and Vecheslavov 
( 1989) .] 
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I A 
, wt 

Figure 4-5 Parametrically forced pendulum. 

particle in a traveling electric force field takes the form (e.g., see 
Zaslavsky and Chirikov, 1972) 

j i  + 6 i  + a sin x = g(kx - or) (4-2.6) 

where g (  ) is a periodic function. The study of the forced pendulum 
problem has revealed complex dynamics and chaotic vibrations (see 
Hockett and Holmes, 1985; Gwinn and Westervelt, 1985): 

i + 6.i + (Y sin x = fcos  wt (4-2.7) 

Parametric oscillation is a term used to describe vibration of a 
system with time-periodic changes in one or more of the parameters 
of a system. For example, a simply supported elastic beam with 
small periodic axial compression is often modeled by a one-mode 
approximation which yields an equation of the form 

j i  + W ~ ( I  + pcosQr)x = o (4-2.8) 

This linear ordinary differential equation is the well-known Mathieu 
equation. I t  is known that for certain values of mi, p ,  and i2 the 
equation admits unstable oscillating solutions. When nonlinearities 
are added, these vibrations result in a limit cycle. A similar example 
is the pendulum with a vibrating pivot point (Figure 4-5). Chaotic 
vibrations for this problem have been studied numerically by Levin 
and Koch (1981) and McLaughlin (1981). The mathematical equation 
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for this problem is similar to (4-2.8): 

d + p i  + (1  + A cos Rt)sin 6 = o (4-2.9) 

Period-doubling phenomena have been observed in numerical solu- 
tions, and a Feigenbaum number was calculated for the sixth subhar- 
monic bifurcation of S = 4.74. 

Chaotic motion of a double pendulum have been studied by Richter 
and Scholz (1984). 

Spherical Pendulum. The complex dynamics of a spherical pendulum 
with two degrees of freedom has been examined by Miles (1984a), 
who found chaotic solutions for this problem in numerical experiments 
when the suspension point undergoes forced periodic motions. The 
equation of motion can be derived from a Lagrangian given by 

L = - r n ( i 2  1 + y2 + 2) - rn-(/ g - z)  2 1 
(4-2.10) 

where 1 is the length of the pendulum and the coordinates (x, y,  z )  
satisfy the constraint equation 

The suspension point is xo = ~l cos wt, and gravity acts in the z 
direction. 

Miles (1984a) used a perturbation technique and transformed the 
resulting equation of motion using 

x = [P~(T)COS 8 + q,(.r)sin ~ ] I E ” ~  

y = [P~(T)COS 6 + q2(7)sin B ] / E ” ~  
(4-2.11) 

where 6 = wt and T = 1 ~ ~ / ~ ~ t .  The resulting set of four first-order 
equations for ( p l ,  p2, q l ,  q2) with small damping added (represented 
by a) is found to be 

PI -a - p  -6 0 

-a 0 -6 p2 
- 

41 

- [: : -pU :”I[ 42 

0 

1 

+ O  1 1 

(4-2.12) 
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where a, p, and 6 depend on the variables ( p  1, p 2 ,  q l ,  q2). The reader 
is referred to Miles (1984a) for the definitions of a, p, and 6. The 
divergence of this flow in the four-dimensional phase space is V 0 f = 
-4a. Equilibrium points of the set of equations (4-2.12) correspond 
to either periodic planar or nonplanar motions. Numerical simulation 
of this set of equations shows a transition from closed orbit trajectories 
and discrete spectra to complex orbits and broad spectra characteristic 
of chaotic motions. 

Experiments on a Magnetic Pendulum. The pendulum is a classical 
paradigm in dynamics. To find out if this paragon of deterministic 
dynamics can exhibit chaotic oscillations, the author and co-workers 
at Cornell University (Moon et al., 1987) constructed a magnetic dipole 
rotor with a restoring torque proportional to the sine of the angle 
between the dipole axis and a fixed magnetic field (Figure 4-6). A time- 
periodic restoring torque was provided by placing a sinusoidal voltage 
across two poles transverse to the steady magnetic field. The mathe- 
matical model for this forced magnetic pendulum becomes 

J 6  + ce + MB,sin 8 = MBdcos 8 cos Rt (4-2.13) 

where J is the rotational inertia of the rotor, c is a viscous damping 
constant, M is the magnetic dipole strength of the rotor dipole, and B, 
and Bd are the intensities of the steady and dynamic magnetic fields, 
respectively. Figure 4-7 shows a comparison of periodic and chaotic 

Figure 4-6 Sketch of a magnetic dipole rotor in crossed static and dynamic magnetic 
fields-a “magnetic pendulum.” 
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i 

Figure 4-7 
motion of a magnetic rotor. 

Top: Periodic motion of a magnetic rotor (Figure 4-6). Bottom: Chaotic 

rotor speeds under periodic excitation. Additional discussion of this 
experiment may be found in Chapters 5 and 6. 

Chaos theory has also been used to excite nonperiodic vibrations 
in a multiple-pendulum mobile sculpture by Viet et al. (1983). A brief 
discussion on chaos and sculptural assemblages of pendulums as in 
the work of Calder is given in Appendix C,  “Chaotic Toys.” 

Rigid Body Problems 

The gyroscopic rotational effects of a free-spinning rigid body such as 
precession and nutation are well known. Then under what circum- 
stances can rigid bodies exhibit chaotic dynamics? To answer this we 
review the equations of motion known as Euler’s equations. Here the 
components of the rotation vector w = (ol, 02, q) are written with 
respect to the principal inertial axes centered at the center of mass: 

(4-2.14) 

where [I,, Z 2 ,  Z3] are the principal inertias and ( M i ,  M , ,  M , )  are applied 
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moments. In general, the rotational motion could be coupled to the 
translational motion, or applied forces could be coupled into the ap- 
plied moments. We focus here on the force-free case in which the 
center of mass is stationary. In this case, when the applied moments 
are zero, the motion is integrable. That is, one can write down the 
motion in terms of elliptic functions (e.g., see Goldstein, 1980). How- 
ever, there are several cases where freely rotating rigid bodies can 
exhibit chaotic behavior. 

The first case is when one of the moments Mi varies periodically in 
time. The second case is where one has parametric excitation through 
time-periodic changes in the principal inertias, for example, I, = 
1 0  + B cos at. The third case is where the applied moments are 
coupled through some feedback mechanism to the rotation velocities, 
that is. 

This case has been studied by Leipnik and Newton (1981). Under 
appropriate choice of constants, they obtained a double strange at- 
tractor, each with its own basin of attraction. The choice of constants 
used by Leipnik and Newton was I = [310, 210, 101 and 

-1 .2  0 -v%E 

A = [  O i 5  -:.4 ] 
The chaotic dynamics can easily be observed in a three-dimensional 
phase space. 

The general equations (4-2.14) are identical to the equations for the 
bending of a thin elastic rod or tape. This analogy, discovered by 
Kirchhoff in 183 I ,  is exploited in Chapter 8 to discuss spatially chaotic 
bending of a thin elastic tape (Davies and Moon, 1992). 

Ship Capsize and Nonlinear Dynamics. Ships and submarines consti- 
tute one class of rigid body dynamics under the influence of gravity and 
hydrodynamic forces. Two groups have done considerable research on 
ship dynamics using modern methods of nonlinear analysis; J. M. T. 
Thompson and co-workers at University College, London and A. H. 
Nayfeh and co-workers at Virginia Polytechnic Institute in Blacks- 
burg, Virginia. In spite of such research, current design criteria for 
ship stability in naval architecture is largely empirical (Thompson et 
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al., 1990). The simplest models involve the assumption of one-degree- 
of-freedom rolling subject to a periodic overturning moment in lateral 
ocean waves sometimes called regular beam seas (Figure 4-8): 

where 8 is the angle of roll and I is the moment of inertia. The damping 
B ( e )  is usually nonlinear as is the overturning moment C(0).  The 
London group has done a lot of analysis on a ship in high winds in 
which C(8)  is derived from a one-well potential function (for a review 
see Thompson et al., 1990; also see Virgin, 1986): 

c(e) = p,e - pze2 (4-2.16) 

The Virginia Polytechnic Institute group has published papers on the 
symmetric ship problem using an equation of the form 

e + 0% + a3e3 + 2 , ~ e  + 1 4 3  = F,COS f i r  (4-2.17) 

This group has also studied ship rolling oscillations excited by heave- 
roll coupling with a parametric forcing term proportional to the roll 
angle: 8 cos Rt (Sanchez and Nayfeh, 1990). 

Thompson’s work on dynamic stability for ships in a one-well poten- 
tial has led to safety criteria based on ideas about fractals and basins 

Figure 4-8 Sketch of a model for ship dynamics subject to wind and sea wave forces. 
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of attraction which are discussed in Chapter 7 (see also Thompson, 
1989b and Thompson et a]., 1990). 

Impact Oscillators 

Impact-type problems result in explicit difference equations or maps 
which often yield chaotic vibration under certain parameter conditions 
(see also 63.1). A classic impact-type map is the motion of a particle 
between two walls. When one wall is stationary and the other is 
oscillatory (Figure 4-9a), the problem is called the Fermi model for 
cosmic ray acceleration involving charged particles and moving mag- 
netic fields. This model is discussed in great detail by Lichtenberg and 
Lieberman (1983) in their readable monograph on stochastic motion. 
Several sets of difference equations have been studied for this model. 
In one model, the moving wall imparts momentum changes without 
change of position. The resulting equations are given by 

u,+ = Iu, + Vosin wt,l 

2A 
f n + l  = 1, + - 

“ , + I  

(4-2.18) 

where u, is the velocity after impact, t, is the time of impact, V, is the 
maximum momentum per unit mass that the wall can impart, and A is 
the gap between the two walls. 

Numerical studies of this and similar equations reveal that stochas- 
tic-type solutions exist in which thousands of iterations of the map 
(4-2.18) fill up regions of the phase space (u,, f,) as illustrated in 
Figure 4-9b. In some cases, the trajedtory does not penetrate certain 
“islands” in the (u,, f , )  plane. In these islands more regular orbits 
occur. This system can often be analyzed using classical Hamiltonian 
dynamics. This system is typical of chaos in low- or zero-dissipation 
problems. In moderate-to-high dissipation, the chaotic Poincart map 
becomes localized in a structure with fractal properties as in Figure 
3-1 1. But in low dissipation problems, the Poincart map fills up large 
areas of the phase plane with no apparent fractal structure. 

The Fermi accelerator model is also similar to one in mechanical 
devices in which there exists play, as illustrated in Figure 4-10. A mass 
slides freely on a shaft with viscous damping until it hits stiff springs 
on either side (see Shaw and Holmes, 1983 and Shaw, 1985). Another 
mathematical model which is closer to the physics is the bouncing ball 
on a vibrating surface shown in Figure 4- 11. This problem has been 
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A 
f - j  I t -  

I 4 
(b )  

Figure 4-9 ( u )  Particle impact dynamics model with a periodically vibrating wall. ( h )  
Poincark map u, versus wt,, (mod a) for the impact problem in ( ( I )  using Eqs. (4-2.18). 
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I I 

Figure 4-10 Expcrimental model of niilss with ii  deadband in the restoring force. 

studied by Holmes (1982). Using an energy loss assumption for each 
impact, one can show that the following difference equations result: 

$ / + I  = 4/ + u/ 

U,+ 1 = au, - y cos(4, + u,) 
(4-2.19) 

Here 4 represents a nondimensional impact time, and u represents the 
velocity after impact. As shown in Figure 4-1 la, a steady sinusoidal 
motion of the table can result in a nonperiodic motion of the ball. A 
fractal-looking chaotic orbit for this map is shown in Figure 4-llb.  
This model suffers from the problem of admitting negative velocities 
at impact. This problem was addressed in a paper by Bapat et al. 
(1986). 

Experiments on the chaotic bouncing ball have been performed 
by Tufillaro and Albano (1986). Other studies of impact or bilinear 
oscillator problems have been done by Thompson and Ghaffari (1982), 
'Thompson (1983), Isomaki et al. (1985), and Li et al. (1990). 

Impact Print Hammer. Impact-type problems have emerged as an 
obvious class of mechanical examples of chaotic vibrations. The boun- 
cing ball (4-2.19), the Fermi accelerator model (4-2.18), and a beam 
with nonlinear boundary conditions all fall into this category. A practi- 
cal realization of impact-induced chaotic vibrations is the impact print 
hammer experiment studied by Hendriks (1983) (Figure 4-12). In this 
printing device, a hammer head is accelerated by a magnetic force and 
the kinetic energy is absorbed in pushing ink from a ribbon onto paper. 
Hendriks uses an empirical law for the impact force versus relative 
displacement after impact; 11 is equal to the ratio of displacement to 
ribbon-paper thickness: 

(4-2.20) 
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Ink 
ribbon 

Electromagnet 1 Paper 

* 
Figure 4-12 Sketch of pin-actuator for a printer mechanism. 

where A is the area of hammer-ribbon contact, Ep acts like a ribbon- 
paper stiffness, and /3 is a constant that depends on the maximum 
displacement. The point to be made is that this force is extremely 
nonlinear. 

When the print hammer is excited by a periodic voltage, it will 
respond periodically as long as the frequency is low. But as the fre- 
quency is increased, the hammer has little time to damp or settle 
out and the impact history becomes chaotic (see Figure 4-13). Thus, 

f Frequency 

2500 Hz 

526.3 Hz 
Figure 4-13 Displacement of  a printer actuator as a function of time for different 
input frequencies showing loss of predictable output. [From Hendriks (l983), copy- 
right 1983 by International Business Machines Corporation, reprinted with per- 
mission.] 
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chaotic vibrations restrict the speed at which the printer can work. 
One potential solution which is under study is the addition of control 
forces to suppress this chaos. This idea has been explored in the work 
of Tung and Shaw (1988). 

Chaos in Gears and Kinematic Mechanisms 

Kinematic mechanisms are generally input-output devices that con- 
vert one form of motion into another. For example, a gear transmission 
converts a rotary input motion into another rotary motion at a different 
frequency. Or, a slider crank mechanism converts translation into 
rotary motion. This mechanism is the heart of tens of millions of 
automobile engines. These devices are called kinematic because, in 
the ideal mechanism, the relation between input and output depends 
only on geometry or kinematic relationships; that is, inertia does not 
determine the mechanical gain. However, in real mechanical devices, 
linear and nonlinear departures from the ideal mechanism such as 
elastic members, gaps, play, and friction bring inertial effects into the 
dynamic behavior of the mechanism. For example, gear transmissions 
work fine when under load, but they often lead to rattling vibrations 
when the load becomes small when there is small play in the gears or 
bearings. The understanding of machine noise in mechanical systems 
has been a neglected subject (e.g., see Moon and Broschart, 1991). 
Such noise sometimes leads to fatigue and other material damage 
as well as creates unwanted acoustic or hydrodynamic noise as in 
submarines. The modern developments in nonlinear dynamics have 
given new tools to attack this hitherto unsolved problem. 

A number of papers have appeared which treat the possibility of 
nonlinear and chaotic vibrations in kinematic mechanisms, including 
gears [Pfeiffer (19881, Karagiannis and Pfeiffer (1991), Singh et al. 
(1989)], slider crank mechanism and four-bar and robotic mechanisms 
(e.g., see Beletzky, 1990). 

Gear Rattling Chaos. Two spur gears with diameters d , ,  d 2 ,  which 
ideal geometrics, have a frequency or speed ratio oI/02 equal to 
d l / d , .  This speed ratio is affected by the meshing of teeth on each 
gear. However, when elasticity effects in the teeth (or gaps between 
the teeth) are present, this ideally kinematic problem becomes a dy- 
namic one. Consider, for example, the two gears shown in Figure 
4-14 in which a gap of E exists between the circumferential distance 
between tooth contacts and the actual width of the tooth. Suppose we 
assume that the motion of one gear is given, while the motion of the 
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(b )  

Figure 4-14 ( ( 1 )  Sketch of two enmeshed gears with a excessive play E .  (h )  Analogous 
problem of a mass moving between two vibrating constraints. 

other is governed by the dynamics. For example, we could imagine 
the left-hand gear rotating with a small oscillatory motion while the 
right-hand gear tooth exhibits complex dynamic impacts between the 
two drive gear teeth. This problem is not unlike the Fermi map problem 
in (4-2.18) (see Figure 4-14h). 

A study of this problem and its extension to more complex gear 
transmission systems has been given by Pfeiffer and co-workers at the 
Technical University of Munich [e.g., see Pfeiffer (1988), Karagiannis 
and Pfeiffer (1991)]. This relation between the gear rattling problem 
and the Fermi map has been studied by Pfeiffer and Kunert (1989). 
Also, in the United States the gear laboratory of R. Singh at the Ohio 
State University has looked at various nonlinear vibrations of gear 
systems including chaotic dynamics (e.g., see Comparin and Singh, 
1990). 

The Munich group, however, has pioneered in the application of 
Poincare map techniques for predicting noise in automative and other 
gear transmission systems. A typical Poincare map from two meshed 
gears with a small gap and periodic excitation on one gear is shown in 
Figure 4-15. The Munich group has also tried to predict the probability 
distribution function for the chaotic noise using the Fokker-Planck 
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Figure 4-15 Poincare map for two gears with play where one gear is excited by 
periodic oscillations. [From Li et al. (1990).] 

equation (see Kunert and Pfeiffer, 1991) and to show how different 
arrangements of gears could possibly reduce gear noise. 

Control System Chaos 

Imagine a mechanical device with a nonlinear restoring force and 
suppose a control force is added to move the system from one position 
to another according to some prescribed reference signal x, ( t ) .  Such 
a system can be modeled by the following third-order system: 

m i  + 6 i  + F ( x )  = -.z 
(4-2.2 1) 

i + aZ = r,[x - x,(t)i + rzi 

Nonlinear 

Figure 4-16 Feedback control system: nonlinear plant with linear feedback control. 
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A 

Here z represents a feedback force, and r, and Tz represent position 
and velocity feedback gains, respectively. This system of equations 
can be represented by the block diagram in Figure 4-16 with a nonlinear 
mechanical plant and a linear feedback law. 

Two types of chaotic vibrations problems can be explored here. 
First, if the system is autonomous [i.e., the reference signal is 
zero--x,(r) = 01, one could explore the gain space (r,, r2) for regions 
of steady, periodic, and chaotic vibrations. The second problem arises 
if x , ( t )  is periodic. That is, we wish to move the mass through a given 
path over and over again as in some manufacturing robotic device. 

1'1 
(position 
feedback) 

r2 # 0 (velocity 
feedback) 

r2 = o K* Perlodic Chaotic 

Periodic +++ 
I 

Figure 4-17 Top: Chaos boundary as a function of feedback gain and input command 
frequency. Bottom: Trajectories of periodic and chaotic dynamics for a mass with 
feedback control and nonlinear restoring force with a deadband region (see Figure 
4-10). (See Golnaraghi and Moon, 1991.) 
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One could then explore the parameters of frequency and gain for 
which the system is periodic or chaotic as in Figure 4-17. 

Chaotic vibrations for an autonomous system of the form (4-2.21) 
were studied by Holmes and Moon (1983) as well as by Holmes (1984). 
For example, when F ( x )  = x(x2 - l ) ( x 2  - B ) ,  the mechanical system 
has three stable equilibria. This system has been shown to exhibit 
both periodic limit cycle oscillation and chaotic motion. 

The problem of a forced feedback system has been studied by 
Golnaraghi and Moon (1991). Also Sparrow (1981) looked into chaotic 
oscillations in a system with a piecewise linear feedback function. 
Many other examples of chaotic control systems have since appeared 
in the literature. See also Baillieul et al. (1980). A discussion of using 
the chaotic nature of a strange attractor to control the dynamics of a 
system is presented in Section 4.9. 

4.3 CHAOS IN ELASTIC SYSTEMS 

Chaos in Elastic Continua 

Many experiments on chaotic vibrations in elastic beams have been 
carried out by the author and co-workers [e.g., see Moon and Holmes 
(1979, 1985), Moon (1980a,b, 1984b), Moon and Shaw (1983), and 
Cusumano and Moon (1990)l. Two types of problems have been inves- 
tigated. In the first problem, the partial differential equation of motion 
for the beam is essentially linear, but the body forces or boundary 
conditions are nonlinear. In  the second problem, the motions are 
sufficiently large enough that significant nonlinear terms enter the 
equations of motion. 

The planar equation of motion of an elastic beam with small slopes 
and deflections is governed by an equation of the form 

(4-3. I )  

where u is the transverse displacement of the beam, D represents an 
elastic stiffness, and rn is the mass per unit length. The right-hand 
term represents the effects of distributed body forces or internal damp- 
ing. In many of the experiments at Cornell University, we used perma- 
nent magnets to create nonlinear body force terms. We also use flow- 
induced forces to produce self-excited oscillation of elastic beams (see 
Section 4.4). 
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Figure 4-18 Planar deformation of an elastic rod. 

When the displacement and slope of the beam centerline are large, 
we use variables (u ,  u ,  19) to characterize the horizontal and vertical 
displacements and the slope which are related by (see Figure 4-18) 

u’  tan6 = - 
1 + u ‘  

( 1  + u ‘ ) ~  + (u ’ ) *  = I ,  (4-3.2) 

where ( )’ = alas  and s is the length along the deformed beam. The 
balance of momentum equations then take the form (see Moon and 
Holmes, 1979) 

mu = f, - G’  

mii = -6, + H’  
(4-3.3) 

where 

G = DI9”(l + u ’ )  - Tu’ 

H = DI9”U’ + T(I + u ’ )  

In these equations, (fu, f,) represent body force components, while 
T represents the axial force in the rod. The nonlinearities in these 
equations are distinguished from those in fluid mechanics by the fact 
that no convective or kinematic nonlinearities enter the problem. Also, 
the local stress-strain relations are linear. The nonlinear terms arise 
from the change in geometric shape and are known as geometric 
nonlinearities. [See Love (1922) for a discussion of nonlinear rod 
theory. See also Chapter 8.1 

Elastic Beam with Nonlinear Boundary Conditions. Multiple equilib- 
rium positions are not needed in a mechanical system to get chaotic 
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Figure 4-19 Chaotic vibrations of an elastic beam with a nonlinear boundary con- 
di tion. 

vibrations. Any strong nonlinearity will likely produce chaotic noise 
with periodic inputs. One example of a system with one equilibrium 
position is an elastic beam with nonlinear boundary conditions (see 
Moon and Shaw, 1983). Nonlinear boundary conditions are those that 
depend on the motion. For example, suppose the end is free for one 
direction of motion and is pinned for the other direction of motion. 
The chaotic time history of this beam is shown in Figure 4-19. Another 
variation of this problem is a two-sided constraint with play which 
gives three different linear regimes for the bending of the beam. Exper- 
iments in our laboratory also show chaos for this nonlinear boundary 
condition. Shaw (1985) has performed an analysis of these mechanical 
oscillations when play or a dead zone is present. Flow-induced chaotic 
vibrations have also been observed in a cantilevered pipe with nonlin- 
ear end constraints (see Section 4.4). 

Mugnefoelusfic Buckled Beam. In this example, an elastic cantile- 
vered beam is buckled by placing magnets near the free end of the 
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beam [see Chapters 2 and 4 as well as Moon and Holmes (1979) and 
Moon (1980a,b; 1984b)l. The magnetic forces destabilize the straight 
unbent position and create multiple equilibrium positions as shown 
in Figure 4-20. In experiments, we have created up to four stable 
equilibrium positions with four magnets. In the postbuckled state, the 
system represents a particle in a two (or more)-well potential (Figure 
1-2b). The whole system is placed on a vibration shaker and oscillates 
with constant amplitude and frequency. For small oscillations, the 
beam vibrations occur about one of the equilibrium positions. As the 
amplitude is increased, however, the beam can jump out of the poten- 
tial well and chaotic motions can occur, with the beam jumping from 
one well to another (Figure 4-2). A Poincare map of this phenomenon 
is shown in Figure 4-21. (We call this map the Flew de PoincrrrP.) 

The equation used to model this system is a modal approximation 
to the beam equation (4-3.3) with nonlinear magnetic forces acting at 
the tip. 

A one-mode approximation for a damped beam with a free end 
gives good results. This equation can be rewritten as three first-order 
equations. Note that here the x variable refers to nondimensional 
modal amplitude and not to the distance along the beam. 

(4-3.4) 

This problem is analogous to a particle in a double-well potential V = 
-(x? - x4/2)/4. This experiment is discussed throughout this book. 

Figure 4-20 
magnetic body forces. 

Steel elastic beam on a periodically moving support that is buckled by 
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Figure 421 Experimental Poincare map of chaotic motion of the magnetically buck- 
led beam. Flew de Poincart. 
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The Poincare section (Figure 4-2 I )  has the character of two-dimen- 
sional point mappings. The experiments do not always exhibit period 
doubling before the motion became chaotic. Odd subharmonics were 
often a precursor to chaos. (Note: A description of the experimental 
apparatus may be found in Appendix C, “Chaotic Toys.”) 

Another variation of this experiment is an inverted pendulum with 
an elastic spring reported in the People’s Republic of China by Zhu 
(1983) from Beijing University. For a weak spring, the inverted pendu- 
lum has two stable equilibria similar to the two-well potential problem 
(see also Shaw and Shaw, 1989). 

Three-Dimensional Elastica and Strings 

Under certain conditions, the forced planar motion of the nonlinear 
elastica described by (4-3.3) becomes unstable and three-dimensional 
motions result. Similar phenomena are known for the planar motion 
of a stretched string (Miles, 1984b). At Cornell University, we have 
performed several experiments with very thin flexible steel elastica 
with rectangular cross section (e.g., 0.25 mm x 10 mm x 20cm long) 
known as “Feeler” gauge steel strips (Figure 4-22u). For these beams, 
small motions in the stiff or lateral direction of the unbent beam 
are nearly impossible without buckling or twisting of the local cross 
sections. However, when there is significant bending in the weak 
direction, lateral displacements are possible accompanied by twisting 
of the local cross sections. We have shown that planar vibrations of 
the beam in the weak direction near one of the natural frequencies not 
only become unstable but can exhibit chaotic motions as well. This 
is demonstrated in Figure 4-226, where power spectra (fast Fourier 
transform; see Chapter 5) show a broad spectrum of frequencies when 
the driving input has a single-frequency input. Similar phenomena are 
observed for very thin sheets of paper. In fact, we have shown that 
chaotic motions of very thin sheets of paper generate a broad spectrum 
of acoustic noise in the surrounding air. This work is described in the 
doctoral dissertation of Cusumano (1990). See also Section 7.4 for a 
discussion of the calculation of fractal dimensions for chaotic at- 
tractors in these experiments. 

Chaotic ballooning motions of a periodically excited string under 
tension have been studied both analytically and experimentally by 
O’Reilly (1991). 

Two-Degree-of-Freedom Buckled Beam. To explore the effects of 
added degrees of freedom, we built an elastic version of a spherical 



178 CHAOS IN PHYSICAL SYSTEMS 

d 0  

Forcing hqwncy  (Hz) 

(0 1 

- 

- 

- 

I 1  I I 1 I .  I I I 1 I 

Driver 

Elastic Beam 
d 0  

- -  
I I I 

' I ' I ] '  . 1 . -  1 
0 Hr 25 

(6) 
Figure 4-22 (a )  Regions of chaos for a periodically forced thin elastica. (h )  Fourier 
spectra for forced vibrations of a thin elastic beam. Broad-spectrum chaos is the 
result of out-of-plane vibration. [From Cusumano and Moon (l99O).] 
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pendulum (Figure 4-1) where a beam with circular cross section was 
used (see Moon, 1980b). Again magnets were used to buckle the beam, 
but the tip was free to move in two directions. This introduced two 
incommensurate natural frequencies, and quasiperiodic vibrations oc- 
curred which eventually became chaotic (Figure 4-23). 

This experimental system can be modeled by equations for two 
coupled oscillators as given by 

(4-3.5a) x + y i  - i x (  I - x2) + pxy2 = fi 
V + S j ,  + ~ ( l  - E Y ’ ) ~  + / ~x ’Y  = f i ,  + , ~ , C O S  wt (4-3.5b) 

(6) 
Figure 4-23 ( u )  Sketch of an elastic rod undergoing three-dimensional motions in the 
neighborhood of a double-well potential created by two magnets. ( b )  Top: Simultane- 
ous time trace of phase plane motion and PoincarC map of quasiperiodic motion. 
Bottom: Poincare map of chaotic motion. 
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The terms fo and f2 account for gravity if the beam is not initially 
parallel with the earth's gravitational field, and the coupling terms are 
conservative. If the coupling is small, one can solve for y ( f )  from Eq. 
(4-3.5b) and the equation for x ( f )  looks like a parametric oscillator. 

Miles (1984b) has performed numerical experiments on two quadrat- 
ically coupled, damped oscillators and has found regions of chaotic 
motions resulting from sinusoidal forcing. He examined the special 
case when the two linear natural frequencies o1 and o2 were related 
by 02 20. 

4.4 FLOW-INDUCED CHAOS IN MECHANICAL SYSTEMS 

Flow-Induced Elastic Vibrations 

Flow in a Pipe: Fire Hose Chaos. There are many classes of flow- 
induced vibrations: flow inside flexible bodies such as pipes or rocket 
fuel tanks, flow around bodies such as wings, or heat exchange tubes 
and flow over one surface of a body such as over a panel of an aircraft 
or a rocket. One of the most studied problems has been the steady 
flow of fluid through flexible tubes or pipes (see Paldoussis, 1980; also 
see Chen, 1983). This problem has interest not only because of the 
nonconservative nature of the fluid forces, but also because of the 
relevance of the problem to flow-induced vibrations in heat exchange 
systems. This problem has recently received attention using modem 
methods of nonlinear analysis and experimentation. Although some 
of the early classical work goes back to dynamicists in the Soviet 
Union, research using modem methods has been centered in Europe 
(Steindl and Troger, 1988) and North America(Bajaj and Sethna, 1984; 
Sethna and Shaw, 1987; Paidoussis and Moon, 1988; Copeland and 
Moon, 1992; and Tang and Dowell, 1988). 

In one study shown in Figure 4-24, fluid flows with constant velocity 
out of a cantilevered flexible pipe. At a critical flow speed, small limit 
cycle vibrations appear. The nonlinearity in this problem consists of 
amplitude constraints near the end of the pipe. When the limit cycle 
oscillations grow to where the pipe hits the constraints, chaotic vibra- 
tions appear (Paidoussis and Moon, 1988). This problem has been 
modeled as two coupled autonomous nonlinear oscillators, with the 
dynamics living in a four-dimensional phase space. (See Figure 5-24.) 

Aeroelastic Panel Flutter. An example of chaos in autonomous me- 
chanical systems is the flutter resulting from fluid flow over an elastic 
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Figure 4-24 Sketch of a flexible tube with nonlinear boundary conditions carrying a 
steady flow of fluid. 

plate. This problem is known as panefjlutter, and readers are referred 
to two books by Dowell (1975, 1988) for more discussion of the me- 
chanics of this problem. Panel flutter occurred on the outer skin of the 
early Saturn rocket flights that put men on the Moon in the early 1970s. 
Dowell and co-workers have done extensive numerical simulation of 
panel flutter. In early work, Kobayashi (1962) and Fung (1958) had 
observed nonperiodic motions in their analyses. In one set of prob- 
lems, they looked at the combined effects of in-plane compression in 
the plate and fluid flow. More recent numerical results are given in 
Figure 4-25, showing stable phase plane trajectories for one set of fluid 
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Figure 4-25 Flow over a buckled elastic plate. Top left: Periodic aeroelastic vibra- 
tions. T o p  right: Chaotic vibrations of the plate. [From Dowell (19821.1 

velocity and compressive load conditions and chaotic vibrations for 
another set of conditions (see also Dowell, 1982, 1984). This example 
also illustrates a different type of Poincare map. Because there is no 
intrinsic time, one must choose a hyperplane in phase space and look 
at points where the trajectory penetrates that plane. Dowell has done 
this for the panel flutter problem and has shown strange attractor-type 
Poincare maps. 

Supersonic Panel Flutter. An analytic-analog computer study that 
uncovered chaotic vibrations and predates the Lorenz paper by one 
year is that of Kobayashi (1962). He analyzed the vibrations of a 
buckled plate with supersonic flow on one side of the plate. Kobayashi 
expanded the deflection of the simply supported plate in a Fourier 
series and studied the coupled motion of the first two modes. Denoting 
the nondimensional modal amplitudes of these two modes by x and y ,  
the equations studied using an analog computer were of the form 

.i + 6 f  + [ I  - 4 + X’ + 4y2]x - Q y  = 0 

j ;  + 6 j  + 4[4 - 4 + X’ + 4y2]y + QX = 0 
(4-4. I )  
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where y is a measure of the in-plane compressive stress in the plate 
(which can exceed the buckling value) and Q is proportional to the 
dynamic fluid pressure of the supersonic flow upstream of the plate. 
In his abstract of this 1962 paper, Kobayashi states, “Moreover the 
following remarkable results are obtained. (i) In some unstable region 
of a moderately buckled plate, only an irregular vibration is observed” 
[italics added]. He also refers to earlier experimental studies in 1957 
at the NACA in the United States which was the pre-Sputnik ancestor 
of NASA (see also Fung, 1958). 

4.5 INELASTIC AND GEOMECHANICAL SYSTEMS 

Nonlinear Dynamics of Friction Oscillators 

Early models of chaotic dynamics, as presented in the first edition of 
this book, included mainly polynomial or trigonometric nonlinearities. 
As the field matures, more realistic physical nonlinearities are being 
studied. One of these is the dynamics of vibrating systems with dry 
friction (Popp and Steltzer, 1990; Feeny and Moon, 1989, 1992). The 
study of friction has a long history (e.g., see Den Hartog, 1940; Stoker, 
1950), and we cannot begin to mention all the literature on the subject 
based on classical dynamical methods. The skidding of a car on a 
dry pavement, the screeching of chalk on a blackboard, and other 
experiences of technical devices with friction have always suggested 
that more complex dynamics are involved than simple periodic or 
steady motions. To date there is still debate between materials scien- 
tists and mechanicians about the nature of the friction force between 
two solid objects. We cannot resolve them here. What we can say is 
that certain classical models can lead to chaotic dynamics and that the 
global character of this chaotic attraction in phase space is similar to 
that measured in experiments. 

In the classical friction problem, the friction force in the direction 
tangential to the surface depends on the force that is applied normal 
to the surface as shown in Figure 4-26. The equation of motion for a 
harmonically forced friction oscillator is given by 

.i + 26k + x + ~ ( x ) f ( i )  = A cos Q t  

Here the time and distance are normalized by the mass and linear 
spring constant. We also allow the normal force effect q ( x )  to depend 
on the motion. I n  many models the tangential friction force is written 
as a function of velocity. In a study by Feeny and Moon (1992), 
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Figure 4-27 Experimental PoincarC map for a friction oscillator (Figure 4-26). The 
horizontal part is the sticking region. [From Feeny and Moon (1989) with permission 
of Elsevier Science Publishers, copyright 1989.1 



4.5 INELASTIC AND GEOMECHANICAL SYSTEMS 185 

The tanh term models the jump from positive friction to negative 
friction and approaches a discontinuity as (I! --* 03. The sech term 
represents a transition from the static friction i = 0 to the dynamic 
friction. A comparison of numerical integration of the continuous 
function model with experimental observations shows good agree- 
ment. In the experiment, the moving mass was designed so that the 
normal force varied linearly with the displacement (see Feeny, 1990). 
Color Plate 2 shows a three-dimensional phase space (x, u = i ,  
f i t  (mod 27~)). 

The chaotic attractor is composed of three sections: positive and 
negative velocities and a sticking region. A PoincarC map is shown 
in Figure 4-27. This shows a nearly one-dimensional structure with 
two branches, namely, a positive velocity branch and a sticking 
branch (lower curve). This 2-D map can be reduced to a 1-D map (see 
Chapter 5 ) .  Also one can use bimodal symbol dynamics (+ 1 for 
slipping, - 1 for sticking) from which a Lyapunov exponent can be 
calculated (see also Table 3-1 and Chapter 5,  Figure 5-17). 

Chaos, Fractals, and Surface Machining 

It has been observed that all surfaces of solid objects are created by 
dynamic processes, be they mechanical, chemical, or thermal. There 
is also evidence from measurements of surface topography that the 
apparently random displacements from the mean obey a scaling law 
(Feder, 1988), and experiments on fractured surfaces appear to show 
fractal scaling (Mandelbrot et al., 1984). These static properties of 
fractal surface topography have led some to propose that nonlinear 
dynamics may play a role in the machining or surface creation process 
(Scott, 1989). In a series of papers, Grabec (1986, 1988) has studied a 
nonlinear model of the cutting dynamics for an elastic tool bit using a 
friction law between the workpiece and the tool. The equations for 
this model are given in terms of the two-degree-of-freedom displace- 
ment (x, y )  of the tip of the tool bit: 

my + ryy + kyy = Fy 

where Fy = kF, and 

F, = Fo[ 1 + CI( I - 
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k = k , [ l  +c*(*-~y][ l+c , ($- ly  

h ( r )  = h" - y ( t ) ,  u = UI - i 

In this empirical model, the friction force decreases as the velocity 
increases. This effect is believed necessary to model the tool chatter 
noise that one often hears in machining. Numerical simulation by 
Grabec (1988) using these equations seems to lead to chaotic tool 
chatter and a fractal dimension of the attractor between 2 and 3. 

These studies are still speculative, but experiments in our laboratory 
do show chaotic dynamics in machining. Thus to produce quality 
machine surfaces the study of nonlinear processes in cutting, grinding, 
polishing, and other manufacturing processes, must be important. 

Fracture, Fatigue, and Chaos 

The failure of solid objects by fracture and fatigue remains one of the 
unsolved problems of classical physics. Experimental data in this field 
has always had a large scatter, even when material specimens are 
carefully prepared. The physics involves nonlinear processes at the 
molecular scale, micron scale (e.g., dislocations), and at the macro or 
machine-structure scale. A few papers are beginning to appear in the 
literature in which the methods of nonlinear dynamics and fractal 
mathematics are explored. The relation between fracture and fractals 
has been studied by Mandelbrot et al. (1984), and Lung (1986). The 
nonlinear dynamics of a running crack is explored in the papers of 
Fineberg et al. (1991), and Markworth et al. (1988). And, a discussion 
of a fatigue law based on nonlinear dynamics has been presented by 
Russell et al. (1991). This is an area of study that should see increasing 
attention in the next few years. A further discussion of fractals and 
fracture may be found in Section 7.8. 

Earthquakes and Chaos 

If unpredictabiliy of weather is the ultimate paradigm of fluid chaos, 
then is the uncertainty surrounding earthquakes the comparable para- 
digm of chaos in solid mechanics? This is the question a number of 
researchers are trying to answer (Levi, 1990). Current theories of 
earthquakes are based on the relative motion of the global tectonic 
plates of the Earth's crust. Thus it is natural that models would be 
based on the combination of stored elastic energy in the plates and 
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Figure 4-28 
(From Carlson and Langer (1989).] 

Earthquake model for the chaotic motions between two tectonic plates. 

some effective friction forces along the fault zones where the deforma- 
tion occurs. One such model, proposed by Carlson and Langer (1989), 
is shown in Figure 4-28. In this and other models of earthquakes, the 
energy source is the slow but steady velocity of one of the plates 
relative to the other. The buildup of elastic energy is then released 
when the sticking force exceeds some critical value. The unpredictable 
nature of this stick-slip motion is thought to be a paradigm for the 
unpredictable nature of earthquakes. 

A two-block model with friction proposed by Nussbaum and Ruina 
(1987) at first produced only time-periodic behavior, but a recent 
adaptation of this model by Huang and Turcotte (1990) using unequal 
friction forces on each block seems to result in chaotic dynamics of 
the blocks. In a more physics-based model which looks at both the 
spatial and temporal deformations between two elastic plates with 
friction contact along these common edges (i.e., the fault line), Horo- 
witz and Ruina (1989) show through calculations that complex spatial 
patterns of slip can develop along the fault line. 

From a more general view of geomechanics and nonlinear dynam- 
ics, Turcotte (1992) has published a monograph which tries to relate 
scaling law behavior in geology to the theorem of fractals and chaotic 
dynamics. 

4.6 CHAOS IN ELECTRICAL AND MAGNETIC SYSTEMS 

Nonlinear Electrical Circuits-Ueda Attractor 

One of the first discoveries of chaos in electrical circuits was that of 
a periodically excited nonlinear inductor studied by Ueda (1979, 1991). 
The equation for a circuit with nonlinear inductance and linear resistor, 
driven by a harmonic voltage, can be written in a nondimensional form 
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Figure 4-29 PoincarC map of chaotic analog computer simulation of a forced Van 
der Pol-type circuit. [From Ueda and Akamatsu (19811.1 
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as follows: 

i + k i  + x3 = Bcosr  (4-6.1) 

which is a special case of Duffing’s equation (1-2.4). Professor Y.  
Ueda of Kyoto University in Japan has obtained beautiful Poincare 
maps of the chaotic dynamics of this equation using analog and digital 
simulation (Figure 3-33). 

Ueda has also modeled a negative resistor oscillator, shown in 
Figure 4-29. The equation for this system is a modified Van der Pol 
equation ( 1  -2.5): 

i + (x’ - 1 ) i  + x3 = B cos 0 1  (4-6.2) 

It  is interesting to note that both the Duffing and Van der Pol 
equations have been studied for decades, yet nowhere in any of the 
standard references on nonlinear vibrations are chaotic solutions re- 
ported. Other nonlinear chaotic circuits are discussed in the next 
section. 

Nonlinear Circuits 

Periodically Excited Circuits: Chaos in a Diode Circuit. The idealized 
diode is a circuit element that either conducts or does not. Such on-off 
behavior represents a strong nonlinearity. A number of experiments 
in chaotic oscillations have been performed using a particular diode 
element called a uaructor diode (Linsay, 1981; Testa et al., 1982; 
Rollins and Hunt, 1982) using a circuit similar to the one in Figure 
4-30. Both period-doubling and chaotic behavior were reported. The 

la) fb) I d  

Figure 4-38 ( ~ i )  Model for a varactor diode circuit. (b) Circuit element when the 
diode is conducting. ( c )  Circuit element when the diode is off. [From Rollins and Hunt 
(1982) with permission of the American Physical Society. copyright 1982.1 
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period doubling suggests that an underlying mathematical model is a 
one-dimensional map in which the absolute value of the maximum 
current value in the circuit during the ( n  + 1)st cycle depends on that 
in the nth cycle: 

(4-6.3) 

One of the interesting questions regarding this system was the 
physical origin of the nonlinearity. In the earlier work of Linsay, it 
was proposed that the diode could be modeled as a highly nonlinear 
capacitance, where 

c ' =  c,(l - a V ) p  

d - c ( V ) V  = I 
dt 

(4-6.4) 

dl 
dt 

L- = - R l  - V + Vosinot 

where y = 0.44. Rollins and Hunt (1982), however, have proposed an 
entirely different model in which the circuit acts as either one of two 
linear circuits, shown in Figure 4-30b,c. Each cycle consists of a 
conducting and a nonconducting phase. The nonlinearity arises in 
determining when to switch from the conducting circuit with bias 
voltage Vfto the nonconducting circuit with constant capacitance. The 
switching time is a function of the maximum current value Ilmaxl. In 
this model, exact solutions of the circuit differential equations are 
known in each interval, with unknown constants to be determined 
using continuity of current and voltage at the switching times. Rollins 
and Hunt used this technique to calculate numerically the mapping 
function shown in Figure 4-3 1. Later experiments showed that this 
model accounted for more of the physics than the earlier version using 
nonlinear capacitance. See also Hunt and Rollins (1984). 

Another study with a varactor diode was reported by Bucko et al. 
(1984), who looked at a series circuit with a diode, inductor, and 
resistor driven by a sinusoidal voltage. They assumed a mathematical 
model of the form 

(4-6.5) 

where the properties of the nonlinear diode.f(l) were discussed in the 
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Figure 4-31 Comparison of ( a )  calculated and (b )  measured one-dimensional maps 
for the varactor diode circuit of Figure 4-32. [From Rollins and Hunt (1982) with 
permission of the American Physical Society, copyright 1982.1 

previous section. Bucko et al. explored the parameter plane (V,,  o) 
and outlined regions of subharmonic and chaotic response. These 
results are shown in Figure 4-32. Figure 4-32a shows a driving fre- 
quency range 0.5 < d27r < 4.0 MHz. These data show that one can 
choose a parameter path that results in a period-doubling route to 
chaos. However, one can also follow paths that apparently do not 
follow this route. Figure 4-32a also shows chaotic islands which, 
when expanded in Figure 4-326, exhibit further islands of chaos. 
This example shows that when the basic equations (4-6.5) are three 
differential equations, the PoincarC map of the dynamics is rwo-dimen 
sional and the period-doubling properties of the one-dimensional map 
may not hold in such systems. 

For certain parameter regimes, however, the two-dimensional map 
may look one-dimensional and the dynamics are likely to behave as a 
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Figure 4-32 ( a )  Subharmonic and chaotic oscillation regions in the driver voltage 
amplitude-frequency plane for an inductor-resistor-diode series circuit. (b) Enlarge- 
ment of diagram in (a ) .  [From Bucko et al. (1984) with permission of Elsevier Science 
Publishers, copyright 1984.1 

one-dimensional noninvertible map. The experimental moral of this is 
the following: When there is more than one essential nondimensional 
group in a physical problem, one should explore a region of parameter 
space to uncover the full range of possibilities in the nonlinear dy- 
namics. 

NonlineurInductor. Bryant and Jeffries (1984a) have studied a sinus- 
oidally driven circuit with a linear negative resistor and a nonlinear 
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inductor with hysteresis. In this work, they looked at four circuit 
elements in parallel: a voltage generator, negative resistor, capacitor, 
and a coil around a toroidal magnetic core, with typical values of C = 
7.5 pF, R = -500 R,  and a forcing frequency around 200 Hz or 
higher. The negative resistor was created by an operational amplifier 
circuit. If N is the number of turns around the inductor, A the effect 
core cross section, and I the magnetic path length, the equation for 
the flux density B in the core is given by 

(4-6.6) N A .  1 
NACB + - B  + - H ( B )  = l ( t )  R N 

where H ( B )  is the nonlinear magnetic field constitutive relation of the 
core material. In their experiments, they used N = 100 turns, A -- I .5 

Using this circuit, they observed quasiperiodic vibrations, phase- 
mz, and I = 0.1 m.  

locked motions, period doubling, and chaotic oscillations. 

Autonomous Nonlinear Circuits-Chua Attractor. Autonomous cha- 
otic oscillations in a tunnel diode circuit have been observed by Gollub 
et al. (1980) for the circuit shown in Figure 4-33a. 

The nonlinear elements in this circuit are two tunnel diodes. The 
current-voltage relation shown in Figure 4-336 is obviously nonlinear 
and exhibits a hysteresis loop for cyclic variations in current I,. In 
this work, the authors use return maps to construct pseudo-phase- 

0 0.2 0.4 

v, (volts) 

(b) 

.6 

Figure 4-33 Tunnel diode circuit which admits autonomous chaotic oscillations. 
[From Gollub et al. (1980) with permission of Plenum Publishing Corp., copyright 
1980.1 
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plane Poincare maps. That is, they time sample the current 

x, = ID? ( t o  + n 7 )  (4-6.7) 

where n is an integer, and then plot x, versus x,,+~. The data were 
sampled when the voltage Vu, passed through a value of 0.42 V in the 
decreasing sense. The authors also used Fourier spectra and calcula- 
tion of Lyapunov constants to measure the divergence rate of nearby 
trajectories. 

As noted above, Ueda (1979) studied chaos in a circuit with negative 
resistance. A novel way to achieve negative resistance in the labora- 
tory is with an operational amplifier. Two examples of experiments 
on chaotic oscillations in nonlinear circuits using this technique are 
those by Matsumoto et al. (1984, 1985) and Bryant and Jeffries 
(1984a,b). 

The circuit studied by Matsumoto et al. is shown in Figure 4-34a 
and consists of three coupled current circuits with a nonlinear resistor. 
This circuit is autonomous; that is, there is no driving voltage. Thus, 
the system can produce oscillations only if the nonlinear resistor 
has negative resistance over some voltage range. In their model, 
Matsumoto et al. (1984) chose a trilinear current-voltage relation 

k 
Figure 4-34 Circuit with trilinear active circuit elements which leads to autonomous 
chaotic oscillations. [From Matsumoto et al. (1985), copyright 1985 Institute of Electri- 
cal and Electronic Engineers.] 
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shown in Figure 4-346 which has the form 

The resulting circuit equations are obtained by summing currents at 
nodes A and B in Figure 4-36a and summing voltages in the left-hand 
circuit loop: 

1 
ClVl = p 2  - V , )  - g(VJ 

CZV, = gcv, - V,) - 1 (4-6.9) 
1 

LI = - v, 
where V ,  and V2 are the voltages across the capacitors C1 and C2 and 
I is the current through the inductor. Chua and co-workers created 
the trilinear resistor (4-6.8) by using an operational amplifier with 
diodes. For small voltages, the nonlinear resistance is negative, and 
the equilibrium position ( V , ,  V,,  I) = (0, 0,O) is unstable and oscilla- 
tions occur. Chaotic oscillations were found for l/CI = 9, 1/C2 = 1, 
1/L - 7,  G = 0.7, mo = -0.5, rn, = -0.8, and 6 = 1 in a set of 
consistent units. A chaotic time history is shown in Figure 4-35, which 
has the same character as the Lorenz attractor (Figure 1-27). See also 
Chua et al. (1986). 

Magnetomechanical Models 

Dynamo Models. A physical model that has received considerable 
attention is the rotating disk in a magnetic field. This system is of 
interest to geophysicists as a potential model to explain reversals of 
the earth’s magnetic field. A single-disk dynamo is shown in Figure 
4-36. The equation governing the rotation il and the currents I I  and I ,  
are of the form (see Robbins, 1977). 

where T is an applied constant torque. The time traces in Figure 4-36 
show that the current (and hence the magnetic field) can reverse in an 
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Figure 4-35 Chaotic trajectory for a circuit with a trilinear resistor (see Figure 4-34) 
numerical simulation. This attractor, based on Chua's circuit, is called the double 
scroll. [From Matsumoto et al. (1985). copyright 1985 Institute of Electrical and 
Electronic Engineers.] 

apparently random manner. [See also Jackson (1990) for a lengthy 
discussion of an analysis of Eqs. (4-6.10).] 

Magnetically Levitated Vehicles. Suspension systems for land-based 
vehicles must provide vertical and lateral restoring forces when the 
vehicle departs from its straight path. Conventional suspension sys- 
tems such as pneumatic tires and steel wheels on steel rails, as well 
as the futuristic systems of air cushion or magnetic levitation, all 
exhibit nonlinear stiffness and damping behavior and are thus candi- 
dates for chaotic vibrations. As an illustration, some experiments 
performed at Cornell University on a magnetically levitated vehicle are 
described. [See the book by Moon (1984a, 1993) which describes 
magnetic levitation transportation mechanics.] 

In this experiment, permanent magnets were attached to a rigid 
platform and a continuous L-shaped aluminum guideway was moved 
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Figure 4-36 Top: Disk dynamo model of Robbins (1977) for reversals of the Earth's 
magnetic field. Bottom: Chaotic current reversals from numerical solutions of disk 
dynamo equations (4-6.10). 

past the model using a 1.2-meter-diameter rotating wheel (Figure 
4-37). The induced eddy currents in the aluminum guideways interact 
with the magnetic field of the magnets to produce lift, drag, and lateral 
guidance forces. The magnetic drag force is nonconservative and can 
pump energy into the vibrations of the model. Thus, under certain 
conditions, the model can undergo limit cycle oscillations. As the 
speed is increased, damped vibrations change to growing oscillations 
(see bottom of Figure 4-37). The nonlinearities in the suspension forces 
limit the vibration and a limit cycle motions results. [This bifurcation 
in stability is known in mathematics as a Hopf bifurcation (Chapter 
1). In mechanics it is called aflutter oscillation.] 

In addition to flutter or limit cycle oscillations, the levitated model 
can undergo static bifurcations. Thus, at certain speeds, the equilib- 
rium state can change from vertical to two stable tilted positions as 
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Figure 4-37 
guideway. Boffom: Limit cycle bifurcation of levitated model. 

Top: Sketch of magnetically levitated model on a rotating aluminum 

shown in Figure 4-37. This latter instability is known in aircraft dynam- 
ics as divergence and is analogous to buckling of an elastic column. 
In our experiments, chaotic vibrations occurred when the system 
exhibited both divergence (multiple equilibrium states) and flutter. 
The flutter provides a mechanism to throw the model from one side 

Magnetic levitation "strange attractor" Lateral motion 

I I Wheel speed 
600 rprn 

Figure 4-38 Chaotic lateral motions of the levitated model 
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of the guideway to another, similar to what occurred in the buckled 
beam problem discussed in Chapter 2. The mathematical model for 
this instability, however, has two degrees of freedom. Lateral and roll 
dynamics were measured from films of the chaotic vibrations (Figure 
4-38). These vibrations were quite violent and if they occurred in an 
actual vehicle traveling at 400-500 km/h, the vehicle would probably 
derail and be destroyed. 

Optical Systems 

We have seen that multiple-well potential problems are a natural 
source of chaotic oscillations. The creation of coherent light using 
devices known as lusers involves the stimulation of electrons between 
two or more atomic energy levels. Thus, it is not surprising that chaotic 
and complex dynamical behavior may be found in laser systems. 

Many papers have been published in the physics literature on cha- 
otic behavior of laser systems as well as on the chaotic propagation 
of light through nonlinear optical devices. An extensive review of 
chaos in light systems has been written by Harrison and Biswas (1986), 
and a very readable introduction to nonlinear dynamics of lasers may 
be found in Haken (1985). In  elementary laser systems the nonlinearity 
originates from the fact that the system oscillates between at least two 
discrete energy levels. The simplest mathematical model for such 
systems involves three first-order equations for the electric field in the 
laser cavity, the population inversion, and the atomic polarization. 
These equations, known as the MLixwell-Block equations, are similar 
in structure to the Lorenz equations discussed in Chapters 1 and 3 
[see Eq. (3-8.3)]. Chaotic phenomena in lasers have been observed in 
both the autonomous mode and the modulation mode. 

The simplest model for laser dynamics is derived from Maxwell’s 
equations ofelectromagnetics and the semiclassical theory of quantum 
mechanics. At one level of the theory, electrons are assumed to reside 
in one of two states, each governed by wave functions cpI ,  c p 2 .  The 
complete wave function is then assumed to be a superposition of 
these two with time-varying amplitudes c l ( ~ ) ,  cz( t ) .  Here (c,(’ is the 
probability of finding the electron in the state “ 2 ’ .  The difference 
d = 1c21* - lcl12 is called the electron occupation dgfcrence, and its 
macroscopic measure is denoted by D(r)  and is called the inversion 
density. When there are more electrons in one state than the other, 
the material has an atomic electric dipole density whose macroscopic 
measure is denoted by the polarization density, P ( x ) .  

The third dynamical variable in the laser problem is the macroscopic 
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electric field E(r) .  In the dynamical equations, only the slowly varying 
or modulation parts of these variables are of concern (i.e., we filter out 
the high-frequency dynamics of the light wave). The basic dynamical 
equations in these “slow” variables take the form as described in 
Haken (1985): 

P = y , P  + y E D  

D = -yzD + y2(A + 1) - y2AEP (4-6.11) 

E =  - K E + K P  

It is left to the reader as an exercise to show that these equations 
can be related to the Lorenz equations (1-3.9), or see Section 8.3 of 
Haken’s book. Many experimental observations of period doubling 
and other chaotic phenomena have been reported [e.g., see Milonni 
et al. (1987) for a review]. 

