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PREFACE TO THE FIRST EDITION

Cloud physics has achieved such a voluminous literature over the past few decades
that a significant quantitative study of the entire field would prove unwieldy. This
book concentrates on one major aspect: cloud microphysics, which involves the
processes that lead to the formation of individual cloud and precipitation particles.

Common practice has shown that one may distinguish among the following addi-
tional major aspects: cloud dynamics, which is concerned with the physics respon-
sible for the macroscopic features of clouds; cloud electricity, which deals with the
electrical structure of clouds and the electrification processes of cloud and precipi-
tation particles; and cloud optics and radar meteorology, which describe the effects
of electromagnetic waves interacting with clouds and precipitation. Another field
intimately related to cloud physics is atmospheric chemistry, which involves the
chemical composition of the atmosphere and the life cycle and characteristics of its
gaseous and particulate constituents.

In view of the natural interdependence of the various aspects of cloud physics,
the subject of microphysics cannot be discussed very meaningfully out of context.
Therefore, we have found it necessary to touch briefly upon a few simple and basic
concepts of cloud dynamics and thermodynamics, and to provide an account of
the major characteristics of atmospheric aerosol particles. We have also included
a separate chapter on some of the effects of electric fields and charges on the
precipitation-forming processes.

The present book grew out of a series of lectures given to upper division un-
dergraduate and graduate students at the Department of Atmospheric Sciences of
the University of California at Los Angeles (UCLA), and at the Department of
Physics of the New Mexico Institute of Mining and Technology at Socorro (New
Mexico Tech.). We have made no attempt to be complete in a historical sense,
nor to account for all the work which has appeared in the literature on cloud
microphysics. Since the subject matter involves a multitude of phenomena from
numerous branches of physical science, it is impossible to make such a book truly
self-contained. Nevertheless, we have considered it worthwhile to go as far as poss-
ible in that direction, hoping thereby to enhance the logical structure and usefulness
of the work. In keeping with this goal, our emphasis has been on the basic concepts
of the field.

This book is directed primarily to upper division and graduate level students who
are interested in cloud physics or aerosol physics. Since no specialized knowledge in
meteorology or any other geophysical science is presumed, the material presented
should be accessible to any student of physical science who has had the more or less
usual undergraduate bill of fare which includes a general background in physics,
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physical chemistry, and mathematics. We also hope the book will be of value to
those engaged in relevant areas of teaching and research; also, we hope it will
provide a source of useful information for professionals working in related fields,
such as air chemistry, air pollution, and weather modification.

In the preparation ofthis book we have incurred many debts. One ofus (H.R.P.)
is extremely grateful to his long time associate Prof. A. E. Hamielec of McMaster
University at Hamilton, Canada, whose generous support provided the basis for
solving many of the hydrodynamic problems reported in this book. Gratitude is
also gladly expressed to the faculty and research associates at the Meteorological
Institute of the Johannes Gutenberg University of Mainz and at the Max Planck
Institute for Chemistry at Mainz, in particular to Profs. K. Bullrich and C. Junge,
and Drs. G. Hanel, F. Herbert, R. Jaenicke, and P. Winkler for the assistance
received during two stays at Mainz while on sabbatical leave from UCLA. In addi-
tion, sincere thanks are extended to the Alexander von Humboldt Foundation for
a U.S. Senior Scientist Award which made possible the second extended visit at
Mainz. Also, one of us (J.D.K.) is grateful to Drs. C. S. Chiu, P. C. Chen, and
D. T. Gillespie for informative discussions, and to Prof. M. Brook and Dr. S. Barr
for providing time away from other duties. Appreciation is expressed also to the
National Center for Atmospheric Research (NCAR) for the assistance provided
during a summer visit.

A large number of figures and tables presented in this book have been adapted
from the literature. The publishers involved have been most considerate in granting
us the rights for this adaptation. In all cases, references to sources are made in the
captions.

Our own research reported in this book has been supported over the years by
the U.S. National Science Foundation. We would like to acknowledge not only this
support, but also the courteous, informal, and understanding manner in which the
Foundation’s Officers, Drs. F. White, P. Wyckoff, E. Bierly, and F. Eden, conducted
their official business with us.

Special thanks go also to the editors of the D. Reidel Publishing Company of
Dordrecht, Holland, for providing a fruitful relationship with us.

Finally, we wish to express our sincere appreciation for the invaluable assistance
of T. Feliciello, A. C. Rizos, and P. Sanders, who typed the manuscript, and to
B. J. Gladstone who drew all the diagrams.

Los Angeles, H. R. PRUPPACHER
March 1978
Los Alamos, J. D. KLETT



PREFACE TO THE SECOND EDITION

In the intervening eighteen years since the appearance of the first edition, research
in cloud microphysics has continued to expand at a rapid rate. In fact, we have
found it necessary to consider for inclusion in this edition the contents of over 5,000
articles, as well as dozens of books and conference proceedings published since the
first edition. Our approach to assimilating this material follows the philosophy of
the first edition, namely to attempt a balance between providing a necessary body
of descriptive and empirical knowledge, and a framework of theoretical generalities
and principles with which to rationalize the otherwise unmanageable mountain
of experimental facts. Such an effort naturally entails compromises and personal
choices, as a truly exhaustive and completely coherent account of a subject this
large cannot be confined within the bounds of a single volume of an acceptable
length. Nevertheless, we feel that the present volume does accommodate the most
significant advances that have occurred, and that it has been possible to close
some of the gaps and answer some of the major questions which characterized the
incompleteness of the subject at the time of the first edition.

As before, we have again attempted to enhance the appeal and clarity of the
book by making it as self-contained as possible. Our success in this respect has
been limited, not only because of the sheer volume of material, but also because of a
shift in style of the theoretical approach to the subject. Now that nearly everyone
has access to inexpensive desktop computers with more power than mainframes
at the time of the first edition, and similar access to greatly improved and easily
implemented numerical modeling software, a tendency has developed to address
theoretical issues by constructing and then incrementally augmenting numerical
models of great complexity, often of an ad hoc nature and with many adjustable
parameters. The underlying assumption that more and more physics can success-
fully be encoded this way into larger and larger programs is sometimes subject
to challenge; in any case, the resulting algorithms are often so complex that they
and their results have to be accepted largely on faith by other researchers. It is
obviously difficult to include an account of such theoretical work in a way that is
truly self-contained and logically complete.

We have also had to continue to be extremely restrictive in treating fields in-
timately related to cloud microphysics. Thus, as in our first edition, we could
touch only briefly on some simple concepts of cloud dynamics, and refer in places
only to the results of cloud dynamic models which include detailed microphysics.
(An excellent text on cloud dynamics is now available in the treatise by Cotton
and Anthes (1989).) We also had to leave out the extensive field of the interac-
tion between clouds and electromagnetic radiation, although we sometimes refer
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to results derived from radar cloud studies and from studies on the effects of so-
lar and terrestrial radiation on the microstructure of clouds. Also, in the chapter
on cloud electricity we have had to omit many facets of clear weather electricity,
and the subject of the physics of lightning. On the other hand, we have amplified
the present edition by the inclusion of a chapter on cloud chemistry (Chapter 17).
This was prompted by the seriousness with which worldwide ecological problems
related to air, water, and ground pollution are viewed by the scientific community
in general. Our treatment of the subject is restricted to some basic processes that
must be considered in current pollution transport models.

Other changes in the book worth noting here include: (1) The descriptive ma-
terial in Chapter 2 on the microstructural features of clouds has been updated
and includes more diagrams to assist modelers, and much more information on
cirrus clouds. (2) The section on the structure of water in Chapter 3 reflects our
greatly improved knowledge of the specific heat, latent heat, and other proper-
ties of water, all the way down to —40°C; this supersedes previous extrapolations
from the Smithsonian Tables. As an example, the new data on the activation
energy for molecular transfer at the ice-water interface leads to homogeneous ice
nucleation rates in much better agreement with cirrus observations (described in
Chapter 7). Also, a distinct statistical mechanics theory for ice nucleation is now
included, and it is shown that the thermodynamic data are consistent with the
molecular data from ice physics research. (3) In Chapter 5 the values for surface
tension and interface energy below 0°C are recomputed due to the new results
in Chapter 3. (4) Size distribution measurements of the atmospheric aerosol now
extend down to 0.01 um and lower. This new data, and enhanced discussions of
gas-to-particle and drop-to-particle conversion, are included in Chapter 8. Also
included is new information on aerosols over the North and South Polar regions,
which is of relevance to the phenomenon of the Ozone Hole. (5) In Chapter 9,
new statistical mechanics modeling results for the heterogeneous nucleation of ice
on silver iodide and silicates supplement the previous thermodynamic approach.
(6) Numerical simulations of flow about spheres at Reynolds numbers too high for
steady axisymmetric flow, as well as for flow past cylinders and three types of snow
crystal shapes, are now included in Chapter 10. This gives rise to new ventilation
coefficients, hydrodynamic drag, and terminal velocities. Also, new data and mod-
eling concerning drop breakup and oscillations are provided. As an application,
improved non-equilibrium descriptions of oscillating drop shapes are given. (6) An
amplified treatment of drop condensation growth in stratus clouds and fogs is given
in Chapter 13. The chapter also includes new results on ventilation, and some sen-
sitivity studies on the effects of drop collision and coalescence on the early stages of
evolving spectra of cloud drops. (7) New parameterizations of experimental work
on drop coalescence are given in Chapter 14. Also, the new flow fields described
in Chapter 10 are used to determine collision cross-sections between various com-
binations of drops, finite-length cylinders, plates, and some other crystal shapes.
The problem of turbulence is also revisited, including its effect on the orientation
distribution of particles. (8) More complete simulations of stochastic drop breakup
and growth are given in Chapter 15, along with an expanded treatment of the
method of moments. (9) Chapter 16 has been enlarged with respect to parameteri-
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zations of experimental data on graupel, rime, hailstones, and the polycrystallinity
of frozen drops; there are also new theoretical modeling results on the growth rate
of graupel, snow crystals, and hailstones in dry and wet regimes, on the evolution
of'ice particle size distributions taking various interactions into account, and on the
melting of ice particles. (10) In Chapter 18, the description of strongly electrified
clouds and cloud particles based on field studies has been updated and expanded
considerably. The major cloud charging mechanisms are reviewed in light of new
experimental data, and it is concluded that certain non-inductive mechanisms are
dominant and primarily responsible for the tripolar thundercloud charge distrib-
ution often observed. The sections on the effects of electric fields and charges on
drop shape and disruption, corona discharge, and the enhancement of collection and
scavenging processes for various types of cloud particles have also been expanded
and improved.

The overall scope and intended audience of the book remain unchanged. In
particular, we hope it may provide for the upper division and graduate level student
a quantitative survey of cloud microphysics, and that it will be a source of useful
information for those engaged in related areas of teaching and research, including
the fields of aerosol physics, cloud dynamics, climate modeling, air chemistry, air
pollution, and weather modification.

In the preparation of this book, we have again incurred many debts. One of us
(H.R.P.) is indebted to the German National Science Foundation (DFG) and to the
German Ministry for Research and Technology (BMFT) for generously support-
ing the research carried out at the Institute for Physics of the Atmosphere at the
Johannes-Gutenberg University of Mainz. He is particularly very grateful to his
longtime associates Prof. Andrea Flossmann and Dr. Subir Mitra, and to Drs. Ste-
fan Borrmann and Andreas Bott for fruitful and constructive criticism in preparing
this text. He is thankful to them, as well as to Profs. K. V. Beard and P. K. Wang,
for providing him with original figures, tables, and texts, in part still unpublished.
Thanks go also to all his students, who have provided through their questions in-
sights for clarifying many of the concepts presented in this book. He also warmly
thanks his wife Monica and his son Lukas for bearing the many years of hard-
ships with him. The second author (J.D.K.) would like to thank Prof. P. Chylek
for many stimulating and wide ranging discussions, and Dr. R. A. Sutherland of
the Army Research Laboratory of White Sands Missile Range, Dr. M. Farmer of
Correa Enterprises Inc., and Mr. J. Serna of the Physical Sciences Laboratory of
New Mexico State University for their indirect roles in providing financial support
that facilitated the completion of this project. He also thanks his wife Cathy, and
Mark, Lindsay, and Ali for keeping it all in perspective with love and good cheer.
Finally, we wish to express our sincere gratitude to Mrs. K. Franke who typed the
original manuscript, to Mr. Michael Lang for coordinating the text into IATgX, to
Mrs. Cornelia Schrors who set the tables and the figure captions, to Mr. Werner
Klaus Zangi who drew all the diagrams, and to Mrs. Renate Graf-Gries and Andrea
Richter who were kind enough to coordinate much of the clerical work.

Again, a number of figures and tables in this book have been adapted from
the literature. The publishers and authors involved have been most considerate in
granting us the rights for this adaptation. In all cases, references to sources are
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made in the figure and table captions.

Special thanks also go to the editors of Kluwer Academic Publishers, Dordrecht,
in particular to Dr. Mariette de Jong, for providing a fruitful relationship with us.
Mainz, H. R. PRUPPACHER

March 1996
Las Cruces, J. D. KLETT
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CHAPTER 1

HISTORICAL REVIEW

As one studies the meteorological literature, it soon becomes evident that cloud
microphysics is a very young science. In fact, most of the quantitative information
on clouds and precipitation, and the processes which are involved in producing
them, has been obtained since 1940. Nevertheless, the roots of our present knowl-
edge can be traced back much further. Although a complete account of the de-
velopment of cloud physics is not available, a wealth of information on the history
of meteorology in general can be found in the texts of Korber (1987), Frisinger
(1977), Middleton (1965), Khrgian (1959) and Schneider-Carius (1955). Based on
these and other sources, we shall sketch here some of the more important events in
the history of cloud physics. In so doing we shall be primarily concerned with de-
velopments between the 17*" century and the 1940’s, since ideas prior to that time
were based more on speculation and philosophical concepts than scientific fact and
principles. As our scope here is almost exclusively restricted to west European and
American contributions, we emphasize that no claims for completeness are made.

It was apparently not until the 18" century that efforts were underway to give
names to the characteristic forms of clouds. Lamarck (1744-1829), who realized
that the forms of clouds are not a matter of chance, was probably the first to
formulate a simple cloud classification (1802); however, his efforts received little
attention during his lifetime. Howard (1772-1864), who lived almost contempora-
neously with Lamarck, published a cloud classification (1803) which, in striking
contrast to Lamarck’s, was well received and became the basis of the present clas-
sification. Hildebrandson (1838-1925) was the first to use photography in the study
and classification of cloud forms (1879), and may be regarded as the first to in-
troduce the idea of a cloud atlas. This idea was beautifully realized much later
by the International Cloud Atlas I (1975), II (1987) of the World Meteorological
Organization, the Cloud Studies in Color by Scorer and Wexler (1967) and the En-
cyclopedia Clouds of the World by Scorer (1972). In this last reference, excellent
colored photographs are provided together with a full description of the major gen-
era, species, and varieties of atmospheric clouds. An excellent collection of clouds,
photographed from satellites, is found in another book by Scorer (1986).

Both Lamarck and Howard believed the clouds they studied consisted of water
bubbles. The bubble idea was originated in 1672 by von Guericke (1602-1686), who
called the small cloud particles he produced in a crude expansion chamber ‘bullu-
lae’ (bubbles). Although he explicitly named the larger particles in his expansion
chamber ‘guttulae’ (drops), the bubble idea, supported by the Jesuit priest Pardies
(1701), prevailed for more than a century until Waller (1816-1870) reported in 1846
that the fog particles he studied did not burst on impact, as bubbles would have.
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Although this observation was confirmed in 1880 by Dines (1855-1927), it was left
to Assmann (1845-1918) to finally end the dispute through the authority of his
more comprehensive studies of cloud droplets under the microscope (1884).

The first attempt to measure the size of fog droplets with the aid of a microscope
was made by Dines in 1880. Some early measurements of the size of much larger
raindrops were made by ingeniously simple and effective means. For example, in
1895 Wiesner (1838-1916) allowed raindrops to fall on filter paper impregnated
with water-soluble dye and measured the resulting stains. A little later, Bentley
(1904) described an arrangement in which drops fell into a layer of flour and so
produced pellets whose sizes could easily be measured and related to the parent
drop sizes.

The elegant geometry of solid cloud particles has no doubt attracted attention
from the earliest times. Perhaps the first documentation of snow crystals that
exhibit a six-fold symmetry was due to an author named Han Ying who made this
observation in 1358 BC in China. It was not until centuries later that the same
observation also became documented in Europe by means of a woodcut done in 1555
by Olaus Magnus, Archbishop of Uppsala in Sweden. Kepler (1571-1630) was also
intrigued by the forms of snow crystals and asked ‘Cur autem sexangula?’ (‘But
why are they six-sided?’). Descartes (1596-1650) was perhaps the first to correctly
draw the shape of some typical forms of snow crystals (1635). Hooke (1635-1703)
first studied the forms of snow crystals under a microscope. Scoresby (1789-1857),
in his report on arctic regions (1820), presented the first detailed description of a
large number of different snow crystal forms and noticed a dependence of shape
on temperature. A dependence of the shape of snow crystals on meteorological
conditions was also noted by Martens (1675). Further progress was made when
Neuhaus (1855-1915) introduced microphotography as an aid in studying snow
crystals. Hellmann (1854-1939) pointed out in 1893 that snow crystals have an
internal structure, which he correctly attributed to the presence of capillary air
spaces in ice. The most complete collections of snow crystal photomicrographs
were gathered by Bentley in the U.S. (published by Humphreys in 1931), and
during a life’s work by Nakaya (1900-1962) in Japan (published in 1954).

It was also realized early that not all ice particles have a six-fold symmetry.
However, before the turn of the 18" century, interest in the large and often quite
irregular shaped objects we now call hailstones was apparently restricted to their
outward appearance only. Volta (1745-1827) was among the first to investigate their
structure, and in 1808 he pointed out that hailstones contain a ‘little snowy mass’
at their center. In 1814 von Buch (1774-1853) advocated the idea that hailstones
originate as snowflakes. This concept was further supported by Waller and Harting
(1853), who investigated sectioned hailstones under the microscope. In addition to
finding that each hailstone has a center which, from its appearance, was assumed
to consist of a few closely-packed snowflakes, they discovered that hailstones also
have a shell structure with alternating clear and opaque layers, due to the presence
of more or less numerous air bubbles.

All known observations of cloud and precipitation particles were made at ground
level until 1783, when Charles (1746-1823) undertook the first instrumented balloon
flight into the atmosphere. Although frequent balloon flights were made from
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that time on, they were confined mostly to studies of the pressure, temperature,
and humidity of the atmosphere, while clouds were generally ignored. The first
comprehensive study of clouds by manned balloon was conducted by Wigand (1882-
1932), who described the in-cloud shape of ice crystals and graupel particles (snow
pellets or small hail) in 1903.

Attempts to provide quantitative explanations for the processes which lead to the
formation of cloud particles came relatively late, well into the period of detailed
observations on individual particles. For example, in 1875 Coulier (1824-1890)
carried out the first crude expansion chamber experiment which demonstrated the
important role of air-suspended dust particles in the formation of water drops from
water vapor. A few years later, Aitken (1839-1919) became the leading advocate
of this new concept. He firmly concluded from his experiments with expansion
chambers in 1880 that cloud drops form from water vapor only with the help of
dust particles which act as nuclei to initiate the new phase. He categorically stated
that ‘without the dust particles in the atmosphere there will be no haze, no fog, no
clouds and therefore probably no rain’. The experiments of Coulier and Aitken also
showed that by progressive removal of dust particles by filtration, clouds formed
in an expansion chamber became progressively thinner, and that relatively clean
air would sustain appreciable vapor supersaturations before water drops appeared.
The findings of Coulier and Aitken were put into a more quantitative form by
Wilson (1869-1959), who showed in 1897 that moist air purified of all dust particles
would sustain a supersaturation of several hundred percent before water drops
formed spontaneously. This result, however, was already implicitly contained in
the earlier theoretical work of W. Thomson (the later Lord Kelvin, 1824-1907),
who showed that the equilibrium vapor pressure over a curved liquid surface may
be substantially larger than that over a plane surface of the same liquid (1870).

As soon as experiments established the significant role of dust particles as pos-
sible initiators of cloud drops, scientists began to look closer at the nature and
origin of these particles. Wilson followed up his early studies with dust-free air
and discovered in 1899 that ions promote the condensation process, a result which
had been predicted theoretically in 1888 by J.J. Thomson (1856-1940). However,
it was soon realized that the supersaturations necessary for water drop formation
on such ions were much too large for them to be responsible for the formation of
atmospheric clouds. It was again Aitken who noticed in 1881 that due to their
different composition, some dust particles seem to be better nuclei than others.
He even surmised that ‘fine sodic chloride particles’ would condense vapor before
the vapor was cooled to the saturation point. This observation he attributed to
the ‘great attraction which salt has for water’. Aitken’s observations were further
extended by Welander (1897) and Liideling (1903), who suggested that Aitken’s
salt particles are injected into the atmosphere by the world oceans. The great
importance of such salt particles to serve as condensation nuclei was also realized
by Koéhler (1888-1982) who pointed out that the presence of large numbers of hy-
groscopic particles generally should prevent large supersaturation from occurring
in clouds. Also, Kohler was the first to derive a theoretical expression for the vari-
ation of vapor pressure over the curved surface of an aqueous solution drop (1921,
1922, 1927). His pioneering studies became the foundation of modern condensation
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theory.

Although the sigificance of oceans as a souce of condensation nuclei was by
now clearly recognized, Wigand’s observations (1913, 1930) suggested that the
continents, and not the oceans, are the most plentiful source. Wigand’s conclusions
(1934) were supported by the studies of Landsberg (1906-1985) and Bossolasco
(1903-1981).

Liideling and Linke (1878-1944) were probably the first to determine the con-
centration of condensation nuclei in the atmosphere (1903, 1904). However, it was
Wigand who, during balloon flights from 1911 to 1913, first carried out detailed
studies of condensation nuclei concentrations at different levels in the atmosphere
as a function of various meteorological parameters. He discovered that their con-
centration was related to the temperature structure in the atmosphere, and was
significantly different inside and outside clouds. On comparing the concentrations
of condensation nuclei and cloud drops, Wigand concluded that there are sufficient
numbers of condensation nuclei in the amosphere to account for the number of
drops in clouds.

Studies during the same period brought out the fact that dust particles also play
an important role in the formation of ice crystals. Thus, those researchers who as-
cended into clouds with instrumented balloons, found ice crystals at temperatures
considerably warmer than the temperatures to which Fahrenheit (1686-1736) had
supercooled highly purified water in the laboratory in 1724. Nevertheless, Saus-
sure (1740-1799) pointed out in 1783 that, despite the large number of condensation
nuclei, cloud drops generally resist freezing to temperatures much below 0°C. This
implied that apparently only a few of the dust particles present in the atmosphere
act as ice-forming nuclei. Wegener (1880-1931) suggested that water drops form
on water-soluble, hygroscopic nuclei while ice crystals form on a selected group
of dust particles which must be water-insoluble. From his observations during a
Greenland expedition (1912-1913), he concluded that ice crystals form as a result
of the direct deposition of water vapor onto the surface of ice-forming nuclei. He
therefore termed this special group of dust particles ‘sublimation nuclei’. Wegener’s
mechanism of ice crystal formation by direct vapor deposition was also advocated
by Findeisen (1909-1945). On the other hand, Wigand concluded from his balloon
flights that ice crystal formation is often preceded by the formation of supercooled
water drops, which subsequently freeze as a result of contact with water-insoluble
dust particles. Other arguments against a sublimation mechanism for the forma-
tion of ice crystals were brought forward by Krastanow (1908-1977) who, in 1936,
theoretically demonstrated that the freezing of supercooled drops is energetically
favored over the formation of ice crystals directly from the vapor.

While all these studies provided some answers concerning why and how cloud
particles come into being, they did not provide any clues as to how a cloud forms
as a whole and why some clouds precipitate and others do not. One of the first
precipitation theories was formulated in 1784 by Hutton (1726-1797). He envisioned
that the cloud formation requisite to precipitation is brought about by the mixing
oftwo humid air masses of different temperatures. The microphysical details of the
apportioning of the liquid phase created by this cooling process were not considered.
The meteorologists Dove (1803-1879) and Fitz Roy (1805-1865) evidently were in



HISTORICAL REVIEW 5

favor of his theory, since it seemed to predict the observed location of rain at the
boundary between ‘main currents of air’ (this is now interpreted as frontal rain).
Therefore, Hutton’s precipitation theory persisted for almost a century. When at
last given up, it was not for apparent meteorological reasons but for the physical
reason that, owing to the large amount of latent heat released during the phase
change of water vapor to water, Hutton’s process provides far too small an amount
of condensed water to explain the observed amounts of rain.

It finally became clear that only cooling by expansion of humid air during its
ascent in the atmosphere would provide clouds with sufficient condensed water to
account for the observed rain. Thus, Hamberger (1662-1716) noted in 1743 and
Franklin (1706-1790) in 1751 that air rises on heating. In turn, Ducarla-Bonifas
(1738-1816) and de Saussure (1740-1799) formulated a theory which made use
of this concept suggesting that warm moist air which rises will cool as it rises
and produce precipitation at a rate which is proportional to the rate of ascent
of the moist air. However, it was left to Erasmus Darwin (1731-1802) to clearly
formulate in 1788 the connection between expansion, cooling and condensation.
The first mathematical formulation of the cooling which is experienced by a volume
of expanding air was given by Poisson (1781-1840) in 1823, thus providing the
basis for understanding von Guericke’s ‘cloud chamber’ experiments carried out
150 years earlier. Soon afterwards, the idea of cooling by adiabatic expansion,
according to which there is no heat exchange between the rising parcel of air and
the environment, was applied to the atmosphere by Espy (1785-1860). He deduced
in 1835 from experiments and theory that, for a given expansion, dry air is cooled
about twice as rapidly as air saturated with water vapor, owing to the heat released
by condensing vapor. Also, Péclet (1793-1857) showed in 1843 that the rate of dry
adiabatic cooling for a rising air parcel is larger than the cooling usually observed
during balloon ascents in the atmosphere.

The first quantitative formulation of the ‘saturation adiabatic process’, accord-
ing to which the condensation products are assumed to remain inside the water-
saturated air parcel, was worked out by Lord Kelvin in a paper read in 1862 and
published in 1865. Meanwhile, in 1864, Reye (1838-1919) independently derived
and published formulations for the same process. A mathematical description of
the cooling rate of a lifted air parcel from which the condensation products are
immediately removed upon formation, a “pseudoadiabatic process’, was formulated
in 1888 by von Bezold (1837-1907). In 1884, Hertz (1857-1894) further extended
the thermodynamic formulation of a rising moist parcel of air. He suggested that if
such a parcel rises far enough, it will pass through four stages: (1) the ‘dry stage’
in which air is still unsaturated, (2) the ‘rain stage’ in which saturated water vapor
and water are present, (3) the ‘hail stage’ in which saturated water vapor, water,
and ice coexist, and (4) the ‘snow stage’ in which only water vapor and ice are
present.

In 1866, Renou (1815-1902) first pointed out that ice crystals may play an im-
portant role in the initiation of rain. Solely on the basis of the rather restricted
meteorological conditions he observed, Renou suggested that for development of
precipitation, two cloud layers are required: one consisting of supercooled drops
and another at a higher altitude which feeds ice crystals into the cloud layer below.
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More significant progress in understanding precipitation formation involving ice
crystals was achieved by Wegener (1911), who showed through thermodynamic
principles that, at temperatures below 0°C, supercooled water drops and ice crys-
tals cannot coexist in equilibrium. Using this result, Bergeron (1891-1977) proposed
in 1933 that precipitation is due to the colloidal instability which exists in clouds
containing both supercooled drops and ice crystals. Bergeron envisioned that in
such clouds the ice crystals invariably grow by vapor diffusion at the expense of the
supercooled water drops until either all drops have been consumed or all ice crys-
tals have fallen out of the cloud. Findeisen’s cloud observations (1938) produced
further evidence in favor of the Wegener-Bergeron precipitation mechanism.

Descartes (1637) had observed that hailstones often have a snowy globule in the
middle. In suggesting a mechanism for the formation of hailstones, he therefore
speculated that hailstones are the result of numerous snowflakes ‘being driven to-
gether by wind’. Later, Ducarla Bonifas (1738-1816) proposed with considerable
foresight in 1780 that ‘columns of air, more strongly heated than the surrounding
atmosphere, may violently rise to elevations where the temperature is sufficiently
low that the condensation products freeze to become little snowy globules which
further grow from the vapor and by collision with supercooled water drops until
they are heavy enough to fall back to Earth’. Similarly, von Buch in 1814 and
Maille (1802-1882) in 1853 suggested that hailstones originate as snow pellets and
grow further by collision with supercooled water drops. Much later, Koéhler (1927)
applied the notion of collision growth to ice crystals, which he recognized might
collect supercooled cloud drops. He also noted, but did not explain, his observa-
tion that both drops and crystals have to be of a minimum critical size before such
growth may evolve.

The same basic idea of collisional growth, applied this time to cloud drops of
different size and hence different fall velocities, was put forth independently in 1715
by Barlow (1639-1719) and by Musschenbroek (1692-1761) in 1739. Musshenbroek
also proposed that drops growing by collision will not exceed a size of about 6 mm
in diameter, due to the observed instability of drops larger than this size. Reynolds
(1842-1912) expanded on the notion of collisional growth and showed by computa-
tion in 1877 that water drops above a certain size grow slower by vapor diffusion
than by collision with other drops.

A subtle aspect of the collisional growth process was discovered by Lenard (1862-
1947), who observed in 1904 that colliding drops do not always coalesce. This he
attributed correctly to the difficulty of completely draining all the air from between
the colliding drops. He also found (as had been noticed in 1879 by Strutt, later
Lord Rayleigh, 1842-1919) that small amounts of electric charge residing on drops
could build up attractive electric forces which are sufficiently large to overcome
the hydrodynamic resistance to coalescence. In agreement with the expectations of
Musschenbroek, Lenard concluded from his experiments that growth by collision-
coalescence continues until drops grow to a critical size, after which they become
hydrodynamically unstable and break up. He suggested that the fragment drops
may then continue to grow in the same manner, producing a ‘chain-reaction’ effect
of overall rapid growth.

Despite Lenard’s experimental results, the mechanism of growth by collision
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was paid little attention for a long time, since the Wegener-Bergeron-Findeisen
mechanism dominated the thinking of meteorologists, most of whom studied storm
systems at the middle and higher latitudes where the ice phase is quite common.
Simpson (1878-1965) attempted to revive the collision mechanism in his presidential
address to the Royal Meteorological Society in 1941. On the basis of reports from
airplane pilots who flew over India through precipitating clouds with tops thought
to be warmer than 0°C, and from some crude calculations made by Findeisen on the
rate at which unequal size cloud drops coagulate, Simpson asserted that he found it
untenable to assume that precipitation formation should be confined only to clouds
which reach subzero temperature levels. However, convincing quantitative support
for Simpson’s position had to await the late 1940’s, when radar observations and
military flights finally led to a general consensus that clouds need not reach subzero
temperature levels, and consequently need not contain ice crystals for precipitation
to occur.

* ok ok

In striking contrast to the rather slow development of cloud physics prior to
1940, an abrupt and accelerating increase in research and knowledge has occurred
since. A confluence of several factors has brought about this dramatic change. For
example, a surge of interest in cloud physics was closely tied to the military-related
research in meteorology which developed during the war years (1939-1945) and pro-
duced a great number of trained workers in meteorology. Also, several new observa-
tional techniques involving aircraft, radar, and other instruments became available
to scientists at a time when both the necessary funding and support personnel were
also relatively abundant. In addition, interest and support was stimulated by the
demonstration of Schaefer and Langmuir in 1946 that it is possible to modify at
least some clouds and affect their precipitation yield by artificial means. (They
seeded supercooled stratus clouds with dry ice, which caused the formation and
subsequent rapid growth of ice crystals. This induced colloidal instability led, in
about 20 minutes, to a miniature snowfall.) Finally, the fast pace of general tech-
nological advances has had a continuing great impact on cloud physics, insuring an
accelerated development by making available such important tools as computers,
satellites, rockets, and accurately controlled climatic chambers and wind tunnels.

To a large extent, the rapid progress referred to above can be characterized as a
fairly direct development of the ideas and discoveries which were made considerably
earlier. As we shall see, the period of progress since the beginning of the 1940’s
has not been characterized by numerous conceptual breakthroughs, but rather by
a series of progressively more refined quantitative theoretical and experimental
studies of previously identified microphysical processes.

As we shall also see, much remains to be learned in spite of the significant
advances of the past four decades. One principal continuing difficulty is that of
incorporating, in a physically realistic manner, the microphysical phenomena in
the broader context of the highly complex macrophysical environment of natural
clouds. This problem was well expressed 35 years ago in the preface to the first
edition of Mason’s (1957a) treatise on cloud micrphysics.

Although the emphasis here is upon the micro-physical processes, it is important
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to recognize that these are largely controlled by the atmospheric motions which are
manifest in clouds. These macro-physical features of cloud formation and growth,
which might more properly be called a dynamics, provide a framework of environ-
mental conditions confining the rates and duration of the micro-physical events.
For example, the growth or freezing of cloud droplets is accompanied by the re-
lease of great quantities of latent heat, profoundly influencing the motion of cloudy
air masses, while the motions which ultimately cause evaporation of the cloud
determine its duration, and will set a limit to the size which its particles can at-
tain. Progress in cloud physics has been hindered by a poor appreciation of these
interrelations between processes ranging from nucleation phenomena on the mole-
cular scale to the dynamics of extensive cloud systems on the scale of hundreds or
thousands of kilometers

The problem of scale which Mason refers to provides a revealing point of view for
appreciating the extent of the difficulties one encounters. Thus, stating the case in a
very conservative manner, we are concerned in cloud microphysics with the growth
of particles ranging from the characteristic sizes of condensation nuclei (> 1072 um)
to precipitation particles (< 10* um for raindrops, < 10° um for hailstone). This
means we must follow the evolution of the particle size spectrum, and the attendant
microphysical processes of mass transfer, over about seven orders of magnitude in
particle size. Similarly, the range of relevant cloud-air motions varies from the
characteristic size of turbulent eddies which are small enough to decay directly
through viscous dissipation (> 10~2 cm), since it is these eddies which turn out to
define the characteristic shearing rates for turbulent aerosol coagulation processses,
to motion on scales at least as large as the cloud itself (> 10° cm). Thus, relevant
interactions may occur over at least seven orders of magnitude of eddy sizes. Also,
in recent years it has become increasingly clear that a strong coupling may occa-
sionally occur between the particle growth processes, including the development of
precipitation, and the growth of the cloud electric field. Since in the atmosphere
field strengths range from the fair-weather value (< 102 V m™1) to fields of break-
down value (108 V m™!), to understand the formation of highly electrified clouds,
we must cope with about four orders of magnitude of electric field variation. At the
same time, we also must be concerned with various electrostatic force effects arising
from at least an eight order of magnitude range of particle charge, considering the
observed presence of 1 to 10% free elementary charges (5 x 10710 to 5 x 10~2 e.s.u.)
on atmospheric particles. If the electrostatic contribution to the large-scale cloud
energetics is also considered, a much larger charge magnitude range is involved.
Recent studies have shown further that atmospheric clouds and precipitation sig-
nificantly affect the chemical nature of the atmosphere in that they are able to
incorporate aerosol particles as well as certain gaseous atmospheric constituents,
which, once dissolved in the drops, allow chemical reactions to alter their chemical
nature. Since observations show that the concentration of aerosol particles ranges
from a few per em® in remote background air to a few million per cm® in heavily
polluted air over cities, while the concentration of pullutant gases range from a
volume fraction of 10~? to one of 10~ in these same locations, we must follow
the uptake of atmospheric chemical constituents by clouds and precipitation over
about six orders of magnitude of concentration variation.
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It is clear, therefore, that a complete in-context understanding of cloud micro-
physics including dynamic, electrical and chemical effects must await some sort of
grand synthesis, an elusive and distant goal even from the point of view of presently
available models. We should emphasize that such an approach to the subject is
far beyond the scope of this book. Rather, our goal is to provide where possible
a reasonably quantitative account of the most relevant, individual microphysical
processes. In addition to whatever intrinsic interest and usefulness in other ap-
plication the separate case studies of this book may hold, we also hope they may
help provide a useful basis for an eventual integrated treatment of overall cloud
behavior. As we shall see, however, even this restricted approach to the subject
necessarily involves a degree of incompleteness, since many microphysical mech-
anisms are still not understood in quantitative detail. In this sense also cloud
microphysics is still a developing subject, and so is characterized to some extent
by inadequate knowledge as well as conflicting results and points of view.



CHAPTER 2

MICROSTRUCTURE OF ATMOSPHERIC CLOUDS AND
PRECIPITATION

Before discussing the microphysical mechanisms of cloud particle formation, we
shall give a brief description of the main microstructural features of clouds. Here
we will be concerned primarily with the sizes, number concentrations, and geometry
of the particles comprising the visible cloud.

2.1 Microstructure of Clouds and Precipitation Consisting of
Water Drops

2.1.1 THE RELATIVE HUMIDITY INSIDE CLOUDS AND FOGS

Although the relative humidity of clouds and fogs usually remains close to 100%,
considerable departures from this value have been observed. Thus, reports from
different geographical locations (Pick, 1929, 1931; Neiburger and Wurtele, 1949;
Mabhrous, 1954; Reiquam and Diamond, 1959; Kumai and Francis, 1962a,b) show
that the relative humidity of fogs has been found to range from 100% to as low as
81%. Somewhat smaller departures from saturation are usually observed in cloud
interiors. Warner (1968a) indirectly deduced values for the relative humidity in
small to moderate cumuli from measurements of vertical velocity and drop size.
From his results (shown in Figure 2.1), we see that in these clouds the relative
humidity rarely surpasses 102% (i.e., a supersaturation of 2%), and is rarely lower
than 98%. The median of the observed supersaturations was about 0.1%. Similarly,
Braham (in Hoffer, 1960) found, during several airplane traverses through cumulus
clouds, that in their outer portions the air generally had relative humidities between
95 and 100%, dipping to as low as 70% near the cloud edges where turbulent mixing
was responsible for entraining drier air from outside the clouds. In the more interior
cloud portions, the relative humidity ranged from 100% to as high as 107% (shown
in Figure 2.2). More recently, Politovich and Cooper (1988) deduced from flights
through 147 clouds over Miles City, Montana, that the supersaturation within these
clouds ranged between —0.5 and 0.5% with an average of 0%.

Usually, the maximum supersaturation attained for a given updraft in a fog or
cloud is inferred from a comparison between the observed number concentration of
drops with the observed number concentration of aerosol particles which can form
drops at a given supersaturation (Squires, 1952, Warner, 1968a; Hudson, 1980;
Meyer et al., 1980; Paluch and Knight, 1984; Austin et al., 1985; Politovich and
Cooper, 1988). Recently, however, instruments have become available which are
able to measure the relative humidity in clouds more directly. Thus, the relative
humidty inside fogs (Figure 2.3) was measured by Gerber (1981) by means of a spe-

10
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Fig. 2-1: Percentage of observations with relative humidity less than a given value for all
samples (heavy line) and for samples taken within 300 m of cloud base ahin line). (From
Warner, 1968a, by courtesy of J. de Rech. Aimos., and the author.)
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Fig. 2-2: Relative humidity across a small cumulus cloud, derived from flights at three
levels. (From Hoffer, 1960, with changes.)
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cial dew point hygrometer developed one year earlier to measure relative humidity
above 100% (Gerber, 1980). We notice from Figure 2.3 that inside fogs the relative
humidity varies rapidly between subsaturated and supersaturated conditions. We
will show later in this chapter that the spatial and temporal non-uniformity of the
humidity inside clouds and fogs results in a corresponding rapid spatial variation
of the concentration of cloud drops and the cloud liquid water content.
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Fig. 2-3: Variation with time of the relative humidity and temperature in a radiation fog
near Reston, Virginia. (From Gerber, 1981, with changes.)