The other class of problems discussed in Harrison and Biswas (1986) 
involves passive nonlinear optics. Here the index of refraction (speed 
of light in the medium) depends on the intensity of the light, for 
example, through the Kerr effect. 

4.7 FLUID AND ACOUSTIC SYSTEMS 

Chaotic Dynamics in Fluid Systems 

Although the primary focus of this book is on low-order mechanical 
and electrical systems, the major impact of the new dynamics on fluid 
mechanics warrants mention of at least a few fluid experiments in 
chaotic motions. We recall from Chapter 1 that the major nonlinearity 
in fluid problems is a convective acceleration term v 0 Vv in the 
equations of motion (1-1.3). However, other nonlinearities may also 
play a role such as free surface or interface conditions and non- 
Newtonian viscous effects. We can classify five types of fluid experi- 
ments in which chaotic motions have been observed: 

1.  Closed-flow systems: Rayleigh-Benard convection, Taylor- 
Couette flow between cylinders 

2. Open-flow systems: pipe flow, boundary layers, jets 
3. Fluid particles: dripping faucet 
4. Waves on fluid surfaces: gravity waves 
5. Reacting fluids: chemical stirred tank reactor, flame jets 
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Another set of fluid problems has been the collapse of fluid bubbles 
which can create acoustic chaos (Lauterborn and Cramer, 1981). 

One reason for the intense interest in chaotic dynamics and fluids 
is its potential for unlocking the secrets of turbulence. [For example, 
see Swinney (1983) for a review and see the edited volume by Tatsumi 
(1984) for a collection of papers on fluids and chaos.] Some feel that 
this may be too ambitious a goal for a theory based on a few ordinary 
differential equations and maps. One view is that dynamical systems 
theory will provide a good model for the transition to turbulence, but 
will require major breakthroughs to solve the more difficult problem 
of fully developed spatial and temporal turbulence (strong turbulence). 
However, a group at Cornell University has recently studied the 
dynamics of coherent structures in a turbulent boundary layer for 
open flow over a wall (Aubry et al., 1988) using modern global bifurca- 
tion theory. This work was one of the first to seek to examine both 
spatial and temporal complexities in fluid problems. Whatever the 
ultimate progress, nonlinear dynamical theory has added new tools to 
the study of experimental fluid mechanics. 

Closed-Flow Systems: Ray leigh-Benard Thermal Convection. We re- 
call from Chapter 1 that a thermal gradient in a fluid under gravity 
produces a buoyancy force that leads to a vortex-type instability with 
resulting chaotic and turbulence motions (Figure 4-39). By far the 
most studied experimental system is the thermal convection of fluid 
in a closed box. This is the system that Lorenz tried to model with his 
famous equations (3-8.3). 

Experimental studies of Rayleigh-Benard thermal convection in a 
box have shown period-doubling sequences as precursors to the cha- 
otic state. They have been carried out in helium, water, and mercury 
for a wide range of nondimensional Prandtl numbers and Rayleigh 

Physical 
space 

Figure 4-39 Sketch of thermofluid convection rolls. 
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numbers. These experiments emerged in the late 1970s. For example, 
Libchaber and Maurer ( 1978) observed period-doubling convection 
oscillation in helium. A number of experimental papers have emerged 
from a group at the French National Laboratory at Saclay, France, 
associated with Berge and co-workers (1980, 1982, 1985); see also 
Dubois et al. (1982). The experiment is similar to that pictured in Figure 
4-39 with a fluid of silicone oil in a rectangular cell with dimensions 2 
cm x 2.4 cm x 4 cm. These authors have observed both the quasiperi- 
odic route to chaos (Newhouse et al., 1978) and intermittent chaos. 
In the former, they observe the following sequence of dynamic events 
as the temperature gradient is increased: 

steady + monofrequency + quasiperiodic + chaotic + thermal - 
state motion motion motion gradient 

The frequency range observed in their experiments is very low, for 
example, 9-30 x Hz. They were one of the first groups to obtain 
Poincare maps in fluid experiments. This was facilitated by their 
discovery of regions in the flow where one frequency or oscillator was 
predominant. Thus, they could use one frequency to synchronize the 
Poincare maps. Two maps are shown in Figure 2-19. The first is 
quasiperiodic and the frequency ratio is close to 3.  The second is based 
on 1500 Poincare points and shows a breakup of the toroidal attractor 
before chaos sets in. The techniques used to measure the motion 
included laser Doppler anemometry and a differential interferometric 
method. More recent work involving mode-locking and chaos in con- 
vection problems has been done by Haucke and Ecke (1987). 

Lorenz-Salrzman Model. Perhaps the most famous model to date is 
the Lorenz equations which attempt to model atmospheric dynamics. 
In this model, one imagines a fluid layer, under gravity, which is 
heated from below so that a temperature difference is maintained 
across the layer (Figure 4-39). When this temperature difference be- 
comes large enough, circulatory, vortex-like motion of the fluid results 
in which the warm air rises and the cool air falls. The tops of parallel 
rows of convection rolls can sometimes be seen when flying above a 
cloud layer. The two-dimensional convective flow is assumed to be 
governed by the classic Navier-Stokes equations (1-1.3). These equa- 
tions are expanded in the two spatial directions in Fourier modes with 
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fixed boundary conditions on the top and bottom of the fluid layer. 
For a small temperature difference AT, no fluid motion takes place, 
but at a critical AT, convective or circulation flow occurs. This motion 
is referred to as Ruyleigh-Benard conuection. 

Truncation of the Fourier expansion in three modes was studied by 
Lorenz (1963). An earlier study by Saltzman (1962) used a five-mode 
truncation. In this simplification, the velocity in the fluid (u,, u,,) is 
written in terms of a stream function +: 

(4-7. I )  

In the Lorenz model, the nondimensional stream function and per- 
turbed temperature are written in the form [see Lichtenberg and Lie- 
berman (1983, pp. 443-446) for a derivation] 

+ = f i x ( t ) s i n  Tax sin r y  (4-7.2) 

(4-7.3) 0 = f i y ( t ) c o s  Tux sin T y  - z(t)sin 2 r y  

where the fluid layer is taken as a unit length. The resulting equations 
for (x, y ,  z )  are then given by 

i = a ( y  - x )  

j ,  = px - y - xz 

i =  - p z + x y  

(4-7.4) 

The parameter u is a nondimensional ratio of viscosity to thermal 
conductivity (Prandtl number), p is a nondimensional temperature 
gradient (related to the Rayleigh number), and /3 = 4(1 + a2)-' is a 
geometric factor, with a2 = 2. 

For the parameter values a = 10, p = 28, and p = ! (studied by 
Lorenz), there are three equilibrium points, all of them unstable. The 
origin is a saddle point, whereas the other two are unstable foci or 
spiral equilibrium points (see Figure 1-26). However, globally, one 
can show that the motion is bounded. Thus, the trajectories have no 
home but remain confined to an ellipsoidal region of phase space. A 
numerical example of one of these wandering trajectories is shown in 
Figure 1-27. A discussion of the bifurcation sequence as the thermal 
gradient is increased is given in Section 3.8. 



u)4 CHAOS IN PHYSICAL SYSTEMS 

Thermal Convection Model of Moore and Spiegel. It is often the case 
that discoveries of major significance are not singular and that different 
people in different places observe new phenomena at about the same 
time. Such appears to be the case regarding the discovery of low-order 
models for thermal convection dynamics. Above we discussed the 
now famous Lorenz (1963) equations, (4-7.4), which later received 
tremendous attention from mathematicians. Yet around the same time, 
Moore and Spiegel (1966) of the Goddard Institute and New York 
University, respectively, proposed a model for unstable oscillations 
in fluids which rotate, have magnetic fields or are compressible, and 
have thermal dissipation. The equations derived in their paper, like 
Lorenz's, are equivalent to three first-order differential equations. If 
z represents the vertical displacement of a compressible fluid mass in 
a horizontally stratified fluid (Figure 4-40a), restoring forces in the 
fluid are represented by a spring force and a buoyancy force resulting 
from gravity. Also, the fluid element can exchange heat with the 
surrounding fluid. Thus, the dynamics are modeled by a second-order 
equation (Newton's law) coupled to a first-order equation for heat 
transfer, leading to a third-order equation. In nondimensional form, 

R 
(b)  

Figure 4-40 ( a )  Spring-mass model for thermal convection of Moore and Spiegel 
(1966). (6) Region of nonperiodic motions in the nondimensional parameter space for 
the thermal convection model of Moore and Spiegel (1966). Eq. (4-7.5). 
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this equation becomes 

2 + 2 + ( T  - R + R z ’ ) ~  + TZ = 0 (4-7.5) 

where a nonlinear temperature profile of the form 

0 = 80 [ 1 - ($1 
is assumed. In  Eq. (4-7.51, T and R are nondimensional groups: 

i’ 
i’ 

thermal relaxation time 
free oscillation time 

thermal relaxation time 

T =  ( 

R = (  free fall time 

In their numerical studies, Moore and Spiegel discovered an entire 
region of aperiodic motion as shown in Figure 4-40b. In a follow-up 
paper, Baker et al. (1971) analyzed the stability of periodic solutions 
in the aperiodic regime. 

They showed that Eq. (4-7.5) can be put into the form 

s = - ( I  - 6)s + 8 

O =  - R -  ‘’2e + ( 1  - 6S*)S 
(4-7.6) 

The limit of R + m is the zero dissipative case. In this limit (R large), 
Baker et al. showed that in the range of periodicity, the periodic 
solutions of (4-7.6) become unstable locally. This property of global 
stability and local instability seems to be characteristic of chaotic 
differential equations. In a more recent paper, Marzec and Spiegel 
(1980) studied a more general class of third-order equations of the 
form 

(4-7.7) 

where V ( x ,  y)  is thought of as a potential function. They show that 
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both the Moore-Spiegel oscillator (4-7.5) and the Lorenz system 
(4-7.4) (with a change of variables) can be put into the above form 
(4-7.6). Strange attractor solutions to specific examples of (4-7.6) were 
found numerically. The above set of equations also models a second- 
order oscillator with feedback control h similar to (4-2.21). 

It will be an interesting study for historians of science to answer 
why the Lorenz system received so much study and the Moore-Spie- 
gel model was virtually ignored by mathematicians. Both purported 
to model convection. Lorenz published his article in the Journal of 
Atmospheric Sciences, whereas Moore and Spiegel published theirs 
in the Astrophysics Journal. 

Closed-Loop Thermosiphon. It is curious, given the great amount of 
attention to the Lorenz attractor as a paradigm for convective flow 
chaos, that only a few attempts were made to design an experiment 
that incorporated the assumptions of the Lorenz model. One of these 
is the flow of fluid in a circular channel under gravity, called a thermosi- 
phon. The relevance of this experiment to the Lorenz model was 
pointed out by Hart (1984). Convectively driven flows are of interest 
as models for geophysical flows such as warm springs or groundwater 
flow through permeable layers in the Earth's crust, and they are also 
of interest as applications for solar heating systems or reactor core 
cooling. 

Early experiments by Bau and Torrance (1981) were performed in 
a rectangular loop thermosiphon. They derived equations that describe 
flow in a closed circular tube with gravity acting in the vertical plane, 
as shown in Figure 4-41. Essentially, all variables are assumed to be 
independent of the radial direction. The principal dependent variables 
are the circumferential velocity u ( t )  and the temperature T(6 ,  t).  A 

Figure 4-41 Thermal convection in a vertical one-dimensional fluid circuit. A model 
for a thermosiphon. 
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viscous wall stress is assumed to act in the fluid. Also, a prescribed wall 
temperature T,,(8) is assumed with a linear cooling law proportional to 

The basic equations are the balance of angular momentum for the 
fluid mass and a partial differential equation for the energy or heat 
balance law. 

A buoyancy force or moment is introduced by assuming that the 
fluid density depends on the temperature, 

T - T,.. 

(4-7.8) 

so that a net torque acts on the fluid proportional to 

where 8 is as defined in Figure 4-42. 
In a method similar to that used in deriving the Lorenz equations 

(4-7.4), the temperature is expanded in a Fourier series. In this way, 
the partial differential equation for the heat balance is reduced to a set 
of ordinary differential equations. 

Following Hart (1984), one writes 

He shows that only the n = 1 thermal modes determine the dynamics. 
By redefining variables x = u ,  y = CI, and t = S1 + R,, where R, 
is similar to the Reynolds number, the resulting coupled first-order 
equations take the form 

X = P,[  - F ( x )  + (cos a ) y  - (sin a ) ( z  - Roll 

j , =  - x z - y + R g  (4-7.11) 

i = x y - z  

where F ( x )  is a nonlinear friction law. To obtain the Lorenz equations, 
one sets a = 0 and F ( x )  = C x .  The Lorenz limit corresponds to 
antisymmetric heating about the vertical. In their experiments, Bau 
and Torrance (1981) investigated the stability of flow but did not 
explore the chaotic regime. Given the close correspondence between 
Eqs. (4-7.11) and the Lorenz equation (4-7.4), it would appear natural 
that experimental exploration of the chaotic regime of the thermosi- 
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phon would be attempted. Another analysis of the relation between 
the Lorenz equations and fluid in a heated loop has been reported by 
Yorke et al. (1985). 

Earlier experiments with a fluid convection loop by Creveling et al. 
(1975) did not report chaotic motions. However, recent experiments 
by Gorman et al. (1984, 1986) have reproduced some of the features 
of the Lorenz attractor. The working fluid was water and the apparatus 
consisted of a 75-cm-diameter loop of 2.5-cm-diameter Pyrex (glass) 
tubing. The bottom half was heated with electrical resistance tape 
while the top half was kept in a constant-temperature bath. 

Taylor-Couette Flow Between Cylinders. A classic fluid mechanics 
system which exhibits perturbulent chaos is the flow between two 
rotating cylinders (called Taylor-Couerte f l ow)  shown in Figure 4-42. 
Much work has been done on this system [e.g., see Swinney (1983) 
for a review]. This flow is sensitive to the Reynolds number R = 
(b  - ( J ) u ~ Z ~ / V  and the ratios bla and R,/Ri, where the latter is the 
quotient of the outer cylinder rotation rate to the inner as well as the 
boundary conditions on the ends. This system exhibits a prechaos 
behavior of quasiperiodic oscillations before broad-band chaotic noise 
sets in. Other work includes that of Brandstater and co-workers (1983, 
1984, 1987). Taylor-Couette flow also exhibits complex spatiotempo- 
ral dynamics that are now under study by the group at the University 
of Texas at Austin under Professor H. Swinney. 

Figure 4-42 Sketch of flow between two rotating cylinders known as Taylor-Couette 
jlow. 
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Pipe Flow Chaos. While closed-flow problems have captured the bulk 
of the attention vis-a-vis dynamical systems theory, open-flow prob- 
lems are of great importance to engineering design. These include 
flows over airfoils, boundary layers, jets, and pipe flow. Recently, 
increased attention has been focused on applying the theory of chaotic 
dynamics to the laminar-turbulent transition problem in open-flow 
systems. One example is the experiment of Sreenivasan (1986) of 
Yale University who is studying intermittency in pipe flows. In this 
problem, low-velocity flow is laminar and steady, whereas for suffi- 
ciently high mean flow velocity the flow field becomes turbulent. At 
some critical velocity, the transition from laminar to turbulent appears 
to occur in intermittent bursts of turbulence. As the velocity increases, 
the fraction of time spent in the chaotic state increases until the flow 
is completely turbulent. Some observations of this phenomenon go 
back to Reynolds in 1883. The current focus of attention is to try to 
relate features of the intermittency, such as distribution of burst times, 
to dynamical theories of intermittency (e.g., see Pomeau and Manne- 
ville, 1980). 

Fluid Drop Chaos. A simple system with which the reader can ob- 
serve chaotic dynamics in one’s home is the dripping faucet. This 
experiment is described by R. Shaw of the University of Califor- 
nia-Santa Cruz in a monograph on chaos and information theory 
(1984). The experiment and sketch of experimental data are shown in 
Figure 4-43. The observable variable is the time between drops as 
measured with a light source and photocell, and the control variable 
is the flow rate from the nozzle. In Shaw’s experiment, he measures 
a sequence of time intervals { T,, , T,, + I , T,, = but does not measure the 
drop size or other physical properties of the drop such as shape. 
He and his students obtained periodic motion and period-doubling 
phenomena as well as chaotic behavior. Different maps of T,,+ I versus 
T,, are obtained for different flow rates. The map in Figure 4-43 shows 
a classic one-dimensional parabolic map similar to the logistic map of 
Feigenbaurn (1978). They also observed a more complicated map 
which is best represented in a three-dimensional phase space T, versus 
T,, + versus T,, + z .  This is an example of using discrete data to construct 
a pseudo-phase-space and suggests that another dynamics variable 
should be observed (such as drop size). 

Suiface Wave Chaos. It  is well known that waves can propagate on 
the interface between two immiscible fluids under gravity (e.g., air on 
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Figure 4-43 Experimental one-dimensional map for the time between drops in a 
dripping faucet. [From Shaw (1984) with permission of Ariel Press, copyright 1984.1 

water). Such waves can be excited by vibrating a liquid in the vertical 
direction in the same way that one can parametrically excite vibrations 
in a pendulum. Subharmonic excitation of shallow water waves goes 
back to Faraday in 1831. An analysis of this phenomenon in the context 
of period doubling has been performed by a group at UCLA (Keolian 
et al., 1981). They looked at saltwater waves in an annulus of 4.8-cm 
mean radius with a cross section of 0.8 x 2.5 cm. The system is 
driven in the vertical direction by placing the annulus on an acoustic 
loudspeaker. By measuring the wave height versus time at several 
locations around the annulus, the UCLA group measured a subhar- 
monic sequence before chaos that does not follow the classic period- 
doubling sequence; for example, they observe resonant frequencies 
pflm, wherefis the driving frequency, form = 1 ,2 ,4 ,  12, 13, 16, 18, 
20, 24, 28, 36, which differs from the 2" sequence of the logistic 
equation. 
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In another study of forced surface waves, Ciliberto and Gollub 
(1985) looked at a cylindrical dish of water with radius 6.35 cm with 
a depth of about I cm. They also used a loudspeaker excitation to 
explore regions of periodic and chaotic motion of the fluid height. In 
the region around 16 Hz, for example, they obtained chaotic wave 
motion for a vertical driving height of around 0.15 mm. The tried to 
interpret the results in terms of nonlinear interaction between two 
linear spatial modes (see Figure 6-8, Section 6.2). A theoretical analy- 
sis of this problem has been done by Holmes (1986). 

Acoustic Chaos 

At first look, the propagation of sound waves in air or water would 
appear to be a linear phenomenon, since they are usually modeled by 
the linear wave equation. But, as anyone who has tried to blow into 
a trumpet or a wind instrument has found out, it is not difficult to 
create noisy, chaotic-like acoustic effects. The origin of chaos in 
acoustics has at least three sources: the nonlinearities in the medium 
itself; the acoustic generator; and the reflection, impedance, or recep- 
tion of the acoustic waves. A review of chaotic dynamics in some 
acoustics problems has been given by Lauterborn and Holzfuss (1991) 
of the Technical University of Darmstadt, Federal Republic of Ger- 
many. This group has pioneered in the study of chaotic noise from 
bubbles and cavitation in liquids. In this class of problems, a high- 
intensity source creates bubbles in the fluid. The nonlinear behavior 
of the bubbles is then believed to be the source of period doubling and 
chaotic acoustic phenomena in the fluid (e.g., see Lauterborn and 
Holzfuss, 1989 and Lauterborn and Cramer, 1981). 

Two papers on musical chaos have been published by Maganza 
et al. (1986), who studied period doubling and chaos in clarinet- 
like instruments, and by Gibiat (1988), who studied a similar 
system. Embedding space or pseudo-phase-space techniques 
were used to look for qualitative behavior of the clarinet-like 
resonator. 

In a study in our laboratory, chaotic modulation in an organ- 
pipe generator of sound was obtained when a nonlinear mechanical im- 
pedance was placed at the open end of the meter-long pipe (Moon, 
1986). 

Other examples of acoustic chaos are discussed in the review by 
Lauterborn and Holzfuss (1991). 
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4.8 CHEMICAL AND BIOLOGICAL SYSTEMS 

Chaos in Chemical Reactions 

Rossler (1976a,b) and Hudson et al. (1984) have observed chaotic 
dynamics in a small reaction-diffusion system. Also, Schrieber et 
al. (1980) have observed similar behavior in two coupled stirred-cell 
reactors. If (xl , y , )  represents the chemical concentration in one cell 
and (x,, y 2 )  represents the concentration in another cell, a set of 
equations can be derived to model the dynamic behavior: 

i 1  = A - ( B  + I )x~  + X : Y I  + DI(x2 - XI)  

A now classic example of chemical chaos is the Belousov-Zhabotin- 
ski reaction in a stirred-flow reactor. Subharmonic oscillations and 
period doubling have been observed by a group under Professor H. 
Swinney of the University of Texas at Austin (Simoyi et al., 1982). 
With the input chemical concentrations held fixed, the time history of 
the concentration of the bromide ion, one of the reaction chemicals, 
shows complex subharmonic behavior of different flow rates. See 
Argoul et al. (1987b) for a review. In a more recent study, this group 
has developed a model to explain spatially induced chaos in Belou- 
sov-Zhabotinski-type reaction-diffusion systems (Vastano et al., 
1990). 

Biological Chaos 

One of the exciting aspects of the new mathematical models in nonlin- 
ear dynamics is the wide applicability of these paradigms to many 
different fields of science. Thus, it is no surprise that dynamic phenom- 
ena in biological systems have been explained by some of the very 
same equations used to describe chaos in the electrical and mechanical 
sciences. A collection of papers concerning chaos in biological sys- 
tems may be found in the book edited by Degn et al. (1987). A readable 
book on this subject has been published by Glass and Mackey (1988). 
A few other examples are described here. 

Chaotic Heart Beats. Glass et al. (1983) have performed dynamic 
experiments on spontaneous beating in groups of cells from embryonic 
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chick hearts. Without external stimuli, these oscillations have a period 
between 0.4 and 1.3 s. However, when periodic current pulses are 
sent into the group using microelectrodes, entrainment, quasiperiodic- 
ity, and chaotic motions have been observed (see Fig. 2-22). The circle 
map has been used as a model to explain some of these phenomena 
[e.g., see Guevara et al. (1990), Glass (1991), and Arnold (1991)l. 

A discussion of the relevance of nonlinear dynamics and chaotic 
models to ventricular fibrillation was given by Goldberger et al. (1986) 
and Goldberger and West (1987a). These papers contain a number 
of references on cardiac dynamics. In another paper, Rigney and 
Goldberger ( 1989) used a parametrically excited pendulum equation 
to model a period doubling of the heart rate observed in electrocardio- 
graph experiment. 

Another work, that of Lewis and Guevara (1990), described the 
dynamic modeling of ventricular muscle due to periodic excitation in 
the sinoatrial node of the heart. The authors started with the telegraph 
equation, a partial differential equation used in electrical engineering, 
and reduced the dynamics to a one-dimensional map. 

Nerve Cells. In a similar type of experiment, sinusoidal stimulation of 
agiant neuron in a marine mollusk by Hayashi et al. (1982) also showed 
evidence of chaotic behavior. 

Biological Membranes 

Biological membranes control the flow of ions into a cell such as 
potassium and sodium. Time history measurements of the ion current 
through a channel in a cell of the cornea as shown in Figure 4-44 seem 
to indicate a chaotic opening and closing of the channel. Earlier models 
of this phenomenon were based on intrinsic random processes. How- 
ever, a dynamic model of the ion kinetics using an iterated one- 
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Figure 4-44 Experimental time history of the current through a single-ion-channel 
protein from a cell in the cornea. [From Leibovitch and Czegledy (1991).] 
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Figure 4-45 Top: One-dimensional map of chaotic ion channel kinetics. Bottom: 
Iteration of map. [From Leibovitch and Toth (1991) with permission of Academic 
Press, Ltd.] 

dimensional map has been proposed by Liebovitch and Toth (l991), 
shown in Figure 4-45. The apparent chaotic switching from open to 
closed is similar to the particle in a two-well potential described in 
Chapters 1 and 2. In another paper, Liebovitch and Czegledy (1991) 
used a two-well Duffing oscillator as a possible model for the ion 
dynamics. 

4.9 NONLINEAR DESIGN AND CONTROLLING CHAOS 

Is chaos good for anything? Can engineers use chaos theory to invent 
new technology? Can one design a chaotic controller? In a time of 
debate between the role of basic research in enhancing technology 
and productivity, these questions are being raised if not by dynamicists 
themselves, then by their funding sponsors. Certainly the role of 
chaotic dynamics in the mixing of fluids and chemicals has drawn 
interest in chemical engineering (see Section 8.4 and Ottino, 1989b). 
But, in electrical and mechanical systems, chaotic behavior is more 
often avoided in design. However, recent progress has been made in 
using nonlinear behavior to advantage in the design of electronic 
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circuits, and of even using the chaotic nature of a strange attractor to 
design a control system. 

Much of this recent work stems from the work of a group at the 
University of Maryland. Research conducted in 1992 points the way 
toward future applications of what I would call “nonlinear thinking” 
in design of dynamic systems. Perhaps the most clever set of papers 
are those inspired by recent research from the group at the University 
of Maryland entitled “Controlling Chaos.” In Ott, Grebogi, and Yorke 
(1990) they proposed using the stochastic nature of a chaotically be- 
haved system to lock onto one of the many unstable periodic motions 
embedded in the strange attractor. 

Two papers which apply this nonlinear thinking to control chaos in 
different experimental systems are Spano and Ditto (1991) and Hunt 
(1991). Spano and Ditto describe how the use of small perturbations 
can be used to switch between different orbits embedded in a strange 
attractor using a control scheme derived from the underlying map 
for the attractor. They use a flexible beam made of an amorphous 
ferroelastic material called Metglas (Fe81B13,sSi3,5C2) whose effective 
Young’s modulus is sensitive to small magnetic fields. When an applied 
field is periodically perturbed, the beam undergoes chaotic motions. 
Embedded in this attractor are an infinite set of unstable periodic 
orbits. Additional perturbations to the field were then used to control 
the motion to switch from one formerly unstable periodic orbit to 
another. 

In the paper by Hunt (1991) of Ohio University the system consists 
of a rectifier-type diode in series with an inductor driven by a sinusoidal 
voltage. The resulting map generated by the strange attractor is then 
used to produce a control signal. Using this method the author was 
able to stabilize almost all uncontrolled unstable orbits up to period 
23. These two papers essentially employ digital control schemes. 

Extending this idea of using chaotic systems to build useful oscilla- 
tors, Pecora and Carroll (1991) describe how one might “paste to- 
gether” nonlinear subsystems to build useful chaotically driven sys- 
tems. For example, one might build a circuit (the receiver) that can 
be synchronized with the chaotic output of another subsystem (the 
transmitter). In this way, one hopes to be able to introduce modulation 
on the chaotic carrier for secure transmission of information. 

In another use of the chaotic attractor for control, Shinbrot, et al. 
(1990) of the University of Maryland, described how one can devise 
control algorithms to move a system from one chaotic orbit to another 
at will in the phase space. This idea uses the exponential sensitivity 
of a chaotic system and small perturbations (control impulses) to direct 
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a system from one point on an attractor to a target point on the 
at trac tor. 

There are two aspects to the oxymoron “controlling chaos.’’ In one 
set of problems one examines how a control parameter can either 
quench a chaotically dynamic system or produce chaotic dynamics in 
an otherwise quiet or periodically behaved system. One example of 
this type of “Controlled Chaos’’ is a paper by Golnaraghi and Moon 
(1991) using a servo-controlled “pick and place” robotic device. 

However, the new concepts of “controlling chaos” inspired by 
the Maryland group illustrate how one might constructively use the 
exponentially divergent nature of chaotic orbits and the extreme sensi- 
tivity of these systems to small perturbations to design useful systems. 
These problems might also become paradigms in the education of 
engineers into the new methods of “nonlinear design. ” This design 
philosophy recognizes that nonlinear systems exhibit multiple basins 
of dynamic behavior which can lead to more creative solutions than 
those based on linear dynamic systems. 

PROBLEMS 

4-1 

4-2 

4-3 

Consider an inverted pendulum: a spherical mass at the end of 
a massless rod of length L. The pendulum is constrained by two 
rigid walls on each side. At equilibrium the pendulum mass will 
rest on one of the two walls. Assume that the rest angles are 
small and show that for undamped free vibrations the dynamics 
are governed by (see Shaw and Rand, 1989) 

Show that a saddle point exists at the origin of the phase space 
(x, x). Sketch a few trajectories. 

A mass particle is constrained to move under a constant gravity 
force in a circular path which lies in a vertical plane. Assume 
that the plane rotates with frequency Ro about the vertical axis 
through the center of the circle. Find the value of R,, for which 
the number of equilibria changes from one to three. Show that 
this problem is similar to a particle in a two-well potential. 

Consider the two-degree-of-freedom system of a linear spring- 
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mass oscillator confined to the diameter of a circular disk with 
spring constant, k,. Assume also that the disk can rotate about 
its axis with a linear torsional spring restraint, k,. Neglecting 
gravity and dissipation, show that the equations of motion take 
the form 

mr - mr$ + k,r = 0 

JQ + m(r2Q + 2ri-47) + k,cp = 0 

[Hint: Note that the kinetic energy is given by $m(L2 + r$) + 
3JG2.] Show that energy is conserved in this problem, and also 
show that the problem can be posed in terms of Hamiltonian 
dynamics. 

For the computationally ambitious, use the conservation of 
energy in Problem 4-3 to obtain a Poincare map and show that 
integration of the equations in Problem 4-3 leads to periodic, 
quasiperiodic, and stochastic orbits as in Figure 1-13. (See also 
Chapter 3,  Figures 3-34, 3-35.)  

4-5 Chaos in Gears. Consider two planar spur gears where one 
tooth on one gear is enmeshed between two teeth on the second 
gear. Assume that the gear diameters at the contact circle are 
d, , d2 and that play, A,  exists between the tooth in gear # 1  and 
the two teeth in gear #2 (see Figure 4-14). Derive an equation of 
motion for gear # 1  assuming that gear #2 oscillates sinusoidally 
with a small angle. Assume a coefficient of restitution at each 
gear tooth impact. How is this problem similar to or different 
from the Fermi map problem (4-2.18) shown in Figure 4-9a? 

4-6 The Kicked Rotor. Equations for the kicked rotor in Chapter 3 
[Eqs. (3-5.4)] were derived for a damped system. Derive the 
two-dimensional map for zero damping ( c  = 0). Iterate this map 
on a small computer. Do you expect fractal structure? 

4-7 Chaotic Comet. The discussion leading to the difference equa- 
tions (4-2.5) describes a simple map for the dynamics of Halley’s 
comet as perturbed by the orbit of Jupiter. In one model the 
perturbation function F ( x )  in (4-2.5) is represented by the saw- 
tooth curve in Figure 4-4a. Assume that the positive and nega- 
tive amplitudes are equal and are given by lFmax1 = 6.35 
with positions x, = 0.552, x-  = 0.640. Also, F(O.083) = 0. 
Use the mod 1 property of x to find the equations of the piece- 

4-4 
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wise linear curves and iterate the map to obtain Figure 4.4b. 
Can you show whether this map is area preserving or not? 
[See Chirikov and Vecheslavov (1989) for a discussion of the 
physics.] 

4-8 Tumbling of Hyperion. The rigid body tumbling of the irregu- 
larly shaped satellite of Saturn called Hyperion has been mod- 
eled by the equation (4-2.4) by Wisdom et al. (1984), where the 
perturbing functionsf(t) and r ( t )  are periodic in time. In the 
original paper, f(t) and r ( t )  are found from the elliptic orbit of 
the satellite using an eccentricity of the orbit of e = 0.1. How- 
ever, Eq. (4-2.4) is analogous to a periodically forced pendulum. 
As an approximation, assume that r = 1 (i.e., not time-depen- 
dent), wo = 0.2, and f = 8ocos t. Numerically integrate these 
equations on a computer and plot 8 versus i!l whenf(t) = 0 (i.e., 
a PoincarC map). Choose several values of 8, < 7d2 and several 
different initial conditions and compare your results with Fig- 
ures 1 and 2 of Wisdom et al. (1984). 

4-9 Whenf(t) and r ( t )  are periodic in Problem 4-8, show that the 
dynamical system (4-2.4) is a Hamiltonian problem (e.g., cha- 
otic orbits will be stochastic and not exhibit fractal structure). 

4-10 Chaotic Scatterer. Imagine two semi-infinite one-dimensional 
mechanical wave guides in which the displacement field u(x, t )  
satisfies the classical wave equation u,, = ciu,. The first wave 
guide lies along the negative x-axis, whereas the second lies 
along the positive x-axis. The two wave guides are connected 
by two springs to a scatterer of mass m .  The left-hand spring is 
assumed to be linear of strength k ,  whereas the right-hand spring 
force has a cubic nonlinearity of the form K[u(O,  t )  - U(t)I3, 
where U(t)  is the displacement of the scatterer. Assuming that 
the force in the wave guide is given by ~ d u l d x ,  derive a set of 
ordinary differential equations for the motion of the scatterer 
when periodic right moving waves are generated at x + --. 
[Answer: L/ = V ,  V = -F, (U - g - f) - F2(U - h ) ,  g = 

K X ~ ,  f = focos ot.] (See also Bleher et al., 1990.) 

4-11 In the case of the nonlinear scatterer of Problem 4-10, show 
that elements of the phase space contract under the action of 
the dynamics. Where does the damping come from? 

4-12 A magnetic compass needle is assumed to be pivoted at its 
center and subjected to a rotating magnetic field of intensity Bo. 

a ,F,(U - g - f) + j-, h = azF2(U - h) ,  F , (x )  = kx, F2(x) = 
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Assume that the needle carries a magnetic moment M and that 
the torque about the axis is given by the cross-product of the 
moment M and the magnetic field. Derive the equation of motion 
(Croquette and Poitou, 1981) 

When y = 0, is this a Hamiltonian system? Show either analyti- 
cally or computationally that either clockwise or counterclock- 
wise motions are solutions. 

4-13 Consider the magnetic pendulum described by (4-2.13). Derive 
an equation of motion for the case when the magnetic field is 
uniform, but whose direction oscillates with a small angle about 
the vertical. [Set Bd = 0 in (4-2.13).] Show that the equation is 
similar to the equation (4-2.4) for the tumbling of the Saturnian 
satellite Hyperion when r ( t )  = constant. 

4-14 Consider a simple serial circuit with a nonlinear iron core induc- 
tor, a linear resistor, and a periodic voltage source. Assume 
that the flux in the inductor depends on the cube of the current. 
Derive the equation of motion and show how it is related to the 
equation for the Japanese attractor (4-6.1). 

4-15 The simplest model of a laser is written as a system of three 
first-order differential equations with a quadratic nonlinearity 
(4-6.11). Show how these equations can be transformed under 
certain assumptions into the Lorenz equations for thermal con- 
vection (1-3.9) (Haken, 1985). 
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EXPERIMENTAL METHODS IN 
CHAOTIC VIBRATIONS 

Perfect logic und faultless dedirction make a pleasant theoretical struc- 
ture, hut i t  muy be right or wrong; The experimenter is the only one to 
decide, and he is ulways right. 

L. Brillouin 
Scientific Uncertainty and Information, 1964 

5.1 INTRODUCTION: EXPERIMENTAL GOALS 

A review of physical systems which exhibit chaotic vibrations was 
presented in Chapter 4. In this chapter, we discuss some of the experi- 
mental techniques that have been used successfully to observe and 
characterize chaotic vibrations and strange attractors. To a great ex- 
tent, these techniques are specific to the physical medium-for exam- 
ple, rigid body, elastic solid, fluid, optical, or reacting medium. How- 
ever, many of those measurements which are unique to chaotic 
phenomena, such as Poincare maps or Lyapunov exponents, are appli- 
cable to a wide spectrum of problems. Since publication of the first 
edition, some researchers have turned their attention to the spatial as 
well as to the temporal aspects of chaos. In this chapter we shall focus 
only on temporal chaos. An introduction to spatial dynamics is given 
in Chapter 8 along with a few experimental examples. 

A diagram outlining the major components of an experiment is 
shown in Figure 5-1. The source of the vibration is either (a) an external 
energy source such as an electromagnetic shaker or (b) an internal 
source of self-excitation. In the case of an autonomous system, such 

221 
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Excitation - 
force 

physlcal Input motion 
system __c signal 

filter 
1 

Figure 5-1 Diagram showing components of an experimental system to measure the 
Poincark map of a chaotic physical system. 

1- 
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as the Rayleigh-Benard convection cell, the source of instability is a 
prescribed temperature difference across the cell, and the nonlineari- 
ties reside in the convective terms in the acceleration of each fluid 
element. 

The other major elements include transducers to convert physical 
variables into electronic voltages, a data acquisition and storage sys- 
tem, graphical display (such as an oscilloscope), and data analysis 
computer. 

The techniques that must be mastered for experiments in chaotic 
vibrations depend on some extent on the goals that one sets up for the 
experimental study. These goals could include the following: 

%47-7 

I 

1.  Establish existence of chaotic vibration in a particular physical 
system. 

bincare 
\ ’  Differentiator \ I  map pulse 

generator 
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2. Determine critical parameters for bifurcations. 
3. Determine criteria for chaos. 
4. Map out chaotic regimes. 
5. Measure qualitative features of chaotic attractor-for example, 

Poincare maps. 
6. Measure quantitative properties of attractor-for example, Fou- 

rier spectrum, Lyapunov exponent, probability density function. 
7. Seek methods to quench, control, prevent or exploit chaos in a 

technical system. 

5.2 NONLINEAR ELEMENTS IN DYNAMICAL SYSTEMS 

The phenomena of chaotic vibrations cannot occur if the system is 
linear. Thus, in performing experiments in chaotic dynamics, one 
should understand the nature of the nonlinearities in the system. To 
refresh one’s memory, a linear system is one in which the principle of 
superposition is valid. Thus if x l ( t )  and x 2 ( t )  are each possible motions 
of a given system, then the system is linear if the sum c l x l ( t )  + c2x2(t )  
is also a possible motion. Another form of the superposition principle 
is more easily described in mathematical terms. Suppose the dynamics 
of a given system can be modeled by a set of differential or integral 
equations of the form 

L[X] = f(r) (5-2.1) 

where X = (x l ,  x2,  ... , x k ( t ) ,  ... , x,) represents a set of independent 
dynamical variables that describe the system. Suppose the system is 
forced by two different input functions f,(t) and f2(t) with outputs XI([) 
and X,(t). Then if the system is linear, the effect of two simultaneous 
inputs can be easily found: 

(5-2.2) 

The only way that this property can hold is for the terms in the 
differential equations (5-2.1) to be to the first power X or X, , and so 
on-hence the term linear system. Nonlinear systems involve the 
unknown functions in forms other than to the first power, that is, x2, 
x3, sin x, x u ,  l l ( x 2  + b), or similar forms for the derivatives or integrals 
of the function, for example, i2, [Jx dtJ2. 

Experimental nonlinearities can be created in many ways, some of 
them quite subtle. In mechanical or electromagnetic systems, nonlin- 
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earities can occur in the following forms: 

(a) Nonlinear material or contitutive properties (stress versus 

(b) Nonlinear acceleration or kinematic terms (e.g., centripetal or 

(c) Nonlinear body forces 
(d) Geometric nonlinearities 

strain, voltage versus current) 

Coriolis acceleration terms) 

Material Nonlinearities 

Examples of material nonlinearities in mechanical and electrical sys- 
tems include the following: 

Solid Materials. Nonlinear stress versus strain: (1) elastic (e.g., rub- 
ber) and (2) inelastic (e.g., steel stressed beyond the yield point; also 
plasticity, creep). 
Magnetic Materials. Nonlinear magnetic field intensity H versus flux 
density B: 

B = f(H) 

(e.g., ferromagnetic material iron, nickel cobalt-hysteretic in 
nature). 
Dielectric Materials. Nonlinear electric displacement D versus elec- 
tric field intensity E: 

D = f(E) 

(e.g., ferroelectric materials). 
Electric Circuit Elemenfs. Nonlinear voltage versus current: 

[e.g., Zener and tunnel diodes, nonlinear resistors, field effect transis- 
tors (FET), metal oxide semiconductors (MOSFET)]. Nonlinear volt- 
age versus charge: 

(e.g., capacitors). Other material nonlinearities include nonlinear opti- 
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cal materials (e.g., lasers), heat-flux-temperature gradient properties, 
nonlinear viscosity properties in fluids, voltage-current relations in 
electric arcs, and dry friction. 

Kinematic Nonlinearities 

This type of nonlinearity occurs in fluid mechanics in the Na- 
vier-Stokes equations, where the acceleration term includes a nonlin- 
ear velocity operator 

av  
ax 

u -  or v - V v  

which represents convective effects. (See Eq. (1-1.3).) 
In particle dynamics, one often uses local coordinate systems to 

describe motion relative to some inertial reference frame. When the 
local frame rotates with angular velocity Cl relative to the large frame, 
the absolute acceleration is given by 

A = a + A, + x p + 0 x fl x p + 2Q x v (5-2.3) 

where A, is the acceleration of the origin of the small frame relative 
to the reference, p and v are local position vector and velocity, respec- 
tively, of the particle. The last two terms are called the centripetal 
and Coriolis acceleration terms. The last three terms are nonlinear in 
the variables p, v, fl. 

For a rigid body in pure rotation, these terms appear in Euler’s 
equations for the rotation dynamics [see Eq. (4-2.14)]: 

dw 
dt M,, = I /  - ( I ,  - I z )wzo,  

do. 
dr M ,  = I : L  - (I\, - I,,)o,w?, 

(5  -2.4) 

where ( M , ,  M,,, M,) are applied force moments and (I,, Iy,  I , )  are 
principal second moments of mass about the center of mass. 
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Nonlinear Body Forces 

Electromagnetic forces are represented as follows: 

Currents: F = aZlZ2 or PZS 

Magnetization: 

Moving Media: 

F = M * VB 

F = qv x B 

(Here Z is current, B is the magnetic field, M is the magnetization, y 
represents charge, and v is the velocity of a moving charge.) 

Geometric Nonlinearities 

Geometric nonlinearities in mechanics involve materials with linear 
stress-strain behavior, but the geometry changes with deformation. 
A classic example of a geometric nonlinearity is the elastica shown in 
Figure 5-2. In this problem, the material is linearly elastic but the large 
deformations produce a nonlinear force-displacement or mo- 
ment-angle relation of the form 

M = AK 

(5-2 .5)  

F 

Figure 5-2 Examples of geometric nonlinearities in elastic structures. 
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where M is the bending moment, K is the curvature of the neutral axis 
of the beam, and u ( x )  is the transverse displacement of the beam. This 
problem is an interesting one for study of chaotic vibrations because 
the elastica can exhibit multiple equilibrium solutions (see Chapter 8). 
Cylindrical and spherical shells also exhibit geometric elastic nonlin- 
earities (see Evenson, 1967). 

5.3 EXPERIMENTAL CONTROLS 

First and foremost, the experimenter in chaotic vibrations should 
have control over noise, both mechanical and electronic. If one is to 
establish chaotic behavior for a deterministic system, the noise inputs 
to the system must be minimized. 

For example, mechanical experiments such as vibration of struc- 
tures or autonomous fluid convection problems should be isolated 
from external laboratory or building vibrations. This can be accom- 
plished by using a large-mass table with low-frequency air bearings. 
A low-cost solution is to work at night when building noise is at a 
minimum. 

Second, one should build in the ability to control significant physical 
parameters in the experiments, such as forcing amplitude or tempera- 
ture gradient. This is especially important if one wishes to observe 
bifurcation sequences such as period-doubling phenomena. Where 
possible, one should use continuous element controls and avoid de- 
vices with incremental or step changes in the parameters. In some 
problems, there is more than one dynamic motion for the same parame- 
ters. Thus, control over the initial state variables may also be im- 
portan t . 

Another factor is the number of significant figures required for 
accurate measurement. For example, to plot PoincarC maps from 
digitally sampled data, an 8-bit system may not be sensitive enough 
and one may have to go with 12-bit electronics or better in order to 
resolve the fine fractal structure in the maps. 

Frequency Bandwidth 

Most experiments in fluid, solid, or reacting systems may be viewed 
as infinite-dimensional continua. However, one often tries to develop 
a mathematical model with a few degrees of freedom to explain the 
major features of the chaotic or turbulent motions of the system. This 
is usually done by making measurements at a few spatial locations in 
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the continuous system and by limiting the frequency bandwidth over 
which one observes the chaos. This is especially important if velocity 
measurements for phase-plane plots are to be made from deformation 
histories. Electronic differentiation will amplify higher-frequency sig- 
nals, which may not be of interest in the experiment. Thus, extremely 
good electronic filters are often required, especially ones that have 
little or no phase shift in the frequency band of interest. 

5.4 PHASE-SPACE MEASUREMENTS 

It was pointed out in Chapter 2 that chaotic dynamics are most easily 
unraveled and understood when viewed from a phase-space perspec- 
tive. In particle dynamics, this means a space with coordinates com- 
posed of the position and velocity for each independent degree of 
freedom. In forced problems, time becomes another dimension. Thus, 
the periodic forcing of a two-degree-of-freedom oscillator with gener- 
alized positions (q l ( t ) ,  q2( t ) )  has a phase-space representation with 
coordinates ( q l ,  i l l ,  q 2 ,  q 2 ,  wt ) ,  where w is the forcing frequency. (The 
phase variable wt is usually plotted modulo 27r.) 

If one measures displacement q(t) ,  a differentiation circuit is re- 
quired. If velocity is measured, the phase space may be spanned by 
(u ,  sudt ) ,  which calls for an integrator circuit. As noted above, in 
building integrator or differentiator circuits, care should be taken that 
the phase as well as the amplitude is not disturbed within the frequency 
band of interest. 

In electronic or electrical circuit problems, the current and voltage 
can be used as state variables. In fluid convection problems, tempera- 
ture and velocity variables are important. 

Pseudo-Phase-Space Measurements 

In many experiments, one has access to only one measured variable 
{ x ( t l ) ,  x ( t 2 ) ,  ...} (where t i  and t2 are sampling times, not to be confused 
with PoincarC maps). When the time increment is uniform, that is, 
t2  = t 1  + T and so on, then a pseudo-phase-space plot can be made 
using x ( t )  and its past (or future) values: 
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orbit 

Figures-3 Periodic trajectory of a third-order dynamical system usingpseudo-phase- 
space coordinates. 

One can show that a closed trajectory in a phase space in (x, i )  
variables will be closed in the ( x ( t ) ,  x ( t  - 7 ) )  variables (one must 
connect the points when the system is digitally sampled) as shown in 
Figure 5-3. Likewise, chaotic trajectories in (x, i )  look chaotic in ( x ( t ) ,  
x ( t  - 7)) variables. The plots can be carried out after the experiment 
by a computer, or one may perform on-line pseudo-phase-plane plots 
using a sample-and-hold circuit. 

The one difficulty with pseudo-phase-space variables is taking a 
Poincare map. For example, when there is a natural time scale, such 
as in forced periodic motion of a system with frequency w, the sample 
time T is usually chosen much smaller than the driving period, that is, 
T << 27r/w = T. If T is not an integer of T, PoincarC maps may lose 
some of their fine fractal structure. 

5.5 BIFURCATION DIAGRAMS 

As discussed in Chapter 2, one of the signs of impending chaotic 
behavior in dynamical systems is a series of changes in the nature of 
the periodic motions as some parameter is varied. Typically, in a 
single-degree-of-freedom oscillator, as the control parameter ap- 
proaches a critical value for chaotic motion, subharmonic oscillations 
appear. In the now classic “logistic equation,” a series of period-2 
oscillations appear [Eq. (1-3.6)]. The phenomenon of sudden change 
in the motion as a parameter is varied is called a bifurcation. A 
sample experimental bifurcation diagram is shown in Figure 5-4. Such 
diagrams can be obtained experimentally by time sampling the motion 
as in a PoincarC map and displaying the output on an oscilloscope as 



Forcing amplitude 

Figure 5-4 Experimental bifurcation diagram for the vibration of a buckled beam: 
Poincare map samples of bending displacement versus amplitude of forcing vibrations. 

Input 
signal 

section 

Figure 5-5 Top: Poincare map sampling times at constant phase of forcing function. 
Eorrorn: Geometric interpretation of Poincare sections in the three-dimensional phase 
space. 
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shown in Figure 5-4. Here the value of the control parameter-for 
example, a forcing amplitude or frequency-is plotted on the hori- 
zontal axis and the time-sampled values of the motion are plotted on 
the vertical axis. This diagram actually represents a series of experi- 
ments, where each value of the control parameter is an experiment. 
When the control parameter can be varied automatically, such as by 
a computer and digital-to-analog device, the diagram can be obtained 
quite rapidly. Care must be taken, however, to make sure transients 
have died out after each change in the control parameter. 

In the bifurcation diagram of Figure 5-4, the continuous horizontal 
lines represent periodic motions of various subharmonics. The values 
in the dashed-line areas represent chaotic regions. The boundary be- 
tween chaotic and periodic motions can clearly be seen in this diagram. 

When this is automated, one must be careful not to mistake a 
quasiperiodic motion for a chaotic motion. A phase-plane PoincarC 
map is still very useful for distinguishing between quasiperiodic and 
chaotic motions. 

5.6 EXPERIMENTAL POINCARE MAPS 

Poincare maps are one of the principal ways of recognizing chaotic 
vibrations in low-degree-of-freedom problems (see Table 2-2). We 
recall that the dynamics of a one-degree-of-freedom forced mechanical 
oscillator or L-R-C circuit may be described in a three-dimensional 
phase space. Thus, if x ( t )  is the displacement, (x, i, ot) represents a 
point in a cylindrical phase space where C#I = ot represents the phase 
of the periodic forcing function. A Poincare map for this problem 
consists of digitally sampled points in this three-dimensional space, 
for example, (x ( t , ) ,  i ( t , ) ,  of, = 27rn). As discussed in Chapter 2 ,  this 
map can be thought of as slicing a torus (see Figure 5-5). 

Experimentally, this can be done in several ways. If one has a 
storage oscilloscope, the PoincarC map is obtained by intensifying the 
image on the screen at a certain phase of the forcing voltage (some- 
times called z-axis modulation) (Figure 5-1). In our laboratory, we 
were able to generate a 5 to 10 V pulse of I to 2 ps duration when the 
forcing function reached a certain phase: 

This pulse was then used to intensify a phase-plane image, (x ( r ) ,  
x ( t ) ) ,  using two vertical amplifiers as in Figure 5-6. 



232 EXPERIMENTAL METHODS IN CHAOTIC VIBRATIONS 

Figure 5-6 Example of an experimental Poincare map for periodic forcing of a 
buckled beam. 

One can also use a digital oscilloscope in an external sampling 
rate mode with the same narrow pulse signal used for the analog 
oscilloscope. A similar technique can be employed using an analog- 
to-digital (A-D) signal converter by storing the sampled data in a 
computer for display at a later time. The important point here is that 
the sampling trigger signal must be exactly synchronous with the 
forcing function. 

Poincare Maps-Change of Phase. As noted in Chapter 2, chaotic 
phase-plane trajectories can often be unraveled using the Poincare 
map by taking a set of pictures for different phases & in (5-6.1) (see 
Figure 5-7). This is tantamount to sweeping the Poincare plane in 
Figure 5-5. While one PoincarC map can be used to expose the fractal 
nature of the attractor, a complete set of maps varying & from 0 to 
27r is sometimes needed to obtain a complete picture of the attractor 
on which the motion is riding. 

A series of pictures of various cross sections of a chaotic torus 
motion in a three-dimensional phase space is shown in Figure 5-7. 
Note the symmetry in the cp = 0" and 180" maps for the special case 
of the buckled beam. 

Poincare Maps-Effect of Damping. If a system does not have suffi- 
cient damping, then the chaotic attractor will tend to uniformly fill 
up a section of phase space and the Cantor set structure which is 
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III 
Figure 5-7 PoincartS maps of a chaotic attractor for a buckled beam for different 
phases of the forcing function. 

characteristic of strange attractors will not be evident. An example of 
this is shown in Figure 2-11 for the vibration of a buckled beam. A 
comparison of low- and high-damping PoincarC maps shows that add- 
ing damping to the system can sometimes bring out the fractal struc- 
ture. On the other hand, if the damping is too high, the Cantor set 
sheets can appear to collapse onto one curve as in Figure 3-14. 

Poincare Maps-Quasiperiodic Oscillations. Often what appears to 
be chaotic may very simply be a superposition of two incommensurate 
harmonic motions, for example, 

~ ( t )  = A C O S ( W , ~  + 4) + B C O S ( W ~ ~  + 42) (5-6.2) 
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0 
w1/w2 Rational 

Figure 5-8 Poincart map of a motion with two harmonic signals with different 
frequencies. 

where w I / q  is irrational. One can use one frequency to sample a 
Poincare map, for example, altn = 27rn. Then the phase-plane points 
(x ( t , ) ,  i ( t , ) )  will fill in an elliptically shaped closed curve (Figure 5-8). 
If w 1 / 0 2  is rational, a finite set of points will be seen in the Poincare 
map. The case of o 1 / w 2  irrational can be thought of as motion on a 
torus or doughnut-shaped figure in a three-dimensional phase space. 

When three or more incommensurate frequencies are present, one 
may not see a nice closed curve in the Poincark map and the Fourier 
spectrum should be used. The difference between chaotic and quasipe- 
riodic motion can also be detected by taking the Fourier spectrum of 
the signal. A quasiperiodic motion will have a few well-pronounced 

0 I 2 3 4 5 
w/w, 

Figure 5-9 Fourier spectrum of an experimental electronic signal from a circuit 
with a nonlinear inductor. Frequency components are linear combinations of two 
frequencies. [From Bryant and Jeffries (1984a) with permission of the American 
Physical Society, copyright 1984.1 
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peaks as shown in Figure 5-9. Chaotic signals often have a broad 
spectrum of Fourier components as in Figure 2-7. 

Position-Triggered Poincare Maps 

When one does not have a natural time clock, such as a periodic 
forcing function, then more sophisticated techniques must be used to 
get a Poincare map (see also Henon, 1982). 

Suppose we imagine the motion as a trajectory in a three-dimen- 
sional space with coordinates (x, y ,  z ) .  To construct a Poincare map, 
we intercept a trajectory with a plane defined by 

ax + by + cz = d (5-6.3) 

as shown in Figure 5-10. The Poincare map consists of those points in 
the plane for which the trajectory penetrates the plane with the same 
sense [i.e., if we define a front and back to the plane (5-6.3), then we 
collect points only on trajectories that penetrate the plane from front 
to back or back to front, but not both ways.] 

Experimentally, one can do this by using a mechanical or electronic 
lever detector. Examples of position-triggered Poincare maps are dis- 
cussed below. 

In the impact oscillator shown in Figure 5-1 1 ,  there are three conve- 
nient state variables: the position x, velocity u,  and phase of the driving 
signal 4 = or. If one triggers on the position when the mass hits the 
elastic constraint, the Poincare map becomes a set of values (u,' , wt,)  

Figure 5-10 General Poincark surface of section in phase space for the motion of a 
third-order dynamical system. 
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I cos 

Elastic impact 
constraint 

wt 

Figure 5-11 Sketch of experimental setup for a position-triggered Poincare section. 

where v,’ is the velocity before or after impact and t ,  is the time of 
impact. Here the points in the map can be plotted in a cylindrical space 
where 0 < at,, < 27r. 