2.1.2 MICROSTRUCTURE OF FOGS

Observations by Houghton and Radford (1938), Kojima er al. (1952), Mahrous
(1954), Reiquam and Diamond (1959), Kumai and Francis (1962a), Okita (1962),
Meszaros (1965), and Garland (1971) show that fogs, unlike clouds, are charac-
terized by relatively low water contents (generally less than 0.2 g m~®), small
drops (typically between 2.5 um and a few tens of micrometers, with a typical
mean diameter D between 10 and 20 ym), small number concentrations (1 to a few
hundreds per cubic centimeter), and liquid water contents ranging between 0.05 to
0.5 g m~3. More recent studies on fogs have been carried out by Low (1975), Roach
et al. (1976), Pilie et al. (1975), Mack et al. (1980), Jiusto and Lala (1980, 1982),
Stanev et al. (1987), Uyeda and Yagi (1984), and Kunkel (1982). From some of
these more recent observations, Kunkel (1982) categorized the distributions of the
drop number concentration n(D) and liquid water content wy, of advection fogs as
one of the three types shown in Figures 2.4 and 2.5, respectively. The common
feature of the three types in Figure 2.4 is the high concentration of particles be-
tween 0.5 and 2.5 um radius, which may be as large as several thousand per ¢cm?
(Garland, 1971). Kunkel suggests that these are haze particles consisting of moist
aerosol particles which have not yet been activated to actual drops (see Chapters 6
and 13). Before the advent of optical particle counters, these smaller particles went
virtually undetected since most other techniques available did not record droplets
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Fig. 2-5: Typical liquid water spectra in advection fogs at Otis Air Force Base
chusetts, corresponding to Figure 2-4. (From Kunkel, 1982, with changes.
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13

smaller than 5 um. However, using optical particle counters, this detection limit
was eliminated. Hindman ef al. (1977), Low et al. (1979), and Pinnick et al.
(1978) also reported the presence of such haze particles in fogs. From Figure 2.4
we note that the type A drop size distribution is strongly bimodal, type B has a
plateau, and type C shows a continuous simple decrease in number concentration
which can be represented by a power law. In contrast, the variation of the liquid
water content with drop size exhibits a single peak which appears either at a drop

diameter near 10 gm (type A) or near 30 pm (type C). A double peak at these two
diameters characterizes type B.

size spectra in advection fogs at Otis Air Force Base, Massa-
usetts. (From Kunkel, 1982, with changes.)

Massa-

According to Kunkel (1982) and Low (1975), one may distinguish among three
stages during a fog event. In the formative stage, the droplet number concentration
increases with time resulting in increasing liquid water content, while the mean drop
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Fig. 2-6: Variation with time of the drop concentration in a fog at Asahikawa, Japan. X
5-10 pm; O 10-15 pm; A 20-25 ym; B 35-50 pm; e 50-75 pm; JST is Ja.gan standard
time. (Flrlom Okita, 1962; by courtesy of J. Meteor. S'OC., Japan.
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Fig. 2-7: Variation with time of the liquid water content, wy,, measured on the ground
during successive fog events. (From Fuzzi et al., 1992, with changes.)
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size may remain the same or may increase slightly. During the mature stage, the
number concentration, liquid water content, and mean drop size fluctuate rather
strongly around generally constant values. The final dissipative stage is a period
of decreasing drop concentration, drop size, and liquid water content. Figures 2.6
and 2.7 illustrate the large spatial variations of the drop number concentration and
liquid water content during fog events, as noted as a function of time by an observer
at a fixed observation site. The variation in time of the drop number concentration
ranges up to two orders of magnitude for certain size categories. Analogously, the
liquid water content may vary rapidly from near zero values up to 0.5 g m~3 (Fig.
2.7).

The vertical microstructure of fog is less well-known. Generally it is found that
with increasing height in the fog, the drop spectrum narrows and the mean drop
radius decreases slightly, while the liquid content rises to one or more maxima at
some midlevel height in the fog.

2.1.3 MICROSTRUCTURE OF CLOUDS

Turning now to the microstructure of clouds, we shall mainly be concerned with
cumulus clouds as these have been studied most often. In contrast to fogs and
also some stratiform clouds, the drop size distribution of cumulus clouds depend
strongly on the development stage of the clouds, ranging from an early developing
stage with no precipitation to the mature and eventually dissipating stage with
large cloud drops and precipitation. This is exemplified by Figures 2.8a,b,c which
show that non-precipitating fair weather continental cumuli have relatively narrow
drop size spectra, while the spectra of continental cumuli which have reached the
more mature stage of a cumulus congestus, cumulonimbus, or cumulus-complex,
are much broader. Cumulus clouds which are embedded in a stratus layer have an
even broader spectrum. However, we notice from these figures that at each devel-
opment stage the drop spectra may vary considerably. In contrast to continental
clouds, maritime clouds (Figure 2.9) have an even broader spectrum, and, in par-
ticular, have drop concentrations at the small drop size end which are one order of
magnitude smaller than the concentration in continental cumuli. Figure 2.10 ex-
tends the spectrum for tropical cumuli in Figure 2.9 to larger sizes and illustrates a
typical feature of cloud drop spectra in general: the concentration decreases sharply
from a few tens to few hundreds per cubic centimeter at the small drop size end to
between 1171 and 1 m™2 for the large drops with diameters > 500 um.

Squires (1958a) has carried out detailed comparative studies of the drop spectra
of different types of clouds. The observational sequence shown in Figures 2.11a,b,c
illustrates the dependency of spectral shape on cloud type for situations in which
the nuclei on which drops form are essentially the same in type and concentration,
since a given air mass has spawned all three types shown. However, we can see
that even though there is little variation in liquid water content, the drops become
smaller, more numerous, and more homogeneous in size as one passes from the
orographic to the stratus to the cumulus cloud types. Continental cumuli appear
to represent an extension of this trend, in that the spectra are even narrower, the
concentrations even higher, and the average drop sizes even smaller (Figure 2.11d).
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Fig. 2-8: Size spectra of cloud particles observed near the top of continental cumuliform
clouds: (a) in six developing small cumuli, (b) in five cumulus complexes, (c) in four
cumuli embedded in stratiform clouds. (From Hobbs et al., 1980, with changes.)

For this case, a different air mass type with a correspondingly different aerosol
particle content is involved, and this largely accounts for the change from the
maritime spectrum. Squires’ observations clearly express the trend that high drop
concentrations in clouds are associated with narrow drop size spectra and small
drop sizes. This is the pattern usually encountered in continental type clouds,
while in maritime clouds low drop concentration are associated with broad size
spectra and large drop sizes.

Individual drop size spectra often tend to be bimodal (Eldridge, 1957; Durbin,
1959; Warner, 1969a), as exemplified by Figure 2.12a. During his flights through
clouds over the east coast of Australia, Warner (1969a) observed that the tendency
of'a size distribution to be bimodal increased with height above cloud base and with
decreasing stability in the cloud environment (Figure 2.12b). The same tendency
was found by Politovich and Vali (1983) in cap clouds over Elk Mt., Wyoming.
Based on his observations, Warner suggested that bimodal drop size distributions
are the result of a mixing process between the cloud and the environment. Since
the drop size spectra were fairly uniform for a given level across a cloud and the
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Fig. 2-10: Drop spectra for cumuli in the tropical trade wind region (Gulf of Mexico,

Bahama Islds, Puerto Rico). Total concentration ranges: (A) 200 to 3000 drops m™, wy,

= 1.0 to 33.1 x 10°® g m%; (B) 3000 to 20000 drops m™, wy = 32.0 to 213 x 102 g

m3; (C) 3000 to 8000 drops m™, wy, = 33 to 163 x 10 g m™3; (D) 1000 to 3000 drops

m™3, wy, = 3.3 to 116 x 10% g m'3; (E) precipitation measurements. (From Brown and
Braham, 1959; by courtesy of Am. Meteor. Soc., and the authors.)
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Fig. 2-11: Droplet spectra in clouds of various types. Cumulus samples are taken 2000
ft.” above cloud base, orographic and dark stratus values are average. Note change in
ordinate scale from figure to figure. (a) Orographic cloud over Hawaii, w, = 0.40 g

m3; (b) dark stratus over Hilo (Hawaii), wy, = 0.34 g m™>; (c) tradewind Cumulus over
Pacific off the coast of Hawaii, wy, = 0.50 g m3; (d) continental Cumulus over Blue Mts.

near Sydney, Australia, w;, = 0.35 g m'3. (From The Physics of Rain Clouds by N.H.
Fletcher, copyrighted by Cambridge University Press, 1962a, redrawn by Fletcher after
Squires, 1958a.)

bimodality was not confined to the cloud edges, Warner proposed that the mixing
process producing the bimodality is due mostly to entrainment of drier air at the
growing cloud top, and to a lesser degree, to entrainment at the cloud edges.
Figure 2.12b shows further that the fraction of drops larger than 25, 30, and 35 pm
diameter increased rapidly with height above cloud base, indicating that the size
distribution experiences a broadening effect with increasing distance from cloud
base. Spectra with double maxima have also been observed by McLeod (1976)
in thunderstorm clouds over Alberta, by Meischner and Bogel (1988) in cumulus
clouds over the Alps, by Slingo et al. (1982) in stratocumulus clouds over England,
and by Ryan et al. (1972) in stratus clouds offthe coast of California (Figure 2.13).
Figure 2.14 for a continental cumulus and Figure 2.15 for a maritime stratocumulus,
show that the relative size of the two maxima in the bimodal spectra varies with
location in the cloud and with the stage of development.

If we consider the spatial distribution of the drop size, number concentration, and
liquid water content, we find strongly inhomogeneous conditions. Thus, we notice
from Figure 2.16 that wy varies rapidly over short distances along a horizontal
flight path in a manner which is closely related to the variation of the vertical
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Fig. 2-12:a. Cloud drop spectra in isolated cumuli near the Eastern Australian coast.
Adjacent samples taken 100 m apart near the top of a cloud 1400 m deep. (From Warner,

1969a; by courtesy of Am. Meteor. Soc., and the author.)

Fig. 2-12:b. Variation with height of cloud drop spectra in isolated cumuli near the
Eastern Australian coast (based on two clouds). The height H above cloud base at which
the samples were taken and the average total drop concentration N at that height are
also shown. (From Warner, 1969a; by courtesy of Am. Meteor. Soc., and the author.)
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Fig. 2-13: Cloud drop spectra observed during a gradual ascent through a shallow non-
precipitating maritime stratus off the Californian coast; N (cm™®) is the total number of

drops, wi, (g m™) is the liquid water content; number within the distribution represents
elapsed time after penetration with aircraft. (From Ryan et al.; 1972, with changes.)
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Fig. 2-14: Drop size spectra averaged over 100 m flight intervals inside a continental
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measurements in cloud (W = 11 m sec’’ , 8.8 m sec’l). (From Paluch and Knight, 1984,
with changes.)

flATION

P CONCENT
(um interval) ']

DR
[cmg

0 30 60 90 120
DIAMETER (um)

Fig. 2-15: Drop size distribution inside a maritime stratocumulus over Miyakojima Island,
Japan. (a) developing stage, (b) intermediate stage, (c) decaying stage. (From Ichimura
et al., 1980, with changes.)
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Fig. 2-16: Vertical air velocity and liquid water content in isolated cumuli near the East-
ern Australian coast as a function of distance from the place the airplane entered the
cloud. (From Warner, 1969a; by courtesy of Am. Meteor. Soc., and the author.)
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Fig. 2-17: Variation with time of the liquid water content wr, , total number concentration

N, and mean diameter for drops of D > 6um during the penetration of a cumulus cloud

over Montana. A time period of 10 seconds corresalf)tonds to about 1 km flight distance.

The region denoted by A indicates a steady updraft region. (From Blyth and Latham,
1990, with changes.)
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Fig. 2-18: Variation of the liquid water content, wy, , with height above cloud base inside:
(a? an altocumulus-altostratus cloud layer, and (b) inside a stratus layer, both of negligible
ice content above S. Germany. (From Hoffmann and Roth, 1988, with changes.)

(a)

Fig. 2-19: Spatial distribution of microstructure parameters in cumulus cloud. (a) drop

diameter (um}, (b) drop concentration (number cm™®), (¢) wy (g m™). (From Huan,
1963; by courtesy of Air Force Geophys. Laboratory, Hanscom Air Force Base, Mass.)

velocity in the cloud. From Figure 2.17, we see that wy, varies essentially as the
total number concentration of drops. On the other hand, the mean drop diameter
D only reflects the two main strong dips in wr. Notice also that there exist some
‘steady’ regions inside clouds with little variation in drop diameter.

The observations of Zaitsev (1950), Draginis (1958), Squires (1958b), Durbin
(1959), Ackerman (1959, 1963), Huan (1963), Borovikov et al. (1963), Warner
(1955, 1969a), Vulfson et al. (1973) demonstrate that the cloud water content typ-
ically increases with height above the cloud base, assumes a maximum somewhere
in the upper half of the cloud, and then decreases again toward the cloud top. This
is illustrated in Figure 2.18a for an alto-cumulus-alto-stratus cloud, by Figure 2.18b
for a stratus cloud, both studied by Hoffmann and Roth (1988) in S. Germany, and
by Figure 2.19 for a small continental cloud studied by Huan (1963) in China.
We also notice from Figure 2.19 that, in contrast to the cloud in Figure 2.17, the
distribution of the liquid water content parallels the distribution of the drop size
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Fig. 2-20: Spatial distribution of microstruture parameters in a cap-cloud over Elk Mt.

(Wyoming). (a) Droplet concentration (cm™), (b) liquid water content (g m™). The

flight track (heavy line with mountain standard time) is also shown. (From Politovich and
Vali, 1983, with changes.)

rather than the drop concentration. A rather symmetric distribution of the drop
concentration and liquid water content is seen for the cap-clouds observed by Poli-
tovich and Vali (1983) (Figure 2.20a,b). The pronounced spatial variations of the
cloud microphysical parameters in the vertical are exemplified in Figures 2.21a,b,c
by the observations of Heymsfield e al. (1991) in an alto-cumulus layer.

Although the liquid water content of clouds varies strongly from cloud to cloud,
one may use the following characteristic values (Borovikov et al., 1963): Cumulus
(early stage), 0.2 to 0.5 g m~%; Cumulus (later stage), 0.5 to 1.0 g m™; dense
cumulus congestus and cumulonimbus, 0.5to 3 g em~2;  alto-cumulus-alto-stratus,
0.2 to 0.5 g m™3; stratus-stratocumulus, 0.1 to 0.5 g m~2; nimbo-stratus, 0.2 to
0.5 g m~3. In cumulus with very high updrafts, liquid water contents of up to
5 g m~3 and more have been observed (Poellot and Pflaum, 1989). Hobbs et al.
(1980), Gayet et al. (1978) and Musil and Smith (1989) found in some thunder-
storms liquid water contents up to 14 g m~3, which amounted to twice the adiabatic
value. They attributed this result to liquid water storage in accumulation zones
inside the cloud. In most cases, however, a comparison between the observed cloud
water content (wy,)aq computed on the basis of a saturated adiabatic ascent of moist
air shows that generally wi, < (Wr)ad. This fact is illustrated by Figure 2.22, which
implies that, as a cloud builds, drier air is constantly entrained and subsequently
saturated at the expense of some of the water released during ascent. In most cases,
wi/(wL)ad is found to decrease with increasing height above cloud base but to in-
crease with increasing cloud width. This implies that the entrainment is especially
pronounced near the cloud top, while the net dilution effect by entrainment is less
in wider clouds than narrower ones. Generally, Wi /(WL )ad lies between 0.1 and 0.6,
with near adiabatic values close to the cloud base, although near-adiabatic values
may occasionally be found also higher up (Blyth and Latham, 1990; Heymsfield et
al., 1978; Jensen et al., 1985).

Remote sensing with radar can provide useful information on the correlation
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Fig. 2-21: Variation with altitude of the microstructure parameters inside a highly su-
percooled alto-cumulus cloud of negligible ice content over Green Bay (Wiscounsin) air

temperature: —28°C at 7100 m and —30°C at 7500 m. (a) Droplet concentration,
(b) mean drop diameter, (c) liquid water content. (From Heymsfield et al., 1991, with
changes.)

between the cloud microstructure and the overall development of precipitating
clouds. Most of the early work was done with 10 or 3 cm radars which, in general,
could only detect drops larger than a few hundred microns in diameter. More
recent high power 3 cm radar, and most 1 cm radar, permit the detection of drops
with diameters larger than a few tens of microns (Mason, 1971; Battan, 1973).

From radar studies of various types of cumuli, Battan and Braham (1956), and
Morris (1957), found that the appearance of a radar echo is characteristically re-
lated to the cloud dimensions. Thus, Figure 2.23 shows that the probability of
an echo developing in a cloud grows with its cloud top height and width. Notice
that continental clouds need to build considerably higher than maritime clouds and
must become considerably wider before a radar echo appears. Since higher clouds
usually also have greater depths, we notice from Figure 2.24 that, as expected, the
appearance of a radar echo is more likely the greater the cloud depth.

2.1.4 FORMULATIONS FOR THE DROP Si1ZE DISTRIBUTIONS IN CLOUDS
AND FoGs

For many fog and cloud modeling purposes, it is necessary to be able to approximate
the observed drop size distribution by an analytical expression. Fortunately, drop



MICROSTRUCTURE OF ATMOSPHERIC CLOUDS AND PRECIPITATION 25

357

ackerman (1963)

|
30 | |
'. skaTsxi (1965)

25

l_
\

1
1
]
]
1
1
i

warnenr (1955)

2.0 l

i
1
|
\1

HEIGHT ABOVE CLOUD BASE (km)
o

0.5 saumes
(1958) \‘\
0 ‘ 0'.4 ‘ d.a ‘
W /(W )qd

Fig. 2-22: Ratio of the observed mean liquid water content at a given height above
cloud base to the adiabatic value, for non-precipitating clouds. (From Warner, 1970a; by
courtesy of Am. Meteor. Soc., and the author.)
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Fig. 2-23: Occurrence (+) or non-occurrence (o) of precipitation in cumuli as function of

cloud-top height and cloud width derived from radar echoes. Lines of equal probability to

find an echo are given. (a) Clouds over Arizona (from Morris, 1957; by courtesy of Am.

Meteor. Soc., and the author). (b) Clouds over ocean near Puerto Rico (from Battan
and Braham, 1956; by courtesy of Am. Meteor. Soc., and the authors).
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Fig. 2-24: Percentage of Arizona cumuli giving radar echo as a function of cloud depth.
(From Morris, 1957; by courtesy of Am. Meteor. Soc., and the author.)

size distributions measured in many different types of clouds and fogs under a
variety of meteorological conditions often exhibit a characteristic shape. Generally,
the concentration rises sharply from a low value to a maximum, and then decreases
gently toward larger sizes, causing the distribution to be positively skewed with a
long tail toward the larger sizes. Such a characteristic shape can be approximated
reasonably well by either a gamma distribution

n(a) = Aa® exp(—Ba"), (2-1)

or a lognormal distribution

[log E—“:] ’

Bl & V2n(logo)a P 2(log 0)* 2)

where a is the drop radius, and n(a)da is the number of drops cm™? in the radius
range (a,a + da). Also, N is the total number of drops per unit volume, o is the
standard deviation of the distribution and a,, is the drop radius at the maximum of
the distribution. The parameters A, B, 8, and ¥ may be related to moments of the
distribution. In order to describe a drop size distribution with two or more maxima,
one or more unimodal distributions may be superposed. As an example, according
to Khrgian and Mazin (in Borovikov et al. 1963) many drop size distributions with
a single maximum may also be quite well represented by a gamma distribution for
whichy=1and #=2,ie.,

n(a) = Aa® exp(-Ba). (2-3)

The parameters A and B can be related to any two moments of the distribution.
For example, in terms of the total concentration N (the zeroth moment), and the
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average radius @ (the ratio of the first and zeroth moments) we find

T 24
N = | n(a)da = — (2-4)
and -~
a= ;lvf anla) di= % . (2-5)

Another related quantity of interest is the total mass concentration of liquid water.
Since this often turns out to be about 1078 g cm~3, one defines the cloud liquid
water content, wy,, as follows:

wi(g m~3) = 10° (4?“) pw/ a*n(a) da, (2-6)
0

where p,, is the density of water in g ecm™2 and a is in cm. Then, for the Khrgian-
Mazin distribution, we find

A~ 145%107° (-‘1‘1‘:3) , (2-7)
Pwl
and
N ~1.07 x 1077 (“'—:3) . (2-8)

Stanev et al. (1987), Low (1975) and Meszaros (1965) also found that the size
distributions of fog drops could be fitted by the Khrgian-Mazin distribution. An-
other convenient representation of the cloud drop size distribution is the empirical
formula developed by Best (1951a):

1-F=exp [— (%)k] , (2-9)

where F is the fraction of liquid water comprised of cloud drops with diameters
smaller than D (pm). The characteristic parameters C and k vary with the li-
quid water content, the total drop concentration, and the maximum drop size in
the cloud. Best found 1.92 < k <€ 4.90. 2 < C < 29pum. Of course, it must
be remembered that these various analytical expressions only represent average
distributions. As we have seen in the previous section, individual drop size spectra
may be significantly different.

2.1.5 THE MEAN DISTANCE BETWEEN DROPS IN CLOUDS AND FOGS

From the previous section, it is clear that microstructure inhomogeneities in clouds
are rather pronounced. The question naturally arises as to whether such behavior
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continues to hold down to the smallest scales of physical significance, such as dis-
tances of the order of the droplet separations. In general, given the many stochastic
influences on drop growth and drop spacing in a complex natural system such as
a cloud, one would indeed expect inhomogeneities, or fluctuations, to occur on all
length scales, including the smallest. In fact, in one sense this is trivially so: If one
measures the liquid water content over sample volumes of the order of average drop
volumes, for example, the result is bound to reflect the fundamental dichotomy of
being either inside or outside of a drop.

The more meaningful question is how to characterize the expected physical prop-
erty fluctuations on the smaller scales within clouds. Let us address this problem
briefly by focusing on the spacing of droplets in clouds. A simple estimate of the
expected nearest-neighbor distance for droplets may be obtained as follows: The
liquid water content of clouds, wr, typically equal to 1 cm® of water per cubic
meter of air, may be approximated by the ratio of the volume of the average cloud
droplet (of radius @) to the volume of a sphere whose radius is d, the average
distance between droplets; thus,

g ~wp /3 102, (2-10)
which shows that clouds are rather sparse aerosols. In terms of'the concentration #,
we note that wy, = 47 /3an and so also, d =~ 0.620n"'/3. A more detailed analysis,
given in Appendix A-2.1.5, shows that the above approximations are really quite

good; e.g., we find
0.554  0.893a

d=—— = ; 2-11
nl/s W;. /3 (2-11)
Given this mean spacing, and assuming droplets are randomly distributed in
space, one can make various statistical predictions about the expected number
of droplets in a particular volume of cloud. The basis for this is the Poisson
discrete probability distribution function which defines the set of probabilities for
encountering any given number of randomly placed droplets in a given volume,
provided the mean number density is known, and that the process is truly random.
(Further details of this distribution are not needed here; any text on probability
theory may be consulted for more specifics. However, it may be noted that the
derivation of (2-11) in Appendix A-2.1.5 provides an example of the reasoning
characterizing Poisson statistics. Furthermore, Poisson statistics are used explicitly
in the discussion of drop collection in Chapter 15.)

Given the above framework, one can now take advantage of the greatly enhanced
measurement capability of recent years to search for possible deviations from the
default Poisson statistics. For example, Baker (1992) attempted to analyze the ar-
rival times of cloud droplets passing through the laser beam of a forward scattering
spectrometer probe (FSSP) mounted on an aircraft. Although small departures
from Poisson statistics were noted at scales between 0.5 and 5 cm, it was not
possible to relate the measurements to actual inter-droplet distances. Similarly,
Paluch and Baumgardner (1989) established with their FSSP measurements that
non-uniformities in the drop concentration existed at scales below 10 cm, except
deep inside a cloud where the drops were found to be randomly distributed.
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A more definite conclusion was reached by Kozikowska et al. (1984), who conjec-
tured, on the basis of holographic measurements in ground fog, that there appeared
to be droplet clustering and systematic deviations from a random spatial droplet
distribution. A quantitative study to test the conclusions of Kozikowska et al. was
carried out by Borrmann et al. (1993) and by Uhlig (1995) using holograms taken
inside stratus and stratocumulus clouds on Mt. Feldberg in Germany. An example
of'the local drop size distribution inferred from the holographic method is given in
Figure 2.25.

«dN / dlogr (cm™)

1
10 AR WETIT
10’ 10'
DROP RADIUS (ym)

Fig. 2-25: Drop size spectrum in a fog on Kl. Feldberg (Germany) determined by holo-
graphy. N = (141+5) em™ , wy, = 0.4 g m™3. (From Borrmann et al., 1993, with
changes.)

Analysis of the mean distance d derived from the holograms showed that within
the experimental error, the drop size spatial distribution deviated from Poisson
statistics, and hence from true randomness, by only a few percent. Thus, we de-
duce for example from Figure 2.25 and 2.11 that d = 106412 pum for n = 141+ 5
drops em~3. Comparison with the value of 1158 um observed by Borrmann ef
al. shows agreement with the assumption of randomness to within 8%. Mean
distances derived by Uhlig (1995) from her holograms, showed even smaller devi-
ations from randomness. However, somewhat larger deviations were found if the
formation of nearest-neighbor pairs was considered. Thus, in a previous theoret-
ical and experimental study, Raasch and Umhauer (1989) determined that about
59% of particles, distributed randomly in an infinite volume, form nearest-neighbor
pairs, in the sense that each droplet in a pair is the nearest-neighbor of the other.
The field observations of Borrmann et al. showed, however, that only 51% of the
particles in the observed collective formed such mutual nearest-neighbors, for a
deficit of 14% from the expected value if randomness prevailed. Of course, from
the mentioned tests on the mean distance, no conclusions can be drawn with re-
gard to the deviation from Poisson statistics of the individual distances d between



30 CHAPTER 2

the drops. Therefore, Uhlig (1995) and Borrmann et al. (1993) subjected their
hologram data to additional tests which showed that for d < 0.5n~'/% the number
of nearest-neighbor distances were up to 10% higher than the number predicted by
Poisson statistics. The data also showed that a substantial fraction of the drops in
the ensemble had nearest-neighbor distances of less than 100 drop radii. In fact,
in the distribution given by Figure 2.25, Borrmann et al. found that 40% of the
drops in the ensemble were closer to each other than 100 drop radii, 20% closer
than 70 drop radii, 10% closer than 60 drop radii, and 3% even closer than 10 drop
radii. This brings to mind the difficult matter of assessing how drop growth rates
are affected by the proximity of other drops and by the proximity of walls around
the drops (see also Sections 10.2.2.4, 13.2.2.1 and 14.2).

2.1.6 MICROSTRUCTURE OF RAIN

A small difficulty arises in attempting to describe the spectra of rain, since rain-
drops are large enough to have a size-dependent shape which cannot be character-
ized by a single length (see Section 10.3.2). The conventional resolution, which we
adopt here, is to describe rain spectra in terms of the equivalent diameter Do de-
fined as the diameter of a sphere of the same volume as the deformed drop. When
falling at terminal velocity, drops are nearly perfect spheres if Dy < 280 pm. Larger
drops are slightly deformed and resemble oblate spheroids if 280 < Do <1000 pm.
For Dy > 1000 um, the deformation becomes large and the drops resemble oblate
spheroids with flat bases (see Plate 1). Drops larger than about 10 mm in dia-
meter are hydrodynamically unstable and break up, even in a laminar air stream
(see Section 10.3.5).

In addition to the equivalent diameter Dy, there are three other quantities which
are commonly used to characterize rain: (1) the size distribution n(Dy), expressed
here in terms of the number of drops per cubic meter of air per mm size interval,
(2) the water content, wy,, given as

™

o0
wi(gm=) = (5) x 10*3,9“,[ Din(Do) dDo, (2-12)
1]

with Dy in mm and py, in g cm™3, (3) the rainfall rate or intensity, R, usually
expressed in mm hr—:

R{mm hr-*) = 6r x 10~ f DEn(Do)Uso (Do) dDs , (2-13)
0

with the drop terminal velocity Uy, in m sec™?.

As illustrated in Figures 2.26 and 2.27 for warm rains over Hawaii, such rain
seldom includes drops larger than 2 to 3 mm in diameter (Blanchard, 1953, 1957).
Larger drops are found to be very rare in rains with R < 50 mm hr~! (Mason
and Andrews, 1960; Diem, 1968; Blanchard and Spencer, 1970; Waldvogel, 1974;
Hodson, 1986; Zawadzki and de Agostoino, 1988; Willis and Hallett, 1991). In
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Plate 1. Shape of cloud and raindrops as determined from wind tunnel experiments.
Equivalent radius of drops is given. Top row, from left to right: 4.00, 3.68, 2.90 mm;
second row, from left to right: 2.65, 1.75, 1.35 mm; third row, from left to right 393, 354,
155 um. Drops in third row were printed comparatively large to show sphericity. (From
Pruppacher and Beard, 1970; by courtesy of Quart. J. Roy. Meteor. Soc.)

contrast, raindrops which exceed 2 to 3 mm in diameter are found in tropical
storms and hurricanes with R > 50 mm hr—! (Willis, 1984; Willis and Tattelmann,
1989) and are common in thunderstorms, where large drops form from melting ice
particles.

Recent studies on Hawaiian rainbands, however, by Johnson et al. (1986), Beard
et al. (1986), and Rauber et al. (1991), confirm the existence of raindrops larger
than 3 mm in diameter, despite relatively small rainfall rates (Figure 2.28). The
largest drops recorded had diameters as large as 8 mm. Similar sizes were also
detected in convective clouds over the SE U.S. by Illingworth (1988). These obser-
vations are quite surprising, since model and laboratory studies support the view
that collisional break-up of drops rapidly destroys larger drops in natural clouds,
and generally limits the drop diameter to less than 2 to 3 mm (McTaggart-Cowan
and List, 1975; List and Gillespie, 1976; Gillespie and List, 1978; Takahashi, 1978c,
Low and List, 1982a,b). Two mechanisms for the development of raindrops larger
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Fig. 2-26: Raindrop distribution at stations in Hawaii. Curves 1-3 are for measurements

made at or near the dissipating edge of non-freezing orographic clouds. Curves 4-7 repre-

sent data taken at cloud . Curves 8-9 are for non-orographic rains. (From Blanchard,
1953; by courtesy of Am. Meteor. Soc., and the author.)
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Fig. 2-27: Variation of the maximum rain drop size as a function of rainfall rate for rains
over Hawaii at 2800 ft. elevation. (From Blanchard and Spencer, 1957, with changes.)
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Fig. 2-28: Ramdrop size spectrum of a rain shower near Hilo, Hawaii. Rain rate R =

17 mm hr'!. For comparison exponential spectra are shown for 1, 10, and 100 mm hr!
From Beard et al., 1986, with changes.)

than 2 to 3 mm in diameter were suggested by Rauber et al. (1991). They envi-
sion that giant drops may develop in maritime air on exceptionally large aerosol
particles acting as nuclei for the drops near cloud base (Johnson, 1982). These
already large drops then grow further by accretion of smaller drops to reach giant
size. Alternatively, they surmise that giant raindrops may develop when small rain-
drops re-circulate from the edge of the downdrafts in which they are contained into
updrafts with large numbers of cloud drops but essentially no raindrops. Thus,
fast growth occurs at the expense of the cloud drops without the encounter of
raindrops, which otherwise would have induced collisional break-up. Eventually,
as the updraft weakens, the giant drops fall to the ground through a relatively
raindrop-free cloud channel.

Several factors influence the spectral shape of rain at the small size end. Since
rain must fall against the cloud updraft, the strength of the latter tends by itself'to
truncate the spectrum at some minimum size. However, this effect is largely masked
by the further processing of rain after it leaves the cloud. In particular, small drops
continue to be produced by breakup and evaporation. Some of these are consumed
by the latter process, while others are collected by larger drops. Also, near the
beginning of a rainshower, the drop spectrum at ground level may be expected to
be biased toward large sizes owing to the greater fall speeds of the larger drops,
and possibly toward small sizes owing to an initially high evaporation rate. The
overall shaping of the spectrum is obviously quite complicated, and determined in
part by such meteorological variables as temperature, relative humidity, and wind
in the subcloud region. Observations show that most precipitating drops which
reach the ground have Dy > 200 um.
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Various empirical relations have been advanced to describe the size spectra of
raindrops. One often used is the size distribution proposed by Best (1950a), which
has essentially the same form as (2-9):

1-F =exp [— (%g)m} ; (2-14)

where m = 2.25 and A = 1.30R%?%2 with R in mm hr~! and Dy in mm, and
where F is the fraction of water comprised of raindrops with equivalent diameters
smaller than Dy. Support for the Best distributions has been given by Shirvaikar
et al. (1981).

Probably the most widely used description for the raindrop spectrum is the
size distribution of Marshall and Palmer (MP) (1948), which is based on the ob-
servations of Laws and Parsons (1943). The Marshall-Palmer (MP) distribution
is

n(Dg) = np exp(—ADy), (2-15)
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Fig. 2-29: Marshall-Palmer raindrop size distribution. (Based on Marshall and Palmer,
1948; by courtesy of Am. Meteor. Soc., and the authors.)

where A = 4.1R7%% mm™!, and ng = 8 x 10° m~3 mm~'. The parameter ng is
obtained by extrapolation and is assumed to be a constant (Figure 2.29). Knowing
A and ng, the mean diameter Dy, the mass weighted mean diameter Do m, the
mass mode diameter Dg mode, the total number of drops N, and the liquid watter
content wy, may be found from the definition of these quantities and (2-16), to give
Dy =1/A; Do.m = 4/A; Domode = 3/A; N =ngp/A; wi, = pumng X 10—3/A4, with
pw(g cm?), Do(mm), n(m~?), wg (g m~*) and A(mm~?).

More detailed studies, including those by Blanchard (1953), Okita (1958), Ma-
son and Andrews (1960), Caton (1966), and Blanchard and Spencer (1970), have
demonstrated that the MP distribution is not sufficiently general to describe most
observed raindrop spectra accurately. In particular, Joss ef al. (1968), Joss and
Waldvogel (1969), Strantz (1971), Diem and Strantz (1971), Sekhorn and Srivastava
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(1971), Cerzwinski and Pfisterer (1972), and Waldvogel (1974) have pointed out
that ng cannot be considered constant, but rather is a function of R. Also, the func-
tional dependence on R varies. Thus, the observations of Sekhorn and Srivastava
(1971) during thunderstorm rains near Cambridge, Massachusetts, led to a modified
MP distribution wherein ng = 7 x 10°R%37” m—3mm~?! and A = 3.8R~%14 mm™1!.
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Fig. 2-30: Raindrop size spectra: (a) before, (b) after a ‘no-jump’ measured during a
rainfall at a station in sourthern Switzerland. (From Waldvogel, 1974; by courtesy of Am.
Meteor. Soc., and the author.)

On analysis of 46 rain spectra obtained in southern Switzerland with 0.3 <
Do < 5.3 mm, Joss et al. (1968) and Joss and Waldvogel (1969) found 3 x 103 <
no < 105 m~3mm~1. Also, Waldvogel (1974) discovered that during a particular
rainfall, no may suddenly change. Figure 2.30 gives an example of the variation of
A and ng and of the raindrop distribution before, during, and after a sudden change
in ng (termed ‘mo-jumps’ by Waldvogel, 1974). The changes of ng were found to
be related to changes in convective activity, i.e., air mass stability. However, ‘ng-
jumps’ were observed even during rainfalls of the same convective character with a
continuous rainfall rate. For this condition, the ‘ng-jumps’ must be attributed to
changes in the microphysical processes occurring in the cloud system from which the
rain fell, or in the air during the fall of the drops from cloud to ground. Examples
of such ‘ng-jump’ are given in Table 2.1.

Although ngand A varied considerably within each rainfall, and from one rainfall
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TABLE 2.1

Examples for the variation of ng and A during different types of rain. CET is central
European time. (Based on data of Waldvogel, 1974.)

Type of Rainfall ng A R
(m™3 mm™1) (mm™1) (mm hrl)
June 6, 1968 2205-2235 CET, thunderstorm 35 000 3.7 10.2
2235-2310 CET, thunderstorm 4 000 2.5 5.8
June 19, 1969 0510-0540 CET, shower 16 000 3.8 4.0
0550-0620 CET, widerspread rain 8 000 2.6 8.0

to another, at any particular moment, the raindrop-size distributions observed
over southern Switzerland could be approximated in many cases by an exponential
distribution of the MP type. Similarly, exponential type distribution were observed
by Okita (1958), Miiller (1966), Sekhorn and Srivastava (1971), Pasqualuci (1982),
Willis (1984), Beard et al. (1986), Hodson (1986), Zawadzki and de Agostino
(1988), Rauber and Beard (1991), and Willis and Hallett, (1991). A plot of A vs.
R based on over 300 individual raindrop spectra is given in Figure 2.31. We note
that A decreases with increasing rain intensity. This implies that with increasing
rain intensity the raindrop spectra become broader.

RAINFALL RATE R (mmbhr
1 2 3

10

0.1 1.0 10
W (@m?)

Fig. 2-31: Variation of A with rainfall rate and liquid water content based on 300 rain-
fall events over: Hawaii (Rauber & Beard, 1991; Beard et al., 1986), Brazil (Zavadzki
& de Agostino, 1988), Florida (Willis and Hallett, 1991), S. Africa (Hodson, 1986;
Pasqualucci, 1982), Switzerland and S. Germany (Waldvogel, 1992), the US and Mar-
shall Islds. (Miiller, 1966; Sekhorn & Srivastava, 1971), and in tropical storms over the
Atlantic (Willis & Tattelman, 1989; Willis, 1984), (From Hodson, 1986, with additions.)

Numerous studies (Baker and Hodson, 1985; Ulbrich, 1983, 1985; Willis 1984;
Willis and Tattelman, 1989) have also used the gamma distribution (Equation
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(2-1)) with ¥ = 1 to fit the observed raindrop spectra:
n(Do) = noD§ exp(—ADs). (2-16)

As another alternative, Feingold and Levin (1986), Mueller and Sims (1966),
Bradley and Stow (1974), and Markowiz (1976) have suggested using the lognormal
distribution (Equation (2-2)) in the variable Dy.

1 R=185mmhr’
2 R=158mmhr’
3 R=57.4mmhr’
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Fig. 2-32: Mean rain drop size distributions in tropical storms with various rain inten-
sities. (a) (b) comparison to a I' - function fit; (c) comparison to a MP distribution.
(a: from Willis & Tattelman, 1986; b: from Willis, 1984, with changes.)

Detailed comparisons between the raindrop spectra actually observed and the
distributions given by (2-15) and (2-16) show that in most cases only a partial
fit can be acheived at best. This is demonstrated by Figures 2.32a,b,c showing a
comparison with a gamma and a MP distribution for rains from tropical storms
and hurricanes.

The observed raindrop spectra in Figures 2.30 and 2.32 also show, apart from
a main mode, some secondary modes. Such modes have also been identified by du
Toit (1967), Diem (1968), Diem and Strantz (1971), Strantz (1971), and Cerwin-
ski and Pfisterer (1972), Willis (1984), de Beaville er al. (1988), Takahashi (1978),
Battan (1977), Cataneo and Stout (1968), Steiner and Waldvogel (1987), Zawadzki
and de Agostino (1988), de Beauville ef al. (1988). We shall show in Chapter 15
that it is reasonable to attribute the main mode as well as the subpeaks to colli-
sional drop breakup. In fact, inclusion of the collisional drop breakup mechanism
in stochastic drop growth models produces distinct peaks in the theoretically pre-
dicted rain drop distribution which appear at drop sizes similar to those observed.
Unexpectedly, these peaks are not present in all raindrop size distributions. One
explanation for this may be that the breakup-induced peaks become masked due
to turbulent and evaporative effects. Additional factors which complicate an inter-
pretation of observed raindrop distributions are related to instrumental problems.
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Thus, McFarquhar and List (1992) and Waldvogel (1993 pers. comm.), pointed
out that the subpeaks found in raindrops distributions which were observed prior
to 1992 are most likely due to an erroneous processing of data acquired from the
raindrop spectometers. In fact, recent spectra for R <25 mm hr~! do not exhibit
any prominent subpeaks (Waldvogel, pers. comm. 1993). An additional factor
which makes data handling from raindrop spectrometers difficult is the fact that
raindrops arrive at the ground in groups of similar sizes, alternating with groups of
other sizes (Waldvogel, 1993, pers. comm.). Observations also show that rain often
commences with the arrival of the largest drops which somewhat later gives way
to a mix of large and small drops. This raindrop time-sorting of sizes causes the
‘instant’ spectra to be quite different from spectra obtained during longer exposure
times (Joss and Gori, 1978, Gori and Joss, 1980).

In addition to the parameters ng and A, the liquid water content wy, of rains
also depends on the rainfall rate. This dependence is usually expressed by a law
of the form wy, = AR®. Measurements at various locations have shown that A and
b vary between 0.052 < A < 0.089 and 0.84 < b < 0.94. As is also the case for
fogs and clouds, one finds that in rainschafts the spatial distribution of the liquid
water varies considerably. Thus, Blanchard (1953) and Okita (1958) pointed out
that wy, varies with distance from the cloud base, being higher just below the base
than at the ground. They attributed this behavior to the existence of a much
larger number of small drops at cloud base than at the ground, the drop depletion
being caused by collision and coalescence and by evaporation. One might expect
that due to drop breakup lower down in a rain shaft, the number of small drops
may increase again and perhaps even surpass the concentration at the top of the
shaft. However, the observations of Willis and Tattelman (1989) in rain shafts at
3000 and 450 m above ground show that drop growth by coalescence is sufficiently
efficient to remove most of the small drops formed by drop breakup, so that they
do not contribute significantly to the small drop size end of the spectrum.

2.2 Microstructure of Clouds and Precipitation Consisting of
Ice Particles

Since water readily supercools, particularly in small quantities, water clouds as
well as fogs are frequently found in the atmosphere at temperatures below 0°C.
Figure 2.33, based on a large number of aircraft observations over various parts
of the world, shows that supercooled clouds are quite a common occurrence in
the atmosphere, especially if the cloud top temperature is warmer than —10°C.
However, with decreasing temperature, the likelihood of ice increases such that at
—20°C only about 10% of clouds consist entirely of supercooled drops. Neverthe-
less, on some occasions, supercooled clouds have been observed at temperatures as
low as —35° C over Germany (Weickmann, 1949), -36° C over Russia (Borovikov
et al., 1963), and —40.7°C in wave clouds over the Rocky Mts. (Heymsfield and
Miloshevich, 1993). Also, Heymsfield (1977), Heymsfield and Sabin (1989), and
Sassen and Dodd (1988) reported frequent encounters of liquid drops even at the
cirrus cloud level (—38°C). Rauber and Tokay (1991), Rauber and Grant (1986),
and Hobbs and Rangno (1985) found that, quite unexpectedly, a narrow layer of
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supercooled water often occurs at the top of both stratiform and convective clouds.
This layer, which is approximately 30 m deep, sustains supercooled water as cold
as —31°C. Rauber and Tokay showed that such layers develop as a result of an
imbalance between the rate at which cloud water is produced by condensation and
the rate at which vapor is depleted through the growth of snow crystals by vapor
diffusion.

-

00 <100
g 9 <490
g = e
dm 70 -mg
o< g0 +—— Sassen (1989) de0 9
09 g ===-Moss & Johnson (1982) | O
2 o A Kosarev et al. (1978) oF;]
gz 0 Braham (1964) 140w
i O Mc Partland et al. (1977) -aogg
85 20 | -20u.|§
&8 w} Jwo %‘2
0 1 11 I +—r—rty— | 0-8
] 2 540"

6 20 24
TEMPERATURE ( °C)

Fig. 2-33: Variation of the frequency of supercooled clouds and of clouds containing snow

crystals. Curves (1) and (2) pertain to ordinate on the left; curves 3 to 6 pertain to

ordinate on the right. (1) Peppler (1940) over Germany, (2) Borovikov et al. (1963) over

the ETU, (3) Mossop et al. (1970) over Tasmania, (4) Morris & Braham (1968) over

Minnesota, (5) Isaac & Schemenauer (1979) over Canada, (6) Hobbs et al. (1974b) over
the northwest United States.

The mechanism which causes ice particles to grow by diffusion of water vapor
is called deposition. 1f ice particles have grown by deposition, they are called ice
crystals or snow crystals. Snow crystals may also grow by collision with supercooled
drops which subsequently freeze. This growth mechanism is called riming. Snow
crystals may also grow by collision with other snow crystals; this mechanism is
referred to as clumping or aggregation. Aggregates of snow crystals are called snow-
flakes. Of course, riming and clumping ice particles may also grow simultaneously
by deposition.

The terminology of ice particles formed as a result of riming is not very precise
and has not been generally accepted. In the initial stages of riming, as long as
the features of the original ice crystal are still well distinguishable, the ice particle
is simply called a lightly or densely rimed snow crystal. When riming of an ice
particle has proceeded to the stage where the features of the primary ice particle
are only faintly or no longer visible, the ice particle is called a graupel particle,
a soft hail particle, or a snow pellet. Such a particle has a white, opaque, and
fluffy appearance due to the presence of a large number of air capillaries in the
ice structure. It usually has a bulk density of less than 0.8 g cm~2 (List, 1958a,b;
1965). In the later stages of riming, such particles may have a conical, rounded,
or irregular shape. An ice particle is called a small-hail particle or type-b ice pellet
if it has originated as a frozen drop or ice crystal and has grown by riming to
an irregular or roundish, semi-transparent particle (with or without a conical tip)
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of bulk density 0.8 to 0.99 g em™3 (List, 1958a,b; 1965). Such a particle may
contain water in its capillary system. Hard, transparent, globular, or irregular ice
particles consisting of frozen drops, or partially melted and subsequently refrozen
snow crystals or snowflakes with bulk densities between the density of ice and
0.99 g em™3 are called rype-a ice pellets or sleet (List, 1958a,b; 1965). Such particles
may also contain unfrozen water.
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Fig. 2-34: Percentage of cumulus clouds which contained precipitation. Based on radar
echoes from clouds over Arizona. (From Morris, 1957; by courtesy of Am. Meteor. Soc.,
and the aunthor.)

Unrimed, single snow crystals usually have maximum dimensions less than 5 mm.
Snowflakes may have maximum dimensions up to several centimeters, but they are
usually less than 2 cm. Rimed snow crystals, graupel particles, and ice pellets
usually have maximum dimensions of less than 5 mm. Ice particles grown by
riming are called hailstones if their maximum dimensions are typically larger than
5 mm.

Since radar echoes indicate the presence of large cloud or precipitation size
particles, and since these usually form once the temperature in a cloud is sufficiently
low, one would expect the probability of a radar echo to be related to temperature.
Indeed, in numerous clouds (Figure 2.34) the probability of an echo is often small
as long as the cloud top temperature is warmer than or only a few degrees below
0°C. The probability then becomes much larger once the cloud top reaches —20°C,
the temperature at which most clouds contain ice particles.

2.2.1 SHAPE, DIMENSIONS, BULK DENSITY AND NUMBER CONCENTRATION
OF SNOW CRYSTALS

Casual observation shows that snow crystals appear in a large variety of shapes
or ‘habits’. More detailed studies, however, reveal that from a crystallographic
point of view, snow crystals have one common basic shape, namely that of a six-
fold symmetric (hexagonal) prism with two basal planes of type (0001) and six
prism planes of type (1010) (see Figure 2.35). Crystal planes of the type (1120),
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which would contribute to a dodecagonal shape, are metastable and occur very
rarely. Crystal faces of the type (1011), which would contribute to a pyramidal
shape, also are metastable and rarely appear. This is also the case with faces of
the type (1012). The habit of a crystal is determined by the slowest growing faces.
Metastable faces, such as (1120), (1011) and (1012), grow quickly to become the
crystal’s edges and corners, while faces of the type (0001) and (1010) growslowly
and become the bounding faces of the crystal.

[ \!@

Fig. 2-35: Schematic representation of different habits of snow crystals. (Based on Wolff,
1957, with changes.)

Laboratory experiments reveal that the rate of propagation of the basal faces
(growth along c-axis), relative to that of prism faces (growth along the crystallo-
graphic direction of type [1010]), varies with temperature and supersaturation in a
characteristic manner (Aufm. Kampe et al., 1951; Nakaya, 1954; Mason and Shaw,
1955; Kobayashi, 1957, 1958; Hallett and Mason. 1958). The results of these stud-
ies were consolidated by Kobayashi (1961), by Rottner and Vali (1974) and later
by Kumai (1982). A more detailed experimental study in terms of the ratio of the
height h to the diameterd of the crystals has been carried out by Fukuta (1985)
and Wang (1987). Apart from minor deviations, these most recent measurements
again corroborated the earlier results, which are summarized in Figures 2.36a,b.
At a large vapor density excess or supersaturation with respect to ice the snow
crystal shape changes with decreasing temperature from a plate to a needle, to a
column, to a sector plate, to a dendrite, back to a sector plate, and finally back to
a column. This cyclic plate-column-plate-column change in habit is due to a cyclic
change of the preferential growth direction along the crystallographic directions of
type [1010] and [0001], the changes occurring at temperatures near —4°C, —9°C,
and —22° C. While the former two transition temperatures are rather sharply de-
fined, the latter is diffuse, i.e., habit change may take place in a temperature range
of several degrees, centered around —22°C. In contrast, at very low vapor density
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excess, the crystal shape changes between a short column and a thick plate near
—9°C and —22°C. Close to or at ice saturation, the ice crystal shape ceases to
vary with temperature but rather assumes the equilibrium shape, which is a thick
hexagonal plate with a height to diameter ratio of 0.8 (see Section 5.7.2).
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Fig. 2-36:a. Variation of ice crystal habit with temperature and supersaturation where
Apy = pu — P, sat,i (Based on laboratory observations of Mason, 1971; Hallett & Mason,

1958; Kobayashi, 1961; and Weissweiler, 1969.)
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Fig. 2-36:b. Variation of ice crystal habit with temperature and vapor density excess.
(Based on laboratory observations of Kobayashi, 1961; and Rottner & Vali, 1974.)

Thus, we see that although the temperature is the principal factor, humidity
conditions in the environment also control the important growth features of snow
crystals. For example, near —15°C, the snow crystal habit varies with increasing
vapor density excess from a thick plate to a thin plate, to a sector plate, and finally
to a dendrite for which preferential growth is along the crystallographic direction of
type [1120]. Near —5°C, the ice crystal habit varies with increasing vapor density
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excess from a short solid column, to a hollow column, to a needle with pronounced
growth in the crystallographic direction [0001]. Laboratory observations of the ice
crystal habit at temperatures between —22 and —50°C have revealed no essen-
tially new habit features (Kobayashi, 1965a,b; Kumai, 1982). Long solid columns
(sheaths) appear between —45 and —50°C at low supersaturations, and change into
hollow columns as the supersaturation is raised.

Although the basic shape of ice crystals is hexagonal prismatic, laboratory ob-
servations have revealed a few snow crystals with other shapes. Trigonal prismatic
plates and columns, trigonal dendrites, and rhombic and scalene pentagonal ice
crystals were observed by Yamashita (1969, 1971, 1973) after seeding supercooled
clouds with a very cold body. Aufm Kampe et al. (1951) and Mason (1953) also
observed trigonal plates after seeding supercooled clouds with dry ice. Little is
known of the detailed growth conditions of such rare ice crystal shapes. Ohtake
(1970a,b) suspected that quasi-stable faces such as the pyramidal faces of type
(1012) or (1011) may develop at rapid cooling rates when the time to complete
a quasi-stable crystal face becomes comparable to the time for the completion of
a stable face. Kobayashi (1965a,b) found that at temperatures between —50 and
—90°C, pyramidal faces develop at the tip of prismatic columns.

So far, we have only considered snow crystals grown in the laboratory. It is es-
sential to ask whether natural snow crystals exhibit the same characteristic changes
in shape. Considerable uncertainties are involved in answering this question, due
to the inherent difficulties of accurately establishing the actual temperature and
humidity conditions of the locations at which the sampled snow crystals grew and
acquired their shape. However, a large number of observations in different parts
of the world have finally made a fairly definite conclusion possible. (Cloud ob-
servations have been made over Germany by Weickmann (1945, 1949, 1957a) and
Grunow (1960); over Canada by Gold and Power (1952,1954); over the U.S.S.R. by
Bashkirova and Pershina (1956, 1964a,b); over Japan by Magono (1960), Nakaya
and Higuchi (1960), Higuchi (1962a,b,c), Lee and Magono (1967), Magono et al.
(1959, 1960, 1962, 1963, 1965, 1966), and Tazawa and Magono (1973); over Aus-
tralia by Ono (1970); over Colorado and the Great Lakes region by Jiusto and
Weickmann (1973), and Weickmann (1972); and over the Pacific northwestern U.S.
by Hobbs et al. (1971a, 1972, 1974a).)

Observations prior to 1966 have been summarized in a diagram (Figure 2.37)
prepared by Magono and Lee (1966). Observations made after 1966, have generally
supported the Magono-Lee diagram. Comparison between Figures 2.36a,b and
Figure 2.37 shows that laboratory experiments are in basic agreement with the
Magono-Lee diagram.

The outstandingly beautiful photographs of snow crystals captured on the ground
by Bentley (Bentley and Humphreys, 1931, 1962), Nakaya (1954), and Magono and
Lee (1966), and of snow crystals captured during flights in cirrus clouds by We-
ickmann (1945), provide a comprehensive atlas of most snow crystal types found
in atmospheric clouds. An attempt to bring order into this multiplicity of crystal
forms has been made by Magono and Lee (1966). Although their classification
(Figure 2.38) has not yet been formally accepted on an international basis, it has
been found practical and is very widely used. Photographs of a few major snow
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Fig. 2-37: Temperature and humidity conditions for the growth of natural snow crystals
of various types. (From Magono and Lee, 1966; by courtesy of J. Fac. Sci., Hokkaido
University.)

crystal shapes are given in Plate 2.

A simple analytical model for approximating the major planar snow crystal
shapes has been formulated by Wang and Denzer (1983) and Wang (1987). For the
procedure to obtain these shapes, the reader is referred to the mentioned literature.

Let us now assume that a snow crystal of one particular habit, formed by growth
at a particular temperature and humidity, is suddenly moved into a new environ-
ment of different temperature and humidity where it continues to grow by vapor
diffusion. Under such conditions, the habit characteristic of the second tempera-
ture and humidity conditions becomes superimposed on the original habit. Thus,
a columnar snow crystal suddenly surrounded by conditions characteristic of plate-
like growth will develop end-plates (Figure 2.38, CPla). A stellar crystal suddenly
surrounded by conditions characteristic of needle growth will develop needles on the
branches, with the needles growing perpendicular to the plane of the crystal (Fig-
ure 2.38, CP3a). Although such snow crystals appear as combinations of different
shapes, from a crystallographic point of view they are still single ice crystals since
the crystallographic orientation of the c- and a-axes is still the same throughout
the crystal.

While some ice particles in clouds originate on water-insoluble aerosol particles
on which water vapor is deposited as ice, others originate as frozen drops. Var-
ious observers (e.g., Koenig, 1963; Braham, 1964) have studied frozen drops in
atmospheric clouds. They are irregular in shape, often with bulges and protrusions
formed during the freezing process. Ice particles formed from single-crystalline
frozen drops are likely to turn into two-layered crystals (Figure 2.39). The condi-
tions for the formation of such crystals were studied by Auer (1971, 1972a), Weick-
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Fig. 2-38: The Magono-Lee classification of natural snow crystals. (From Magono and Lee,
1966; by courtey of J. Fac. Sci., Hokkaido University.)



MICROSTRUCTURE OF ATMOSPHERIC CLOUDS AND PRECIPITATION 47

o BSERE w0 O B
Plate 2. Major shapes of snow crystals: top row, from left to right: simple plate, den-
drite, cry with broad branches; second row, from left to right: solid column, hollow
column, sheath; third row, from left to right: bullet, combination of bullets (rosett.e,
Prismenbiischel), combination of needles. (From Nakaya, 1954; by courtesy of Harvard
University Press, copyright 1954 by the President and Fellows of Harvard College.)
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Fig. 2-39: Schematic drawing indicating the formation of a double star from a single-

crystalline frozen drop. Note that competition for vapor causes irregular growth of oip 08-

ing branches of the two crystals. (From Jiusto and Weickmann, 1973; by courtesy of Am.
Meteor. Soc., and the authors.)

mann (1972), Jiusto and Weickmann (1973), Parungo and Weickmann (1973), and
Hobbs et al. (1974b) who found that ice crystals with frozen drops in their centers
were quite abundant. Auer’s cloud studies indicated that at temperatures from —9
to —10°C, about 19% of the total snow crystal concentration could be attributed
to crystals each with a frozen drop at the center. At —15 to —16°C, this fraction
reached a maximum of 48%, and decreased to about 23% at temperatures between
—1 and —22°C. The diameter of the frozen center-drop was found to range be-
tween 2.5 and 25 pm. Observations of Hobbs et al. (1974b) in clouds over the U.S.
High Plains (see Fig. 2.40) showed that the most probable diameter of cloud drops
ranged between 10 and 12 um, while the diameter of the frozen drops in the center
of double crystals was larger and ranged between 13 and 25 pm. This difference
reflects the volume dependence of freezing, to be discussed in Chapters 7 and 9,
where it will be shown that large drops are more likely to freeze than small ones.
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Fig. 2-40: Size distribution of frozen drops in the center of double crystals collected on the
ground ( = ). comparison is made to drop size distribution inside clouds ( ||| ). Observed
in continental clouds over the U.S. High Planes. (From Hobbs et al., 1974b, with changes.)
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%
DEVELOPING SPATIAL DENDRITE

Fai.ﬁ. 2-41: Schematic drawin, indjcatin%ormation of a spatial crystal from a polycrys-
talli

ne frozen drop. (From Jiusto and Weickmann, 1973; by courtesy of Am. Meteor.

Soc., and the authors.)

Drops which freeze polycrystalline and subsequently continue to grow by vapor
diffusion form spatial crystals (Higuchi and Yoshiida, 1967, Magono and Suzuki,
1967; Lee, 1972; Kikuchi and Ishimoto, 1974). Figure 2.41 illustrates how, in
principle, such a crystal develops. If, for example, such a frozen drop continues to
grow by vapor diffusion near — 15°C dendritic branches will emerge from the frozen
drop at various angles (Figure 2.38, P7b). Since polycrystalline drops are more
likely to occur at lower temperatures, they frequently develop into a combination of
columnar crystals. Note that, due to competition for water vapor, the columns may
have a conical or pyramidal shape (bullet-shape) pointing towards their common
growth center which is the frozen drop (Figure 2.38, C2a). A snow crystal of this
form is called a combination of bullets or a rosette. A single column broken off a
rosette is simply called a bullet (Figure 2.38, Clc, Cld). A rosette may consist of 2
to 9 bullets but most frequently consists of 3 to 4 bullets (Kikuchi, 1968).

Spatial crystals may also develop as a result of supercooled drops colliding with
a snow crystal. At temperatures of only a few degrees below 0°C, a drop colliding
with a snow crystal turns into an ice-single-crystal with a crystallographic orienta-
tion which may be the same or different from the snow crystal it contacts. If the
temperature is sufficiently cold, the colliding drop may turn into a polycrystalline
mass of ice. Further growth of such polycrystalline frozen drops by vapor diffusion
leads to a spatial snow crystal with two or more c-axis orientations (Figure 2.38,
P6a-d, P7a).

Several peculiar snow crystal shapes not classified by Magono and Lee were en-
countered by Kikuchi (1970), Kikuchi and Yanai (1971), and Magono et al. (1971)
at temperatures between —26 and — 30°C during an Antarctic expedition; by Thu-
man and Robinson (1954), Kumai (1965, 1966a, 1969a), and Ohtake (1967, 1968,
1970a,b) at temperatures between —30 and —55°C during ice fog in Alaska; and by
Itoo (1957) during a strong ground inversion at a station in central Mongolia. The
ice crystals observed at the Antarctic station consisted mostly of combinations of
bullets, columns, and side planes which very likely originated as a type of hoarfrost
snow-covered surfaces. In ice fog, Thuman and Robinson observed irregular part-
icles of ‘block-shape’ and polyhedral particles bounded by trapezoidal faces which
were portions of a hexagonal bi-pyramid. Pyramidal planes of type (1011) and
higher-order planes were also observed by Itoo in ‘diamond-dust’ snow crystals.

Another group of peculiar crystal shapes which develop at temperatures below
—25°C were discussed by Sato and Kikuchi (1989). These crystals, termed by
the authors Gohei twins, seagull type or V-shaped crystals, and spearhead type
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crystals result from an abnormal growth of their prism faces (1010) induced by
orientational faults during the ice nucleation of a supercooled drop.

Several theoretical models have been suggested to explain the origin of poly-
crystalline and peculiar types of snow crystals. Thus, Lee (1972) advanced a basal
misfit theory, Iwai (1971) adopted a penetration twin theory, Kobayashi et al
(1976) and Furukawa (1982) used a generalized coincidence lattice site theory, and
Kobayashi er al. (1976) proposed a cubic structure model.

In most cases, it is sufficient to characterize the size of a snow crystal by two
dimensions: the crystal diameter (d) and the crystal thickness (h) in the case of
plate-like crystals, and the crystal length (L) and the crystal width (d) for columnar
type crystals. Detailed measurements of snow crystal dimensions have been carried
out in several locations. The length of columnar crystals and the diameter of plate-
like crystals were found to range typically between 20 um and 2 mm. The thickness
of plate-like crystals typically ranges from 10 to 60 pm, the width of the warm
temperature columns from 10 to 200 um, and the width of needles ranges from 10
to about 150 um. Maximum dimensions reach several milllimeters.

Observations have shown further that the thickness and diameter of plate-like
crystals, and the length and width of columnar crystals, are characteristically re-
lated to each other such that with increasing diameter of plate-like crystals their
thickness increases, and with increasing length of columnar crystals their width
also increases.

The significant fact is that a snow crystal, growing by vapor diffusion, distributes
its mass in a fairly predictable manner which obeys certain dimensional relations. A
comparison shows that, for a particular crystal type, the dimensional relationships
proposed by various authors agree reasonably well, though they were derived from
observations in clouds over different parts of the world. Davis (1974) combined
observations of his own with those of Auer and Veal (1970), Ono (1969, 1970),
Hobbs et al. (1974a), and Kajikawa (1972, 1973) to the best fit relationships given
in Table 2.2a in terms of a set of power laws. Size relationships for additional snow
crystal shapes are given in Table 2.2b.

Most ice crystals have a bulk density less than that of bulk ice. This is due to
small amounts of air in capillary spaces, and to the tendency of snow crystals to
grow in a skeletal fashion. In particular, columnar crystals often develop as hollow
crystals with ‘hour-glass’ air spaces at either end. Heymsfield (1972), on combining
his data with that of Ono (1970), determined relations between the bulk density and
the crystal dimensions (Table 2.3). Somewhat lower bulk densities for columnar
crystals were observed by Iwai (1973) and Jayaweera and Ohtake (1974). They
found that short columns had bulk densities close to that of ice. With increasing
L, however, the density decreased rapidly, reaching p, = 0.5 for L &~ 1 mm. For
needles and sheaths, they found p. &~ 0.3 to 0.4 g em™2 if L > 1 mm. Table 2.3
also implies that larger dimensions correlate with lower bulk densities.

For computations involving cloud models, it is often necessary to have rela-
tions available between the mass and size of snow crystals. Due to rather large
uncertainties in the values for the bulk density of snow crystals, it is not advan-
tageous to derive such relations based on size and density of the crystals; rather,
one should obtain them from direct observation. Size-mass relationships for a few
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Dimensional relationships for various snow crystal types; d(em),L(em), V.(cm?®).

TABLE 2.2 a

The

form Ple-r refers to a simple ‘daisy-type’ dendrite; the form Ple-s refers to a dendrite with
sector-type branches; d refers to the diameter of the circle circumscribed around the
snow crystal. (From C.E. Davis, 1974; by courtesy of the author.)

Crystal type Dimensional relationship

Volume of crystal, V;

Range of major axis

d(cm), L(cm) (em?) (pm)
Pla h = 1.41 x 10°2 d0-474 Ve = 9.17 x 1073 42475 10-3000
Plb h = 1.05 x 10°% 40423 V. = 6.79 x 10°3 42428 10-40
Plb h = 1.05 x 10°2 ¢0-423 Ve = 7.37 x 1073 ¢2-420 41-2000
Pler,Pld  h =9.96 x 1073 d0-415 Ve = 6.47 x 1073 ¢2-415 10-90
Pler,Pld  h=9.96 x 1073 40-415 Ve = 1.096 x 1073 ¢2:045 91-1500
Ple-s h = 9.96 x 10°3 40-415 V. = 6.47 x 10°3 42:415 10-1000
Plc-s h = 9.96 x 10°3 ¢0-415 Ve = 2.09 x 103 ¢2-175 101-1000
Clg h = 0.138 d%-778 Ve = 8.97 x 102 42778 10-1000
CleL/d2 d=0.578 L0958 Ve = 0.217 L2916 10-1000
CleL/d2 d=0.260 L0927 Ve = 4.39 x 102 | 2-854 10-1000
CifL/d2  d=0.422 0892 V. = 0.116 L2784 10-50
CifL/d2  d=0.4220-892 Ve = 0.105 L2-765 51-1000
CifL/d2  d=0.263 L0-930 Ve = 4.49 x 1072 L2-860 10-50
CifL/d2  d=0.263 L0-930 Ve = 4.06 x 1072 L2:841 51-1000

TABLE 2.2 b

As Table 2-2a but for additional snow crystals types.

Crystal type

Dimensional relationship

h(cm), d(cm), L(cm)

Author

Ple, PIf, P2c

h = 9.022 x 10-3 40-377

P2g, P3c, P4b

Nla
Nle

Clec (L < 0.3 mm)
Cld (L > 0.3 mm)

d = 3.0487 x 102 0.61078
d = 3.527 x 10-2 | 0-437

d = 0.1526 L0-7856
d = 0.0630 L0-532

Auer and Veal (1970)

Auer and Veal (1970)
Jayaweera and Ohtake (1974)
Heymsfield (1972)
Heymsfield (1972)
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TABLE 2.3

Bulk density of various snow crystals (d and L in mm). (Based on data of

Heymsfield, 1972.)

Crystal type

Bulk Density, pc, (g cm™)

d(mm)}), L(mm)

hexagonal plate

pc = 0.9

plates with dendritic extensions p. = 0.656 d—9-627 (d > 0.7 mm)
dendrites pc = 0.588 d—0-377 (d > 0.3 mm)
stellar, broad arms pe = 0.588 4—0-377 (d > 0.3 mm)
stellar, narrow arms pe = 0.46 d—0-482 (d > 0.24 mm)
column, cold region pc = 0.65 L"0.0915 (L > 0.028 mm)
column, warm region pe = 0.848 L0.014 (L > 0.014 mm)
bullet pc = 0.78 00038 (L > 0.1 mm)

TABLE 2.4a

Mass-size relationships for various types snow crystals. Data taken on Mt. Teine (1024
m, Hokkaido, Japan), based on data of Heymsfield & Kajikawa, 1987.

Mass-size relation Diameter range

Crystal type m(g), d(cm) (mm)
C1h 2.63 x.10°2 4268 0.3-0.6
Pla 3.76 x 1072 ¢3:31 0.3-1.5
Plb 6.34 x 1073 g2-83 0.4-1.6
Plc 3.76 x 1073 42-7° 0.5-2.8
Pid 9.61 x 1074 42-59 0.4-2.4
Ple 6.12 x 1074 42-29 0.6-5.3
P2a 2.11 x 1073 42-58 0.7-3.0
P2c 2.66 x 1073 g3-12 1.3-5.6
P2e 4.29 x 1073 42:81 0.5-2.1
P2g 4.68 x 1073 4294 0.7-2.8
Pé6c 6.20 x 10~ 42-02 1.6-4.9
P6d 9.23 x 1074 42-58 2.0-6.5
P7b 1.53 x 1073 42-68 1.2-3.3

TABLE 2.4b

As in Table 2-4a but for data taken in the Sierra Nevada (2600 to 3000 m), based on
data of Mitchell et al., 1990.

Crystal Mass-size relations Size range
type m (mg), L (mm) (mm)
Nla m = 0.0049 L1-8 0.6 - 2.7
Nle m = 0.012 L1-8 0.2-1.5
N2c m = 0.017 L1-8 0.2-26
Cle m = 0.064 L2-6 0.2-0.6
C2b m = 0.031 L1-8 0.4-1.4
Cif m = 0.037 L1-8
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selected rimed and unrimed snow crystals observed during winter storms over the
Sierra Nevada by Mitchell et al. (1990), and for storms over Hokkaido (Japan) by
Kajikawa (1989) are given in Tables 2.4 a,b.
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Fig. 2-42: Maximum ice particle concentration in clouds over the Cascade Mountains

(State of Washington). Cloud types are indicated by As - altostratus, S - Stratus, Sc -

stratocumulus, Cu - cumulus, C(S) - cumulus with stratified tops. (From Hobbs et al.,
1974b; by courtesy of the authors.)

Since the probability for the occurrence of the ice phase in clouds increases with
decreasing temperature, we might expect a monotonic rise in the concentration of
such particles with decreasing temperature. This behavior turns out to hold only in
a minority of cases. More often, a rapid phase change to ice (glaciation) occurs, such
that the ice particle concentration is not a sensitive function of further temperature
lowering. We shall discuss this more fully in Section 9.2.7. At this point, we merely
note the net effect of glaciation. Figure 2.42 summarizes measurements of Hobbs et
al. (1974b) in clouds over the Cascade Mts. (Washington). It is seen that, in many
cases at temperatures between —4 and —25°C, the range of number concentrations
of ice particles varies little with cloud top temperature on the average, and that
the concentrations may reach values as high as 10* liter™*. Similar observations
were made in clouds over Australia by Mossop (1970), in clouds over Missouri by
Braham (1964) and Koenig (1963), and in clouds over the U.S. High Plains by
Hobbs and Rangno (1985), Hobbs and Rangno (1990), Rangno and Hobbs (1991)
and Hobbs and Atkinson (1976). In some cases, however, the number concentration
of ice particles does depend somewhat on cloud top temperature. Thus, we find
quite unexpectedly from Figure 2.43 that the largest ice crystal concentration does
not appear at the lowest temperature but in the temperature range —12 to —14°C.

Once formed, snow crystals in lower tropospheric snowstorms exhibit a charac-
teristic size distribution which for crystals smaller than 1 mm is highly peaked at
the small size end, the concentration decreasing rapidly toward the large size end
of the spectrum (Figure 2.44). The crystal shapes appearing in these storms are
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Fig. 2-43: Average ice particle concentration as a function of cloud top temperature in
the updraft region of clouds sampled over Montana; (e) small cumulus, (A) convective
complexes, (+) embedded cumulus. (From Hobbs et al., 1980, with changes.)
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Fig. 2-44: Snow crystal size spectra at selected levels in wintertime snow storms over N.

Colorado: (a) at 6694 to 6567 m, with temperatures —27.4 to —26.5°C, (b) at 5668 to 5504

m, —22.0 to —19.9°C, (c) at 5034 to 4898 m, —16.7 to —15.0°C. (From Rauber, 1987b,
with changes.)
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Fig. 2-45: Variation of snow crystal concentration with height in wintertime snow storms
over N. Colorado. (From Rauber, 1987, with changes.)

typically those for temperatures warmer than —25°C. The variation with height of
the snow crystal concentration in the cloud of Figure 2.44 is given in Figure 2.45).

The snow crystals in cirrus clouds which appear in the upper troposphere at tem-
peratures typically between —25 to —60°C have characteristic shapes. Ice clouds at
these levels typically consist of bullets, bullet rosettes, short hollow columns, thick
plates, and aggregates. Most of the crystals in these clouds form by homogeneous
ice nucleation in supercooled drops (see Section 7.2). Just prior to ice nucleation,
the relative humidity reaches above 90% to decrease rapidly thereafter. Thus, in
cirrus clouds over Wisconsin, Heymsfield er al. (1990) found dewpoints slightly
above those for ice saturation, indicating that the air in the core of these clouds
was ice supersaturated, decreasing rapidly to below ice saturation in the cirrus
tails. Sassen et al. (1989) found near ice saturation in cirrus over Utah, Colorado
and Wisconsin, while Heymsfield (1975a) measured ice subsaturation in cirrus over
Illinois.

The microstructure of cirrus clouds has been studied by Weickmann (1945,
1949), Kikuchi (1968), Rosinski et al. (1970), Heymsfield (1972; 1975a,b,c; 1977,
1986), and Heymsfield and Knollellenberg (1972), Heymsfield and Platt (1984),
Kajikawa and Heymsfield (1989), Heymsfield er al. (1990), Dowling and Radke
(1990), and Stephens et al. (1990). From these studies, it is apparent that the con-
centration of ice particles in cirrus typically ranges between 50 and 500 liter™*. The
maximum dimension of the crystals typically ranged between 100 and 300 pm for
thick plates and columns, between 200 and 800 pm for bullets and bullet rosettes,
and between 400 and 1500 pm for aggregates. The ice water content w; was found
to range between 0.05 to 0.5 g m™?, and to increase with increasing temperature,
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i.e., decreasing altitude in the atmosphere according to the relation:
wilg m~%) = 7 x 10~* exp[0.41(T + 60)], (2-17)

with T in °C (Stephen et al. 1990, based on data of Heymsfield and Platt, 1984).
According to Heymsfield (1977), the mean length of columnar crystals relates ap-
proximately to the ice water content according to the data fit given by:

Limean = 0.698 + 0.366(log w;) + 0.122(log w;)? +0.0136(logw;)® . (2-18)

1.-20°10-25°C
2.-25°10-30°C

NUMBER [m3(ym interval)™!]
a

10 ~1

102 \\\\\!;C
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0 400 800 1200 1600
MAXIMUM DIMENSION (um)

Fig. 2-46: Number concentration vs. maximum dimension of snow crystals in cirrostratus
over the U.S. at various temperatures. (From Heymsfield & Platt, 1984, with changes.)

Equations (2-17) and (2-18) imply that the size of cirrus cloud crystals increases
with increasing temperature, as can be seen also from Figure 2.46.

In Table 2.5, dimensional and mass relationships for columnar and bullet crystals
at low temperatures are given according to the observation of Heymsfield (1975c).
Heymsfield and Platt (1984) suggested that the size spectra for cirrus crystals larger
than 20 pm may be parameterized by the relation

N = Awd®, (2-19)

where N is the total number concentration, d is the maximum dimension of the
crystals, and w; is again the ice water content of the cirrus cloud. The variation
with height of the ice water content and ice crystal concentration inside a cirrus
cloud is shown in Figure 2.47.

The microstructure of the anvil of cumulonimbus clouds was studied by Bennetts
and Ouldridge (1984), Heymsfield and Knollenberg (1972), Hobbs ef al. (1980),
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TABLE 2.5

Dimensional- and mass-size relatianshiﬂs for cirrus crystals. Dimensional relation: d is
]

the width of the crysal and L is its lengt

both in mm (data based on Heymsfield, 1972).

Mass-size relations: L (lengths of bullet in rosette) in cm , mass in g (from Heymsfield,

1975c¢).
Type Dimensional relationship Range
Bullets d=1025L L < 0.3 mm
d (mm) d = 0.185 L0-532 L > 0.3 mm
L(mm)
Columns d=05L L < 0.3 mm
d (mm) d = 0.1973 L0414 L > 0.3 mm
L(mm)
Bullet-rosette m =44 x 102 L3 L > 0.12 cm
m(g) m = 8.8 x 1074 L2 0.00187 < L < 0.02 cm
L(cm) m=4.71 x 107! L3 L < 0.00187 cm
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ig. 2-4T: Variation with altitude of ice particle concentration and ice water content
inside cirrostratus during upward spiralling of airplane. (From Heymsfield and Platt,

1984, with changes.)
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Heymsfield (1986), Heymsfield and Miller (1988), and Detwiler et al. (1992). Max-
imum ice particle concentrations and ice-water contents reached 300 liter~! and
1 g m~3, respectively. The ice particles in anvils consisted mostly of columns, bullet
rosettes, and aggregates.

In closing this section we want to touch briefly on the microstructure of one
additional form of'ice cloud: the ice fog. Such a fog develops during a pronounced
ground inversion at very low temperatures. Most of the studies on ice fogs were
carried out in Fairbanks, Alaska by Thuman and Robinson (1954), by Ohtake
(1967, 1968, 1970a,b), and by Kumai (1965, 1966a,b, 1969a,b). Strong ground in-
versions and winter temperatures between —30 and —55°C often develop at this lo-
cation. Power plants, automobile exhausts, and exhausts from the heating systems
of dwellings act as sources of moisture and dust particles. Under these conditions,
ice crystals stay small and develop unusual forms. At -39 to —40°C, the crystals
have diameters which range from 2 to 30 um, with most frequent diameters near
10 gm. At warmer temperatures (-31 to —33°C) the size distribution broadens
to diameters between 5 and 50 um with a mode near 20 to 25 um. The ice-water
content is low and ranges between 0.09 g m~3 (at —40°C) and 0.02 g m™3 (at
—30°C). The number concentration of ice crystals is very high, ranging between
100 and 200 cm~3. Due to this high concentration, the visibility in ice clouds is
severely reduced.

2.2.2 SHAPE, DIMENSIONS, BULK DENSITY, AND NUMBER CONCENTRA-
TION OF SNOWFLAKES, GRAUPEL, AND HAILSTONES

When certain conditions prevail in a cloud, snow crystals collide to form snowflakes
(Plate 3). Air temperature and snow crystal shape play the dominant roles in such
aggregation. Hobbs et al. (1974a,b) who studied cyclonic and orographic cloud
systems over the Cascade Mts. (State of Washington), and Rodgers (1974b) who
studied orographic cloud systems over Elk Mt. (Wyoming), established that the
probability for the occurrence of snowflakes is highest if the air temperature at the
site of their formation is near 0°C. With decreasing temperature, the probability
of aggregation decreases with a secondary maximum near —15°C. Both observa-
tions show that the maximum dimensions of snowflakes are largest near 0°C. In
addition to temperature, the snowflake size is strongly affected by the shape of the
component crystals. Aggregates of columns and needles tend to stay small, while
aggregates of dendritic crystals tend to become large. Although maximum snow-
flake diameters may be as large as 15 mm, most of the snowflakes have diameters
between 2 and 5 mm.

Observations of Locatelli and Hobbs (1974) in the Cascade Mts. further demon-
strated that, just as with single snow crystals, snow crystal aggregates tend to
follow dimensional relationships during their growth by collision with other crys-
tals. These relations are expressible in terms of power laws of the form m = AdB,
where A and B are constants for an aggregate of component crystals of given shape,
m is the mass of the snowflake, and d is its maximum dimension (Table 2.6a,b).
Unfortunately, the above power law relation is supported only by the observations
in clouds over the Cascade Mts. Considering the multitude of possible snow crystal
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Plate 3. Snow flake consisting of dendritic crystals clinginito ether. (From Nakaya, 1954;
by courtesy of Harvard University Press, c0p81'1 ht 1954 by the President and Fellows o
Harvard College.)

combinations in a crystal aggregate, and the large variety of bulk densities associ-
ated with each crystal type, it is not yet possible to state whether the values for A
and B given by these authors will apply to clouds over other regions as well.

The number of component crystals per snowflake was examined by Hobbs er al.
(1974a,b), and Rodgers (1974a). Although the results of their studies scattered
greatly, they indicate the expected trend that the number of component crystals
increases with increasing snowflake size. This correlation is more pronounced, the
smaller the component crystals (Figure 2.48).

The density of snow flakes was studied by Magono and Nakamura (1965), Matsuo
and Sasyo (1981b) and Sasyo and Matsuo (1980). Typically, the density was found
to range between 0.005 and 0.5 g cm™3, with the most frequent values ranging
between 0.01 and 0.2 g cm™3.

A law for the size distribution of snowflakes, which is analogous to the Marshall
and Palmer (1948) raindrop distribution, was proposed by Gunn and Marshall
(1958). From an extensive field study, these authors suggested the relation

n(Dp) = no exp(—ADy), (2-20)

where A = 25.5R">*®* mm~*, ng = 3.8x10°R~%%" m~3mm™", Dy is the equivalent
diameter of the water drop to which the ice crystal aggregate melts, and R is the
rate of precipitation in mm of water per hour (Figure 2.49). Observations by
Sekhorn and Srivastava (1970) confirmed (2-20), although with somewhat different
relations for the variation of A and ne with R.

Snowflake size distributions involving the actual size of the flakes were obtained
by Braham (1990), Herzegh and Hobbs (1985), Passarelli (1978a,b), Lo and Pas-
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Fig. 2-48: Best fit lines for the relation between the number of component crystals per

snowflake and snowflake diameter; average diameter of component crystals: (1) < 1.5

mm, (2) 1.5 to 2.5 mm, (3) 2.5 to 3.5 mm, (4) > 3.5 mm. (From Rodgers, 1974a; by
courtesy of Am. Meteor. Soc., and the author.)
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Fig. 2-49: Variation of the number concentration of snowflakes with drop diameter of
melted snowflake. Data fitted to exponential distribution (solid line). (From Gunn and
Marshall, 1958; by courtesy of Amer. Meteor. Soc., and the authors.)
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TABLE 2.6a
Relationship between mass and maximum dimension of snow crystal aggregates. For

aggregates collected on Cascade Mts. (750-1500 m, Washington), (based on data of
Locatelli & Hobbs, 1974).

Mass-size relation Range of maximum
Type m(mg), D (mm) dimensions (mm)
Aggregates of unrimed
radiating assemblages m = 0.073 D4 2.0 - 10.0
of dendrites
Aggregates of unrimed
radiating assemblages of m = 0.037 D4 2.0 - 12.0
dendrites
Aggregates of unrimed
radiating assemblages m = 0.037 D9 1.0- 3.0
of plates, side planes,
bullets, and columns
Aggregates of unrimed m = 0.04 D4 05- 4.0
side planes

TABLE 2.6b

As in Table 2-6a but for early snow flakes collected on Mt. Teine (1024 m, Hokkaido,
Japan) (based on data of Kajikawa, 1989).