An example of the experimental technique to obtain a ( u , ~ ,  4,) 
PoincarC map is shown in Figure 5-1 1.  When the mass hits the position 
constraint, a sharp signal is obtained from a strain gauge or accelerom- 

Figure 5-I2 Position-triggered Poincare map for an oscillating mass with impact 
constraints (Figure 5-1 I ) .  
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Figure 5-13 Diagram of experimental apparatus to obtain position-triggered Poincare 
maps for a periodically forced rotor with a nonlinear torque-angle relation. 

eter. This sharp signal can be used to trigger a data storage device 
(such as a storage or digital oscilloscope) to store the value of the 
velocity of the particle. [In the case shown in Figure 5-11, a linear 
variable differential transformer (LVDT) is used to measure position, 
and this signal is electronically differentiated to get the velocity.] To 
obtain the phase +,, mod 27r, we generate a periodic ramp signal in 
phase with the driving signal where the minimum value of zero 
corresponds to 4 = 0, and the maximum voltage of the ramp corre- 
sponds to the phase 4 = 27~ .  The impact-generated sharp spike voltage 
is used to trigger the data storage device and store the value of the 
ramp voltage along with the velocity signal before or after impact. A 
Poincare map for a mass bouncing between two elastic walls using 
this (LJ,,, 4,,) technique is shown in Figure 5-12. (See also Figure 4-14.) 



238 EXPERIMENTAL METHODS IN CHAOTIC VIBRATIONS 

Figure 5-14 Position-triggered Poincare map for chaos in a nonlinear rotor (see 
Figure 5-13). 

Another example of this kind of PoincarC map is shown in Figure 
5-13 for the chaotic vibrations of a motor. In this problem, the motor 
has a nonlinear torque-angle relation created by a dc current in one 
of the stator poles, and the permanent magnet rotor is driven by a 
sinusoidal torque created by an ac current in an adjacent coil. The 
equation of motion for this problem is [see Section 4.2, Eq. (4-2.13)] 

J e  + ye  + K sin 8 = Focos 8 cos ot (5-6.4) 

To obtain a Poincare map, we choose a plane in the three-dimensional 
space ( 8 , 6 ,  or), where 8 = 0 (Figure 5-13). This is done experimentally 
by using a slit in a thin disk attached to the rotor and using a light- 
emitting diode and detector to generate a voltage pulse every time the 
rotor passes through 8 = 0 (see Figure 5-13). This pulse is then used 
to sample the velocity and measure the time. The data can be directly 
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Figure 5-15 Peak amplitude-generated Poincark maps for a circuit with nonlinear 
inductance [from Bryant and Jeffnes (1984a) with permission of the America1 Physical 
Society, copyright 19843. 
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displayed on a storage oscilloscope or, using a computer, can be 
replotted in polar coordinates as shown in Figure 5-14. 

Another variation of the method of PoincarC sections is to sample 
data when some variable attains a peak value. This has been used by 
Bryant and Jefferies (1984b) of the University of California-Berke- 
ley. They examined the dynamics of a circuit with a nonlinear hyster- 
etic iron core inductor shown in Figure 5-15. (The nonlinear properties 
are related to the ferromagnetic material in the inductor.) They sam- 
pled the current in the inductor ZL( r )  as well as the driving voltage 
V, ( t ) ,  when V ,  = 0. This is tantamount to measuring peak value of 
the flux in the inductor cp. This is because V ,  = -+, where cp is the 
magnetic flux in the inductor, and cp = + ( I ) ,  so that when + = 0, the flux 
is at a maximum or minimum. The Poincare map is then a collection of 
pairs of points (Vs, , ,  ZLn) which can be displayed on a storage or digital 
oscilloscope. 

Construction of One-Dimensional Maps from 
Multidimensional Attractors 

There are a number of physical and numerical examples where the 
attracting set appears to have a sheetlike behavior in some three- 
dimensional phase space as illustrated in Figure 5-16. [The Lorenz 
equations (1-3.9) are such an example. See also Section 3.8.1 This often 
means that a PoincarC section, obtained by measuring the sequence of 

Orblt 

Sheet-like 
attractof 

Y 

/ 

plane 

Figure 5-16 Construction of a one-dimensional return map in a three-dimensional 
phase space. 
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points which pierce a plane transverse to the attractor, will appear as 
a set of points along some one-dimensional line. This suggests that if 
one could parameterize these points along the line by a variable x, it 
would be possible that a function exists which relates x,+ I and x,: 

The function (called a return mup) may be found by simply plotting 
x,, I versus x,~. One example of this is the experiments of Shaw (1984) 
on the dripping faucet shown in Figure 4-43 or the nonlinear circuit in 
Figure 4-31 (see also Simoyi et al., 1982). The existence of such a 
functionf(x) implies that the mathematical results for one-dimensional 
maps, such as period doubling and Feigenbaum scaling (Section 3.6), 
may be applicable to the more complex physical problems in ex- 
plaining, predicting, or organizing experimental observations. 

For some problems, the functionf(x), when it exists, appears to 
cross itself or is tangled. This may suggest that the mapping function 
can be untangled by plotting the dynamics in a higher-dimensional 
embedding space using three successive values of the Poincare sam- 
pled data [x ( t , ) ,  x ( t , ,  ,), and ~ ( t , , ~ ) ] .  The three-dimensional nature of 
the relationship can sometimes be perceived by changing the projec- 
tion of the three-dimensional curve onto the plane of a graphics com- 
puter monitor. This may suggest a special two-dimensional map of the 
form 

This form is similar to the Henon map (1-3.8). This method has been 
used successfully by Van Buskirk and Jeffries (1985) in their study of 
circuits with p-n junctions and by Brorson et al. (1983), who studied 
a sinusoidally driven resistor-inductor circuit with a varactor diode. 

Example: I-D Map for a Friction Oscillator. In Chapter 4, we de- 
scribed experiments with a dry friction oscillator (Figure 4-26) which 
was modeled as a forced oscillator of the form (see Feeny, 1990) 

,i + F(x,  i) + o i x  = fo sin cRt (5-6.6) 

The natural phase space is thus three-dimensional (x, i ,  f i t ) ,  and a 
Poincare map triggered on the forcing phase would lead to a 
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Figure 5-17 (a)  Sketch of a one-degree-of-freedom oscillator with dry-friction force. 
( b )  PoincarC map of chaotic dynamics; 0 5 s < 1 represents "sticking" motions, 
whereas 1 5 s I 2 represents slipping motions. (c) Return map based on the above 
PoincarC map. [From Feeny and Moon (1989).] 

2-D map, ( x u ,  in). A sample of such a Poincare map is shown in Figure 
5-17a, It shows an almost I-D structure and exhibits no obvious fractal 
patterns. This suggests trying a 1-D map by replotting the 2-D map by 
projecting the points onto a one-dimensional manifold 0 5 S 5 2. In 
the experiment, this resulted in a tent- or hump-type map as shown in 
Figure 5-17b: 
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(5-6.7) 

where 0 I S < 1 corresponds to the sticking regime and 1 5 S 5 2 
corresponds to the slipping regime. 

Double Poincare Maps 

So far we have only talked of Poincare maps for third-order systems, 
such as a single-degree-of-freedom oscillator with external forcing. 
But what about higher-order systems with motion in a four- or five- 
dimensional phase space? For example, a two-degree-of-freedom au- 
tonomous aeroelastic problem would have motion in a four-dimen- 
sional phase space (xI , uI , x2, u2) .  A Poincare map triggered on one of 
the state variables would result in a set of points in a three-dimensional 
space. The fractal nature of this map, if it exists, might not be evident 
in three dimensions and certainly not if one projects this three-dimen- 
sional map onto a plane in two of the remaining variables. 

A technique to observe the fractal nature of three-dimensional 
Poincare map of a fourth-order system has been developed in our 
laboratory which we call a double Poincare section (see Figure 5- 18). 
This technique enables one to slice a finite-width section of the three- 
dimensional map in order to uncover fractal properties of the attractor 
and hence determine if it is “strange” (see Moon and Holmes, 1985). 

We illustrate this technique with an example derived from the forced 
motion of a buckled beam. In this case we examine a system with two 
incommensurate driving frequencies. The mathematical model has the 
form (See also Wiggins (1988), Section 4.2e) 

j ,  = - y y  + F ( X )  + fIcos 8, + f2c0s(O2 - 4& 
(5-6.8) 

The experimental apparatus for a double Poincark section is shown 
in Figure 5- 19. The driving signals were produced by identical signal 
generators and were added electronically. The resulting quasiperiodic 
signal was then sent to a power amplifier which drove the electromag- 
netic shaker. 

The first Poincare map was generated by a 1-ps trigger pulse syn- 
chronous with one of the harmonic signals. The PoincarC map (x,, u,) 
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Figure 5-18 Top: Single Poincark map dynamical system; finite width slice of second 
Poincare section. Bofiom: Poincark sampling voltages for a second-order oscillator 
with two harmonic driving functions. 

using one trigger results in a fuzzy picture with no structure as shown 
in Figure 5-20a. To obtain the second PoincarC section, we trigger on 
the second phase of the driving signal. However, if the pulse width is 
too narrow, the probability of finding points coincident with the first 
trigger is very small. Thus, we set the second pulse width 1000 times 
the first, at 1 ms. The second pulse width represents less than 1% of 
the second frequency phase of 27r. The (x, u )  points were only stored 
when the first pulse was coincident with the second as shown in Figure 
5-18. This was accomplished using a digital circuit with a logical 
NAND gate. Because of the infrequency of the simultaneity of both 
events, a map of 4000 points took upwards of 10 h compared to 8-10 
min to obtain a conventional PoincarC map for driving frequencies less 
than 10 Hz. 

The experimental results using this technique are shown in Figure 
5-20 which compares a single with a double PoincarC map for the 
two-frequency forced problem. The single map is fuzzy, whereas 
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Figure 5-19 Sketch of experimental apparatus to obtain a Poincark map for an 
oscillator with two driving frequencies. Note: Strain gauges- 1 ; steel beam-2. [From 
Moon and Holmes (1985) with permission of Elsevier Science Publishers, copyright 
1985.1 

the double section reveals a fractal-like structure characteristic of a 
strange attractor. 

One can of course generalize this technique to five- or higher- 
dimensional phase-space problems. However, the probability of three 
or more simultaneous events will be very small unless the frequency 
is order of magnitudes higher than 1-10 Hz. Such higher-dimensional 
maps may be useful in nonlinear circuit problems. 

This technique can of course be used in numerical simulation and 
has been employed by Lorenz (1984) to examine a strange attractor 
in a fourth-order system of ordinary differential equations. Kostelich 
and Yorke (1985) have also employed this method to study the dynam- 
ics of a kicked or pulsed double rotor. They call the method “Lorenz 
cross sections” (see also Kostelich et al., 1987). 

Experimentally Measured Circle Maps: Quasiperiodicity 
and Mode-Locking 

In Chapter 2 we mentioned briefly the phenomena of quasiperiodicity 
and mode-locking when two oscillators interact. This can occur when 
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Figure 5-20 ( a )  Single Poincare map of a nonlinear oscillator with two driving frequencies. 
(b) Double Poincark map showing fractal structure characteristic of a strange attractor. 
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one tries to periodically force a nonlinear oscillator with frequency w2 
which is initially in a limit cycle with frequency wI (e.g., the forced Van 
der Pol oscillator; see Chapter I ) .  In many problems, the dynamics can 
be reduced to a circle map 

k 
27r 

8,+ I = On + R + - sin 2 d , ,  (mod 1) (5-6.9) 

An excellent review of mode-locking, quasiperiodicity, and the 
circle map from an experimentalist’s point of view has been given by 
Glazier and Libchaber (1988). We shall not attempt to reproduce all 
the material in this paper, but we shall discuss a few techniques from 
this paper. These authors also survey the successful application of the 
circle map to experimental problems, including periodically forced 
Rayleigh-Benard convection (Jensen et al., 1985), and solid-state 
systems [e.g., electrically forced germanium (Held and Jeffries, 1986), 
electrically driven barium sodium niobate (Martin and Martienssen, 
1986), and a periodically forced semiconductor laser (Winful et al., 
1986)l. In all of these studies, Arnold-tongue mode-locking regimes 
were found (Chapter 2, Figure 2-23) with dynamic observations quali- 
tatively similar to those of the circle map. 

If the measured data are sampled at a Poincare section synchronous 
with the driving frequency o?, a set of data is generated {-ax,- I ,  x,, 
x,+ , a * } .  The problem for the experimentalist is to find a mapping from 
x, to 8,. 

In an approximate method, the Poincare points (x ,~,  ,i,J are plotted. 
If the closed curve for the quasiperiodic motion is symmetric and 
elliptic in shape, the points are projected onto a circle centered at the 
ellipse and the angle is measured on this circle. An example of a 
periodically excited flexible tube with steady fluid flow is shown in 
Figure 5-21u. However, if  the closed curve of the PoincarC map is 
twisted or badly distorted, another method may be used. 

Following Glazier and Libchaber (1988), one plots the x, variable 
versus a fictitious time variable 8 = Wt,  (mod 1). In general, a random 
choice of W will not reveal any pattern to the x, versus Wti curve. (In 
practice, one starts close to the uncoupled frequency ratio q / w 2  .) If 
there is an underlying one-dimensional generalized circle map, a 
unique value of W will reveal a periodic function. For values of W 
close to the  critical value, the curve will drift. The procedure is best 
done in an interactive mode with a computer terminal screen. The 
experimenter replots the data {x,} for different values of W until a 
unique curve is achieved as in Figure 5-21b. 
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Figure 5-21 (a)  Sketch of procedure to determine existence of a circle map O n + ,  = 
8, + F(0,). (b) Determination of rotation number or winding number from data 
generated in a flow induced vibration experiment shown in Figure 5-21c. 
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Figure 5-21 (c) Sketch of a flexible tube with an end mass carrying a steady flow. 
Lateral periodic force leads to quasiperiodic motion (Copeland and Moon, 1992). 

The critical value W is called the winding number. If one suspends 
the “mod” operation on 8;, then W is the rate at which the angle 8; 
changes with the discrete Poincare time “i,” that is, 

8; - oo 
W = lim (5-6.10) 

For two uncoupled oscillators, W = w l / 0 2  = R (the frequency 
ratio). For the circle map (5-6.9) with k = 0, O n + ]  = 8, + a, so that 
W = R is a uniform rate of change of angle. For k # 0 in (5-6.9), we 
have a measure of the nonlinear coupling between the oscillators. 

Once the function xi( Wr,) is found from the above procedure, then 
one can parameterize the curve from say 0 to 27r and assign corre- 
sponding angle values 8;. A plot of a return map should reveal a 
periodic circle type map 

(5-6.11) 

In addition to ascertaining if the experimental data can be modeled 
by a circle map, one can plot mode-locked regions as the control 
frequency is varied (see also Chapter 2, Figure 2-23). In some prob- 
lems, one can also determine multifractal properties of the attractor 
as described in Chapter 7 (see also Glazier and Libchaber, 1988). 
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5.7 QUANTITATIVE MEASURES OF 
CHAOTIC VIBRATIONS 

Poincare maps and phase-plane portraits, when they can be obtained, 
often provide graphic evidence for chaotic behavior and the fractal 
properties of strange attractors. However, quantitative measures of 
chaotic dynamics are also important and in many cases are the only 
hard evidence for chaos. The latter is especially true for systems with 
extreme frequencies 106-109 (as in laser systems) in which PoincarC 
maps may be difficult or impossible to capture. In addition, there are 
systems with many degrees of freedom where the PoincarC map will 
not reveal the fractal structure of the attractor (see 05.6 on double or 
multiple Poincare maps) or where the damping is so low that the 
PoincarC map shows no structure but looks like a cloud of points. 

At this time in the development of the field there are three principal 
measures of chaos and another of emerging importance: 

(a) Fourier distribution of frequency spectra 
(b) Fractal dimension of chaotic attractor 
(c) Lyapunov exponents 
(d) Invariant probability distribution of attractor 

It should be pointed out that while phase-plane pictures and Poin- 
care maps can be obtained directly from electronic laboratory equip- 
ment, the above measures of chaos require a computer to analyze the 
data, with the possible exception of the frequency spectrum measure- 
ment. Electronic spectrum analyzers can be obtained but are often 
expensive, and one might be better off investing in a laboratory micro- 
or minicomputer which has the capability to perform other data analy- 
sis besides Fourier transforms. 

If one is to digitally analyze the data from chaotic motions, then 
usually an A-D converter will be required as well as some means of 
storing the data. For example, the digitized data can be stored in a 
buffer in the electronic A-D device and then transmitted directly or 
over phone lines to a computer. Another option is a digital oscilloscope 
which performs the A-D conversion, displays the data graphically on 
the oscilloscope, and stores the data on a floppy or hard disk. 

Finally, if one has the funds, one can store the output from the 
A-D converter directly into a hard disk for direct transfer to a labora- 
tory computer. 
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Frequency Spectra: Fast Fourier Transform 

This is by far the most popular measure mainly because the idea of 
decomposing a nonperiodic signal into a set of sinusoidal or harmonic 
signals is widely known among scientists and engineers. The assump- 
tion made in this method is that the periodic or nonperiodic signal can 
be represented as a synthesis of sine or cosine signals: 

(5-7.1) 

where eiw‘ = cos wt + i sin of. 
Because F ( w )  is often complex, the absolute value lF(o)l  is used 

in graphical displays. In  practice, one uses an electronic device or 
computer to calculate ( F ( o ) (  from input data from the experiment 
while varying some parameter in the experiment (see section in Chap- 
ter 2 entitled “Bifurcations: Routes to Chaos”). When the motion is 
periodic or quasiperiodic, I F(w)I shows a set of narrow spikes or lines 
indicating that the signal can be represented by a discrete set of 
harmonic functions {eZiwA‘}, where k = I ,  2, .... Near the onset of 
chaos, however, a continuous distribution of frequency appears (as 
shown in Figure 5-22u), and in the fully chaotic regime the continuous 
spectrum may dominate the discrete spikes. 

Numerical calculation of F ( w ) ,  givenJ’(t), can often be very time- 
consuming even on a fast computer. However, most modern spectrum 
analyzers use a discrete version of (5-7.1) along with an efficient 
algorithm called the fast Fourier rransform (FFT). Given a set of 
data sampled at discrete even time intervals { f ( f k )  = fo, f,. fi, ..., 
j i ,  ..., f N } ,  the discrete time FFT is defined by the formula 

where I and J are integers. 
Several points should be made here which may appear obvious. 

First, the signalf(t) is time sampled at a fixed time interval T ~ , ;  thus, 
information is lost for frequencies above bO. Second, only a finite set 
of points are used in the calculation, usually N = 2“, and some built- 
in FFT electronics only do N = 512 or 1028 points. Thus, information 
is lost about very low frequencies below 1 / N T ~ .  Finally the representa- 
tion (5-7.2) having no information about F ( r )  before t = t o  or after 
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Figure 5-22 (a) Fourier spectrum of a chaotic signal. (b)  Autocorrelation function of 
a chaotic signal. 

t = t,,, essentially treatsf(t) as a periodic function. In general, this is 
not the case and because f ( t o )  # f ( t N ) ,  the Fourier representation 
treats this as a discontinuity which adds spurious information into 
F ( w ) .  This is called aliasing error, and methods exist to minimize its 
effect on F ( w ) .  The reader using the FFT should be aware of this, 
however, when interpreting Fourier spectra about nonperiodic signals 
and should consult a signal processing reference for more information 
about FFTs. 

Autocorrelation Function. Another signal processing tool that is re- 
lated to the Fourier transform is the autocorrelation function given by 

A ( 7 )  = / % x ( t ) x ( t  + P) dt 
0 

(5-7 * 3) 

When a signal is chaotic, information about its past origins is lost. 
This means that A(7) --+ 0 as 7 4 m, or the signal is only correlated 
with its recent past. This is illustrated in Figure 5-22b for the chaotic 
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vibrations of a buckled beam. The Fourier spectrum shows a broad 
band of frequencies, whereas the autocorrelation function has a peak 
at the origin T = 0 and drops off rapidly with time. 

Autocorrelation Function Using Symbol Dynamics. In this book we 
have talked a great deal about iterated maps and differential equations, 
but not much about symbol dynamics. However, modern dynamical 
systems theory points out the equivalence between chaotic dynamics 
with sequences of symbols. This equivalence is more than conceptual, 
however, and can be used to obtain some quantitative measures of 
the dynamics. A case in point is the dry friction oscillator discussed 
above and in Chapter 4 (see Figure 4-26). 

Lyapunov exponents are very difficult to measure in physical exper- 
imental systems. An alternative to this measure of chaos is the use of 
an autocorrelation function. There has been speculation that the time 
for zero autocorrelation would be inversely proportional to the Lyapu- 
nov exponent (e.g., see Singh and Joseph, 1989). 

To test these ideas, an autocorrelation function based on symbol 
dynamics has been applied to a chaotic dry-friction oscillator to esti- 
mate the largest Lyapunov exponent (Feeny and Moon, 1989). The 
friction problem is well-suited for symbol dynamics because two dis- 
tinct states of motion can be identified: sticking and slipping. The 
experiment consisted of a mass attached to the end of a cantilevered 
elastic beam, as shown in Figure 5-17a. The mass had titanium plates 
on both sides, providing surfaces for sliding friction. Spring-loaded 
titanium pads rested against the titanium plates. The titanium plates 
were not parallel in the direction of sliding, and thus a displacement 
of the mass caused a change in the force on the spring-loaded pads 
and caused a change in the normal load and the friction force. The 
device was excited by periodic acceleration using an electromagnetic 
shaker. The displacement of the mass was measured with a strain gage 
attached to the cantilevered beam. 

The dynamics of the oscillator can be reduced to a noninvertible 
I-D map (Figure 5-17c), which has been studied in terms of binary 
symbol sequences. The 2-D map in Figure 5-176 is reduced to a I-D 
map in Figure 5-17c by defining a variable “so along the sticking and 
slipping curves of the Poincare map. To obtain Figure 5-17c, one plots 
s,+, versus s,. The 3-D picture of the experimental attractor is shown 
in Color Plate 2. 

Singh and Joseph (1989) have proposed a technique of extracting 
quantitative information from a binary symbol sequence. First, it is 
necessary to represent the symbol sequence u(k)  as a string of 1’s and 
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- 1's. These values are chosen so that the expected mean of a random 
sequence of equally likely symbols is zero. As a trajectory passes 
through the Poincare section for the kth time, if it is not sticking, we 
set u(k) = 1. If it is sticking, we set u(k)  = - 1. An autocorrelation 
on such a symbol sequence is defined as 

r (n)  = u(k + n)u(k) ( n  = 0, I ,  2, ... ; N >> n )  (5-7.4) 
Nk=l  

If the sequence is chaotic, the autocorrelation should have the prop- 
erty r (n)  + 0 as n + m. 

If the sequence becomes uncorrelated, an estimate of the largest 
Lyapunov exponent can be obtained using the binary autocorrelation 
function. The macroscopic Lyapunov exponent, A,, is rewritten via 
a derivation in Singh and Joseph (1989) as 

Application of the equations to a symbol sequence derived from the 
tent map yields a rapidly decaying autocorrelation and a Lyapunov 
exponent A, = 0.787 for a string of 100,000 symbols, and an exponent 
of A, = 0.787 for a string of 2048 symbols, compared to its exact value, 
calculated using log,, A,, = 1. 

The binary autocorrelation function for an experimental sequence 
of length 2048 was obtained (5-7.4) as shown in Figure 5-23. Applying 

0 10 20 30 40 
time delay 

- 0 . 2 1 '  " ' I ' I " I ' I '  I " ' " 

Figure 5-23 Autocorrelation based on stick-slip symbol dynamics of a friction oscil- 
lator. [From Feeny and Moon (1989) with permission of Elsevier Publishers, copyright 
1989).] 
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Eqs. (5-7.4) and ( 5 - 7 3 ,  the resulting Lyapunov exponent is hexp = 
0.790. Using Eqs. (5-7.4) and (5-7.5) on numerical smooth-friction law 
data (2048 symbols) yields an autocorrelation similar to that in Figure 
5-23 and a Lyapunov exponent of A,, = 0.792. 

Wavelet Transform 

To characterize the fractal nature of dynamic data, a new signal pro- 
cessing technique has been developed, called the wavelet transform, 
which generalizes the Fourier transform (see e.g., Argoul et al. (1989), 
and Pezeshki et al. (1992) for applications). This transform introduces 
a spectrum of scales to unfold the self-similar nature of the fractallike 
data. 

Fractal Dimension 

I will not go into too many technical details about fractal dimensions 
because Chapter 7 is entirely devoted to this topic. However, the basic 
idea is to characterize the “strangeness” of the chaotic attractor. If 
one looks at a PoincarC map of a typical low-dimensional strange 
attractor, as in Figure 5-6, one sees sets of points arranged along 
parallel lines. This structure persists when one enlarges a small region 
of the attractor. As noted in Chapter 2, this structure of the strange 
attractor differs from periodic motions (just a finite set of PoincarC 
points) or quasiperiodic motion which in the PoincarC map becomes 
a closed curve. In the PoincarC map, one can say that the dimension 
of the periodic map is zero and that the dimension of the quasiperiodic 
map is one. The idea of the fractal dimension calculation is to attach 
a measure of dimension to the Cantor-like set of points in the strange 
attractor. If the points uniformly cover some area on the plane, we 
might say its dimension was close to two. Because the chaotic map in 
Figure 5-6 has an infinite set of gaps, its dimension is between one and 
two-thus the term fractal dimension. 

Another use for the fractal dimension calculation is to determine 
the lowest-order phase space for which the motion can be described. 
For example, in the case of some preturbulent convective flows in 
a Rayleigh-Benard cell (see Figure 4-39), the fractal dimension of the 
chaotic attractor can be calculated from some measure of the motion 
{x ( t , )  = x,} (see MaIraison et al., 1983). From {x”} ,  pseudo-phase- 
spaces of different dimension can be constructed (see Section 5.4). 
Using a computer algorithm, the fractal dimension d was found to 
reach an asymptotic d = 3.5  when the dimension of the pseudo-phase- 
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space was four or larger. This suggests that a low-order approximation 
of the Navier-Stokes equation may be used to model this motion. The 
reader is referred to Chapter 7 for further details. 

Although there are questions about the ability to calculate fractal 
dimensions for attractors of dimensions greater than four or five, this 
technique has gained increasing acceptance among experimentalists 
especially for low-dimensional chaotic attractors. If this trend contin- 
ues in the future, it is likely that electronic computing instruments 
will be available commercially that automatically calculate fractal 
dimension in the same way as FFTs are done at present. 

Lyapunov Exponents 

Chaos in dynamics implies a sensitivity of the outcome of a dynamical 
process to changes in initial conditions. If one imagines a set of initial 
conditions within a sphere or radius E in phase space, then for chaotic 
motions trajectories originating in the sphere will map the sphere into 
an ellipsoid whose major axis grows as d = Ee*', where A > 0 is known 
as a Lyapunov exponent. [Lyapunov (1857-1918) was a great Russian 
mathematician and mechanician.] 

A number of experimenters in chaotic dynamics have developed 
algorithms to calculate the Lyapunov exponent A. For regular motions 
A 5 0, but for chaotic motion A > 0. Thus, the sign ofA is a criterion 
for chaos. The measurement involves the use of a computer to process 
the data. Algorithms have been developed to calculate A from the 
measurement of a single dynamical variable x ( r )  by constructing a 
pseudo-phase-space (e.g., see Wolf, 1984). Another experimental 
technique is the use of the autocorrelation function discussed above 
(Singh and Joseph, 1989; Feeny and Moon, 1989). 

A more precise definition of Lyapunov exponents and techniques 
for measuring them are given in Chapter 6. 

Probability or Invariant Distributions 

If a nonlinear dynamical system is in a chaotic state, precise prediction 
of the time history of the motion is impossible because small uncertain- 
ties in the initial conditions lead to divergent orbits in the phase space. 
If damping is present, we know that the chaotic orbit lies somewhere 
on the strange attractor. Because we lack specific knowledge about 
the whereabouts of the orbit, there is increasing interest in knowing 
the probability of finding the orbit somewhere on the attractor. One 
suggestion is to see if one can use a probability density in phase space 
to provide a statistical measure of the chaotic dynamics [see Section 
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3.7, Eq. (3.7411. There is some mathematical and experimental evi- 
dence that such a distribution does exist and that it does not vary with 
time. (See e.g., Figure 3-27.) 

Increasingly, measurement of the probability distribution function 
is being used as a diagnostic tool in chaotic vibrations, especially in 
periodically forced systems. In  general, the dynamic attractor in a 
three-dimensional phase space would have a probability measure with 
three variables P ( x ,  y ,  z ) ,  one for each of the state variables. For a 
chaotic attractor with fractal properties, however, the distribution 
function would also have fractal properties. Experimentally, and even 
computationally, a small amount of noise will smooth out the distribu- 
tion function. However, another smoothing operation is to integrate 
P ( x ,  y, z) over one or more of the state variables. For example, for a 
forced single-degree-of-freedom oscillator, integration over the forc- 
ing phase (e.g., 0 5 l l r  I 2n) and the velocity variable will yield an 
experimental probability density function P ( x )  which is piecewise 
smooth and gives the probability that the motion at any time will lie 
between x I  and x?: 

Also, modern signal processing systems often have a function 
(sometimes called a histogram) that will partition an interval xI 4 x 5 
x2 into N bins and that will count the number of times the digitalized 
signal lies in each bin in a given finite length data record. With suitable 
normalization, this procedure will yield an approximation to P ( x ) .  

To function as a good diagnostic tool, a signal processing algorithm 
must provide qualitatively different patterns for periodic and chaotic 
signals. In the case of forced systems, this is usually the case. A 
periodic motion usually has an elliptic shape in the phase plane (x, 
u = i). If the points on the orbit are subdivided and protected onto 
the x-axis, then the probability density function P ( x )  is continuous 
over a finite interval with singularities at the edges; that is, 

for a harmonic orbit centered at the  origin. ( A  is the maximum ampli- 
tude of the limit cycle.) For chaotic signals, the singularities often 
disappear and P (x) looks more Gaussian and often non-Gaussian. 
Two examples are shown in Figures 5-24 and 5-25. 
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Figure 5-24 Probability density function for flow-induced chaotic vibrations of a 
flexible tube carrying steady fluid flow. [From Pai'doussis and Moon (1988).] 

The first case is for the flow-induced vibration 0s an elastic tube 
carrying a steady flow of fluid (see Paidoussis and Moon, 1988). A 
comparison of the probability density function (PDF) for periodic and 
chaotic states shows a clear distinction (Figure 5-24). 

The second example is the experimental two-well potential problem 
using a buckled elastic beam (Moon, 1980a). Here we show the PDF 
for both displacement and velocity, that is, P ( x )  and P ( x )  (Figure 
5-25). The PDF for velocity looks Gaussian, whereas the PDF for the 
displacement has a double peak. 

A few attempts have been made to analytically calculate the PDF 
for chaotic attractors. The solution for a one-dimensional map was 
outlined in Chapter 3. A special case of the standard map was pre- 
sented by Tsang and Lieberman (1984) using the Fokker-Planck equa- 
tion. For applied scientists or engineers, one should consult either 
Soong (1973) or Gardiner (1985) for a discussion of this equation. 
Consider the forced oscillator with some random noise W ( t ) :  

The Fokker-Planck equation for the PDF P ( x ,  y = i, t )  is given by 
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ap a a 1 azp 
- + - (yP)  + -(-g(x,y) - f ( x )  +f,cosRt)P = - s o 7  
a t  ax aY 2 a Y  

(5-7.8) 

where the constant So is a measure of the strength of the Gaussian 
white noise. Forf, = 0, one can find an explicit stationary solution, 
that is, alat  = 0. For linear damping, g(x, y )  = yy, the solution has 
the form 

(5-7.9) 

For a two-well potential withf(x) = --x + x3, one has 

A similar problem has been studied by Kunert and Pfeiffer (1991). 
What is remarkable is that the analytical solution (5-7.10) for Gaussian 
white noise also produces a double-hump PDF for the x variable 
which is qualitatively similar to the deterministic periodically excited 
problem (i.e., W ( t )  = 0) as shown in the experiments (Figure 5-25).  

Thus, there is some suggestion that an approximate PDF for a 
deterministic chaotic attractor may be related to the PDF for a ran- 
domly excited oscillator. These ideas, however, are speculative at this 
time and remain an area of potential fruitful research. 

The use of the probability density function to calculate Lyapunov 
exponents is discussed in Chapters 3 and 6. 

The usefulness of probability distribution for chaotic vibrations is 
similar to that for random vibrations (e.g., see Soong, 1973 or Lin, 
1976). If the probability distribution can be determined for a chaotic 
system, then one can calculate the mean square amplitude, mean zero 
crossing times, and probability of displacements, voltages, or stresses 
exceeding some critical value. However, much remains to be done in 
this subject at both the mathematical and experimental levels. 

Cell Mapping Methods 

The use of probabilistic methods of analysis in chaotic vibrations has 
been developed by C. S. Hsu and co-workers at the University of 
California at Berkeley (Hsu, 1981, 1987; Hsu and Kim, 1985; Kreuzer, 
1985 Tongue, 1987). This method, called the Cell Mapping Method,  
which divides the phase space into many cells, uses ideas from the 
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theory of Markov processes. This computer based method may be 
useful for low order systems in obtaining a global picture of the possi- 
ble dynamic attractors. New algorithms have been developed to im- 
prove numerical efficiency in this method (see e.g., Tongue, 1987). 

PROBLEMS 

5-1 Show that the autocorrelation function of a periodic function is 
periodic. 

5-2 Suppose a signal has a subharmonic 

w 
x ( t )  = A,COS wt + A ~ C O S  - t 2 

What does the autocorrelation function look like? 

Consider a signal with quasiperiodic sinusoidal components. 
What does the FFT and autocorrelation function look like? 

5-4 Sketch the PDF, P ( x ) ,  of a two-frequency quasiperiodic signal. 

5-3 

5-5 Consider a periodic signal x ( t )  with a single frequency. Derive 
the PDF, P ( x ) .  Sketch the PDF in the phase plane, that is, 
P ( x ,  X). 

5-6 Suppose a signal has a subharmonic 

Sketch the PDF, P ( x ) .  (Hint, see Figure 3-17.) 

5-7 Consider the problem of a linear harmonic oscillator linearly 
coupled to an auto-oscillatory system such as the Van der Pol 
oscillator (Chapter 1). Show that this represents a fourth-order 
dynamical system. Numerically find a chaotic parameter regime. 
How would you define a Poincare map? Write a program to 
calculate a double Poincare map for this system. How would you 
define the second map? 

Write a program to plot the Henon map (Chapter 1)  in the chaotic 5-8 
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regime. What is the effect of adding increasing amounts of ran- 
dom noise? 

5-9 Design an analog computer circuit to simulate the dynamics of 
a dynamical system studied by Rossler (1976b) (e.g., see Appen- 
dix C): 

i= - y  -z ,  y = x + ay,  i = b + z(x - c )  

(A popular set of parameters to use is a = 0.398, b = 2, c = 4.) 
Rossler named this a spiral chaos attractor, and it is one of the 
simplest that exhibits folding action in the three-dimensional 
phase space.) 
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But you Mjill ask ,  how could a uniform chaos coagulate atfirst irregularly 
in heterogeneous veins or masses to cause hills-Tell me the cause of 
t h i s ,  und the answer will perhaps serve for the chaos. 

Isaac Newton 
On Creation-from a letter circa 1681 

6.1 INTRODUCTION 

In  this chapter, we study how the parameters of a dynamical system 
determine whether the motion will be chaotic or regular. This is analo- 
gous to finding the critical velocity in viscous flow of fluids above 
which steady flow becomes turbulent. This velocity, when normalized 
by a characteristic length and by the kinematic viscosity of the fluid, 
is known as the critical Reynolds number, Re. A reliable theoretical 
value for the critical Re has eluded engineers and physicists for over 
a century, and for most fluid problems experimental determination of 
(Re)crit is necessary. In like manner, the determination of criteria for 
chaos in mechanical or electrical systems in most cases must be found 
by experiment or computer simulation. For such systems the search 
for critical parameters for deterministic chaos is a ripe subject for 
experimentalists and theoreticians alike. 

Despite the paucity of experimentally verified theories for the onset 
of chaotic vibrations, there are some notable theoretical successes 
and some general theoretical guidelines. 

We distinguish between two kinds of criteria for chaos in physical 
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systems: a predictive rule and a diagnostic tool. A predictive rule for 
chaotic vibrations is one that determines the set of input or control 
parameters that will lead to chaos. The ability to predict chaos in a 
physical system implies either that one has some approximate mathe- 
matical model of the system from which a criterion may be derived or 
that one has some empirical data based on many tests. 

A diagnostic criterion for chaotic vibrations is a test that reveals if 
a particular system was or is in fact in a state of chaotic dynamics 
based on measurements or signal processing of data from the time 
history of the system. 

We begin with a review of empirically determined criteria for spe- 
cific physical systems and mathematical models which exhibit chaotic 
oscillations (Section 6.2). These criteria were determined by both 
physical and numerical experiments. We examine such cases for two 
reasons. First, it is of value for the novice in this field to explore a few 
particular chaotic systems in detail and to become familiar with the 
conditions under which chaos occurs. Such cases may give clues to 
when chaos occurs in more complex systems. Second, in the develop- 
ment of theoretical criteria, it is important to have some test case with 
which to compare theory with experiment. 

In Section 6.3 we present a review of the principal, predictive 
models for determining when chaos occurs. These include the period- 
doubling criterion, homoclinic orbit criterion, Shil’nikov criterion, 
and the overlap criterion of Chirikov for conservative chaos, as well 
as intermittency and transient chaos. We also review several ad hoc 
criteria that have been developed for specific classes of problems. 

Finally, in Section 6.4 we discuss an important diagnostic tool, 
namely, the Lyapunov exponent. Another diagnostic concept, the 
fractal dimension, is described in Chapter 7. 

6.2 EMPIRICAL CRITERIA FOR CHAOS 

In the many introductory lectures the author has given on chaos, the 
following question has surfaced time and time again: Are chaotic 
motions singular cases in real physical problems or do they occur for 
a wide range of parameters? For engineers this question is very 
important. To design, one needs to predict system behavior. If the 
engineer chooses parameters that produce chaotic output, then he 
or she loses predictability. In the past, many designs in structural 
engineering, electrical circuits, and control systems were kept within 
the realm of linear system dynamics. However, the needs of modern 



6.2 EMPIRICAL CRITERIA FOR CHAOS 265 

technology have pushed devices into nonlinear regimes (e.g., large 
deformations and deflections in structural mechanics) that increase 
the possibility of encountering chaotic dynamic phenomena. 

To address the question of whether chaotic dynamics are singular 
events in real systems, we examine the range of parameters for which 
chaos occurs in seven different problems. A cursory scan of the figures 
accompanying each discussion will lead one to the conclusion that 
chaotic dynamics are not a singular class of motions and that chaotic 
oscillations occur in many nonlinear systems for a wide range of 
parameter values. 

We examine the critical parameters for chaos in the following 
problems?: 

(a) Circuit with nonlinear inductor: Duffing’s equation 
(b) Particle in a two-well potential or buckling of an elastic beam: 

(c) Experimental convection loop: a model for Lorenz’s equation 
(d) Vibrations of nonlinear coupled pendulums 
(e) Rotating magnetic dipole: pendulum equation 
(f) Circuit with nonlinear capacitance 
(g) Surface waves on a fluid 

Duffing’s equation 

Forced Oscillations of a Nonlinear Inductor: Duffing’s Equation 

In Chapter 4, we examined the chaotic dynamics of a circuit with a 
nonlinear inductor (see also Figure 3-33). Extensive analog and digital 
simulation for this system was peformed by Y. Ueda (1979, 1980) of 
Kyoto University. The nondimensional equation, where x represents 
the flux in the inductor, takes the form 

x + k i  + x3 = B cos t (6-2. I )  

The time has been nondimensionalized by the forcing frequency so 
that the entire dynamics can be determined by the two parameters k 
and B and the initial conditions (x(O), f(0)). Here k is a measure of the 
resistance of the circuit, while B is a measure of the driving voltage. 
Ueda found that by varying these two parameters one could obtain a 
wide variety of periodic, subharmonic, ultrasubharmonic, and chaotic 
motions. The regions of chaotic behavior in the ( k ,  B) plane are plotted 
in Figure 6-1. The regions of subharmonic and harmonic motions are 
quite complex, and only a few are shown for illustration. The two 
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Figure 6-1 Chaos diagram showing regions of chaotic and periodic motions for a 
nonlinear circuit as functions of nondimensionalized damping and forcing amplitude. 
[From Ueda (1980).1 

different hatched areas indicate either (a) regions of only chaos or (b) 
regions with both chaotic and periodic motion, depending on initial 
conditions. A theoretical criterion for this relatively simple equation 
has been suggested by Szemplinska-Stupnika and Bajkowski (1986). 
(See also the Color Plate 1 for solutions of (1-2.4).) 

Forced Oscillations of a Particle in a Two-Well Potential 

This example was discussed in great detail in Chapters 2 and 3. It was 
first studied by Holmes (1979) and was later studied in a series of 
papers by the author and co-workers. The mathematical equation 
describes the forced motion of a particle between two states of equilib- 
rium, which can be described by a two-well potential: 

f + 8.f - Ix( 1 - x2) = fcos wt (6-2.2) 

This equation can represent a particle in a plasma, a defect in a 
solid, and, on a larger scale, the dynamics of a buckled elastic beam 
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(see Chapter 3).  The dynamics are controlled by three nondimensional 
groups (6, f, w ) ,  where 6 represents nondimensional damping and o 
is the driving frequency nondimensionalized by the small-amplitude 
natural frequency of the system in one of the potential wells. 

Regions of chaos from two studies are shown in Figures 6-2 and 
6-3. The first represents experimental data for a buckled cantilevered 
beam (Chapter 2). The ragged boundary is the experimental data, 
whereas the smooth curve represents a theoretical criterion (see Sec- 
tion 6.3). Recently, an upper boundary has been measured beyond 
which the motion becomes periodic. The experimental criterion was 
determined by looking at PoincarC maps of the motion (see Chapters 
2 and 5).  

Results from numerical simulation of Eq. (6-2.2) are shown in Figure 
6-3. The diagnostic tool used to determine if chaos was present was 
the Lyapunov exponent using a computer algorithm developed by 
Wolf et al. (1985) (see Section 6.4). This diagram shows that there are 
complex regions of chaotic vibrations in the plane cf, a) for fixed 
damping 6. For very large forcingf >> 1 ,  one expects the behvior to 
emulate the previous problem studied by Ueda. 

The theoretical boundary found by Holmes (1979) is discussed in the 
next section. It has special significance because below this boundary 

Damping ratio = 0.0033 
E 12 Buckling displacement 2x0 = 41 mm E 

1 10 
I 

$ 6  

a 

oon [Eqn. (6-3.46)] 
E 4  

$ 2  

~~ 

'6 7 8 9 10 11 12 13 14 15 
Forcing frequency, n (Hz) 

Figure 6-2 Experimental chaos diagram for vibrations of a buckled beam for different 
values of forcing frequency and amplitude. [From Moon (1980b), reprinted with 
permission from New Approaches to Nonlinear Problems in Dynamics, edited by 
P. J .  Holmes, copyright 1980 by HAM.] 
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periodic motions are predictable, whereas above this boundary one 
loses the ability to exactly predict which of the many periodic or 
chaotic modes the motion will be attracted. Above the theoretical 
criteria (based on homoclinic orbits), the motion is very sensitive to 
initial conditions, even when it is periodic (see Section 7.7). 

Experimental Convection Loop: Lorenz Equations 

Aside from the logistic equation, the Lorenz model for convection 
turbulence (see Chapters 1 and 4) is perhaps the most studied system 
of equations that admit chaotic solutions. Yet most mathematicians 
have focused on a few sets of parameters. These equations take the 
form (see also Sparrow, 1982) 

i = cr(y - x )  

y = rx - y - x z  

i = XY - bt  

(6-2.3) 

An experimental realization of these equations can be obtained in 
a circular convection loop, also known as the thermosiphon (see 
Section 4.7) (Figure 6-4a). This experiment has received extensive 
study from a group at the University of Houston (Widmann et al., 
1989; Gorman et al., 1986). A qualitative diagram of the various dy- 
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Figure 6-4 (a)  Sketch of a toroidal container of fluid under gravity and thermal 
gradients, otherwise known as the thermosiphon. (b )  Qualitative chaos diagram of 
the dynamic regimes for the thermosiphon. [From Widmann et al. (19891.1 

namic regimes as a function of the applied heat flux is shown in Figure 
6-4b as observed in their experiments. In their 1986 paper the Houston 
group showed that the Lorenz equation only gave good predictive 
results for the steady regime, and that an additional degree of freedom 
was needed to improve the agreement between theory and experiment 
(see also Yorke et al., 1985). 
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Forced Vibrations of Two-Coupled Pendulums 

Figure 6-5 is a sketch of an experiment with two masses hung on a 
lightweight cable which is assumed to be inextensible. This problem 
is equivalent to two coupled spherical pendulums with a constraint. 
The effective number of degrees of freedom is three: one in-plane 
mode and two out-of-plane modes. The end points are excited with 
harmonic excitation. In mechanical engineering this represents a 3-D 
four-bar linkage, whereas in civil engineering it could represent a 
model for cable car dynamics. An experimental chart of four dynamic 
regimes shows both chaotic as well as quasiperiodic regions in the 
parameter space of excitation amplitude and frequency. Quasiperiodic 
motions are typical in multiple-degree-of-freedom systems of this kind. 
These experiments were performed in our laboratory by Professor F. 
Benedettini of the University of I’Aquila, Italy. 

Forced Motions of a Rotating Dipole in Magnetic Fields: 
The Pendulum Equation 

In this experiment, a permanent magnet rotor is excited by crossed 
steady and time harmonic magnetic fields (see Moon et al., 1987), as 
shown in Figure 4-6. The nondimensionalized equation of motion for 
the rotation angle 8 resembles that for the pendulum in a gravitational 
potential: 

6 + ye + sin 8 = f cos  8 cos ot (6-2.4) 

The regions of chaotic rotation in thef-w plane, for fixed damping, 
are shown in Figure 6-6. This was one of the first published examples 
where both experimental and numerical simulation data are compared 
with a theoretical criterion for chaos. The theory is based on the 
homoclinic orbit criterion and is discussed in Section 6.4. As in the 
case of the two-well potential, chaotic motions are to be found in the 
vicinity of the natural frequency for small oscillations (w = 1.0 in 
Figure 6-6). See Figure 5-13 for a sketch of the experiment. 

Forced Oscillations of a Nonlinear RLC Circuit 

There have been a number of experimental studies of chaotic oscilla- 
tions in nonlinear circuits (e.g., see Chapter 4). One example is an 
RLC circuit with a diode. Shown in Figure 6-7 are the subharmonic 
and chaotic regimes in the driving voltage-frequency plane (Klinker 
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Figure 6-5 Experimental chaos diagram for coupled spherical pendulum with a 
constraint. [From Benedettini and Moon (1992).] (a)  Experimental model. ( 6 )  Behav- 
ior chart: in-phase excitation. ( c )  Behavior chart. Out-phase excitation. 
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Figure 6-6 Experimental chaos diagram for forced motions of a rotor with nonlinear 
torque-angle property. Comparison with homoclinic orbit criterion calculated using 
the Melnikov method (Section 6.3). [From Moon et al. (1987) with permission of 
North-Holland Publishing Co., copyright 1987.1 
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Figure 6-7 Experimentally determined chaos diagram for a driven RLC circuit with 
a varactor diode that acts as a nonlinear capacitor. The hatched regions are chaotic 
motions, and the numbers indicate the order of the subharmonic. Dashed lines indicate 
a hysteretic transition. [From Klinker et al. (1984) with permission of North-Holland 
Publishing Co., copyright 1984.1 
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et al., 1984). In this example, regions of period doubling are shown as 
precursors to the chaotic motions. However, in the midst of the 
hatched chaotic regime, a period-5 subharmonic was observed. Peri- 
odic islands in the center of chaotic domains are common observations 
in experiments on chaotic oscillations. [See a similar study by Bucko 
et al. (1984). See also Figure 4-32.] 

Harmonically Driven Surface Waves in a Fluid Cylinder 

As a final example, we present experimentally determined harmonic 
and chaotic regions of the amplitude-frequency parameter space for 
surface waves in a cylinder filled with water from a paper by Ciliberto 
and Gollub (1985). A 12.7-cm-diameter cylinder with 1-cm-deep water 
was harmonically vibrated in a speaker cone (Figure 6-8). The ampli- 
tude of the transverse vibration above the flat surface of the fluid can 
be written in terms of Bessel functions where the linear mode shapes 
are given by U,,, = J,,(k,,,r)sin(nO + d,,,,,). Figure 6-8 shows the driving 
amplitude-frequency plane in a region where two modes can interact: 
( n ,  rn) = (4, 3) and (7, 2). Below the lower boundary, the surface 
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Figure 6-8 Experimental chaos diagram for surface waves in a cylinder filled with 
water. The diagram shows where two linear modes interact. [From Ciliberto and 
Gollub ( 1985) .] 
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remains flat. A small region of chaotic regimes intersect. Presumably, 
other chaotic regimes exist where other modes ( n ,  m )  interact. (See 
also Figure 8-1.) 

In summary, these examples show that, given periodic forcing input 
to a physical system, large regions of periodic or subharmonic motions 
do exist and presumably are predictable using classical methods of 
nonlinear analysis. However, these examples also show that chaos is 
not a singular happening; that is, it can exist for wide ranges in the 
parameters of the problem. Also, and perhaps most important, there 
are regions where both periodic and chaotic motions can exist and the 
precise motion that will result may be unpredictable. 

6.3 THEORETICAL PREDICTIVE CRITERIA 

The search for theoretical criteria to determine under what set of 
conditions a given dynamical system will become chaotic has tended 
to be ad hoc. The strategy thus far has been for theorists to find criteria 
for specific mathematical models and then use these models as analogs 
or paradigms to infer when more general or complex physical systems 
will become unpredictable. An example is the period-doubling bifurca- 
tion sequence discussed by May (1976) and Feigenbaum (1978) for the 
quadratic map (e.g., see Chapters 1 and 3). Although these results 
were generalized for a wider class of one-dimensional maps using a 
technique called renormalization theory, the period-doubling criterion 
is not always observed for higher-dimensional maps. In mechanical 
and electrical vibrations, a PoincarC section of the solution in phase 
space often leads to maps of two or more dimensions. Nonetheless, 
the period-doubling scenario is one possible route to chaos. In more 
complicated physical systems, an understanding of the May-Feigen- 
baum model can be very useful in determining when and why chaotic 
motions occur. 

In this section, we briefly review a few of the principal theories of 
chaos and explore how they lead to criteria that may be used to predict 
or diagnose chaotic behavior in real systems. These theories include 
the following: 

(a) Period doubling 
(b) Homoclinic orbits and horseshoe maps 
(c) Shil’nikov criterion 
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(d) lntermittency and transient chaos 
(e) Overlap criteria for conservative chaos 
(f) Ad hoc theories for multiple-well potential problems 

Period-Doubling Criterion 

This criterion is applicable to dynamical systems whose behavior 
can be described exactly or approximately by a first-order difference 
equation (see Chapter 3): 

% + I  = Ax,U - x,) (6-3.1) 

The dynamics of this equation were studied by May (1976), Feigen- 
baum (1978, 1980), and others. They discovered solutions whose pe- 
riod doubles as the parameter A is varied (the period in this case is the 
number of integers p for x , + ~  to return to the value x,). One of the 
important properties of Eq. (6-3.1) that Feigenbaum discovered was 
that the sequence of critical parameters {A,} at which the period of 
the orbit doubles satisfies the relation 

This important discovery gave experimenters a specific criterion to 
determine if a system was about to become chaotic by simply observ- 
ing the prechaotic periodic behavior. It has been applied to physical 
systems involving fluid, electrical, and laser experiments. Although 
these problems are often modeled mathematically by continuous dif- 
ferential equations, the Poincart map can reduce the dynamics to a 
set of difference equations. For many physical problems, the essential 
dynamics can be modeled further as a one-dimensional map (see e.g., 
Chapter 5 ) .  

x,+1 = f(x,) (6-3.3) 

The importance of Feigenbaum’s work is that he showed how 
period-doubling behavior was typical of one-dimensional maps that 
have a hump or zero tangent [i.e., the map is noninuerrible or there 
exist two values of x, which when put intof(x,) give the same value 
of x,+ 3,  He also demonstrated that if the mapping function depends 
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on some parameter A [i.e., f ( x , ;  A)], then the sequence of critical 
values of this parameter at which the orbit’s period doubles {A,,,} 
satisfies the same relation (6-3.2) as that for the quadratic map. Thus 
the period-doubling phenomenon has been called universal, and 6 has 
been called a universal constant (now known quite naturally as the 
Feigenbaum number). 

The author must raise a flag of caution here. The term “universal” 
is used in the context of one-dimensional maps (6-3.3). There are many 
chaotic phenomena which are described by two- or higher-dimensional 
maps (e.g., see the buckled beam problem in Chapter 2). In these 
cases, period doubling may indeed be one route to chaos, but there 
are many other bifurcation sequences that result in chaos beside period 
doubling (see Holmes, 1984). 

Renormalization and the Period-Doubling Criterion. There are two 
ideas that are important in understanding the period-doubling phenom- 
enon. The first is the concept of bifurcation of solutions, and the 
second is the idea of renormalization. The concept of bifurcation was 
illustrated in Chapter 3. For example, in Figure 6-9 a steady periodic 
solution xo becomes unstable at a parameter value of A, and the ampli- 
tude now oscillates between two values x t  and x- , completing a cycle 
in twice the time of the previous solution. Further changes in A make 
X +  and x- unstable, and the solution branches to a new cycle with 
period 4. 

A readable description of renormalization as it applies to period 
doubling may be found in Feigenbaum (1980). The technique recog- 
nizes the fact that a cascade of bifurcations exists (Figure 6-10) and 
that it might be possible to map each bifurcation into the previous one 
by a change in scale of the physical variable x and a transformation of 

I I 
I 1 

c 
A 1  A2 

Figure 6-9 Diagram showing two branches of a bifurcation diagram near a period- 
doubling point. 
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3.0 A 4.0 

Figure 6-10 Bifurcation diagram for the quadratic map (3-6.2). Steady-state behavior 
as a function of the control parameter showing the period-doubling phenomenon. 

the control parameter. To illustrate this technique, we outline an 
approximate scheme for the quadratic map (see also Lichtenberg and 
Lieberman, 1983). 

One form of the quadratic ma$ is given by 

xntt = f(xn) (6-3.4) 

wheref(x) = hx(1 - x). Period-1 cycles are just constant values of 
x given by fixed points of the mapping, that is, x, = f ( x , > .  Now a fixed 
point or equilibrium point can be stable or unstable. That is, iteration 
of x can move toward or away from the fixed point, xo. The stability 
of the map depends on the slope off(x) at xo; that is, 

l T l  df (xo) > 1 implies instability (6-3.5) 
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Because the slopef’ = A( 1 - 2x) depends on A, xo becomes unstable 
at A, = 21/11 - 2x0J. Beyond this value, the stable periodic motion 
has period 2. The fixed points of the period-2 motion are given by 

x2 = f ( f ( x 2 ) )  or x2 = A2x2(l - xz)[l - Ax2(1 - x2)] (6-3.6) 

The functionf(f(x)) is shown in Figure 6-11. 
Again there are stable and unstable solutions. Suppose the xo solu- 

tion bifurcates and the solution alternates between x +  and x- as shown 
in Figure 6-9. We then have 

x+ = Xx-(l - x-) and x- = hx+(l - x + )  (6-3.7) 

To determine the next critical value A = A2 at which a period-4 orbit 
emerges, we change coordinates by writing 

xn = x’ + qn 

Putting Eq. (6-3.8) into (6-3.7), we get 

q n + l  = Aqn[(l - 2x+) - qnI 

qn+2 = Aqn+l[(l - 2x-) - ?,+,I 

(6-3.8) 

(6-3.9) 

Figure 6-11 First and second iteration functions for the quadratic map (3-6.2). 
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We next solve for q,,tz in terms of q,! , keeping only terms to order 
qf, (this is obviously an approximation), to obtain 

where A and B depend on x t  , x-  , and A. Next, we rescale r )  and define 
a new parameter 5; using 

This has the same form as our original equation [Eq. (6-3.1)]. Thus, 
when the solution bifurcates to period 4 at A = A,, the critical value 
of 1 equals A , .  We therefore obtain an equation 

A ,  = A;A(A,) (6-3. I I )  

Starting from the point x,, = 0, there is a bifurcation sequence for 
A < 0. For this case Lichtenberg and Lieberman show that (6-3.11) is 
given by 

A1 = -A: + 2A2 + 4 (6-3.12) 

It can be shown that A ,  = - I ,  so that A? = ( 1  - G) = - 1.4494. 
If one is bold enough to propose that the recurrence relation (6-3.12) 
holds at higher-order bifurcations, then 

A = - A z  K t I  + % + I  + 4 (6-3.13) 

At the critical value for chaos, 

A, = - A $  + 2A, + 4 

= ( 1  - m ) / 2  = - 1.562 (6-3.14) 

One can also show that another bifurcation sequence occurs for 
A > 0 (Figure 6-10) where the critical value is given by 

A = f i ,  = 2 - A, = 3.56 (6-3.15) 

The exact value is close to A, = 3.56994. Thus, the rescaling approxi- 
mation scheme is not too bad. 
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This line of analysis also leads to the relation 

A, = A, + a&-" (6-3.16) 

which results in the scaling law (6-3.2). Thus, knowing that two succes- 
sive bifurcation values can give one an estimate of the chaos criterion 
A,, we obtain 

(6-3.17) 

A final word before we leave this section: The fact that A may exceed 
the critical value ( ] A [  > lA,I) does not imply that chaotic solutions will 
occur. They certainly are possible. But there are also many periodic 
windows in the range of parameters greater than the critical value in 
which periodic motions as well as chaotic solutions can occur. 

We do not have space to do complete justice to the rich complexities 
in the dynamics of the quadratic map. It is certainly one of the major 
paradigms for understanding chaos, and the interested reader is en- 
couraged to study this problem in the aforementioned references. (See 
also Appendix B for computer experiments.) 

Homoclinic Orbits and Horseshoe Maps 

One theoretical technique that has led to specific criteria for chaotic 
vibrations is a method based on the search for horseshoe maps and 
homoclinic orbits in mathematical models of dynamical systems. This 
strategy and a mathematical technique, called the Melnikov method, 
has led to Reynolds-type criteria for chaos relating the parameters in 
the system. In two cases, these criteria have been verified by numerical 
and physical experiments. Keeping with the tenor of this book, we do 
not derive or go into too much of the mathematical theory of this 
method, but we do try to convey the rationale behind it and guide the 
reader to the literature for a more detailed discussion of the method. 
We illustrate the Melnikov method with two applications: the vibra- 
tions of a buckled beam and the rotary dynamics of a magnetic dipole 
motor. 

The homoclinic orbit criterion is a mathematical technique for ob- 
taining a predictive relation between the nondimensional groups in the 
physical system. It gives one a necessary but not sufficient condition 
for chaos. It may also give a necessary and sufficient condition for 
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predictability in a dynamical system (see Chapter 7, Section 7.7, 
“Fractal Basin Boundaries”). Stripped of its complex, somewhat 
arcane mathematical infrastructure, it is essentially a method to prove 
whether a model in the form of partial or ordinary differential equations 
has the properties of a horseshoe or a baker’s-type map. 

The horseshoe map view of chaos (see also Chapters 1 ,  3) looks at 
a collection of initial condition orbits in some ball in phase space. If 
a system has a horseshoe map behavior, this initial volume of phase 
space is mapped under the dynamics of the system onto a new shape 
in which the original ball is stretched and folded (Figure 6-12). After 
many iterations, this folding and stretching produces a fractal-like 
structure and the precise information as to which orbit originated 
where is lost. More and more precision is required to relate an initial 
condition to the state of the system at a later time. For a finite precision 
problem (as most numerical or laboratory experiments are), predict- 
ability is not possible. 

Homoclinic Orbits. A good discussion of homoclinic orbits may be 
found in the books by Lichtenberg and Lieberman (1983), Gucken- 
heimer and Holmes (1983), and Wiggins (1988). We have learned 
earlier that although many dynamics problems can be viewed as a 
continuous curve in some phase space (x versus u = i) or solution 
space (x versus t ) ,  the mysteries of nonlinear dynamics and chaos are 
often deciphered by looking at a digital sampling of the motion such 
as a Poincare map. We have also seen that although the Poincare map 
is a sequence of points in some n-dimensional space, it can lie along 
certain continuous curves. These curves are called manifolds. A dis- 

Figure 6-12 Evolution of an initial condition sphere. 
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cussion of homoclinic orbits refers to a sequence of points. This 
sequence of points is called an orbit. 

In the dynamics of mappings, one can have critical points at which 
orbits move away from or toward. One example is a saddle point at 
which there are (a) two manifold curves on which orbits approach the 
point and (b) two curves on which the sequence of Poincare points 
move away from the point, as illustrated in Figure 6-13 (see also 
Sections 3.2,3.4). Such a point is similar to a saddle point in nonlinear 
differential equations. 

To illustrate a homoclinic orbit, we consider the dynamics of the 
forced, damped pendulum. First, recall that for the unforced, damped 
pendulum, the unstable branches of the saddle point swirl around the 

(el 

Figure 6-13 (a) Periodic orbit in a Poincart map. ( b )  Quasiperiodic orbit. ( c )  Homo- 
clinic orbit. 
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equilibrium point in a vortexlike motion in the 8-0 phase plane as 
shown in Figure 6-14. Although it is not obvious, the Poincare map 
synchronized with the forcing frequency also has a saddle point in the 
neighborhood of 8 = tnn-(n odd), as shown in Figure 6-15 for the case 
of the forced pendulum. For small forcing, the stable and unstable 
branches of the saddle do not touch each other. However, as the force 
is increased, these two manifolds intersect. It can be shown that if 
they intersect once, they will intersect an infinite number of times. 
[Another example of the intersection of stable and unstable manifolds 
is given in Section 3.4, Figure 3-10 for the Standard map, and Eq. 
(3-4. I ) . ]  The points of intersection of stable and unstable manifolds 
are called homoclinic-points. A Poincare point near one of these points 
will be mapped into all the rest of the intersection points. This is called 
a homoclinic orbit (Figure 6-13). Now why are these orbits important 
for chaos'? 

The intersection of the stable and unstable manifolds of the Poincare 
map leads to a horseshoe-type map in the vicinity of each homoclinic 
point. As we saw in Chapter I ,  horseshoe-type maps lead to unpredict- 
ability, and unpredictability or sensitivity to initial conditions is a 
hallmark of chaos. 

To see why homoclinic orbits leads to horseshoe maps, we recall 
that for a dissipative system the areas get mapped into smaller areas. 
However, near the unstable manifold, the areas are also stretched. 
Because the total area must decrease, the area must also contact more 
than it stretches. Areas near the homoclinic points also get folded, as 
shown in Figure 6-16a. 

A dynamic process can be thought of as a transformation of phase 
space; that is, a volume of points representing different possible initial 

I W. I 

Figure 6-14 Stable and unstable manifolds for the motion of an unforced, damped 
pendulum. 
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Figure 6-15 Sketch of stable and unstable manifolds of the Poincark map for the 
harmonically forced, damped pendulum. 

conditions is transformed into a distorted volume at a later time. 
Regular flow results when the transformed volume has a convention- 
ally shaped volume. Chaotic flows result when the volume is stretched, 
contracted, and folded as in the baker's transformation or horseshoe 
map. 

The Melnikov Method. The Melnikov function is used to measure the 
distance between unstable and stable manifolds when that distance is 
small [see Guckenheimer and Holmes (1983) or Wiggins (1988, 1990) 
for a mathematical discussion of the Melnikov method]. It has been 
applied to problems where the dissipation is small and where the 
equations for the manifolds of the zero dissipation problem are known. 
For example, suppose we consider the forced motion of a nonlinear 
oscillator where (4, p) are the generalized coordinate and momentum 
variables. We assume that both the damping and forcing are small and 
that we can write the equations of motion in the form 

aH 
4 = - + E g '  aP (6-3.18) 

aH 
a Y  

,582 p = - - +  
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- stable 
manifdd 

(b)  

Figure 6-16 (a) The development of a folded horseshoe map for points in the neigh- 
borhood of a homoclinic orbit. ( b )  Saddle point of a Poincark map and its associated 
stable and unstable manifolds before a homoclinic orbit develops. 
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where g = g ( p ,  q ,  t) = ( g ,  , g2) ,  E is a small parameter, and H ( q ,  p )  
is the Hamiltonian for the undamped, unforced problems (E = 0). We 
also assume that g ( t )  is periodic so that 

and that the motion takes place in a three-dimensional phase space 
(4, p ,  or), where at is the phase of the periodic force and is modulo 
the period T. 

In many nonlinear problems, a saddle point exists in the unper- 
turbed Hamiltonian problem [E = 0 in Eq. (6-3.18)], such as for the 
pendulum or the double-well potential Duffing’s equation, Eq. (6-2.2). 
When E # 0, one can take a Poincard section of the three-dimensional 
torus flow synchronized with the phase at. It has been shown (see 
Guckenheimer and Holmes, 1983) that the Poincare map also has a 
saddle point with stable and unstable manifolds, W s  and W”, shown 
in Figure 6- 166. 

The Melnikov function provides a measure of the separation be- 
tween W s  and W“ as a function of the phase of the Poincare map at. 
This function is given by the integral 

M(to)  = I x  g* VH(q*, p * )  dt (6-3.20) 
- -x 

where g* = g(q*,  p * ,  t + to) and q*(t) and p*(t )  are the solutions for 
the unperturbed homoclinic orbit originating at the saddle point of the 
Hamiltonian problem. The variable to is a measure of the distance 
along the original unperturbed homoclinic trajectory in the phase 
plane. We consider two examples. 

Magnetic Pendulum. A convenient experimental model of a pendu- 
lum may be found in the rotary dynamics of a magnetic dipole in 
crossed steady and time-periodic magnetic fields as shown in Figure 
4-6 (see also Moon et al., 1987). 

The equation of motion, when normalized, is given by 

8 + y8 + sin 8 = fi cos 8 cos at + fo (6-3.21) 

The sin 8 term is produced by the steady magnetic field, and thef, 
term is produced by the dynamic field. We have also included linear 
damping and a constant torque fo. Keeping with the assumptions of 
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the theory, we assume that one can write y = EY, fo = E&, and 
fl = &fl,  where 0 << E < 1 and y,fo,  and& are of order one. 

The Hamiltonian for the undamped, unforced problem is given by 

H = + ( I  - cos 8) 

where q = 8 and p = u = 6. The energy H is constant (H = 2) on the 
homoclinic orbit emanating from the saddle point (0 = u = 0). The 
unperturbed homoclinic orbit is given by 

8* = 2 tan-'(sinh 1) 

u* = 2secht 
(6-3.22) 

In Eq. (6-3.18), gl = 0 and gz = fo + f,cos 8 cos of. The resulting 
integral can be carried out exactly using contour integration [e.g., see 
Guckenheimer and Holmes (1983) for a similar example]. The result 
gives 

~ ( t , )  = -87 + 2nf0 + 2rf1wZsech (nJ) - cos ato (6-3.23) 

The two perturbed manifolds will touch transversely when M ( f , )  has 
a simple zero, or when 

(6-3.24) 

where we have canceled the E factors. Whenf, = 0, the critical value 
of the forcing torque is given by 

4y cosh ro  
f 1 . = ; ; ; i (  2 ) (6-3.25) 

This function is plotted in Figure 6-6 along with experimental and 
numerical simulation data. The criterion (6-3.25) gives a remarkably 
good lower bound on the regions of chaos in the forcing ampiitude-fre- 
quency plane. 

Two- Well Potential Problem. Forced motion of a particle in a two-well 
potential has numerous applications such as postbuckling behavior of 
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a buckled elastic beam (Moon and Holmes, 1979). Damped periodi- 
cally forced oscillations can be described by a Duffing-type equation 

x + y i  - x + x3 =fcoswt (6-3 -26) 

The Hamiltonian for the unperturbed problem is 

H ( x ,  u )  = f(u2 - x2 + 1x4) 

For H = 0, there are two homoclinic orbits originating and terminating 
at the saddle point at the origin. The variables x* and u* take on values 
along the right half-plane curve given by 

x* = ~ sech t and u* = --fi sech t tanh t 

In this problem, g,  = 0 and g2 = fcos wt - yu,  where y = EY and 
f = $as in the previous example. The Melnikov function (6-3.20) 
then takes the form 

M(to)  = - f i f lX  sech t tanh t cos w(r + to)  dt 
- X  

which can be integrated exactly using methods of contour integration. 
The solution was originally found by Holmes (1979), but an error crept 
into his paper. The correct analysis is in Guckenheimer and Holmes 
(1983): 

7rw M(ro) = -3 - f i f 7 r w  sech - sin wto 
3 2 

For a simple zero we require 

(6-3.27) 

This lower bound on the chaotic region in (f, w, y) space has been 
verified in experiments by Moon (1980a) (see also Figures 6-2 and 6-3). 

Melnikov Criterion for  a One-Well Potential. In the study of the 
dynamics of ship capsize in a strong wind (see Chapter 4), Thompson 
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Figure 6-17 (a)  One-well potential problem with escape barrier, (b) Phase plane 
portrait of unforced motion of a particle in a one-well potential, (c) Homoclinic orbit 
criterion (6-3.28b) for the one-well potential problem (6-3.28a) (from Thompson, 
1989b). 
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and co-workers at University College, London, have used a one-well 
potential oscillator with a one-sided escape barrier: 

i + + x - x2 = F sin of (6-3.28a) 

It is straightforward to show that the critical value of the force F as 
a function of frequency w for homoclinic tangency is approximately 
given by (Thompson, 1989b; Thompson et al., 1990), 

P sinh TO 

5n02 
F =  (6-3.28b) 

This curve is plotted in Figure 6-17c. Also shown in this figure are 
the escape regions (capsize of the ship). These data from Thompson 
(1989b) also show narrow bands of chaotic regions just below the 
escape or capsize regime. The solid curves show values of F, o where 
a stable and unstable solution coalesce, called a fold and also where 
a period doubling bifurcation occurs (shown as the flip boundary). 
These results demonstrate that while the Melnikov criteria sometimes 
provides a lower bound for chaotic or complex motions, the use of 
classical perturbation and bifurcation analysis may be useful to obtain 
more precise bounds on chaotic behavior [see Thompson and Stewart 
(1986) for a discussion of bifurcation theory and chaos]. 

Multiple Homoclinic Criteria: Three- and Four- Well Potentials. The 
homoclinic orbit criterion for a map is more easily applied if the 
underlying phase-space flow has homoclinic or heteroclinic orbits. 
The existence of such infinite time orbits are usually associated with 
the presence of saddle points-that is, equilibrium points with both 
stable (inflow) trajectories and unstable (outflow) trajectories. How- 
ever, when two or more saddles are present, then there exist more 
than one mechanism for inflow and outflow trajectories in the Poincark 
map to get tangled up. Thus, we can derive multiple criteria for chaos. 
The implications of such a phenomena are illustrated in two problems 
involving (a) a particle in a one-degree-of-freedom three-well potential 
and (b) a particle in a two-degree-of-freedom four-well potential. In 
each case, a small amount of periodic excitation is added along with a 
small amount of damping (see Li and Moon, 1990a,b). Experimentally, 
each case can be realized by placing three or four magnets below a 
steel cantilever beam as in Figure 4- 1 (see Appendix B for a description 
of a two-well potential experiment). These problems represent multi- 
equilibrium systems when the excitation is absent. 
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Three-Well Pofenfiul. The three-well problem can be modeled by an 
equation of the form 

i + y i  + x(x2 - x$)(x2 - 1) =fcoswt (6-3.29) 

which can be derived from an appropriate sixth-order polynomial 
potential function. When f = 0, this problem possesses three stable 
and two unstable (saddles) equilibrium positions. When the forcing is 
present ( f  # 0) and small, it can be demonstrated that the PoincarC 
map also has two saddle points. 

Figure 6-18 (a-c) The intersections of stable and unstable manifolds of the saddle 
points of a Poincark map based on numerical integrations of the forced three-well 
potential oscillator (6-3.29). [From Li and Moon (1990a).] 



292 CRITERIA FOR CHAOTIC VIBRATIONS 

12. , , . , , I  , " , I " , , I  I I 1 I I I , I I  

I 
I 

l o -  I m - - - Experiment - 
I 
I 

II- I ictclocillllc I)trtIlcnilon 
\ 1 - - - - - I lollloclllllc bllulcnrloll 

- ' I  \ : 8 -  - 
c -  ! - , , 

\ 
1' , , I  1 - I \ \  ,: 4 6  E - -  

.- (31 \<? c .  - -  i 

> -  .- 
&I ': 

2 -  

There are two ways in which one can get homoclinic orbits in 
the map: Unstable manifolds from each saddle may intersect stable 
manifolds of the same saddle point, or an unstable manifold from one 
saddle may intersect the stable manifold from the other saddle point 
of the map. This is illustrated in Figure 6-18 for numerical integration 

Criteria for chaos can then be found by procedures similar to that 
for the two-well potential problem, but with the aid of numerical 
computation (see Li and Moon, 1990a,b). An example is shown in 
Figure 6-19 as a function of driving amplitude and frequency (f, 0).  

interpretation of this diagram is that below both criteria, the problem is 
predictable-that is, insensitive to small changes in initial conditions. 
Between the two criteria, there are regions in the initial condition 
space which are respectively sensitive and insensitive to small 
changes. Above both criteria the problem is strongly sensitive to initial 
conditions. These results were confirmed by experimental observa- 
tions as well as by numerical studies of basins of attractions (e.g., see 
color plate CP-7,8). 

of Eq. (6-3.29). 

. I  - ,  , I \ -  
1 ,  

' . - I  - '1 , 
' I  

I - - 

- - -  -,- - - - - -,_. -_ 
6 7 8 9 10 

0 5 p i - r + - r -  rl--+- ' ---( 

Four- Well Pofenfiul. The four-well potential problem with harmonic 
forcing and damping is similar to a particle on a roulette table, as 
the level curves of the potential function show (Figure 6-20). The 
dynamics of this problem takes place in a five-dimensional phase space 
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Figure 6-20 Level curves of a two-degree-of-freedom oscillator (6-3.30) in a four- 
well potential for the oscillator shown in Figure 4-1. [From Li (1987).] 

in contrast to the three-dimensional phase spaces of the two- and 
three-well potential problems presented above. The PoincareS map 
triggered on the forcing phase lives in a four-dimensional phase space 
which defies the imagination. In this space the symmetric four-well 
problem has five saddles and many opportunities for entanglement of 
stable and unstable manifolds. To date we have no systematic way to 
determine all the possible ways of generating homoclinic orbits in this 
problem. Instead we guess at two obvious mechanisms based by 
analogy with the two-well and pendulum examples treated above. 
[The advanced reader should consult Wiggins (1988) for a treatment 
of homoclinic orbits in higher-dimensional phase spaces.] 

The structure of the mathematical model for this problem is of the 
form (see Li and Moon, 1990b and Li, 1987) 

i + y , i  + a V ( x ’ ~ )  =f,cos(nt + Po) 
ax (6-3.30) 

y + y*y + y ,  = ficos nt 
aY 

The two criteria are derived from a guess at two restricted classes 
of motions: radial motion through two of the wells and circumferential 
motion through four of the potential wells. Motion restricted to radial 
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Figure 6-21 Two criteria for homoclinic orbits from the four-well potential oscillator 
(6-3.30). [From Li and Moon (IWb).]  

motion is exactly similar to the two-well problem with one degree of 
freedom studied by Holmes (1979). Therefore, one obtains a criterion 
for homoclinic tangles in the PoincarC map similar to (6-3.27). 

Experimental observation of a cantilevered steel rod with four mag- 
nets below the end of the rod shows that sometimes the rod will exhibit 
circumferential motions through each of the wells. However, the pre- 
cise orbit is not circular. But numerical calculations show that a nearly 
circular orbit is ossible. Thus, we artificially restrict the radial motion 

with four potential wells, and a criterion similar to (6-3.25) may be 
possible. 

Using these analogies, two criteria were derived numerically as 
shown in Figure 6-2 1. Numerical and experimental observations seem 
to indicate that chaos results when the parameters (fi , a) exceed both 
criteria. Basin boundary studies (see color plate on this book’s jacket) 
show increasing complexity as each criterion is crossed. 

These two studies show that even in simple problems in Newtonian 
particle mechanics, extremely complex dynamic phenomena are pos- 
sible; they also show that our knowledge to date is still extremely 
primitive, especially as regards phase spaces of dimension four or 
higher (see also Kittel et al., 1990). 

(i‘ = 0, r = d- x + y ). The problem is similar to a rotor or pendulum 

Shil’nikov Chaos 

The above discussion shows how a homoclinic orbit in the Poincare 
map can lead to a horseshoe map structure and eventually chaos. But 
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Figure 6-22 Homoclinic orbit in three-dimensional phase space generated by a sad- 
dle-focus fixed point. 

what about homoclinic orbits in a flow described by a set of differential 
equations? For a 2-D phase plane, homoclinic or heteroclinic orbits 
cannot lead to chaos without periodic forcing. But what about homo- 
clinic orbits in 3-D? In 1965, two years after the publication of Lorenz’s 
paper on nonperiodic solutions for fluid convecture problems, L. P. 
Shil’nikov of the Soviet Union proposed a theorem which suggests 
that the existence of a homoclinic orbit in a 3-D flow would imply the 
existence of nonperiodic trajectories. In  this work he chose a system 
of three first-order nonlinear differential equations with a fixed point 
which is characterized by a saddle focus (see Chapter 1 ;  also see 
Guckenheimer and Holmes, 1983). A saddle focus has eigenvalues 
(p ? io, A), as shown in Figure 6-22. Near the fixed point, trajectories 
spiral out or in on some 2-D surface characterized by p 2 io, or they 
approach or depart the fixed point in an exponential manner with time 
exponent A along a direction transverse to the spiral surface. If the 
trajectory that spirals out (or in) eventually joins the trajectory coming 
into (or out of )  the fixed point, then one has a homoclinic orbit. (Note 
however, that from any point on this orbit it takes an infinite time 
forward or backward to reach the fixed point.) 

Shil’nikov proposed a criteria for the existence of these nonperiodic 
orbits that are generated by the homoclinic orbit: 
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Several experimental studies have been published which purport 
to have measured chaotic dynamics originating from a Shil’nikov 
homoclinic orbit. Argoul et al. (1987a) studied a continuous chemical 
flow reactor for the Belousov-Zhabotinski reaction, and Bassett and 
Hudson (1988) performed an experiment on the electrodissolution of 
a rotating copper disk in a H2S04/NaC1 solution. In both papers the 
experimental results were compared to a third-order model of the form 

i = y  

j = Z  (6-3.32) 

For example, in Argoul et al. (1987a) the following parameters are 
chosen: k l  = - 1, k2 = 1.425, k3 = 0, k4 = -0.2, kS = 0.01. This 
system has two equilibrium points, one at the origin and the other at 
(x, y ,  z )  = (-  p/k, 0,O). For r) = 1.3 and p I 1.3, a spiral-type strange 
attractor can be found as shown in Figure 6-23 which is qualitatively 
similar to that obtained from the experiments using a reconstructed 
phase space with variables C(r), C(r + T), C(r + 2T), where C 

’t 

Figure 6-23 Shil’nikov-type strange attractor based on numerical integration of a 
model for a chemical flow reactor (6-3.32). (q, Y, p)  = ( 1 ,  1.3, 1.38) [From Argoul et 
at. (1987al.l 
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represents the concentration of Ce in the continuously stirred tank 
reactor. The PoincarC map is obtained by intersecting the attractor 
with a plane in the 3-D space and shows a linear structure which 
suggests the use of a 1-D return map. In this numerical simulation of 
(6-3.32) the 1-D map derived from the PoincarC section shows an 
intersecting multibranched map (Figure 6-24) which is also obtained 
from the experiments. Each branch is labeled with an integer and 
represents the number of turns the trajectory orbits around the saddle 
focus in between two successive PoincarC map times. Argoul et al. 
(1987) also proposed a scaling law for the distance between two succes- 
sive branches: 

The dynamics can thus be described in terms of an infinite set of 
symbols (each representing the number of turns around the saddle 
focus between mapping times). 

There have also been claims and counterclaims about Shil'nikov 
chaos in laser dynamics (e.g., see Arecchi et al., 1987 and Swetits and 
Buoncristiani, 1988). 

-2 

- 
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n' 

-20 
-20 Xn -2 

Figure 6-24 Multibranched Poincard map of a Shil'nikov-type strange attractor based 
on numerical integration of a model for a chemical flow reactor (6-3.32). [From Argoul 
et al. (1987).] 
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Intermittent and Transient Chaos 

Thus far we have discussed what one might call "steady-state" chaotic 
vibration. Two other forms of unpredictable, irregular motions are 
intermittency and transient chaos. In the former, bursts of chaotic or 
noisy motion occur between periods of regular motion (see Figure 
6-25). Such behavior was even observed by Reynolds in pipe flow 
preturbulence experiments in 1883 (see Sreenivasan, 1986). Transient 
chaos is also observed in some systems as a precursor to steady-state 
chaos. For certain initial conditions, the system may behave in a 
randomlike way, with the trajectory moving in phase space as if it 
were on a strange attractor. However, after some time, the motion 
settles onto a regular attractor such as a periodic vibration. Scaling 
properties of nonlinear motion can sometimes be used to determine 
experimentally a critical parameter for these two types of chaotic 
motion. In the case of intermittency, where the dynamic system is 
close to a periodic motion but experiences short bursts of chaotic 
transients, an explanation of this behavior has been posited by Manne- 
ville and Pomeau (1980) in terms of one-dimensional maps or differ- 
ence equations. 

From numerical experiments on maps, the mean time duration of 
the periodic motion between chaotic bursts (7) has been found to be 

1 
( A  - Ac("* (7) - (6-3.34) 

where A is a control parameter (e.g., fluid velocity, forcing amplitude, 
or voltage) and A, is the value at which a chaotic motion occurs. As 
A - A, increases, the chaotic time interval increases and the periodic 
interval decreases.Thus, one might call this creeping chaos. 

Figure 6-25 Sketch of intermittent chaotic motion. 
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To measure A,. experimentally, one must measure two average times 
(T), and (7)2  at corresponding values of the control parameter, that is, 
A ,  and A 2 .  This should determine the proportionality constant in Eq. 
(6-3.34) as well as A c .  Having obtained a candidate value for A, ,  
however, one should then measure other values of ((7), A) to validate 
the scaling relation (6-3.34). 

The case of transient chaos has been studied by Grebogi et al. 
(1983a,b, 1985b) of the University of Maryland in a series of papers 
describing numerical experiments on two-dimensional maps. In one 
study (l983), they investigated a two-dimensional extension of the 
one-dimensional quadratic difference equation called the Henon mup 
(see also Section 1.3): 

where J is the determinant of the Jacobian matrix which controls the 
amount of area contraction of the map. In the Maryland group’s 
research on transient chaos, the case of J = -0.3 with the parameter 
u varied was investigated. For example, for a > a. = 1.062371838, a 
period-6 orbit gave birth to a six-piece strange attractor that exists in 
the region 

a. < a < a(. = 1,080744879 

For a > a(. , the orbit under the iteration of the Henon map was found 
to wander around the ghost of the strange attractor in the x-y plane, 
sometimes for over lo3 iterations, before settling onto a period-4 
motion. 

They also discovered that the average time for the transient chaos 
(7) followed a scaling law: 

(7) - ( a  - (6-3.35) 

The average was found by choosing lo2 initial conditions for each 
choice of a. The initial conditions were chosen in the original basin of 
attraction of the defunct strange attractor. These transients can be 
very long. For example, in the case of the Henon map, Grebogi and 
co-workers found (7) = lo4 for a - a,, = 5 x lo-’ and (7) = lo3 for 
(Y - a[ = 
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Chirikov’s Overlap Criterion for Conservative Chaos 

The study of chaotic motions in conservative systems (no damping) 
predates the current interest in chaotic dissipative systems. Because 
the practical application of conservative dynamical systems is limited 
to areas such as planetary mechanics, plasma physics, and accelerator 
physics, engineers have not followed this field as closely as other 
advances in nonlinear dynamics. In this section, we focus on the 
bouncing ball chaos described in Chapter 4 (Figure 4-1 1). However, 
the resulting difference equations are relevant to the behavior of cou- 
pled nonlinear oscillators (e.g., see Lichtenberg and Lieberman, 1983) 
as well as to the behavior of electrons in electromagnetic fields. The 
equations for the impact of a mass, under gravity, on a vibrating table 
are given by (4-2.19); with a change of variables, these become (see 
also Section 3.4) 

u , + ~  = u, + K sincp, 

Pn+l = (Pn + u n + ~  
(6-3.36) 

where u, is the velocity before impact and cp, is the time of impact 
normalized by the frequency of the table (i.e., cp = wt mod 2 ~ ) .  K is 
proportional to the amplitude of the vibrating table in Figure 4-1 1. 
These equations differ from those in (4-2.19) by the assumption that 
there is no energy loss on impact. This implies that regions of initial 
conditions in the phase space (u ,  cp) preserve their area under multiple 
iteration of the map (6-3.36). 

Orbits in the (u ,  cp) plane for different initial conditions are shown 
in Figure 6-26 for two different values of K. 

Consider the case of K = 0.6. The dots at u = 0 , 2 n  correspond to 
period-1 orbits; that is, 

uI = uI + Ksincp] 

cpl = 91 + UI 

whose solution is given by cpI = 0, T, uI = 0 (both mod 2 ~ ) .  The 
solution near cp = T is stable for 12 - Kl < 2. The solution near cp = 
0,27r, however, can be shown to be unstable for 12 + KI < 2 and can 
represent saddle points of the map. 

Near u = n one can see a period-2 orbit given by the solution to 

u2 = uI + K sin ‘pl, 

uI = u2 + Ksincp,, 
cp2 = cpI + u2 

cpI = cp2 + uI 
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Figure 6-26 ( a )  Poincark map for elastic motion of a ball on a vibrating table (standard 
map) for the parameter y = 0.6 in Eq. (6-3.36) showing periodic and quasiperiodic 
orbits. ( b )  The case of y = I .2  showing the appearance of stochastic orbits. 

Again one can show that there are both stable and unstable period- 
2 points. One can also show that the stable points exist as long as 
K < 2. 

The rest of the continuous-looking orbits in Figure 6-26 represent 
quasiperiodic solutions where the ball impact frequency is incommen- 



302 CRITERIA FOR CHAOTIC VIBRATIONS 

surate with the driving period. Finally, a third type of motion is present 
in Figure 6-26b ( K  = 1.2). Here we see a diffuse set of dots near where 
saddle points and the saddle separatrices used to exist. This diffuse 
set of points represents conservative chaos. For K < 1 ,  it is localized 
around the saddle points. However, for K = 1 ,  this wandering orbit 
becomes global in nature. (See also Figures 1-13, 3-35.) 

The reader should note that in Figure 6-26 (K = 0.6) one can obtain 
all types of motion by simply choosing different initial conditions 
(because there is no damping, there are no attractors). 

A criterion for global chaos in this system was proposed by the 
Soviet physicist Chirikov (1979). He observed that as K is increased, 
the vertical distance between the separatrices associated with both 
period-1 and period-2 motion decreased. If chaos did not intervene, 
these separatrices would overlap (Figure 6-27)-thus the name overlap 
criterion. 

If one performs a small-K analysis of the standard map (6-3.36) near 
one of these periodic resonances, the size of each separatrix region is 
found to be 

A, = 4K”’ 

A2 = K 
(6-3.3 7) 

Each analysis ignores the effect of the other resonance. The condition 

Figure 6-27 Sketch of period- I and period-2 orbits and concomitant quasiperiodic 
orbits for the standard map used in the deivation of Chirikov’s criterion. 



6.3 THEORETICAL PREDICTIVE CRITERIA 303 

for overlap is that A,  + A2 = 27~ ,  or 

4KI.” + K,. = 27r (6-3.38) 

The solution to this equation is K ,  = 1.46. This value overestimates 
the critical value of K = Kcfor global chaos which is found numerically 
to be around K ,  2 1.0. The reader is referred to Lichtenberg and 
Lieberman (1983) for further details concerning the overlap criterion. 

The more practical-minded reader might ask: What happens when 
we have a small amount of damping present? For that case, some 
of the multiperiod subharmonics become attractors and the ellipses 
surrounding these attractors become spirals that limit the periodic 
motions. What qf the conseruatiup chaos? Initial conditions in regions 
where there was conservative chaos become long chaotic transients 
which wander around phase space before settling into a periodic mo- 
tion. And what about real chaotic motions? When damping is present, 
one needs a much larger force, K > 6, for which a fractal-like strange 
attractor appears (see Figure 4-1 1). Thus, the overlap criterion dis- 
cussed above is only useful for strictly conservative, Hamiltonian 
systems. 

Criteria for a Multiple-Well Potential 

In  this section, we describe an ad hoc criterion for chaotic oscillations 
in problems with multiple potential energy wells. Such problems in- 
clude the buckled beam (Chapter 2) and a magnetic dipole motor with 
multiple poles. In solid-state physics, interstitial atoms in a regular 
lattice can have more than one equilibrium position. Often the forces 
that create such problems can be derived from a potential. Let {qi} be 
a set of generalized coordinates and V(q i )  be the potential associated 
with the conservative part of the force such that -dV/dq j  is the 
generalized force associated with the qj degree of freedom. For one 
degree of freedom, a special case might have the following equation 
of motion: 

av 0 + 74 + - = f coso t  
d q  

(6-3.39) 

where linear damping and periodic forcing have been added. V(q i )  has 
as many local minima as stable equilibrium positions, as shown in 
Figure 6-28. For small periodic forcing, the system oscillates periodi- 
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Figure 6-28 Multiple-well potential energy function and associated phase plane. 

cally in one potential well. But for larger forcing, the motion “spills 
over” into other wells and chaos often results. This criterion then 
seeks to determine what value of the forcing amplitude will cause the 
periodic motion in one well to jump into another well. 

To illustrate the method, consider the particle in a two-well symmet- 
ric potential (i.e., the buckled beam problem of Chapter 2): 

ci: + y4  - 4q(1 - 42) = f cos ot (6-3.40) 

Because we are seeking a criterion that governs the transition from 
periodic to chaotic motion, we use standard perturbation theory to 
find a relation between the amplitude of forced motion (q2) (where ( ) 
indicates a time average) and the parameters y ,  f ,  and o. We then try 
to find a criricd value of (q2) = A, independent of the forcing ampli- 
tude; that is, 

The left-handed equality in Eq. (6-3.41) is found using classical pertur- 
bation theory, whereas the right-hand equality is based on a heuristic 
postulate. To carry out this program for the two-well potential, we 
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must write Eq. (6-3.40) in coordinates centered about one of the 
equilibrium positions: 

To obtain a perturbation parameter, we write 77 = p X ,  so that the 
equation of motion takes the form 

The phase angle &, is adjusted so that the first-order motion is propor- 
tional to cos w t .  The resulting periodic motion for small f is assumed 
to take the form 

X = C,coswt  + p(CI + Czcoswt) + p2X, ( f )  (6.3.43) 

Using either Duffing's method or Lindstedt's perturbation method 
(e.g., see Stoker, 1950), the resulting amplitude force relation can be 
found to be 

Based on numerical experiments, we postulate the existence of a 
critical velocity. We propose that chaos is imminent when the maxi- 
mum velocity of the motion is near the maximum velocity on the 
sparatrix for the phase plane of the undamped, unforced oscillator. In 
terms of the original variables, this criterion becomes (see Figure 
6-29) 

a 
pco = - 

2w 
(6-3.45) 

where a is close to unity. Substituting Eq. (6-3.45) into Eq. (6-3.44), 
we obtain a lower bound on the criterion for chaotic oscillations: 

(6-3.46) 

This expression has been checked against experiments by the author 
(Moon, 1980a), and a factor of a = 0.86 seemed to give excellent 
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t x  

Figure 6-29 Overlap criteria for a multiple-well problem using semiclassical analytic 
methods. 

agreement with experimental chaos boundaries as shown in an earlier 
figure (Figure 6-2). For low damping, this criterion gives a much better 
bound than does the homoclinic orbit criterion using the Melnikov 
function. 

As illustrated in Figure 6-29, this criterion is similar to the Chirikov 
overlap criterion-namely, that chaos results when a regular motion 
becomes too large. 

The method outlined in this section has also been used on a three- 
well potential problem, (6-3.29), and has been tested successfully in 
experiments on a vibrating beam with three equilibria by Li (1984). 

Criteria Derived from Classical Perturbation Analysis. The novitiate 
to the field of nonlinear dynamics may be misled by the current interest 
in chaos to conclude that the field lay dormant in the prechaos era. 
However, a large literature exists describing (a) mathematical pertur- 
bation methods for calculating primary and subharmonic resonances 
and (b) the stability characteristics of solutions to nonlinear systems 
(e.g., see Nayfeh and Mook, 1979). Thus, it is no surprise that studies 
are beginning to emerge that attempt to use the more classical analyses 
in the effort to find criteria for chaotic motion. For example, Nayfeh 
and Khdeir (1986) use perturbation techniques to predict the occur- 
rence of period-doubling or period-tripling bifurcations as precursors 
to chaotic oscillations of ships in regular sea waves (see also Chapter 4, 

In another study, Szemplinska-Stupnicka and Bajkowski (1986) 
Eq. (4-2,17)). 
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have studied the Duffing oscillator of Ueda [Eq. (4-6. I)] .  They found 
subharmonic solutions using perturbation techniques and link the on- 
set of chaos to the loss of stability of the subharmonics using classical 
stability analysis. They use analog computer experiments to check 
their results. They conclude that for the Duffing-Ueda attractor [Eq. 
(4-6.111, the chaotic motion is a transition zone between the subhar- 
monic and resonant harmonic solutions. See Szemplinska-Stupnicka 
(1992). 

Although the author believes that the fundamental nature of chaotic 
motion is more closely related to such mathematical paradigms as 
horseshoe maps, fractals, and homoclinic orbits, the use of semiclassi- 
cal methods of perturbation analysis may provide more practical ana- 
lytic chaos criteria for certain classes of nonlinear systems. 

6.4 LYAPUNOV EXPONENTS 

Thus far we have discussed mainly predictive criteria for chaos. Here 
we describe a tool for diugnosing whether or not a system is chaotic. 
Chaos in deterministic systems implies a sensitive dependence on 
initial conditions. This means that if two trajectories start close to one 
another in phase space, they will move exponentially away from each 
other for small times on the average. Thus, if do is a measure of the 
initial distance between the two starting points, at a small but later 
time the distance is 

d(t) = d02A' (6-4.1) 

If the system is described by difference equations or a map, we have 

dn = d02" (6-4.2) 

[The choice of base 2 in Eqs. (6-4.1) and (6-4.2) is convenient but 
arbitrary.] The symbols A and A are called Lyupunou exponents.' 

An excellent review of Lyapunov exponents and their use in experi- 
ments to diagnose chaotic motion is given by Wolf et al. (1985). This 
review also contains two useful computer programs for calculating 
Lyapunov exponents. Another review is Abarbanel et al. (1991). 

The divergence of chaotic orbits can only be locally exponential, 
because if the system is bounded, as most physical experiments are, 

I Lyapunov was a Russian mathematician (1857-1918) who introduced this idea 
around the turn of the century. 
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d ( t )  cannot go to infinity. Thus, to define a measure of this divergence 
of orbits, we must average the exponential growth at many points 
along a trajectory, as shown in Figure 6-30. One begins with a reference 
trajectory [called afiduciary by Wolf et al. (198S)l and a point on a 
nearby trajectory and measures d(t)ld,. When d ( t )  becomes too large 
(i.e., the growth departs from exponential behavior), one looks for a 
new “nearby” trajectory and defines a new d,(t) .  One can define the 
Lyapunov exponent by the expression 

Then the criterion for chaos becomes 

A > 0 (chaotic) 

A 5 0 (regular motion) 

(6-4.3) 

(6-4.4) 

The reader by now has surmised that this operation can only be 
done with the aid of a computer whether the data are from a numerical 
simulation or from a physical experiment. 

Only in a few pedagogical examples can one calculate A explicitly. 
To examine one such case, consider the extension of the concept of 
Lyapunov exponents to a one-dimensional map (see Chapter 3), 

Xtl t I = f ( X J  (6-4.5) 

Following Chapter 3, we define the Lyapunov or characteristic expo- 

Figure 6-30 Sketch of the change in distance between two nearby orbits used to 
define the largest Lyapunov exponent. 
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nent as 

A = lim- I N  
log, 

n+x N k-rx  
(6-4.6) 

An illustrative example given in Chapter 3 is the Bernoulli map (3-7.3) 

x,,+] = 2x,,(mod 1 )  (6-4.7) 

s shown in Figure 3-24. Except for the switching value at x = 4, 
If” = 2. Applying the definition (6-4.6), we find A = 1 .  Thus, on the 
average, the distance between nearby points grows as 

d,, = d02“ (6-4.8) 

The units of A are one bit per iteration. One interpretation of A is 
that one bit of information about the initial state is lost every time the 
map is iterated (see Section 3.7). So if we start out with rn significant 
decimal places of information, we lose one for each iteration; that is, 
we lose one bit of information. After rn iterations we have lost howl- 
edge of the initial state of the system. 

Earlier in this chapter, we learned that the solution for the logistic 
or quadratic map becomes chaotic when the control parameter a is 
greater than 3.57: 

This can be verified by calculating the Lyapunov exponent as a func- 
tion of a as shown in Figure 3-25. Beyond a = 3.57, the exponent 
becomes nonpositive in the periodic windows 3.57 < a < 4. When 
a = 4, it has been shown that A = In 2 (e.g., see Schuster, 1984). 

Another example of a map for which one can calculate the Lyapu- 
nov exponent is the tent map; (3-7.4). As in the Bernoulli map 
(6-4.7), I f (x) l  is a constant and the Lyapunov exponent is found to be 
(Lichtenberg and Lieberman, 1983, pp. 416-417) 

A = log2r 

where 2r is the slope in (3-7.4). When 2r > 1 ,  A > 0 and the motion 
is chaotic, but when 2r < I ,  A < 0 and the orbits are regular; in fact, 
all points in 0 < x < I are attracted to x = 0. 
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Numerical Calculation of the Largest Lyapunov Exponent 

For every dynamical process, be it a continuous time history or dis- 
crete time evolution, there is a spectrum of Lyapunov or characteristic 
numbers that tells how lengths, areas, and volumes change in phase 
space. The idea of a spectrum of such numbers is discussed in the 
following section. However, inasfar as a criterion for chaos is con- 
cerned, one need only calculate the largest exponent, which tells 
whether nearby trajectories diverge (A > 0) or converge (A < 0) on the 
average. As yet there is no analog instrument that will measure the 
Lyapunov exponent, although if this measure of chaotic motion con- 
tinues to prove useful, some clever person will probably invent one. 
At the present time, however, calculations of Lyapunov exponents 
must be done by digital computer, preferably a midsized laboratory 
computer. 

There are two general methods: One is for data generated by a 
known set of differential or difference equations (flows and maps), 
and the other is to be used for experimental time series data. The Wolf 
et al. (1985) paper discusses both methods, but our experience to 
date reveals that more research on finding a reliable algorithm for 
experimental data is needed (see also Abarbanel et al. 1991). We will 
review briefly techniques for a set of differential equations of the form 

t = f(x;c) (6-4.10) 

where x is a set of n state variables and c is a set of n parameters. More 
complete discussion of these techniques may be found in Shimada and 
Nagashima (1979), the works of Benettin et al. (see the 1980 reference 
for a complete list), and Ueda (1979). 

The main idea in calculating using (6-4.3) is to be able to determine 
the length ratio d(tk)ld(tk- ,). One method is to numerically integrate 
the above set of equations to obtain a reference solution x*(t; x"), 
where x, is the initial condition. Then at each time step tk integrate 
the equation again, using as an initial condition some nearby point 
x*(tk) + q. However, a more direct method is to use the equation to 
find the variation of trajectories in the neighborhood of the reference 
trajectory x*(t). That is, at each time step t k  we solve the variational 
equations 

i = A * r )  (6-4.1 I )  

where A is the matrix of partial derivatives Vf(x*(tk)). We note that, 
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in general, the elements of A depend on time. However, if A were 
constant, the solution of q ( t )  between t h  < t < would depend on 
the initial condition. If this initial condition is chosen at random, then 
it is likely to have a component that lies in the direction of the largest 
positive eigenvalue of A. It is the change in length in this direction 
that the largest Lyapunov exponent measures. 

Thus, the numerical scheme goes as follows. Integrate (6-4.10) to 
find x*(r). Allow a certain time to pass before calculating d( t )  in order 
to get rid of transients. After all, we are assuming we are on a stable 
attractor. After the transients are judged to be small, begin to integrate 
(6-4.1 1 )  to find q(t) .  One can choose Ig(0)I = 1 ,  but choose the initial 
direction to be arbitrary. Then numerically integrate i = A(x*(t))  
q, taking into account the change in A through x * ( t ) .  [In practice one 
can integrate both (6-4.10) and (6-4. I 1 )  simultaneously. [After a given 
time interval t h +  I - tA = r ,  take 

(6-4.12) 

To start the next time step in (6-4.3), use the direction of q(r; t k )  
the new initial condition, that is, 

(6-4. 

or 

3) 

where we have normalized the initial distance to unity. 
An example of this calculation is shown in Figure 6-31, where we 

have numerically integrated the Duffing equation [Eq. (6-2. l)] in the 
chaotic state as a function of the elapsed time. The equations used 
were 

i = y  

j l  = - k y  - X’ + BCOSZ 

i =  I 

The resulting matrix becomes 

(6-4.14) 

(6-4.15) 1 0 1  0 
A =  [ [ -3x2 - k ]  - B  s inz  

0 0  0 
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Figure 6-31 Calculation of the largest Lyapunov exponent for chaotic motion of the 
Duffing attractor (6-2. I )  as a function of the total time record. 

Because this really is a periodically driven oscillator, changes of 
lengths in the phase space direction z = t are zero, as manifested by 
the row of zeroes in the matrix A. Thus, to find the largest Lyapunov 
exponent in this problem, one can work in the projection of the phase 
space (x, y,  z) onto the phase plane (x, y) ,  using the inner bracketed 
matrix in (6-4.15). 

For the data in Figure 6-3 I ,  the time step for numerical integration 
was A t  = 0.01 and the number of time steps to integrate q(t)  was 
chosen to be 10, or 7 = 0.1. The inner matrix in A, (6-4.15), was 
updated at every Runge-Kutta time step At .  

It is clear from Figure 6-29 that A is a statistical property of the 
motion; that is, one must average the changes in lengths over a long 
time in order to get reliable values. Also, one has to be careful in 
choosing the Runge-Kutta step size A t  as well as the Lyapunov 
exponent step size T .  

A comparison of Lyapunov exponents for different parameters in 
the Duffing equation is shown in Table 6-1. This algorithm for calculat- 
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TABLE 6-1 Comparison of Calculated Lyapunov Exponent for Duffing's 
Equation f + k; + 2 = B cos r 

k B 

0.1 9.9 
0.1 10 
0.1 1 1  
0. I 12 
0. I 13 
0. I 13.3 

A ,  
(this book)" 

0.012 
0.094 
0.114 
0.143 
0.167 
0. I74 

Ueda (1979) 

A ,  

0.065 
0.102 
0.114 
0.149 
0.182 
0.183 

A2 

-0.166 
-0.202 
-0.214 
-0.249 
- 0.282 
- 0.284 

" Runge-Kutta integration time step. A I  = 0.01; Lyapunov restart time = IOAI; total time = 
400 cycles = 8008. 

ing Lyapunov exponents has proved very useful in constructing empir- 
ical chaos criteria or chaos diagrams. If one has access to a really fast 
computer such as the so-called supercomputers, then one can calculate 
A as a function of the parameters in the problem [c in Eq. (6-4.10)]. 
For example, one can choose c = ( k ,  B) in the Duffing problem and 
find A for 100 x 100 values of k and B. If A > 0, then one prints out 
a symbol; otherwise, if A - 0 or A < 0, one leaves a blank. Such 
numerically determined chaos diagrams are useful to search for possi- 
ble regions of parameter space where chaotic motion may exist (see 
Figure 6-3). Given the vagaries of numerical calculation, however, 
one should not rely solely on this technique to certify a region as 
chaotic. Other tests such as spectral analysis, Poincare maps, or fractal 
dimension should also be used to confirm suspected regions of chaotic 
motion. 

Lyapunov Exponents and Distribution Functions. The calculation of 
the Lyapunov exponent (6-4.3) may be thought of as an average over 
time or iterates of the mapping (6-4.5). If one has a probability density 
function that tells the probability that certain trajectories will be in a 
given region of phase space, then it is possible to replace this time 
average by a spatial average in phase space. This idea has been ex- 
plored by several researchers (Everson, 1986; Hsu, 1987). The idea is 
illustrated for a two-dimensional map following Everson. The case for 
a one-dimensional map was discussed in Section 3.6, Eq. (3-7.12). 

We recall that when the system is chaotic, at least one Lyapunov 
exponent will be greater than zero. Start with the distance between 
two neighboring trajectories x, and y,. This distance is given by d,, = 
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Ix, - y,,) and the Lyapunov exponent is given by 

l N  dfl+ 1 

N - , ~  N d" 
A = lim - 2 log- (6-4.16) 

If an invariant probability distribution function p ( x )  is assumed, then 
A can be calculated by 

dn+ I A = 11 log-p(u, u )  du du 
dn 

(6-4.17) 

where a two-dimensional phase space is assumed with x = ( u ,  u) .  

tion condition 
The invariant density function is assumed to satisfy the normaliza- 

11 p(u ,  u )  du du = I 

where the integral is taken over all of phase space. 

ball problem (4-2.19) and the standard map (6-3.32), 
Everson (1986) applied this idea to a map related to the bouncing 

8,,+, = 8, + BV,, 
V n + ,  = EV,,  + ( 1  + &)(I  + sin&,+,) 

mod277 
(6-4.18) 

This is similar to the problem examined by Holmes (1982), where 
0 < E < 1 represents dissipation and BV,  represents the velocity of 
the ball as it leaves the platform at the nth bounce (see Figure 4-1 la). 

Everson (1986) used two observations to apply (6-4.17) to (6-4.18) 
to calculate the largest Lyapunov exponent. First, he notes that from 
numerical experiments the invariant distribution function appears to 
be independent of the phase 8, so that in polar coordinates (V,  6 )  

1 lox p dV = - 
277 

(6-4.19) 

Second, he was able to obtain an approximate expression for the 
expression d, + ,Id,,; that is, for B >> I ,  

dn+l 
dn 
- + lB(1 + E )  cos 81 (6-4.20) 
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which is independent of the velocity. Using (6-4.19) and (6-4.20), he 
was able to calculate 

B ( l  + E )  

2 
A = log (6-4.21) 

which agrees quite well with numerical calculations. 
In another application of this technique, Hsu (1987) used (6-4.17) but 

found the probability density function numerically using a technique 
called cell mapping [e.g., see Hsu (1981, 1987), Kreuzer (1985), and 
Tongue ( I  987)]. Further s tudy of the determination of invariant proba- 
bility distribution functions in the future may allow more general 
application of this method of determining Lyapunov exponents. 

Lyapunov Spectrum 

Thus far we have talked only of the stretching of distance between 
orbits in a chaotic process. However, in three or more dimensions we 
know that regions of phase space may contract as well as stretch under 
a dynamic process. In particular, for dissipative systems, a small 
volume of initial conditions gets mapped into a smaller volume at a 
later time. This is illustrated in Figure 6-32, where a small sphere of 
initial conditions of radius 6 is mapped at a later time into an ellipsoid 
with principal axes (pyS, p56, pY6). Thus, for every dynamical system 
there is a spectrum of Lyapunov exponents or numbers {Ai}, A; = 

Computationally, this spectrum can be calculated from a time his- 
tory of a motion in phase space by finding out how lengths, areas, 
volumes, and hypervolumes change under a dynamic process. Wolf 

1% Pi. 

Figure 6-32 Sketch showing the divergence of orbits from a small sphere of initial 
conditions for a chaotic motion. 
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et al. (1985) used this idea to develop a computation algorithm to 
calculate the { A i } .  If the Ai are ordered such that A ,  > A2 > A,, then 
they show that lengths vary as d ( f )  == dO2’lf, areas (formed from one 
point on the reference trajectory, and two nearby points) vary as 
A(?) = A,2(’1 + A 2 ) f ,  and small volumes vary as V(t) = V02(’1 + ‘2 + ’3)‘, 

and so on. 
Farmer et al. (1983) provided an analytic definition for the complete 

Lyapunov spectrum along with one example for which one can calcu- 
late the {A;} exactly. In the remainder of this chapter we give a sketch 
of the calculation of Lyapunov exponents for a two-dimensional map. 
Many of the details are omitted, and the interested reader is referred 
to the original Farmer et al. paper. To begin, we consider a general 
N-dimensional map 

(6-4.22) 

where x, is a vector in an N-dimensional phase space. Then the change 
in shape of some small hypersphere will depend on the derivatives of 
the functions F(x,,) with respect to the different components of x,. The 
relevant matrix is called a Jacobian matrix. For example, if 

then 

(6-4.23) 

After n iterations of the map, the local shape of the initial hypersphere 
depends on 

(6-4.24) 

In general, one can find the eigenvalues of J, which one orders ac- 
cording to j , ( n )  ? j 2 ( n )  2 ’ j N ( n ) ,  where thejK(n) are the absolute 
values of the eigenvalues. The Lyapunov exponents are then defined 
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(6-4.25) 1 A; = lim - log, j , ( n )  
n+x n 

Farmer et al. illustrated the use of this definition for a two-dimen- 
sional map called a baker’s transformation (Figure 6-33), named for 
its analogy to rolling and cutting pie dough. It  is similar to the horse- 
shoe map described in Chapter 1 .  The equations for this map are 

I 

(6-4.26) 

-1 
I 
I 
I 

\ 
8: 8182 8182 85 

Figure 6-33 Baker’s transformation. 
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This map is a generalization of the Bernoulli map in the previous 
section (6-4.8). In this case, the Jacobian matrix becomes 

I = [ :  :] (6-4.27) 

where SI = A, for y < and SI = Ab for y > 1. 
For iterations of the map, the magnitudes of the eigenvalues become 

where one assumes that there are k iterations in the left half-plane and 
I iterations in the right half-plane. Applying the definition (6-4.25), 

1 A ,  = lim-log22" 
n--rr n 

n 

TABLE 6-2 Lyapunov Exponents for Dynamical Models 

Lyapunov Lyapunov 
Parameter Spectrum Dimension 

System Values (bitsls) (see Chapter 7) 
Henon 

A ,  = 0.603 
u = 1.4 
h = 0.3 

x,,, = I - ux: + Y,, A2 = -2.34 I .26 

y,, + I = hX,, 

Rossler chaos 

(bitsheration) 

x =  - ( Y  + Z )  u = 0.15 A ,  = 0.13 
Y = X + c r Y  h = 0.20 A2 = 0.00 2.01 
z = b + Z ( X  - c )  c = 10.0 A1 = - 14.1 

Lorenz 
+ = u(Y - X) 
Y =  X ( R  - Z )  - Y R = 45.92 A? = 0.00 2.07 

Rossler hyperchaos 
+ =  - ( Y + Z )  n = 0.25 A, = 0.16 

u = 16.0 A ,  = 2.16 

Z = X Y  - bZ b = 4.0 A, = -32.4 

Y = X + a Y +  w b = 3.0 A1 = 0.03 3.005 
Z = b + X Z  c = 0.05 A, = 0.00 
W = CW - d Z  d = 0.5 A4 = -39.0 

Source: Wolf el al. (1985). 
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Here we invoke an assumption that after many iterations an orbit 
spends as much time in the left half-plane as in the right half-plane, or 

so that 

Knowing these two Lyapunov exponents, one can then calculate 
a fractal dimension for this map. The relation between Lyapunov 
exponents and fractal dimensions has been examined by Farmer et al. 
(1983) and is discussed briefly in Chapter 7. 