Mass-size relation Range
Type m(g), d (cm) (cm)
Ple m = 4.82 x 1074 g1-97 0.08-0.68
P2a m = 8.30 x 1074 d2-99 0.14-0.70
P2e m = 3.96 x 104 41-10 0.08-0.46
P6d m = 1.02 x 10-3 4222 0.16-0.66
R1d m = 5.28 x 1074 4176 0.16-0.58

sarelli (1982), and Houze et al. (1979). In many cases, the size distribution of
flakes with dimensions larger than 2 mm could be fitted to an exponential law of
the Marshall-Palmer type. For snowstorms over Lake Michigan, the parameter ng
of this distribution ranged from 4 x 10? to 8.75 x 10> mm~ m~3, and the pa-
rameter A from 1.14 to 2.42 mm™!. Often, however, significant deviations from
the exponential distribution occurred. Thus, Herzegh and Hobbs (1985) observed
subexponential distributions to be dominant in regions of weak stratiform clouds
with low liquid water content, while superexponential distributions occurred in
convective regions of clouds.

As snow crystals or snowflakes fall past the 0°C level they begin to melt (see
Section 16.3). Due to the limited rate at which the released latent heat can be
dissipated to the surrounding air, the flakes must fall over several hundred meters
in order to melt, typically at the +5°C level. This ‘melting layer’ is detected
by radar in terms of a ‘bright band’ caused by a sharp increase in reflectivity of
the scattered electromagnetic radiation orginating from the radar (Figure 2.50a).
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Fig. 2-50: Microstructure profiles through the melting layer of convective clouds over

Oklahoma and Kansas: (a) radar reflectivity, (b) concentration of particle with d > 1.9

mm, (c) concentration of particles with d < 1.6 mm , (d) maximum size. The shading

marks the extent of an isothermal layer of nearly 0°C. (From Willis & Heymsfield, 1989,
with changes.)

Data on the bright band have been accumulated over almost five decades since the
initial studies of Ryde (1946), who suggested that the bright band is associated
with the melting layer in the cloud. Subsequent field studies have confirmed the
early explanation (Cunningham, 1947; Hooper and Kippax, 1950; Marshall and
Gunn, 1952; Austin and Bemis, 1950; Mason, 1955; du Toit, 1967; Atlas et al.,
1969; Ohtake, 1969, 1970a,b,c; Heymsfield, 1979; Leary and Houze, 1979; Houze
et al. 1979; Stewart et al. 1984; Yokoyama and Tanaka, 1984; Yokoyama, 1985;
Marwitz, 1987a,b; Willis and Heymsfield, 1989; Klaasen, 1988).

The bright band is the result of several microphysical mechanisms acting in
sequence above, inside, and below the melting level. Between about —5 and 0°C,
snow crystals of different sizes and fall velocities tend to grow rapidly by aggregation
to form snow crystal aggregates (snowflakes) of rather similar fall velocities (1 to
2 m sec™!), and sizes up to 5 to 10 mm. Of course, this growth, promoted by
the quasi-liquid layer on ice (see Section 5.7.3), is associated with a reduction in
the number concentration of the ice particles. As the flakes pass through the 0°C
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level, they begin to melt and contain increased amounts of water with increasing
fall distance. This in turn causes the dielectric constant of the particles to increase
and to assume almost the value for water. Increased particle size and water content
enhances the radar reflectivity to a maximum value. Upon completion of melting,
the snowflakes collapse to raindrops of diameters typically between 1 and 2.5 mm,
depending on the diameter of the original flake. The sudden change in shape and
the associated reduction of the aerodynamic drag on the particle causes the fall
speed of the precipitating particles to increase sharply up to 4 to 8 m sec~!. This
acts to decrease the concentration of the radar reflecting particles and hence the
reflected radar signal. A typical variation with height of the radar reflectivity
of a cloud bright band and the associated variation with height of the number
concentration and size of the precipitating particles is given in Figures 2.50b,c,d.

L L] 1 ] L]
108 \ Houze et al.
0°C (~4.5 km)
10°
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~ . -10°C (~6.4 km)
Yo 10
s
=
10°
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Fig. 2-51: Size distributions of ice particles above and at the top of the melting layer as
reported by Houze et al. (1979). (From Leary and Houze, 1979, with changes.

Studies of the size spectrum of precipitating particles falling through a melting
layer were carried out by Lo and Liu (1990), Stewart et al. (1984), Lo and Passarelli
(1982), Passarelli (1978a,b), Houze et al. (1979), Leary and Houze (1979), and
Gordon and Marwitz (1983). For the case of exponential size distributions, they
found that np and A decrease as the 0°C level is approached (Figure 2.51), due to
a broadening of the size spectra and a decrease in the number concentration. Once
through the 0°C level no changes little while a sudden increase in A takes place
due to the sudden narrowing of the particle distribution when the snow crystal
aggregates melt to smaller, faster falling drops.

From a comparison of the drop size spectrum just below the melting layer with
the spectrum of the melted snow flakes just above it, Ohtake (1969, 1970a,b,c)
concluded that snowflakes do not break up during their fall through the melting
layer, confirming earlier observations of du Toit (1967). On the other hand, Magono



64 CHAPTER 2

and Arai (1954), Gunn and Marshall (1958), Yokoyama and Tanaka (1984), Stewart
et al. (1984) and Yokoyama (1985) found evidence from their radar studies that
melting snowflakes do break up. Recent laboratory studies have finally settled the
problem (see Chapter 16) and show that, under certain conditions, melting snow
flakes do break up.

Rimed ice crystals and graupel are formed in clouds which contain both ice
crystals and supercooled drops. Field studies have shown that in such clouds both
snow crystals and frozen drops may serve as embryos for graupel formation. Thus,
Harimaya (1976) carefully sectioned and disassembled natural graupel particles
under the microscope to find both snow crystals and frozen drops as center particles.
The importance of frozen drops to the formation of graupel has also been stressed by
Pflaum et al. (1978), who experimentally studied the riming growth of frozen drops
and of crystal plates while they were freely suspended in the vertical air stream of
a wind tunnel. Considerable controversy exists in the literature with regard to the
type of ice particle which may serve as an embryo for conically shaped graupel.
Arenberg (1941) suggested that conical graupel originate on planar snow crystals
which, while falling under gravity, primarily rime on their bottom side. Under such
conditions, rime was assumed to build into a downward facing point, thus forming a
conical graupel with its apex down. Holroyd (1964) proposed that conical graupel
are the result of an aggregation of partially rimed needle crystals which continue
to rime after aggregation. Nakaya (1954), List (1958a,b), and Knight and Knight
(1973a), on the other hand, advocate the ideas of Reynolds (1876), who suggested
that conical graupel are the result of planar ice crystals which preferentially rime
on their bottom side, the rime fanning out into the wind rather than growing into
a point. Such behavior causes the development of a conical graupel which falls
with its apex up and has its embryo near the apex. Weickmann (1953, 1964) and
Takeda (1968) suggested that conical graupel can also start on frozen drops. This
suggestion was experimentally verified by the wind tunnel studies of Pflaum et al.
(1978). A systematic overview (Figure 2.52) of the different formation mechanisms
leading to graupel has been given by Harimaya (1976).

In studies of the initial stages of riming in various types of clouds, Ono (1969),
Wilkins and Auer (1970), Hobbs ef al. (1971a), Kikuchi (1972a), and Iwai (1973)
found that both columnar ice crystals and ice crystal plates have to grow by diffu-
sion to a certain critical size before they can grow further by riming. An example
for this requirement is given in Figure 2.53 for planar crystals. We notice that with
increased branching of the crystal, the onset of riming increases from about 150 ym
for a single plate to about 800 um diameter for a dendritic crystal. While the onset
of riming for plate-like crystals only depends on the crystal’s diameter, the on-
set for columnar crystals depends on their width as well as their length. Thus,
their critical width has to be near 30 gm, and their critical length between 125
and 225 pm. Verification of these results has been presented by Reinking (1979),
Borys (1983), and Auer (1970). Both Reinking (1979) and Bruntjes et al. (1987)
have pointed out that capped columns and double plate crystals are especially
good rimers. These crystals begin to rime at a diameter of 50 um, and are heavily
rimed at diameters of 150 to 200 gm. Harimaya (1975) and Kikuchi and Uyeda
(1978) have shown that the onset of riming also depends on a critical drop size
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(Figure 2.54). One notices that drops of diameter less than 10 gm are unlikely to
be involved in the riming process. The drops most likely to be found on rimed
crystals have diameters between 10 and 80um. Drops having diameters larger
than 80 um are generally absent. The larger a crystal grows by riming, the wider
is the size spectrum of the attached drops (Wilkins and Auer, 1970). Photographs
of rimed crystals (Wilkins and Auer, 1970; Zikumda and Vali, 1972; Iwai, 1973;
Knight and Knight, 1973a) show that plate-like and dendritic crystals are rimed
most intensely at the crystal edges, with considerably fewer frozen drops attached
to the interior surface portions of the crystal (Plate 4). Drops frozen onto simple
columnar crystals are uniformly distributed over the crystal surface (Plate 5), and
columns with end plates are most intensely rimed on the outer surface of an end
plate, with few or no drops attached to the columnar stem of the crystal.

Observations show that, as in the case of snowflakes, rimed single snow crystals,
rimed snow crystal aggregates, and graupel particles (Plate 6) also follow fairly
definite size-mass relationships during their growth (Table 2.7).

The bulk density of rimed ice particles varies greatly, depending on the denseness
of packing of the cloud drops frozen on the ice crystal. Table 2.8 shows that the
bulk density of graupel particles ranges from about 0.05 g cm™3 to as high as
0.89 g em™3.

In clouds with sufficiently large updrafts, riming may continue until hailstones
are produced. We have already given a description of the various shapes they may
assume; some examples are shown in Plates 7 and 8. A variety of habits and surface
textures have been observed, including: conical shapes (Hallett, 1965; List, 1958b;
Mossop and Kidder, 1961), oblate spheroidal shapes (Carte and Kidder, 1961),
apple shapes (Kidder and Carte, 1964; Spengler and Gokhale, 1972), hailstones
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Plate 4. Rimed planar snow crystals of diameters between 2 and 3 mm. (From Hobbs et
al., 1971; by courtesy of the authors.)

Plate 5. Rimed columnar snow crystal, magnification 31 times. (From Iwai, 1973; by
courtesy of J. Meteor.Soc., Japan, and the author.)
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Plate 6. Graupel particles of various sizes collected during showers in Switzerland. Dis-
tance between lines on collection plate is 2 mm. (From Aufdermauer, 1963; by courtesy
of the author.)

with spikes and lobes on the surface (Mossop, 1971a; Kidder and Carte, 1964;
Briggs, 1968; Browning and Beimers, 1967, Knight and Knight, 1970a,c; Bailey and
Macklin, 1968a; Browning, 1966), and irregular shapes (Rogers, 1971). Axis ratios
of oblate spheroidal hailstones in storms over Oklahoma, Colorado and Alberta
were measured by Knight (1986), Barge and Isaac (1973), and Matson and Huggins
(1980). They found that the ratio of the short to the long axis varied from 0.95 for
stones with 1 to 5 mm maximum dimension to about 0.6 to 0.7 for stones with 50
to 60 mm maximum dimension. Most stones had an axis ratio of 0.8.

Auer (1972b) and Auer et al. (1970) found that the size distribution of graupel
and hailstones often fits a relation of the form

n(d) = Ad®, (2-21)

where d is the diameter of the ice particle, A = 561.3 and B = —3.4 (Auer, 1972b)
for storms over the High Plains, and A = 254 and B = -2.8 for storms over
northeastern Colorado. However, most studies showed that the size distribution
for graupel and hailstones are fitted best by an exponential distribution of the
Marshall-Palmer type (Figure 2.55a) (Xu, 1983; Cheng and English, 1983; Cheng et
al., 1985; Balakrishnan and Zrnic 1990; Douglas, 1964; Ziegler et al., 1983; Ulbrich,
1978; Federer and Waldvogel, 1975; Smith et al., 1975, 1976). For hailstorms over
Alberta (Canada), Cheng and English, (1983) found for the size distribution of
hailstones

n(d) = noexp(~Ad), with no = AA®, (2-22)

where A = 115 and B = 3.63, with ng(m™® mm™') and A(mm™"'). Hailfall rates
Ry for storms over Switzerland (Federer and Waldvogel, 1975) ranged from 2.6 to
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Plate 7. Hailstones collected during hailstorms in Switzerland. (From Levi et al., 1970b,
by courtesy of Amer. Meteor. Soc., and the authors.)

TABLE 2.7
Mass-size relation for various type graupel ticles. For all except Rla, R1b m in g and
d in cm, (based on data of Heym&ld & Kajikawa, 1989) for graupel collected on Mt.
Teine (1024 m, Hokkaido, Japan). Graupel types R1a and R1b collected on Sierra Nevada
(2600-3000 m) for m in mg and d in mm (based on data of Mitchell et al., 1990).

Type Mass-size relation Range

Rlc m = 4.21 x 10°3 4236 0.8-2.7
R1d m = 2.03 x 103 42-58 0.7-5.3
R2a m = 9.53 x 10-2 4380 0.7-22
R2b m = 7.55 x 10~3 4304 1.1 <47
R2c m =725 x 1074 d1-74 3.0- 6.2
R4b m = 1.07 x 10°1 4310 0.4-9.0
T > 0.5°C m =761 x 1072 42-38 0.5 - 4.7
T < 0.5°C m = 9.78 x 1072 3.2 0.5-9.0
Réc m = 9.42 x 10°2 ¢3-06 i.1-=7.5
T > 0.5°C m = 1.76 x 107! ¢306 1.1- 7.5
T < 0.5°C m =574 x 1072 4288 0.8 - 8.6
Rla m = 0.0060 L2-1 0.5-2.8
R1b m = 0.023 L1-8 0.2-24
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Plate 8. Thin sections of hailstones. Pictures on the left: section observed under the mi-

croscope in normal transmitted light; pictures on the right: section observed in polarized

transmitted light. Plates on top row: from Knight & Knight, 1968a; by courtesy of Am.

Meteor. Soc., and the authors. Plates on second row: from Federer, 1977, g:ers. comm.).

Maximum diameter of hailstone on top row: 4 cm; maximum diameter of hailstone on
second row: 1.8 cm.
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TABLE 2.8
Densities of graupel particles
Size range Densitg

Observer {mm) (g cm™)
Locatelli and Hobbs (1974), Washington 05-3 0.05 - 0.45
Zikmunda and Vali (1972), Wyoming 05-1 0.45 - 0.7
Zikmunda and Vali (1972), Wyoming 1 -2 0.25 - 0.45
Bashkirova and Pershina (1964a,b), U.S.S.R. 04-3 0.08 - 0.35
Braham (1963), Missouri 05-3 0.85 - 0.89
List (1958a, b), Switzerland 0.5-6 0.5 -0.7
Magono (1953), Nakaya and Tereda, (1935), Japan 08-3 0.13
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Fig. 2-55: Size distribution of hailstones (a), and their embryos (b), during a storm on
June 4, 1976 over China. Data fit: n(do) = 115 exp(—0.125 do) , for dp > 6 mm , do =
equivalent sphere diameter. (From Xu, 1983, with changes.)

152 mm hr—!, with ice contents wg ranging between 0.05 to 2.64 g m~3, where Wi
could be related to Ry by wg = 1.74 x 10"2Rpy. The size distribution parameters
ng and A varied between 1.5 < ng < 52 m~® mm™?, 0.33 < A < 0.64 mm™},
agreeing quite well with the values found by Smith et al. (1976) for hailstorms over
N.E. Colorado.

While hailstones usually have diameters of a few centimeters, observations show
that large hailstones may have a major axis length as large as 6 to 8 cm. Hailstones
of even larger sizes have been observed by Browning (1966), and by Roos (1972),
who described a hailstone which weighed 766 g and had a circumference of 44 cm,
equivalent to a sphere radius of 7 cm.

Hailstones collected at the ground are usually hard ice particles. In early studies
on hail growth, this observation led to the assumption that hailstones always grow
as solid ice particles. However, in more recent experimental studies during which
hailstone growth was simulated in wind tunnels, List (1958a,b; 1959; 1960a,b)
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and Macklin (1961) discovered that hailstones are not always hard particles but,
depending on the regime of growth, may also be ‘soft’ particles which consist of ice-
water mixtures, termed spongy ice by List. Such ice-water mixtures are produced
when the latent heat released during growth is not exchanged efficiently enough
between the hailstone and its environment to allow all the water collected by the
hailstone to freeze. That portion of the collected water which immediately freezes
produces a skeletal framework or mesh of dendritic ice crystals (see Chapter 16), in
which the unfrozen portion ofthe collected water is retained as in a sponge whose
surface temperature is at 0°C.

A few field studies have verified the spongy growth mode of hailstones in clouds.
Thus, Summers (1968) reported on the collection of soft or slushy hailstone samples
which fell during hailstorms in Alberta, Canada. Gitlin et al. (1968) and Browning
et al. (1968) used calorimetric methods to analyze freshly fallen hailstones at
various geographic locations. They found that water comprising up to 16% of
the total mass was embedded in the ice structure of some hailstones. In a more
definitive study, Knight and Knight (1973b) analyzed natural hailstones by the
quenching technique, and concluded that while some hailstones experience spongy
growth at times, this growth mode is not the rule for all hailstones.

Studies of hailstones by the thin section technique (List, 1961) reveal that usually
a hailstone has one distinct central growth unit or growth embryo (Knight and
Knight, 1970b). Hailstones with two centers of growth exist but are extremely
rare (Rogers, 1971). Considerable controversy exists in the literature concerning
the nature of this central growth unit. List (1958a,b; 1959; 1960a,b), and Knight
and Knight (1976, 1981) found that about 80% of the hailstones which fell in
Switzerland and in Colorado, respectively, had a graupel embryo which, in turn,
may have originated on a snow crystal or on a small frozen drop. Similarly, Mossop
and Kidder (1964) and Carte and Kidder (1966) found that a large percentage of
the hailstones collected during hailstorms in South Africa originated as graupel
particles. In contrast, however, Macklin er al. (1960) found that most hailstones
collected in England had clear growth centers, and they interpreted this to mean
that these hailstones originated as large frozen drops. Both types of growth centers
were found by Knight and Knight (1970b) and by Federer and Waldvogel (1978),
who examined a large number of hailstones which fell in the U.S. and in Switzerland,
respectively. They observed embryos of a few millimeters to 1 c¢cm in diameter.
Some of these were more or less opaque and had conical shapes, while others were
clear or bubbly and had spherical shapes. Thus, present evidence indicates that
hailstones may originate either as graupel or frozen drops depending considerably
on geographic location. After analyzing a large number of hailstones to determine
the effects ofregional differences on their embryo structure, Knight (1981) surmised
that for South Africa (Lowveld) 62 to 83% of the embryos were frozen drops. For
other locations, the percentages were the following: for Colorado, 6 to 27%, for
Switzerland 63%, for Oklahoma, 70% and for South Africa (Highveld) 35 to 54%.
An analysis of the size distribution of hailstones and their embryos observed during
a hailfall 4 June 1976 in China is given in Figures 2.55a and 2.55b, respectively.
We note that the hailstone embryos on that day had a most frequent size of 7 mm.

The bulk density of hailstones tends to vary radially from surface to core with
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alternating concentric layers of lower and higher density. The density of such
hailstone shells has been found to vary usually between 0.8 and 0.9 g em™3, but
shell densities as low as 0.7 g cm™2 have also been observed (List, 1958a,b, 1959;
Macklin et al., 1960; Mossop and Kidder, 1961; Prodi, 1970; List et al., 1970a).
The density variations are a reflection of varying amounts of trapped bubbles (Plate
8, left side). Many of'these bubbles are quite regularly grouped within concentric
layers, which alternately contain larger and smaller numbers. Hailstone shells with
a large number of bubbles appear quite opaque, while shells with only a few bubbles
appear as clear ice.

The size and number concentration of air bubbles in hailstones have been studied
by List (1958b), Macklin et al. (1970), List et al. (1972), and List and Agnew
(1973). From an examination of planar cuts through the stone centers, List and
his co-workers found that the bubble size distribution was lognormal. The planar
number concentration of bubbles varied across the slice surface by more than two
orders of magnitude, from about 50 to 5000 cm~2. Opaque shells consisted of
numerous smaller bubbles, while clear, transparent shells contained fewer and larger
bubbles. In hailstone layers deposited in the dry growth regime, Carras and Macklin
(1975) found a volume air bubble concentration of 108 to 10® cm =2, with air bubble
sizes ranging from 2 to 8 ym in diameter. In layers deposited in the wet growth
regime, the air bubble concentration was 10% to 10 em™2, and the bubbles had
diameters between 20 and 100 pm.

When thin sections of graupel particles and hailstones are studied by means of
polarized light, a second interesting structural feature is revealed: One finds that
the ice of the sections is polycrystalline, with large and small individual crystallites
(single ice crystals) in alternating layers (Plate 8, right side). Most crystallites
tend to assume preferred orientations (List, 1958ab; 1960a,b). Detailed studies
of the size and orientation of crystallites in natural hailstones have been made by
Aufdermauer et al. (1963), Knight and Knight (1968a,b), List et al. (1970), Levi
et al. (1970a,b), Macklin ef al. (1970), and Macklin and Rye (1974). These have
shown that transparent layers relatively free of air bubbles tend to consist of fairly
large crystallites, while opaque layers with relatively high air bubble concentrations
tend to consist of numerous small crystallites. List ef al. (1970) determined that
in the slice-plane, crystallites have surface areas which range between 1 x 103 and
8 x 10~2 cm? (0.1 to 8 mm?). Macklin ef al. (1970) and Rye and Macklin (1975)
found that the crystallite length decreases from 8 to 0.25 mm and the width from
1 to 0.2 mm as the ambient temperature decreases from —5 to —30°C.

Although hailstone crystallites are randomly oriented in some shells, they assume
a preferred orientation in others. Aufdermauer et al. (1963), Knight and Knight
(1968), and Levi et al. (1970a,b) found that in some shells crystallites have their
crystallographic c-axis generally either parallel or at right angles to the hailstone’s
radial growth direction. List er al. (1970a,b) found crystallites with preferred c-
axis orientation parallel to the radial growth direction in the clear shells of the
hailstones, and with rather random orientations in opaque shells. A discussion of
the reasons for the polycrystallinity of hailstones and the preferred orientation of
crystallites under certain growth conditions is given in Chapter 16.



CHAPTER 3

THE STRUCTURE OF WATER SUBSTANCE

In the previous chapter, we described the observed variety of shapes, sizes, and
concentrations of the solid and liquid particles which comprise clouds and precip-
itation. The remaining chapters will be devoted to exploring how such particles
come into, being and how they grow. Understanding these processes depends, to
a large extent, on knowledge of the physical properties of water vapor, water, ice,
and, ultimately, on the physical characteristics of the water molecule itself. There-
fore, as a prelude to what will follow, this chapter will describe briefly some of
the relevant structural features of individual water molecules and their various
combinations in water vapor, bulk water, and ice.

For a detailed study of subjects covered in this chapter, the reader may refer
to the texts of Hobbs (1974), Ben-Naim (1974), Whalley et al. (1973), Horne
(1972), Franks (1972), Fletcher (1970a), Robinson and Stokes (1970), Eisenberg
and Kauzmann (1969), Riehl et al. (1969), Kavanau (1964), and Dorsey (1940).

3.1 Structure of an Isolated Water Molecule

Measurements of the heat capacity Cp,(IT cal mole™ °C~') of water vapor at
constant pressure near room temperature yield a value of approximately 4k per
molecule, where k is, the Boltzmann constant. For meteorological conditions
of interest, the specific heat ¢y, = Cpy /M, of water vapor varies between 0.44
and 0.46 cal g~! °C (Smithsonian Meteorological Tables, 1968; Landolt-Bornstein
1988).

Since quantum statistical mechanics shows that the vibrational degrees of free-
dom are frozen-in at these temperatures, we must interpret the heat capacity mea-
surements in terms of a contribution of (1/2)k from each of the three translational
degrees of freedom, and a contribution of (1/2)k from rotation about each of the
three axes for which the molecule has an appreciable moment of inertia. This in-
terpretation implies that the water molecule cannot have its three atoms arranged
in a linear fashion. The same conclusion is reached by investigating the electrical
properties of the water molecule. Since such measurements reveal a large electric
dipole moment of g = 1.83 x 107!® e.s.u. cm (see Hobbs, 1974; Eisenberg and
Kauzmann, 1969), a linear molecule is once again ruled out.

The geometry of the water molecule can be deduced accurately from studies of
the infrared spectrum of water vapor. On the basis of such measurements, Mecke
(1933) concluded that the three atoms are situated at the vertices of a triangle,
the geometry of which is given in Figure 3.1. Recent experiments show that the
equilibrium O—H bond length is 0.95718 A and that the equilibrium H—O—H
bond angle is 104.523° (see Fletcher, 1970a; Hobbs, 1974).

74
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Fig. 3-1: Two dimensional geometry of a single water molecule. The O-H distance (in

10" em) and the H-O-H angle are indicated, as are the radii of the hydrogen and oxygen

atoms. (From Water and Aqueous Solutions by A. Ben Naim, copyrighted by Plenum
Press, 1974.)

The structure of the water molecule is importantly affected by the electron
configuration around the oxygen atom.* In its ground state, an oxygen atom
has two electrons in the spherical 1s orbital, where they are bound tightly to the
atomic nucleus, and two electrons, less tightly bound, in the spherical 2s orbital. In
addition, two electrons can be considered to occupy the 2py orbital, one electron
the 2p, orbital, and one electron the 2p, orbital. This electron configuration is
illustrated in Figure 3.2. Since the 2p, and 2p, orbitals may contain two electrons
each, these orbitals are incomplete. The electrons in these orbitals are therefore free
to couple with the electrons in the 1s orbital of the two hydrogen atoms, allowing
them to form two O—H bonds.

If these orbitals exactly described the O—H bond of a water molecule, one
would expect water to have a bond angle of 90°. Experimentally, however, one
finds that the bond angle is some 15° larger. One might try to explain this on
the basis of the fact that the O—H in a water molecule is not truly covalent but
is partly ionic; i.e., the electrons are not evenly shared by the oxygen atom and a
hydrogen atom. Since oxygen is more electronegative than hydrogen, oxygen exerts
a greater force on the shared electron pair than does the hydrogen. Consequently,
the electrons spend a greater portion of their time in the outer shell of the oxygen
atom than in the hydrogen shells, and so the positive charge of the hydrogen nuclei
is incompletely shielded by the electrons. Electrostatic repulsion between the two
hydrogen atoms must, consequently, lead to an increase of the bond angle.

*Generally, an atom’s ground state electron configuration is described by specifying the number

of electrons in each energy level or ‘shell’, characterized by the principal quantum number n
and the angular momentum quantum number £. In listing these electrons, it is customary
to use the spectroscopic notation in which the numbers £ = 0, 1, 2, 3 are replaced by the
respective letters s, p, d, f. The number of electrons in a shell is indicated by a superscript;
e.g., 2p® means there are 6 electrons in the shell characterized by n =2, £ =1. Each electron
is said to occupy an ‘orbital’ corresponding to given values of n, £, and the quantum number
m describing the z-component of the electron’s angular momentum. By the Pauli exclusion
principle, there is room in each orbital for two electrons, necessarily with opposite spins. It
is the outermost, valence electrons in incomplete orbitals which are responsible for covalent
and ionic chemical bonds. For further information, see any standard reference on quantum
mechanics, e.g., Schiff (1968).
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FOUR s5® HYBRID TETRAHEDRAL
ATOMIC ORBITALS WITH HYBRIDIZATION AXES
COMMON ORIGIN D‘.' HYBRID ORBITALS

Fig. 3-2: Hybridization of orbitals of oxygen atom. (From Organic Chemisiry by D.J.
Cram and G.S. Hammond, copyrighted by McGraw-Hill, 1955.)

However, Heath and Linnett (1948) showed that this repulsion is insufficient
to account for the experimentally found bond angle. They suggested that a more
significant factor in opening up the bond angle is the mixing or ‘hybridization’
of the 2s orbital of the oxygen atom with its 2py, and 2p, orbitals, resulting in
the formation of four sp3-hybrid atomic orbitals. Two of these overlap with the
hydrogen orbitals, while the two remaining orbitals form two lobes on the side of
the oxygen atom away from the hydrogen atoms (Figure 3.2). These lobes, called
lone-pair hybrids, are symmetrically located above and below the molecular plane
and form roughly tetrahedral angles with the bond hybrids (exact tetrahedral angle,
109.467°). 1t is this tetrahedral character of the water molecule which gives rise to
a tetrahedral coordination of water molecules in water and ice.

Duncan and Pople (1953) and Bader and Jones (1963) have carried out quantum
mechanical (‘molecular orbital theory’) calculations of the electron density distri-
bution around a water molecule. Their results confirm the distribution shown in
Figure 3.2, and show that there are four locations in the water molecule with high
electron density: close to the oxygen atom, close to each hydrogen atom, and at
the location of the lone pair orbitals which appear as an electron density bulge
‘behind’ the oxygen atom.

The charge distribution around a water molecule may also be approximated by
‘electrostatic’ or point charge models. In these models, point charges are assigned
whose sign, magnitude, and location are such that the molecule as a whole is
electrically neutral, and the electric dipole moment is equal to that experimentally
measured. Such models have been worked out by Bernal and Fowler (1933), Verwey
(1941), Rowlinson (1951), Bjerrum (1951), Pople (1951), Campbell (1952), and
Cohen et al. (1962). Although such models are convenient, in some cases they
generally do not correctly predict the higher electric moments (Kell, 1972a).
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3.2 Structure of Water Vapor

Experiments indicate that water molecules in water vapor tend to interact and form
clusters, in contrast to ideal gas behavior. Dimers as well as higher-order polymers
are considered to be present in water vapor, though in small concentrations only.
Recent experiments involving molecular beam techniques (Lin,, 1973; Searcy and
Fenn,1974) suggest that in highly supersaturated water vapor, clusters of up to 180
water molecules may be present. Clusters of 21 water molecules seemed to exhibit
particularly large stability. It is interesting to note that 21 water molecules can be
arranged in the form of a pentagonal dodecahedron with a molecule at each corner
and a single molecule in the center of the ‘cage’.

However, no conclusive evidence of the actual geometric arrangement, if any,
of water molecules in such clusters in vapor is available at present. Studies on
the possible and more likely cluster types have been reviewed by Rao (1972) and
Kell (1972a). Theoretical studies of the formation of water clusters have been
carried out by Kistenmacher et al. (1974a,b) and Abraham (1974a). Kistenmacher
et al. found two possible stable configurations for the dimers, a cyclic form and
an open form which was more stable. For the trimers and tetramers, the cyclic
forms seemed to be somewhat more stable than the open structures. For the large
clusters, the authors suggested not a single structure, but a statistical distribution
of different configurations, since many configurations with significantly different
geometry were found to possess nearly the same energy. The potential energy of
interaction, U, between a pair of water molecules has the general character of being
strongly repulsive at very close separations and weakly attractive at longer range.
One widely used and relatively simple expression for it is due to Stockmayer (1941):

“2 f c cold
=—-—--—+ o (3-1)
where r is the separation of the molecules, p is the dipole moment of an isolated
water molecule, ¢ is the collision diameter (the molecular separation at which U = 0
if 4 = 0), cis an adjustable constant, and f is a known function of the mutual
orientation of the two molecules.

The first term on the right side of (3-1) is just the dipole-dipole contribution to
the interaction energy, and may be attractive or repulsive, depending on the dipole
orientations. The second term represents contributions from: (1) the interaction
energy between a permanent dipole of one molecule and the dipole it induces in the
other (dipole-polarization or induction interaction), (2) the net energy arising from
momentary, fluctuating dipoles interacting with the corresponding induced dipoles
(polarization-polarization or dispersion interaction). Even though the time average
of these dipole fiuctuations may be zero, the energy contribution is proportional to
their mean square, which is finite and positive. Both (1) and (2) are usually referred
to as van der Waal’s interaction, which by its nature can be seen to bring about an
attractive force between the molecules. The third term in (3-1) represents the short-
range repulsive forces, which may be loosely ascribed to the overlap of electronic
orbitals which are incompatible according to the Pauli exclusion principle.

There is little doubt that the Stockmayer potential or similar ones, such as Rowl-
inson’s (1949, 1951) potential, portray with fair accuracy the interaction between
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pairs of water molecules at large separations in dilute water vapor. This is evi-
denced by the fact that values for the second virial coefficient computed via (3-1)
can be made to fit experimental values. On the other hand, the same potential
functions yield values for the third virial coefficient of water vapor which disagree
substantially with experiment. Partly, this is due to the approximate nature of
(3 -1), and partly because three-body interactions should also be included, since
other molecules in the system can significantly modify the interaction of a given
pair. In particular, the Stockmayer potential is insufficiently ‘directional’ in char-
acter to account for the geometry of cluster formation in water vapor. A recent,
more complicated potential function which has proven to be of predictive value in
this respect is described briefly in Section 3.4.

3.3 Structure of Ice

At atmospheric pressures and at temperatures between about —80 and 0°C, water
substance crystallizes from its gaseous or its liquid state to form a sixfold-symmetric
or hexagonal solid called ice-Iy,. At different temperatures and pressures ice assumes
other crystalline modifications which are discussed, for example, in Fletcher (1970a)
and Hobbs (1974). We shall concern ourselves here only with ice-Iy, henceforth
referred to simply as ‘ice’.

Fig. 3-3: Position of oxygen atoms in ice-Iy,: (a) view along c-axis, (b) view perpendicular
to c-axis.

X-ray diffraction studies demonstrate that, in ice, each oxygen atom is sur-
rounded by four nearest-neighbor oxygen atoms at a distance of about 2.76 x
10~ cm. These four atoms form an almost regular tetrahedron. In turn, oxygen
tetrahedrons are joined together to form a hexagonal lattice (Figure 3.3). The
hexagonal space group is denoted by D§, or P6;/mmec, and is characterized by 1
sixfold axis of rotation perpendicular to 1 mirror plane, (3 + 3) twofold axes of
rotation perpendicular to (3 + 3) mirror planes, and a center of symmetry.

Near 0°C, any given oxygen atom in ice also has 12 second nearest-neighbors at
a distance of about 4.52 A, 1 third nearest-neighbor at 4.59 A, 6 fourth nearest-
neighbors at 5.26 A, 3 fifth nearest-neighbors at 531 A, 6 sixth nearest-neighbors at
6.36 A, 6 seventh nearest-neighbors at 6.46 A, 9 eighth nearest-neighbors at 6.69 A,
2 ninth nearest-neigbors at 7.36 A, and 18 tenth nearest-neighbors at 7.81 A.
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Each water molecule in ice is hydrogen bonded to its four nearest-neighbors.
(Generally, a hydrogen bond may be defined as a valence linkage joining two elec-
tronegative atoms through a hydrogen atom.) This is brought about through the
formation of two hydrogen (O----H—0) bonds by each water molecule, each bond
being directed towards a lone electron pair of a neighboring water molecule. This
manner of bonding leads to an open lattice structure, as illustrated in Figure 3.3.
Perpendicular to the c-axis, the ice lattice consists of open-puckered hexagonal
rings (with oxygen atoms alternately raised and lowered). Along the c-axis are
vacant shafts. Comparison shows that the arrangement of oxygen atoms in ice
is isomorphous with the wurtzite structure of ZnS and the tridymite structure of
Si0;.

Each unit cell ofice, a four-sided prism set on a rhombic base, contains four water
molecules and is characterized by the lattice constants ag and ¢p (Figure 3.4). X-
ray data for ag and ¢y (Blackman and Lisgarten, 1957; Lonsdale, 1958; La Placa
and Post, 1960; Brill and Tippe, 1967, Kumai, 1968) are summarized in Figure 3.5
as a function of temperature. These measurements show that ap and ¢p decrease
with decreasing temperature such that (cg/ao) = 1.629 for all temperatures. Using
the values for ap and ¢p given in Figure 3.5, the volume of a unit cell of ice,
Vae = 2(a2+v/3/4)co varies from 1.305 x 10722 cm® (0°C) to 1.281 x 10722 c¢m?®
(~180°C). Thus, the number of water molecules cm™2 varies from 3.06 x 1022
(0°C) to 3.12 x 10?2 (~180°C), considering four water molecules per unit cell.

Fig. 3-4: Typical disordered arrangement of protons in the ice-I;, structure; oxygens (1)

and (2) contribute 12/12 each, oxygens (3), (4), (5), (6) contribute 1/12 each, oxygens

(7) to (12) contribute 2/12 each, and oxygens (13) and (14) contribute 4/12 each, for a
total of 48/12 = 4 oxygens per unit cell. (From Fletcher, 1970a, with changes.)

The variation with temperature of ice density can either be determined from
measurements of the temperature variation of the unit cell of ice via the relation
pi = 4My [NaVyc, or directly from observations (Ginnings and Corruccini, 1947,
La Placa and Post, 1960; Lonsdale, 1958). These fit the relation

2
pi = E &,T" y (3-2)

n=0
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Fig. 3-5: Temperature variation of the lattice parameters of ice-I,.

with T in °C and p;jin g em™3, for ag = 0.9167, a; = —=1.75 x 1074, and a; =
—5.0 x 1077, for the temperature range 0 to —180°C.

The positions of the hydrogen atoms in ice are subject to the Bernal-Fowler
(BF) rules (Bernal and Fowler, 1933). These require that: (1) each water molecule
is oriented such that its two hydrogen atoms are directed approximately towards
two of four oxygen atoms which surround it tetrahedrally, (2) there is only one
hydrogen atom on each O—O linkage, and (3) each oxygen atom has two nearest-
neighboring hydrogen atoms such that the water molecule as a structural unit is
preserved.

An ice structure which obeys the BF rules is termed ideal. Natural ice, how-
ever, does not behave ideally. Numerous experiments imply that a natural ice
lattice contains defects which violate the BF rules. The following major atomaric
defects are found in natural ice: stacking faults, chemical defects, molecular va-
cancies (Schottky defects), interstitial molecules (Frenkel defects), ionized states,
and orientational defects (Bjerrum defects).

By means of regular oxygen tetrahedrons, one may build up a cubic as well
as a hexagonal lattice. If the arrangement is cubic, a diamond-type ice lattice is
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formed. Stacking faults occur when layers of cubic ice are intermixed in otherwise
hexagonal ice. Such faults are particularly prone to occur in ice formed from vapor
below about —80°C. Chemical defects result if foreign ions are built into the lattice
during ice growth in an aqueous solution. Salt ions are either built into lattice
voids or at regular lattice positions. Molecular vacancies denote the omission of
water molecules from regular ice lattice positions. Interstitial molecules are water
molecules occupying irregular positions in the ice lattice. Fletcher (1970a) estimates
the energy necessary for the formation of a mole of vacancies to be about 12.2 kcal,
whereas the energy necessary to form interstitial sites is about 14 to 15 keal mole™!,
He further estimates that in natural ice at —19°C, the concentration of vacancies
is about 10'? ¢cm™2.

Various authors (see Fletcher, 1970a; Hobbs, 1974) have shown that neither
molecular nor interstitial molecules are capable of, producing changes in the hy-
drogen configuration of ice. (These defects, therefore, cannot explain the electrical
properties of ice.) Rather, such changes are produced by ionic states and orien-
tational defects. Ice, like water, exhibits ionized states (HsO%, OH™) in violation
of the third BF rule. Such a state is created by the motion of a proton from
one neutral water molecule to another. According to Jaccard (1971), the con-
centration of ionized states in ice at —10°C is Cy+ = Coy-= 3 x 10' cm™2.
He estimates the energy necessary for the formation of pairs of such states to be
about 17.5 keal mole™. Comparable figures for ionized states in water are Cy4 =
Con-= 1.0 x 1077 mole liter™! = 6 x 10'% ion pairs cm™2, with a pair formation
energy of 13.6 kcal mole™. Orientational or Bjerrum defects violate the first and
second BF rules. Bjerrum defects consist either of a bond occupied by two protons
instead of one (doubly occupied bond: O—H----H—O, D-defect), or of a bond
which contains no proton at all (empty bond: O----O, L-defect). According to Jac-
card (1971), these defects occur in concentrations of np = ny, &~ 6 x 10*®* em™2,
requiring an energy for pair formation of about 15.5 kcal mole™.

Pauling (1935, 1960) has pointed out that an ordered hydrogen arrangement
in ideal ice would conflict with the experimental fact that ice possesses zero-point
entropy. That is, from the relation S = kln W, wherein the entropy S is related to
the number of distinguishable microstates W, an ordered hydrogen arrangement
along with the restrictions of the BF rules would lead to Wy = 1 and, thus, Sp =0
at T = 0 K. Consequently, Pauling proposed a disordered hydrogen arrangement,
subject to the BF rules.