The spectra of Lyapunov exponents for several dynamics flows and 
maps are shown in Table 6-2, taken from Wolf et al. (1985). 

Lyapunov Exponents for a Continuous Time Dynamics 

When the dynamics are governed by a set of N ordinary differential 
equations i = f(x), the spectrum of Lyapunov exponents is related to 
the integration of the linearly perturbed dynamics, q ( f ) ,  about a solu- 
tion x ( r ) ,  as in (6-4.11). The matrix of partial derivatives A = V f  is 
time-dependent, because it depends in general on the reference solu- 
tion x*(r). The solution at time r = 7, q(7) can then be written formally 
in the form 

where is an N x N matrix and where q(0) is the initial perturbation. 
A formal definition of the Lyapunov exponent A, follows from the 
construction of a positive and symmetric matrix 

(@@.I (6-4.30) 

whose eigenvalues are denoted by pi. Then the Lyapunov exponents 
are defined by the limit 

(6-4.3 1) 

(e.g., see Geist et al., 1990 and Abarbanel et al., 1991). This formal 
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definition does not provide an obvious and practical way to determine 
the complete set of hi from numerical or experimental data. The reader 
is referred to the above references for the latest techniques and is also 
referred to Wolf et al. (1985) and Parker and Chua (1989). The latter 
book gives algorithms for calculating many of the measures of chaotic 
dynamics. 

Typically, one has a set of discrete time sampled data xk = 

x ( t  = h), where x ( t )  is a measured state variable and 7 is the sampling 
time. One numerical technique for a set of data { . - a  xi- I ,  xi, xi+ I ,  ...} 
is to construct a set of vectors in an embedding space of N dimensions; 
x = ( x j ,  x j+  I ,  . . . , xj+  N- ,). N is chosen at least as large as the dimension 
of the space of the chaotic attractor. Two methods are then used to 
calculate Lyapunov exponents. One is based on calculating the change 
in a small hypervolume as discussed above as the dynamics evolves. 
For example, an M 5 N-dimensional volume will change on the aver- 
age according to V(t) = V,exp[(h, + A2 + ... + A,&]. This method 
has been adopted by Wolf et al. (1985). Another method is based on 
estimating the local Jacobian matrices Vf (e.g., see Abarbanel et al., 
1991 or Geist et al., 1990). 

In most of these methods, several factors can raise questions as to 
the accuracy of the exponents. These factors include: 

Ill-conditioned matrices @ 
Small number of data points (e.g., < lo4) 
Accuracy of data 
Peculiar geometry of the attractor 
Spurious exponents when N is too high 

To date, reliable algorithms for experimental calculation of all the Ai 
are wanting. The researcher should always use measured Lyapunov 
exponents with some suspicion, especially where the dimension of the 
attractor is six or higher. 

Hyperchaos 

In the introductory chapter of this book, we defined chaotic dynamics 
as a sensitivity of the time history of a system to initial conditions. 
This sensitivity is exemplified by the horseshoe map (Chapter 1 )  in 
which a small ball or cube of initial conditions in phase space is 
stretched and folded back on itself. This stretching is measured by a 
positive Lyapunov exponent. Actually, for an n-dimensional phase 
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space there are n Lyapunov exponents each measuring the relative 
stretching and contraction of the various axes of the ball of initial 
conditions. In many systems this stretching occurs along one direction 
and results in one positive Lyapunov exponent. However, in some 
systems, two or more directions in the phase space suffer stretching 
under the dynamic process. The occurrence of two or more positive 
Lyapunov exponents is called hyperchaos. One example that has 
been studied numerically is the example of two coupled Van der Pol 
oscillators (Kapitaniak and Steeb, 1991): 

i - u(I - x 2 ) i  + x3  = &sin ot + y )  

y - a ( ]  - y2)y + y 3  = b(sin ot + x) 
(6-4.32) 

Hyperchaos was studied for the values a = 0.2, o = 4.0 and for a 
variety of control parameters, for example, b = 6.5, 7.0, 8.0. This 
system must be described in a five-dimensional phase space. For b = 
7.0, Kapitaniak and Steels numerically calculated a set of Lyapunov 
exponents (0.69, 0.23, 0, -0.66, -0.94). 

This system also has multiple solutions dependent on the initial 
conditions for the case b = 7.0; the initial conditions that led to 
hyperchaos were x(0) = 1.0, X(0) = y(0) = y(0) = 0. In the case of 
b = 7.0, the above authors also show that there are four separate 
solutions; time T periodic, 3 T periodic, chaotic, and hyperchaotic 
solutions. Each has its own basin of attraction whose boundaries may 
be fractal (see Chapter 7 for a discussion of basin boundaries). 

This example shows the complexity that arises when the dimension 
of the phase space becomes greater than three. Some mathematicians 
(e.g., Rossler, 1979) believe that there are new dynamical phenomena 
to be discovered in four or more dimensions. This author believes that 
in spite of the flood of books and papers on nonlinear and chaotic 
dynamics, we are still at the beginning of an era of new knowledge in 
this field. For novitiates to the field of chaos, there is still much to be 
discovered. (See Table 6-2 for another example.) 

PROBLEMS 

6-1 Period Doubling. Use a small computer to enumerate the critical 
values of A in the logistic equation (6-3.1) and show that the 
sequences of values of A,, and a,, approach the universal num- 
bers (6-3.2) and (3-6.5). 
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6-2 Suppose an experiment on an electrical circuit exhibits a period- 
doubling bifurcation with two successive critical control volt- 
ages of 10.8 and 11.0 volts. Assume these bifurcation points are 
close to the limit point of the period-doubling sequence. Then 
(i) find the next value in the sequence and (ii) estimate the value 
of the limit point A,. 

6-3 Consider the logistic map (6-3.1). Find the period-2 map [i.e., 
xnt2 = F(x,)]. [Hint: see Eq. (6-3.6)]. Show either analytically 
or numerically that this map has two maxima. Show either 
analytically [using Eq. (6-3.5)] or numerically that the magni- 
tude of the slopes at the fixed points becomes greater than unity 
when A = A2. 

6-4 Another first-order iterated map that exhibits period doubling 
is the sine map 

x,,+ I = A sin T X , ,  0 5 x, < 1 

With a small computer, show that this map exhibits a period- 
doubling sequence and verify (6-3.2). Also show (numerically) 
that the period-2 map, x , + ~  = A sin T [ A  sin T X , ] ,  has a double 
hump similar to the quadratic or logistic map (6-3.1). 

6-5 Circle M a p  and Intermittency. The circle map was shown to be 
the high damping limit of a rotary impact oscillator [see Section 
3.5, (3-5.7)]: 

K en+ I = 8,, + R - - sin 2r8,, 8, = (mod 1) 
27r 

Here the angle of rotation is normalized by 27r. As an exercise, 
show that this map becomes multivalued when K = 1. This map 
has also been used as a model for intermittency. I n  this model, 
intermittency can occur when the above function 8,,+, = F(8, )  
is close to the identity map 8,,+ I = 8,. First assume a subinterval 
a I 8 5 b where F(8)  > 8 and IF(@ - 81 < E ,  where E is a small 
value. Estimate the number of iterations the orbit would take 
to go through this region. Second, with a small computer, find 
a value of K > 1 which exhibits this intermittent trapping phe- 
nomena (see also Berge et al., 1985). 

Homoclinic Orbits. The following cubic map was used by 6-6 
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Holmes (1979) to model the dynamic snap-through buckling of 
a thin rod under compressive load: 

X i + l  = Y ;  

y i + ,  = - b x ;  + dy;  - y ’ ,  d r O ,  b > O  

This is also a model for a particle in a double-well potential. 
Examine the fixed point (x, y )  = (0, 0) and show that it is a 
saddle point when d > 1 + b. Forb  = 0.2, use d as a parameter. 
Use a small computer to show that the stable and unstable 
manifolds do not touch for d = 2, 2.5, but become tangled for 
d > 2.6; for example, try d = 2.72, 2.77. [Hint: derive a linear 
map near (x, y )  = (0, 0) and find the slopes of the stable 
and unstable manifold. Choose many initial conditions near the 
origin along these directions to iterate the nonlinear map to 
generate the two manifolds.] 

6-7 Melnikou Criteria. The equation for the capsize of ships in seas 
with high winds and periodic beam waves has been shown to 
be modeled by a one-well potential oscillator with a saddle 
(6-3.28a). Rewriting this equation in the form (6-3.18) 

i - y = o  

y - x + x2 = ~ [ - p ’ y  + F ’ s i n o t ]  

assume that E is small and derive the criteria (6-3.28b) using the 
Melnikov function (6-3.20). As a hint, note that the unperturbed 
Hamiltonian is given by 

and that the unperturbed homoclinic orbit (i.e., the orbit that 
goes through the saddle when E = 0) is given in parametric form 

3 
I + cosht  x / J t )  = I - 

3 sinh t 
y ” ( t )  = ( I  + cosh t ) 2  
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Following Thompson (1989b), the Melnikov function can be 
written as two integrals on the line ( - - 0 3  < t < a) I , ,  12. The 
value of I, is 2/15, while the value of the second I ,  is solved 
using the calculus of complex variables and the method of 
residues. Plot the critical value of forcing amplitude versus 
frequency and show that the lowest values occur at a value of 
w < 1 .  

6-8 Multiple- Well Criterion. Consider the one-well potential prob- 
lem with an escape saddle as  the limit of an unsymmetric two- 
well potential problem. Derive a criterion for chaos from classi- 
cal nonlinear perturbation theory (e.g., Nayfeh and Mook, 1979 
or Hagedorn, 1988 similar to Eq. (6-3.46). Equate the largest 
velocity on the period-1 orbit to some large fraction (0.8-0.9) 
of the highest velocity on the unperturbed homoclinic orbit 
through the saddle (see previous problem). Compare this crite- 
rion with the Melnikov criterion (6-3.28b). Alternative problem: 
For those readers not familiar with perturbation theory, nurneri- 
cally integrate the one-well equation (6-3.28a) (e.g., using a 
Runge-Kutta algorithm) for larger and larger values of F near 
w = 1 and compare the value of F when the orbit is close to the 
separatrix, and compare their value with the Melnikov value 

6-9 Lyupunov Exponents. Given A = 1.2 for a certain first-order 
map. Then how many iterations does it take for the average 
distance between two initially close orbits to grow by 60 db? 

6-10 Lyapunov Exponents. Suppose a physical system admits a 
piecewise linear first-order map in three nonoverlapping subin- 
tervals ul < x < (12; b ,  < x < 6,; c ,  < x < c2.  Also assume that 
the probability density function for a chaotic attractor generated 
by this map has piecewise constant values in these three subin- 
tervals and is zero elsewhere. Use (6-4.17) to estimate the Lya- 
punov exponent. 

(6-3.28b). 
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7 
FRACTALS AND 
DYNAMICAL SYSTEMS 

Do you see 0 my brothers and sisters:) I t  is not chaos or dealh- 
it is form, union, plan-it is eternal life-it is Happiness. 

Walt Whitman 
Leaves of Grass 

7.1 INTRODUCTION 

Both “chaotic” and “strange attractor” have been used to describe 
the nonperiodic, randomlike motions that are the focus of this book. 
Whereas “chaotic” is meant to convey a loss of information or loss of 
predictability, the term “strange” is meant to describe the unfamiliar 
geometric structure on which the motion moves in phase space. In  
Chapter 6, we described a quantitative measure of the chaotic aspect 
of these motions using Lyapunov exponents. In this chapter, we will 
describe a quantitative measure of the strangeness of the attractor. 
This measure is called thefractal dimension. To do this, we will have 
to describe the concept of fractal as it pertains to our applications. In 
addition to the application of fractal ideas to the description of the 
attractor itself, it has been discovered that other geometric objects in 
the study of chaos, such as the boundary between chaotic and periodic 
motions in initial condition or parameter space, may also have frac- 
tal properties. Thus, we will also include a section onfractal basin 
boundaries. 

325 
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At the beginning of this book, we noted that the revolution in 
nonlinear dynamics has been sparked by the introduction of new 
geometric, analytic, and topological ideas which have given experi- 
mentalists (including numerical analysts) new tools to analyze dynami- 
cal processes. This in some ways parallels the earlier Newtonian 
revolution which introduced the calculus into dynamics. (Of course, 
Newton contributed much more by proposing new physical laws along 
with new mathematics.) Thus, in some sense, we are entering the 
second phase of the Newtonian revolution in dynamics, and new 
geometric concepts like fractals must be mastered if one is to use the 
results of the new dynamics in practical problems. 

Perhaps the most singular characteristic of chaotic vibrations in 
dissipative systems is the Poincare map. These pictures provide a 
cross section of the attractor on which the motion rides in phase space 
and when the motion is chaotic, a mazelike, multisheeted structure 
appears. We have learned that this threadlike collection of points 
seems to have further structure when examined on a finer scale. To 
characterize such Poincare patterns, we have used the term fructul. 
In this chapter we will try to make the mathematical meaning of fractal 
more precise. However, this treatment is not rigorous. Instead, what 
follows is one engineer’s attempt to understand fractal structures and 
how to apply them to chaotic dynamics. 

In the following section, we will begin with a few simple examples 
of fractal curves and sets, namely, Koch curues and Cantor sets. We 
will also introduce a quantitative measure of fractal qualities: the 
fractal dimension. Then we will illustrate these concepts in several 
applications in nonlinear and chaotic vibrations. 

The author presumes that the reader has no prior knowledge of set 
theory or topology beyond engineering mathematics at the baccalaure- 
ate level. 

For the reader who wants to study more about fractals, there are 
now several excellent texts to use. Two books which have already 
become classics are the treatise by Mandelbrot (1982) and the beautiful 
colorful tour of fractal sets by Peitgen and Richter (1986). However, 
those who desire a more mathematical treatment may find a very 
readable book in Falconer (1990) or Barnsley (1988). The latter book 
provides both mathematical and computational tools for the reader 
who wishes to play with fractals on  the computer. A very readable 
introductory text on fractals in that by Peitgen et al. (1992). Finally, 
there is a treatment oriented toward applications of fractals in the 
physical sciences by Feder (1988). 
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Koch Curve 

This example is chosen from the book by Mandelbrot (1977) and was 
originally described by von Koch in 1904. One begins with a geometric 
construction that starts with a straight line segment of length 1. After 
dividing the line into three segments, one replaces the middle segment 
by two lines of length 1/3 as shown in Figure 7-1. Thus, we are left 
with four sides, each of length 1/3, so that the total length of the new 
boundary is 4/3. To get a fractal curve, one repeats this process for 
each of the new four segments and so on. At each step, the length is 
increased by 4/3 so that the total length approaches infinity. After 
many steps, one can see that the curve looks fuzzy. In fact, in the 
limit one has a continuous curve that is nowhere differentiable. In 
some sense, this new curve is trying to cover an area as would a young 
child scribbling with crayons. Thus, we have the apparent paradox of 
a continuous curve that has some properties of an area. It is not 
surprising that one can define a dimension of this fractal curve which 
results in a value between I and 2. 

Cantor Set 

The Cantor set is attributed to George Cantor (1845-1918), who dis- 
covered it in 1883. It is a very important concept in modern nonlinear 
dynamics. If the Koch curve can be considered a process of adding 
finer and finer length structure to an initial line segment, then the 
Cantor set is the complement operation of removing smaller and 
smaller segments from a set of points initially on a line. 

The construction begins as in the previous example with a line 
segment of length 1 which is subdivided into three sections as in Figure 
7-2. However, instead of adding two more segments as in the Koch 
curve, one removes the middle segment of points so that the total 
number of segments is increased to two, and the total length is reduced 

Figure 7-1 Partial construction of a fractal Koch curve. 
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Figure 7-2 Top ro bottom: Sequential steps in the construction of a Cantor set. 

to 2/3. This process is continued for the remaining line segments and 
so on. At each stage one throws away the middle segments of points, 
creating twice as many line segments but reducing the total length by 
2/3. In the limit the total length approaches 0, although as we shall see 
below, the fractal dimension of this set of points is between 0 and I .  

The Devil's Staircase 

The discontinuous fractal Cantor set can be used to generate a continu- 
ous fractal function by integrating an appropriate distribution function 
defined on the set. For example, we imagine a distribution of mass on 
the interval 0 5 x 5 1 with total mass equal to 1 in some units. Then 
if we redistribute the mass on the remaining Cantor intervals, at 
each step of the limiting process the mass density increases on the 
decreasing Cantor intervals such that the total mass is 1. At the nth 
step, the number of intervals is 2" each of length (1/3)n so that the 
density is (3/2)". Integrating the mass density along x, we obtain the 
mass as a function of x: 

where pn = (3/2)" on the Cantor intervals and pn = 0 otherwise. The 
limit of this process as n + co is a function called the devil's stuircuse 
which has an infinite number steps. One intermediate function M , ( x )  
is shown in Figure 7-3. 

In the limit, M ( x )  = lirn,,-,Jl"(x). The expression dM(x) /dx  is an 
infinite set of delta functions. 
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Figure 7-3 Devil’s staircase function 

Fractal Dimension 

Thus far we have two examples of fractal sets but do not have any 
test to determine if a set of points is fractal. To classify the Poincare 
map of some nonlinear system, we need some quantitative measure 
of the fractal nature of the attractor. 

There are many measures of the dimension of a set of points. We 
will describe a very intuitive or geometric definition called the capacity 
or box-counting dimension. Other definitions, which incorporate 
deeper mathematical subtleties, may be found in Mandelbrot’ (1977), 
Farmer et al. (1983), or Feder (1988) as well as in the next section. We 
begin with the measurement of the dimension of points along a line or 
distributed on some area. 

First consider a un$orrn distribution of No points along some line 
or one-dimensional manifold in a three-dimensional space, as shown 
in Figure 7-4. We then ask how we can cover this set of points with 
small cubes with sides of length E .  (One can also use spheres of 
radius E . )  To be more specific, we calculate the minimum number of 
such cubes N ( E )  to cover the set ( N ( E )  < No). When No is large and 
E small enough, the number of cubes to cover a line will scale as 

1 N(E) = - 
& 

I B .  Mandelbrot is a mathematician with IBM Corp., Yorktown Heights, N e w  York. 
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Figure 7-4 Covering procedure for linear and planar distributions of points. 

Similarly, if we distribute points uniformly on some two-dimen- 
sional surface in three-dimensional space, one will find that the mini- 
mum number of cubes to cover the set will scale in the following way: 

1 N(&) = - 
E2 

If the reader is convinced that this is intuitive, then it is natural to 
define the dimension by the following scaling law: 

1 N(&) =- 
Ed 

(7-1.1) 

Taking the logarithm of both sides of Eq. (7-1.1) and adding a subscript 
to denote capacity dimension, we have 

(7- 1.2) 

Implicit in this definition is the requirement that the number of points 
in the set be large or No + m. 

A set of points is said to be fractal if its dimension is non- 
integer-hence the term fractal dimension, 

In the two examples of the Koch curve or Cantor set, the fractal 
dimension can be calculated exactly. For example, consider the nth 
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iteration of the generation of the Koch curve where we let the size of 
the cubes be equal to the length of a straight line segment. At the nth 
step in the construction, the number of segments is 

N,, = 4” 

where the size E is given by 

Replacing the limit E + 0 with n + w in Eq. (7-1.2), one can easily see 
that for the Koch curue 

log4 - 
log 3 

d,. = - - 1.26185 ... 

Similarly, one can show that for the Cuntor set 

d,. = - log - - 0.63092 ... 
log 3 

(7-1.3) 

(7- 1.4) 

One way to interpret the fractal dimension of the Koch curve is that 
the distribution of points cover more than a line but less than an area. 
Another fractal-producing process that begins with an area distribution 
of points is shown in the exercise in Figure 7-5 called the Sierpinski 
triangle (Named after the Polish mathematician Waclaw Sierpinski, 
1882-1969). At each step one removes a triangular area, creating three 
new triangles, but the scale is half the size of the original. One can 
show that this process leads to a fractal dimension of d,. = log 3/log 2. 

The connection between dynamics and fractals may not be evident 
so far, but in each of the three examples above, one has an iterative 
process. The relationship between fractals and iterative maps is made 
more explicit with the following two examples. 

The horseshoe mup has been discussed earlier in Chapters 1 ,  3 and 
6 and is shown graphically in Figure 7-6. It is perhaps the simplest 
example of an iterative dynamical process in the plane that leads to a 
loss of information and fractal properties. 

The calculation of the capacity fractal dimension is similar to that 
for the Cantor set except that the vertical direction leads to a contribu- 
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Another example for which one can calculate the fractal properties 
is the baker’s transformation two-dimensional map (Figure 6-33). This 
example may be found in Farmer et al. (1983) and is similar to the 
horseshoe map. Its name derives from the idea of a baker rolling, 
stretching, and cutting pastry dough as shown in Figure 6-33. In this 
example, one can write out the specific difference equation or mapping 
relating a piece of dough at position (x,, yl,) to its new position in one 
iteration: 

(7-1.6) 

where 0 5 x, 5 I and 0 I y, 5 1 .  
The article by Farmer et al. (1983) is very readable, so we will not 

present the details but will quote the results. The problem is used by 
Farmer et al. to show the difference between different definitions of 
fractal dimension. They define the following function: 

I H ( a )  = d o g -  + ( 1  - 
(Y 

I 
I - a  

a)log - 

Using the definition of capacity, they find that 

d,. = I + d, 

where & satisfies a transcendental equation 

When A, = Ah = A ,  

(7-1.7) 

(7-1.8) 

(7- I .9) 

(7-1.10) 

which is independent of a and identical to that for the horseshoe map 

Other examples of iterated maps which produce fractal distribution 
of points are found in Barnsley (1988). Barnsley showed how simple 

(7-1.5). 
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maps can produce natural-looking fractal objects such as trees, ferns, 
and clouds. 

It is probably safe to say that artists have intuitively understood the 
nature of fractal properties of nature, especially the impressionists in 
the way they used dots of color to achieve different effects of filling 
Euclidean space. In a more recent example, an advertisement in a 
popular magazine featured a Japanese artist whose design for a kimono 
material shows these fractal properties quite clearly (Figure 1-28). 

7.2 MEASURES OF FRACTAL DIMENSION 

There are two criticisms of the use of capacity as a measure of fractal 
dimension of strange attractors-one theoretical and the other compu- 
tational. First, capacity dimension is a geometric measure; that is, it 
does not account for the frequency with which the orbit might visit 
the covering cube or ball. Second, the process of counting a covering 
set of hypercubes in phase space is very time-consuming computation- 
ally. In this section we will discuss three alternative definitions of 
fractal dimension which will address the shortcomings of the capacity 
or box-counting dimensions. However, it should be pointed out that 
for many strange attractors these different dimensions give roughly 
the same value. 

Pointwise Dimension 

Let us consider a long time trajectory in phase space as shown in 
Figure 7-7. First, we time sample the motion so that we have a large 
number of points per orbit. Second, we place a sphere or cube of 
radius or length r at some point on the orbit and count the number of 
points within the sphere N ( r ) .  The probability of finding a point in this 
sphere is then found by dividing by the total number of points in the 
orbit N o ;  that is, 

(7-2.1) 

For a one-dimensional orbit, such as a closed periodic orbit, P ( r )  will 
be linear in r as r + 0, No + 00; P ( r )  = br. If the orbit were quasiperi- 
odic, that is it moves on a two-dimensional toroidal surface in a three- 
dimensional phase space, then the probability of finding a point on the 
orbit in a small cube or sphere of radius r would be P ( r )  = br2.  This 
leads one to define a dimension of an orbit at a point x i  (here xi  is a 
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I - 

trajectory 

Time-sampled data 

Figure 7-7 Long-time trajectory of motion in phase space showing the time-sampled 
data points and the counting sphere. 

vector in phase space) by measuring the relative percentage of time 
that the orbit spends in the small sphere; that is 

log P ( r ;  X i )  
dp = lim 

,-.o logr 
(7-2.2) 

For some attractors, this definition will be independent of the 
point x i .  But for many, d p  will depend on xi and an averaged pointwise 
dimension is best used. Also, for some sets of points such as a Cantor 
set, there will be gaps in the distribution of points so that P ( r )  is not 
a smooth function of r as r + 0, as can be seen in the Devil’s staircase 
in Figure 7-3. 

To obtain an averaged pointwise dimension, one randomly chooses 
a set of points M < Noand calculates dp(xi) at each point. The averaged 
pointwise dimension is given by 

(7-2.3) 

As an alternative, one can average the probabilities P ( r ;  x i ) .  Choose 
a random subset of M points distributed around the attractor, where 
M << N o .  We then conjecture that 
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or 

log( I /M)ZP(r) dp = lim 
-0 log r 

In practice, if No = 103-104 points, then M = 102-103. 

Correlation Dimension 

This measure of fractal dimension has been successfully used by many 
experimentalists [e.g., see Malraison et al. (1983), Swinney (1983, 
Ciliberto and Gollub (19851, and Moon and Li (1985a)l and in some 
ways is related to the pointwise dimension. An extensive study of this 
definition of dimension has been given by Grassberger and Proccacia 
(1983). 

As in the definition of pointwise dimension, one discretizes the orbit 
to a set of N points { x i }  in the phase space. (One can also create 
a pseudo-phase-space; see Chapter 5 and next section.) One then 
calculates the distances between pairs of points, say sij = Ixi - x j l ,  
using either the conventional Euclidean measure of distance (square 
root of the sum of the squares of components) or some equivalent 
measure such as the sum of absolute values of vector components. A 
correlation function is then defined as 

number of pairs (i, j )  
with distance sij < r C(r )  = lim - (7-2.4) 

For many attractors this function has been found to exhibit a power 
law dependence on r as r -+ 0; that is, 

limC(r) = urd 
-0 

so that one may define a fractal or correlation dimension using the 
slope of the In C versus In r curve: 

(7-2.5) 

It has been shown that C(r )  may be calculated more effectively by 
constructing a sphere or cube at each point xi  in phase space and 
counting the number of points in each sphere; that is, 
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(7-2.6) 

where H(s)  = 1 if s > 0 and H ( s )  = 0 if s < 0. This differs from the 
pointwise dimension in that the sum here is performed about every 
point. 

Information Dimension 

Many investigators have suggested another definition of fractal dimen- 
sion that is similar to the capacity (7- I .2) but tries to account for the 
frequency with which the trajectory visits each covering cube. As in 
the definition of capacity, one covers the set of points, whose dimen- 
sion one wishes to measure, by a set of N cubes of size E .  This set of 
points is again a uniform discretization of the continuous trajectory. 
( I t  is assumed that a long enough trajectory is chosen to effectively 
cover the attractor whose dimension one wants to measure. For exam- 
ple, if the motion is quasiperiodic, the trajectory has to run long 
enough to ‘‘visit’’ all regions on the toroidal surface of the attractor.) 

To calculate the information dimension, one counts the number of 
points N ,  in each of the N cells and determines the probability of 
finding a point in that cell Pi, where 

N N .  
p. G C P ; =  I ‘ No’  

(7-2.7) 

where No is the total number of points in the set. Note that No # N. 
The information entropy is defined by the expression 

N 

I ( & )  = - c P;log P, (7-2.8) 

[When the log function is with respect to base 2, I ( & )  has the units of 
bits.] For small E it is found that I behaves as 

I = d,log( I / & )  

so that for small E we may define a dimension 

cP;logPi 
= lim I ( & )  d, = lim 

-0 log(l/c) log & 
(7-2.9) 
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To see that this definition is related to the capacity, we note that if 
the probabilities Pi were equal for all cells, that is, 

(7-2.10) 

then 

so that dI = d , .  In general, it can be shown that (see Farmer et al., 
1983) 

d, 5 d,. (7-2.1 I )  

Further discussion of the information dimension may be found in 
Farmer et al. (1983), Grassberger and Proccacia (1983), and Shaw 
(1984). 

The information entropy is a measure of the unpredictability in a 
system. That is, for a uniform probability in each cell, Pi = lIN, I is 
at a maximum. If all the points are located in one cell (maximum 
predictability), I = 0 as can be seen by the calculation 

ForPi = I/N, 

For P, = 1, Pi = 0, i # I ,  

I = logN 

I = I log 1 = 0 

Definition (7-2.8) and the use of the symbol I ( & )  are confusing in the 
literature. Shaw (1981) used the symbol H to denote entropy and I to 
denote the negative entropy ( -  H )  or information. Thus, for Shaw, 
a more predictable system (i.e., sharper Pi distribution) has higher 
information. 

Relationship Between Fractal Dimension and Lyapunov Exponents 

Thus far we have defined the following fractal dimensions: 

d, the capacity (7-1.2) 
d p  pointwise dimension (7-2.2)  
dG correlation dimension (7-2.5) 
dI information dimension (7-2.9) 
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Grassberger and Proccacia (1983) have shown that the information 
dimension and the correlation dimension are lower bounds on the 
capacity definition; that is, 

d,  5 d, 5 d,  (7-2.12) 

For many of the standard strange attractors, however, all three were 
very close (see Table 7-1). 

In summary, one can say that the capacity dimension takes no 
account of the distribution of points between covering cells, whereas 
the information entropy dimension measures the probability of finding 
a point in a cell. Finally, the correlation dimension accounts for the 
probability of finding two points in the same cell (e.g., see Grassberger 
and Proccacia, 1984). 

A further relationship betweeen fractal dimension, information en- 
tropy, and Lyapunov exponents was made by Kaplan and Yorke 
(1978). We recall from Chapter 6 that the Lyapunov exponents mea- 
sure the rate at which trajectories on the attractor diverge from one 
another and trajectories offthe attractor converge toward the attractor 
(e.g., see Figure 6-32). Thus, a small sphere of initial conditions cen- 
tered at some point on the attractor in phase space is imagined to 
deform in time under the dynamical process into an ellipse. For exam- 
ple, for a chaotic two-dimensional map, 

X" + I = fb,) (7-2.13) 

a circle of initial conditions (with radius E )  deforms into an ellipse after 
M iterations of the map. The major and minor radii are given by 

TABLE 7-1 Fractal Dimension of Selected Dynamical Systems 

Name of Systems Dimension Type Source of Data 
_____ ~ ~ ~ _ _ _ _ _  

Henon map (1-3.8) 
(a = 1.4, b = 0.3) 

Logistic map (1-3.6) 
(A = 3.5699456) 

Lorenz equations 

Two-well potential 
(1-3.9) 

[Eq. (6-3.7)],f = 0.16, 
w = 0.8333) 

Chua's circuit 

1.26 
1.21 2 0.01 
0.538 
0.500 2 0.005 
2.06 2 0.01 
2.05 2 0.01 
2.14 ( y  = 0.15) 

2.61 (y  = 0.06) 
2.82 

~ 

Capacity 

Capacity 

Capacity 

Correlation 

correlation 

correlation 

correlation 

L yapunov 

~~ ~~ 

Grassberger and 
Proccacia (1983) 

Grassberger and 
Proccacia (1983) 

Grassberger and 
Proccacia (1983) 

Moon and Li (1985a) 

Matsumoto et al. 
(1985) 
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Ly E and Ly  E .  When LI  and L2 are averaged over the whole attractor, 
they are referred to as Lyapunov numbers, and A; = log L; are called 
the Lyapunov exponents. 

Kaplan and Yorke (1978) (see also Farmer et al., 1983)* have sug- 
gested that one can calculate a dimension for a fractal attractor based 
on the Lyapunov exponents. For a two-dimensional map this dimen- 
sion becomes 

(7-2.14) 

For higher-dimensional maps in an N-dimensional phase space, the 
relation is more complicated. First we order the Lyapunov numbers; 
that is, 

Then find Lk such that the product is 

The Lyapunov dimension is defined to be 

(7-2.16) 

Kaplan and Yorke (1978) suggested that this is a lower bound on the 
capacity dimension; that is, 

dL 5 d, (7-2.17) 

As an example, consider a three-dimensional set of points generated 
by a Poincare map of a fourth-order set of first-order differential 
equations with dissipation. If the attractor is strange, we assume 

L, > I ,  L2 = I ,  L, < 1 

For example, one principal axis of the ellipsoid of initial conditions 
grows, one stays the same length, and one axis contracts. Also, be- 

* Note that Farmer et al. (1983) used A to  denote the Lyapunov number, not the 
Lyapunov exponent. 
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cause the system is dissipative, the volume of the ellipsoid must 
be less than that of the original sphere of initial conditions so that 
L,L2L3 < 1. This leads us to use k = 2 in Eq. (7-2.16) and 

(7-2.18) 

The usefulness of this formula for experimental data is unclear at 
this time because it is not easy to obtain a measurement of the contrac- 
tion Lyapunov number L3 (e.g., see Wolf et al., 1985). 

A comparison of the different definitions of fractal dimension for 
the baker’s transformation (7-1.6) has been given by Farmer et a]. 
(1983). This example is one of the few dynamical systems for which 
one can analytically calculate the properties of the chaotic dynamics. 
They show that the Lyapanov dimension (7-2.20) is equal to the infor- 
mation dimension (7-2.9) and is given by 

where p = 1 - a. When A, = hb one can show that 

d , = d L =  1 + H ( 4  
log( 1 /A)  

(7-2.20) 

Furthermore, if a = 4, then H ( a )  = log 2 and 

In some ways, (Y and A,/Ab represent inhomogenity factors in the 
map. When (Y = $ and A,/Ab = 1 ,  the map is like the horseshoe or 
Cantor maps and all these definitions of dimension d,, dL, d,. become 
equal. The implications are that different definitions of fractal dimen- 
sion are likely to yield different results when the dynamical process 
leads to a “nonuniform” Poincare map. 

7.3 FRACTAL-GENERATING MAPS 

The title of this text, Chaotic and Fractal Dynamics, may be provoca- 
tive to some dynamicists. The meaning of this term has two interpreta- 
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tions. First, a modern understanding of chaotic dynamics requires 
some knowledge of fractal mathematics. Second, whereas fractals can 
be studied independently of dynamics, the creation of fractal sets is 
closely linked with iterative processes as illustrated above for the 
baker’s map. And these iterative processes which lead to the unpre- 
dictability inherent in fractal mathematics are close analogs of the 
dynamic processes in physics that also lead to fractal structures. 

Iterated Linear Maps 

It is now accepted that many geometric objects in the natural world 
have fractal-like shapes and surfaces such as coastlines, clouds, moun- 
tain ranges, certain trees, and leaves. In a recent book, Barnsley (1988) 
showed how one can recreate these shapes using iterated linear maps 
and made a very nice connection between the static fractal objects 
and the dynamical equations that generate them. In this section, we 
try to outline a few of these ideas in the hope that it may inspire the 
reader to delve deeper into these techniques. One potential application 
of these dynamical methods of generating fractals is the concept of 
data compression. Thus, if one wants to send a good picture of a 
fractal-like object (e.g., a landscape) instead of using a high-resolution 
image scanner (TV camera) with upwards of lo6 pixels of data, Barns- 
ley and his associates propose to send the mathematical equations 
(with perhaps only lo2 bytes of information) which can dynamically 
generate an approximation of the landscape after transmission. 

To get an idea of this technique, we have to recall some of the 
properties of linear maps. These maps take the form 

A‘ = TA (7-3.1) 

where for 2-D planar maps A represents a point in the initial area and 
A’ represents the new point under the matrix operation T: 

(7-3.2) 

As discussed in Chapter 3, a linear map can contract or expand, rotate, 
shear, or reflect an area collection of points. Of course, the iteration 
of one linear map cannot create a fractal object or a chaotic orbit; 
however, a sequence of different linear maps can. One example is the 
Cantor set discussed above. The step-by-step process of contracting 
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the current set of points along the line and replicating it twice can be 
written as two linear maps o, , w2 ; that is 

A' = WA 
2 

i =  I 
w =  uo; 

(7-3.3) 

The notation U oi means that first o, is applied to the set of points A ,  
and then w2 is applied to A and the new set of points A' is the union 
of the two sets w , A ,  02A.  In this case there is no overlap (see Figure 
7-8). [See Barnsley (1988) for a discussion of overlapping linear maps.] 
Thus, the dynamical process that generates the Cantor set can be 
written as a map that acts on a set of points: 

This differs from Chapter 3, where the map acts on a position vector 
x thereby generating a single orbit {x,,; n = 1,  2, ..., m}. The map 
(7-3.4) generates a dense bitndle of orbits. 

Under suitable assumptions, repeated application of the mapping 
A,,+I = WA,, leads to an attractor. This means that starting from 
different sets A , ,  A ;  one ends up with the same set A .  This property 
is illustrated in Figure 7-10 for the Sierpinski triangle. After many 
iterations, each point in the initial set A ,  undergoes an orbit. However, 

t 

t 
Figure 7-8 Sketch of the action of a set of nonoverlapping linear maps. 
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Figure 7-9 Sierpinski triangle generated by application of a set of three linear maps 
(7-3 3. 

any attempt to trace this orbit back through the order of transforma- 
tions [wi, w j ,  ok ,  . . . I  is very complex (see Figure 7-9). It has been 
shown (Barnsley, 1988) that such an orbit looks random. This is similar 
to the result for the horseshoe map. 

Another example of the generation of a fractal set in the plane is 
given by the following map: (Barnsley, 1988) 

(7-3.5) 

A B C D E F  
0 1 :  0.5 0 0 0.5 1 1 

~ 2 :  0.5 0 0 0.5 50 1 

~ 3 :  0.5 0 0 0.5 50 50 

Iteration of this set of linear transformations generates the fractal 
called the Sierpinski gasket, which is somewhat like a planar sponge 
(Figures 7-5, 7-9, 7-10). This method of generating a fractal can be 
computationally very time-consuming, because at every iteration cy- 
cle all three linear maps must act on all the points which define A. 
Another method, however, makes use of the chaotic nature of the 
orbits in this iteration process. 

The generation of the Cantor set using the sum of two linear transfor- 
mations is not unlike the dynamical process of the horseshoe map 
described in Chapters 1 and 3. Here the contraction operation of the 
horseshoe is represented by the f x  terms in wl, w2 [Eq. (7-3.3)], 
whereas the bending operation is represented by adding the second 
map 02, which replicates the set o,A and shifts it by 3. It can 
be shown (e.g., Guckenheimer and Holmes, 1983 or Barnsley, 1988) 
that horseshoe-type maps contain an infinite set of chaotic orbits 
which jump from one half of the domain (0 s x 5 4) to the other half 
(1 < x 5 1) as if it were equivalent to a random coin toss operation. 
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Using this property, Barnsley then constructed an algorithm to gener- 
ate fractal sets based on asingle orbit x,, = (x,, y , ) .  If the generating 
functions contain k linear maps {w;;  i = 1 ,  2, ..., k } ,  then the orbit is 
given by 

X n t I  = v, (7-3.6) 

where the particular linear map at each iteration step is chosen at 
random, that is 

I = 1 + Integer[k * Random Number [0, 11 - 

One can also bias some of the mi more than others by using a set of 
probabilities { p i }  where X p i  = 1 so that each wi is given a different 
probability weight. An example is shown in Figure 7-5, which shows 
a sequence of images as the iteration progresses. Further discussion 
of these fascinating ideas is beyond the scope of this book, and the 

Figure 7-10 
(7-3.5) starting from two different initial sets of points (From Barnsley, 1988). 

Sequence of images generated by a system of iterated linear maps 
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reader is encouraged to look at the many color images in the Barnsley 
text. 

It is interesting to note that fractal objects can be created with both 
deterministic and random dynamic processes. It is this author’s belief 
that the random processes are substitutes for unknown deterministic 
dynamics as is the case with the two iterated map algorithms. What 
is amazing, in either the deterministic chaotic models or the random 
models, is the global fractal structure that results. These mysteries 
between determinism, chaos, randomness, and fractals will keep both 
dynamicists and philosophers busy into the next century. 

Analytic Maps on the Complex Plane 

Many readers have perhaps seen the beautiful multicolor fractal pic- 
tures associated with the name of Mandelbrot (1982) (e.g., see Peitgen 
and Richter, 1986). These pictures are associated with a two-dimen- 
sional map involving the complex variable z = x + iy, 

Z,+I = 2: + c (7-3.7) 

where c = a + ib is complex. In terms of real variables, this map 
becomes 

(7-3.8) 

This map looks similar to other 2-D maps studied in this book where 

(7-3.9) 

However, in the case of the complex map (7-3.8), F = f + ig is an 
analytic function of z. This means that a derivative dF(z)ldz exists 
and that the functions f ( x ,  y )  and g ( x ,  y )  satisfy 

(7-3.10) 
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or 

In general, the 2-D maps studied earlier in the book do not satisfy 
these conditions. Thus, the quadratic complex map (7-3.7) and more 
general complex maps z,,+] = F(z , , )  are very special maps and have 
been found to have incredible complex dynamics and geometric prop- 
erties (e.g., see Devaney, 1989). 

Because this is an introductory book, we will briefly describe two 
geometric properties of complex maps: Julia sets and the Mandelbrot 
set. 

Julia Sets. As with other maps, one can define fixed points and peri- 
odic or cycle points by the relations 

z = F ( z )  and z = FP(z)  (7-3. I I )  

where the superscript p indicates the application or composition of 
the map p times. Also, one can study the stability of each of these 
fixed points by looking at the derivative 

d 
dz 

A = - F ” ( z )  (7-3.12) 

It  can be shown that the fixed point is attracting or repelling depending 
on whether [A1 < 1 or \ A /  > 1 (see Devaney, 1989). 

The Julia set of a complex map F ( z ) ,  sometimes denoted by J ( F ) ,  
is the set of all the repelling fixed or periodic points. In the case of the 
map F ( z )  = z 2 ,  one can show that J ( F )  is a circle about the  origin. 
That a dynamical system can have a continuous ring of unstable 
fixed points is not unusual. For example, a particle in a cylindrically 
symmetric potential U = ur2( I - i r 2 )  has a circle of unstable saddles 
o n r  = 1 .  

The interesting property about these complex maps, however, is 
that by adding a constant to F ( z )  = z2 + c, the Julia set becomes 
wrinkled or fractal. For example, if IcI < i, the J ( F )  is still a closed 
curve but contains no smooth arcs (Devaney, 1989). This is illustrated 
in Figure 7- 1 1. For larger values of (c  1 the Julia set becomes even more 
interesting as illustrated by the case c = - I in Figure 7-12. Here we 
see a fractal necklace with infinitely many loops. One can also show 
that once on the Julia set, further iterations of the map keep one on the 
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Figure 7-11 Julia set for IcI < 1 in z,+, = z i  + c-. 

set [i.e., J ( F )  is invariant]. It has also been shown that the dynamics on 
this set are chaotic; that is, there is sensitivity to initial conditions. 

Because the real and imaginary parts of the mapping function F ( z )  
satisfy Laplace’s equation [Eq. (7-3. lo)], attempts have been made to 
interpret these Julia sets in terms of electric charge potentials. How- 
ever, it is difficult to find a physical analog to the dynamic equations 
z,,+~ = F(z , ) ,  when z is complex. However, the chaotic dynamics of 
repeller potentials, as in particle scattering problems, have received 
attention in recent years. 

Although the study of chaos and complex maps appears to be a 
modern subject, the mathematics of repelling sets in complex maps 
has its origins in the work of mathematicians Julia and Fatou around 
the close of the 19th century. 

Mandelbrot Sets. Whereas the Julia set is described in the plane of 
the state variables (x, y )  of the complex map I,,+ I = F(z,) ,  the Mandel- 
brot set is described in the parameter space (a, b )  of the control 
variable c = a + ib in the complex quadradic map F ( z )  = z2  + c. In 
constructing the Mandelbrot set, one fixes the initial conditions zo = 
0 or (x, y )  = (0, 0) and looks for complex parameter values for which 
the iterates of the map do not go to infinity. This set is shown as the 
dark pattern in Figure 7-13 and Color Plate 3. Each color outside the 
set represents a given number of iterations for the vector z to go 
beyond a certain prefixed radius. What is remarkable about this set is 
the fractal nature of the boundary, which contains smaller versions of 
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P 

( 1 ) )  

Figure 7-12 
Enlargement of points in the box in (a).  

( ( 1 )  Julia set for the case c = - I for the map z,,+, = + c ;  ( h )  

the Mandelbrot set as one looks at the surface with a larger and larger 
computer microscope. 

When c is real, then initial conditions on the real z axis, y = 0, yield 
a one-dimensional map = xt  + a .  One can show that this map 
is equivalent to the logistic map x,,+ = A x , (  1 - x,) and that period- 
doubling bifurcations occur as one moves along the real axis in the 
Mandelbrot set. 

Again, although the physical relevance of these complex maps is 
not transparent at this time, they have served as a dramatic visual 
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Figure 7-13 Mandelbrot set for the map z , ,+ ,  = z:, + c .  (Courtesy of J .  Hubbard, 
Cornell University.) 

paradigm about the intimate connection between dynamical systems 
and fractals and how incredible patterns of complexity can occur from 
simple mathematical models. 

7.4 FRACTAL DIMENSION OF STRANGE ATTRACTORS 

There are two principal applications of fractal mathematics to nonlin- 
ear dynamics: characterization of strange attractors and measurement 
of fractal boundaries in initial condition and parameter space. In this 
section, we discuss the use of the fractal dimension in both numerical 
and experimental measurements of motions associated with strange 
at t ractors. 

As yet, there are no instruments, electronic or otherwise, which 
will produce an output proportional to the fractal dimension, although 
electro-optical methods may achieve this end in the future (see Section 
7.5). To date, in both numerical and experimental measurements, the 
fractal dimension and Lyapunov exponents are found by discretizing 
the signals at uniform time intervals and the data are processed with 
a computer. There are three basic methods: 

(a) Time discretization of phase-space variables 
(b) Calculation of fractal dimension of Poincare maps 
(c) Construction of pseudo-phase-space using single variable mea- 

surements (sometimes called the embedding space method) 
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In both the first and third methods, the variables are measured and 
stored at uniform time intervals {x( to  + n7)} ,  where n is a set of 
integers. The time interval 7 is chosen to be a fraction of the principal 
forcing period or characteristic orbit time. If the Poincare map in (b) 
is based on a time signal, then the 7 is just the period of the time-based 
Poincare map. However, if the Poincard map is based on other phase- 
space variables, then the data are collected at variable times depending 
on the specific type of Poincare map (see Chapter 5 ) .  

There are three principal definitions of fractal dimension used today: 
averaged pointwise dimension, correlation dimension, and Lyapunov 
dimension. In  most of the experience with actual calculation of fractal 
dimension, 20,000 or more points are used, though several papers 
claim to have reliable algorithms based on as little as 1000 points (e.g., 
see Abraham et al., 1986). Direct algorithms for calculating fractal 
dimension based on No points generally take N i  operations so that 
superminicomputers or mainframe computers are often used. How- 
ever, clever use of basic machine operations can reduce the number 
of operations to order No In No and significantly speed up calculation 
(e.g., see Grassberger and Proccacia, 1983). 

Discretization of Phase-Space Variables 

Suppose we know or suspect a chaotic system to have an attractor in 
three-dimensional phase space based on the physical variables { x ( t ) ,  
y ( r ) ,  z ( t ) } .  For example, in the case of the forced motion of a beam or 
particle in a two-well potential (see Chapter 2), x = position, u = .i 
is the velocity, and z = of is the phase of the periodic driving force. 
In this method, time samples of ( x ( t ) ,  y ( t ) ,  z ( t ) )  are obtained at a rate 
that is smaller than the driving force period. To each time interval 
there corresponds a point x, = ( x ( n 7 ) ,  y ( n 7 ) ,  z (n7))  in phase space. 

To calculate an averaged pointwise dimension, one chooses a num- 
ber of random points x, . About each point one calculates the distances 
from x, to the nearest points surrounding x,. (Note that these points 
are not the nearest in time, but in distance.) One does not need to use 
a Euclidean measure of distance. For example, the sum of absolute 
values of the components of (x, - x,) could be used; that is, 

Then the number of points within a ball, cube, or other geometric 
shape of order E is counted and a probability measure is found as a 
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function of e :  

(7-4.2) 

where No is the total number of sampled points and His the Heaviside 
step function; H(r)  = 1 if r > 0; H ( r )  = 0 if r < 0. The averaged 
pointwise dimension, following Eq. (7-2.3), is then 

(7-4.3) 

where the limit defining d, exists. For some attractors, the function 
P ,  versus E is not a power law but has steps or abrupt changes in 
slope. Then one can calculate a modified average pointwise dimension 
by first averaging P , .  For example, let 

log C ( e )  d = lim 
-0 loge 

(7-4.4) 

This is similar to the correlation dimension discussed in the previous 
section. 

The example of the two-well potential (6-2.2) is shown in Figure 
7-14a,b using the correlation dimension. This dimension is computed 
from numerically generated data using the equation x = y, j ,  = 
- 6 y  - tx(1 - x2) + fcos z, i = w for values of S,f, o in the chaotic 
regime. Figure 7-14a shows the logarithm of the correlation function, 
whereas Figure 7-14b shows the local slope versus the logarithm of 
the size of the test volume. The slope for the intermediate values of 
e is around 2 . 5 .  This is consistent with the fact that the attractor lives 
in a three-dimensional space (x, y, z). 

In practice, No = 3 x 103-104 points and M = .20No. One should 
experiment with the choice of M by starting with a small value and 
increasing it until d reaches some limit. 

The choice of e also requires some judgment. The upper limit of E 

is much smaller than the maximum size of the attractor yet large 
enough to capture the large-scale structure in the vicinity of the point 
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Figure 7-14 (a) Log c' versus log E for chaotic motion in a two-well potential (4-2.2). 
Data obtained from numerical integration. ( h )  Local slope of ( a )  showing fractal 
dimension in linear region of ( N )  of around 2 .5 .  
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x,. The smallest value of E must be such that the associated sphere or 
cube contains at least one sample point. 

Another constraint on the minimum size of E is the “real noise” or 
uncertainty in the measurements of the state variables (x, y ,  z). In an 
actual experiment, there is a sphere of uncertainty surrounding each 
measured point in phase space. When E becomes smaller than the 
radius of this sphere, the theory of fractal dimension discussed above 
comes into question because for smaller E one cannot expect a self- 
similar structure. 

Fractal Dimension of Poincare Maps 

In systems driven by a periodic excitation, as in the Duffing-Ueda 
strange attractor (4-6.1) or the two-well potential strange attractor 
(4-2.2), time or the phase 4 = or becomes a natural phase-space 
variable. In most cases, this time variable will lie in the attractor 
subspace and time can be considered as one of the contributions to 
the dimension of the attractor. In the case of a periodically forced, 
nonlinear, second-order oscillator, the Poincare map based on periodic 
time samples produces a distribution of points in the plane. To calcu- 
late the fractal dimension of the complete attractor, it is sometimes 
convenient to calculate the fractal dimension of the Poincare map 0 < 
D < 2. If D is independent of the phase of the Poincare map (remember 
0 5 or 5 2 ~ ) ,  then the dimension of the complete attractor is just 

d = l + D  (7-4.5) 

As an example, we present numerical and experimental data for the 
two-well potential or Duffing-Holmes strange attractor (Chapter 2): 

x + yx  - ix(l  - X*) = f cos  ot (7-4.6) 

In this example, we are interested in two questions: 

1 .  Does the fractal dimension of the strange attractor vary with the 

2. How does the fractal dimension vary with the damping y? 
phase of the Poincare map? 

The fractal dimension was calculated for a set of Poincare maps and 
are listed in Table 7-2. This table shows an almost constant value 
around the attractor. Thus, the assumption d = 1 + D in Eq. (7-4.5) 
appears to be a good one. 
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TABLE 7-2 Dimension of Experimental Poincare 
Map Versus Phase for Vibration of a Buckled Beam" 

0 
45 
90 

135 
180 

I .74l 

I .742 
I .748 
I .730 

I .751 
I .628 
I .627 
1.638 
1.637 
I .637 

I' Nondimensional damping, y = 0.013; forcing frequency, 8.5 
Hz; natural Frequency about buckled state, 9.3 Hz; from Moon 
and Li (1985a). 
' Based on four smallest log r points in log C versus log r .  
' Based on seven smallest log r points in log C versus log r .  

A numerically generated Poincare map for the case of a particle in 
a two-well potential under periodic excitation is shown in Figure 7-15. 
The correlation function (Figure 7-16a) C(E) versus E is shown plotted 
in a log-log scale and shows a linear dependence as assumed in the 
theory. 

The data in Figure 7-15 was the same as that used in Figure 7-14. 
From Figure 7-16b, D = 1.5 or d = 2.5, which agrees with that 
calculated directly from the attractor in the phase space (x, i ,  of) as 
in Figure 7-14. 

The effect of damping on the fractal dimension of the two-well 
potential strange attractor was determined from Runge-Kutta numeri- 
cal simulation. This dependence is shown in Figure 7-17. The data 
show that low damping yields an attractor that fills phase space 
(D = 2, d = 3) as would a Hamiltonian (zero damping) system. As 
damping is increased, however, the Poincare map looks one-dimen- 
sional and the attractor has a dimension close to d = 2, as in the case 
of the Lorenz equations. 

The fractal dimension of a chaotic circuit (diode, inductor, and 
resistor in series driven with an oscillator) has been measured by 
Linsay (1985) using a PoincarC map. He measured the current at a 
sampling time equal to the period of the oscillator and constructed a 
three-dimensional pseudo-phase-space using (Z(t),  Z(t + T), Z(r + 27)) 
(see next section). He obtained a fractal dimension of the Poincare 
map of D = 1.58 and infers a dimension of the attractor of 2.58. 

Dimension Calculation from Single Time Series Measurement 

The methods discussed above assume that (a) one knows the dimen- 
sion of the phase space wherein the attractor lies and (b) one has the 
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ability to measure all the state variables. However, in many experi- 
ments, the time history of only one state variable may be available or 
possible. Also in continuous systems involving fluid or solid continua, 
the number of degrees of freedom or minimum number of significant 
modes contributing to the chaotic dynamics may not be known a- 
priori. In fact, one of the important applications of fractal mathematics 
is to allow one to determine the smallest number of first-order differen- 
tial equations that may capture the qualitative features of the dynamics 
of continuous systems. This has already had some success in ther- 
mofluid problems such as Rayleigh-Benard convection (see Malraison 
et al., 1983). 