In Pauling's model, the zero-point entropy of ice may be deduced directly by
counting the allowed microstates. For this purpose, we assume a perfect ice lat-
tice which contains N4 (Avogadro’s number) water molecules. There are then
2N,4 OH----O bonds, on each of which the proton has two possible positions.
This allows (2)2V4 possible arrangements in ice if we assume, with Pauling, that
all arrangements are equally probable, and if we consider the first and second
BF rules. However, many of these arrangements are not consistent with the
third BF rule. To account for this, let us count all the possible arrangements
of the hydrogens in the immediate vicinity of a particular oxygen atom. One
finds 16 such arrangements: one OH3*, four OHJ, six OH,, four OH™, and
one O?~. Only 6 out of these 16 arrangements are compatible with the third
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BF rule. Assuming, again with Pauling, that all the arrangements are equally
probable, the probability of a given oxygen atom having the correct arrangement
around it is 6/16. Assuming further that all N4 oxygen atoms in ice are in-
dependent, the total number of possible configurations is reduced by a factor of
(6/16)N4. Hence, W = (22"*)(3/8)N4 = (3/2)N4, from which Sp = kinWp =
ZIn(3/2) = 0.805 cal mole™! (K)~!. More detailed computations (Nagle, 1966)
lead to Sy(theor.) = 0.81450.0002 cal mole™! (K)~!, in good agreement with the
experimentally found value of Sp(expt.) = 0.82 £ 0.05 cal mole™! (K)~!.

One may challenge this result on the grounds that defects are present in a real
ice lattice, and energy differences exist between the various hydrogen arrangements.
(Grénicher et al., 1957; Granicher, 1958). As the temperature of a real ice lattice is
reduced, all molecules lose energy and tend to exist in the arrangement in which the
energy of the system is lowest. Now, thermodynamic equilibrium is achieved only
if opportunity is provided for the molecules to have free passage to all permitted
energy states. One may argue that in real ice such free passage is provided by
means of the migration of atomic defects, e.g., ionized states and Bjerrum defects
which alter the atomic arrangement during migration. Such a mechanism would
lead to just one spatial arrangement at 0 K and, thus, to Sg = 0, which is contrary
to observation.

Grénicher ef al. (1957) and Grénicher (1958) also supplied a way out of this
dilemma. Their experimental studies on the electrical behavior of ice showed that
configurational changes due to the migration of atomic defects become negligible
below a temperature of about 75 K. Below this temperature, both the concentration
and diffusion rate of defects, which exponentially decrease with decreasing temper-
ature, are suficiently small that one may consider the hydrogen configuration to
be ‘frozen-in’. In addition, computations by Pitzer and Polissar (1956) showed
that above this freeze-in temperature, the energy differences between the various
possible hydrogen arrangements in ice are small compared to the thermal energy
kT. They become comparable to or larger than k7 only if T < 60 K. These results
imply that real ice is disordered with respect to the hydrogen arrangement, since
the hydrogen arrangement freezes-in in any of the possible configurations at tem-
peratures where the difference between the configurational energies is still smaller
than kT.

Since in the Pauling-Bernal-Fowler model for ice each hydrogen atom has two
equally likely positions along a given O—O linkage, theirs may be regarded as
a ‘half-hydrogen’ model for ice. This model has been confirmed by the neutron
diffraction studies of Wollan et al. (1949) and Peterson and Levy (1957). The
model reflects explicitly the idea that the structure of ice is independent of the
positions of the hydrogen atoms.

Peterson and Levy also found the H—O—H valence angle to be nearly equal
to the corresponding O—O—O angle. The latter is nearly tetrahedral (=~ 109.5°)
and, therefore, about 5° larger than that of an isolated water molecule. This result
was questioned by Chidambaram (1961), who argued that since the O—H----O
bond is more easily bent than the H—O—H valence angle, the latter angle should
not increase during solidification. On the other hand, he showed that the data of
Peterson and Levy are consistent with an ice structure in which the water mole-
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cules keep the valence angle which they have in the vapor state, but in which the
O—H----O bonds are slightly bent. In this structure, each H is about 0.04 A offthe
O----Oaxis. This means that the O—H----O bonds are bent by an average of 6.8°.
In support of his model, Chidambaram cited the small change of frequency for the
H—O—H bending mode when water vapor changes to ice, and the H—O—H an-
gle of water molecules in hydrated crystals, which deviates very little from 104.5°.
Chidambaram’s views are supported by nuclear magnetic resonance studies (see
Hobbs, 1974).

According to Eisenberg and Kauzmann (1969), three points of view may be
taken to define the molar hydrogen bond energy Ey; in ice. First, one may
assume that Ey ; is given by the lattice energy E of one mole of ice (the dif-
ference in energy between one mole of isolated water molecules and one mole of
ice, both at 0 K and with motionless atoms), divided by the number of hydro-
gen bonds in a mole. Since both hydrogen atoms of a water molecule participate
in one H-bond (excluding the molecules at the surface of ice), one may estimate
Ey,; = EL/2 = 6.7 keal (mole of bond)™ at 0 K (Eisenberg and Kauzmann,
1969, based on values given by Whalley et al., 1973). More appropriately, one
may define Ey ; in terms of the molar sublimation enthalpy (Ah), ofice. Accord-
ing to Eisenberg and Kauzmann (1969) (Ah)s = 11.32 kcal mole~! (0 K), and
(Ah)s = 12.20 keal mole™! (0°C) according to the experiments of Rossini et al.
(1952). With this definition we find Ey j(0K) = 5.66 kcal (mole of bond)~*and
FEy i(0°C) = 6.10 kcal (mole of bond)~*. In both of these definitions, we ascribe
the entire intermolecular energy in ice to hydrogen bonding. We therefore include
in Ey ; the effects of dispersion and short-range repulsive forces which are present
not only in ice but also in crystals of non-hydrogen bonded substances. There-
fore, a third definition of Ey ; is based on the premise that the contribution to
(Ah)s from hydrogen bonds is distinct from that of other forces and one may set
Ey i = [(Ah)s=Eqther]/2, where Eqiher represents the intermolecular energy asso-
ciated with the other forces. This definition suffers from the fact that Fggper 1S not
an observed quantity, and cannot presently be accurately calculated.

An accurate theoretical calculation of a single hydrogen bond in ice should in-
clude at least the effects of nearest-neighbors. To date, most investigators have
avoided detailed computations for these effects. Generally, the approach taken has
been to assume the total hydrogen bond energy as given by the sum of the four
component energies (dipole-dipole, dipole-polarization, polarization-polarization,
and short-range interactions), and to evaluate each of these by approximate meth-
ods for two neighboring water molecules at the relative positions found in ice. For
this purpose, various models for the charge distributions in a water molecule have
been assumed. For some component energies, rough estimates for the effect of
neighboring molecules have also been made. The results of the most pertinent
calculations on this subject have been summarized by Hobbs (1974) and Eisen-
berg and Kauzmann (1969). Other theoretical calculations have been carried out
by Rahman and Stillinger (1971), Stillinger and Rahman (1978), Morse and Rice
(1982) and Deutsch et al. (1983a,b). The values computed for Ey ; range from 4
to 8 kcal mole™!.

In another study, Morgensen and Eldrup (1978), Eldrup (1976) and Eldrup et
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al. (1978) were able to determine the hydrogen bond energy in ice experimen-
tally. Using a positron annihilation method, they found for the activation enthalpy
(Ah}-’ to form (f) a vacancy (v) in ice, (Ah)f = (6.44 = 1.15) kcal mole™!.
Since this energy involves breaking two hydrogen bonds, it follows that the en-
ergy of a hydrogen bond is given by Ey; = 3.22 kcal (mole of bond)~!. Thus,
Bother,i = 12.20 — 6.44 = 5.76 kcal mole™". Considering only the bond con-
tribution to the nearest-neighbors of a given molecule in ice, we may express
Eoher,i = (2i/2)E; (Nemethy and Sheraga, 1962a,b) where z; is the number of
nearest-neighbors and E; is the bond energy due to forces other than the hydrogen
bond. For z; = 4 we find E; = 2.88 kcal (mole of bond)~!. For the sublimation
enthalpy of ice, we have then the relationship

(ah)s = ZEH,;' + Egther = 2(EH,f + EJ') . (3°3)

Although the value of Ey ; obtained by Eldrup et al. (1978) is considerably lower
than the values previously published in the literature, we shall show later in this
chapter that this value is consistent with the enthalpy of melting for ice.

Lattice vacancies in ice allow water molecules to diffuse through the ice lat-
tice. Ramseier (1967) experimentally studied the self-diffusion mechanism of H,O
through ice. He found for the diffusivity

(3-4)

A .
D,‘= DGEE{D (_[ h)act.,i') ,

ZT

with Dy = 9.13 cm? sec™?, and with the activation enthalpy for self-diffusion
given by (Ah)ae,i = 14.26 keal mole™'. Two energies contribute to (Ah)ge, it
the activation enthalpy to create a lattice vacancy, {Ah)i » and the activation
enthalpy required for a lattice vacancy to migrate, (Ah.);’f’,-. Together with the

experimentally determined values for (Ah){ ;and (Ah)ae iy Morgensen and Eldrup
(1978), Eldrup et al. (1978), and Eldrup (1976) deduced the value (AR)T; =
(7.82 £ 1.61) keal mole™!.

The experimentally observed value for Dy in Equation (3-4) may now be used to
justify indirectly the value obtained for (&h){ ; and for (AR)7*;. For this purpose,
we follow Shewmon (1963) and Ramseier (1967) and write for the diffusivity of a
water molecule in ice

Di=g="» (3-5)

where (r?) is its mean square displacement in time ¢ (see Section 11.1). In terms
of the total number of diffusional ‘jumps’n which the molecule carries out and the
jump length approximated by the nearest-neighbor distance A = 2.76 x 10~% cm
we may express {r?)} as

(r?) = nA2f, (3-6)

where the correlation factor f ~ 1 — 2/z; = 0.5, with z; = 4, is a correction for the
random walk of the molecule in a direction which is dependent on the direction of
the previous jump. Now the number of jumps per second, I' = n/t, depends on
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the number z; of jump directions, the frequency » with which a molecule jumps
into an adjacent vacancy, and the number of vacancies N, as compared to the total
number of molecules N:

N,
I'= Z;U-KF . (3-7)
Considering (3-5) to (3-7), we then obtain for the diffusivity in ice
1. e N,
D,‘ = ngiAIUF . (3—8)

Now the relative number of vacancies Ny /N depends exponentially on the enthalpy
and entropy of vacancy creation according to

An)!, As)! .
-}-VNE = exp (—( ﬂ;f") exp ([ ‘;)V") . (3-9)

On the other hand, the jump frequency v depends on the enthalpy and entropy of
vacancy migration according to

AR)™. Ag)™.
-3; = exp (— ( gg;:',) exp ((—.%f) . (3-10)

where vy &~ 5 % 10'2 sec™! is the frequency of oscillation of a water molecule in
the ice lattice (Hobbs, 1974; Zajac, 1958; Compaan and Haver, 1956). Comparing
(3-4) with (3-8) to (3-10) we find

(3-11a)

(As)]  + (As)m;
= ;

Dy = %fz;fuu exp [

Inserting (3-11a) into (3-4) we see that the diffusion of water molecules through
ice, being a constant pressure-constant temperature process, depends exponentially
on the molar activation energy (Ag)aet,i = (Ah)ger,i — T(AS8)act,is With (Ah)ae i =
(AR)] ; + (AR)?; and (As)acr,i = (As)] ; + (As)7;. Thus,

— 1 2 (Ag)act.,i)
D;= Efzg,\ Lg exp (—W— : (3-11b)

According to Zehner (1952), (As), ; = 0.34[(Ah), ;/Tx] is applicable to the for-
mation and migration process. Inserting now the values for (AR . (AR)™., v, 2,

v, v,i?
and f into (3-11) we obtain Dy = 9.10 cm? sec™!, in excellent agreement with the
experimental value of 9.13 cm? sec™!, given the approximations made in deriving
(3-11).
In passing, it may be illustrative to determine how many vacancies are involved
in the diffusion of water molecules through ice. On evaluating (3-9) for this purpose,

we find for 0°C: (C, /C) = (Ny/N) ~ 4 x 1074, and for —40°C (N, /N) ~ 5x 1075,
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Thus, since for ice C' ~ 3 x 102 molecules cm™3, it follows that the concentration
of vacancies is 12 x 10'8 ¢m ™3 (0°C) and 15 x 10'7 cm™3 (—40°C).

We have already noted above that water molecules in ice may carry out oscilla-
tions with an average period 79 = 1/¥y = 2x 1073 sec. In addition, as we have just
seen, water molecules also undergo translational displacements with a frequency,
obtained from (3-7) and (3-10), of I' & 6 x 10% sec™* (0°C) and =& 6 x 103 (—40°C)
and, thus, displacement periods of about 7p & 2 X 10~° sec (0°C) and 2 x 10™* sec
(—40°C), in good agreement with the observed dielectric relaxation time for ice of
m = 2 x107°% sec (5 to —30°C) (Hobbs, 1974). In addition to vibration and
translation, water molecules in ice also undergo reorientation. According to Eisen-
berg and Kauzmann (1969), a water molecule in ice waits about 5 x 10~5 sec for
an orientational defect to arrive at its lattice site but then re-orients very rapidly
in about 107 seconds.

In closing this section, we want to touch briefly on the specific heat of ice,
which is a manifestation of the intermolecular vibrations of water molecules as
hindered translation and hindered rotation (Eisenberg and Kauzmann, 1969). The
measurements of Giauque and Stout (1936) and of Flubacher er al. (1960) show
that one may express the specific heat of ice between 0°C and — 40° C by the relation

¢j = 0.503 + 0.00175T, (3-12)

with 7 in °C and ¢;in IT cal g~*(°C)~!.

3.4 Structure of Water and Aqueous Solutions
3.4.1 STRUCTURE OF WATER

As ice melts, the bulk density of water substance abruptly increases by about
9.1%. Contrary to what might be expected, X-ray measurements show that during
melting the intermolecular distance between first nearest-neighbors in water does
not decrease, but rather increases over that found in ice by about 3% at 0°C.
Consequently, the density increase must be attributed to a ‘filling-in’ of space by
water molecules which leave regular lattice positions to move into what were cavities
in the ice lattice. The X-ray findings are in accordance with this view, and show
that the number of first nearest-neighbors in water increases from 4.0 in ice to
4.4 at 1.5°C, reaching 4.9 at 83°C. But despite this ‘filling-in,” water has a very
open structure and a density lower than that of an ideal liquid with a close-packed
arrangement of molecules. This can be readily seen if we consider that the observed
density of water is py, = 1.0 g cm™3, and that therefore in water the average volume
of a water molecule, ©w = My /pwNa, is 30 x 10~2% cm®. On the other hand, if we
were to regard a water molecule as a rigid sphere of radius equal to 1/2, the closest
approach distance of two nearest-neighbor water molecules, which is 1.38 X107 c¢m,
the volume of a water molecule would be 11 x10~2 cm?®, which is 2.7 times less than
that observed. If these spherical molecules were arranged in water in a hexagonal
close-packed arrangement (in which case a fraction 0.74 of space is filled with mass),
the density of water would have a value of py = 0.74M,, /[Ny =2 g cem™3, or twice
the value observed.
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Experiments show that the density of water exhibits a maximum at about +4°C.
Above this temperature, pw decreases with increasing temperature due to an in-
crease in amplitude of the molecular vibrations which causes a general expansion
of the water volume. Below this temperature, p, is found to decrease with de-
creasing temperture due to an increasingly ice-like structural arrangement of the
water molecules.

According to Kell (1972b), at p = 1 atm, the best experimental values for the
density of water can be fitted to

_ Ao+ AT + AoT? + AsT® + AT + AT
- 1+ BT !

10% pw (3-13)
with py in g em™3, with Ag = 999.8396, A; = 18.224944, A, = —7.922210 x 10~3,
Az = —55.44846 x 107%, Ay = 149.7562 x 109, A5 = —393.2952 x 1072, B =
18.159725 x 1073, and T in °C. Equation (3-13) is applicable to the temperature
interval 0°C < T < 100°C.

For temperatures below 0°C, values for py, are available from Dorsch and Boyd
(1951) to —10°C, and from Hare and Sorensen (1987) down to —33°C. According
to Hare and Soérensen (1987)

;]
pu=D anT", (3-14)

n=0

with py in g em™3 and 7 in °C, with ap = 0.99986, a; = 6.690 x 108, a; =
—8.486 x 1078, ag = 1.518 x 10~7, a4 = —6.9984 x 10~ a5 = —3.6449 x 1019,
and ag = —7.497 x 1072, This expression applies in the temperature range 0 to
—33°C.

An extrapolation of py, to lower temperature (Figure 3.6) suggests a dramatic
decrease of p,, with decreasing temperature below — 30°C, plunging rapidly to the
density of ice as —45°C is approached. Of course, such a low temperature could
only be reached if ice nucleation would not intervene. We shall show in Chapter 7
that in fact such low temperatures can be reached if experiments are carried out
with sufficiently small droplets of pure water. Angell (1982) suggested that the
dramatic plunge of py, at low temperature is due to an increased short-range order
in water.

In ascribing ‘structure’ to a fluid such as water, the time periods 7o and 7p
mentioned near the end of the previous section become especially relevant. In fact,
we must consider three different time scales: times t € 7p, times intermediate to
70, and 7p, and times t 3> Tp. Assuming we were equipped with a camera which
had shutter speeds less than 79, we could obtain a relatively sharp picture of the
actual position of a water molecule at any given instant. This would reveal the
instantaneous water structure called the I-Structure (Eisenberg and Kauzmann,
1969). If the shutter speed were between T and Tp, each molecule would complete
many oscillations while the shutter was open, and the resulting somewhat blurred
picture would provide information on the vibrationally averaged position of the wa-
ter molecules in water, i.e., the V-Structure (Eisenberg and Kauzmann) of water.
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Fig. 3-6: Variation of the density of bulk water as a function of temperature, after Hare
and Sorensen (1987), extrapolated to —45° C. (From Pruppacher, 1995; by courtesy of
the Am. Meteor. Soc., and the author.)

If the shutter speed were larger than Tp, the diffusionally averaged arrangement of
the water molecules or D-Structure (Eisenberg and Kauzmann), could be found.
No experimental techniques are available at present to obtain information on the
[-Structure of a liquid. Experimental studies which employ infrared or Raman spec-
troscopy, or neutron scattering techniques, lead to information on the V-Structure,
while X-ray studies determine the D-Structure.

Spectroscopic studies show that the frequency of oscillation for water molecules
is slightly smaller in water than in ice, the period of vibration being 7o & 107** sec.
Studies on self-diffusion, viscosity, dielectric relaxation, and nuclear magnetic reso-
nance relaxation show that a water molecule in water has a characteristic displace-
ment period near 0°C of 7p =& 10~*! sec.

From X-ray data (Narten et al., 1967; Narten and Levy, 1969, 1970, 1971, 1972)
one may derive the average number p(7) of molecules in a volume element of water
which is located at a distance from any given water molecule. Usually, however, one
does not plot p() but rather g(7) = p(¥)/pw, Where py, represents the bulk density
of water expressed as the number of molecules per unit volume of water. Thus,
g(F) is the factor by which the average local density p(7) of water molecules differs
at ¥ from the density of water molecules in bulk water, and so at large distances
from a given water molecule, g(7) = 1.0. On the other hand, in the vicinity of the
given molecule, the local density may differ considerably from bulk density. An
example of the radial distribution function g(#) for water of various temperatures
is given in Figure 3.7. The first maximum near 2.9 A must be attributed to the
interactions between the oxygen atoms of nearest-neighbor water molecules. The
broad maxima near 4.5 and 7 A result from interactions between the oxygen atoms
of second nearest and higher-order nearest-neighbor water molecules.
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olf)

Fig. 3-7: Radial distribution functions g(7) for water at various temperatures. (From
Narten et al., 1967, with changes.)

Figure 3.7 also shows that with decreasing temperature, the maxima become
increasingly distinct, which implies that the number of water molecules participat-
ing in interactions at the distances of the intensity peaks increases. Thus, we see
that with decreasing temperature, water becomes structurally more ordered. This
trend continues, at temperatures below 0°C, with the scattering intensity peaks
continuing to become increasingly pronounced and shifting toward the X-ray in-
tensity maxima observed for ice (Dorsch and Boyd, 1951). We may conclude that,
although the long-range order breaks down when ice melts, considerable local or-
dering persists in water. This implies that not all the hydrogen bonds which exist
in ice become broken when ice melts. At any moment, a certain number of H-bonds
are intact even though the location of the intact bonds in water rapidly fluctuates,
since H-bonds break and reform in continuous succession. (It is interesting to note
the correlation between the maxima shown in Figure 3.7 and the nearest-neighbor
distances in ice; see Section 3.3.)

Information on the state of hydrogen bonds in water can also be obtained from
infrared and Raman spectra (Walrafen, 1966; 1967; 1968a,b; 1972). Such spectra
confirm that water molecules exist as entities in water. They also give evidence
that some O—H groups in HoQ are hydrogen bonded and, therefore, point toward
a free, lone electron pair of a neighboring HoO molecule, while other O—H groups
are non-directionally bonded to the surrounding water molecules and, hence, are
disoriented with respect to neighboring lone electron pairs (Kell, 1972a; Eisenberg
and Kauzmann, 1969). The latter are referred to as non-hydrogen bonded or
‘broken” O—H groups. Estimates of the percentage of broken H-bonds in water as
a function of temperature are summarized in Figure 3.8.

As expected, the number of broken bonds decreases with decreasing temperature,
reaching about 12% at 0°C. An extrapolation to lower temperatures suggests that
about 7% of the bonds are still broken at —20°C, while the percentage finally
approaches zero near —45°C. Of course, these percentages are somewhat deceiving
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in that even at —40°C a concentration of only 1.5% broken bonds means that of
the total number of bonds, 2N = 2N 4p,, /My, = 642 x 10%° cm™® (—40°C)(where
N is the total number of molecules), as many as 10 x 10%° bonds ecm~% are still
broken, although this translates into a percentage of only 1.5%.
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Fig. 3-8: Variation with temperature of the number of hydrogen bonds broken in water: -

- - Walrafen (1972), x Hasted (1972), O Luck (1962, 1963, 1565; + from L /Ls, A Davis

and Litovitz (1965), M Luck (1967), 0 Hindman (1966). Continuous line with dotted

extrapolation: proposed variation consistent with the —45°C limit. (From Pruppacher,
1995; by courtesy of the Am. Meteor. Soc., and the author.)

These experimental findings are supported by recent studies which attempted to
simulate the molecular struture of water by purely theoretical methods (Rahman
and Stillinger, 1971; Stillinger and Rahman, 1972; Popkie et al., 1973; Kisten-
macher et al., 1974a,b). Stillinger and Rahman applied conventional molecular
dynamics to a system of 216 water molecules which interacted via a potential func-
tion developed by Ben-Naim and Stillinger (1972) and Ben-Naim (1972). This pair
potential function is considerably more complicated than the Stockmayer poten-
tial (3-1). It is based on Bjerrum’s four-point charge model for a water molecule
and incorporates the linear bonding tendency between neighbors in a tetrahedral
pattern such as that found throughout the ice lattice, or locally around a given
water molecule in water. It has been argued by Stillinger (1970) and Stillinger and
Rahman (1972) that this potential function also incorporates the principal features
of non-additivity; i.e., it takes into account the many-body aspect of the problem.

Another pair potential function has been developed by Clementi et al. (1973),
Popkie et al. (1973), and Kistenmacher er al. (1974a,b) (see also Abraham, 1974a,
and Fromm ef al., 1975). This function is based on an analytically fitted Hartree-
Fock potential (Kern and Karplus, 1972), the Bernal and Fowler (1933) point
charge model, and correlation energy corrections due to induced dipole interaction
and short-range effects. It was used in conjunction with the Monte-Carlo simula-
tion method of Barker and Watts (1969) to study a group of 125 water molecules.
The computations of Clementi, Popkie, and Kistenmacher, as well as those of Still-
inger and Rahman, yielded radial distribution functions for water molecules in
water which are in fair agreement with X-ray results. In addition, the molecu-
lar dynamics study of Stillinger and Rahman (1972) predicted that the hydrogen
bond rupture mechanism in water is characterized by an excitation energy of about
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2.5 kcal (mole of bond) ™. This is in good agreement with the Raman and infrared
spectra of Walrafen (1966, 1967, 1968 a,b, 1972), Luck (1962, 1963, 1965), Worley
and Klotz (1966), Davis and Litovitz (1965), Senior and Varrall (1969), and Buijs
and Choppin (1963), who obtained 2.4 to 2.6 kcal (mole of bond)~? for the energy
to rupture a hydrogen bond, or 4.8 to 5.2 kcal mole™*, since there are 2 H-bonds
per molecule. Bansil et al. (1982), Yeh et al. (1982), Hare and Sorensen (1990),
d’Arrigo et al. (1981), and Scherer et al. (1974) obtained Raman spectra for water
supercooled to as low as —30°C. Their values for the energy, required to break a hy-
drogen bond in water, tended to increase with decreasing temperature, and ranged
between 2.6 to 3.1 kcal (mole of bond) !, or 5.2 to 6.2 kcal mole™?, at temperatures
between —20 and —30°C. Finally, Bucaro and Litovitz (1971) inferred from depo-
larized light scattering measurenments a value of 2.5 % 0.1 keal(mole of bond) ™! to
break a hydrogen bond in water.

Considerable uncertainties still exist as to how X-ray, infrared, and Raman stud-
ies should be interpreted in terms of the arrangement of the water molecules in wa-
ter. Most modern theories of water assume that water has a ‘structure’ which can
be described in terms of highly hydrogen-bonded, three-dimensional configurations
of molecules. We shall now briefly describe just the main features of some of the
more prominent models put forward for the water structure.

In the ‘quasi-crystalline model’, the water structure is assumed to resemble one
of several possible forms: a broken down ice-Iy, structure (Bernal and Fowler, 1933;
Katzoff, 1934; Morgan and Warren, 1938), a quartz structure (Bernal and Fowler,
1933), a structure of octahedrally arranged molecules (Van Eck et al., 1958), or a
structural mixture of molecules arranged in a tridymite structure dispersed in a
denser ice-lll structure (Jhon et al., 1966). In the ‘interstitial model’, the water
is visualized as consisting of a highly hydrogen bonded structure inside of which
non-bonded or partially bonded molecules occupy interstitial structure positions
(Samoilov, 1946, 1957; Forslind, 1952; Namiot, 1961; Danford and Levy, 1962;
Krestov, 1964; Gurikov, 1960, 1965). In the ‘clathrate’ model’, water is assumed
to have a structure similar to the clathrate structure of gas hydrates except that,
instead of a gas molecule, a water molecule is held inside each cavity of a cage-like,
hydrogen bonded framework of pentagonal dodecahedron cages (Pauling, 1959,
1960; Frank and Quist, 1961). The ‘flickering cluster model’ makes use of the par-
tially covalent character of the hydrogen bond and assumes that H-bond formation
in water is a cooperative phenomenon, in that the formation of a hydrogen bond
between two water molecules reinforces the tetrahedral hybridization in the oxygen
atoms. This in turn strengthens all existing bonds and promotes the formation of
new bonds. Conversely, the breaking of an H-bond in water results in the almost
simultaneous rupture of a whole group of bonds, thus leading to the formation
and dissolution of water clusters in a ‘flickering’ manner (Frank and Wen, 1957 ;
Frank, 1958a,b). The ‘mixture model’ pictures water as a mixture of 0-, 1-, 2-, 3-,
and 4-bonded water molecules engaging in the formation of various sized clusters
(Haggis et al., 1952; Nemethy and Scheraga, 1962ab, 1964; Walrafen, 1966, 1967,
1968a,b, 1972). Finally, the ‘bent-bond model’ assumes that few, if any, bonds

TA clathrate is a complex in which molecules of one substance are completely enclosed by
molecules of another substance.
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between water molecules are broken upon melting of ice, but instead become bent
to various degrees (Pople, 1951).

Even though all of the models mentioned above were found to have certain
attractive features from the point of view of their capacities to explain some of
the observed physical properties of water, most of them suffer from a too highly
idealized and overly rigid arrangement of the water molecules. This becomes par-
ticularly obvious if we compare these models with the results of the molecular
dynamics model of Stillinger and Rahman (1972) mentioned above. Although the
results of their computations support the ‘mixture model’ for water in which water
molecules engage in a varying number of hydrogen bonds which locally tend to be
tetrahedrally oriented, some bending away from bond linearity was also found to
occur, especially at warmer temperatures. Furthermore, no clusters of molecules
arranged in the manner of ice-Iy, or in any other ice-like or clathrate structures
were found for temperatures down to —8°C, and no obvious separation of water
molecules into ‘lattice’-molecules and ‘interstitial’-molecules was detected. On the
other hand, water molecules were frequently found to be arranged in polygons of 4
to 7 sides. Finally, a number of molecules exhibited ‘dangling’” O—H bonds which
were not included in H-bond formation and persisted over times longer than the
vibrational period of a water molecule.

The more recent studies of water at temperatures below 0°C of Hare and S6-
rensen (1990), Bansil ef al. (1982) and Yeh ef al. (1982), as well as the low
angle X-ray scattering experiments of Bosio er al. (1981), Stanley and Teixeira
(1980), and Rice and Sceats (1981), suggests that the hydrogen bond exhibits a
strongly cooperative nature which results in the formation of a network of clusters
of molecules with intact hydrogen bonds inside the cluster. Each cluster appears to
be bonded to the surrounding clusters by mostly non-hydrogen bond forces. With
decreasing temperature, these clusters grow increasingly larger. At the same time,
the bond-links, which are bent at warm temperatures, become increasingly linear,
resulting in an increase in bond energy.

According to Frank and Wen (1957), the cooperative nature of the hydrogen
bond in water must be understood on the basis of a resonance among the following
three bond structures:

H H H H H H H H
HIOl HIOI  HIO|I *HIOI- HI|O|I *HIOIHIOI= HIOI

(a) (b) (a) (b) (c) (a) (b) (d)

I II I11

This gives formal recognition to the fact that chemical hydrogen bond formation
is an acid-base reaction. Thus, when a bond is formed, molecule (a) becomes more
acidic and molecule (b) more basic than the unbonded molecule. In this way, the
formation of an a—b bond makes molecule (a) capable of reacting with (c), and (b)
capable of reacting with (d). This process of dipole induction is self-propagating
and leads to cluster formation.

The tendency for cluster formation in supercooled water is reflected also in the
temperature variation of the specific heat. At temperatures above 0°C, measure-
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ments of the specific heat of water were made by Osborne ef al. (1939). Between
0°C and +35°C their data fit the relation:
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Fig. 3-9: Variation with temperature of the specific heat cw of water (Angell et al. 1982),
extrapolated to —45°C. (From Pruppacher, 1995; by courtesy of the Am. Meteor. Soc.,
and the author.)

Cw = 0.9979 + 3.1 x 107%(T - 35)® + 3.8 x 107°(T - 35)*, (3-15)

with ¢y in IT cal g=1°C. Measurements of ¢y below 0°C were made by Angell et
al. (1982) down to —37°C. Their data fit the relation

4
G z BT, (3-16)

n=0

with ¢y in IT cal g=*°C~?! and T in °C, and with ap = 1.000938, a; = —2.7052 X
1073, ap = —2.3235 x 1075, a3 = 4.3778 x 1079, and a;, = 2.7136 x 10~7. A
plot of (3-16) demonstrates a strong rise of ¢y, with decreasing temperature below
0°C, which is particularly pronounced below —30°C (Figure 3.9), and reflects the
increased structure in water. An analogous rise with decreasing temperature has
been observed for the viscosity 1, of water by Hallett (1963a), White and Twinning
(1913), Stokes and Mills (1965), Mills (1971, 1973) Bingham and Jackson (1918),
Osipov (1977), and Kell (1972), as shown in Figure 3.10. Their data fit the relation:

Nw = apexp(a; T + aoT? + a3T?), (3-17)
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with n, in centipoise, T in °C, and with ap = 1.76, a1 = —3.52564 x 1072, ap =
4.7163x10~%, and ag = —6.0667x10% for T > 0°C; and with a; = —5.5721x10~2,
ap = —1.3943 x 10~3, and az = —4.3015 x 1075, for temperatures between 0 and
-30°C.

We notice from Figures 3.9 and 3.10 that ¢, and 7. increase exponentially with
decreasing temperature, seemingly to infinity as the temperature limit of —<45°C is
approached, provided, of course, that ice nucleation does not intervene.
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Fig. 3-10: Variation with temperature of the viscosity of water, extrapolated to —45°C.
(From Pruppacher, 1995; by courtesy of the Am. Meteor. Soc., and the author.)

The repeatedly occurring limit of 45°C in the thermodynamic properties of wa-
ter led Angell (1982) to speculate that this limit represents a singularity reminiscent
of the exponential behavior observed for systems approaching phase transitions of
higher order. As a reason for this behavior, he suggests the presence of a coop-
erative process among the water molecules which dominates the behavior at low
temperature, as is, for instance, also observed for the ferromagnetic-paramagnetic
transition. In analogy, he suggests that the anomalies of supercooled water might
be described by an equation of the form

T ~hy
Vi AU(-ﬁ - 1) , (3-18)
well-known for critical phenomena, predicting a rapid increase of the property Y as
T approaches T, where T is the singularity temperature and where A, and A, are
parameters chosen to fit the property Y as a function of 7. Angell (1982) suggests
that for water Ty = 228 + 3 K (—45+ 3°C). It is also noteworthy (see Chapter 7
and Pruppacher (1995)) that T, is within about 2 K of the lowest temperature to
which the smallest observed water drops have been found to supercool.
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Of course, as expected, the pronounced clustering in water also affects the dif-
fusivity of water molecules in water. The self-diffusion coefficient D,, of water has
been measured down to —31°C by Gillen et al. (1972) and Pruppacher (1972), who

show that D, decreases progressively as the temperature decreases. Their results
fit the relation

3
Dy =) _ a,T", (3-19)
n=0

with Dy, in cm? sec™!, T in °C, and with ap = 1.076 x 10~%, a; = 4.260 x 10~7,
ap = 2.667 x 10~°, and ag = —2.667 x 10~*, for temperatures between 0 and 50°C;
and the relation

Dy, = agexp(a1T + a,T? + agT?), (3-20)
with Dy, in em? sec™?, and ag = 1.076 X 1073, a; = 4.14 x 1072, ap = 2.048 x 1074,
and ag = 2.713 x 10735, for temperatures between 0°C and — 40°C.

One may easily convince oneself (Wang, 1951a,b; 1952) that viscous flow and self-
diffusion of water is controlled by the same structure-breaking mechanism involving
the formation and diffusion of vancancies. Therefore, both phenomena will have
the same energy of activation. In fact, one finds (Wang, 1952) that

(Aglact,w _ dlIn(nw/T) _ _dln Dy,
2 <~ 4/ A1)

(3-21)
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Fig. 3-11: Variation with temperature: (1) of the activation energy for viscous flow and
self-diffusion of water extrapolated to —45°C, (2) of the variation of 2 Ex w(1l — p),

(3) of the activation energy for the transfer of water molelcular across the ice-water
interface.

Plotting (Ag)act,w as a function of temperature using both the self-diffusion and
the viscosity data, one obtains curve 1 in Figure 3.11. Note that in contrast to ice
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TABLE 3.1
Vartiation with temperature of the H-bond energy Fx ., between water molecules in water,
of the percentage p of broken bonds, and of the enthalpy Ah{‘m for vacancy formation in

water.
4 Enw P (1-p) (Ah) w =201 = p)En w
(°c) keal (mole of bond)"! (%) (kcal mole!)

40 2.50 20 0.80 4.00

30 2.53 18 0.82 4.15

20 2.55 16 0.84 4.28

10 2.57 14 0.86 4.42

0 2.59 12 0.88 4.56
-10 2.61 10 0.90 4.70
-20 2.63 7 0.93 5.04
-30 2.71 5 0.95 5.15
-40 2.78 1.5 0.985 5.48

for which a plot of In D; vs 1/T is linear, implying one value for (Ah),e ; in the
range —2 to — 36°C, (Ag)act,w increases rapidly with decreasing temperature. This
trend can be described approximately by the relation

(Bg)actw = aoexp(ar T + a,T? + a3T?), (3-22)

with (Ag)acs,w in keal mole™, Tin °C, and ag = 5.55, a; = —8.423 x 1073, a; =
6.384 x 1074, and az = 7.891 x 10~® for temperatures between +40°C and —40°C.
We notice from Figure 3.11 that as the temperature approaches —45°C (Ag)act,w
approaches 14.26 kcal mole™?, the value found experimentally by Ramseier (1967)
for the activation enthalpy for self-diffusion in ice.

In Table 3.1, we have listed what seems to us the most reasonable experimentally
derived values for Eg  and p. In anology to ice, we find for the activation energy
for vacancy formation in water (Ah){ , = 2(1 — p)Ep,y, which also is plotted in
Figure 3.11. We notice that as —45°C is approached 2(1 — p)Ey ., approaches a
value of 6.44 kcal mole™*, which is the value observed by Eldrup et al. (1978) for
(Ah)\{_;. Of course, (Ag)act.w is composed of the activation enthalpy of vacancy
formation as well as the activation enthalpy of vacancy migration (Ah)7,. The
latter is simply given by the vertical difference of the curves (Ag)act,w and (AR){
(in Figure 3.11), and approaches the value for ice, namely 7.82 kcal mole~!, as
—45°C is approached.

To check for consistency between the molecular parameters for water and ice and
the macroscopic characteristics of water and ice, we shall follow a suggestion of Luck
(1967) and Nemethy and Sheraga (1962a,b), and compute the molar enthalpies of
evaporation and melting to compare them with values derived from observed spe-
cific heats given by (3-12), (3-15), and (3-16) (see also Section 4.7). For this purpose
we shall use the following experimentally inferred values: 2Ey ; = 6.44 keal mole™*;
2By, = 5.2 kcal mole™! (0°C), and 5.6 keal mole™! (—40°C); p = 0.12 (0°C)
and 0.015 (—40°C); the number of nearest neighbor molecules z; = 4, zy = 4.3
(0°C), and 4.0 (-40°C), according to Morgan and Warren (1938), Narten et al.
(1967), and Danford and Levy (1962); and Eyper,i = (z;/2)E; = 5.76 kcal mole™

1
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with E; = 2.88 kcal mole™! Assuming E; ~ E,, we obtain for water Eotherw =
(2w/2)Ey, = 6.20 kcal mole™ (0°C), and 5.76 kcal mole™ (—40°C).

Based on bond energy considerations, the molar enthalpy of evaporation (Ah),
may be written (Luck, 1967)

(Ah)e = pEot.her,w + (1 = p)(2EH.w =+ Em.her.w) . (3‘23)

If we insert the above values into (3-23), we find (Ah)e = 10.77 kcal mole™!
(0°C), and 11.28 kcal mole~! (—40°C). Considering the uncertainties in the val-
ues used and the approximate nature of (3-23), we find excellent agreement of
the computed values with the measurements of Osborne et al. (1939), who found
(Ah)e = 10.75 keal mole™! (0°C).

The results from (3-23) also agree with values for (Ah)e derived from (4-77)
using observed values for the specific heat extrapolated to temperatures below
—37°C. The values thus determined for the specific enthalpy of evaporation (Ah),
(IT cal g=') fit the relations

(Ah)e = 597.3 — 0.561T, —20< T < 40°C; (3-24a)
and
(Ah)e = a1 + aaT + agT2 + a4 T2 + asT* + agT5, —-44 < T < -20°C; (3-24b)

with a; = —1412.3, ap = —338.82, a3 = —122.347, a4 = —0.7256, ag = —1.1595 x
102 and ag = —7.313 x 10~%. For example, these expressions give an enthalpy of
evaporation of 11.25 kcal mole~! at T = —40°C, and 10.75 kcal mole™* at 7 = 0°C.

An analogous procedure may be used to compute the enthalpy of melting as-
suming (Ah)m, = (Ah)s — (Ah)e. Following Luck (1967), we then find

2z
(Ah)m - 2EH,E+ E!EH,:' o pEother,w - (1 — p)(QEH,w + Eother,w)
1
= Q(EH‘,' - EH'w] - -(zw - Z_.')Ew -+ 2PEH,w (3-25)

2

If we insert the appropriate values in (3-25) we obtain (Ah),, = 1.43 kcal mole™!
(0°C), and 1.01 kcal mole™! (—40°C). This is in good agreement with the obser-
vations of Rossini ef al. (1952) and Osborne et al. (1939) who found (Ah);, =
1.43 kcal mole™! (0°C), and also with the experiments of Dumas and Broto (1974),
who determined for 7 = -37.2°C that (Ah)m, = (1.01 £ 0.02) kcal mole™*. The
results from (3-25) also agree with values for (Ah),, deduced from (4-77) using
observed values for the specific heat extrapolated to temperatures below —37°C.
The values obtained in this way for the specific enthalpy of melting (Ah),, fit the
relation

4
(Ah)m =) _ 3T, (3-26)
n=0
with (Ah)y, inIT cal g™, T in °C, and ag = 79.7, a; = —0.1200, a, = —8.0481 x
1072, ag = —3.2376 x 1072, a, = —4.2553 x 10~5. This expression gives (Ah),, =
1.43 kecal mole™! (0°C), and (Ah)sm = 0.97 keal mole™! (-40°C).
The variation of (Ah). and (Ah)m, with temperature is illustrated in Figure 3.12.
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Fig. 3-12: Variation with temperature of the latent heat of melting and latent heat of
evaporation of supercooled water based on values for the specific heat of water in Fig.
3-9, for the specific heat of ice from Lonsdale (1958) and Ginnings and Corrucini (1947%,
and based on Kirchoff’s law. Extrapolation is done to be consistent with —45°C limit.