In early theories of turbulence (e.g., Landau, 19441, it was thought 
that chaotic flow was the result of the interaction of a very large or 
infinite set of modes or degrees of freedom in the fluid. At the present 
time, it is believed that the chaos associated with the transition to 
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Figure 7-17 
tial oscillator (4-2.2). 

some forms of turbulence can be modeled by a finite set of ordinary 
differential equations (see e.g., Aubry et al. (1988)). 

Thus, suppose that the number of first-order equations required to 
simulate the dynamics of a dissipative system is N .  Then the fractal 
dimension of the attractor would be d < N .  Then if we were to 
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determine d by some means, we would then determine the mini- 
mum N. 

Not knowing N, we cannot know how many physical variables x ( t ) ,  
y ( r ) ,  z ( t ) ,  ...) to measure. Instead we construct a pseduo-phase- 
space using time-delayed measurements of one physical variable, say 
( x ( t ) ,  x ( t  + T), x ( t  + 27), ... ) (see Chapter 5 and also see Packard et 
al., 1980). For example, three-dimensional pseudo-phase-space vec- 
tors are calculated using three successive components of the digitized 
x ( t )  (Figure 7-18), that is, 

With these position vectors, one can use the correlation function 
(7-2.5) or averaged probability function (7-2.3) to calculate a fractal 
dimension. 

To determine the minimum N ,  one constructs higher-dimensional 
pseudo-phase-spaces based on the time-sampled x ( t )  measurements 
until the value of the fractal dimension reaches an asymptote, say, 
d = M + p,  where 0 < j~ < I .  Then the minimum phase-space 
dimension for this chaotic attractor is N = M + 1 .  

In reconstructing a dynamical attractor from the time history mea- 
surements of a single variable, the question arises of how many dimen- 
sions are required in the embedding space in order to capture all the 
topological features of the original at tractor. A mathematician named 
Takens has proved several theorems about this question. If the original 
phase-space attractor lives in an N-dimensional space, then in general 
one must reconstruct an embedding space (our pseudo-phase-space) 
of 2N + 1 dimensions. 

To illustrate these ideas we have applied the embedding space 
method to find the dimension of the  two-well potential (or buckled 

Figure 7-18 Sketch of an orbit in a three-dimensional pseudo-phase-space con- 
structed from a single time series measurement. 
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dimension embedding spaces. The time history data are identical to those in Figures 
7-14 and 7-16. ( b )  Fractal dimensions of attractor versus the dimension of the embed- 
ding space. 



7 .4  FRACTAL DIMENSION OF STKANGE ATTRACTORS 361 

beam) attractor (4-2.2). Earlier we saw that this attractor lives in a 
three-dimensional phase space (x, i ,  w t )  and has a fractal dimension 
of d = 2.5 (Figure 7-14). Using the same data we also saw that we 
could calculate d from the Poincare map (Figures 7-15 and 7-16). 
Using the same numerical data from a Runge-Kutta integration, we 
reconstructed the motion in a pseudo-phase-space using digitized val- 
ues of x ( t )  and embedding space dimensions of rn = 2-8. The graphs in 
Figure 7-19a,b show the correlation function as well as the calculated 
dimension of the attractor in each embedding space. 

One can see in Figure 7-19a,b that the dimension reaches an asymp- 
tote of d = 2.5 after M - 4-5, which is in agreement with Taken's 
theorem. 

An example of calculating the fractal dimension from experimental 
data is shown in Figure 7-20 for the periodic excitation of a long, 
thin cantilevered beam with rectangular cross-section (Cusumano and 
Moon, 1990). In this problem, the resonant vibrations near the natural 
frequencies can couple into the torsional out-of-plane modes. The 
result is a dynamic snapping back and forth from one torsion-bending 
motion to another in a chaotic way. The data were obtained from both 
strain gage measurements on the beam and optical measurements of 
the tip displacement. In  these calculations a random set of 
20,000-25,000 points were selected from 100,000 time series points. 

As another example using experimental data, we describe the work 
of a group at the French research laboratory at Saclay (e.g., see 
Malraison et al., 1983 and Berge et al., 1984). They measured the 

Embedding dimension m 
Figure 7-20 Calculation of fractal dimension from experimental data for periodic 
vibration of a thin cantilever beam. [From Cusumano and Moon (1990).] 
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fractal dimension of a convective fluid cell under a thermal gradient 
(Rayleigh-Benard convection, see Chapter 4). They calculated the 
fractal dimension using an averaged pointwise dimension (7-2.3) for 
different sizes of pseudo-phase-spaces. The fractal dimension satu- 
rated at a value of d = 2.8 when the embedding dimension of the phase 
space reached 5 or greater. They used 15,000 points and averaged P,(E)  
over 100 random points. However, they also found regimes of chaotic 
flow where no clear slope of log C(E)  versus log E existed. 

Similar results for the flow between two cylinders (Taylor-Couette 
flow) has been reported by a group from the Soviet Union (L’vov et 
al., 1981). They claim to measure the information dimension. Figure 
7-21 shows the value of the slope of log C(E) versus log E as a function 
of E. This is characteristic of these measurements. The slope values 
at small E reflect instrumentation noise, whereas the values at large E 

are those for which the size of the covering sphere or hypercube 
reaches the scale of the attractor. 

Using such techniques, one can determine how the fractal dimen- 
sion changes as some control parameter in the experiment is varied. 
For example, in the case of Taylor-Couette flow (see Figure 4-42), 
Swinney and co-workers have measured the change in d as a function 
of Reynolds number (see Swinney, 1985). 

In another fluid experiment, Ciliberto and Gollub (1985) have 
studied chaotic excitation of surface waves in a fluid. The surface 
wave chaos was excited by a 16-Hz vertical amplitude frequency; 
2048 points were sampled with a sampling time of 1.5 s or 
around 300 orbits. Using the embedding space technique, they 
measured both the correlation dimension (dc = 2.20 +- 0.04) and 
the information dimension (d,  = 2.22 2 0.04), both of which 
reached asymptotic values when the embedding space dimension 
was 4 or greater. 

Holzfuss and Mayer-Kress (1986) have examined the probable er- 
rors in estimating dimensions from a time series data set. The three 
methods studied involved the correlation dimension, averaged point 
wise dimension, and the averaged radius method of Termonia and 
Alexandrowicz (1983). They tested each on a set of 20,000 points from 
a quasiperiodic motion on a 5-torus, which consists of a time history 
with five incommensurate frequencies. Using the pseudo-phase-space 
method for embedding dimensions of 2-20, they found that the aver- 
aged pointwise dimension had the smallest standard deviation of the 
three. The average was taken over 20% of the reference points, and 
curves that did not show scaling behavior over a significant portion of 
the range of r were rejected. 
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Figure 7-21 Calculation of fractal dimension for chaotic flow of fluid between two 
rotating cylinders: 'I'aylor-Couette flow (see Chapter 4). [From L'vov et al. (1981) 
with permission of Elsevier Science Publishers, copyright 1981 .] 
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7.5 MULTIFRACTALS 

Fractals Within Fractals 

As we have seen above, the fractal dimension measures the way in 
which a distribution of points fills a geometric space on the average. 
But, what if the distribution is highly inhomogeneous? Can a set of 
points have a distribution of fractal dimensions? A set of points with 
multiple fractal dimensions is not only possible, but is also common 
in a number of experimental as well as simple mathematical maps. 
[See Feder (1988) or Falconer (1990) for a more complete discussion 
of multifractals.] One remarkable example is the observation of multi- 
fractal properties of a Poincare map from a quasiperiodic route to 
chaos in a Rayleigh-Benard thermal convection experiment reported 
by Jensen et al. (1985). Equally intriguing about this example is the 
ability of the circle map (Chapter 3) to quantitatively predict the 
correct distribution of fractal dimensions. 

In a discussion of multifractal properties of a distribution of points, 
one must distinguish between the amplitude or mecisirre of the distribu- 
tion and the geometric set or so-called support of the distribution. To 
illustrate these ideas we describe two examples of simple dynamical 
systems that generate multifractals and show another in Figure 7-22. 

Example 1. 

Imagine a uniform mass distribution along a line [0, I ] .  The iteration 
rule that creates a multifractal set of points is as follows: Divide the 
line into two segments, say [0, 1) and (i, I ] ,  and redistribute the 
mass so that P is distributed uniformly on the right segment and ( I  
- P) is distributed uniformly on the left segment. As this process 
is iterated, the original uniform mass distribution becomes highly 
inhomogeneous. The dimension of the support, which remains a 
continuous line, is unity, yet the distribution clearly has a fractal 
nature to it. For example, by picking some small interval of this 
distribution and rescaling the abscissa and ordinate scales, one can 
recover the overall distribution; that is, the distribution obeys the 
following scaling relation: 

Example 11. 

Take the same example as in Example I ,  but instead of redistributing 
the mass over the whole line, distribute the mass elements P and 
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Figure 7-22 Construction of a binomial distribution function with two length scales 
(see also Feder (1988), Chapter 6 ) .  
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(1 - P) over the left third and right third, respectively, as in the 
Cantor set. After iterating this rule, both the distribution and the 
geometric support on which it lives will look fractal. In fact, the 
fractal dimension of the support is Do = log 2llog 3. But, clearly Do 
does not describe the measure or distribution of mass itself. 

A third example with two length scales is shown in Figure 7-22. 
The above examples are called "binomial multiplicative pro- 

cesses." Suppose we denote the fraction of the mass on the ith line 
segment as pi .  Then for Example I with equal length segments 
6 = (i)", one can show that pi has the following form after n iterations: 

pi = Pk(l - P)("-k), k = 0, 1, 2, ... , n 

Now define k = (n (0 I 5 I 1) so that 

(7-5.2) 

To examine the multifractal properties, look at the set of pi(() for ,$ = 
constant, and count the number of cells or segments with the same 4 
value or the same measure pi(t)  = p4. Then for n very large, the 
number of cubes of length 6 = (iy to cover the set of line segments 
of equal measure pUf is assumed to scale as 

One can show that d = f(6) for equal line segments is given by 

f(t) = - [t In ( + ( I  - 5) ln(1 - t)]/ln 2 

(see Figure 7-23 for Example I; also see Feder, 1988). 
It is remarkable that a simple binomial process leads to a continuous 

distribution of fractal dimensions. Note that the maximum value of 
f(t) equals the fractal dimension of the entire support, which remains 
the original line element, [0, 11. 

This description, however, is not suitable for experiments, so a 
change of variables is performed using 

pf = 6" or (Y = logp$og6 (7-5.4) 

where 6 is the length of the line segment after the nth iteration. 
To determinef(cw) experimentally, one uses the moments of the 

distribution pi(a). Remember that it is assumed that there is a probabil- 



7.5 MULTIFRACTALS 367 

5 
Figure 7-23 Distribution of fractal dimensions d(6 )  [Eq. (7-5.3)] for a binomial 
distribution function in Example I. (From Feder, 1988.) 

ity or mass measure which is approximated by partitioning the domain 
of support into cells of size 6. For a given 6, one can calculate a 
probability moment function 

(7-5.5) 

(e.g., see Halsey et a]., 1986). These moments generate a set of dimen- 
sions by assuming a scaling relation 

x(q, 6) - 6-dq) (7-5.6) 

or 

(7-5.7) 

The motivation for taking moments and introducing another vari- 
able q is not obvious at a first reading, but suffice it to say that taking 
moments of the distribution gives one more information. Thus, using 
(7-5.5) and (7-5.6), one finds a spectrum of dimensions ~ ( q ) .  if one 
treats q as a continuous variable, it has been shown (e.g., see Feder, 
1988) that one can derive thef(cr) curve from the implicit equations 

(7-5.8) 
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Some authors introduce another symbol, D,, which is related to 
d q ) :  

(7-5.9) 

Then it has been shown that Do is the fractal dimension of the support 
(our box-counting dimension), D, is the information dimension, and 
D2 is the correlation dimension (see Hentschel and Proccacia, 1983). 

Multifractals, Quasiperiodicity and the Circle Map. To illustrate the 
application of multifractals to dynamics consider the application to 
the circle map 

K 
21T 

en+l  = 8, + R - - sin(2l~8,) (7-5.10) 

When the winding number R is chosen as the so-called “golden mean” 
R = ( m ) / 2 ,  then the critical value for chaos is K = 1.  Then 
iteration of this map shows an inhomogeneous distribution of points 
around the circle whose probability measure (i.e., the mass density of 

f 

0.6 1.0 1.4 1.8 
0 

Figure 7-24 Spectrum of fractal dimensions for the circle map (7-5.10) at the critical 
value K = 1 and golden mean winding number. (From Halsey et al.,  1986.) 
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points) has multi-fractal dimensions. Application of the above formuli, 
in fact, yields a spectrum of dimensions shown in Figure 7-24. One 
notes that the maximum value off(x) is Do = 1, which is the dimension 
of the support, i.e., the circle. 

Experimental Multifractals in Dynamics 

One of the criteria for selection of topics in this book was the applica- 
bility of new mathematical methods in dynamics to experiments. The 
example of a periodically forced Rayleigh-Benard convection prob- 
lem is a beautiful example of the application of multifractals to fluid 
dynamics. In  this work, first published by Jensen et al. (1985), a 
parallelepiped of mercury 0.7 x 0.7 X 1.4 cm3 was subjected to 
a thermal gradient at the same time periodically forced by pumping a 
small amount of current through the fluid in the presence of a magnetic 
field. The idea was to generate a quasiperiodic motion based on a 
natural convection oscillation (0.23 Hz), and the driven oscillation 
was chosen so that the ratio of frequencies was at the “golden mean.” 

The measured state variable was obtained from a thermal probe 
placed on the bottom plate of the cell. A time series was generated 
by taking a Poincare map synchronous with the forcing period. The 
resulting set of data {. . . T,, - I, T,,, T, + . . .} was plotted as a return map 
TI, versus TI, + (shown in Figure 7-25) which shows a characteristic of 
the cross section of a torus. What is not characteristic, however, is 
the inhomogeneous distribution of the density around the section of 
the torus. To avoid spurious bunching effects due to a projection of 

T, + I 

7.1 

Figure 7-25 Experimental return map for periodically forced Rayleigh-Benard ther- 
mal convection showing the toroidal nature of the attractor. [From Jensen et al. 
(198S).] 
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the map onto the plane, actual calculations were carried out in a three- 
dimensional space (T,,, T, ,+, ,  T,,+*). 

To analyze the multifractal nature of this distribution, a set of cubes 
of size S was used to cover the attractor and the probability of being 
in each cube was measured. 

The results of calculation of the spectrum of fractal dimensionsf(a) 
are shown in the same manner (see Figure 7-26) as for the circle map. 
What is truly remarkable are the identical spectrum curves for both 
the circle map and the Rayleigh-Benard convection experimental 
data. It suggests that there is something “universal” in the way dynam- 
ical systems make the transition from quasiperiodic motion to chaotic 
motion. 

Another application of multifractal or interwoven sets of different 
fractal dimensions has been published by Meneveau and Sreenivasan 
(l987), who applied the theory to fully developed turbulence behind 
the wake of a circular cylinder (see also Sreenivasan, 1991). 

The same fractal mathematics was also applied to a nonlinear elec- 
tronic solid-state device using a crystal of p-type Ge by Gwinn and 
Westervelt (1987). The crystal was biased with a dc voltage to operate 
in a region of negative resistance where it achieved a stable limit cycle. 
A second sinusoidal signal was applied to the circuit so that the ratio 
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Figure 7-26 Spectrum of fractal dimensionsf(a) for the periodically forced thermal 
convection experiment of Figure 7-25. [From Jensen et al. (1985).] 
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of the limit cycle frequency to the driven frequency was the “golden 
mean.” Excellent agreement with thef(cu) spectrum of the circle map 
was also obtained. 

7.6 OPTICAL MEASUREMENT OF FRACTAL DIMENSION 

All the methods for calculating the fractal dimension of strange at- 
tractors discussed above require the use of a powerful micro- or 
minicomputer. From an experimental point of view, however, it is 
natural to ask whether the fractal properties in dynamical systems can 
be directly measured using analog devices in the same way that other 
dynamical properties such as velocity or acceleration are measured. 
For general, multiple-degree-of-freedom systems, the answer is not 
known; but for simple nonlinear problems, the fractal dimension of a 
two-dimensional Poincare map can be measured using optical tech- 
niques (Lee and Moon, 1986). This method is based on an optical 
interpretation of the correlation function (7-2.4). The use of the scatter- 
ing of waves to measure fractal dimension of material fractals in three 
dimensions is described by several authors (e.g., see Schaefer and 
Keefer, 1984a,b, 1986). 

A diagram illustrating this optical method for planar fractals embod- 
ied in Poincare maps is shown in Figure 7-27. We recall that the 
correlation function involves counting the number of points in a cube 

pupil I Lens L +Fixed distance+ 

u!aYLPL 
Signal 

Lock.in amplifier + Radiant flux 

Figure 7-27 Experimental setup of the optical method for measuring fractal dimen- 
sion. [From Lee and Moon (1986) with permission of Elsevier Science Publishers, 
copyright 1986.1 
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or ball surrounding each point in the fractal set of points. The optical 
method uses a parallel processing feature to perform all the sums at 
once. Light coming from one film creates a disk of light on another 
film. If each film is an identical copy of the PoincarC map of the strange 
attractor, the total light emanating from the second film is proportional 
to the correlation function. By changing the distance between the two 
films in Figure 7-27, the radius of the small circles changes and one 
can obtain the correlation sum as a function of the radius r .  A plot of 
log C(r)  versus log r then yields the fractal dimension of the Poincare 
map D. 

If the map is a time-triggered Poincare map, the dimension of the 
attractor is 1 + D. 

An Optical Parallel Processor for the Correlation Function 

A sketch of the experimental setup is shown in Figure 7-27, displaying 
the optical path of light in this method. The method makes use of two 
properties of classical optics. First, if light is passed through a small 
aperture of diameter D in the region of Fraunhofer diffraction (if A is 
the wavelength, D >> A), then light will cast a circle of radius r, with 
uniform intensity, on a plane located at a distance L from the aperture. 
This radius is given by r = 1.22LA/D. In our method, the aperture 
orginates from a small dot on the negative of a planar Poincare map 
and the small circle of light falls on an identical copy of this negative 
located at a distance L (Figure 7-27). Second, for incoherent light, the 
amount of light that emanates from the second negative is proportional 
to the number of small dots or circles within the circle of illumination. 
The total amount of light passing through both films is thus propor- 
tional to the correlation function C(r) .  To calculate or vary r ,  we 
simply measure and vary L, the distance between the two negatives. 

To make these ideas more concrete, let @(x, r)  be the radiant flux 
behind film #2 due to the flux Qin(x)  entering the circular aperture at 
x on film #1: 

(7-6. I )  

where n ( x ,  r )  = z j H ( r  - Ix - x j l )  is the number of apertures located 
within the circle of light illuminated by the flux in the aperture at x, 
and A is the area of the aperture of a point on film # 1. One can see 
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that @ depends on both n and r explicitly. However, we would like a 
measure of n alone. Using the linear relation between r and L, we 
define an adjusted radiant flux @* = (r/ro)2@, where r is the radius of 
the illuminated area when L = Lo ( L o  is a convenient reference dis- 
tance). Summing over all points in film # I ,  we obtain 

When the incident light intensity is uniform over film # I ,  we find 

(7-6.3) 

The maps can be obtained either from a numerical solution of a 
third-order system of equations or from experimental data. The light 
passing through film #2 was focused onto a photocell for the light flux 
measurement. A light filter (orange-amber color filter) was used at the 

In(distance = L [cm]) 

Figure 7-28 Radiant flux versus distance between two films of Poincark maps on a 
log-log scale for data from the vibration of a buckled beam. [From Lee and Moon 
(1986) with permission of Elsevier Science Publishers, copyright 1986.1 
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light source to optimize the photocell response around 6328 A. The 
dot size on the negatives was less than 0.2 mm; thus DIA = 300, which 
satisfies the Fraunhofer diffraction criterion. 

The output voltage from the photocell contained a lot of noise. To 
extract the signal from the noise, a mechanical light chopper and a 
lock-in amplifier were used in the signal processing. The chopper was 
operated at approximately 100 Hz to avoid power-line noise. 

The radiant flux behind film #2 was measured at the photocell as a 
function of the distance between films, and the adjusted radiant flux 
(7-4.2) versus L was plotted on a log-log scale as shown in Figure 
7-28. Theoretically, the slope of this curve should give the fractal 
dimension (7-2.5). 

The data were obtained from a Runge-Kutta simulation of the 
forced two-well potential equation (7-4.6). The 4000 points were gener- 
ated by taking a Poincare map synchronous with the driving frequency. 
The adjusted radiant flux output was measured at approximately 200 
values of L. However, only the linear section of log C versus log L is 
plotted in Figure 7-28. 

A comparison of the optically measured fractal dimension with 
those calculated from the numerical data of Moon and Li (1985a) is 
shown in Table 7-3 for several values of the damping. The results, as 
one can see, are remarkably good. 

TABLE 7-3 Optically Measured Fractal Dimension for Computer-Simulated and 
ExDerimental Poincare Maps 

Numerical Poincare Map [Eq. (7-4.6)] 

Damping Calculated" Measured 

0.075 
0.105 
0.135 

I .565h 
1.393 
I .202 

1.558 
1.417 
I .  I62 

Experimental Poincare Map 

Phase Angle Calculated" Measured 

0" 1.741' I .628' I .678 
45" I .75 I 1.627 1.67 I 
90" 1.742 I .638 1.631 

135" I .748 1.637 1.676 
180" I .730 I .637 1.635 

Moon and Li (1985a). 
Based on  four smallest log r points in log C versus log r .  

' Based o n  seven smallest log r point in log C versus log r .  
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A comparison of the optical and numerical methods for experimen- 
tal Poincare maps for the buckled beam is also shown in Table 7-3. In 
this set of tests, the phase of the Poincare map trigger was changed. 
The optical measurement of fractal dimension confirms the results of 
the numerical method, namely, that the dimension is independent of 
the phase of the map. This implies that the dimension of the strange 
attractor itself is 1 + D ,  where D is the planar map dimension. 

7.7 FRACTAL BASIN BOUNDARIES 

Basins of Attraction 

In most physical linear systems, there is just one possible motion for 
a given input. For example, the response of a linear mass-spring- 
damper system to an initial impulse force is just a decaying response, 
where the mass eventually comes to rest. Such a system has but 
one attractor, namely, the equilibrium point. However, in nonlinear 
systems, it is possible for more than one outcome to occur depending 
on the input parameters such as force level or initial conditions. For 
example, the system may have more than one equilibrium position or 
it may have more than one periodic or nonperiodic motion as in certain 
self-excited systems. 

Equilibrium positions and periodic or limit cycle motions are called 
attractors in the mathematics of dissipative dynamical systems. The 
range of values of certain input or control parameters for which the 
motion tends toward a given attractor is called a basin of attraction 
in the space of parameters. If there are two or more attractors, then 
the transition from one basin of attraction to another is called a basin 
boundary (see Figure 7-29). In classical problems, we expect the basin 
boundary to be a smooth, continuous line or surface as in Figure 
7-29. This implies that when the input parameters are away from the 

Attractor Basin boundary 

Figure 7-29 Sketch of two dynamic attractors in phase space and the boundary 
between their basins of attraction in initial condition space. 
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boundary, small uncertainties in the parameters will not affect the 
outcome. However, it has been discovered that in many nonlinear 
systems, this boundary is nonsmooth. In fact it is fractal-hence the 
termfractal basin boundary. The existence of fractal basin boundaries 
has fundamental implications the behavior of dynamical systems. This 
is because small uncertainties in initial conditions or other system 
parameters may lead to uncertainties in the outcome of the system. 
Thus predictability in such systems is not always possible (see the 
papers by Grebogi et al., 1983b, 1985a,b, 1986). 

Sensitivity to Initial Conditions: Transient Motion in a 
Two-Well Potential 

Before we examine a problem with a fractal basin boundary, it is 
instructive to look at a case where the basin boundary is smooth, but 
the outcome is sensitive to initial conditions. This is the case of the 
transient dynamics of a particle with damping. This one-degree-of- 
freedom example is a simple model for the postbuckling behavior of 
an elastic beam. The equation of motion for this problem is 

i + y i  -$x(1 - X*) = 0 (7-7.1) 

Unlike the related problem with periodic forcing, the complete 
dynamics can be described in a two-dimensional phase plane (x, y ,  = 

i). The displacement and time have been normalized such that the 
two stable equilibrium positions in the phase plane are (+ I ,  0) and the 
undamped natural frequency is one radian per second. The control 
parameters are the damping y and the initial conditions x(0) = xo, 
i (0)  = yo. Although there are three equilibrium positions, x = 0, 2 I ,  
only the latter two are stable and thus we will have two competing 
basins of attraction. 

Dowell and Pezeshki (1986) have examined the basins of attraction 
for this problem as illustrated in Figure 7-30. They subdivided the 
basins into how many times the particle orbits cross the x = 0 axis 
before settling down to x = + 1 .  One can see that for large initial 
conditions there are alternating bands where the particle will eventu- 
ally go to the left or right attractor. Although these boundaries are 
smooth, the size of the bands approaches zero as the damping y --+ 0. 
Thus, if there is some finite uncertainty in the initial conditions as 
denoted by the circle of radius E in Figure 7-30, one has no certainty 
of which attractor the particle will go toward if E > eo(y), where lim 
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D t s p k m n t  y = 0168 

Figure 7-30 Basins of attraction for the unforced. damped motion of a particle in a 
two-well potential. The numbers indicate the number of times the trajectory crosses 
K = 0 before going t o  one of the two equilibrium points at x = 5 1.  [From Dowell and 
Pezeshki (19861.1 

E~ - 0 as y + 0. For finite damping, we can obtain certainty of the 
end state only if we have accurate enough information about the initial 
state. 

In the next example, we will show a fractal basin boundary where 
the outcome is always uncertain no matter how small E is; that is, 
E o  = 0. 

Fractal Basin Boundary: Forced Motion in a Two-Well Potential 

In this section, we will examine the periodic forcing of a particle in a 
two-well potential: 

X = y  (7-7.2) 

y = - y y  + Ax( 1 - 2) + focos w t  

As discussed in earlier chapters, the dynamics of the particle can be 
described in a three-dimensional phase space (x, y,  z = w t ) .  In the 
earlier discussions, however, we focused on chaotic motions for this 
system. Here we will only consider motions which are periodic about 
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Figure 7-31 Smooth basin boundary for low-amplitude forcing of two-well potential 
oscillator. The attractors are periodic orbits about left and right equilibrium points. 
[From Moon and Li (198Sb) with permission of the American Physical Society. 
copyright 1985.1 

Figure 7-32 Fractal-like basins of attraction for the forced, two-well potential prob- 
lem for forcing amplitude above the Melnikov criterion (7-7.3). [From Moon and Li 
(1985b) with permission of the American Physical Society, copyright 1985.1 
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either the left or right equilibrium positions, x = 21. Thus, the at- 
tractors in this problem may be considered limit cycles. [If we take a 
Poincare map of the asymptotic motion, we will have a finite set of 
points near one of the equilibrium positions (+ I ,  O ) . ]  Here we do not 
distinguish between period-I or period-2 subharmonics. We assume 
that the forcingf, is small enough to avoid chaotic vibrations and high- 
period subharmonics. 

In this example, we fix y,fo, and w and vary the initial conditions. 
The results are shown in Figures 7-31-7-33 and are obtained from 
numerical simulation using a fourth-order Runge-Kutta integration 
algorithm (see Moon and Li, 3985b for details). 

The results in Figure 7-3 1 show that when fo is small enough, the 
basin boundary is smooth, but whenf, is greater than some critical 
value, the boundary becomes fractal-looking as shown in Figure 7-32. 
(This figure is based on integration of 400 x 400 initial conditions.) 
To ascertain whether this boundary is fractal, we have taken a small 
region of initial condition space and have expanded this region. The 

Figure 7-33 Enlargement of a small rectangular region of initial condition space in 
Figure 7-23 showing fractal-like structure on a finer scale. [From Moon and Li (1985b) 
with permission of the American Physical Society, copyright 1985.1 
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results are shown in Figure 7-33. Thus, we see that on a finer and finer 
scale the boundary shows evidence of fractal structure. These results 
have important implications for classical dynamics insofar as predict- 
ability goes. See also Color Plates 5 and 6. 

Two other examples of basin boundary calculations are illustrated 
in Color Plates 7 and 8 and on the jacket for a particle in a three-well 
and four-well potential. These problems were described in Chapter 6 
(see also Li and Moon, 1990a,b). In the three-well potential problem 
the particle has one degree of freedom and is excited by a periodic 
force. The two photos in Color Plates 7 and 8 show the evolution of 
the basin boundaries as the force level is increased. The four-well 
problem is a two-dimensional one. The fractal nature of the basins of 
attraction is shown on the jacket for a force level high enough to 
produce homoclinic orbits in the Poincare map. 

Homoclinic Orbits: A Criterion for Fractal Basin Boundaries 

Although the main theme of this book has been chaotic dynamics, the 
results of the previous section demonstrate that one of the properties of 
chaotic dynamics, namely, parameter sensitivity and unpredictability, 
may also be characteristic of certain nonchaotic motions. This pros- 
pect stirs terror in the computers of those engineers involved in numer- 
ical simulation of nonlinear systems. In such systems, the output of a 
calculation may be sensitive to small changes in variables such as 
initial conditions, control parameters, round-off errors, and numerical 
algorithm time steps. This lack of robustness may exist even when the 
problem is a transient one or has a periodic output. 

First, we expect that those systems most susceptible to fractal basin 
boundary behavior will be those with multiple outcomes, such as 
multiple equilibrium states or periodic motions. For example, if we 
consider the impact of an elastic-plastic arch (see Symonds and Yu,  
1985 and Poddar et al., 1986) or periodic excitation of a rotor or 
pendulum, there are at least two possible outcomes. In the case of the 
arch, the end state could be either the arch bend up or down. In the case 
of the rotor, one could have rotation clockwise or counterclockwise. 

The second clue to establishing the possibility of fractal basin 
boundaries is more subtle and requires more mathematical intuition. 
We have seen in Chapters 1 ,  3, and 6 that nonlinear systems which 
tend to stretch and fold regions of phase space in what are called 
horseshoe maps have a certain element of sensitivity to initial condi- 
tions as well as a variety of subharmonics solutions. As discussed in 
Chapter 6, it was shown that horseshoe map properties result when 
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the Poincare map associated with the flow in phase space develops 
homoclinic points in dissipative nonlinear systems. A criterion was 
derived by Holmes (see Guckenheimer and Holmes, 1983) using a 
method by Melnikov [Eq. (6-3.2011. In  the case of the forced motion 
of a particle in a two-well potential, it turns out that this criterion gives 
a very good indication of fractal basin boundaries even when the 
motion is not chaotic. The criterion for the equation of motion (7-7.2) 
is given by 

(7-7.3) 

Evidence for this conclusion is given in Figure 7-34 (e.g., see Moon 
and Li, 1985b). This figure summarizes the results of many calculations 
of basin boundaries similar to those in Figures 7-31-7-33. Below the 
Holmes-Melnikov criterion the numerically calculated basin bound- 
ary appears to be smooth, whereas above the criterion curve the 
boundary appears fractal. 

The connection between homoclinic orbits and fractal basin bound- 
aries is not entirely a mystery especially if we examine the results in 
Figure 7-35. In this figure, we have superimposed two calculations. 

A 

Chaotic. 0.16 - 
Unpredictable / 

0.14 

f 

Basin Boundary 0 

I I I 1 I I I *  
0’0406 0.7 0.8 0.9 

w 

Figure 7-34 Homoclinic orbit criterion (7-7.3) for the two-well potential problem 
with fractal-like and smooth basin boundary observation fron numerical studies. 
(From Moon and Li (198Sb) with permission of the American Physical Society, 
copyright 1985.1 
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Figure 7-35 Superimposed plots of the basins of attraction of the forced, two-well 
potential problem and the associated stable and unstable manifolds of the Poincark 
map at the critical force level (7-7.3). [From Moon and Li (1985b) with permission of 
the American Physical Society, copyright 1985.1 

The first is the basin boundary for the two-well potential for a force 
amplitude just below the Holmes-Melnikov curve. We can see that 
the boundary has developed a long finger as compared with that in 
Figure 7-3 1 for a smaller force. The second calculation in Figure 7-35 
is the determination of the stable and unstable manifolds of the Poin- 
care map which emanate out of the saddle point near the origin. The 
first observation is that the basin boundary is identical to the stable 
manifold of the PoincarC map. The second observation is that the 
unstable manifolds, shown as the dashed curves, are just touching the 
stable manifolds. This is to be expected because at the criterion the 
two manifolds touch and form homoclinic points. In theory, beyond 
this criterion, the two manifolds of the Poincare map must touch an 
infinite number of times, which results in an infinite folding of the 
stable manifold and hence an infinite folding of the basin boundary 
and the resulting fractal properties. 

The idea that basins of attraction of different motions can become 
intertwined is not a new concept in nonlinear dynamics, as can be 
seen in the classic book by Hayashi (1953) on nonlinear oscillations. 
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Professor Hayashi’s book illustrates the intertwining of three basins 
of attraction, each associated with a particular subharmonic motion 
of the oscillator. These diagrams were obtained by Hasashi and his 
co-workers using analog computers, and they showed how a small 
change in initial conditions could switch the output from one attractor 
to another. Although this knowledge was available in the 1950s, and 
perhaps earlier, the relationship of these basin boundary diagrams to 
fractals and chaos was not made until around 1980. (See also the 
discussion in Chapter 4 on Hayashi, Ueda, and the “Japanese at- 
tractor. ’ ’) 

The above discussion assumes the existence of only two attractors. 
However, even in the two-well potential problem, within each well 
there may be two or more attractors; for example, there could be two 
subharmonic solutions in the vicinity of each well. When there are 
more than two attractors, i t  is possible for one basin boundary to 
become fractal and another basin boundary to remain smooth. This 
also suggests that there could be multihomoclinic tangencies or homo- 
clinic criteria. A discussion of multiple coexisting attractors and basin 
boundaries is presented in a paper by Battelino et al. (1988) in which 
they treat the forced motion of two-coupled Van der Pol oscillators. 
Two other studies on multiple basin boundaries have been presented 
in two Cornell University dissertations by G.-X. Li (1984, 1987) (see 
also Li and Moon 1990a,b). These studies examine a particle in three- 
and four-well potentials. A brief discussion of multiple homoclinic 
orbit criteria for these problems was presented in Chapter 6. Color 
plates of basins of attraction for both the three-well and four-well 
potential problems are shown in Color Plates 7 and 8 and on the jacket. 

In these multiple-well potential problems, mixed fractal and smooth 
basin boundaries can arise when there are more than one saddle point 
in the Poincare map. Thus, the outflow trajectory (unstable manifold) 
of one saddle can intersect either its own inflow trajectory or that 
of another saddle. Each such entanglement is bound to generate a 
horseshoe map structure that in turn produces the fractal basin bound- 
ary. However, these multiple entanglements may occur for different 
values of the control parameter and hence the possibility of multiple 
homoclinic tangency criteria, each leading to greater and greater sensi- 
t ivity to initial conditions. 

Fractal Basin Boundaries and Robust Design 

In the design of most practical engineering devices, the system is 
usually assumed to operate near one stable dynamic attractor. Thus, 
a design which is sensitive to either initial conditions or control param- 
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X+ 

Figure 7-36 A set of basin boundaries for the periodically forced one-well potential 
oscillator. [From Thompson ( 1989b).] 

eters is not robust. But how does one quantify robustness? Professor 
J .  M. T. Thompson has attempted to answer this question in a series 
of papers relating to the dynamic capsize of ships (Thompson, 1989a,b; 
Thompson et al., 1990; Soliman and Thompson, 1989). These studies 
are based on a model of a particle in a one-well potential with a one- 
sided escape barrier: (see Figure 6-17 and Color Plate 4) 

x + B i  + x - x2 = Fsinot  (7-7 * 4) 

For zero forcing, F = 0, this system has a saddle point at x = 1 and 
a stable spiral attractor at x = 0. The basin of attraction for x = 0, in 
fact, is determined by the stable manifold of the saddle point in the 
phase plane (x, x). For small enough forcing, F # 0, there is a saddle 
point in the Poincare map, and the inflow curve to this saddle (stable 
manifold) also defines the basin of attraction. This boundary can be 
found numerically by iterating the Poincare map backwards in time 
for a set of initial conditions lying along the stable eigenvector of the 
saddle point of the map. A set of four such basin boundaries are shown 
in Figure 7-36 for the one-well potential for four different forcing levels 
(Thompson, 1989). As the force increases, the fractal tongues invade 
the basin. Thompson then defines robustness in terms of the degree 
of erosion of area of the basin of attraction. This is illustrated in Figure 
7-37. One can see that even when F is increased past the homoclinic 
tangle value calculated from Melnikov’s theory (Eq. (6-3.28b)), the 
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Figure 7-37 Basin boundary area function as the forcing amplitude is  increased. 
Insets: (a )  F = 0.0725; ( h )  F = 0.0872. [From Thompson et al. (1990).] 

basin area is robust until a critical point at which the safe area erosion 
is accelerated by a small increase in F. These ideas and other so-called 
safety integrity measures for dynamical systems show how the concept 
of fractal geometry can be used to quantify intuitive features of design 
of nonlinear engineering devices (see Soliman and Thompson, 1989). 

Dimension of Basin Boundaries and Uncertainty 

Yorke and co-workers at the University of Maryland have produced 
numerous studies of basin boundaries, fractals, and chaos. In one 
study they have shown that the fraction 4 of uncertain initial condi- 
tions in the phase space as a function of the radius of uncertainty E 

is related to the fractal dimension of the basin boundary (e.g., see 
McDonald et al., 1985) 

where D is the dimension of the phase space and d is the capacity 
fractal dimension of the basin boundary. When the boundary is 
smooth, d = D - I or 
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For example, if the relative uncertainty in initial conditions were 
E = 0.05, then the uncertainty of the outcome as a fraction of all initial 
conditions would be 6 = 22% when d = 1.5 and D = 2. 

A technique for calculating d for basin boundaries is described in a 
number of the Maryland group papers. The technique differs from that 
for trajectories because the boundary points are never given but are 
formed from the set of points that lie in neither of two attracting sets. 
Such fractal sets have been labeled “fat fractals.” [See Grebogi et al. 
(198%) for a discussion of fat fractals and their application to basin 
boundary calculations.] 

Transient Decay Times: Sensitivity to Initial Conditions 

In the preceding discussion we described how the development of a 
fractal basin boundary leads to uncertainty about which attractor the 
system will approach as t -+ m. However, one may also be interested 
in how much time it takes to approach the attractor. Pezeshki and 
Dowel1 (1 987) have calculated an initial-condition-transient-time plot 
for the two-well potential as shown in Figure 7-38. In this diagram 
each point is coded in color or shade to represent the transient time 
to approach a periodic orbit around either the left or right potential 
well. The two wells are not distinguished, only the transient times. 
They observed fractal-looking patterns when the forcing amplitude 
was above the homoclinic orbit criterion (7-5.3). This means that, 
given some uncertainty in initial conditions, both the transient decay 
time and the particular attractor are unpredictable for certain nonlinear 
problems. 

Fractal Boundaries for Chaos in Parameter Space 

We have seen how small changes in initial conditions can dramatically 
change the type of output from a dynamical system. It is natural to 
ask whether a similar sensitivity exists in the other parameters that 
control the dynamics, such as forcing amplitude or frequency or the 
damping or resistence in a circuit. One example is discussed here-a 
fractal experimental boundary between chaotic and periodic motions 
in a forced one-degree-of-freedom oscillation. 

When two or more types of motions are possible in a system, one 
usually determines the range of parameters for which one or another 
type of motion will exist. In the case of the forced motion of a particle 
in a two-well potential (see Chapters 2 and 6), it is of great interest to 
know when chaotic motions or periodic motions will occur when the 
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input force is periodic. The equation that describes this oscillation is 
by now familiar to the reader [Eq. (7-7.2)]. In this problem, we have 
used a nondimensionalization procedure to eliminate all but three 
parameters (y, f, 0).  As discussed in Chapter 6, both Holmes (1979) 
and Moon (1980a) derived criteria relating (y, f, w) for when chaotic 
motion would occur. These relations [Eqs. (6-3.27) and (6-3.46)] have 
the form 

f >  WJ, y) (7-7.5) 

Fixing the nondimensional damping y, both criteria are smooth curves 
in the (j, w) plane as shown in Figure 7-39. When these criteria are 
compared with experimental data (see Moon, 1984b), however, two 
differences are obvious: The theoretical criteria are lower bounds, and 
the experimental criterion looks ragged and may therefore be fractal. 

1 

I I I 1 I 1 I -  - 
4 5 6 7 a 9 10 

Frequency (Hz) 

Figure 7-39 Fractal-like boundary between chaotic and periodic motion in the 
forcing-amplitude-frequency plane. Experimental data are from the vibration of a 
buckled beam. [From Moon (1984b) with permission of the American Physical Soci- 
ety, copyright 1984.1 
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The experiments were carried out on the now familiar buckled, 
steel, cantilever beam placed above two permanent magnets (Figure 
2-2b). The elastic beam, magnets, and support are placed on an electro- 
magnetic shaker which drives the system at a given amplitude A, and 
frequency w. The nondimensional force in (7-7.2) is related to this 
forcing amplitude by 

The experiments were carried out by fixing the forcing frequency 
and slowly increasing the driving amplitude of the shaker. With the 
beam vibrating initially with periodic motion about one of the buckled 
equilibrium positions, the amplitude was increased until the tip of the 
beam jumped out of the initial potential well. 

To determine whether the motion was chaotic or periodic, Poincare 
maps were used. To motion was measured by strain gauges attached 
to the beam at the clamped end, and the strain versus strain rate served 
as the phase plane. PoincarC maps of these signals were synchronized 
at the driving frequency. Chaos was determined when the finite set of 
points of the Poincare map (as observed on an oscilloscope; see Chap- 
ter 5) became unstable and a Cantor-set-like pattern appeared on the 
screen. 

At least five sets of data for chaotic boundaries were taken for 
different beam-magnet configurations, and all showed a nonsmooth 
behavior. In the data shown in Figure 7-3 I ,  approximately 70 frequen- 
cies were sampled between 4 and 9 Hz. 

To determine if the boundary between chaotic and periodic motions 
is fractal, the fractal dimension of the set of experimental points was 
measured. First, we connected the points with straight line segments. 
Second, we used the caliper method to measure the length of the 
boundary as a function of caliper size. This is the same method de- 
scribed by Mandelbrot (1977) to measure the fractal dimension of 
the coastline of various countries. Thus, we are approximating the 
experimental boundary by N line segments, each of length E .  As we 
decrease the caliper size, E (the number of line segments needed to 
approximate the curve) increases. The total length is then 

L = N(e)E  (7-7.6) 

For a nonfractal curve, N -- E - '  or N = A/&; thus A becomes a measure 
of the length of the boundary. However, for fractal curves, such as 
the Koch curve, N = he-'), where E is small and D is not an integer. 
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Thus by measuring L versus E ,  

L = h e ’ - ”  

we can obtain the fractal dimension by measuring 
L versus log E curve, or 

(7-7.7) 

the slope of the log 

(7-7.8) 

One can show that this procedure is equivalent to the idea of cov- 
ering the set of points with small squares as discussed in the definition 
of the capacity fractal dimension [Eq. 7-1.21. 

The results of this series of measurements are shown in Figure 7-40 
for two sets of data. The lengths of the boundary curves appear to 
increase with decrease in caliper size, and they imply a fractal dimen- 
sion of between 1.24 and 1.28. Thus, there is convincing evidence 
that the boundary curve between periodic and chaotic regimes in the 
parameter space of cf, w )  is fractal. It should be noted, however, that 
while the single-mode description of the chaotic elastic beam [Eq. 
(7-7.2)] agrees very well with the experimental results insofar as Poin- 
care maps are concerned, the actual experiment has infinitely many 
degrees of freedom which one hopes do not influence the low-fre- 
quency behavior. However, it may be possible that higher modes 

t 
Data from Moon (1980) 

Data from Moon (1984) 
D =  1.28 

I * 
log t 

Figure 7-40 Calculation of the fractal dimension of the chaos boundary of Figure 
7-39. 
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could influence or are even essential to the fractal nature of the bound- 
ary curve in Figure 7-39. Further research on this question is necessary 
to provide a clear answer. 

In any event, these results suggest that a clear-cut criterion for 
chaos may not be possible. The apparent fractal nature of the criterion 
boundary may be inherent in many systems, and one may have to 
settle for upper or lower bounds on the chaotic regimes. 

7.8 APPLICATION OF FRACTALS IN THE 
PHYSICAL SCIENCES 

We have seen in this chapter the way in which fractals enter dynamics 
and the dynamic basis of creating fractals. However, there are many 
applications of this modern branch of mathematics where dynamics is 
not the central issue. This is especially the case of the characterization 
of geometric forms in the natural and manufactured world by the 
use of fractal concepts. A very good introduction to some of these 
applications may be found in the book by Feder (1988). In this section 
we describe in brief a few of these applications to geology, fluid 
mechanics, materials characterizations, and fractal mechanics. This 
section is written to show the broader applications of fractals in phys- 
ics besides dynamics. But we also present these examples of fractal 
physical forms to suggest that in each there may have been a dynamic, 
chaotic process that created them which is yet to be discovered. 

Geology 

One of the early applications of fractals was the observation that 
measurement of some geological features such as coastlines or rivers 
depends on the size of one’s measurement instrument (Mandelbrot, 
1982); the coastlines of Britain and Norway are clear examples. In this 
way of thinking, the conventional definition of the length of a natural 
geological feature may not be applicable because the length, L, de- 
pends on the basic unit of the caliper, E ,  that is 

L = N(E)& 

As discussed in the previous sections, for fractal-like geological fea- 
tures, the number of caliper lengths N ( E )  may be proportional to E - ~ ,  

where for D = 1 the curve is not fractal. Thus, the length-caliper size 
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relation takes the form L = A &I-‘),  where D is the fractal dimension. 
Parts of the British coastline boasts a fractal dimension of D = 1.2, 
whereas Norway’s ragged shoreline has a dimension D = 1.5. 

In another geological application, Feder (1988) describes the conse- 
quences of multiple branching of rivers for which the relation between 
drainage area A and the length of the longest branch of the river L 
suggests a fractal scaling L = PA””. In the states of Virginia and 
Maryland in the United States, Hach (1957) found that D = 1.2. Again, 
we see that there must have been underlying geologic dynamical 
processes that created these fractal features in the earth’s surface 
topology. A recent discussion of fractals and chaos in the geological 
sciences may be found in the book by Turcotte (1992). 

Viscous Fingering: Hele-Shaw Flow 

The case of fluid flow between two plates was studied by Hele-Shaw 
in 1898. Recent interest in this experiment revolves around the fractal- 
like interface between a gas under pressure and the fluid in the cell 
[see Feder (1988) and Chapter 4; also see Homsy (1987) for a review]. 
A sketch of the geometry is shown in Figure 7-41a, and a typical 
picture of the fractal viscous fingers that develop is shown in Figure 
7-41b. In the theory for this phenomenon, inertial forces are small, 
and the equilibrium involves a balance of viscous stress, surface ten- 
sion, and applied pressure. The basic mechanism involves an instabil- 
ity of a gas-fluid interface in which a wrinkled surface becomes more 
stable than a flat surface, which leads to a dendritic-type growth 
pattern. These problems are of importance, for example, in under- 
standing fluid flow in porous material such as oil recovery processes. 

The physical picture of the development of the fractal figure in the 
fluid in the Hele-Shaw cell looks like a dynamic model call DLA- 
diffusion-limited aggregation. The DLA model involves particles that 
move in a random way until they reach some surface where they 
cluster. DLA models are used to model many growth phenomena 
in fractal physics, including electrochemical dissolution processes, 
dielectric breakdown (Murat and Aharony, 1986), and possibly frac- 
ture of metals (Louis et al., 1986). 

In experiments that simulate flow through porous media, a viscous 
fluid such as epoxy is placed between two plates with a monolayer of 
small glass beds (-1 mm diameter). The flow of air into this cell 
produces fractal patterns similar to those of DLA models (Maloy et 
al., 1985) as shown in Figure 7-42. 

It is interesting that this ostensibly static, deterministic experiment 
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( b )  
Figure 7-41 (a )  Sketch of experiment for viscous fingering of a fluid in a Hele-Shaw 
cell. ( b )  Fractal-like fingering of a thin fluid layer under pressure in a Hele-Shaw cell. 
[From Homsy (1987) 0 1987 IEEE.] 
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10 cm 
I 

Figure 7-42 Fractal pattern from air displacing liquid epoxy in a glass sphere porous 
medium monolayer. (From Maloy et al. (1985).) 

should be modeled by a dynamic process with underlying randomness. 
The questions which arise in this phenomena are not unlike those that 
are surfacing in the discussion of spatiotemporal chaos (see Chap- 
ter 8). 

Fractal Materials and Surfaces 

In classical continuum mechanics one takes for granted certain scaling 
relations such as area-length relations A - L2 or mass-length behavior 
M - L’. However, there are certain classes of materials such as silica 
gels, polymers, or porous solids which at some length scales do not 
follow the classic mass-length relation but instead behave as 

M - L” 

where I I D 5 3 for chain-like molecular structures, or 2 I D I 3 for 
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plate-like structures. The value of the fractal dimension, D, for differ- 
ent materials has been measured in a number of laboratories (e.g., see 
Schaefer and Keefer, 1984a,b, 1986) using the scattering of light, x- 
rays, or neutrons. 

In the classical theory of linear wave scattering from a geometric 
object (e.g., a sphere or cylinder), one usually assumes an incident 
plane wave field uf = Aei(w'-"r) and then adds a scattered wave field 
us = eiwrS(r;  k ) ,  where r is the position vector from the center of the 
scatterer. For uncorrelated wave sources (e.g., nonlaser light), one 
can then calculate the energy scattered out of the incident wave field 
by the scatterer. One of the first such calculations was that by Lord 
Rayleigh, who, in 1871, showed that the scattering cross section u for 
wavelengths 2 r / k  >> L ( L  is the size of the scatterer) satisfied a power 
law: 

Using a technique called srnull-ungle x-ruy scattering (SAXS), it has 
been found that for fractal objects the scattering intensity Idepends on 
a noninteger power law (Schaefer and Keefer, 1984a,b), that is 

where K = (4r/A)sin(8/2), A is the wavelength of the incident wave, 
8 is the scattering angle, and x is called the Porod exponent. For mass 
fractals where M - L', the scattering exponent x equals D. For porous 
materials, x is found to be a function of the porosity. 

Fracture ofsofids. If turbulence remains one of the unsolved prob- 
lems in the physics of fluids, then fracture and fatigue are its counter- 
part in the physics of solids. However, unlike turbulence, the process 
of fracture has not received much attention from the new dynamicists 
except for a few examples. One of these is a study by Mandelbrot et 
al. (1984) in which fractured surfaces in steel were characterized using 
fractal measures (see also Feder, 1988). In this experimental work, 
the fractured surface was coated with a nickel layer and then polished 
to expose islands of steel surrounded by a nickel sea. In the character- 
ization of the surface, the perimeter of these islands and their area 
were assumed to be related by a noninteger exponent. Using a series 
of maraging steel specimens, each heat-treated at different tempera- 
tures and fractured by a short time impact force, they found a distribu- 
tion of fractal dimensions of the surface from 2.10 to 2.28. From these 
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data they found that the impact energy required to fracture the steel 
was inversely proportional to this fractal dimension of the surface. 
Explanation of this result in terms of a dynamical model or molecular 
physics is still wanting. 

In a more recent study of dynamic crack propagation in solids by 
a group at the University of Texas, Fineberg et al. (1991) have ob- 
served the dynamics of crack propagation in the brittle plastic poly- 
methyl methacrylate (PMMA). These cracks were observed to propa- 
gate at speeds of up to 600 m/s. The computer visualization of surface 
profilometer data reveals a complex fractal-looking surface, whereas 
the crack velocity time history shows an erratic chaotic-looking behav- 
ior. Such studies may lead to nonlinear dynamic models that may give 
clues to the often unpredictable dynamics of fracture and fatigue. 

Not all fractured surfaces are created under dynamic impact. When 
a metallic structure is taken through a stress cycle many times ( 102-107 
cycles), small flaws in the material can sometimes develop first into 
microcracks and then link up into a catastrophic failure. In these 
problems, inertial effects are often not very large. However, one may 
be able to view the advance of a crack as an iterated dynamic map. 
For example, suppose a crack in a thin plate is described by a position 
vector r, = ( X , ,  Y , ) ,  where X, ,  Y,, are the Cartesian components at 
the end of the nth stress cycle. While X,, Y, may grow without bounds, 
we can assume that the incremental crack advance displacements are 
bounded; that is, suppose we define X ,  = X , - ,  + u,, Y, = Y,-l + 
u,. Then it might be possible that a function exists which relates 
(u,, u,) to (u,+ u,+ , I ,  that is, 

Of course, this is just speculation at this time. But, careful observa- 
tion of crack tip advance often exhibits an unpredictable time history. 
It will remain for future research to see if such models can be found. 
The fractal nature of fractured surfaces gives credence to the belief 
in an underlying nonlinear dynamic model [see also Lung (1986), 
Markworth et al. (1988), and Russel et al. (1991)l. 

PROBLEMS 

7-1 Consider the construction of a Cantor set that starts with a 
uniformly dense distribution of points on a line and begins by 
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throwing out the middle /3 percent of the set. Iteration of this 
process results in a Cantor-type fractal set of points. Show that 
the box-counting or capacity fractal dimension is given by 

7-2 Define an “iterated function set” of linear transformations that 
will replicate the Cantor set in Problem 7-1 (see Section 7.3 or 
Barnsley, 1988). 

7-3 Define a fractal-creating operation that takes a line element of 
length L and replaces it by eight equal segments of length L/4 
as shown in the figure below. Draw at least four iterations on a 
large piece of graph paper. Use the four sides of a square as the 
initial line elements. 

L 

7-4 Consider a fractal-creating operation that starts with a cubic 
element of side L and removes elements that drill three mutually 
perpendicular square-shaped holes of side L/3. Sketch two itera- 
tions in an isometric drawing. 

7-5 Fractd  Sponge. Consider a three-dimensional cube whose 
lengths are divided into thirds, thus creating a set of 27 sub- 
cubes. Imagine a laser cutting or chemical etching process that 
eliminates the central cubes on each of the faces as well as the 
central cube (i.e., drill three mutually orthogonal square holes). 
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Show that iteration of this process will lead to a three-dimen- 
sional fractal object with box-counting dimension d = log 20/ 
log 3. [This set is attributed to K. Menger 1926. See Peitgen et 
al. (1992) for a discussion of this problem.] 

7-6 Sierpinski Carpet. In this construction of a two-dimensional 
fractal set, one starts with a square which is divided into nine 
equal squares. Then the central square is removed, leaving 
eight. One repeats this algorithm, dividing each of the eight into 
nine pieces and removing the central square. Sketch several 
iterations of this process on a large piece of graph paper. Show 
that the box-counting or fractal dimension is D = log 8/log 3. 

Two-Scale Cantor Set. One can generate a fractal set with 
multiple scaling rules. As an example, consider a more general- 
ized Cantor set. Begin with a line of length 1 and replace it with 
two sets of lengths sl, s2, where sI + s2 < 1 .  Then one can show 
that the fractal dimension D is given by (e.g., see Feder, 1988) 

7-7 

sf + s? = 1 

Choose s1 = a, s2 = f. Sketch several iterations of this fractal 
generator. Show that the dimension is given by D = log x/log 
(1/2), where x satisfies x2 + x - 1 = 0 and D = 0.694. 

7-8 Fractal Coastlines. A now classic example of a physical mani- 
festation of fractal geometry is the measurement of the length 
of coastlines on the Earth as described by Mandelbrot (1977) in 
his earlier book. The method is described briefly in this book in 
Section 7.7 [see Eqs. (7-7.6) and (7-7.7)]. Find a very good atlas 
or book of photographs of the Earth from space and choose a 
fractal-looking coastline and measure its fractal dimension using 
the caliper method described in Section 7.7. Plot the length 
between two points as a function of caliper length and find D. 
Good choices are Norway, Great Britain, or the west coast of 
British Columbia, Canada. The results of the first two cases can 
be compared with those in Feder (1988) (e.g., for Norway, 
D = 1.52). 

7-9 Fractal Contour Maps. The same technique for coastlines can 
be applied to contours of the same elevation above sea level. 
Again, choose a good relief map with fine detail in the contours 
and plot length versus caliper size to calculate the fractal dimen- 
sion using Eq. (7-7.7). For examples, try the southern relief 
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contours of the province of Quebec, Canada at elevations of 
300-500 meters. Another example is the western relief contour 
of the Sierra Nevada in California at 600-1500 meters. 

7-10 In Chapter 6 we saw that the prediction of chaos or the calcula- 
tion of Lyapunov exponents for specific physical systems was 
limited to a few examples. Likewise, the tools for calculation 
of the fractal dimension of a strange attractor for a specific 
physical dynamical system are not available at this time. How- 
ever, one example where one can make an educated estimate 
of the fractal dimension is the particle is a two-well potential 
force with damping and periodic forcing (7-7.2). This estimate 
is based on the use of the relation between Lyapunov exponents 
and fractal dimension (7-2.14), d ,  = 1 - A,/A, .  To estimate A , ,  
A*, use the linearized equation (7-7.2) near the origin, X + y i  - 
x = fcos  ot, to obtain estimates of the Lyapunov exponents, 

where 1, is the Poincare map time increment, tp = 2m/w. Derive 
an expression for dL(y).  Show that as y - 0, d, + 2 and that 
as y + 03, d, + 1.  Compare with results in Figure 7-17 (see also 
Moon and Li, 1985~).  

Run a 2-D Barnsley map (7-3.5) for the Sierpinski triangle 7-11 

by adding a quadratic term to one of the maps in W and see if 
you get folding of the triangle. Run the map with a random 
choice of the next map in the set W. 
Barnsley (1988) has many beautiful pictures in his book of a 
fractal fern-like object. Use the 2-D map (7-3.5) and the follow- 
ing matrices to generate one of these ferns. Choose the next mi 
in (7-3.5) using a random number. 

7-12 

A B C D E F  
WI 0 0 0 0.2 0 0  
w2 0.8 -0.04 0.04 0.8 0 2  
o3 0.2 -0.25 0.2 0.2 0 2  
04 -0.15 0.3 0.25 0.25 0 0.4 
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SPATIOTEMPORAL CHAOS 

Down beneath the spruy, down beneath the whitecaps, that beat them- 
selves to pieces ugainst the prow, there were jet-black invisible waves, 
twisting and coiling their bodies. They kept repeuting their patternless 
movements, concealing their incoherent and perilous whims. 

Yukio Mishima 
The Sound of Waves 

8.1 INTRODUCTION 

If the histroy of events is written in time, then the history of time is 
often written in space: contrails behind a jet, the wake of a passing 
boat, fissures after an earthquake, tracks in the sand from a snake or 
a worm. These are common experiences of spatial patterns that record 
some dynamic events. The phonograph cylinder of Edison is an obvi- 
ous example of how dynamic data can be stored in spatial patterns 
and, of course, in the stroke of an artist’s brush. If temporal patterns 
are regular and periodic we should expect to see regular spatial pat- 
terns. However, if temporal events are chaotic, how does this manifest 
itself in space? In some physical systems, all the particles are spatially 
coherent even if they behave chaotically in time, whereas in the case 
of fluid turbulence, one has both spatial and temporal complexity. 

Until recently (circa 1987), most of the research on chaos was 
confined to temporal dynamics. In fact, all the previous discussion in 
this book has been about temporal dynamics only. But for physical 
systems, described by the partial differential equations of physics, one 
must deal simultaneously with both space and time. In fact, the lack 

401 
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of any discussion of spatial patterns so far means that we have made 
implicit assumptions about the spatial or modal distribution in the 
physical phenomenon. 

The study of spatiotemporal chaotic dynamics is still in the explor- 
atory stage. It has not generated the kind of generic tools and results 
that can be applied to different physical problems in the same way 
that temporal nonlinear dynamics can. The field spans a wide range 
of physical problems, ranging from surface waves in a stationary fluid, 
electrohydrodynamics instabilities in liquid crystals, and solid-state 
plasmas in Ge crystals to complex twists and knots in an elastic 
tape or yarn. A simple experiment in spatiotemporal chaos may be 
performed by pointing a video camera at  the video display terminal 
(TV) it is connected to (see e.g., Crutchfield, 1988 and Peitgen et al., 
1992, p21-27). And, of course, the mother of all spatiotemporal chaos 
is the fully developed turbulence we are familiar with in everything 
from weather patterns to flows through jet engines. One of the strate- 
gies of many physical scientists with regard to the problem of turbu- 
lence, however, is not to tackle it head on (although jet engine design- 
ers must deal directly with the problem), but to study the transition 
from low-dimensional dynamics to high-dimensional phase space be- 
havior by looking at the development of increasingly complex spatial 
patterns. 

At present a clear definition of spatial “chaos” or complexity is not 
universally accepted. For some it represents an increase in the fractal 
dimension of the dynamic attractor associated with increasing number 
of coupled spatial modal functions. For others the measure involves 
a loss of spatial correlation or an increase in spatial entropy (e.g., see 
Kaneko, 1990 and Dowell and Virgin, 1990). 

An example of spatiotemporal complexity can be seen in the genera- 
tion of surface wave patterns in a fluid excited by harmonic excitation. 
This problem, which was described earlier in Chapter 6, has been 
studied by Gollub and Ramshankar (1990) and involves a shallow layer 
of fluid in a container under vertical excitation. The problem goes 
back to Michael Faraday in 1831 (see Gollub and Ramshankar, 1991 
for a review). The phenomenon can sometimes be observed in a coffee 
cup when placed on a vibrating surface. For high enough frequencies, 
short wavelength wave patterns appear. For certain excitation ampli- 
tude and frequency parameters the wave pattern can be regular (Figure 
8-1), but for other parameters the patterns can become more complex 
and can change in time. The surface wave patterns appear to suffer 
defects similar to those found in solid crystals such as disclinations 
and dislocations. One of the principal questions that scientists want 
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Figure 8-1 Photographs of surface wave patterns due to vibration of a fluid in a 
circular container. ( [ J )  E = 0.07; ( h )  E = 0. I I ; (c) E = 0.14; ( d )  0.3s. [From Gollub and 
Ramshanker (1991 ). E is the relative forcing level beyond the flat surface instability.] 

to answer in these spatiotemporal studies is how different patterns are 
selected when many are possible and how they evolve in time. 

Similar patterns can be seen in convective flow patterns in a shallow 
fluid layer heated from below. Another example is a thin layer of 
nematic liquid crystal with an applied electric field (Ranberg et al., 
1989). 

Many other experiments are beginning to appear that attempt to 
quantify spatiotemporal dynamics. For example, an Italian group has 
studied spatial patterns in a Rayleigh-Benard convection cell using a 
laser scanning measurement system (Rubio et al., 1989). They observe 
two types of spatiotemporal regimes representing localized oscilla- 
tions and traveling wave-type patterns. (See also Figure 1-1  .) 

In another work, Tam and Swinney (1990) have investigated spatio- 
temporal patterns in a reaction diffusing system. The system is based 
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on the Belousov-Zhabotinsky reaction in a Couette cylindrically 
shaped reactor. 

Spatial Chaos-The Wave Guide Paradigm 

As a simple example of how spatial chaos can arise naturally in physi- 
cal systems, we consider the model in Figure 8-2a. Here a nonlinear 
oscillator is connected to a linear nondispersive semi-infinite wave 
guide such as a taut string or an electrical transmission guide. If the 
oscillator is weakly connected to the wave guide, then chaotic motions 
of the oscillator in time W ( r )  will be spatially stored in the wave 
guide in the form of linear right, running waves u(x, 2) = f ( x  - CJ). 

Boundary conditions between the oscillator and the wave guide can 
result in the temporal history stored as information in the spatial wave 

u(x ,  t )  = A W ( t  - t) (8-1.1) 

Spatial Chaos-The Edison Phonograph Model 
Thomas Edison invented a device that stored information on the 
surface of a cylinder in response to the motion of a needle. By moving 
the cylinder in the axial direction, a spatial record of the temporal 
history of the oscillation needle could be recorded. In many mechani- 
cal systems a similar mechanism is involved such as the cutting of 
metal from a cylindrical workpiece on a machine lathe. As we have 
seen from the work of Grabec (1988) (see Chapter 4), the vibration of 
the tool can leave a record in the machined surface. 

Another example involves roller bearings. This model, however, 
involves “writing over” the past deformation history on the surface 
of the bearing (Figure 8-2b). Thus, one can imagine that chaotic mo- 
tions in the device attached to the bearing can be recorded in the 
spatial deformations on the surface of the bearing due to plasticity 
effects. 

Aside from physical experiments in continuous media, another 
strategy has been to look at discrete mathematical and computational 
models with a large number of coupled cells. Geometrically, these 
take the form of either (a) periodic chains of identical oscillators 
or one-dimensional maps or (b) two- and three-dimensional lattice 
structures. The models also range from those with discretized space, 
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Figure 8-2 ((I) The “wave guide” model for storing temporal chaotic dynamics in a 
spatial pattern. (b) The ‘‘write over” model for creating complex spatial patterns from 
a temporally chaotic system. 
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time, and state variables (cellular automata) to coupled cell maps with 
discretized space and time, to coupled differential equations with only 
space discretized. These models are discussed in Section 8.3. 

8.2 SPATIAL COMPLEXITY IN STATIC SYSTEMS 

The Twisted Elastica and the Spinning Top 

The central idea of this section is that spatially complex patterns can 
be found in familiar systems in static equilibrium. Our example focuses 
on a long, thin, flexible, tapelike continuum called in the classical 
literature the elastica (e.g., see Love, 1922). Such stringlike objects 
are familiar as audio, film, or videotape and as yarn, wire, or measuring 
tape. Spatial complexity is often familiar in such objects in the 
form of despooled film tape or in the form of twisted yarn or fishing 
line. Macromolecular structures may also exhibit such complexity. 
Such complex static patterns in space may have exact analogs in the 
chaotic dynamic orbits of a top or pendulum in phase space. 

The analogy between the temporal dynamics of a rotating body and 
the static deformations of a long, thin elastic body goes back more 
than a century to Kirchhoff (1859) (see also Love, 1922). The simplest 
version of this analogy is that between a pendulum and a buckled rod. 
The equations of motion of a planar pendulum (Figure 8-3), written in 
terms of the angular displacement 0 and the angular momentum L ,  are 
given by 

d0 
dt 

J - = L  
(8-2. I )  

- = -r,mg sin 0 dL 
dt 

where J is the moment of inertia about the point of rotation, Y, is the 
distance to the center of mass, rn is the mass, and g is the gravity 
constant. The equations of static equilibrium for a buckled elastic rod, 
written in terms of the slope angle 0 and bending moment M ,  have the 
same precise form as those of the pendulum, that is, 

(8-2.2) 
d0 
ds 

D - = M  

- -Ps ino  dM 
ds 
-- 
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Figure 8-3 Analogy between the temporal dynamics of the pendulum and the spatial 
deformation of the elastica. 

where D is the bending modulus and P is the compressive end load on 
the rod. If all the parameters in either (8-2. I )  or (8-2.2) are constant in 
time or space, then the solutions can be found in terms of elliptic 
integrals (Love, 1922), and no chaos exists as in Figure 5-2. However, 
it is known that a pendulum under external or parametric time periodic 
forcing may exhibit chaotic dynamics (Koch and Levey, 1985). 

This suggests that if the bending modulus D in (8-2.2) were to vary 
periodically in space (e.g., D = Do + D,cos k s ) ,  then spatially chaotic 
equilibrium solutions may be found for the buckled elastica. 

This idea has been studied by several authors since the first edition 
of this book, including Mielke and Holmes (1988), Thompson and 
Virgin (1988), and El Naschie (1990), and El Naschie and Kapitaniak 
(1990). The first authors presented a detailed mathematical study, 
whereas the second and third authors presented numerical and qualita- 
tive experimental evidence for spatial chaos in the buckled elastica. 

The extension of this analogy to a rigid body spinning in three 
dimensions and a thin elastic tape twisted in space is straightforward 
and may be found in the classic text on elasticity by Love (1922). 

To sketch the analogy we note that the angular momentum of a rigid 
body referred to its center of mass may be written in terms of the 
components of its angular velocity vector o = (w,, w2, w3); 

L = Jlo le l  + J2w2e2 + J3w3e3 (8-2.3) 

where {el, e2, e3} are an orthogonal triad of principal axes of the inertial 
matrix and {J l ,  J 2 ,  J , }  are three principal inertias. Under applied 
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moments (which may vary in time) { M , ,  M 2 ,  M 3 } ,  the equations of 
motion take the form 

(8-2.4) 

These equations are called Euler’s equations (e .g . ,  see Goldsrein, 
1988). When the Ji  are constants and Mi = 0, the solution is known in 
terms of three constants of the motion. Two of these are the kinetic 
energy and the angular momentum. However, if either Mi is periodic 
in time or one of the principal inertias Ji varies in time (e.g., J 2  = J o  
+ A cos O f ) ,  then chaotic motions are possible as in the suspected 
tumbling of one of the moon’s of Jupiter, Hyperion (see Chapter 4). 

The analogous equations for the spatial deformation of a long, 
thin elastic rod or tape (Figure 8-4) are governed by equations for 
the internal bending moment, G, produced by bending stresses on the 
cross section and its relation to the curvatures of the centerline of the 
rod (K,, K2, 7). The curvatures ( K ~ ,  ~ 2 ) ,  as one recalls from analytic 

Figure 8-4 Three-dimensional deformation patterns in elastica-type structure. 
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geometry, are inversely proportional to the radius of bending, while 
the torsion T is a measure of the twist about the centerline of the rod. 

In analogy to the spinning top, the bending moment is written in 
components of the three principal geometric axes of the cross section, 
one of which lies along the centerline {e, ,  e2, e3}, that is, 

where A,  B are bending moduli, C is the torsion modulus, and 
( K ~ ~ ,  K ~ ~ ,  T ~ )  are the initial curvatures when the elastica is moment- 
free. The resulting equations of equilibrium are simplified under the 
assumption of zero net force at each cross section: 

d 
- A ( K ~  - K ~ ~ )  = (B  - C ) K ~ T  
ds 

(8-2.6) 

d - C ( T  - T ~ )  = (A - B ) K , K ~  
ds 

One can see that these equations have the same structure as those of 
the spinning top. Thus, several possibilities for spatial chaos follow 
the analogy to (8-2.4). 

First, one of the bending moduli could be periodic in space, that is, 
B = Bo + b cos ks.  Or, one could have an initial periodically varying 
curvature, that is, K~~ = K ~ C O S  k s .  In either case, 2 d k  is the wavelength 
of the disturbance and is assumed to be larger than the geometric scale 
of the cross section. 

In order to get a description of deformation in space, however, one 
must add to these equations the so-called Frenet-Seret equations of 
differential geometry : 

de, 
- = x ei, R = ( K ~ ,  K ~ ,  T) 
ds (8-2.7) 

Finally, to get the position of the centerline of the elastica r in its 
deformed shape, another relation is required: 

dr 
ds 
_ -  - e3 (8-2.8) 
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With a periodic disturbance in space, these equations constitute a 
four-dimensional phase-space system (K,, K ~ ,  T, ks) .  Thus, it is natural 
to use a PoincarC section synchronized with the spatial disturbance 
ks;  = 2ni + +,,. The resulting three-dimensional map is still difficult 
to visualize. However, this system is identical to that of a Hamiltonian 
dynamical system. In our case the conserved quantity is the moment 
vector, G along the rod. This relation can be used to eliminate one of 
the variables in the Poincare map, so that a two-dimensional map is 
possible. 

An example of the numerical integration of these equations is shown 
in Figures 8-5 and 8-6 (see Davies and Moon, 1992). Figure 8-5 shows 
a Poincare map where several different solutions are possible for the 
same bending moment. One can see that both a quasiperiodic and a 
chaotic spatial solution (diffuse set of points) can exist. This case is 
for a spatially varying bending modulus. Spatial twisting deformations 
of the elastica are shown in Figure 8-6 and in the color plates (CP- 
12-14). These show that incredible spatial complexity is possible in 
the elastica. 

One point should be noted here. These numerical solutions require 
some attention to computational errors that can arise. Namely, one 
has to adjust the integration step size in order to keep the bending 
moment G G constant along the rod. 

To complete the analogy with the spinning top, one should imagine 
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Figure 8-6 Spatial complex twisting deformations of the elastica. 

oneself riding on a small cart that travels on the twisted tape with 
constant velocity. Then the chaotic rotations of the cart will be pre- 
cisely those of a spinning top when one of its inertias varies in time. 

These chaotic solutions are thought to be related to the homoclinic 
tangling of stable and unstable manifolds that emanate form saddle 
points of the Poincark maps (e.g., see Mielke and Holmes, 1988; 
also see Chapter 6). Again, as we have tried to emphasize from the 
beginning in Chapter 1, evolutionary laws that create horseshoes in 
the phase space seem to be one of the principal mechanisms for 
creating spatial as well as temporal chaos in physical systems. Another 
example of the role of horseshoe maps and spatial chaos is discussed 
in Section 8.4 (see subsection entitled “Chaotic Mixing of Fluids”). 

8.3 COUPLED CELL MODELS 

A classic model of approximating a spatially continuous medium is 
the use of coupled cells or lattice models (e.g., see Brillouin, 1946). 
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In inertial models a periodic array of masses is assumed to interact 
with neighboring masses and one constructs an infinite set of coupled 
ordinary differential equations. In linear models one derives a relation- 
ship between frequency and wavelength, the so-called dispersion rela- 
tions, and a superposition principal is valid. 

Nonlinear coupled lattice models have been used to describe such 
nonlinear phenomena as solitons and shock waves (e.g., see Tasi, 
1990 or Toda, 1989), and as models for nonlinear electrical transmis- 
sion lines. Interest has recently been revived in such models to explore 
spatiotemporal chaos. 

There are three basic mathematical types of coupled cell models: 

(1) Cellular automata (Wolfram, 1984, 1986) 
(2) Coupled maps (Crutchfield and Kaneko, 1987) 
(3) Coupled differential equations (Umberger et a]., 1989; Moon et 

al., 1991) 

_t SPACE 

Figure 8-7 Coupled cell model with discretized space and time variables and a state 
space of a finite set of symbols (0, 1 )  using the rule following (8-3. I )  and randomly 
chosen initial conditions. 
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Coupled Automata 

This model is depicted in Figure 8-7, for a one-dimensional chain of 
cells with nearest neighbor interaction. Space and time are discretized, 
as is the state variable. In fact, the state variable is only allowed to 
take on a finite set of states represented by a set of symbols. 

For example, in a binary symbol set, the state variable could take 
on either 0 or 1, black or white, L or R .  To effect a dynamic on the 
lattice, a rule must be chosen governing the new state variable at time 
n + 1 at lattice site a, in terms of the old state variable at time n. We 
can see at once that two sets of integers are needed for space and 
time. A nearest neighbor law might take the form 

A ; + ,  = F ( A ; ,  A : : + ' ,  A ; - ' )  (8-3.1) 

For example, for a binary symbol pair (R, L) one could adopt a rule 
given in the following table called the 122 rule in Wolfram (1986). 

nth state 

a - 1  ff f f + l  n + l  

R 
L 
R 
L 
L 
R 
L 
R 

R 
L 
L 
L 
R 
L 
L 
R 

Wolfram (1986) and others have shown that such symbol dynamics 
on a lattice can exhibit very complex patterns and behavior as illus- 
trated in Figure 8-7. For example, a spatially simple initial row of 
symbols can generate a chaotic-looking pattern. Or a randomly chosen 
initial row can generate a regular pattern after several iterations. While 
simple in concept, the major drawback to these models is a lack of 
rigorous connection between physical laws in the continuum one is 
trying to model (such as  a turbulent fluid) and the symbol rule that 
generates the iterated coupled symbol map. 
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Coupled Maps 

In this model, one discretizes space and time, but allows the state 
variable to take on continuous values: 

x;+1 = F(x;,x;+',x;-') (8-3.2) 

For example, a popular model is to assume that each cell is governed 
by a simple one-dimensional map such as the logistic map with cou- 
pling to nearest neighbors: 

wheref(x) = 1 - ax2. This so-called coupled map lattice law has a 
diffusive interaction between cells (Kaneko, 1989). Using such models 
one is able to define Lyapunov exponents, entropy measures, correla- 
tion functions, mutual information, and other thermodynamic quanti- 
fies of spatiotemporal chaos (Kaneko, 1989). 

Coupled Differential Equations 

These models are identical to the classical studies of Brillouin (1946) 
or Toda (1981), but new tools have been used to try to characterize 
spatiotemporal dynamics, especially chaotic-looking spatial patterns. 
One such study is the work of the group at the University of Maryland 
(Umberger et al., 1989). The model is shown in Figure 8-8 and is 
similar to the earthquake model of Carlson and Langer (1989) in 
Chapter 4. The Maryland group uses a chain of Duffing oscillators, 
similar to a set of buckled beams, or a set of two-well potential 
oscillators, 

6 
ia = -yX, + -x,[u - x:] + ~ C O S U ~  + ED[x,] (8-3.4) 

Z 

where the coupling operator is defined as 

D[x,l = X,+I - 2x, + X,-I 
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(Note we are using the subscript a to denote spatial position in the 
chain.) 

Chain of Toda Oscillators 

Another example of a chain of coupled oscillators with a nonlinear 
force interaction between masses is a model used to describe an- 
harmonic intermolecular forces in a crystal lattice (Toda, 1981). This 
model has received both numerical and analytical study by Geist and 
Lauterborn (1988). The equations take the form 

d = V .  - v. 
1 I I f 1  

(8-3.5) 
Mu; = exp(d,-l) - exp(d;) + Y [ U ; + ~  - 2vi + v i - l ]  + Fi(r) 

where F; = 0 for i # io and F;,, = A sin wet. In this model, di represents 
the distance between neighboring masses, vi is the velocity of the ith 
mass, and y is a damping constant. A periodic force is applied to one 
of the masses in the chain. Numerical integration of these equations 
for 15 masses is shown in Figure 8-9 from the paper of Geist and 
Lauterborn (1988). The spatial complexity in Figure 8-9 is clearly 
evident. 

Experiments on Coupled Lattice Chaos 

A few experiments are beginning to emerge using coupled cell lattices. 
In electrical circuits one should look at the papers of Purwins et al. 
(1987, 1988). Another two-dimensional lattice based on cellular neural 
networks has been studied by Chua and Yang (1988). 

In the following we describe a mechanical experiment based on 
coupled masses on a taut string (Moon et al., 1991). The physical 
problem is shown in Figure 8-10. Eight small aluminum spheres sit on 
a string under tension. The string is fixed at one end and periodically 
excited at the other end with an electromagnetic shaker. The nonline- 
arity in this case is represented by an amplitude constraint, so that if 
the masses exceed a certain amplitude they will impact with a fairly 
rigid wall. This problem is not entirely academic, because in high- 
speed printers a chain of masses with typeface characters is moved 
across the paper. 

The unique character of this experiment is the signal processing. 
The format of the data output was designed to provide a link to cellular 
automata. That is, if the kth mass does not hit the constraint within a 
certain time period, a 0 would be stored in the kth register, whereas 
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Figure 8-9 Numerical integration of the dynamics of 15 coupled masses with Toda 
potential forces (8-3.5). [From Geist and Lauterborn ( 1988).] 

if it hits the wall a 1 would be stored. The time interval chosen was 
the first quarter cycle of each forcing cycle. Thus, this represented a 
finite Poincare window. 

Finally, eight masses were chosen so that the eight symbols of 0’s 
or 1’s could be coded into a binary number. Thus, at the end of each 
Poincare time window, a binary number S, from 0 to 255 would code 
the spatial impact pattern. In this way a large number of statistical 
data could be obtained for both space and time. 

Spatial Return Maps 

One of the features of this experiment was the use of a spatial pattern 
return map. After each Poincare window the spatial pattern number 

Aluminum masses 

Data Bus Capacitance 
microp hone 

shaker 

Figure 8-10 Sketch of experiment with eight coupled masses on a string and an 
amplitude constraint. 
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S, was plotted versus the previous pattern number S,-]. In this way 
one could track the changes in the impact pattern as one varied, say, 
the forcing amplitude or frequency. 

The results of these experiments are shown in Figures 8-11 and 
8-12. Figure 8-1 la shows the name of the bead that hits. Figure 8-1 lb 
shows the pattern history. The next figure (Figure 8-12) shows the 
pattern number return map. For example, for only two masses hitting, 
one can see that there are two different spatial patterns which alter- 
nate. For more masses hitting, one can also see that many spatial 
patterns are involved. 

Along with the measurements, a numerical simulation was per- 
formed (Figure 8-13) (see Moon et al., 1991). Using the numerical data 
an entropy measure was used (e.g., see Crutchfield and Kaneko, 1987). 
The entropy is based on probability measures {Pi}, that is, 

s = - c Pi log P; (8-3.6) 

where Pi measures the probability that one of the 256 configuration 
patterns would occur. In the numerical experiment, 4300 cycles of 
data were taken and the first 600 were discarded. Of the remaining 
3700 cycles, 330 groups of 400 cycles were used to calculate P,, each 
averaged over 330 sets of spatiotemporal data. 

The resulting entropy was then plotted as a function of the mass- 
wall gap to driving amplitude ratio (Figure 8-13). One can see that 
entropy increases as the gap is made smaller, which seems to measure 
the increase in complexity of the spatiotemporal impact patterns. 

These experiments and others are still exploratory. We are still 
looking for a new “Feigenbaum number” that will relate these obser- 
vations in one experiment to some universal mathematical model. In 
Kuhn’s theory of scientific revolutions, we are still looking for the 
right spatiotemporal paradigm that will unite these otherwise disparate 
experiments. 

8.4 LAGRANGIAN CHAOS 

Chaotic Mixing of Fluids 

In looking at the beautiful color pictures of fractal basin boundaries 
(see color plates), one is struck with the similarity to mixing of paints 
of different colors. Whereas the bending and stretching formations 
that are responsible for temporal, fractal dynamics can only be seen 
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. 

X" 
(b )  

figure ti-12 Spatial pattern number return map for the driven string with eight masses 
(Figures 8-10 and 8-1 I ) .  ( a )  Periodic impact. (b)  Chaotic impact. [From Moon et at. 
( I99 1 1.1 
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70 

Figure 8-13 
eight masses (Figure 8-10). [From Moon et al. (1991).] 

Entropy measure for complexity in space-time patterns in a string with 

in abstract phase space, in mixing of fluids, the folding and stretching 
can be seen in physical space directly. 

Flow patterns in fluids can be visualized in two ways. One can fix 
attention to one location r and then describe the velocity as it changes 
in time v(r; t ) .  Alternatively, one can fix one's eye on a single fluid 
particle and follow its position in space r ( t ) ,  with velocity V = 

(i, j ,  i). The fixed spatial reference flow description is called Eulerian, 
whereas the particle-based description is called Lagrangian. In gen- 
eral, one obtains three equations relating the particle velocity to the 
spatial velocity functions: 

The similaritics of these equations to the Lorenz equations (1-3.9) 
are clear, and chaotic trajectories are known to exist as can be seen 
in any turbulent flow. However, in most turbulent flows the spatial 
(Eulerian) patterns often change in time with as much complexity as 
the chaotic particle trajectories. What is remarkable, however, is that 
it is possible for the Eulerian velocity patterns to be regular (i.e., either 
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stationary in 3-D or periodically time-varying in 2-D) whereas the 
individual particle trajectories are chaotic. 

These sets of problems are important in chemical and other related 
technologies where mixing, stirring, or advection are important. Also, 
in fluid or gaseous combustion, mixing of fuel and oxygen is important 
(e.g., see Gouldin, 1987). In fact, these problems constitute examples 
where chaos is desirable. Modern studies of chaotic mixing using 
dynamical systems ideas have been done by Aref and Balachandar 
(1986), Ottino (1989a), and Chaiken et al. (1987), to name a few of the 
principal researchers. A very readable description can be found in an 
article by Ottino (1989b), and a review of chaotic advection of fluids 
may be found in Aref (1990). 

To illustrate the basic ideas, we describe the phenomenon as it 
occurs in 2-D physical fluid flow (as contrasted with “flows” in phase 
space). ln particular we consider the case of incompressible fluid (such 
as water or oil) where the divergence of the velocity field is zero, that 
is. 

v * v  = 0 (8-4.2) 

In this case the velocity in two dimensions can be described by a 
scalar function called a stream function, +(x, y, t ) :  

v = V  x$e,  or u , = - ,  a+ u , =  - -  a+ (8-4.3) 
a Y  . ax 

+ is then found by solving the momentum equation of fluid mechanics. 
When + is independent of time, we have a stationary flow pattern in 
space. Equations (8-4.3) are then used to describe the particle paths, 
that is, 

(8-4.4) 

These equations are precisely the same as those for a single particle 
with position q 3 x and momentump = y and an energy or Hamiltonian 
function H ( q ,  p )  = +. (See also Eq. (6-3.181.) 

Of course, a steady 2-D flow cannot produce chaos, so one intro- 
duces a time disturbance by slowly varying the flow pattern periodi- 



8.4 LAGKANGIAN CHAOS 423 

Figure 8-14 Sketch of geometry of Stokes flow experiment in a circular container. 

cally in time, that is, +(x, y ,  t + T )  = +(x, y ,  t ) .  One now has the 
analog of a periodically forced oscillator without dissipation. Two 
examples have received extensive study in the literature, namely 
Stokes’ flow (Figure 8-14) and flow in a rectangular cavity (Figure 
8-15). 

Stokes Flow 

In this problem, an incompressible, viscous fluid flows between two 
rotating cylinders whose centers are displaced (Figure 8-14). It can be 
shown that when the rotation rates of the cylinders are steady, then 
an exact solution can be found when viscous forces dominate the 

Figure 8-15 
moving walls. [From Leong and Ottino (1989).] 

Sketch of geometry of fluid flow experiment in a rectangular cavity with 
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inertial forces. In these solutions, particles travel in closed orbits in 
the plane. 

However, if one allows one of the cylinders to have a slow time- 
periodic change in rotation, then chaotic orbits of the particles can 
occur (see Color Plates 10, 1 I ) .  

Analysis of this periodic cylinder rotation problem has been given 
by Aref and Balachandar (1986) and Chaiken et al. (1987). A beautiful 
experimental study of the Stokes problem chaotic mixing has been 
presented by Chaiken et al. (1986). [See also Tabor (1989, Section 4.8) 
for a description of this experiment.] 

In either numerical or experimental studies, one can see the effect 
of folding and stretching in chaotic mixing. An example from the paper 
by Chaiken et al. (1987) for the Stokes flow problem is shown in Figure 
8-16. An initially short straight segment of fluid particles is stretched 
and folded after several cycles of the periodic rotation of the inner 
cylinder. 

Rectangular Cavity 

A fine experimental study of fluid mixing in a rectangular cavity with 
moving walls has been reported by Leong and Ottino (1989) (see 

t t  
I I I ' :,,a :d 

1: 
Figure 8-16 Experimental picture of stretching and folding of an initially straight 
segment of fluid particles in a Stokes flow field. [From Chaiken et  al. (19871.1 
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Figure 8-15). In this study a viscous fluid is confined in a rectangular 
cavity in which two of the walls can move. If the velocity of the walls 
is steady, then the streamlines form time independent closed orbits. 
However, in the experiments the authors slowly varied periodically 
the wall velocity resulting in complex particle motions which exhibit 
the stretching and folding shown in the Stokes flow problem. In these 
experiments, one can tag an initial group of fluid particles with a 
different color. After several cycles of wall motions, one can observe 
complex folded patterns in the tracer particles as shown in Figure 
8-17. A discussion of the role of symmetry and chaotic mixing for this 
problem is discussed in the paper by Franjione et al. (1989). 

Three-Dimensional Problems and Turbulence 

If the Eulerian flow field V ( x ,  y ,  z )  has a three-dimensional character, 
then the particle trajectory can become chaotic without the need for 
time-periodic boundary conditions. One example of this is the flow in 
a twisted pipe, which has been studied by Jones et al. (1989). In this 
problem a viscous fluid flows in a circular pipe, whose centerline is 
bent in a semicircular arc. However, the next planar section of the pipe 
is twisted out of the plane relative to the previous section. Iterating this 
idea in space, these authors obtained a two-dimensional mapping of 
the fluid particle position as it passes from one circularly bent section 
to another. Iteration of this 2-D mapping then leads to stochastic or 
chaotic orbits of the fluid particle. A finite number of such twisted 
pipe segments may be useful as a practical device for mixing fluids. 

I t  should be noted, however, that these examples of Langrangian 

Figure 8-17 Complex mixing patterns for an oscillatory fluid flow process. [From 
Leong and Ottino (19891.1 
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fluid chaos constitute a limited class of fluid motions and cannot be 
understood as “solving” the general problem of fluid turbulence (Aref, 
1990) which remains still a distant but slightly closer target. 

Chaotic Mixing in Plastic Material 

Mixing is usually associated with fluids. But one can also discover 
mixing problems in more solid materials. Solids are distinguished from 
fluids because they can resist shear. However, some solid materials 
will yield or flow when the shear stress exceeds some critical value. 
In the somewhat academic example discussed here, it is shown how 
chaotic trajectories of particles under alternating shear deformation in 
a plastic material can lead to spatial complexity that is similar to 
the folding and stretching processes in the mixing of fluids. (Such 
elasto-plastic mixing may have taken place in the earth’s mantle over 
a geological time scale.) 

Consider a sheet of plastic material in which we apply a body 
tangential torque distribution centered about point A in Figure 8-18 
(Feeny et a]., 1992). The body force is such that the shear stress is a 
constant value: T , ~  = K .  

In the theory of plasticity the material will flow when the shear 
stress reaches a yield value T ~ .  The strain rate y is directed related to 
the shear stress so that y =  AT^. It can also be shown that the strain 

Figure 8-18 Sketch of torsional deformation mechanics of a thin plastic sheet. 
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rate is related to the velocity field so that, if u is the circumferential 
deformation rate, under circular symmetry 

(8-4.5) 

We assume that the shearing body force is applied within a radius 
normalized to unity, so that u(r = 1) = 0. Then the velocity field is 
given by 

u(r)  =  AT^^ In r (8-4.6) 

In terms of the angular deformation, one can then write 

(8-4.7) 

where the parameter 7 is a measure of both the yield stress and the 
time of application of the body torque. 

To obtain a chaotic mixing deformation, we use an adaptation of 
the “blinking vortex” model of Aref (1984). We first apply the torque 
at point A and then apply it at B and so on, alternating the deformation 
process in a periodic way. This process leads to an iterated map 

where a = A or B and the superscripts n ,  n + 1 indicate the value of 
the variable at the nth and ( n  + 1)st cycles. This map can be shown 
to be area-preserving. 

In the fluid blinking vortex model, one has two co-rotating vortices 
in which one turns on while the other turns off in a periodic manner. 

Three types of graphic results are presented. In the first we show 
what happens to a line element in the plastic sheet after 8 or 16 
iterations of the cycles (Figure 8-19). It is clear that there are stretching 
and folding operations in the two-dimensional space which in temporal 
dynamics would lead to horseshoes and homoclinic tangles. 

The second graphic looks at a few initial points in the plane after 
many iterations of the map (Figure 8-20). This is effectively a Poincare 
map of the alternating plastic deformation process. Here we see struc- 
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Figure 8-19 Numerical experiments of chaotic mixing due to alternating torques on 
a plastic material showing the deformation of a line element after 8 and 16 iterations 
(8-4.8). [From Feeny et al. (1992).1 

tures that remind one of Hamiltonian temporal dynamics with quasipe- 
riodic orbits and stochastic (diffuse) orbits that give evidence for 
chaos. (Similar to Figure 8-5 or Figure 3-35.) 

The final graphics are some color plates (CP-15,16). Here we assign 
different colors to four quadrants of the plastic sheet and look at the 
patterns after several deformation cycles. These pictures graphically 
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show the folding and stretching processes that occur in these mixing 
problems and are similar to those observed experimentally in fluid 
mixing problems. 

Although his example is artificial, the availability of an explicit map 
allows one to look at the spatial mixing in a straightforward way. It 
also shows how simple velocity fields can lead to spatially complex 
particle trajectories. Furthermore, i t  suggests that processes such as 
forging of metals, kneading of baker's dough, geomechanical deforma- 
tions, and deformation of clay in the making of pottery may have in 
them mechanisms for chaotic mixing. 

PROBLEMS 

8-1 Give six examples of how the history of temporal events is 
written in spatial patterns. 

8-2 Periodic Chain Structures. As a prelude to understanding non- 
linear dynamics in periodic chain oscillator structures, examine 
the propagation of harmonic waves in a linear chain of equal 
masses m and springs of stiffness k. If w is the frequency and 
K is the wave number (A = 2 7 ~ 1 ~  is the wavelength), then show 
that in a linear chain w and K must be related by a dispersion 
relation 
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0 2  = 2 4 ( I  - cos K )  

where w i  = k /m.  

8-3 Show that the phase velocity of harmonic waves in the uniform 
linear lattice of Problem 8-2 is given by 

sin( ~ / 2 )  
K / 2  

u = +oo 

where u is the number of lattice cells per time. 

8-4 In a linear one-dimensional semi-infinite lattice, what is the 
nature of the motion when the end mass is excited at afrequency 
o > 2o,, where oi = k/m, for a series chain of alternating 
masses and springs and oi = l /LC for a chain of linear inductors 
L alternating with linear capacitors C connected to ground. 

8-5 Nonlinear lattice models have been used to model many sys- 
tems, ranging from the dynamics of a long train of railroad 
cars to the dynamics of macromolecules such as DNA. The 
equations can often be written in terms of a nonlinear potential 
function V(r , ) ,  where r, = x, + - x, is the relative displacement 
between neighboring cells. Write the equations of motion for a 
system with a double-well potential. Can you find more than 
one static solution? 

8-6 Solitons. One nonlinear potential lattice model uses an exponen- 
tial force potential (Toda, 1989) V(r)  = (a/b)e-b‘ + ar (ab > 0). 
A lattice with this potential is known to admit so-called solitary 
wave or soliton solutions where a given deformation pattern 
can propagate without distortion and where two such waves 
can interact and preserve their identity similar to linear wave 
systems. Show that a solitary wave solution for the Toda lattice 
is given by 

Here p = ( ~ b / r n ) ” ~  sinh K ,  and the width of the wave is propor- 
tional to 1 / ~ .  Also show that the solitary wave for the Toda 
lattice above has a speed C = P / K .  
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8-7 Coupled Map Lattice. When both time and space are discret- 
ized, one can sometimes use coupled map lattices (CML) to 
model spatiotemporal dynamics. CML systems have been ex- 
tensively studied by the Japanese physicist K. Kaneko at the 
University of Tokyo (e.g., see Kaneko, 1990). In one CML 
model the equations take the form 

This is known as the diffusive coupling model. Here the integers 
n ,  n + 1 represent time and i - 1, i ,  i + 1 represent spatial 
positions. A standard paradigm is to choosef[x] as the logistic 
map, that is,f = 1 - ax2. As a computer exercise, choose 1 5 
i 5 N where N = 8, 32, or 64 depending on the size of your 
computer. First, choose a set of initial conditions for n = 1 and 
plot a space-time diagram with dimensions N x n (e.g., 
n = 100). Use course-graining to visualize the space-time pat- 
terns. For example, if Ix,(i + 1) - x,(i)l > 0.3, plot a black dot 
or other symbol. Otherwise leave the space blank. Kaneko 
often starts with a random set of initial conditions to see if 
organized spatial patterns develop after sufficient iteration time. 

The Elastica and the Pendulum. A special case of the Kirchhoff 
analogy between the spatial deformation of a thin elastica and 
the temporal dynamics of a rigid body concerns planar deforma- 
tion under a compressive load. Let 0 represent the slope of the 
elastica and let s be the distance along the filament. Assume 
that on each cross section a compressive load P acts parallel to 
the x axis. Furthermore, assume that the bending moment at 
each cross section is proportional to the change in curvature, 
that is, M = EI(K - K ~ ) ,  where K = dO/ds and K&) is the 
initially zero force configuration. (E is Young's modulus and I 
is the second moment of area.) Then show that the equation of 
deformation is similar to that of a forced pendulum 

8-8 

El@" + P sin 0 = EZK~(S) 

8-9 Suppose the initial curvature of the planar elastica is zero, that 
is, K ~ ( s )  = 0. Then use the analogy with the pendulum to draw 
the deformation solution corresponding to the separatrix or 
heteroclinic orbit for the pendulum. 
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8-10 Blinking Vort ices .  A vortex flow field in an incompressible fluid 
has zero radial velocity and a circular velocity component given 
by u, = 0, u, = r / 2 r r ,  where r is called the circulation. Con- 
sider now two centers of vortical flow along the x axis at x = 
+a.  Assume that while one vortex operates for time T ,  the other 
is quiet. (Hence the term “blinking vortices.”) Derive a map 

where “ ( n  + 1)” denotes the new position of the vector ( x , ~ ,  y r , )  
after one full cycle. (See a!so Avef, 1984.) 

8-11 Divide the plane into four quadrants. Sketch the deformation 
of the quadrants after one cycle of the blinking vortex flow. Can 
you sketch two cycles? 

8-12 It is natural to use thermodynamic ideas such as entropy when 
discussing spatiotemporal dynamics (e.g., see Kaneko, 1989). 
In classical statistical thermodynamics the entropy is a measure 
of the disorder in a system. Entropy measures are easily defined 
when both space and time are discretized. For example, for a 
one-dimensional, nearest neighbor, coupled cell system each of 
which has a two-symbol state space of either A or B ,  one can 
calculate the probability Pi that a certain pattern i of A’s and 
B’s will occur. If there are M such patterns possible, then an 
entropy S can be defined as 

M 

i =  I 
S = - c PJog Pi 

Choose a set of eight cells. Show that the number of possible 
configurations is M = 2’. Compare S for two configurations: (a) 
an alternating AB pattern and (b) a pattern where A or B are 
chosen at random for all eight cells. 
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APPENDIX A 

GLOSSARY OF TERMS IN CHAOTIC 
AND NONLINEAR VIBRATIONS 

Almost periodic: A time history made up  of a number of discrete 
incommensurate frequencies. 

Arnold tongues: Refers to the motion of coupled nonlinear oscillators 
for which the ratio of frequencies may become locked at some value 
plq (p ,  q integers). The tongue refers to the shape of the locked 
region in some parameter space, and the name refers to the Soviet 
dynamicist V.  I. Arnold who discovered them. 

Attractor: A set of points or a subspace in phase space toward which 
a time history approaches after transients die out. For example, 
equilibrium points or fixed points in maps, limit cycles, or a toroidal 
surface for quasiperiodic motions are all classical dynamical at- 
tractors. 

Baker’s map: A transformation of the plane (a mapping from the plane 
to the plane), which takes a rectangular area, streches it in one 
direction, shrinks it in a transverse direction, cuts it in half, and 
places it back over the original area. Similar to horseshoe map. 
Repeated iterations of the map transform the original set of points 
into a fractal structure. Named after the operations of a cook or 
baker, who repeatedly forms and reforms a piece of pie dough. 

Basin of attraction: A set of initial conditions in phase space which 
leads to a particular long-time motion or attractor. Usually this set 
of points is connected and forms a continuous subspace in phase 
space. However, the boundary between different basins of at- 
traction may or may not be smooth. 

433 
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Bifurcation: Denotes the change in the type of long-time dynamical 
motion when some parameter or set of parameters is varied (for 
example, as when a rod under a compressive load buckles-one 
equilibrium state changes to two stable equilibrium states). 

Cantor set: Formally a set of points obtained on a unit interval by 
throwing out the middle third and iterating this operation on the 
remaining intervals. This operation, when carried to the limit, leads 
to a fractal set of points on the line with a dimension between 0 and 
1 (In 2/ln 3). 

Capacity: One of the many definitions of the fractal dimension of a 
set of points. The basic idea is to count the minimum number of 
cubes of size E needed to cover a set of points. If this number 
behaves as E - ~  as E 4 0, the exponent d is called the capacity 
fructal dimension. 

Catastrophe theory: In many physical systems, the equilibrium points 
are derived from a potential function by setting the derivatives of 
this potential with respect to the generalized coordinates equal to 
zero. Catastrophe theory has to do with the dependence of the 
number of equilibrium points on the parameters in the problem such 
as force loads in elastic systems. Near certain critical values of 
these parameters, this theory predicts that the number of equilib- 
rium points will change in prescribed ways and that these changes 
are universal for certain classes of potential functions. The roots of 
the theory are attributed to the French mathematician Rene Thom. 
In engineering mechanics, a special version of the theory was devel- 
oped independently and deals with the sensitivity of critical loads 
to imperfections in the structure. 

Center manifold: In dynamical systems theory, the motions in the 
neighborhood of an equilibrium point can be classified according to 
whether the eigensolutions are stable, unstable, or oscillatory. The 
subspace of phase space which is spanned by the purely oscillatory 
solutions is sometimes called the center rnunifold. 

Chaotic: Denotes a type of motion that is sensitive to changes in initial 
conditions. A motion for which trajectories starting from slightly 
different initial conditions diverge exponentially. A motion with 
positive Lyapunov exponent. 

Circle map: This is a map or difference equation that maps points 
on a circle onto the original circle. In the theory of two coupled 
oscillators, some motions in phase space can be viewed as motion 
on a toroidal surface. A Poincare section that intersects the smaller 
diameter of the torus constitutes a circle map. 
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Combination tones: (See also Quusiperiodic.) In vibrations and acous- 
tics, frequencies that appear as the sum or difference of two funda- 
mental frequencies. More generally, frequencies of the form (nw + 
m u 2 ) ,  where n and rn are positive or negative integers. 

Deterministic: Refers to a dynamic system whose equations of mo- 
tion, parameters, and initial conditions are known and are not sto- 
chastic or random. However, deterministic systems may have mo- 
tions that appear random. 

Duffing’s equation: A second-order differential equation with a cubic 
nonlinearity and harmonic forcing x + c i  + bx + ax3 = focos at. 
Named after G. Duffing (circa 1918). 

Equilibrium point: In  a continuous dynamical system, a point in phase 
space toward which a solution may approach as transients decay 
( t  + a). In mechanical systems, this usually means a state of zero 
acceleration and velocity. For maps, equilibrium points may come 
in a finite set where the system visits each point in a sequential 
manner as the map or difference equation is iterated. (Also called 
afixed point . )  

Ergodic theory: In Hamiltonian mechanics (no dissipation), it refers 
to the randomlike motions of coupled nonlinear systems of particles 
and the evolution of collective properties of the total system. 

Feigenbaum number: A property of a dynamical system related to 
the period-doubling sequence. The ratio of successive differences 
between period-doubling bifurcation parameters approaches the 
number 4.669 . . . . This property and the Feigenbaum number have 
been discovered in many physical systems in the prechaotic regime. 

Fixed point: See Equilibrium point .  
Fractal: A geometric property of a set of points in an n-dimensional 

space having the quality of self-similarity at different length scales 
and having a noninteger fractal dimension less than n. 

Fractal dimension: The fractal dimension is a quantitative property of 
a set of points in an n-dimensional space which measures the extent 
to which the points f i l l  a subspace as the number of points becomes 
very large. (See Capacity.) 

Global/local motions: Local motions refer to solutions to dynamical 
systems that do not wander far from equilibrium points. Global 
solutions concern motion between and among equilibrium points or 
solutions that are not confined to a small region of phase space. 

Hamiltonian mechanics: Formally, a method to derive the equations 
of motion of an N-degree-of-freedom dynamical system in terms 
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of 2N first-order differential equations (Hamilton, 1805- 1865). In  
practice, a Hamiltonian problem often refers to a nondissipative 
system in which the forces can be derived from a scalar potential. 

Hausdorff dimension: A mathematical definition of fractal properties 
related to the capacity dimension. 

Henon map: A set of two coupled difference equations with one 
quadratic nonlinearity. When one parameter is set to zero, the 
equations resemble the logistic or quadratic map. Named after a 
French astronomer. 

Heteroclinic orbit: An orbit in a map or difference equation that occurs 
when stable and unstable orbits from different saddle points in- 
tersect. 

Homoclinic orbit: An orbit in a map that occurs when stable and 
unstable manifolds of a saddle point intersect. 

Hopf bifurcation: The emergence of a limit cycle oscillation from an 
equilibrium state as some system parameter is varied. Named after 
a mathematician who gave precise conditions for its existence in a 
dynamical system. 

Horseshoe map: A map of the plane onto the plane. Points in the 
lower half of a rectangular domain are stretched and contracted and 
mapped into a vertical strip in a section of the left half-plane, while 
points in the upper half are stretched and contracted and mapped 
onto a vertical strip in the right half-plane. The process is like 
transforming a rectangular domain into a horseshoe-shaped set of 
points-hence the name. Similar to the baker’s transformation. 
Repeated iterations can yield a fractal-like set of points. 

Hyperchaos: A dynamic system where the phase space is stretched 
in two or more directions (i.e., two or more positive Lyapunov 
exponents). 

Intermittency: A type of chaotic motion in which long time intervals 
of regular, periodic, or stationary dynamical motion are followed 
by short bursts of randomlike motion. The time interval between 
bursts is not fixed but is unpredictable. 

Invariant measure: A distribution function that describes the long- 
time probability of finding the motion of a system in a particular 
region of phase space. 

KAM theory: The initials stand for the theorists Kolmogorov, Arnold, 
and Moser, who developed a theory regarding the existence of 
periodic or quasiperiodic motions in nonlinear Hamiltonian systems 
(i.e., systems that have no dissipation and in which the forces 
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can be derived from a potential). This theory states that if small 
nonlinearities are added to a linear system, the regular motions will 
continue to exist. 

Lagrangian chaos: The state of motion of a fluidlike substance in 
which the spatial patterns of flow are regular, but the fluid particle 
motions are chaotic. 

Limit cycle: In  the engineering literature, a periodic motion that arises 
from a self-excited or autonomous system as in aeroelastic flutter 
or electrical oscillations. In  the dynamical systems literature, it also 
includes forced periodic motions. (See also Hopf bifurcation.) 

Linear operator: Any mathematical operation (e.g., differentiation, 
multiplication by a constant) in which the action on the sum of two 
functions is the sum of the action of the operation on each function. 
Akin to the principle of superposition. 

Lorenz equations: A set of three first-order autonomous differential 
equations that exhibit chaotic solutions. The equations were derived 
and studied by E. N .  Lorenz of M.I.T. in 1963 as a model for 
atmospheric convection. This set of equations is one of the principal 
paradigms for chaotic dynamics. 

Lyapunov exponents: Numbers that measure the exponential at- 
traction or separation in time of two adjacent trajectories in phase 
space with different initial conditions. A positive Lyapunov expo- 
nent indicates a chaotic motion in a dynamical system with bounded 
trajectories. Named after the dynamicist Lyapunov (1857-1918) (in 
some books spelled Liapunov). 

Mandelbrot set: If z is a complex variable, the quadratic map z --f 
,$ + c has more than one attractor. Fixing the initial conditions, 
one can vary the complex parameter c to determine the basin of 
attraction as a function of c’ .  The basin boundary that results is 
fractal, and the basin is known as the Mandelbrot set after a mathe- 
matician at IBM. 

Manifold: A subspace of phase space in which solutions with initial 
conditions in the manifold stay in the manifold or subspace, under 
the action of the differential or difference equations. 

Map, mapping: A mathematical rule that takes a collection of points 
in some n-dimensional space and maps them into another set of 
points. When this rule is iterated, a map is similar to a set of 
difference equations. 

Melnikov function: One theory of chaotic motions focuses on the 
saddle points of Poincare maps of continuous phase-space flows. 
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Near such points there are subspaces where trajectories are swept 
into the point (stable manifolds) and subspaces where trajectories 
are swept away from the point (unstable manifolds). The Melnikov 
function provides a measure of the distance between these stable 
and unstable manifolds. One theory contends that chaos is possible 
when these two manifolds intersect or when the Melnikov function 
has a simple zero. (Named after a Russian mathematician circa 
1962.) 

Multifractal: A set of geometric patterns with multiple scaling rela- 
tionships. A set with a distribution of fractal dimensions. 

Navier-Stokes equations: A set of three partial differential equations 
governing the velocity field in the flow of an incompressible, linear, 
viscous fluid (Navier, 1785-1836; Stokes, 1819-1903). 

Noise: In experiments, noise usually denotes the small random back- 
ground disturbance of either mechanical, thermal, or electrical 
origin. 

Nonlinear: A property of an input-output system or mathematical 
operation for which the output is not linearly proportional to the 
input. For example, y = cx" (n # I ) ,  or y = x dxldt ,  or y = c(dx/  
dt)2.  

Period doubling: Refers to a sequence of periodic vibrations in which 
the period doubles as some parameter in the problem is varied. In 
the classic model, these frequency-halving bifurcations occur at 
smaller and smaller intervals of the control parameter. Beyond a 
critical accumulation parameter value, chaotic vibrations occur. 
This scenario to chaos has been observed in many physical systems 
but is not the only route to chaos. (See Feigenbaum number.) 

Phase space: In mechanics, phase space is an abstract mathematical 
space whose coordinates are generalized coordinates and general- 
ized momentum. In dynamical systems, governed by a set of first- 
order evolution equations, the coordinates are the state variables 
or components of the state vector. 

Poincare section (map): The sequence of points in phase space gener- 
ated by the penetration of a continuous evolution trajectory through 
a generalized surface or plane in the space. For a periodically 
forced, second-order nonlinear oscillator, a PoincarC map can be 
obtained by stroboscopically observing the position and velocity at 
a particular phase of the forcing function (H. PoincarC, 1854-1912). 

Quantum chaos: In quantum theory, every classical dynamical system 
has a quantum counterpart. The question of quantum chaos is a 
search for the dynamical measures of chaotic Newtonian systems 
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taken to their quantum limits. This question has not been resolved 
to date. 

Quasiperiodic: A vibration motion consisting of two or more incom- 
mensurate frequencies. 

Rayleigh-Benard convection: Circulatory patterns in a fluid produced 
by a thermal gradient and gravitational forces. The chaos model of 
Lorenz attempted to simulate some of the dynamics of thermal 
convection. 

Renormalization: A mathematical theory in functional analysis in 
which properties of some mathematical set of equations at one scale 
can be related to those at another scale by a suitable change of 
variables. Developed by the Nobel-prize-winning physicist K. Wil- 
son (Cornell University). Used in the theory of quadratic maps to 
derive the Feigenbaum number. 