3.4.2 STRUCTURE OF AQUEOUS SOLUTIONS

Experiments show that the structure of water is altered when water-soluble salts,
in part dissociated into ions, are dissolved in water. The aqueous solution resulting
from dissolving a salt in water would be an ideal solution if the dissolved salt
molecules or ions in no way affected the water molecules. In any real aqueous
solution, this is not the case. For example, some of the salt molecules or ions do
not fit into the water ‘structure’ and, therefore, distort it, causing a size effect.
Second, solute ions are prone to interact with the water-dipoles which, depending
on the size and electric charge of the ion, become grouped around the ion. This
effect is called hydration. Since large ions have weaker local electric fields than
small ions, the hydration effect is greater for small ions. In addition, hydration
is more pronounced for positive ions than for negative ones, since a positive ion
tends to interact with both lone electron pairs, which blocks the formation of two
H-bonds. On the other hand, a negative ion tends to interact with just one H—O
group of a water molecule, which blocks the formation of only one hydrogen bond.

Both the size and hydration effects cause hydrogen bonds in the vicinity of an ion
to be broken. Such structure breaking and lessening of the four-coordination among
the water molecules in water as a result of dissolved salts have been inferred from
X-ray, nuclear magnetic resonance, and infrared and Raman spectra studies, as well
as from studies on the dielectric properties, the viscosity, thermal conductivity, and
heat capacity of aqueous solutions, and from studies on the diffusion of water and
ions in aqueous solutions (Kavanau, 1964; Robinson and Stokes, 1970; Horne, 1972;
Franks, 1973; Ben-Naim, 1974). According to these investigations, it is useful to
visualize the arrangement of water molecules around an ion in the form of three
regions: (1) a region close to the ion where the water molecules are immobilized
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Fig. 3-13: Variation of the density of aqueous Sélt solutions with concentration of salt,
at T = 20°C.

as a result of their electrical interaction with it, (2) a transition region further out
in which the water is less ordered than ordinary water because of the structural
disruption caused by the size and charge of the ion, and (3) the outermost region
consisting of ordinary water.

Since ions generally have a structure-breaking effect on water, it is not surpris-
ing to find from experiments that salts dissolved in water lower its heat capacity.
However, this lowering is small at high dilution and only becomes significant if the
salt concentration is larger than 0.1 moles liter™'. Since salts affect the specific
heat of water, it is quite reasonable to expect that the latent heats are affected also.
A quantitative assessment of the effect of salts is easily made by noting, that even
at concentrations as large as 5 moles per liter, the enthalpy of mixing of water in
an aqueous solution of NaCl affects the magnitude of the enthalpy of evaporation
by less than 0.2% and the enthalpy of melting by less than 2%. Thus, for most
purposes of atmospheric interest, we may assume that the specific enthalpies of
evaporation and melting for aqueous solution are given by their values for pure
water. Experiments show that dissolved salts also affect the density of water. As
expected from the ability of salt ions to break hydrogen bonds, the density of
aqueous solutions is found to increase with increasing salt concentration and with
increasing molecular weight of the salt. This behavior is illustrated in Figure 3.13
for a few salts typically found in the atmosphere.



CHAPTER 4

EQUILIBRIUM BETWEEN WATER VAPOR, WATER, AQUEOUS
SOLUTIONS, AND ICE IN BULK

In this chapter, we shall discuss the equilibrium thermodynamics of and between
the bulk phases of water, ice and aqueous solutions. In addition to providing useful
information on the behavior of water substance, this material, with surface effects
included, will also serve as a basis for our later discussion on the phase changes
which lead to cloud particle formation.

For background on the material covered in this chapter, the reader may wish to
refer to texts on chemical thermodynamics and physical chemistry such as Kortiim
(1972), Robinson and Stokes (1970), Prigogine and Defay (1967), Reiss (1965),
Kirkwood and Oppenheim (1961), Lewis and Randall (1961), and Glasstone (1959),
and the review acticles by Harrison (1965a,b) and Goff (1949).

4.1 Useful Thermodynamic Relations

Consider an open, homogeneous (single phase) thermodynamic system which may
exchange heat, pressure work, and mass with the environment. For small reversible
changes, the second law of thermodynamics tells us that the heat added may be
expressed as 7dS, where 7 and S are respectively the temperature and entropy of
the system; the incremental pressure work done on the system is —pdV, where p
and V are the pressure and volume of the system, respectively; and the incremental
mass added is measured by dng, k = 1,2,...,¢, where ng is the number of moles
of chemical component k of the ¢ components comprising the system. According
to the first and second laws of thermodynamics, the incremental change in the

internal energy U = U(S, V,n;,ns,...,n) of the system for reversible processes is
dU =TdS — pdV + i prdng (4-1)

k=

where U 1
pk = (M)S,V‘n#k (4-2)

is called the chemical potential of component k.

Note that U and the independent state variables S, V, and nj are extensive
(proportional to mg), in contrast to the intensive variables T, p, and pe. Let us
denote the extensive and intensive variables by x; and y; = OU/8x;, respectively.
Then, for constant A we have U(Azy, Az, ...) = AU(zy1, T2, ...), so that

d AU (\z1, Az, ...
Ul(zy,22,...) = —dAU(Aiﬂl,f\xaa---) = E DU iy A 1) ;EN:; )$s: = E yizi, (4-3a)
i ¥ i

100
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or

¢
U(S) V,n1,ﬂ2,---,nc) ZTS“"I-}V"‘Z HETg (4—3b)
k=1
which is called Euler’s equation.
If we subtract (4-1) from the differential of (4-3b), we obtain the Gibbs-Duhem
relation

> nedps = —SdT + Vdp (4-4a)
k=1
or .
Z zpdpr = —8dT + vdp, (4-4b)
k=1
where
T = cnk = E (4-5)
PR %
i=1

is the mole fraction of component k; and s and v are mean molar quantities. The
result (4-4a) proves to be especially useful for exploring the relationships between
phases in equilibrium.

The study of some processes is facilitated by introducing other thermodynamic
potentials, in addition to the internal energy. We shall have occasion to use three:
the enthalpy H = U + pV, the Helmholtz free energy F = U — T'S, and the Gibbs
freeenergy G =U + pV —~ TS = H—-TS. From (4-1), we see that

dH = TdS+Vdp+ Y medng, (4-6)
k=1
dF = —SdT —pdV + Y pednk, (4-7)
k=1
dG = -SdT+Vdp+ Y pedny, (4-8)
k=1

Also, from (4-3b) and (4-8) we find that pr may be regarded as a partial molar
Gibbs free energy, g, i.e.,

oG < <
& = (5‘—) =pk; G=_ nppx=  nyg- (4-9)
Tk / Topon; k=1 k=1
Since dG is a perfect differential, we further conclude from (4-8) and (4-9) that
(%) _— (gn_S) E— (4-10)
T / pnsus k/ Topnjse

and

B,uk) ( v )
g = (— = (22 " (4-11)
8p Tnjsk aﬂk T,pnizk
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where s and v, are the partial molar entropy and volume of component &, respec-
tively.

From (4-6), we see that if p and nj,ns,...,n. are held constant, then dH mea-
sures the change in heat content in a reversible process. Therefore, the enthalpy is
called the heat content of the system at constant pressure, and we may write

3h) ( 9s )
— =C,=T(== , (4-12)
(6T — £ BT ) o

where €}, is the mean molar heat capacity at constant p, and h = H/n,s = §/n.
Finally, useful relationships for evaluating the chemical potential from the enthalpy
may be easily derived: pp = g, = hx — T8y, so that

5(#&/7')] 1| pi (3;%) R
e =—=|==- = =——, (4-13a)
[ orT —— T T aT — T?
where we have used (4-10); and
O /T) -1 (%) %
[ o ]Tm#k “T\Bp )pa, " T (4-13b)

where we have used (4-11).

4.2 General Conditions for Equilibrium

The second law of thermodynamics provides, as a corollary, a quantitative criterion
for thermodynamic equilibrium. Consider an isolated system which is not in equi-
librium. In such a system irreversible processes evolve spontaneously. According
to the second law, the entropy of such a system will increase until eventually it
reaches a state where its entropy is a maximum. In such a state all irreversible
processes will have stopped and only those processes, if any, will continue which are
completely reversible. The system is then in a state of equilibrium. Thus, for such
a system held at constant U, V, and nj,ns,...,n., the criterion of equilibrium is

(06SYv,vm, £0, (4-14)

where 8S refers to the virtual variation in entropy with respect to neighboring
states. An alternative expression for a system with constant S, V, and n;,ng,...,n,
is

(6U)s,vimy 2 0. (4-15)

In addition, the equilibrium is stable if (6°S)y,y;n, < 0, unstable if (625)y,v,n, > 0,
and conditionally stable or metastable if (62S)y,v,n, = 0. Here 625 is the second
virtual variation in entropy with respect to neighboring states.

Unstable equilibrium states cannot be realized in nature since natural systems
are continuously exposed to environmental perturbations which, even though very
small, are always sufficient to prevent the system from remaining in such a state.
On the other hand, metastable states frequently occur in nature. Supercooled
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water in an environment of moist air saturated with water vapor is an example of
such a system: while the supercooled water is in stable equilibrium with the water
vapor surrounding it, it is in unstable equilibrium with respect to ice into which it
would immediately transform if it came into contact with it.

Let us extend these equilibrium conditions to a heterogeneous isolated system
containing ¢ chemical components characterized by py and ng. By definition, a het-
erogeneous system consists of two or more phases which are separated from each
other by planar surfaces of discontinuity in one or more of the intensive variables.
Let us assume that all ¢ phases of a heterogeneous system are originally isolated
and each phase is in internal equilibrium. We may now ask what conditions on the
intensive variables are necessary and sufficient to insure equilibrium in the system
after the restraint of isolation of the phases has been removed. In seeking these
conditions, we shall assume that no chemical reactions occur and that the hetero-
geneous system itself remains isolated. After removing the restraint of isolation of
the  phases of the system, each phase (&) constitutes a homogeneous open system
for which the condition of equilibrium is given by (4-15). Also, since extensive
variables are additive, we may write

© P "
U= u@; s=% s@; v=3 v, nk:ing‘). (4-16)
a=1 a=1 a=1

a=1

Then, from (4-1), the condition of equilibrium may be expressed as

w c
U= |T@65@ — p@ev(@ 4 3~ u@on(| >0, (4-17)

a=1 k=1

where S, V, and ny are held constant, according to

L L4 4
55=3085 =0, V=3 oV =0; =3 on{’=0. (418)

a=1 a=1 a=]1

For simplicity, let us momentarily consider a system ofjust two phases which we
denote by (') and (). Then, from (4-17) and (4-18), we may express the equilibrium
condition as

(T = T')8S" = (p" = p)6V" + (uf — pi)omly > 0. (4-19)

The constraints of (4-18) have all been incorporated into this equation so that
88", §V", and én} can be chosen independently. Therefore, the equation can be
satisfied only if the coefficients of each of the variations are equal to zero. Since the
same analysis could be applied to any pair of phases in a more complex system,
we conclude that the conditions for thermodynamic equilibrium of a heterogeneous
system in which all interface surfaces are perfectly deformable, heat conducting,
and permeable to all components are

T = T'=...=T®, (4-20)
p' pl=... =T (4-21)

'

e = ugz"':“ia}v k=112:"-!c- (4'22)
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These three equations express the conditions of thermal, mechanical, and chemical
equilibrium, respectively.

4.3 Phase Rule for Bulk Phases

The discussion of systems in equilibrium is facilitated by what is known as the
Gibbs phase rule. This rule enables us to determine the variance of a system, i.e.,
the number of intensive variables which may be freely specified without causing
the system to depart from equilibrium. To derive the phase rule, let us consider
again the heterogeneous, isolated system of the previous section. As we have seen,
in equilibrium the system is characterized by a common 7 and p and by a number
of mole fractions in the various phases. Let us denote the mole fraction of the
k*h component in the j*h phase by zf )= niﬂ 1Pk nf)). Then, for a system
of ¢ phases and ¢ components, there will be c mole fractions altogether, giving
us a total of 2 + ¢c intensive variables at equilibrium. However, not all of these
are independent. Thus, for every phase we have the simple mass conservation
constraint that ) 7, zx = 1, for a total of ¢ constraints. In addition, we have
the condition (4-22) on the chemical potentials, which constitute another ¢ — 1
constraints for every k, for a total of ¢(¢ — 1) constraints. Therefore, at equilibrium
the total variance, or number of thermodynamic degrees of freedom, is

w=2+pc—p—clpg—1)=2+c—yp, (4-23)

which is the Gibbs phase rule for bulk phases. (As we shall see in Section 5.3, the
phase rule assumes a substantially different form if phases with curved interfaces
are present in a system.)

Let us consider some simple applications of (4-23). For a homogeneous fluid in
equilibrium, we have ¢ = 1, ¢ = 1, and so w = 2. This is consistent with the familiar
circumstance that the equation of state of such a system provides one connection
among three thermodynamic state variables (e.g., p, 7, p). For a mixture of two
gases, ¢ = 2, ¢ = 1, and therefore w = 3; obviously, this is like the previous
example, except that now we can also freely choose the relative concentration of
the gases. For water in equilibrium with its vapor, ¢ = 1, ¢ = 2, and therefore
w = 1; the system is monovariant, and the vapor pressure is a function only of
temperature. For water in equilibrium with its vapor and ice, ¢ = 1, ¢ = 3, and
therefore w = 0; equilibrium is possible only for a single choice of T and pressure,
which defines the triple point temperature T, of the system. If this system is now
exposed to the atmosphere, ¢ = 2 (water substance and air), ¢ = 3, and therefore
w = 1. However, if we make the reasonable assumption that the total gas pressure
remains constant, the system can have no further variance if it is to remain in
equilibrium. The system is now said to be at its ice point temperature Tp. Thus,
we see that the ice point temperature is a function of pressure. By convention the
concept of the ice point is restricted further by specifying that the pressure on the
system should be exactly one atmosphere (see Section 4.9).
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4.4 Ideal versus Real Behavior of Dry Air, Water Vapor, and
Moist Air

Let us now consider some of the equations of state we will need in order to apply
the equilibrium conditions (4-20) to (4-22). If we assume that water vapor behaves
as an ideal gas of non-interacting molecules, its equation of state may be written
in the following familiar forms:

evyo0=%T; e=p,R,T; e= NKT, (4-24)

where e denotes the water vapor pressure, vy,g is the molar volume of pure water
vapor, # = Nak is the universal gas constant, N4 is the Avogadro number, k
is the Boltzmann’s constant, N = Na /vy, is the number concentration of vapor
molecules, py is the vapor density, R, = %Z/M,, is the specific gas content for water
vapor, and My, is the molecular weight of water.

A similar equation of state may be written for dry air if we regard it as a mixture
of ideal gases. Then, in a fixed volume V we have for the partial pressure px of
the k*™ component, p;V = mpZT = mpZT/M,, where my, is the mass of the kt*
component. Applying Dalton’slaw, p = Y, pk, we obtain

PaVao = #T; pa=paRaT, (4-25)

where p,, denotes the pressure of dry air, va0 = V/ 3, ng is its molar volume, p,
its density, and R, = #£/M,, its specific gas constant, with

pm_gm
- Z;: ne Zk:(mk/MkJ '

M, (4-26)

It is important to assess the extent of deviations from ideality owing to molecular
interactions of the sort we discussed in the previous chapter. This problem has been
considered in detail by Goff (1942, 1949) and Goff and Gratch (1945, 1946), who
found that a virial expansion of the equation of state truncated at the fourth term
could be used to represent the behavior of real air and water vapor. Thus, the real
gas equations of state can be expressed adequately in the following form:

€Uy o = ZT - Aww e — Ayww 92 y (4'27)
PaVap = ZT — AgaPa — Aasa ?3 . (4-28)

Values for the virial coefficients (A) may be determined experimentally from
accurate measurements of the state variables. Alternatively, they may be computed
theoretically, at least in principle, by using the methods of statistical mechanics
(e.g., Hirschfelder ef al., 1954). Of course, in order to do this, one must model the
intermolecular forces. Both routes have encountered great difficulties for the case of
water vapor (e.g., Kennard, 1938; Harrison, 1965a; Kell ef al., 1968; Eisenberg and
Kauzmann, 1969; Ben-Naim, 1974). The presently accepted values for A,a, Aasa,
Aww, and Ayww are tabulated in Goff (1949), Harrison (1965a) and the Smithsonian
Meteorological Tables (SMT).
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TABLE 4.1

Deviation of dry air, pure water vapor, and moist air from ideality in terms of the com-
pressibility factor. (Based on data from Harrison, 1965a.)

Ca CV CV Cm
Water vapor Water vapor
saturated saturated 100 % Relative
with respect with respect humidity
Temperature 1100 mb 300 mb to water to ice 1100 mb
-30°C 0.9988 0.9997 0.9999 0.9999 -
0°C 0.9994 0.9998 0.9995 0.9995 0.9993
30°C 0.9997 0.9999 0.9982 - 0.9995

It is customary to express the deviation from ideal gas behavior in terms of
what is known as the compressibility factor, C' = pv/#T, values of which may be
computed once the virial coefficients are known. A few selected values for Cy, and
Cy are given in Table 4.1. These show that the ideal gas law for both dry air and
water vapor is in error by less than 0.2% throughout the range of meteorological
interest. Fortunately, therefore, the simple expressions (4-24) and (4-25) can be
used with confidence.

In view of these results, it is perhaps almost obvious that moist air can also
be treated as an ideal gas (see Table 4.1). We say almost, because there remains
the possibility that the forces of interaction between water molecules and some
species of air molecules might be much greater than the water-water or air-air
interactions. A partial explanation of why this, in fact, does not occur may be given
by considering the example of the van der Waal’s interaction (see Chapter 3): the
strength of this force depends on the mean square fluctuation of the electric dipole
moment and the molecular polarizability. Neither of these parameters shows an
extremely wide range in nature and so, accordingly, the van der Waal’s interaction
is relatively insensitive to the molecular species involved.

The ideal gas law for moist air may be written in analogy to (4-25) as

pom =ZT; p=pRnT, (4-29)

where Ry, is determined in the same fashion as R,. However, it is customary and
more convenient to write the equation of state in the form used for dry air, with
the moisture correction associated with the temperature. Proceeding in this way,
we have for the pressure and density of moist air, p = pa+€ and p = pg +py. Then,
from (4-24) and (4-25), we find p = (Maps + Mye)/RT = Mu[p— (1 —€)e]/ZT,
with € = M,, /M, = 0.622, or

where Ty, called the virtual temperature of moist air, is given by
T, =T[1-(1-¢)e/p]". (4-31)

Physically, Ty is the temperature which dry air would have to have in order for its
density to match that of the actual air. Since My, < Mj,, moist air has a lower
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density than dry air at the same temperature, so that T, > T always. However,
the extent of the difference is not large: a reasonable upper bound for e is the
saturation value at 30°C, which is only about 4% of standard sea level pressure;
hence Ty — T'<5°C.

We have now introduced two quantities, the virtual temperature T, and the
water vapor density or absolute humidity py, which provide a measure of the water
vapor content of air. There are, in addition, several other such ‘moisture variables’
in common use. Among the most important are the mixing ratio Wy, the specific
humidity gy, the relative humidity ¢, the mole fraction of water vapor z, the
saturation ratio Sy, and the supersaturation sy.These are defined as follows:

W= = (439); g= =2 (433); g=—, (434)
ma pa Mm ,0 WV,BBI‘.
Ny e Wy
v = 4-35); S, = 4-36); s, = -1, 4-37
% g + Ny { . ) €gat ( ) s Wy, sat ( )

where the subscript sat refers to the maximum possible saturated value. Air for
which ¢, = 1 (100%) is saturated; if ¢, > 1 (>100%), it is said to be supersatu-
rated, corresponding to s, > 0; if ¢, < 1 (<100%), air is said to be subsaturated.
The moisture variables are also connected by various relationships, such as

_ Qv _ Wy =
Wy = l_qv! Q\r-‘1+wv1 (438)
Ty = —=——, (4-39)
P WwWy+te
z, e e

wy = El—:c\,_sp—eﬁ'sp (4-40)

and y :
T,,:T[_t(-‘l"ﬂ] =T[1+ (;—1) q‘,] . (4-41)

14w, €

4.5 Chemical Potential of Water Vapor in Humid Air, and of
Water in Aqueous Solutions

We are now in a position to derive the chemical potential of water vapor and,
through the equilibrium conditions, the chemical potential of water in aqueous
solutions. From (4-11) we have, for an ideal gas k in a mixture of ideal gases,
(O1tk/OPK) 1,0 = V& = R T [pr, so that, upon integration,

b = pro + ZT Inpy (4-42)

where the integration constant uge depends only on the temperature. For such a
mixture, the partial pressure is px = zxp, so that also

nk=u5‘0+.@Tlnp+ﬁTln:ck. (4—43)

Therefore, if we assume pure water vapor at pressure ¢ is an ideal gas, its chem-
ical potential is
pvo(e,T) = plo(T) + ZT ne, (4-44)
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where uj’_a(T) is the chemical potential at a standard state of unit pressure. Simi-
larly, the chemical potential ., (p, T') of water vapor in humid air at total pressure
pis

pp,T,3) = plo(T) + ZTInp+ KT Inz, . (4-45)

From (4-44) with e = p , we see that this last result may also be expressed as
w0 T zy) = pyo@,T) + ZT nz, (4-46)

which shows that py < py o since z, < 1.

In contrast to pure gases whose chemical potentials vary logarithmically with
pressure, the chemical potential of a pure liquid is proportional to pressure, to an
excellent approximation. This is obvious from (4-11), on realizing that liquids are
nearly incompressible. Thus, for water we have

(M) = ¥y,0 & constant, (4-47)
op Jr

from which the chemical potential is found to be

Hw,0 (p': T) ~ Nw,ﬂ(ov T) + Vw,0P - (4-48)

As we have seen, if a liquid and gas are in equilibrium, the chemical potential of a
given component will be the same in both phases (Equation (4-22)). Consequently,
from (4-42), the chemical potential of component & in a liquid solution, which is in
equilibrium with its vapor at partial pressure py, is

Pt = pio + ZT Inpy. (4-49)

In addition, experiments show that for the so-called ‘ideal’ solutions, for which there
are no interactions between the solvent and solute molecules, the equilibrium vapor
pressure of any component is porportional to its mole fraction in the solution. (This
is known as Raoult’s law, about which more will be said in the following section.)
Assuming Raoult’s law, we then have py = T4 1pg 0, Where zi, is the mole fraction
of component k in the solution, and pg e is the partial pressure of component k in
equilibrium with the pure liquid phase of k at the same temperature. Then, as a
functionof zg, , the chemical potential becomes

Wil = p,zl; + ZTIn Til, (4—50)

where pg ; is a function of both temperature and total pressure, but is independent
of the composition of the solution.

In clouds, the liquid phase is rarely present in the form of pure water, but rather
is generally a dilute aqueous salt solution. Therefore, (4-50) is especially relevant to
us, and we may use it to write the chemical potential for water in an ideal aqueous
salt solution in the following form:

(P Ty 2w) = py (0, T) + ZT In 2, (4-51)
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where Zw = nw/(nw +ns) = 1 —z, is the mole fraction of water, n,, and n,, being,
respectively, the number of moles of water and salt in the solution. By analogy, one
would expect that the chemical potential of the salt component could be expressed
in the same way, viz.,

ps(p, T, z5) = ut (p,T) + ZT Inz, . (4-52)

In passing, we may note that for z = 1, pw(0,T) = pwo(@,T) = pt(p,T), the
chemical potential of pure water at p, 7. There is no analogous simple physical
interpretation for the quantity uf (p,T'). Experiments show that most dilute so-
lutions of non-electrolytes are in conformity with (4-51) and (4-52). In general,
however, real aqueous solutions depart from such ideal behavior. It is customary
to account for non-ideal solutions through the replacement of the mole fraction «
by the activity, a = fz, where f is called the rational activity coefficient. Thus, for
real aqueous salt solutions, we write

(P, Tyaw) = pwo@,T)+ZThhaw; aw = fulw, (4-53)
ps(p, T, as) ﬂ': (P, T)+ZTInas; a;= fszs. (4-54)

The importance of the activity to us is that it provides a direct measure of the
equilibrium water vapor pressure over a real salt solution, or, in other words, the
generalization of Raoult’s law to real solutions. We now turn to a demonstration
of this property.

4.6 Equilibrium Between an Aqueous Salt Solution and
Water Vapor

Consider a system consisting of water vapor in equilibrium with an aqueous salt
solution, both at temperature 7 and pressure e (here e = egq, but for brevity we
omit the subscript in the development which follows). From (4-22), we have

.u'v,D(e; T: a'w) = “w(e’ T’ a'w) b {4'55)
On substituting this equilibrium condition into (4-53) for p = e, we obtain
Hv,0 (ev T’ a‘w) = f-"w.O(e: T) + QTI‘D&W . (4-56)

According to the phase rule, the present system of two components and two
phases is divariant (w = 2). Let us now fix 7 and investigate the variation of a,
with e. Then, from (4-55) and (4-56), we see that equilibrium can be maintained
for variable e only if

Opw _ ([ Ouvo _[( w0 6lna,w)}
(ae )Tde_ (_Se )Tde— [(——&9 )T+ﬁzT( o), |der (45D

Now, on substituting (4-11) and noting that vy,0 < vy,0, (4-57) becomes

J1n ay, _ vy 1 )
(%), =#8=% (58
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which, upon integration, yields
Inay = Inege + 9(T), (4-59)

where we have again recognized explicitly that € = ega, and where g(T') is an
unknown function of 7. We may determine g by taking the limit a, — 1, which
corresponds to the case, of pure water; i.e., g(T) = — Inegae w, where €sae,w is the
saturation vapor pressure over pure water at temperature 7. Therefore, (4-59)
becomes

228 = o (T), (4-60)
esat,w
where we have now similarly replaced egqy, by the more complete notation egag, s,
which denotes the equilibrium vapor pressure over an aqueous salt solution at
temperature 7.
Equation (4-60) is the desired extension of Raoult’s law. For an ideal solution,
ay = Tw, and we recover the original Raoult’s law:

Aega
Soato _ 5. (4-61a); SO — 2, (4-61b)

€sat,w €sat,w

where Aegat = €sat,w — €sat,s» and Ty + 5 = 1.

Let us now consider briefly the problem of finding values of ay for use in (4-
60). In the literature of cloud physics, the most commonly followed practice in
expressing deviations from ideality has been to use the van’t Hoff factor i, originally
introduced by van’t Hoff in his classic studies of osmotic pressure to account, in
some poorly understood manner, for the degree of ionic dissociation in electrolytes.
McDonald (1953a) effectively defined the factor i through the relation

Thw

TR (4-62)

aw =
This approach has been followed, for example, in the well-known cloud physics
texts of Fletcher (1962a) and Mason (1971), who use this definition of i in their
descriptions of the behavior of solution drops.

However, as pointed out by Low (1969a), the use of the van’t Hoff factor has
the practical disadvantage that relatively few values for it are available. Also, it
is no coincidence that this approach is out of the mainstream of modern physical
chemistry, which has largely ignored the van’t Hoff factor altogether. Therefore,
following Low (1969a,c), we shall now briefly introduce those parameters which
are regarded by contemporary physical chemists as providing a more fundamental
measure of non-ideality, and for which abundant tabulated data exist.

First of all, we introduce the molality concentration scale, in place of the mole
fraction. The molality 91 is defined as the number of moles of salt dissolved in
1000 g of water, so that

ng m
s = w9+ (1000/3) (2a)
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or
1000, _ 1000m,

neMy  Mymy '
where again, M refers to molecular weight and m to mass. It is convenient also to
define the quantity

m =

(4-63b)

- M,
= 1000 (4-64)
which, in combination with (4-63), gives
con _ Tos mgM,,
MM = aat e (4-65)

For example, if the aqueous salt solution is present in the form of a drop of radius

a and density py, one finds

_ me My
"M, (S m)

Now, whereas before we associated the rational activity coefficient f with the
mole fraction x, we now associate a quantity called the mean activity coefficient,
and denoted by 74, with the molality 9t. Then, in terms of 9t and <4, the water
activity of a solution of one salt in concentration Mt turns out to be expressible in
the form (e.g., Robinson and Stokes, 1970; Lewis and Randall, 1961; Low, 1969a):

MM

(4-66)

m
Inay = —vMM (1 + % f md ln'yi) , (4-67)
0

where v is the total number of ions a salt molecule dissociates into. This is a useful
result, because extensive data for ~y (90M) exist.

Another quantity which appears often in the physical chemistry literature is
called the molal or practical osmotic coefficient, ®, of the salt in solution. This is
just the expression in parentheses in (4-67):

m
®,=1+%f2mdln'yi, (4-68)
o
and therefore also )
ay = exp(—vMMS,). (4-69)

For aqueous solutions which contain several salts, and this is generally the case for
cloud drops, the practical osmotic coefficient for the mixture is obtained by taking
a weighted average over the molality of each component in the solution (Hénel,
1976; Thudium, 1978):

> v P, i (aw)
By mix(aw) = =
8,mi (a'w) 2 e
¥

(4-70)
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TABLE 4.2

Deviation of aqueous solutions from ideality at 25°C in terms of the activity a, of water
in an aqueous salt solution, the osmotic coefficient ®,, and the Van’t Hoff factor i . For

an ideal solution aw = 1 , ®, =1, 1 = v (Based on data from Low, 1969a,b.)
NaCl NaN03 {NH4)2SO4
v=2 yv=2 r=3
aw L i aw b, i aw [ i

0.99665 0.9324 2.65931 0.99669 0.921 1.84506 0.99586 0.767  2.30577
0.98355 0.9209 2.03730 0.98440 0.873 1.75980 0.98187 0.677 2.04969
0.96684  0.9355 1.90392 0.96980 0.851 1.72836 0.96600 0.640 1.95357
0.93162 0.9833 1.85737 0.94222 0.826 1.70215 0.93488 0.623 1.95357
0.80675 1.1916 1.86713 0.86766 0.788 1.69335 0.83080 0.672 2.26110

o 0
oot

This result holds on the assumption that interactions between the salts in solution
may be disregarded.

The parameter €, was apparently first brought to the attention of cloud physi-
cists by Byers (1965). As for sources of these various measures of non-ideality, we
note that Robinson and Stokes (1970) have tabulated values for ®, and 4 as a
function of 9t for a large number of salts. Values for a,, and i have been computed
and tabulated by Low (1969a,b) for some typical salts present in the atmosphere.
(Incidentally, we should perhaps emphasize that the parameter i in Byers’ descrip-
tion of solution drops is not the van’t Hoff factor but rather isi = »®,.) In Table 4.2
we have provided values of @4, ay, and i for a few salts and concentrations. Note
that for a solution to behave ideally, ®; = 1,1 = v, and ay = Zy-

Significant departures from ideality are evident in Table 4.2 and in Figure 4.1.
It is seen that the interaction of salt ions with water molecules results in a larger
reduction of vapor pressure than is predicted by the original Raoult’s law (4-61).
Figure 4.2 illustrates this fact. It also shows the fairly strong dependence of vapor
pressure reduction on the type of salt. This behavior may be used as a measure for
the hygroscopic nature of salt. It has been customary to express the hygroscopicity
of salts in terms of the relative humidity at which a dry salt changes (‘deliquesces’)
into a saturated salt solution (see Table 4.3). Of course, this is also the relative
humidity at which the saturated salt solution is in equilibrium with the environ-
mental water vapor. Low (1969a) has proposed an alternative definition in which
hygroscopicity is expressed in terms of the amount of salt required per 100 g of
pure water to achieve a specified degree of vapor pressure lowering, i.e., a specified
activity of water in solution. Low felt this definition to be somewhat more directly
relevant to applications in weather modification experiments, where one generally
wishes to obtain the maximum possible vapor pressure reduction for a given mass
of hygroscopic salt. A comparison between the values given in Table 4.3 and Fig-
ure 4.3 shows that each of the two definitions leads to a different ranking for the
hygroscopic salts.

Note also that, because of the temperature dependence of the saturation ra-
tio through ay (Equation (4-60)), the relative humidity at which salts deliquesce
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OSMOTIC COEFFICIENT

08— P :
0 025 1.0 2.25 4.0 6.25 9.0 12.2516.0
CONCENTRATION (molality)

Fig. 4-1: Osmotic coefficient for NaCl as a function of molality in subsaturated, and su-
persaturated aqueous solution (saturation for 9= 6.25 mole NaCl/1000 g wa.ter‘). (From
Tang et al., 1986b, with changes.)

ass

ars

Fig. 4-2: Variation of (esat,s/€sat,w) With mole fraction of salt in aqueous solution and
with mole fraction of water in solution at 25° C, based on data of Low (1969b). (1)
Equation (4-61), (2) sucrose solution, (3) NaCl solution, (4) CaCly solution.
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€sats’Csol,w

G 10 20 30 20 50 80 70 80
gram SALT/I00gram WATER

Fig. 4-3: Variation of (esat,s/esat,w) With concentration of salt in aqueous solution at 25°
C, based on data of Low, (1969b).

changes noticeably with temperature. For example, experiments by O’Brien (1948),
Lagford (1961), Hedlin and Trofimenkoff (1965), Roussel (1968), and Admirat and
Grenier (1975) show that the relative humidity at which most salts in the at-
mosphere transform into a saturated salt solution increases by 2 to 30% as the
temperature varies from +20 to —20°C. This, in part, reflects the experimental
fact that the solubility of the salts studied decreases with decreasing temperature.

4.7 Latent Heat of Phase Change and its Temperature
Variation

It is well-known that whenever a new phase appears, a certain amount of heat,
the latent heat of phase change, is released or consumed. This latent heat can be
defined in terms of the difference between the heat content (enthalpy) of the two
phases involved in the phase change. Let us assume that inside a closed system
consisting of two phases, a unit mass of water substance is reversibly transferred
from phase ("), say water, of n” moles to phase ('), say water vapor, of »' moles,
during which time p and T of the system remain constant. The total enthalpy
change must then be

OH aH
dH = (-—) dn' + (—) dn" . (4-71)
o' T,p,n" on' T,p,n'
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But since the system is closed, dn’ = —dn". Therefore, denoting the partial molar
enthalpies by (0H/0n'), r ,» = }', (0H/On"), 1, = h" we find

(%) - hf _ h” = gﬂ/f : (4_72)
p, T

which defines the latent heat of phase change per mole in passing from phase (") to
phase ('). Also, since for a closed system at constant 7 and p wehave dh = T'ds,
we may also write

2" =T(s' - §"). (4-73)

Let us denote the molar latent heats of evaporation, sublimation, and melting
for pure water substance by .%o, %5 and %, 0, respectively. Then, simple conser-
vation of energy (the first law of thermodynamics) applied to the triple point state
where ice, vapor, and water are in equilibrium tells us that

L= Lmpo+ L. (T=27316K). (4-74)

To find the temperature dependence of the latent heat, we may substitute (4-10)
into (4-73) to obtain

R CNC)
u =T (%)p] e A (%)J ; (4-75)

using (4-22). If we now take the total differential of this equation, and apply (4-10)

through (4-12), we find
o' "
(?f),, - (7r) D t

To a first approximation, we may ignore the second term and obtain Kirchoff’s
equations:

d_?"/"

= (Cy - C) + ad% ((v' —v")-T

dZe 0 d.Z

a7 dr

These turn out to be excellent approximations for most purposes. Observed values
for the latent heats of evaporation Le g, of sublimation L,, and of melting Ly, o in

IT cal/g and for the specific heats of water vapor ¢, of water ¢, and ofice ¢; in
IT cal (g°C)~!, and their variation with temperature, are given in Chapter 3.

dZmo
dTr

= Cp,v - Cy ) Cp.v == CF; =Cy - Cf- (4'77)

4.8 Clausius-Clapeyron Equation

The conditions for equilibrium derived in Section 4.2 find a useful application in
what is known as the Clausius-Clapeyron equation. In order to derive this equation,
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consider a system of one component and two phases, (‘) and ("). From the phase
rule, we know there is one degree of freedom, so that, for instance, the pressure is a
function only of temperature for those states corresponding to equilibrium between
the two phases. The Clausius-Clapeyron equation provides an expression for the
slope of this phase boundary curve in the p — T plane. This may be obtained by
noting that for small displacements along the curve, dp' = du”, since p' = p" along
the curve (or, more accurately, on either side of the curve). Then, from (4-4b), we
find

v'dp — §'dT = v"dp — s"dT (4-78)
or

dp L et i

E T — i T(‘U' — ‘L’") ’
using (4-73). This is the Clausius-Clapeyron equation. As one direct application of
its use note that it provides the expression for dp/dT" which is needed to integrate
(4-76).

Considering the bulk phases to be water and water vapor, we thus find the

saturation vapor pressure €gatw is determined from the equation

(4-79)

desat,w _ -%,0 —~ -ge,(}
dr T(vyo — Uwo) Toyo'

(4-80)

since vy, 0 <€ vyv,0. Analogously, if the bulk phases are ice and water vapor, or ice
and water, we have

desat.,i' 2o -208 i _'?3
dT ~ T(wo—-v) Tuye (+-81)
and 5 P
Pm _ m,0
dT'  T(vwo—v;) Ck82)
If we further assume the ideal gas law (Equation (4-24)), we obtain
dlnegaw ZLe0
a N ar #-83)
and dl ,
Il €ga¢,i 8
a T T (=54

If one includes the approximate temperature dependence given by (4-77), then
(4-83) and (4-84) determine egat,w and egy, j, respectively, to an accuracy quite suf-
ficient for applications in cloud microphysics. In addition, as a practical alternative,
Lowe and Ficke (1974) have provided expressions which they feel are convenient for
typical modern numerical simulations of cloud physical processes. Their expres-
sions are given in Appendix A-4.8, Equation (A.4-1). They are curve fits based on
the Goff (1942, 1949) integrations of the Clausius-Clapeyron equation, wherein the
virial equation of state for water vapor was used. For practical purposes, the reader
may also use the so-called Magnus Equation as given in the Landolt-BOrnstein Ta-
bles (1988) (see Appendix A-4.8, Equations (A.4-2) and (A.4-3)). Goff’s accurate
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values are tabulated in the Smithsonian Meteorological Tables. Unfortunately,
these suffer from the 1954 revision of the temperature scale (Stille, 1961). How-
ever, comparison shows that both the SMT values and the values subsequently
revised by Goff (1957, 1965) agree to within 0.035% over the whole temperature
range of meteorological interest (Murray, 1967a, 1970). According to Goff (1965),
esat,w(Ttr = 0.01°C)= 6.1112 mb, and ega,w(To = 0°C p = 1 atm.) = 6.1067 mb.
The former result is in excellent agreement with the experimental value obtained
at the U.S. National Bureau of Standards by Guilder et al. (1975) who determined
€sat,w(Ttr) = 6.11657 mb (£0.00010 mb, at the 90% confidence level).

9
Bl
WATER
7| ¢ -——MELTING CURVE

=) b ——SUBLIMATION CURVE ¢ a
T | a——EVAPORATION CURVE {above 0°C)
E a'-- -~ EVAPORATION CURVE (below 0°C)
S 5_
w Ice TRIPLE POINT
o 4
s |
(73]
o3t
o -7 WATER VAPOR
o afk o
-
L el = b
O ----------------------

%40 36 32 28 24 20 46 12 8 4 0 4 8
TEMPERATURE (°c)

Fig. 4-4: p-T phase diagram for bulk water substance, based on data of the Smithsonian
Meteorological Tables (1968).