Reynolds number: A nondimensional group in fluid mechanics pro- 
portional to a velocity parameter and a characteristic length and 
inversely proportional to the kinematic viscosity. The transition 
from laminar to turbulent flow in many fluid problems occurs at a 
critical value of the Reynolds number (0. Reynolds, 1842-1912). 

Rotation number: (Also Winding number.) When a system has two 
oscillators with frequencies w l  and w 2 ,  the rotation number, based 
on w ,  , measures the average number of orbits of frequency w2 in an 
orbit of wI . 

Saddle point: In the geometric theory of ordinary differential equa- 
tions, an equilibrium point with real eigenvalues with at least one 
positive and one negative eigenvalue. 

Self-similarity: A property of a set of points in which geometric struc- 
ture on one length scale is similar to that at another length scale. 
(See also Fructul, Renorrnulizution.) 

Shil’nikov chaos: A mathematical model for chaotic dynamics pro- 
posed by the Soviet scientist, Shil’nikov. The model is based on a 
phase space flow around a single unstable equilibrium point with 
either an unstable spiral outflow and stable inflow or an unstable 
outflow and a stable spiral inflow. 

Spatiotemporal chaos: The dynamics of physical systems with loss of 
correlation in both space and time. 

Stochastic process: Often refers to a type of chaotic motion found in 
conservative or nondissipative dynamical systems. 

Strange attractor: Refers to the attracting set in phase space on which 
chaotic orbits move. An attractor that is not an equilibrium point 
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nor a limit cycle, nor a quasiperiodic attractor. An attractor in phase 
space with fractal dimension. 

Surface of section: See Poincari section (map). 
Symbolic dynamics: Refers to a dynamic model in which not only time 

is discretized but the state variables take on a finite set of values, 
for example, ( -  1, 0, 1). Because the set of values is finite, one is 
free to use any set of symbols, say (I,, C ,  R). A dynamic trajectory 
then consists of a sequence of symbols. Related also to cellular 
autonoma. 

Taylor-Couette flow: The flow of fluid between two rotating concen- 
tric cylinders. 

Torus (invariant): The coupled motion of two undamped oscillators 
is imagined to take place on the surface of a torus, with circular 
motion around the small radius representing the oscillatory vibra- 
tion of one oscillator and motion around the large radius direction 
representing the other oscillator. If the motion is periodic, a closed 
helical trajectory will wind around the torus. If the motion is quasi- 
periodic, the orbit will come close to all points on the torus. 

Transient chaos: A term describing motion that looks chaotic during 
a finite time; that is, it appears to move on the strange attractor, but 
eventually settles into a periodic or quasiperiodic motion. 

Unfolding: In the mathematical theory of stability, a term that de- 
scribes a set of problems which are close to some idealized problem, 
as when a small amount of asymmetry is introduced into a problem 
with symmetry or when small damping is added to a nondissipative 
dynamical problem. The change in stability or dynamical properties 
of the idealized problem as some nonidealized terms are added is 
called an unfolding. 

Universal property: A property of a dynamical system that remains 
unchanged for a certain class of nonlinear problems. For example, 
the Feigenbaum number relating the sequence of bifurcation param- 
eters in period doubling is the same for a certain class of nonlinear, 
noninvertible, one-dimensional maps. 

Van der Pol equation: A second-order differential equation with linear 
restoring force and nonlinear damping which exhibits a limit cycle 
behavior. The classic mathematical paradigm for self-excited oscil- 
lations. (Named after B. Van der Pol, circa 1927.) 

Winding numbers: see Rotation number. 
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APPENDIX B 

NURlERICAL EXPERIMENTS 
IN CHAOS 

The spirit of the approach to chaotic vibration in this book has been 
an empirical one of exploring the range of physical phenomena in 
which chaotic dynamics play a role. While not all readers will have 
access to a laboratory or have the inclination to do experiments, most 
readers have some access to digital computers. Thus, this appendix 
contains a number of numerical experiments using either a personal 
computer or minicomputer in which the reader can explore the dynam- 
ics of the now classic paradigms of chaos. Other numerical exercises 
may be found in some of the problems at the end of each chapter. 

B.l  LOGISTIC EQUATION-PERIOD DOUBLING 

Perhaps the easiest problem with which to begin study in the new 
dynamics is the population growth model or logistic equation 

Period-doubling phenomena were observed by a number of research- 
ers (e.g., see May, 1976) and, of course, Feigenbaum (1978), who 
discovered the famous parameter scaling laws (see Chapters 1 and 3). 
Two numerical experiments on a desktop computer are fairly easy to 
perform. In the first plot, we have x,+ I versus x, with a range of 0 I 
.Y 5 I .  The period-doubling regime is below A = 3.57. Start with A < 
3 .0  to see a period-I orbit. To see the long-term orbit, plot the first 

441 
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30-50 iterates with dots and plot the later iteration with a different 
symbol. Of course, one can also plot x ,  versus n to see both the 
transient and steady-state behavior. Chaotic orbits may be found for 
3.57 < A 5 4.0. A period-3 window may be found around A = 3.83 
(see May, 1976). 

The next experiment involves generating a bifurcation diagram. In 
this picture, the long-term values of the orbit are plotted as a function 
of the control parameter. Start with some initial condition (e.g., xo = 
0.1) and iterate the map for say 100 steps. Then plot x,  for another 50 
steps on the vertical axis with the A value on the horizontal axis (or 
vice versa). Take step sizes for A to be around 0.01 and look at the 
range 2.5 < A < 4.0. The diagram should produce the classic pitchfork 
bifurcation at the period-doubling points. Can you calculate the 
Feigenbaum number from this experiment? (See Figure 3-18.) 

May (1976) also lists other experiments with one-dimensional maps, 
for example, 

x,+I = x,exp[A(l - x,)l 

He described this as a model for growth of a single species population 
which is regulated by an epidemic disease. Look at the region 2.0 < 
r < 4.0. The period-doubling accumulation point and chaos begin at 
r = 2.6824 (May, 1976). This article also lists data for several other 
computer experiments. 

B.2 LORENZ EQUATIONS 

A fascinating numerical experiment worth trying is the one in Lorenz’s 
original 1963 paper. In this paper, Lorenz simplifies equations derived 
by Saltzman (1962) based on the fluid convection equations of mechan- 
ics (see Chapter 4). Lorenz acknowledges Saltzman’s discovery of 
nonperiodic solutions of the convection equation. Lorenz chose the 
now classical parameters to study chaotic motions: u = 10, b = 3. 
r = 28 for equations 

i = a(y - x) 

y = rx - y - xz 

i =  - b z + x y  

His data in Figures 1 and 2 of the 1963 paper may be reproduced 
by choosing initial conditions (x, y , z) = (0, 1, 0) and a time step of 
A t  = 0.01 and projecting the solution on either the z-x or z-y planes. 
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To derive a one-dimensional map based on this flow, Lorenz chose 
to look at successive maxima of the variable z which he called M,. A 
plot of M , + I  versus M, reveals a map shaped like a tent. Lorenz then 
went on to study a simplified version of the map called a tent map, 
which is a bilinear version of the logistic equation (See Figure 3-29) 

if M, < i 
2 - 2 M ,  i f M , > i  

M , + I  = [ 2 M n  

B.3 INTERMIITENCY AND THE LORENZ EQUATION 

An illustration of intermittency may be seen on the computer by 
numerically integrating the Lorenz equations with a Runge-Kutta 
algorithm, 

x = (T(y - x )  

y = - x z  + rx  - y 

i = XY - bz 

using the parameters a = 10, b = !, and 166 5 r I 167. For r = 166, 
a periodic time history of say z ( t )  will be obtained, but for r = 166.1 
or larger, “bursts” or chaotic noise will appear (e.g., see Manneville 
and Pomeau, 1980). By measuring the average number of periodic 
cycles between bursts, N (the laminar phase), one should obtain the 
scaling 

1 
( r  - rc)1’2 

N -  

where r(. = 166.07. 

B.4 HENON AITRACTOR 

An extension of the quadratic map on the line to a map on the plane 
was proposed by the French astronomer Henon: 

2 x,+1 = 1 + y, - ax, 

Yntl = bx, 
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When b = 0, one obtains the logistic map studied by May and 
Feigenbaum. Values of a and b for which one will get a strange 
attractor include a = 1.4 and b = 0.3. Plot this map on the x-y plane 
with graph limits -2 I x 5 2 and 0.5 5 y I 0.5. After obtaining the 
attractor, rescale your graph to focus on one small area of the attractor. 
Run the map for a much longer time and look for fine-scale fractal 
structure. If you have the patience or a fast computer, rescale and run 
again for an even smaller area of the plane. (See Figure 1-24.) 

If you have a program to calculate Lyapunov exponents, the re- 
ported Lyapunov exponent is A = 0.2 and the fractal dimension for 
this attractor is dL = 1.264. One can also vary a and b to see where 
the attractor exists and to find period-doubling regions of the (a ,  b )  
plane [see Guckenheimer and Holmes (1983, p. 268) and Ott (1981)l. 

B.5 DUFFING’S EQUATION: UEDA ATTRACTOR 

This model for an electric circuit with a nonlinear inductor was dis- 
cussed in Chapter 4. The equations for the model in first-order form 
are 

Chaotic oscillations were studied quite extensively by Ueda (1979). 
Use a standard numerical integration algorithm such as a fourth-order 
Runge-Kutta and examine the case k = 0.1, 9.8 I B 5 13.4. For 
B = 9.8, one should get a period 3. (Take a Poincare map when t = 
2nn, n = 1, 2, ... .) The period-3 motion should bifurcate to chaos 
around B = 10. Beyond B = 13.3, the motion should become periodic 
again with a transient chaos regime. (See Figure 3-33.) 

Also, compare the fractal nature of the attractor as damping is 
decreased for B = 12.0 and k = 0.2,0.1,0.05. Note also that for k = 
0.3 only a small piece of the attractor remains, while for k = 0.32 the 
motion has become periodic. 

B.6 TWO-WELL POTENTIAL 
DUFFING-HOLMES ATTRACTOR 

This example has been discussed throughout the book. Several numer- 
ical experiments are worth trying. The nondimensional equations are 
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X = y  

y = - 6 y  + ix (1  - x?) +fcoswt  

(This can be put into a third-order autonomous system by setting z = 
wt and writing i = w.) The factor of 3 makes the small-amplitude 
natural frequency in each well equal to unity. The criterion for chaos 
for fixed damping 6 = 0.15 and variable f, w has been discussed in 
Chapter 6. An interesting region to explore is w = 0.8,O.l s f ~  0.3. 
In this regime, one should go from periodic to chaotic to periodic 
windows in the chaotic region and out of the chaotic region atf = 0.3. 
Another interesting region is 6 = 0.15, o = 0.3, and f > 0.2. In all 
studies, the reader is encouraged to use a PoincarC map. In using a 
small desktop computer, one can achieve reasonable computing 
speeds if the program is run in a compiled form. (See Figure 6-3.) 

Another interesting experiment is to fix the parameters, sayf  = 
0.16, w = 0.833, and 6 = 0.15, and vary the phase of the PoincarC 
map; that is, plot (x, y )  when t,l = (277/0)n + q o  and vary cpo from 0 
to n. One should see an inversion of the map for qo = 0, n. Is this 
related to the symmetry of the equations? (See Figure 5-7.) 

B.7 CUBIC MAP (HOLMES) 

We have illustrated many of the concepts of chaotic vibrations with 
the model of the two-well potential attractor. The dynamics are de- 
scribed by a nonlinear second-order differential equation (see Chap- 
ters 2 and 3), but an explicit formula for the PoincarC map of this 
attractor has not been found. Holmes (1979) has suggested a two- 
dimensional cubic map which has some of the features of a negative 
stiffness Duffing oscillator 

A chaotic attractor may be found near the parameter values b = 0.2 
and d = 2.77 (see also Problem 3. I ) .  

B.8 BOUNCING BALL MAP (STANDARD MAP) 

[See Holmes (1982) and Lichtenberg and Lieberman (1983).] As 
discussed in Chapter 3, a Poincare map for a ball bouncing on a 
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vibrating table can be obtained exactly in terms of the nondimensional 
impact velocity u, and phase of the table motion cp, = at, (mod 27r): 

u,+ I = ( 1  - E)U, + K sin cpn cpn (mod 27r) 

Vn+l = (Pn + u n + I  

where E represents energy lost during impact. 

Case 1: E = 0 Conservative Chaos 

This case is studied in Lichtenberg and Lieberman (1983) as a model 
for acceleration of electrons in electromagnetic fields. Iterate the 
map and plot points on the (u, ,  cp,) plane. To obtain (P (mod 2n), 
one can use 

2 27r - A B S ( 5 )  

in advanced BASIC. To get a good picture, you must vary the initial 
conditions. For example, choose cp = 0.1 and run the map for 
several hundred iterations for different values of u between -7r < 
v < IT. 

The interesting cases are for 0 < K < 1.5. For K << 1, one can see 
quasiperiodic closed orbits around the periodic fixed points of the 
map. For K = 1, one should see regions of conservative chaos near 
the separatrix points. (See Figure 6-26.) 

Case 2: 0 < E < 1 

This case corresponds to a dissipative map where energy is lost at 
each impact. First try K = 1.2 and E = 0.1. Note that although the 
early iterations look chaotic, as in Case 1, the motion settles into a 
periodic orbit. To get fractal-like chaos, raise K to -5.8-6.9. To 
get a more fractal-looking strange attractor, use E = 0.3-0.4 and 
K = 6.0. 

B.9 CIRCLE MAP: MODE-LOCKING, WINDING NUMBERS, 
AND FAIREY TREES 

A point moving on the surface of a torus is a conceptual model for the 
dynamics of two coupled oscillators. The amplitudes of each motion 
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are represented by minor and major radii of the torus and are often 
assumed to be fixed. The phases of each oscillator are represented by 
two angles describing positions along the major and minor circumfer- 
ences. A PoincarC section of the minor circumference of the torus 
produces a one-dimensional difference equation called the circle map: 

wheref(v) is a periodic function. 
Each iteration of the map represents an orbit of one oscillator 

around the large circumference of the torus. A popular example for 
study is the so-called standard circle map (normalized by 2 ~ ) :  

K 
21T xnt = x, + R - - sin 27rx, (mod 1) 

Possible motions observed in this map are periodic, quasiperiodic, 
and chaotic. To see periodic cycles, plot the points on a circle with 
rectangular coordinates u, = cos ~ V X ,  and u, = sin 27rx,. 

When K = 0, R represents a winding number-the ratio of two 
frequencies of the uncoupled oscillators. When K # 0, the map may 
be periodic when R is an irrational number. The oscillators are then 
said to be mode-locked. When 0 < K < 1, one can observe mode- 
locked or periodic motions in finite-width regions of the R axis, 0 5 
RZk 5 R I ilk+ I < 1, which, of course, includes nonrational values of 
R. For example, for K = 0.8, a two-cycle can be found for 0.48 < R 
< 0.52 and a three-cycle can be found in the region 0.65 < < 0.66. 
To find these regions for 0.7 < K < 1 .O, calculate the winding number 
W as a function of R, 0 5 R I 1. The winding number is calculated 
by suspending the mod I action and using 

x N  - xO W = lim - 
N - ~ X  N 

In practice, one has to choose N > 500 to get good data. Plotting 
W versus a, one should see a series of plateaus of mode-locked 
regions. To see more mode-locked regions, one should choose a small 
AR region and plot W for many points in this small domain. 

Each mode-locked plateau in the W(R) plot corresponds to a p/4 
rational number representing p cycles of one oscillator to 4 cycles of 
the other. These p/q ratios are ordered in a sequence called a Fuirey 
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tree. Given two mode-locked regions rls and plq at R, and R,, respec- 
tively, a new mode-locked region will exist somewhere between these 
two, R, < R < R2,  with a winding number given by 

Starting from O l l  at fl = 0 and 111 at R = I ,  one can begin to generate 
the whole infinite sequence of mode-locked regions. Most, however, 
are very narrow. Note that the size AR of these mode-locked regions 
approaches zero as K -+ 0 and gets wider as K + 1. The shapes of 
mode-locked regions in the K-R plane are sometimes called Arnold 
tongues. See Figure 2-23 for an example. 

B.10 ROSSLER A'ITRACTOR: CHEMICAL REACTIONS, 
RETURN MAPS 

Thus far, each of the principal fields of classical physics has developed 
a simple paradigm for chaotic dynamics: fluid mechanics-Lorenz 
equations; structural mechanics-Duffing-Holmes two-well at- 
tractor; electrical science-Duffing-Ueda attractor. Another simple 
model motivated by the dynamics of chemical reactions in a stirred 
tank is the following proposed by Rossler (1976b): 

.i = - ( y  + z )  
y = x + a y  

i = a + z(x - p) 

The system often studied is the case a = 4. Period-I , -2, and -4 motions 
may be found for p = 2.6,3.5, and 4.1. Chaotic motions may be found 
for p > 4.23. This model has the properties of a linear oscillator with 
negative damping and feedback, 

This example is also illustrative of higher-dimensional systems whose 
dynamics are approximated by a one-dimensional map. Take the 
Poincare section for y = 0 and plot the x, values on the x-z plane in 
the form of a one-dimensional map, that is, x,+ I versus x, . Note the 
resemblance to the quadratic or logistic map. It should be no surprise 
that period doubling is observed in this system. 
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B . l l  FRACTAL BASIN BOUNDARIES: 
KAPLAN-YORKE MAP 

An example of a two-dimensional map with a fractal basin boundary 
is one studied by Kaplan and Yorke (1978) and McDonald et al. (1985): 

where A, is an integer. When A,, = 2 and lA,.[ < 1, this map possesses 
a strange attractor which the reader can explore on the computer. [For 
A, = 0.2, the fractal dimension is reported to be 1.43 (Russel et al., 
1980) .] 

However, to look at a simple numerical experiment in basin bound- 
aries, try the case A, = 3 ,  A,, = 1.5. For this case, there are two 
attractors y 2 m. Set the scale for 0 5 x 5 I ,  - 2.0 I y 5 2.0. To get 
the boundary, choose some initial x value and scan a set of initial y 
values. For each set of initial conditions, iterate the map until ly l  > 
10 or some other large value. If y + +=, leave a blank at the (xo, yo) 
point; if y + -m, print a dot. If one scans yo from bottom to top once 
the boundary is crossed, one can omit further y values and choose 
another xo. 

This example is one of the few for which an explicit formula for the 
boundary may be obtained: 

(see McDonald et al., 1985). 
The capacity dimension of this boundary derived by McDonald et 

al. is d = 2 - (In A,,/ln A,) = 1.63 .... This boundary is continuous, 
of infinite length, and nowhere differentiable. 

B.12 TORUS MAPS 

The motion of coupled nonliner oscillators is sometimes imagined to 
occur on the surface of a torus. When the number of oscillators is two, 
a Poincare section of the torus yields a circle map. However, when 
the number of oscillators is three, the  dynamic interaction of the phase 
of each oscillator takes place on some abstract torus. The PoincarC 
section of this three-torus yields a two-dimensional map on a two- 
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torus. Grebogi et al. (1985a) have studied such maps and have pro- 
duced beautiful pictures of chaotic attractors. The set of equations 
takes the form 

The functions P, and P2 are periodic functions of the form 

where (T = 1, 2 and (I- ,  s) take on combinations of (1, 0), (0, l), (1, I ) ,  
and (1, - 1). The values of A:!:, A!2\, B!f\ and B!f! were chosen 
randomly by Grebogi et al. The details are listed in their paper in 
Table 1. Iterations of this map produce spectacular pictures of this 
strange attractor in the torus, which with high resolution are suitable 
for framing (see Figures 7, 9, 10, and 11 of Grebogi et al., 1985a). 

Maps of this kind are also related to the Newhouse-Ruelle-Takens 
theory of the quasiperiodicity route to chaos. 
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APPENDIX C 

CHAOTIC TOYS 

During many lectures given on chaos, I have demonstrated chaotic 
vibrations with a simple, inexpensive vibrating beam. This chaotic toy 
has many times made a believer out of a doubting Thomas and has 
provided motivation to study the often difficult mathematical theory 
behind chaotic phenomena. In this appendix, I describe several cha- 
otic toys or desktop experiments and also provide some detailed 
description of the buckled beam experiment (which has been men- 
tioned many times in this book) for the more serious experimenter. 
During one of these lectures, a physicist (with tongue in cheek) dubbed 
this experiment the “chaotic Moon-beam.” This experiment has had 
great success in providing both qualitative and quantitative verification 
of many of the theoretical ideas about chaos. 

Another chaotic toy is a version of the forced pendulum sometimes 
seen in adult toy shops under names such as the “Space ball.” A 
description of this experiment is also given. 

A short description of a simple neon bulb circuit with chaotic flash- 
ing lights is also provided. For those interested in a simple circuit 
that exhibits period-doubling phenomena, I recommend the circuit 
described in Matsumoto et a]. (1985) called the “double scroll at- 
tractor,” which was discovered by L. Chua of University of California 
at Berkeley. This circuit is described in Chapter 4. Several other 
demonstrations of chaos are also described, including one shown to 
me by a Soviet physicist which I call ping-pong ball chaos. Coupled 
pendulums provide nice desktop chaotic toys, and Professor N. Rott’s 
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paper on how to design them is described. Finally, we mention the 
possible role of chaos and nonlinear dynamics in the kinetic sculpture 
of Calder and Tinguely. 

C.l THE CHAOTIC ELASTICA: A DESKTOP CHAOTIC 
VIBRATION EXPERIMENT 

This mechanical toy is very inexpensive to build and can demonstrate 
three different chaotic phenomena: 

1. The two-well potential attractor (or buckled beam) 
2. Bilinear oscillator 
3. Out-of-plane chaotic vibration of a thin beam 

A sketch of the device is shown in Figure C-l for the buckled beam 
problem. It consists of a small, hobby-type, battery-run motor with 
an eccentric weight as a source of forced vibrations and a thin steel 
cantilevered beam with two magnets near the free end of the beam to 

1 Hobby type D.C. motor 

Rare earth 
magnets 
/ Steel plate 

Polycarbonate 
base 

Figure C-1 Exploded view of chaotic elastica toy. 
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provide nonlinear buckling forces. Two masses are attached to the 
thin beam to match dynamically the driving frequency (4-8 Hz) to one 
or two of the natural modes of the beam. A strong polycarbonate 
plastic acts as a supporting frame, and the base can be secured to a 
table or desktop with double-sided poster adhesive pads. The whole 
device can be disassembled and carried in a thin box to fit in one’s 
briefcase for travel. 

The device works as follows. With a low voltage applied by two or 
three D-cell batteries across a potentiometer, the aluminum beam at 
the top is excited by the rotation of the eccentric weight on the motor. 
With two rare earth magnets below the beam, the beam will vibrate 
periodically about one of the two stable equilibrium positions (of 
course, one can use more than two magnets). With the two masses 
attached, the steel beam will resonate near the second mode so that the 
beam tip undergoes large deflection. As the motor speed is increased 
further, the beam will jump from one equilibrium position to the other. 
Under the right conditions (e.g., magnet spacing, motor speed, mass 
positions), which usually take about 5 minutes to search for, the beam 
will perform chaotic motions. 

To achieve a more theatrical effect, I have glued a small mirror on 
the beam and projected a laser beam on a wall or ceiling with spectacu- 
lar effects as the motion makes the transition from periodic to chaotic 
motion. 

If the magnets are replaced by a thin metallic channel one can 
demonstrate chaotic vibrations of a beam with nonlinear boundary 
conditions (see Chapter 4). If the metal end constraint is very thin, 
the audience can hear the nonperiodic or periodic tapping of the beam 
against the constraints. 

Another elastica chaos demonstration toy is shown in Figure C-2 
and is based on the work of Cusumano and Moon (1990). In this 
experiment, in-plane vibrations at the second or third resonant fre- 
quency become unstable and the beam performs out of plane twisting 
and bending chaotic oscillations. 

C.2 
BUCKLING EXPERIMENT 

THE “MOON BEAM” OR CHAOTIC 

As described in Chapters 2, 3, and 4, the forced motion of a buckled 
cantilevered beam in the field of two strong magnets can be described 
quite adequately by a nonlinear differential equation of the Duffing 
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Figure C-2 Sketch of experiment for chaotic torsional bending vibrations of a thin 
steel "feeler" gauge strip (length 10 inches, thickness 0.008 inch). 

type: 

x + i - ax + px' = f cos  ot 

- Thlchaa 
0.008" mtool 
"Wor  gogo" 
0.5" wldo, 10" long 

Low pornrod 
lawl  light lo 
p r o m  on 
lorgo wall 

- Mirrorod 
g l r a  

Successful experiments in chaotic vibration have been carried out 
with two different beams by shaking the beam clamp and magnets 
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Figure C-3 
magnetic shaker. 

Professional model of chaotic elastic beam experiment using an electro- 

with an electromagnetic shaker as shown in Figure C-3. Standard 
electromagnetic shakers can cost from $3000 to $5000 in 1992 prices. 
However, the resourceful experimenter can improvise one from a $200 
audiospeaker by using the magnet and drive coil in the speaker. 

A list of specifications for two elastic beams is given in Table C-l . 
The best magnets to use are rare earth permanent magnets 2.5-cm 
circular diameter. 

With this setup, one can obtain Poincare maps of chaotic motions 
(Chapter 5 ) ,  measure the critical force for chaotic motion as a function 
of frequency (Chapter 6), or measure the fractal dimension of the 
motion using time series data (Chapter 7). 

To obtain electrical signals proportional to the motion, we used two 
strain gauges glued near the clamped end of the beam. One gauge is 
placed on each side and the two resistors (i.e., the gages) are connected 
to two legs of a Wheatstone bridge. 

The output of the bridge is amplified and electronically filtered. 
One can also design an inexpensive circuit such as a Bessel filter to 
differentiate the filtered signal. In both devices, one should use care 
to achieve minimum distortion in both amplitude and phase for fre- 
quencies up to at least twice the natural frequency of the beam near 
one of the two magnets. 
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TABLE C-1 Parameters for Chaotic Buckled Beam Experiments“ 

Model A Model B 

Dimensions of elastic steel beam 
Length 
Width 
Thickness 
Constrained layer (for damping) 

Cantilevered-no magnets 
Cantilevered-with magnets 

Without constrained layer 
With steel shim and 

double-sided tape layer 

Natural frequencies 

Damping 

Buckled displacement with magnets 
Frequency range for test data 
Driving amplitude range 
Magnets, rare earth, 2.5-cm 

diameter, 0.2 tesla on one face 

18.0 cm (7.4 in.) 
9.5 mm (0.375 in.) 
0.23 mm (0.009 in.) 
0.05 mm (0.002 in.) 

4.6, 26.6, 73.6 Hz 
9.3 Hz 

0.0033 

0.017 
?20 mm 

k2-5 mm 
6-12 HZ 

12.4 cm (4.9 in.) 
12.7 mm (0.5 in.) 
0.38 mm (0.015 in.) 
0.025 mm (0.001 in.) 

18 Hz 
38 Hz 

2 1 5  mm 

2 5 mm 
21-35 HZ 

~ ~~ 

‘’ See also Moon (1980a). 

Damping is a critical property in this experiment. Most metallic 
structures have very low damping, and the Poincare maps will look 
more like Hamiltonian or conservative chaos than fractal or dissipative 
chaos. In our experiments, we used constrained layer damping to 
increase dissipation. A simple way to do this is to put double-sided 
sticky cellophane tape along the beam and to put a thin shim-type 
metal layer (0.1 mm) on top of this. When constrained layer damping 
is placed on each side of the beam, a significant increase in damping 
can be achieved and some very beautiful fractal-looking Poincare 
maps can be obtained. 

The reader should see Chapter 5 for other suggestions about experi- 
ments in chaotic vibrations. 

C.3 A CHAOTIC DOUBLE PENDULUM OR “SPACE BALL” 

This toy has several variations, two of which are shown in Figure 
C-4. The commercial versions are well made (from Taiwan), but I 
could not find the name of any manufacturer (nor for that matter any 
patent numbers) on the devices. The basic principles involve the 
forced motion of a pendulum that interacts with a magnetic circuit in 
the base. Attached to the primary pendulum is another rotating arm. 
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Magnet 

II 
Sensor & 
drive coils 

I I 

Figure C-4 Double pendulum and “Space ball” chaotic toys. 

Several configurations are possible as shown in Figure C-4. In all 
cases, the pivot point of the second arm is forced by the motion of the 
driven pendulum. In some versions of this toy, small magnets on both 
arms interact when the second arm rotates past the primary arm. 

A simple but clever driving circuit is used to provide current im- 
pulses to a driving magnet as shown in Figure C-5. When the lower 
pendulum oscillates, the magnetic field in the attached magnet gener- 
ates a voltage in a coil in the base circuit. This voltage is applied to a 
transistor which begins to conduct when this motion-induced voltage 
reaches a critical value. During the conduction phase, current can flow 
out of the 9-V battery into a second coil wrapped around the magnet, 
thus providing a pulsed torque to the pendulum. In most cases, the 
motion of the driven pendulum is almost periodic, whereas the second 
arm performs chaotic rotations. Professor Alan Wolf of Cooper Union, 
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Figure 

Moving magnet 

9 v  

C-5 Pulsed torque circuit for the chaotic pendulum toy. 

New York City, and colleagues have analyzed this toy and have shown 
the motion to be chaotic. 

C.4 NEON BULB CHAOTIC TOY 

For those with an electrical bent, another toy is one described by Rolf 
Landauer of IBM, Yorktown Heights, New York, in 1977 in an internal 
IBM memorandum entitled “Poor Man’s Chaos.” A similar study was 
published by Gollub et al. (1978). The circuit is shown in Figure C-6 
and consists of two neon bulb circuits coupled together. A single 
circuit can perform relaxation oscillations (e.g., see Minorsky, 1962). 
When coupled together, the two circuits can exhibit stationary, peri- 
odic, or chaotic dynamics that are made visible to the observer by the 
flashing neon bulb. In the Gollub et al. paper, however, tunnel diodes 
were used in place of the neon bulbs and inductances were added to 
the circuits. 

R 

Figure C-6 Circuit for neon bulb experiment. [After R.  Landauer (1977).] 
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Landauer was inspired to build this chaotic toy by memories of a 
similar exercise in a U.S. Navy electronic technician training program 
in 1945. This gives further evidence to my claim that chaotic vibrations 
were observed in the past but were seen as curiosities because there 
were no theoretical foundations for their serious study. 

C.5 ROLLER COASTER CHAOS 

This demonstration was sent to me by Professor Lawrence Virgin of 
Duke University, North Carolina. The experiment mimics the dynam- 
ics of a double-well potential Duffing oscillator 

m i  + ~i - OX + bx3 = Fo cos Rt 

In this device, a small cart rides on a track with one hill and two 
valleys (Figure C-7). The excitation is provided by moving the whole 
track harmonically by a motor and a scotch yoke mechanism. 

To obtain an output, a wheel on the cart is coupled to a potentiome- 
ter by means of a chain linkage. Care was taken to prevent slipp 

I '-L Pc 

Cart(1 kgm) 

Potentlometer 

Ballast 

Dual, parallel 
polycarbonete 
tracks, 5.7 cm 

M I w I 
vlbra 
table 

motor I 
I I drlve Concrete mess 

Figure C-7 Diagram showing the construction of a double-well potential chaotic 
oscillator with motorized cart. (Courtesy, Prof. L. Virgin, Duke University) 
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between the cart wheels and the track. Output from the potentiometer, 
which was proportional to the motion along the curved path, was sent 
to a laboratory computer for analysis or displayed on an oscilloscope. 

A cheap version of this device for qualitative demonstration is to 
buy a flexible tape draftsman’s curve and shape it into a double-well 
configuration. Then place the tape between two flat thin plastic plates 
and place a ball bearing or toy marble between the plates. Hand 
excitation will then show how the ball jumps from one side to the next 
in a somewhat erratic way. This is not precise, but it is inexpensive! 

C.6 DUFFING OSCILLATOR DEMONSTRATOR 

This design was sent to me by Professors Edwin Kreuzer and 
C. Wilmers of Technische Universitat Hamburg, Federal Republic of 
Germany. It is based on a form of the Duffing equation which generates 
the Japanese attractor of Ueda (1979): 

ji- + k i  + x3 = Bcost 

The small analog computer diagram is shown in Figure C-8. The 
excitation frequency is 400 Hz. The controls allow a range of parame- 
ters, 0 < k < 1.0,O < B < 20, which should take one into and out of 
chaos. The output is displayed on an oscilloscope. A PoincarC map 
output has also been designed into this device. An audio speaker 
output is provided to hear the difference between periodic and chaotic 
oscillations. 

C.7 WATER-TAP, PING-PONG BALL CHAOS 

This idea was given to me by Professor M. A. Gol’dshtik of the 
Institute of Thermophysics, Novosibirsh, USSR, during a visit to my 
laboratory. As shown in Figure C-9, one places a ping-pong ball or 
other light-weight sphere on a flat plate and then places the ball under 
a jet of flowing water, most easily obtained from a water tap. Under 
the right flow, the ball will perform chaotic-looking oscillations on the 
plate. I do not know of any analysis of this clever experiment, how- 
ever. It is a very simple demonstration of flow-induced chaotic vibra- 
tions as discussed in Chapter 4. 
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Figure C-8 Sketch of analog computer circuit to create the Japanese attractor (Fig- 
ure 3-33). 

C.8 ROlT’S COUPLED PENDULUMS 

A chaotic toy that I have seen on many a dynamicists desk is a two- 
or three-arm coupled pendula device. I suspect that this demonstration 
has been around a long time, however. Professor N. Rott of Stanford 
University some time ago published a paper describing the mechanics 
and construction of these toys (Rott, 1970). The analysis is based 
on nonlinear resonance and, in particular, the 2 :  1 resonance. For 
example, in the two-link device shown in Figure C-10, two angles 
describe the configuration: a, y. 

Figure C-9 Sketch of water-jet, ping-pong-ball chaos experiment. 
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Figure C-10 Sketch of a 2 : I resonance double-pendulum demonstrator. 

For small motions about the stable equilibrium position, Rott de- 
rives equations of motion of the form 

Li! + w:a = F ( a ,  y ,  +, y) 

y + wgy = G(a ,  y ,  iu, Li!) 

where F,  G are nonlinear coupling terms and the constants o:, wg are 
related to the geometry. Neglecting the coupling, one has two oscilla- 
tors with frequencies wI, w2. Rott adjusts the geometry of his pendu- 
lums so that 01h2 = 1 : 2 and optimizes the design so that the relative 
amplitudes of the coupled device are equal. This allows energy to flow 
easily from one pendulum to the other and can result in some transient 
chaotic behavior. He also has designs for two other devices, one of 
which is a three-pendulum device that looks like a puppet (Figure 
C-1 1). Needless to say, the choice of good bearings in these devices 
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Figure C-11 Multiple-pendulum toys. 

is essential, because they are excited by hand and eventually damp 
out depending on the aerodynamic and bearing damping. Professor 
Rott has recently marketed an executive toy based on his paper called 
“Pendemonium. ’’ 

C.9 KINETIC ART 

Sculptural art has evolved from an essentially static medium in the 
19th century to a dynamic art form in the 20th century, especially in 
the works of Alexander Calder, Jean Tinguely, and George Rickey. 
Part of the fascination with kinetic art is the changing variety of forms 
or patterns so that designing dynamic sculpture to produce chaotic 
behavior is often essential to the success of the piece. Calder’s mobiles 
may be seen as generalizations of Rott’s coupled pendulums, though 
it is not clear whether Calder had any analytical insight into his designs 
such as nonlinear resonance. His multiple-pendulum mobiles are often 
excited by natural air currents in the installation space or the main 
support rotates with constant speed, such as the one in the National 
Gallery of Art in Washington, D.C. (e.g., see Lipman, 1976; also see 
Figure C- 12). 

Tinguely, a Swiss-born artist, created dynamic machines with cou- 
pled wheels, cogs, gears, and other mechanisms. In 1975 he completed 
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Figure C-12 Alexander Calder. Hunging Spider (ca. 1940) painted sheet metal and 
wire, 491 x 351: inches. Collection of Whitney Museum of American Art. Mrs. John 
B. Putnam Bequest 84.41. 

a piece called Chaos I which was created for the small town of Colum- 
bus, Indiana, appropriately the headquarters of a machine maker, 
Cummins Diesel. In a retrospective on Tinguely’s life work, the au- 
thor, Hulten (19871, described Chaos I in terms a modern dynamicist 
would identify with: 

Mechanically, Chaos I is a very sophisticated construction, with move- 
ments that change rhythm and forms that can alter themselves: from a 
quiet, calm and graceful tempo, parts of the sculpture will break into a 
frenzy, gesticulating aggressively. 

Sounds like intermittent chaos. The input to Tinguely’s chaotic-like 
machines is often a motor running at constant speed. 

George Rickey, an American-born sculptor, creates pieces that are 
simpler than those of Tinguely. Of special note here are his multiple- 
pendulum, long needle-like arms, weighted at the bottom. It is not 
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clear, however, if the pendulums are strongly coupled, except through 
the flexibility of the base (as in the manner of Huygen’s pendulum 
clocks). Usually installed out of doors, they are excited by slight 
breezes in the air and certainly look unpredictable. 

A study of kinetic art and chaos has been published by Viet et al. 
(1983). 
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APPENDIX D 

BOOKS ON NONLINEAR DYNAMICS, 
CHAOS, AND FRAcrALs 

D. K. Arrowsmith and C. M .  Place, An Introduction to Dynamical Systems, 
Cambridge University Press, 1990. 
This mathematical text is less formal than others. A readable graduate 
level book. 

G. L. Baker and J. P. Gollub, Chaoric Dynamics, Cambridge University 
Press, 1990. 
This elementary paperback uses the pendulum to present basic notions of 
nonlinear and chaotic dynamics 

This is an introductory mathematical book on fractals at the upperclass 
undergraduate level. Very readable with many computer experiments and 
color graphics. 

P. Berg& Y. Pomeau, and C. Vidal, Order Within Chaos: Towards a Deter- 
ministic Approach to Turbulence, John Wiley and Sons, 1984. 
This readable book has a fluid mechanics orientation and a good physical 
discussion of the basic mathematical ideas of chaos. 

Robert L. Devaney, An Introduction to  Chaotic Dynamical Systems, 2nd 
ed., BenjamidCummings, 1986, 1989. 
This is an introductory mathematical text with virtually no physical exam- 
ples. However, it is readable at the upperclass undergraduate level. 

Robert L. Devaney, Chaos, Fractals, and Dynamics, Addison-Wesley, 
1990. 
This is a companion to the previous book and presents computer experi- 
ments of dynamical systems. 

M. Barnsley, Fractals Everywhere, Academic Press, 1988. 
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M. S. El Naschie, Stress, Stability and Chaos, McGraw-Hill, 1990. 
This book is written for structural engineers and introduces modern con- 
cepts of catastrophe theory and nonlinear dynamics. 

K. Falconer, Fractal Geometry: Mathematical Foundations and Applica- 
tion, John Wiley & Sons, 1990. 
Even though this book is mathematically based it is readable, though with 
fewer physical examples than the Feder book (see below). 

This book introduces concepts of fractals for physical scientists especially 
in the context of material characterization. 

John Guckenheimer and Philip Holmes, Nonlinear Oscillations, Dynamicul 
Systems, and Bifurcations of Vector Fields, Vol. 42. Springer-Verlag, 
1983. 
One of the classic texts in the field. Although a few physical examples 
are used as motivation the authors assume a high level of mathematical 
sophistication of the reader. Belongs on every dynamicists bookshelf, 
however. 

Peter Hagedorn, Non-Linear Oscillutions, 2nd ed., Oxford University Press, 
1988. 
This is an introductory text on nonlinear vibration in mechanics, but does 
not discuss chaos. 

Chihiro Hayashi, Nonlinear Oscillations in Physical Systems, Princeton Uni- 
versity Press, 1985. 
Hayashi is one of the pioneers of nonlinear oscillation in electrical systems. 
This is a reprint of his earlier work. Contains early reference to basin 
boundaries and subharmonic motion. 

E. Atlee Jackson, Perspectives of Nonlineur Dynamics,Vols. I and 2 ,  Cam- 
bridge University Press. 
This is a wide ranging, mathematical physics text with both physical and 
mathematical discussion. 

A. J .  Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion, 
Vol. 38, Springer-Verlag, 1983. 
This is now another classical text with a more mathematical physics orien- 
tation. Treats conservative chaos as well as dissipative systems. 

Ali Hasan Nayfeh and Dean T. Mook, Nonlinear Oscillations, John Wiley 
& Sons, 1979. 
This text predates the chaos revolution. It presents a wide survey of 
classical perturbation methods in the context of various physical problems. 
Another required text for the dynamicist bookshelf. 

G. Nicolis and 1. Prigogine, Exploring Complexity, an Introduction, W. H. 
Freeman, 1989. 
This is a philosophical text with some calculus level mathematics. An 
interesting scientific discussion from a Nobel laureate. 

Jens Feder, Fractals, Plenum Press, 1988. 
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H. 0. Peitgen, H. Jiirgens, and D. Saupe, Frcicfals in the Classroom: Part 
One, Introdrrction t o  Fractuls und Chaos, Springer-Verlag, New York, 
1992. 
This is a very introductory text, with many examples and good graphics. 
It  is less formal than the Barnsley book. Few physical examples, however. 

S. N .  Rasband. Chaotic Dynatnics of Nonlinear Systems, John Wiley & 
Sons, 1990. 
This is a very readable mathematical introduction to chaotic dynamics for 
those with a modest calculus background. Less formal than the Devaney 
book. 

M. Schroeder, Fractals, Chaos and Power Laws: Minutes from an InJinite 
Parcidise, W. H. Freeman and Company, New York, 1991. 
Another philosophical book written by a physicist with some mathematical 
notes and physical examples. 

H. G. Schuster, Deterministic Chaos, 2nd ed., VHC Publishers, Weinheim, 
Federal Republic of Germany, 1988. 
This is very nice physics-oriented introductory book on chaos. Very 
readable. 

This is a clever cartoon book written for the child in everyone. A high 
school student with elementary French can enjoy this book. 

Wanda Szemplinska-Stupnicka, The Behavior of Nonlinear Vibrating Sys- 
tems,  Vol. I , I I ,  Kluwer Academic Publ. Dordrecht, The Netherlands. 
Volume 1 treats single degree of freedom problems, while Volume I1 deals 
with multidegree of freedom problems. The methods presented involve 
classical perturbation and stability analysis in a modern context. 

J. M.  T. Thompson and H.  B. Stewart, Nonlinear Dynamics and Chaos, 
John Wiley & Sons, 1986. 
Introductory text on bifurcations in dynamical systems with some physical 
examples. Less emphasis on chaos per se. 

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and 
Chaos, Springer-Verlag, 1990. 
Despite claims to being introductory, this excellent text requires some 
mat hematical sophistication, Few physical examples. 

I. Stewart, Les Frucfals (in French), Berling Press, 1982. 
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Page numbers in italics refer to Glossary Terms, Appendix A 

Acoustic systems, 21 I 
Aeroelastic flutter, 180 
Almost periodic vibration, 433. See also, 

Analytic maps, 346 
Arnold tongues, 76, 433 
Attractor, 30, 433 

Autocorrelation, 55, 58, 252 

Quasi-periodic vibration 

Lorenz, 41 

Baker’s transformation (map), 341. 317, 

Barnsley map, 342, 399 
Basin boundary, 375-386 

433 

fractal dimension of, 385 
and homoclinic orbits, 380 
of one-well potential, 384 
and robust design, 383 
of two-well potential, 378-379 

Basin of attraction, 375, 433 
Bernoulli map, 128 

Lyapunov exponent, 309 
Bifurcations, 27, 68, 276,434 

diagram, 70, 229 
quadratic map, 277 

Binomial distribution process, 365 
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Bio chaos, 212 
Biological membranes, 213 
Blinking vortex model, 427 
Bouncing ball chaos, 103, 166 

Buckled beam, 52, 149, 151 
criterion, 300 

Cantor set, 63. 327, 434 
Capacity dimension, 330, 434 
Catastrophe theory, 434 
Cell mapping method, 260 
Cellular automata, 412 
Center manifold, 434 
Chaos: 

and art, 43, 463 
early observations, 148 
Lagrangian, 41 8-429 
modem definition, 5 
spatial, see Spatial complexity 
spatiotemporal, 401 -432 
traditional definition, 2 
transient, 49 

Chaos criteria: 
diagnostic, 264 
empirical, 264-274 
predictive, 264, 274 
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Chaos criterion: 
Chirikov, 300 
homoclinic orbit. 280 
multi-well potential, 303 
period doubling, 275 
Shil'nikov, 294 

coupled pendulums, 270 
Duffings equation, 265 
Lorenz equations, 268 
nonlinear RLC circuit, 270 
rotating magnetic dipole, 270 
surface waves, 273 
two-well potential, 266 

Chaotic dynamic; see Chaos 
Chemical systems, 212 
Chirikov's overlap criterion, see Chaos 

Circle map, 25, 77, 434 
experiments, 245 
intermittency, 322 

Chaos diagram: 

criterion 

Circuit, nonlinear, 187, 193, 224, 458 
Combination oscillations, 17 
Combination tones, 435 
Conservative chaos, 19, 77, 93, 142 
Control system chaos, 113. 170 
Controlling chaos, 214 
Correlation dimension, 336 
Convection oscillation, 38, 201, 204 
Coupled cell models, 41 I 

experiments, 416 
Course-graining, 133 
Cubic map: 146 

Cycle points, 90 
homoclinic orbits, 323 

Data acquisition, 222 
Deterministic system, 2, 49, 435 
Devil's staircase, 328 
Difference equations, see Maps 
Diffusion-limited aggregation (DLA), 392 
Diode circuit, varactor, 189 
Double Poincark maps, 243 
Double-well potential. I5 I .  See also 

Two-well potential 
Dripping faucet chaos, 209 
Duffing equation, Lyapunov exponents, 

Duffing's equation, 13, 56, 139, 435 
Dynamo models. 195 

311, 313 

Earthquake models, 186 
Elastica, 177, 431, 452, 454 
Elastic beam, 172 

beam chaos, 52, 58 
nonlinear boundary conditions, I73 

Elastic systems, 172 
Electrical circuits, 16, 187, 189, 192, 

Electromagnetic systems, 187 

Elliptic points, 97 
Embedding space method, 55, 350 
Entropy, 5, 418, 421, 432 
Equilibrium points, 25, 94, 435 
Ergodic theory, 435 
Euler's equations, 160, 408 
Experimental methods, 221 
Experiments: 147-216, 221-261 

fluid mechanics, 200, 369 

I93 

nonlinear, 50. 224 

Fast Fourier Transform (FFT), 49 
Feigenbaum number, 34, 68, 122, 435 
Fermi model, 163 
Fixed point, 25, 32, 89, 96,435 
Fleur de PoincarC, 176 
Flow-induced vibrations, 180. 258, 460 
Flows, 30 
Fluid systems, 200, 369 
Flutter, 65 
Focus, 97 
Fokker-Planck equation, 133, 258, 260 
Folding and stretching, 429 
Fourier spectrum, 6. 55, 58 
Fourier transform, 25 1 
Fractal coastline, 389, 391, 398 
Fractal dimension: 78, 329-341, 435 

Baker's map, 341 
box counting, 329 
of buckled beam, 355 
of cantilever beam, 361 
capacity, 329 
correlation, 336 
experiments, 255 
information, 337 
Lyapunov, 340 
optical measurements, 371-375 
of Poincare maps, 354 
pointwise, 334 
of surface waves, 362 
table of, 339 
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of Taylor-Couette flow, 363 
of two-well potential, 358 

Fractal dynamics, 6 
Fractals, 325-399 

applications, 391 
fracture of solids, 395 
geology, 391 
Hele-Shaw flow, 392 
material characterization, 394 
multi, see Multifractals 

Fractal sponge, 397 
Fracture, 186 
Frenet-Seret equations, 409 
Frequency bandwidth, 227 
Friction oscillator, 183 

Gear rattling chaos, 168 
Global motion, 435 

Halley’s comet, 154. 217 
Hamiltonian dynamics, 19,284,435. See 

Hamilton’s equations, 284 
Harmonic oscillator, I I ,  45 
Hausdorff dimension, 436 
Heart dynamics, 212 
Hele-Shaw flow, 392 
Henon map, 35, 94, 101, 436 

Heteroclinic orbit, 292, 294, 436 
Homoclinic orbits, 280, 436 
Homoclinic orbit criterion, 286 

Hopf bifurcation, 29, 71, 436 
Horseshoe map, 35, 100, 280, 285,436 
Hyperbolic points, 97 
Hyperchaos, 318, 320,436 
Hyperion, 154, 218 

also Conservative chaos 

transient chaos, 299 

multiple criteria, 290 

Impact oscillator, 88, 103, 163 
Impact printer chaos, 165 
Inductor circuit, nonlinear, 192 
Information dimension, 337 
Intermittency, 72, 298, 436 
Intermittent chaos, 72, 298 
Invariant distribution, see Probability 

Invariant measure, 131, 436 
density function 

Jacobian, 88, 316 

Japanese attractor, 139, 149, 460 
Julia sets, 347, 349 
Jump phenomena, 13 

KAM theory, 19, 436 
Kicked rotor, 107 
Koch curve, 327 

Lagrangian chaos, 437, see Chaos, 
Lagrangian 

Laser systems, 199 
Limit cycles, IS, 437 
Linear operator, 223, 437 
Linear oscillator, 1 I 
Linear transformation, 98 
Logistic map, 32, 44, 275 

bifurcation, 118 
Lyapunov exponent, 309 
period-doubling criterion, 275 

Lorenz equations, 38, 135, 202, 437 
Lyapunov exponents: 78, 256, 307-320, 

43 7 
Baker’s map, 317 
Bernoulli map, 309 
and distribution functions, 3 13 
Duffing equation, 311, 313 
Henon map, 318 
logistic map, 309 
Lorenz equations, 318 
maps, 127 
numerical calculation, 310 
Rossler equations, 318 
standard map, 314 
tent map, 309 

Lyapunov spectrum, 315, 319 

Machine tool systems, 185 
Magnetic levitation vehicles, 1% 
Magnetic pendulum, 286 
Magnetic rotor, Poincar- map, 238 
Magneto-mechanical devices, 174, 195 
Mandelbrot set, 348, 350,437 
Manifolds: 

homoclinic orbit, 281 
stable, 103, 437 
unstable, 103, 437 

Maps, 30, 86,437 
analytic, 346 
area preserving, 88 
Baker’s, 333 
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Maps (Confinurd) 
Barnsley. 342. 399 
bouncing ball, 103 
circle, 109 
complex, 346 
coupled, 414 
cubic, 90, 146 
cycle points, 90 
fractal generating, 341-350 
Henon, 94, 101 
Horseshoe, 100, 332 
impact oscillator, 88 
iterated, 342 
kicked rotor, 107 
linear, 94 
logistic, 114 
Lorenz, 137 
spatial return, 417 
standard. 91, 105 

Melnikov function, 286, 323, 437 
Melnikov method, 284 

four-well potential, 292 
magnetic pendulum, 286 
one-well potential, 288 
three-well potential, 291 
two-well potential, 287 

plastic material, 426 
Mixing of fluids, 418 

Mode locking, 74 
Multifractals, 364-371, 438 

binomial distribution, 365-367 
circle map, 368 
experiments, 369 
Rayleigh-Benard flow, 369 
solid state electronics, 370 

Multi-well criterion, 324 
Multi-well potential chaos, 150 
Musical instruments. 21 I 

Navier-Stokes equations, 9, 438 
Noise, 133, 438 

magnetic, 224 
solids, 224 

Nonlinear resonance, in conservative 
systems, 19 

One-dimensional maps: 67 
experiments, 240 

Optical chaos, 199 

Panel flutter, 180, 182 
Pendulum: 14. 20, 93, 155, 456, 461 

inverted, 216 
magnetic, 159 
parametric, 157 
spherical, 158 

Period doubling, 34, 68, 114, 438 
Periodic structures, 429 
Perturbation analysis: 

and chaos criteria, 306 
criterion. 275 

Phase plane trajectories, 56 
Phase plane, 53 
Phase space, 55,438 
Pipe flow chaos, 180 
Poincare, Henri, 3 
Poincare map: 18, 24, 60. 438 

change of phase, 232 
classification, 63 
damping, 232 

effect of, 62 
double maps, 243 
experiments, 23 I 
posi tion-triggered, 235 
quasiperiodic oscillations, 233 
Rayleigh-Benard experiment, 73 

Population growth model, 32 
Prandtl number, 39 
Probability density function, 130, 256 

flow-induced vibrations, 258 
logistic map, 131 

Nonlinear boundary conditions, 5 I 
Nonlinearities: 7, 50 

body forces, 226 
geometric, 226 
kinematic, 225 Quantum chaos, 41,438 
material, 224 

tent map, 131 
two-well potential, 259 

Pseudo-phase space, 55,  83, 228 

Quasi-periodic route to chaos, 70 
Quasi-periodic vibration, 18, 62, 71, 74, dielectric, 224 

electric circuits, 224 91, 439 
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Random inputs, 51 
Rayleigh-Benard convection, 73, 135, 

201,439 
Rayleigh-Benard flow, multifractals, 369 
Rayleigh number, 39 
Relaxation oscillations, 16 
Renormalization, 276,439 
Resonance, 12 

nonlinear system, 13, 19 
Return map, 60, 69 

friction oscillator, 241 
Reynolds number, 263,439 
Rigid body dynamics, 160, 225, 406 
Rossler equations, 45, 262 
Rotation number, 439 
Routes to chaos, 68 

Saddle ponts, 26, 97,439 

Saltzman model, 202 
Self-excited oscillations, 14 
Self-similarity, 439 
Shil'nikov chaos, 294, 439 
Ship dynamics, 161 
Sierpinski carpet, 398 
Sierpinski triangle, 331, 332, 344, 345 
Small-angle x-ray scattering (SAXS), 395 
Solar system chaos, 153 
Solitons, 430 
Spatial complexity, 406-41 I 

Spatial return maps, 417 
Spatiotemporal chaos, 401-429,439 

and homoclinic orbits, 282 

elastica, 406 

coupled cell models, 41 1-417 
experiments, 403 

Spinning top, 406 
Standard map; 

Chirikov criterion, 300 
Lyapunov exponents, 314 

Stochastic orbits, 21, 93 
Stochastic process, 439 
Stokes flow, 423 
Strange attractor, 29, 67, 439 

fractal dimension, 350 

Strange-nonchaotic motions, 80 
Strings, 177 
Stroboscopic sampling, 18 
Subharmonic scaling, 122 
Subharmonic vibrations, 13 
Superconductor oscillator, 69 
Supercycles, 123 
Surface of section, 440. See also Poincark 

Surface wave chaos, 209.403 
Symbol dynamics, 31, 124. 126,440 

and autocorrelation, 253 

map 

Taylor-Couette flow, 74, 208,440 
Tent map, Lyapunov exponent, 309 
Thermosiphon. 206 
Time series and fractal dimension, 355 
Toda oscillator, 416 
Torus, 62,72,440 
Torus map, 23 
Transient chaos, 77, 298, 440 
Transformation, 98 

dilatation, 98 
reflection, 100 
rotation, 98 
shear, 100 
translation, 98 

Tunnel diode chaos, 193 
Turbulence, 2, 3, 201, 425 
Two-dimensional map, 87 
Two-well potential, 4, 28, 57, 151 

Melnikov method, 287 

Unfolding, 440 
Universal property, I 14, 122,440 
Unpredictability, 42, 381 

Vacuum tube circuit, 16 
Van der Pol oscillator, 7, 15, 148, 440 

Wavelet transformation, 255 
Winding number, 249, 440 

Zaslavsky map, 107 