The temperature variation of the saturation vapor pressures is shown in Fig-
ure 4.4. Note that egas,w > €sa,j for 7 < 0°C. This is also obvious on comparison
of (4-80) and (4-81), since &5 > Zep. A closer inspection of Figure 4.4 reveals a
single maximum for the difference esat,w — €sat,i» Which we can calculate by noting
that the slopes of the curves are equal where the difference is a maximum. There-
fore, on setting (4-83) and (4-84) equal for the temperature Tryax which yields a
maximum difference, we find

at,w 28
(?uw) = ( ) . (4-85)
€gat,i T=T 23‘[) TeTwux

max

Now, if we integrate the difference between (4-80) and (4-81) from Tppax to Tp =
273.15 K, holding .%o constant and taking into account that eg:; = €sat,w at
T = Tp, we find that

€gat,w _ -?m.l) TO el Tmax
n ( esat,i)Tsz“ Tz ( ToTmax ) . (4—86}
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Combining (4-85) and (4-86), we obtain the following expression for Tiax

ToTiasl. 1%
Loy = Ty 228X ln( ) . (4-87)
T=T,

-me.o -if’e,o

max

Solving this equation by iteration gives Tmax = 261.37 K, or about —11.8°C. This
agrees to within 0.1°C with the value found from the Goff expressions for eggy,
which again indicates the accuracy of the ideal gas law approximation. Finally, the
variation of €gat,w — €a¢,; is illustrated in Figure 4.5.

ey lmmHg)

0 4 -8 42 16 20 24 -28 -32 -36 -40 -44 -48
TEMPERATURE (*c)

Fig. 4-5: Variation with temperature of A egat = (€sat,w - €gat,)-

Of course, the interesting point to emphasize here is that air saturated with
respect to ice is always subsaturated with respect to water, with the consequence
that supercooled water drops and ice crystals cannot co-exist in equilibrium. As
we mentioned in Chapter 1, this important fact, as first realized by Wegener in
1911, is the basis of the Wegener-Bergeron-Findeisen precipitation mechanism.

TEMPERATURE (%)
0 -4 -8 -2 -6 -20 24 -28 -32 -36 -40 -44 -48

[ 1020 1o s e e e mae e S e S B e B pn s B e e e |
Qss -
ICE SUPERSATURATION
os0} (6/8,0y) > 1
x oast
] I%@f
< oso} Q“l‘q;-
i b
ok 8%
.
oo} ICE UNDERSATURATION 7
oes| (Bfogy) <1
060

Fig. 4-6: Ice saturation as a function of saturation ratio with respect to water at tempera-
tures below 0°C.

It is also worth emphasizing that at sufficiently low temperatures, air may
be ice-supersaturated but water-subsaturated. This is illustrated in Figure 4.6.

Similarly, Figure 4.7 shows the ice-supersaturations which are required for water-
supersaturation to occur also.
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160 -

155 l‘ WATER
SUPERSATURATION

150

Si=e/ewr,

TEMPERATURE (%)

Fig. 4-7: Water saturation as a function of saturation ratio with respect to ice at tem-
peratures below 0°C.

Let us now consider the equilibrium between bulk ice and water which is de-
scribed by (4-82). No simplification can be made in this equation since vw,g ~ vj.
Since at all temperatures below 0°C, v; > vy 0, we find that (dp,/dT) < 0. In
fact, experiments show that (dpp, /dT) = —146.7 atm (°C)~! at 0°C, which means
that, at any given temperature, ice melts on applying sufficiently high pressures.
The temperature variation of the melting pressure of ice is given in Figure 4.8. As
an example, we note that at —10°C a very large pressure of 1100 atm. is required
to melt ice. As we mentioned briefly earlier, it is a consequence of this melting
pressure effect that the triple point of water substance is slighty higher than the
ice point. Experiments have shown that by opening a vessel in which ice, water
and water vapor are originally in equilibrium, and exposing it to air of 1 atm., the
equilibrium temperature is reduced by 0.0098+0.0003°C, the pressure effect con-
tributing 0.0075°C, while an additional 0.0023°C is due to the dissolved air. By
international agreement, the total temperature difference between the triple point
and ice point has been set equal to 0.0100°C, and the temperature of the triple
point itself has been set equal to Ty = 273.16 K (Stille, 1961). Therefore, the
temperature of the ice point is Ty = (T, — 0.01) K = 273.15 K = 0.0°C.

In addition to affecting the melting temperature of ice, pressure also affects its
crystal structure. The phenomenon that a single chemical substance may appear
in different crystallographic modifications is called polymorphy. At present, 11
polymorphic forms of'ice have been found. Hobbs (1974) and Fletcher (1970a) have
discussed in detail these crystallographic forms and the thermodynamic conditions
for which they are stable and in equilibrium with each other. They are of little
concern to us since they are not stable at typical atmospheric temperatures and
pressures.
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Fig. 4-8: The melting curve for ice-Ij,.

Let us consider Figure 4.4 once more and note an interesting observation which
can be made regarding the transformation of one phase into another. Suppose, for
instance, that water vapor is cooled at constant pressure above the triple point.
We see that eventually a temperature is reached at which the vapor is saturated
(curve a). Upon further cooling, the evaporation curve is crossed and conditions
are reached at which water is the stable phase. On cooling still further, the melt-
ing curve is crossed and conditions are reached at which ice is the stable phase.
However, observations show that neither water nor ice appear at the temperatures
predicted by the equilibrium phase diagram for bulk water substance. Unless suit-
able impurities are present in the vapor or on the walls enclosing the system, the
water vapor supersaturates and water supercools. (By definition, the supersatura-
tion of water vapor is described by (4-37), and the supercooling of water is defined
by the quantity AT = Ty — T, where Ty = 273.15 K.) The reason for this behavior
(discussed in Chapters 7 and 9) rests in the fact that, during a phase change, the
new phase always appears in the form of a small particle with a highly curved sur-
face. The equilibrium conditions for such highly curved phases are not described
by the Clausius-Clapeyron equation.

Another, similarly incorrect prediction is made by Figure 4.4. If water vapor
is cooled isobarically below the triple point, the sublimation curve is crossed be-
fore the evaporation curve. This means that, upon cooling, those conditions are
reached at which ice is the stable phase before water is; i.e., the phase diagram
for bulk water predicts that ice will appear first at temperatures below the triple
point. Observations, however, show that unless suitable impurities are present, the
metastable phase, i.e., supercooled water, always appears before ice. The reason
for this behavior again lies in the fact that phase change proceeds via the formation
of new phase particles with highly curved surfaces. We shall show in Chapters 7
and 9 that, unless suitable impurities are present in the system, the formation of
water drops is energetically favored at all temperatures over the formation of ice
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pirical formula. (From The Structure and Properties of Water by D. Eisenberg and W.
Kauzmann, copyrighted by Oxford Univ. Press, 1969.)

crystals directly from the vapor.

Thus far, we have displayed the equilibrium behavior of bulk water substance
in the form of a p — T phase diagram. Further information on the equilibrium
behavior may be obtained from a p — V phase diagram (Figure 4.9). Note that
during isothermal compression, a state (e.g., state A) is reached at which water
vapor is saturated with respect to water. If the walls enclosing the vapor are ideally
rough, further compression results in the condensation of vapor to liquid. Along
the line AB, e = ega¢,w Which remains constant as the specific volume decreases
from that of pure vapor to that of pure liquid water. The small compressibility of
liquid water is revealed by the steep excursion of the isotherm to the left of B.

At the top of the phase boundary curve is the critical point where the distinction
between liquid and gas vanishes. At this extraordinary point, the surface tension or
surface energy of the interface separating the phases becomes zero. Atmospheric
water always lies far below the critical point, which occurs at p,, = 221 bars
(1 bar = 106 dynes em=2 = 0.9869 atm.) and T, = 374°C. The concept of
the critical point illuminates the distinction between water vapor and the other,
permanent, atmospheric gases: the latter have critical temperatures far below at-
mospheric temperatures and, thus, never change phase. Note that this is not a
consequence of an insufficiently massive atmosphere, as no amount of pressure can
liquify them as long they remain above the critical temperature.

For completeness, in Figure 4.10 the thermodynamic surface of water in p—~V —T
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space is shown. The projection of this surface on the p = T plane and the p — V
plane yields the phase diagrams shown in Figures 4.4 and 4.9, respectively.

4.9 Equilibrium Between an Aqueous Salt Solution and Ice

Experiments have shown that the equilibrium temperature between ice and an
aqueous salt solution is lower than that between ice and pure water. This is a direct
consequence of the lowering of vapor pressure over a salt solution, as illustrated
in Figure 4.11. In order to derive an expression for this temperature lowering
effect, consider a system open to the atmosphere, and consisting of air and an
aqueous salt solution in equilibrium with ice (assumed to be free of salt) of chemical
potential g;. The condition of chemical equilibrium between the pure ice and water
in aqueous solution, assuming p and 7 to be uniform throughout the system, is
just pi(@,T) = pw(p,T), from (4-22). Therefore, on substitution from (4-53), we
obtain

ki, Ty aw) = pwo(®T) + ZT Inay, . (4-88)

From the phase rule, (4-23), we have p = 3 (water, ice, air), ¢ = 3 (salt, water,
air) and, thus, w = 2. Let us assume the atmospheric air pressure is fixed at
1 atm., so that w = 1. Then, the equilibrium temperature becomes a function of
the salt concentration, and we must therefore investigate the variation of ay with
T. Directly from (4-88), we see that equilibrium can be maintained for variable T
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only if
o(F)] _T[ar42) oln
5 T Bw
57 _[ 5T L+5§?( 57 )p. (4-89)

P
On substituting (4-13a) and (4-72), this becomes

3lnaw _ hw,l;'l = h.,' _ .Z’m‘o
( oT )p, RT2 — RT? g
which, upon integration, yields assuming %, 0 is independent of 7,
Zm
In oy = ~—22 +f(p). (4-91)

AT

The unknown function f(p) may be determined by noting that ay = 1for T = Tp;
thus, the equilibrium freezing temperature T, may be determined from the relation

-gm,[] Tﬂ o Te
174 ToTe

) =~—Inay. (4-92)

Since aw < 1, we have T, < Tp, as expected. The extent of the temperature

lowering effect is generally measured by the equilibrium freezing point depression,
defined as

(AT = n—n:-g%ﬁm% (4-93)
i”m‘o
_ RToT.M,
= 100070 vd,IM, (4-94)

using (4-69). Let us now suppose the solution is very dilute, so that TpT, & T2
and ay, &~ 1 —x,. Then, In ay, &~ -z, &~ —ns/nw, and (4-93) becomes, using (4-65),

 ZTgna
-ym.ﬂnw

(AT),, = K;9m, (4-95)
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Fig. 4-12: Molar equilibrium freezing point depression for different aqueous salt solutions
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where
RTEM,,

~ 100020

is the molal equilibrium freezing point depression. For water at 0°C, we find
K; = 1.859°C mole~!. For non-ideal or more concentrated solutions, (4-95) is
inadequate. For these more realistic cases, (AT), , depends noticeably on the na-
ture of the dissolved salt, i.e., its degree of dissociation and the capability of its ions
in solution for interacting with each other and the water molecules. The deviation
of the molal equilibrium freezing point depression from ideality is illustrated in
Figure 4.12 which shows experimental values for (AT), /9. (In Figure 4.12 the
small difference between the molal and molar units has been neglected.)

K; (4-96)



CHAPTER 5

SURFACE PROPERTIES OF WATER SUBSTANCE

In clouds, the liquid and solid phases of water are highly dispersed, with a large
surface-to-volume ratio. As might be expected, this necessitates going beyond the
bulk phase descriptions of the previous chapter, even for the most rudimentary
understanding of the formation and growth of cloud particles. Therefore, in this
chapter we shall consider briefly the essential distinctive surface properties of ice
and water, and explore some of their more immediate consequences. Additional
relevant material may be found in Hobbs (1974), Samorjai (1972), Bikerman (1970),
Flood (1967), Reiss (1965), Osipow (1962), Defay et al. (1966), Davies and Rideal
(1961), Adamson (1960), Ono and Kondo (1960), and Landau and Lifschitz (1958).

5.1 Surface Tension

Phases in contact are separated by a thin transitional region, generally only a few
molecules thick; consequently, a useful abstraction is to regard such an interface
as a geometrical surface. This permits a relatively simple and generally adequate
description of surface effects via the usual straightforward machinery of macro-
scopic thermodynamics. Of course, this ceases to be a reasonable procedure when
the bulk phases themselves have a similar microscopic thickness. In this chap-
ter, we shall not consider such difficult circumstances. Such problems do arise,
however, in the theory of homogeneous nucleation (Chapter 7); there we shall see
how macroscopic thermodynamics must be supplanted, at least in part, by a de-
tailed statistical mechanics approach in order that a satisfactory understanding of
nucleation phenomena can be achieved.

The extension of our thermodynamic systems to include surface effects is con-
ceptually simple: in complete analogy to the contribution ~pdV of pressure-volume
work to the internal energy, we now introduce a contribution ¢d(}, where @ denotes
the area of the surface of separation, and ¢ is the surface tension. The quantity
o is an intensive thermodynamic variable, and is seen to have the dimensions of
energy per unit area, or force per unit length. The physical basis of this formu-
lation is probably familiar to the reader from the example of a liquid drop: on
average, molecules in the drop interior find themselves in a symmetrical, attractive
force field, while molecules in the surface layer do not, and in fact experience a
net attractive force toward the interior. As a consequence of this inward pull, the
surface is in a state of tension, and it requires work to extend the surface further.
On the molecular level, this work is seen to be that required to bring molecules
from the interior to the surface, against the attractive forces.

The thermodynamic properties of the surface are so distinctive that it is con-
ceptually useful to regard it as a separate phase, (g), having its own entropy,

126
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S() . adsorbed number of moles of chemical component k, nL"), and so forth.

Then, in accordance with the discussion above, the change in internal energy
U8, q, ni")) of the surface phase for reversible processes is (cf. (4-1)):

¢
dU@ =T(4S + 0d2 + " p7dn{” (5-1)
k=1

where the ,usf) are the surface chemical potentials.

5.2 Equilibrium Conditions

Let us now generalize our discussion in Section 4.2 of the equilibrium between
two bulk phases (') and ("), by also taking into account the surface phase (&)
which separates them. Proceeding as before, we imagine that each bulk phase is
originally isolated and in internal equilibrium. After removing the constraint of
isolation, we seek the conditions on the intensive variables which are necessary and
sufficient to insure equilibrium throughout the system, which remains isolated as a
whole. The independent extensive variables for the entire system are V = V' + V",
§=5+5"+50), ng = nj+n} —i—ni"), and Q. Similarly, the total internal energy
is U =U'+U"+ U, and the generalized equilibrium condition which replaces
4-15) is

(W) svam 20- (5-2)

Mg =

Then, from (4-1), (5-1), and (5-2), the expanded form of the equilibrium condition
is

SU = T'8S' +T"5S" + T5S®) — p'gV' — p'V" + 060
+ 3 wong+ 3 widng + 3 w0 >0, (5-3)
k=1 k=1 k=1

where, from the constraint of isolation of the system as a whole, we have the
additional conditions

6S = 6S'+48"+658) =0;
bni, = Onj+onf+onl =0;
§V = V'+48V"=0. (5-4)

None of these conditions is violated if we conceive a set of infinitesimal variations
forwhich 88’ = 0 and dnj, = 0. Let us also suppose the bulk phase (") is a sphere
of radius a, so that dQ = 2dV"/a. With these specializations and (5-4), (5-3)
becomes

(T" — T())58" + (p' -p'+ %‘3) SV + (il — pYonll > 0. (5-5)

Since 65", §V", and énj represent independent and arbitrary variations, each
coefficient must vanish. A similar result would have been obtained had we originally
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chosen §S" = énj = 0. Therefore, the condition of thermodynamic equilibrium
leads finally to

T'=T"=T", (5-6)

1 ' 20
P = 5-7
p P . (5-7)
e = pl=p",  k=12,...,c (5-8)

Comparison with (4-20) to (4-22) shows that only the condition of mechanical
equilibrium has a new form; this is expressed by (5-7) and is called the Laplace
formula. 1t may also be obtained by more elementary means, e.g., by equating the
surface tension force along the circumference of a great circle of the sphere with
the pressure difference acting across the great circle area.

The extension of these results to a more general system comprised of ¢ phases
and y spherically curved interfaces is obvious: for thermodynamic equilibrium to
exist we must have uniform temperatures (thermal equilibrium) and uniform chem-
ical potentials (chemical equilibrium) throughout the entire system. Additionally,
a relation of the form of (5-7) (mechanical equilibrium) must hold for every pair
of bulk phases, the greater pressure occurring on the concave side of the interface
whose radius of curvature replaces a in (5-7).

5.3 Phase Rule for Systems with Curved Interfaces

Let us now consider the generalization of the phase rule (Section 4.3) to a system
of i bulk phases, ¢ components, and x curved surface phases. As before, we want
to determine the number of intensive variables which may be altered independently
without causing the system to depart from equilibrium. In this connection, there-
fore, we must consider what to use for the intensive variable corresponding to the
quantity nf}, the number of moles of component k& adsorbed into the interface (o).
An obvious natural choice is the adsorption, defined by

o) = nf”

k=0 k=1,2,...,e o=12,...,%; (5-9)

where 9(¢) is the area of the interface (o).

The number of intensive variables required to specify the state of the system
in equilibrium must therefore include: (1) the common temperature T; (2) the ex
adsorptions F}:’) in the surface phases; (3) the ¢y mole fractions xf) in the bulk
phases (@ = 1,2,...,¢); (4) the ¢ pressures p{® of the bulk phases; and (5) the
x mean radii of curvature a'®). This constitutes a total of 1 + (¢ + x)(c + 1)
intensive variables. Constraints among them include the following: (1) the mole
fractions x}:}) must sum to unity for each bulk phase, leading to  constraints; (2)
the chemical potentials must be equal for all the phases for every k, leading to
¢(x+ ¢ —1) constraints; (3) each interface gives rise to a conditional of mechanical
equilibrium like (5-7), leading to x constraints. This gives a total of (¢+x){e+1)—c
constraints, and so we find for the variance of the system,

w=c+1 (5-10)
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An interesting feature of this result is that the variance is independent of the
number of bulk and surface phases.

Note that in the case that one of the components of the system is not present in
one of the phases (e.g., humid air surrounding aqueous NaCl solution), one of the
equations relating the chemical potentials disappears. On the other hand, for the
phase in question, one must write $52; x¢ = 1, and add the relation x{%; = 0.
This expresses the fact that component i is not present in the phase («). Thus,
the total number of relations remains the same and (5-10) does not change.

Let us now consider four simple examples which will illustrate the use of (5-10).
First, consider a system of uniform temperature 7 in which a pure water drop of
radius a is surrounded by pure water vapor of pressure e,. From (5-10), w = 2
since ¢ = 1. Thus, we may choose, for example, to hold T constant and study the
dependence of e, on a. Second, consider a system of uniform temperature 7 in
which a drop of pure water of radius a is surrounded by humid air of total pressure
p. From (5-10), w = 3; to study the dependence of e,, on a we must hold both
T and p constant. Third, consider a system of uniform temperature 7 in which
an aqueous solution drop of radius a is surrounded by humid air of pressure p.
Since ¢ = 3 (water, salt, air), we find w = 4. However, since the total mass of
salt in the drop does not change, even though the drop may change its radius by
acquiring or losing water as a result of water vapor diffusion to or from the drop,
the mole fraction of the water in solution becomes a function of the drop radius.
This constitutes an additional relation not considered in (5-10). Thus, w = 3 as
in the case of a pure water drop in humid air, and we may again choose to hold
T and the total gas pressure p constant and study the dependence of e, on a.
Fourth, consider a system of uniform temperature 7 in which a pure water drop
of radius ay and a spherical ice crystal of radius a; are surrounded by humid air of
total gas pressure p. From (5-10), w = 3. We may choose to hold p constant and,
thus, dispose of one of the intensive variables, so that the system at equilibrium is
divariant. This is in contrast to a system of 3 bulk phases which, at equilibrium,
is non-variant once p is fixed (Section 4.3). Thus, we may independently vary a.,
and a; and investigate the effect of their variation on the equilibrium temperature
of the system. It is clear that if a,, and a; are given, the system has no further
variance at equilibrium.

5.4 Water-Vapor Interface

The difference between the pressure p,, inside a water drop of radius a and the
pressure egae,w Of vapor with which it is in equilibrium is given by (5-7):

20
P — Coatw = ——-&'L (5-11)
where now we have introduced the subscript w/v for the surface tension to em-
phasize that it is the water-vapor interface which is involved. Given that oy, /y &
76 dyne cm™! at 0°C, we see that the pressure difference is about 1.5 atm. for
a = 1 um; smaller drops have correspondingly larger internal pressure.



130 CHAPTER 5

For practical purposes, one may replace gy/y in (5-11) by oy a, the surface
tension for a water-humid air interface. Experiments by Richards and Carver
(1921) and Adam (1941) have shown that o/, increases by less than 0.05% if air
at 1 atm. is replaced by pure water vapor at saturation pressure (at the same
temperature).

Recent experimental studies and theoretical modeling involving molecular dy-
namics have shown that water molecules on the liquid side of the water interface
tend to project both hydrogen atoms preferentially towards the liquid interior,
exposing the oxygen atom to the vapor side. This arrangement yields a surface
potential of +0.16 Volt at 300 K (Matsumoto and Kataoke, 1988; Wilson and
Pokorille, 1987; Gok et al., 1988).

5.4.1 EFFECT OF TEMPERATURE ON THE SURFACE TENSION OF WATER

As would be expected on consideration of the effects of thermal agitation, the
surface tension of water decreases with increasing temperature. This behavior has
been investigated experimentally by Dorsch and Hacker (1951) and Gittens (1969).
Their results are shown in Figure 5.1. Although the measurements of Gittens have
been carried out by a more refined experimental technique, we have preferred the
values of Dorsch and Hacker, who extended their measurements into the regime of
supercooled water, thus making possible an extrapolation to near —40°C. In order
to be consistent with our discussion in Section 3.4, we have used as a criterion for
the extrapolation the occurrence of sigularity behavior of liquid water near —45°C.
The proposed values for the surface tension fit the relation

8
Owja = Z: anT", (5-12)

n=0

where 0y /5 1s in erg cm™2, T in °C, and where ag = 75.93, a; = 0.115, a, = 6.818 x
1072, a3 = 6.511 x 1073, a4 = 2.933 x 1074, a5 = 6.283 x 107°, ag = 5.285 x 1078.

5.4.2 SURFACE TENSION OF AQUEOUS SALT SOLUTIONS

Let us now consider the effect of dissolved salts on the surface tension of water.
Given that the liquid surface is in a state of strain owing to a residual force field,
we expect that the adsorption onto the surface layer of some chemical component
to concentrations higher than that which appears in the bulk phase will occur if
such behavior will serve to lower the state of strain, and vice versa. Therefore, we
expect that if a solute can lower the surface tension, it will appear in a greater
relative concentration at the interface than in the bulk solution. Materials which
cause this to happen to a marked degree are called surface active. Conversely,
solutes which can increase the surface tension should appear in a relatively weaker
concentration at the interface; this behavior is known as negative adsorption.
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Fig. 5-1: Variation with temperature of the surface tension of water, extrapolated to
be consistent with the —45°C limit. (From Pruppacher, 1995; by courtesy of the Am.

Meteor. Soc., and the author.)

An expression relating surface tension to adsorption may be derived most easily
by integrating (5-1) in the same manner that led to (4-3). The result is

U@ =TS8 160+ 3 pnl®. (5-13)

k=1

Now, on subtracting (5-1) from the differential of this equation, we obtain the
surface phase form of'the Gibbs-Duhem equation (cf. (4-4)):

54T + Qdo + Y n{7dp{” =0 (5-14)
k=1
or %
do = —s@dT -y T du”, (5-15)
k=1

where we have used (5-9) and 8(%) = §(°) /9 is the surface specific entropy. For
constant 7, (5-15) reduces to the Gibbs adsorption isotherm equation:

a do .
I‘S,’=—(W) , #k. (5-16)
By T
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Let us apply this result to the case of a binary solution of a salt in water. Denote
the chemical potential of the salt in the solution-vapor interface by p‘(,s/ ). For
equilibrium changes, we have d,u(;'/ M = dp, from (5-8), where p, is the chemical
potential of the salt in the bulk phase. For the latter, however, we have the form

(4-54); therefore, at constant T and p, the adsorption of the salt is described by

do 1 0o
o o _ (S} L (Ooun _
Iy ( g )T.P @PT (3h‘l as)p‘?‘ # (5-17)

Also, from 4-4a we have n,dp, = ~nywduw,. therefore, on substituting (4-53) and
(4-54) for u,, and pu, into this expression, and introducing (4-69), we obtain another

form for /Y. 5
m o
(s/v) — _ TYslv
I} P ( o )pT . (5-18)

In order to interpret this result, we must consider more closely the meaning
of the quantity nf) in (5-9). Implicit in our abstraction of the transition zone
between bulk phases to a geometric surface of separation has been the assumption
of the homogeneity of these adjacent phases up to their contact with the surface.
Thus, in the expression ni") = ng — nj —ny, where ny is the total number of moles
of component % in the real system, the quantities nj, nj are the corresponding
number of moles in the homogeneous phases (‘) and ("), assumed to retain their
bulk properties up to the geometric interface. Referring now to the present example
of a solution drop, we see therefore that if n{*") > 0 (ie., T/ > 0), there
must be a higher concentration of salt in the transition region than in the interior
of the drop, and vice versa. Consequently, the result (5-18) does support our
qualitative expectations: for positive (negative) adsorption, the surface tension
decreases (increases) with increasing concentration.

For most salts which are present in clouds, it has been found experimentally
that if 9 < 10~% mole (1000 g)~?, then (8o, /M) < 0, i.e., /Y > 0; at larger
concentrations, (da,/,/09t) > 0, meaning r{Y) < 0 (Jones and Ray, 1937). If we
evaluate (5-18) for a 1 molal NaCl solution at 0°C (v = 2, ® = 0.9355, 90t = 1),
we obtain T8/ = —3.82 x 10! mole em™2 = —23 x 10*2 salt molecules em™2.
This implies that the surface of such a solution lacks 23 x 10'? salt molecules cm ™2
to make the surface phase homogeneous with the bulk. Let us now consider a
spherical drop of aqueous NaCl solution and seek the drop size below which the
error due to omitting the surface salt deficiency is less than 1%. This condition
can be expressed by the inequality 9(47/3)a®p! > 100(47a?)T'$*Y. For o = py
and | rie/v) |= 3.82 x 10~1* mole cm™~2, we find @ > 1.15 x 10~° c¢m. Thus, a drop
consisting of one-molal sodium chloride solution can be considered a homogeneous
salt solution if its radius is larger than about 0.1 um. We shall see that this criterion
is fulfilled by most cloud drops during the condensation process (see Chapter 13).

This estimate is also in accord with a detailed study by Tsuji (1950) of the effect
of salt adsorption at the surface of a solution drop, formed by condensation of a
salt particle, on the equilibrium vapor pressure over the drop. The results of his
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computations show that the inhomogeneity due to adsorption at the drop surface
is negligible for salt masses (NaCl) larger than 10717 g, but becomes increasingly
significant for smaller salt masses. As we shall see in Chapter 6, only salt particles
of masses larger than 10~'7 g contribute importantly to the formation of cloud
drops by condensation. The effect of solution inhomogeneity may, therefore, be
neglected in studying the condensation process.

Just as one may replace oy, /v by 0y/a, a negligible error results on substituting
04/, the surface tension of an aqueous salt solution exposed to humid air, for the
quantity og,. Experimental values for o4/, of a few selected salts are given in
Figures 5.2a,b. These values are in good agreement with those of Low (1969b). We
note that for the monovalent as well as the bivalent salts, ¢/, (m) is approximately
linear. Since the slopes of these curves have a negligible dependence on temperature
over the range of meteorological interest, Hianel (1970) suggested the following
empirical relation:

94
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Fig. 5-2: Surface tension of various electrolyte solutions as a function of salt concentration;
(a) monovalent cations, (b) bivalent cations. (From Jarvis and Scheimann, 1967, with

changes.)

Js/a(ml T) o "Jw/a(T) + Bm 3 (5'19)

where the first term on the right is given by (5-12), and B in the second term can
be obtained from the slopes of the curves in Figure 5.2.

5.4.3 RADIUS DEPENDENCE OF SURFACE TENSION

A last relevant consideration for this section is the possible dependence of oy, /y
(or gy/a) on the curvature of the water phase. Given that the surface tension
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arises from attractive forces between molecules near the surface, we might expect
that only an alteration of the average geometrical configuration of these molecules
on a size scale comparable to the effective range of the attractive forces would
significantly affect the surface tension. Thus, we would expect a dependence of
ow v On size only for extremely small drops consisting of merely a few tens or
hundreds of water molecules.

Several investigations of this problem have been carried out. Tolman (1949a,b)
and Koenig (1950) suggested finding the answer on the basis of a quasi-thermodyna-
mic approach. Kirkwood and Buff (1949) and Buff (1951, 1955) utilized statistical
mechanics methods. Benson and Shuttleworth (1951) based their study on mole-
cular interactions. Although all three approaches qualitatively predict that the
surface tension of water decreases with decreasing radius of curvature of the water
surface, there is little quantitative agreement among them. Tolman estimated that
ow/y for a drop which consists of 13 water molecules (equivalent to a drop radius
of 4.6 x 108 c¢m, based on ¥y = 30 x 10724 cm® and py, = 1.0 g cm™3) is 40%
smaller than that for a plane water surface. In contrast, Benson and Shuttleworth
computed the surface tension of a small group of water molecules by counting the
number of bonds which had to be broken in order to cut off the group of molecules
from the bulk water structure. In order to estimate the interaction energy between
water molecules in water, Benson and Shuttleworth assumed that only the first
and second nearest neighbors had to be considered. In this manner they predicted
that the surface tension for a drop of 13 water molecules is only about 15% smaller
than that for a plane water surface. Since the quasi-thermodynamic approach is
not rigorous for such small water drops, one would tend to prefer the result of Ben-
son and Shuttleworth. However, the success of the molecular interaction method
obviously depends on the accuracy with which the structure of water can be de-
scribed. In this context, our discussion in Chapter 3 suggests that a hexagonal,
close-packed structure such as that used by Benson and Shuttleworth can hardly
describe the actual water structure accurately. Therefore, both the thermodynamic
and molecular methods must be treated with caution.

No trustworthy experimental determination of ¢ = o(a) is available for any
liquid except for the measurements of Sambles er al. (1970), who experimentally
tested the Kelvin law (see Chapter 6) for evaporating lead droplets. They concluded
that the surface tension of these droplets did not deviate from the values over a
flat surface, even if the drops were as small as 1077 cm.

We shall now present a simple, approximate, quasi-thermodynamic derivation
of the radius dependence of o, following Defay et al. (1966). From (5-11) we have,
for a displacement at equilibrium,

2d w/v
#—E—-’- +20,,/yd(1/a) = dpy — desat,w - (5-20)

Also, from (4-4b) we find, at constant 7, dp, = vydesat,w, and duy = vedpy.
But here duy = dpw; consequently, we may express the right side of (5-20) in the
form (vy — vy )dpw/vy. Then, on substituting from (5-15), doy, sy = —I‘fv‘""')dpw =



SURFACE PROPERTIES OF WATER SUBSTANCE 135

—u, T dp,,, (5-20) becomes

dowp _ or{/v)
Ty /v @r$/Y) [a) + pu — py

d(1/a). (5-21)

Assuming TS/ /(pw — py) is independent of a,we may integrate (5-21) to obtain

— (Uw/v)co
1+ /)T J(pw — p4)]

where (0w /v)oo is the surface tension of a plane water surface.

Ow/v (5-22)

The adsorption T{*/*) may be estimated in the following manner. Our thermo-
dynamic formalism requires for complete consistency that we choose the surface
of separation between phases to be the same as the surface of tension in which
the net surface forces appear to lie. Only for this choice can we be sure that the
bulk volumes defined by the position of the dividing surface are identical with
those appearing in the equation for mechanical work on which (5-1) and (5-3) are
based. Of course, in practice it is essentially impossible to know exactly where
the surface of tension is and, fortunately, for most purposes it turns out not to be
necessary. Nonetheless, in the present instance there is some predictive value in
realizing that the surface of tension, which is our reference surface for measuring
adsorption, must lie slightly below the free surface of a mass of water molecules
comprising a drop. Since the forces of attraction between the molecules in the
first layer act nearly along the lines connecting their centers, we may suppose that
the surface of tension is about half a molecular thickness below the free surface.
Therefore, the amount of water adsorbed on the dividing surface may be estimated
as half the mass of the first molecular layer. Then, taking 9.6 (A)? to be the
area occupied by each water molecule at the surface (Defay ef al., 1966), their
surface density is 1.7 x 10~® mole cm~2, and we find that T'"/") is approximately
0.87 x 10~? mole cm~2. This is in fair agreement with estimates made by Tolman
(1949a,b).

Table 5.1 lists results for oy, (a) computed from (5-22), using the above value
for T&"/¥) | and the approximation p, < py = 1g cm™3. 1t is seen that the radius
dependence becomes important for ¢ <1078 cm, as expected. It is clear from the
derivation and discussion that these values are not likely to be very accurate for such
small sizes; nevertheless, they should be adequate for our purposes. Unfortunately,
more rigorous values are presently not available.

5.5 Angle of Contact

So far, we have considered water or solution drops which are surrounded by vapor
or moist air only. Let us now consider a drop of water which is bounded by two
phases: moist air and a solid phase on which the drop is resting (Figure 5.3). Ifthe
water only partially wets the solid, it will form a ‘cap’ which makes contact with
the underlying surface at an angle ©, the contact angle for water on this surface.
If the water wets the solid completely, @ = 0. A surface which is readily wetted
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TABLE 5.1
Variation of surface tension of water (against air) with radius of curvature of various size
water drops; (ow/v)eo is the surface tension of water (against air) for a planar interface
(computed from Equation 5-22).

a(cm) Twiv/(Twv)eo (ow/v)os — (ow v)/("w;v)oo
%
oo 1.0 0
104 0.9997 0
105 0.9969 0.3
106 0.9697 3.0
1077 (140 molecules) 0.7622 23.8
4.6 x 108 (13 molecules) 0.5959 40.4
TABLE 5.2

Contact angle of water on selected solid substances. (Based on data of Head, 1961a,b;
Letey et al., 1962; Koutsky et al., 1965; Zettlemoyer, 1968; Mayamoto and Latey, 1971;
Isaka, 1972.)

Contact angle © My, /o = €0S©
Substrate (angular degrees)
Polyvinylformal (Formvar 50 0.64
Polyethylene terphtalate RTherpane) 70 0.34
Polymethylmetacrylate (Plexiglass) 80 0.17
Polyethylene (Tedlar) 94 -0.07
Teflon 100 to 117 -0.17 to -0.45
Platinum (metal) 40 0.77
Gold (metal) 65.5 0.41
Silver (metal) 79.5 0.18
Cadmium iodide 0 1.0
Silver iodide 9to 17 0.956 to 0.988
Silver chloride 50 to 55 0.57 to 0.64
Lead iodide 64 to 80 0.17 to 0.64
Surface soil 65.2 to 68.9 0.36 to 0.42
Quartz, beach sand 43 to 52 0.62 to 0.73

by water is called hydrophilic; a surface which is not is called hydrophobic. The
contact angle for water on various solid surfaces is given in Table 5.2.

The contact angle is determined by the condition of mechanical equilibrium:
there must be no net force component along the solid surface. From Figure 5.3,
this condition, known as Young’s relation, is easily seen to be given by

Ow/a cos® = ON/fa — IN/w - (5—23)

This relation, though quite useful, does rest on some idealizations which, of course,
are not found in practice. Some difficulties which complicate its use include: (1)
the roughness of the substrate (Osipow, 1962); (2) the presence or absence of
hydrophilic sites embedded in the surface (Zettlemoyer et al., 1961); (3) the satu-
ration state of the surrounding vapor (Corrin, 1975; also see Section 5.6); (4) the
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WATER VAPOR

Fig. 5-3: Mechanical equilibrium conditions for a drop on a horizontal solid surface.
Tension oy;a balances the sum of tension oy, and oy a cosf.

TABLE 5.3
Specific interface energy for a few solids against air and against water.

Surface energy

Surface energy against air against water
(erg cm™2) (erg cm2)
Solid (20°C) (20°C)
Teflon 18 30.3 to 50.5
Pbls 130 83.7 to 117.7
Agl 128 56.6 to 58.9
AgCl 190 143.7 to 147.8
soil, sand 21 to 43 0 to 17

dependence on whether the cap is advancing or receding (‘contact angle hysteresis’)
(Osipow, 1962). A few values for o,y and on/w are presented in Table 5.3.

It is customary in the cloud physics literature to speak ofthe ‘wetting coefficient’,
or ‘compatibility parameter’; this is just the quantity m, s, = cos®, apparently
introduced by Fletcher (1958). In analogy to the case of water on a solid substrate,
Fletcher also defined compatibility parameters for ice on a solid substrate. These
definitions are as follows:

myjy = e "IN (5.49), My s L N (Be24k)

Tija Tifw

Of course, formally identical defining equations can be set up for the case of an
environment of pure water vapor and, in fact, one finds m;/, & mj;y,, and my/, =
My /y-

5.6 Adsorption of Water Vapor on Solid Surfaces

Most solids, especially in highly dispersed form, adsorb water vapor onto their
surfaces. This reflects the tendency toward spontaneous reduction of surface energy,
in the same way as was discussed in Section 5.4 in the context of the adsorption of
dissolved salts onto the surface of tension.

Two main types of forces attract molecules to a solid surface: physical forces
(physical adsorption) and chemical forces (chemical adsorption or chemisorption).
The former are due to dispersion forces (attractive), forces caused by the presence
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of permanent dipoles (attractive), and short range repulsion forces. The latter are
due to a transfer of electrons between the solid surface and the adsorbed water
molecules and, thus, involve valency forces.

If the binding force between the molecules in the first adsorbed layer and the
newly arriving molecules is larger than the binding force between the molecules
in the first adsorbed layer and the surface of the solid, a higher vapor pressure is
required for formation of the first layer than for any subsequent layer. On such
walls, called hydrophobic walls, a critical supersaturation is required to form the
first adsorbed layer, and then subsequent layers are formed spontaneously. On the
other hand, if the water molecules in the first layer are more strongly bonded to the
solid surface than to the newly arriving molecules, the wall becomes covered with
molecules at relative humidities below 100%. However, for the completion of the
first and all subsequent adsorbed layers, the relative humidity in the environment
must continuously be raised. On such walls, termed hydrophilic walls, the thickness
of the adsorbed layer of water molecules increases as the relative humidity of the
environment increases, and may be several molecular layers thick before a relative
humidity of 100% is reached.

The adsorption behavior of a solid surface is generally characterized by a plot
of the amount of gas adsorbed as a function of the gas pressure at constant tem-
perature. The contour which describes such a functional variation is called an
adsorption isotherm. For physical adsorption, Brunauer et al. (1967) distinguish
five main types of adsorption isotherms (see Figure 5.4). Type I represents mono-
layered adsorption; types II and III represent monolayered adsorption at low pres-
sures, followed by the adsorption of further layers with increasing pressure; types
IV and V represent mono- and multilayered adsorption which occurs in the pres-
ence of condensation, at subsaturation pressures, in the capillary pores of the solid
surface.

Various theories have been advanced to describe the processes of adsorption of
gases and vapors onto solid surfaces. Since the physics of adsorption is a large
and quite complicated subject in its own right, we must refrain from treating it
here in great detail. However, since studies of the adsorption of water vapor on
solid surfaces have frequently and very successfully been used to characterize the
nucleating properties of these surfaces, it is important that we at least become
familiar with the basic features of the most widely used models for the adsorption
phenomenon. For further information, the reader may refer to sources such as
Bowers (1953), Meyer (1958), Pierce (1960), Osipow (1962), Flood (1967), Dunning
(1967), Clark (1970), and Samorjai (1972).

The three most widely used theoretical adsorption isotherms are those of Lang-
muir (1918) (L-equation); Brunauer, Emmett, and Teller (1967) (BET-equation);
and Frenkel (1946), Halsey (1948), and Hill (1946, 1947, 1949, 1952) (FHH-equa-
tion). Because of its simplicity and because it serves as a prototype for the others,
we shall now sketch a derivation of the Langmuir isotherm. Langmuir (1918) was
the first to realize that adsorbed films are often just molecular monolayers, owing to
the very short range of intermolecular forces. Accordingly, he treated adsorption in
terms of a dynamic balance between molecules entering and leaving a unimolecular
layer. Proceeding in this way, let w* denote the magnitude of the gas particle flux,
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Fig. 5-4: The five principal isotherms (5091-6 %:)hysica.l adsorption, after Brunauer et al.

i.e., the number of molecules striking the surface per unit area and time. Suppose a
fraction o of these adhere, and that the fraction of the surface covered by molecules
is f. Then, the rate of evaporation of gas molecules per unit area can be expressed
as Bf,where f(is a constant, while the rate of deposition of molecules per unit area
is wva(1 —f). For a condition of dynamic equilibrium, these rates are equal and so
f = wha/(8+wta). But w¥ is proportional to the gas pressure (see (5-51)), and for
amonolayer, f = V/V,,, where V is the volume of gas adsorbed at the equilibrium
gas pressure p, and V;, is the gas volume necessary to form a complete monolayer.
Therefore, for 7' = constant the balance may be expressed in the form

V = Vubp/(1+bp), (5-25)

where b is a constant for the given adsorbing material. This is the L-equation.

At low pressures, (5-25) predicts that adsorption is proportional to gas pressure;
this is known as Henry’s law. The type-I isotherm in Figure 5.4 is of the Langmuir
form. An experimental example of this type is the adsorption of Q2 or CO onto
silica at 0°C.

The BET theory extends the Langmuir theory to include the adsorption of two
or more molecular layers. The BET-equation can be written as

p 1 c—1
= + ’ 5-26
V(psat = P) Vime Vime [P/Psat) ( )
or
14 Nad c(p/ pant.) (5-26&)

Vi  tm (1= (@/Peac)]ll + (¢ = 1)(p/Peat)]’
where nag is the number of vapor molecules adsorbed on the surface, ny, is the
number of adsorption sites available on the solid surface, ¢ is a constant for a given
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solid, T = const., and pg is the saturation vapor pressure for the vapor being
adsorbed. The BET theory assumes: (1) that all adsorption sites on the adsorbing
surface are equivalent; (2) that each molecule adsorbed in a particular layer is a
possible site for adsorption of a molecule in the next layer; (3) that no horizontal
interaction between adsorbed vapor molecules takes place; (4) that the heat of
adsorption is the same for all molecules in any given adsorbed layer; and (5) that
the heat of adsorption is equal to the latent heat of evaporation for the condensed
gas in bulk for all adsorbed layers except the first. Of course, assumptions (1), (3),
and (4) also apply to the L theory.

If V/V,, is plotted against p/psat, a type-1I isotherm is obtained if ¢ < 2. Such
an isotherm is obtained, for instance, if nitrogen is adsorbed on an ice surface
(Figure 5.5). A type-III isotherm results if 0 < ¢ < 2. If p/V(Pear — p) is plotted
against p/Pu, (5-26) yields a straight line with a slope of (¢ = 1)/eV,,, and an
intercept of 1/Vj,¢, fromwhich ¢ and V;, can be determined. The total surface
area of the adsorbing solid can be computed from a known value of V,,, and of the
area occupied by one molecule adsorbed on the surface. From this, one can compute
the specific surface area per unit mass of the adsorbing solid. Nitrogen, argon, and
krypton turn out to be the gases best suited for such surface area determinations.

0 02 04 085 0809

p/P,

Fig. 5-5: Adsorption 1sotherm for nitrogen on non-annealed ice at 77 K; (O original run;
A after 5 days at 77 K; (0 after 14 days at 77 K. (From Adamson et al. 1967, with
changes.)

At pressures close to saturation, the adsorbate consists of multilayers and has
properties similar to the condensate in bulk. For such conditions, the adsorption
mechanism is probably best described by the FHH theory, which can be expressed
by the relation

A

(V/Vim)®
where A and B are constants for any particular adsorbing solid for 7 = const.
Thus, a plot of V//V,,, vs. In(psay/p) o0 a doubly logarithmic scale exhibits a linear
variation from which A and B can be determined.

Of course, the Gibbs adsorption isotherm (5-16) may also be used to study the
adsorption behavior of a solid surface. As an example of its use, we shall now

In(psat/p) = (5-27)
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determine the dependence of the contact angle for water on a solid on the environ-
mental vapor pressure, following Corrin (1975). The reasoning is straightforward:
the higher the vapor pressure e, the greater the adsorption T4'/*) of water on a
given solid surface; from (5-15), a change in surface tension must result if 7 = con-
stant. This, in turn, alters the contact angle. Proceeding in this manner, we
have du&w V) = dpy = ZTd Ine for equilibrium changes, and assuming ideal gas
behavior. Then, from (5-15) we have, at constant 7,

doy )y = —ZTTMdlne, (5-28)

which upon integration yields

I(e) = 0w/ (0) — owyv(e) = T [ ™ dlne. (5-29)
0

The quantity Il(e) is known as the spreading pressure.
If in a particular experiment the mass my a4 of adsorbed water vapor is mea-

sured as a function of e in an environment of pure water vapor, then [“(,.,Nf V) =
my a4 /Mywmp,where my is the mass of the adsorbing solid (N), and where w is
its specific surface area (determined by a separate experiment); with this informa-
tion, II(e) may be found from (5-29).

For two different pressures e;, and ez > e; , we have

T(ez) — II(e1) = oye(1) = Oy (e2) = ﬁT/ rMdine >0.  (5-30)

€1

Consequently, the corresponding contact angles determined from (5-23) will also
be different, and in fact

cos O = cos O — [II(e2) = II(e1)] /oy y - (5-31)

This shows that the contact angle for water on a solid substrate increases with
increasing vapor pressure. For example, Barchet and Corrin (1972) studied the
adsorption of water vapor onto pure silver iodide (Agl) at 7 = —10°C, and at an
ice supersaturation of e/eg,, ; = 1.025; this led to II(e) — II(ega,i) = 0.84 erg cm™2.
From (5-31) one finds that ©(e) — ©(egas,i) = 3°,from which for © (e, ;) ~ 11°, we
find ©(e) ~ 14°. This trend is as expected; adsorption lowers the surface energy
of the solid substrate, enabling the drop on the solid surface to pull itself together
further.

Because of its ice nucleating properties, silver iodide has been the object of
numerous adsorption studies in the recent past. It is seen in Figure 5.6a,b that the
adsorption of nitrogen on a sample of powdered Agl is characterized by a type-II
adsorption isotherm which can be fitted to give a straight BET adsorption curve.
From such a curve one may determine Vi, the number of adsorption sites available
to Ng molecules, and the total surface area of the absorbing Agl sample. Knowing
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Fig. 5-6: Adsorption behavior of nitrogen on silver iodide at —196°C; (a) adsorption
isotherm, (b) BET curve. (From Birstein, 1954; by courtesy of the Air Force Geophys.
Laboratory, Hanscom Air Force Base, Massachussetts.)

the total surface area of the sample makes it possible to determine the amount
of water adsorbed per unit surface area from the adsorption characteristics of the
same sample for water vapor.

The adsorption chacacteristics of Agl for water vapor have been studied by
Coulter and Candela (1952), Birstein (1955, 1956), Zettlemoyer et al. (1961, 1963),
Tcheurekdjian ef al. (1964), Corrin et al. (1964, 1967), Barchet and Corrin (1972),
and Gravenhorst and Corrin (1972) using Agl of various purity. Type-II as well as
type-11I isotherms were observed, depending mainly on the method of preparing
the Agl. Silver iodide samples, strongly contaminated with water-soluble impurities
such as AgNQj3, and KI salts, characteristically gave type-III isotherms. Figure 5.7a
illustrates the adsorption behavior of water vapor onto ‘pure’ Agl, and Figure 5.7b
shows the adsorption behavior of water vapor on Agl of various purity. We notice
that the amount of water vapor adsorbed increases with increasing vapor pressure,
rising particularly strongly as saturation is approached, and that the presence of
impurity ions such as K* and NOJ in the Agl lattice enhances the adsorption of
water vapor.

Some Agl samples were found to give adsorption isotherms for water vapor which
could be fitted to a linear BET curve from which the number of adsorption sites
available to HoO molecules could be determined. Other samples did not behave in
this manner, requiring instead alternative methods to estimate the number of water
adsorbing sites (Tcheurekdjian ef al., 1964; Corrin and Nelson, 1968). Comparison
between the adsorption properties of Agl for water vapor and those for nitrogen
demonstrated that the number of Agl surface sites available to water molecules is
significantly less than the total number of sites present. This suggested that an Agl
surface basically behaves like a hydrophobic surface with a few water receptive, i.e.,
hydrophilic, sites. Zettlemoyer and co-workers suggested that chemical impurity
ions built into the Agl lattice may serve as such hydrophilic sites.

Since water molecules are rather weakly bonded to the Agl surface surrounding
a site, they diffuse relatively easily towards the site to form a three-dimensional
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Fig. 5-7: Adsorption isotherms for water vapor on silver iodide, Agl. (a) pure silveriodide

at various temperatures (from Barchet and Corrin, 1972; with permission from J. Phys.

Chem. copyrighted by the Amer. Chem. Soc.), (b) comparison of pure Agl () with Agl

doped with 0.1% KNO3 (e) and with 1% KNOj3 (®). (From Gravenhorst and Corrin,
1972; by courtesy of J. de Rech. Atmos., and the authors.)

(3-D) water cluster. This results in the build-up of adsorbed multilayers before the
completion of an adsorbed monolayer. The concept of water clusters was strongly
advocated also by Corrin and co-workers. They too interpreted the adsorption
behavior on impure Agl surfaces in terms of 3-D water clusters, which they found
even at low relative humidities over highly localized surface impurity sites.

However, ‘pure’ Agl essentially free of impurity ions was found to behave dif-
ferently. The studies of Corrin and co-workers suggested that on the surface of
‘pure’ Aglno 3-D water clusters build up at low relative humidities. Instead, the
adsorption behavior suggests the formation of two-dimensional water patches in
which the water molecules are distributed over a relatively wide area, exhibiting
strongly cooperative, lateral interaction. Multilayers begin to build up only at high
relative humidities.

Zettlemoyer (1968) found that, similarly to impure Agl, silica compounds doped
with salt ions adsorbed considerably more water than undoped silica characterized
by a fully hydroxylized surface. The larger adsorption was attributed to the doped
ions acting as hydrophilic sites over which water clusters are built up. To confirm
their results, Federer (1968) studied the adsorption behavior of water vapor on
surfaces of silicon doped with boron and phosphorous. He noted a pronounced
correlation between the amount of water adsorbed and the specific electric resis-
tance of the adsorbens (see Figure 5.8a). Federer found that the samples of higher
specific resistance (lower concentration of doping atoms) had a larger total den-
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sity of adsorption sites, but that the sites on samples of lower specific resistance
(higher concentration of doping atoms) were more active, and could adsorb more
water. Through a study of the electrical surface potential of doped silicon, he con-
cluded that the amount of charge exchanged between physically adsorbed water
molecules and the substrate increases with an increase in doping. Since in giving
up charge to the substrate, such molecules are chemisorbed, and since chemisorbed
water molecules are preferred sites for subsequent further adsorption (Wanlass and
Eyring, 1961), Federer interpreted the positive correlation noted between doping
and adsorption in terms of a positive correlation between doping and the creation
of active chemisorption sites.
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Fig. 5-8:a. Adsorption isotherms at —10°C for water vapor on p-type silicon doped with
various amounts of boron. Specific electric resistance of sample: (») 102 Q cm, (+) 7.5 x
10% © cm. (From Federer, 1968; by courtesy of Z. Angew. Math. Phys. and the author.)

Fig. 5-8:b. Adsorption isotherms at 25.5°C for water vapor on: (1) potassium kaolinite
(pertains to ordinate on left), (2) lithium kaolnite (pertains to ordinate on right). Both
ordinates have same units. (From Martin, 1959, with changes.)

A type of cluster-forming active site quite different from those mentioned above
was photographically studied by Pruppacher and Pflaum (1975) on single crystals
of BaTiO;. Their studies showed that the tendency for water cluster formation
strongly correlated with the location of the ferroelectric domains in BaTiOs, and
was particularly favored in regions where the electric dipole in the surface was
oriented horizontally, and on the boundaries separating ferroelectric domains.

Experiments indicate that clays (a significant component of the atmospheric
acrosol (see Chapter 8)) are uniformly hydrophilic and strongly adsorb water mole-
cules over their entire surface. Nuclear magnetic resonance (NMR) studies by Wu
(1964) at temperatures down to —10°C verified that water molecules are very
tightly bound to clay surfaces, where they are arranged close to the surface in a
structure significantly different from that ofice. His observations showed that these
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strongly adsorbed water molecules experience a considerable loss of translational
and rotational degrees of freedom. A similar observation was made by Morariu
and Mills (1972) who found that at a coverage of one statistical monolayer, the
diffusivity of water molecules on clay surfaces was almost one order of magnitude
smaller than water diffusivity in bulk. Extrapolation of their data to higher cover-
age showed that the bulk value of the water diffusivity was approached only after
the formation of about 15 monolayers. Expressed in another way, in the temper-
ature interval between —22 and +15°C the activation energy for self-diffusion of
water molecules on a clay surface was found to be higher by about 1.6 kcal mol™—!
than the corresponding value for bulk water.

In accordance with NMR and diffusivity studies, measurements by Palmer (1952)
showed that the static dielectric constant for water adsorbed on clays varies between
4 and 3.14. This is considerably below the value of about 81 for water in bulk,
and is indicative of a reduction of the freedom of movement of the adsorbed water
molecules, so that the degree of dipole alignment in an applied electric field is
lessened.

Figure 5.8b illustrates the adsorption behavior of two typical samples of clay.
One notices that in the BET classification, both depicted adsorption curves are
type-1I isotherms.

5.7 Ice-Vapor Interface
5.7.1 SURFACE ENERGY OF ICE

By the surface energy of ice we mean the energy required to form a unit area of new
surface. For ideal crystalline ice, this energy may be identified with one half the
energy per unit area, W,, which is needed to split an infinite crystal parallel to a
particular crystallographic plane and separate the two parts by an infinite distance.
(The factor 1/2 accounts for the fact that by cleaving the crystal, two new surfaces
are created.) It is then natural to take W¢/2 as the surface tension or interfacial
energy, oj/y, between the particular ice crystal face and water vapor or air, assuming
the presence of such gases does not significantly affect the surface energy. Owing to
the structure of the crystal lattice, it is clear that ¢j/, will generally be different for
different surface orientations with respect to the crystallographic axes, in contrast
to the behavior of liquids.

To obtain W, one must determine the binding energy, or work of cohesion;
for a molecule on the crystal surface. Now for a cut perpendicular (parallel) to
the crystallographic c-axis, a water molecule which is hydrogen bonded across the
cleavage plane loses one nearest neighbor molecule and three (four) next nearest
neighbor molecules. A water molecule which is not hydrogen bonded across the
cleavage plane loses three (two) next nearest neighbor molecules. Therefore, a water
molecule may be regarded as losing one nearest and six next nearest neighbors by
cutting along a basal or prism plane. If we disregard the forces of interaction due to
third and higher order nearest neighbors the energy per bond required for cleavage
of an ice crystal can therefore be expressed as

Em =Uy +6Us, (5-32)
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where Uy, and U, are the average interaction potentials between the molecules in
the first and second interaction zones. The interaction potentials Uy and Uy for
intermolecular spacings of 2.76 x 10™® cm and 4.51 x 10~® cm, respectively, were
computed by Reuck (1957) on the basis of Rowlinson’s (1951) force constants, which
take account of the multipole electrostatic interaction forces, induction forces, and
repulsion forces. As a result, Reuck found, for 0 E,, = 4.24 x 10~!® erg bond™!
or 8.48 x 10~'% erg molecule, i.e., 12.15 kcal mole™" since there are two bonds per
molecule. This theoretical estimate is quite close to the experimetally determined
value for the sublimation enthalpy ofice, %, = 12.20 kcal mole™! (see Section 3.3).
In order to estimate the surface energy of ice, we prefer to use the experimental
value for the sublimation energy and consider %, /2 = 6.10 keal (mole of bond) ™!
or 4.26 x 10~13 erg bond~! as the interaction energy between a water molecule and
its neighbors in ice.

All that remains now to estimate the surface energy of ice is to count the areal
density of bonds at the basal and prism faces of the unit cell ofice (Figure 3.4). For
a basal plane, the area is v/3a2/2. Since this area is occupied by 2(1/3 + 1/6) = 1
bond the density of bonds in the basal plane is 2/v/3a3. For ap ~ 4.52 x 107® cm,
the bond density is 5.65 x 10'* em~2. Similarly, for a prism plane, the area of
the unit cell is ¢pap, and the occupancy is (4 x 1/4) + (2 x 1/2) = 2 bonds. Since
co ~ 7.36 x 10~8 cm at —20°C, we obtain a bond density of 6.00 x 10'* bonds ecm™2
for the prism plane.

Multiplying now these bond densities by the energy per bond, we arrive at the
estimates WC(B) = 241 erg cm™2 for the basal face of ice and W.;(P) = 256 erg cm™?

for the prism face. The corresponding values for the surface energies are "EP} =
v

120 erg em~2 and UE}? = 128 erg cm 2. Similar estimates were made by Mason
(1952, 1954a) and McDonald (1953b).

McDonald (1953b) has pointed out, however, that the surface energies thus com-
puted pertain to a ‘fresh’ surface. Since molecules in a freshly cleaved surface will
not remain in their original position but will relax into new equilibrium positions,
the surface energy of an ‘aged’ surface is somewhat less than that of ‘fresh’ surface.

The significance of such relaxation can be appreciated if we calculate @,/ for
water at 0°C in the same manner as was just done for ice, and compare results with
the experimentally determined values of surface tension. Proceeding in this manner,
but now considering evaporation rather than sublimation enthalpy, we suppose that
NsE,, = % [2;1.¢e., as before, we assume that for a molecule to get from the interior
to the surface requires breaking roughly half the bonds which must be severed for
a complete escape. Thus, using the fact that %, /2 = 5.375 kcal mole™! = 3.75 x
10713 erg (bond)~! at 0°C and 5.61 kcal mole~! = 3.92 x 10! erg (bond)™! at
—40° C, and assuming at these temperatures a structural similarity between water
and ice so that the areal bond density is approximately 5.8 x 10!* bonds cm™2, we
obtain a hypothetical cleavage energy for the water surface of 217 erg cm =2 (0°C)
and 227 erg cm™2 (— 40°C). However, from experiments we know that o, /a,0bs (0°C)
A 76 erg cm ™2, with an extrapolated value of 87.5 erg em™2 at —40°C. Thus, for
water at least, the real, ‘relaxed’ surface has less than half the surface energy
predicted for a hypothetical ‘freshly cut’ surface.
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In order to arrive at a suitable correction for the ice surface energy calcula-
tion, McDonald suggested subtracting {0y /a,fresh — Ow/a,obs); fTom the o/, which
we obtained from our cleavage computation. However, McDonald realized this
might over-correct because of the difference between %, and .%,. Therefore, he
suggested reducing the correction by the factor %, /.%; = 0.88 (0°C) and 0.92

(—=40°C); for the corrected surface energies agﬁ) of'ice this yields the final values of

100 erg em™2 (0°C), ie., 102 ergem™= (~40°C), and o).} = 109 erg em™2 (0°C),
ie, 111 erg em=2 (—40°C).

The values deduced above for o/, corrected for the disposition of the water
molecules at the ice surface, agree well with the experimental estimate of Ketcham
and Hobbs (1969) who found aj, = (106 + 3) erg em=2.

In deducing these surface energies we have only considered elastic relaxation.
Still neglected is the fact that the ice surface exhibits a quasi-liquid layer to tem-
peratures considerably below 0°C (see Section 5.7.3). This layer further reduces
the surface energy of ice, as suggested by Furukawa et al. (1987) and Beaglehole
and Nason (1980). Unfortunately, no quantitative corrections for this effect are
available at present.

5.7.2 WULFF’S THEOREM

Wulff’stheorem (Wulff, 1901) provides a description of the equilibrium shape of a
crystal from a knowledge of the variation of surface tension with crystal face orien-
tation. It should be emphasized that this equilibrium shape is not often oserved,
since actual crystal geometries are strongly influenced by thermal and diffusion gra-
dients, and other kinetic effects associated with active growth (see Section 13.3.3).

Because work is required to form new surface, the equilibrium shape must be
the one which minimizes the total surface energy for a given volume. For a concise
treatment of the problem along these lines, the reader is referred to Landau and
Lifschitz (1958). Here we shall outline a simpler, more heuristic derivation following
Dufour and Defay (1963).

Consider a crystal which has a volume V" and is bounded by (o) faces, each
of which has a surface area Q(?). Let the crystal be surrounded by its own vapor
(or melt) of volume V' and pressure p’, and suppose the whole system is contained
in a cylinder whose volume V = V' + V" can be varied by a piston. By moving
this piston, the work dW = —p'dV may be done on the system; this may also be
written as

AW = —p'V' — p"dV" + adV", (5-33)
where @ = p” — p’ and where we have assumed a uniform pressure p” within
the crystal. But dv” = £,0()dh(?), for normal outward displacement of the

faces (@) by dh'”) (see Figure 5.9). Furthermore, the volume of the crystal is
V" = (£,h'?)Q(2))/3, and on differentiation, this yields

3dV" = B,h9dQ@ + £,0@)dn?) |
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Fig. 5-9: Schematic of a hexagonal crystal to illustrate Wulff's relations.

so that )
"= 2% h9de@, 5-34
A= ; (5-34)
Therefore, the work done on the system may also be expressed as
P I " (o] ( } (0)
(@W)cryse. = =#/dV’ = p"dV" + 5 5" h(dQ). (5-35)

o

Now consider a system just like the above except that the crystal is replaced by

a drop of the same volume. The work done may again be expressed as in (5-33).

However, on invoking the condition of mechanical equilibrium, (5-7), we can write

the last term in (5-33) in the form 20dV"/a = odf2, where 2 is the area of the
drop; therefore,

(dW) = —p'dV’ - p"dV" + 0dQ2. (5-36)

drop —

Comparison of (5-35) and (5-36) shows that a complete analogy between the two
systems can be maintained by setting

ol?) = %h("), (5-37)
so that also
(dw)crysl.. T -—p’dV" - p”dV” + z o(d@. (5_38)
o
From (5-37), we have
(1) (2) "t
%mz%ﬁ—z...zp 21!3 = constant. (5-39)

This constitutes Wulff’s theorem: In equilibrium, the distance of any crystal face
from the center of the crystal is proportional to the surface tension of that face.

Let us use Wulff’s theorem to estimate the equilibrium crystal shape for ice.
From (5-39) we have

(B)
h(B) Tiry
v

inserting our previously determined values for the surface tensions. Referring to
Figure 5.10, we see that hi¥) = a', where a' is the radius of the circle inscribed in
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the basal plane, and that h® =H /2, where H is the height ofthe ice prism. Also,
a = a\/§/2,where a is the radius of the circle circumscribed in the basal plane.
Inserting the values for hP) and h® into (5-40), we find

Fig. 5-10: Schematic of an ice crystal to illustrate the determination of the shape factor.

H

i 0.80. (5-41)
The equilibrium form is thus predicted to be a hexagonal prism with a ratio of axial
length to hexagonal diameter (the observed ‘diameter’ of an ice crystal is usually
given in terms of the diameter of the circle circumscribed within the basal plane of
the crystal) of about 0.8 (Krastanow, 1943; Higuchi, 1961).

This result is in excellent agreement with the observations of Kobayashi (1961)
who found that at very low excess vapor pressures (H/2a) — 0.8 for ice crystals
grown at —22°C< T < —10°C. However, at warmer temperatures, no trend to a
limiting habit could be observed, while at T' < =22°C, (H/2a) = 1.4. These latter
results could be explained if it is assumed that Kobayashi’s experimental arrange-
ment could not reproduce equilibrium conditions outside the studied temperature
interval. Another possibility is that g/, is temperature dependent in a way which
is different for the basal and prism faces. This could possibly arise from temper-
ature dependent behavior of surface defects, for example. However, at present no
information on this point is available. On the other hand, at temperatures warmer
than —10°C, the equilibrium shape is controlled by the quasi liquid layer on the
ice surface (see Section 5.7.3) which causes the prism faces to disappear from the
equilibrium form. Colbeck (1985) experimentally found that in this temperature
range the equilibrium form is a rounded plate with a thickness to diameter ratio of
0.4.

In computations of the rate of homogeneous and heterogeneous ice nucleation,
one generally assumes that ice particles of spherical shape are nucleated. It is,
however, more realistic to suppose that the nucleated ice particles have hexagonal
shape. To take this into account, Dufour and Defay (1963) defined the shape
factor of a Wulff type crystal ((5-39), (5-40)) by the relation s = 3V" /(a')3. Using
Figure 5.10, we find V" = 6(a')?H/v/3, where from (5-40) H = 1.84a'. We then
obtain for the shape factor s = 19.12 (Dufour and Defay obtained s = 20.78 by

assuming UE),E",) = a}ﬁ,}; of course, for a sphere: s = 4m).
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5.7.3 STRUCTURE OF REAL ICE SURFACES

Surface energies characterize the average conditions on a surface. For understand-
ing the detailed behavior of an ice crystal during growth and evaporation by vapor
diffusion, we must consider in addition the microscopic, topographic surface fea-
tures which are typically present.

Experimental studies show that crystalline solids have rough surfaces, i.e., they
contain molecular, microscopic, and even macroscopic steps. Such steps often are
the result of crystallographic dislocations induced in the crystal by mechanical
stresses, thermal stresses, and/or accidental assimilation of foreign solid particles
during the crystal’s growth. These may cause lattice layers to slip along definite
boundaries called dislocations. There are two main types of dislocation: edge dislo-
cations and screw dislocations. In a crystal with the former, the boundary between
slipped and unslipped regions extends perpendicular to the slip direction. An edge
dislocation may thus be thought of as being caused by inserting an extra plane of
atoms into the crystal. In a crystal with a screw dislocation, the boundary between
the slipped and unslipped regions extends parallel to the slip direction, and so a
screw dislocation may be thought of as being caused by cutting part way through a
crystal with a knife, then shearing it parallel to the plane of cutting by one atomic
spacing. Steps from screw dislocations transform successive atom planes into a
helical or screw-type surface, hence the name (Figure 5.11).

(b)

Fig. 5-11: Schematic of an emerging screw dislocation: (a) Schematic of formation, (b)
schemaitic of a well developed screw dislocation ‘staircase’. {From Lamb and Scott, 1974,
with changes.)

Several studies have shown that molecular steps resulting from dislocations can
be made visible at the ice surface by the method of thermal etching (see, e.g.,
Hobbs, 1974). During this process, the ice surface is subjected to slow evapora-
tion. Since a surface molecule at a topographic imperfection is surrounded by fewer
molecules than a molecule elsewhere in the surface, it is less strongly bonded to the
surface. Topographic surface imperfections are therefore the location of preferred
evaporation. As water molecules are removed preferentially from such locations,
topographic imperfections are made visible in the form of etch-pits (Figure 5.12).
Thermal etching is thus capable of revealing the location of dislocations in the crys-
tal. During thermal etching screw dislocations ‘unwind’ in a screw-type manner,
causing the formation of etch-pits with spirally stepped walls. Step heights have
been found to vary between 0.01 and 0.2 um. It has been suggested that micro-
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scopically visible spiral step heights of as much as several tenths of a micron do
not represent the original step height of an emerging screw dislocation, but rather
result from a bunching of monomolecular layers (Frank, 1958). The number density
of etch-pits has been found to range between 10* and 10® em~2, as expected from
the number density of dislocations estimated on the basis of other methods.

Q C-AXIS

Fig. 5-12: Schematic of various types of etch-pits on the surface of ice. (From Higuchi,
1958a; by courtesy of Pergamon Press Ltd.)

In analogy to the etch-pits which appear at the locations of emergent crystal-
lographic dislocations during very slow evaporation of an ice surface, small raised
surface features termed hillocks have been observed to appear on a nascent, slowly
growing ice surface at the site of emergent dislocations. This demonstrates that
sites of emergent crystal dislocations are not only sites of preferred evaporation but
also sites of preferred ice crystal growth. The reason for such a site serving as a
preferred growth center lies in the fact that considerably less energy is involved in
the propagation of an ice crystal face by the addition of water molecules to steps
and ledges already present on the ice surface than by nucleation of new growth
layers on a perfectly smooth ice surface.

At conditions where an ice crystal freely grows or evaporates in air, the sub-
microscopic surface roughness is found to manifest itself in the form of facetted
surfaces. Such crystals are said to have a hopper structure (Figure 5.13). For sur-
face ridges to be visible, the ice crystal diameter needs to exceed a few hundred
microns. The ridges are considered to result from the bunching of much thinner
growth layers.

The bunching mechanism of growth layers at the surface of ice crystals which
grow in a vapor environment was studied by Mason et al. (1963). According to
these authors, the bunching of monolayers on a growing ice surface is the result
of interference between propagating steps. At the low supersaturations typical
for atmospheric clouds, new layers on an ice surface originate at topographical
surface imperfections and at the edges and corners of ice crystals. There the vapor
concentration gradient which constitutes the driving force for diffusional growth, as
well as the temperature gradient which controls the dissipation of the latent heat
released during growth, are high relative to the center of an ice crystal face. Once a
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Fig. 5-13: Hopper structure at the surface of ice crystals grown freely in a supersaturated

environment: ﬁx) hollow, hexagonal prismatic column, (b) dish-shaped, hexagonal plate,

(¢) vertical section through center of (b). (From Mason et al., 1963; by courtesy of Phil.
Mag., and the authors.)

step is formed, it advances chiefly by the addition of water molecules brought to the
step by surface diffusion. In isolation, each layer moves across the ice crystal surface
with the same speed vg. However, if two layers have originated sufficiently close
to each other, competition for adsorbed water molecules tends to slow down both
steps. If an additional layer originates some distance behind the pair of interfering
steps, it will initially travel at the speed of an isolated step until it catches up with
the interfering step pair, when it too will slow down, and so on. Eventually, the
pile-up or bunching of monolayers will produce a microscopically visible step.

In order to estimate the time required for the bunching of monolayers, we let
ds denote the average migration distance which an adsorbed molecule travels by
surface diffusion before re-evaporating. Then, assuming that direct arrival of mole-
cules to the step front from the vapor is negligible in comparison to the surface
diffusion flux, we see that steps grow by collecting molecules from a diffusion zone
of width 2ds. Furthermore, two such fronts can be expected to experience con-
siderable interference when their separation becomes less than this amount. We
therefore expect the time needed for the two fronts to merge to be proportional to
2ds, and inversely proportional to the characteristic step speed vp. In this manner,
or simply by strict, dimensional analysis, given that d; and vy are the only relevant
parameters, we estimate the time ¢ required for the formation of a step of N unit
heights to be within an order of magnitude of the quantity 2dsN/vp. A detailed
calculation by Mason et al. (1963) provides a more quantitative estimate, viz.:

t=4In2d,N/v. (5-42)

This expression agrees well with their observations, giving sufficient evidence that
surface diffusion is, in fact, the dominant process behind the bunching mechanism.

Since, as mentioned, the formation and propagation of layers is favored at the
edges and corners of the ice crystal, as compared to its face center where the growing
layers slow down, freely growing ice crystals preferentially thicken at the crystal’s



SURFACE PROPERTIES OF WATER SUBSTANCE 153

periphery, leading to the observed hopper structure depicted in Figure 5.13. More
details on the growth rate of individual crystal faces and its effect on the crystal
shape will be given in Section 13.3.3.

In studying the adhesive properties of ice, Faraday (1860) conjectured that a
‘quasi-liquid’ layer exists at the interface between ice and air, and that this layer
solidifies only when sandwiched between two ice surfaces. Although this possibil-
ity obviously has considerable bearing on the feasibility of the collection growth
of ice crystals in clouds, it was not until much later that the idea was pursued
more quantitatively. In support of Faraday’s quasi-liquid film hypothesis, Nakaya
and Matsumoto (1953, 1954) and Hosier ef al. (1957), who measured the force re-
quired to separate two ice spheres brought into contact while hanging side by side,
noted that the adhesive force was relatively large close to 0°C, but decreased with
decreasing temperature and humidity of the surrounding air. In an ice saturated
atmosphere, Hosler er al. (1957) found that the adhesive force decreased to zero if
the ambient temperature decreased below —25° C. This result was taken to mean
that quasi-liquid films on ice may be stable down to this temperature.

Further indirect evidence for the presence of a quasi-liquid layer at the ice-air
interface has been provided by Bullemer and Riehl (1966), Jaccard (1967), Ruepp
and Kass (1969), Maidique et al. (1971), and Maeno (1973), Caranti and Illing-
worth (1983), who showed that the surface electrical conductivity of ice increased
significantly at temperatures warmer than —10°C, and particularly at temperatures
warmer than —4°C, by Kvlividze et al. (1970, 1974) and Mizuno and Hanafusa
(1987), who studied the layer using a nuclear magnetic resonance method, by Man-
tovani et al. (1980), who measured the surface viscosity of ice, by Beaglehole and
Nason (1980), who determined the extent of the layer by means of a He-Ne laser
light reflected from the ice surface, and by Goleki and Jaccard (1978), who probed
the ice surface by a proton back-scattering technique.

An early attempt at a physical explanation for the existence of a disordered,
quasi-liquid layer at the ice-air interface was provided by Weyl (1951), who sug-
gested that it can be explained in terms of the tendency of any system to minimize
its surface energy. A rearrangement of water molecules to provide such a mini-
mization of surface energy is easily possible in liquid water where the molecules are
highly mobile. On the other hand, in ice the long-range order of water molecules
prevents an easy rearrangement of the molecules. However, according to the views
of Weyl, breakdown of this long-range order may still occur near 0°C inside a thin
layer at the ice-air interface. Weyl’s conjectures were followed up more quantita-
tively by Fletcher (1962b, 1963, 1968, 1973). By taking into account the structure
of a real ice crystal lattice and considering all the defects which occur in such a
lattice (see Chapter 3), Fletcher (1973) developed a molecular thermodynamics
model, from which it was possible to compute the lowering of the surface energy of
ice when a quasi-liquid layer is present, and the temperature range for which such
a film is stable. The thickness h of the quasi-liquid layer could not be expressed
rigorously in a simple manner as a function of temperature 7, but the following
approximate relation was derived graphically from the computed variation of h vs.
T:

h=A-Blog(To - T), (5-43)
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where hisin 1078 em, T in K, Ty = 273 K, A = 20 to 50, and B = 25. In fair
agreement with Fletcher, Mazzega et al. (1976) found from experiments that A =
37 and B = 25. Some additional support for Fletcher’s values for the thickness of
the quasi-liquid layer came from the recent theoretical model of Chen and Crutzen
(1994) who adapted the transition layer concept of Lacman and Stranski (1972) as
modified by Kuroda and Lacman (1982). On the other hand, the results of Fletcher
and of Mazzega er al. have been criticized by Goleki and Jaccard (1978), who found
experimentally that the thickness of the disordered layer at the ice surface is about
10 times thicker than the value obtained by Mazzega et al. (1976) approaching
about 0.1 um at —1°C, and becoming near zero at —55°C, with A = (940 = 170)
and B = (540 £ 140). The thickness of the layer at —1°C agrees well with the
thickness derived from measurements of the dielectric constant by Lagourette er
al. (1976), and with Jellinek’s (1967) and Weyl’s (1951) estimate derived from
mechanical work of adhesion. Goleki and Jaccard suggested that the differences
between the various literature values for the thickness of the surface layer on ice
are perhaps due to the different nature of the experimental techniques used, and
also due to the lack of reliable values for the parameters in the theoretical models.

Direct evidence for the presence of highly mobile water molecules at the sur-
face of ice has been presented by Bryant et al. (1959), Hallett (1961), and Mason
et al. (1963). They found that water molecules at the surface of ice migrate for
considerable distances before they become part of the ice crystal lattice. Quanti-
tative measurements on the surface diffusion of water molecules on ice have been
carried out by Mizuno and Hanafusa (1987) using a nuclear magnetic resonance
technique. These showed that the diffusivity increases with increasing tempera-
ture from 1.35 x 107 cm? sec™! at —20°C to 3.08 x 10~? em? sec~! at —1.5°C,
indicating increased mobility of the molecules with increasing temperature. We
note from these values that the diffusivity is a few orders of magnitude smaller
than the diffusivity of water molecules in water (3-19 and 3-20) but about two
orders of magnitude larger than the diffusivity in bulk ice (see Section 3.3). As
expected, the energy of activation for surface diffusion of 5.56 kcal mole™! lies in
between that for diffusion in water and in ice. It is interesting to note that the
NMR signal indicated mobile molecules at the surface even at temperatures as low
as —100°C. This result, however, should not be taken to mean that the mobile
molecules form a quasi-liquid layer down to these low temperatures. Rather, as
Goleki and Jaccard suggest, they form a ‘disordered’ or ‘amorphous’ layer due to
oxygen atoms exercising large amplitude vibrations which are transmitted into the
interior of the crystal by the directionality of the hydrogen bonds. Stillinger and
Rahman (1972), Hale ef al. (1981), and Kiefer and Hale (1977) have a somewhat
different view, and suggest from their theoretical models that the surface diffusion
of water molecules proceeds in the form of vascillating tours of molecules in a force
field of a constantly changing network pattern rather than via occasional jumps
between discrete binding sites in the ice lattice.

The work of Kuczynski (1949), Kingery (1960a,b), Kuroiwa (1961, 1962), Hobbs
and Mason (1964), Hobbs and Radke (1967), Itagaki (1967), and Kikuchi (1972)
showed that the quasi-liquid layer mechanism is not the only one which can explain
the sticking together of two ice surfaces. The formation of a ‘neck’ joining two ice
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surfaces in contact may proceed in four additional ways: (1) by viscous and plastic
flow of water substance under surface tension forces, (2) by evaporation of water
substance from the convex surface portion of the ice system, its transfer through the
environment and subsequent condensation onto the strongly concave neck joining
the two ice surfaces, (3) by volume diffusion of water substance resulting from a
local excess of'ice lattice vacancies which arise from the deficit in pressure produced
by the surface tension forces in the neck region, and (4) by surface diffusion of
water substance arising from the difference in concentration of adsorbed molecules
existing in the neck and the rest of the ice system, again set up by the surface
tension forces. Theoretical expressions for the growth rate of the neck by each
of these four mechanisms have been derived by Kuczynski (1949). His theoretical
considerations, as well as the experiments carried out by the authors mentioned
above, demonstrated that the growth rate of the neck joining the two surfaces is of

the general form n
(é) AT (5-44)

a a™

where A(T) is a function of temperature and the type of neck-forming (‘sintering’)
mechanism, 2A is the width of the neck after time ¢, and a is the radius of curvature
of the two surfaces in contact. For the case of spherical particles of radius a in
contact, n = 2,m = 1 for process (1); n = 3,m = 2 for process (2);n = 5,m =3
for process (3); and n = 7, m = 4 for process (4).

In an experimental study and re-analysis of earlier work, Hobbs and Mason
(1964) concluded that the adhesion of spherical ice particles is mainly the result of
the evaporation-condensation mechanism (2). Later, however, Hobbs and Radke
(1967) and Kikuchi (1972b) showed that volume diffusion of water molecules (mech-
anism 3), caused by the existence of a large concentration of molecular vacancies in
ice just beneath the concave surfaces of the neck, contributes almost equally to its
growth. While these two mechanisms may jointly determine the rate of growth of
the neck, the initial ‘bridging’ between the two ice particles in contact is, according
to Hobbs (1974), most likely the result of a quasi-liquid layer.

5.8 Adsorption of Reactive Gases on Ice Surfaces

We have already shown in Section 5.6 that at —196°C (77 K) the surface of ice is
solid and acts towards gases such as nitrogen and argon as a low-energy and rather
inert adsorbent (Adamson et al., 1967). The adsorption isotherm for Ny on ice at
this temperature has been plotted in Figure 5.5. Considering that near 0°C a quasi-
liquid layer exists on the ice surface, one expects that, with increasing temperature,
the adsorption behavior of ice changes progressively. In verification of this, Orem
and Adamson (1969) showed that the adsorption behavior of non-polar hydro-
carbons such as n-hexane and n-pentane on ice changes noticeably at a temperture
near —35° C. They suggested that at temperatures above —35° C the ice surface
becomes actively involved in the adsorption process by forming a clathrate with
the adsorbed molecules. A similar behavior was found by Adamson and Jones
(1971) and by Ocampo and Klinger (1982, 1983) who studied the adsorption of
CO3 on ice at temperatures between —78°C (195 K) and 0°C. They found that the
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variation of the molecular coverage with relative pressure becomes rapidly steeper
at temperatures above —35°C. They also showed that at any given temperature, the
surface coverage spontaneously changes from a weakly covered surface for a non-
polar adsorbent to that of a very polar, strongly adsorbing surface if the relative
pressure rises above a critical value. In explaning their results, they pointed out, as
did Orem and Adamson for the n-alkanes, that the CO5 molecules become trapped
and form a clathrate after striking the highly mobile water moleclules in the quasi-
liquid layer on ice.

Reactive gases such asHCI, HNOj3, SO,, exhibit a more complicated behavior.
The uptake of such gases by planar ice surfaces, ice spheres and dendritic snow
crystals has been studied by Sommefield and Lamb (1986), Clapsdale and Lamb
(1989), Valdez et al. (1989), Mitra et al. (1990), Conklin and Bales (1993), Conklin
et al. (1993), Diehl et al. (1995), Dominé and Thiebert (1995) and by Laird and
Sommerfeld (1995). As expected, these observations show that the amount of gas
taken up by an ice surface increases with increasing gas partial pressure in air and
with increasing time of exposure to the gas. On the other hand, the observations
demonstrate that the gas uptake is dependent on the type of gas, the temperature,
the crystalline structure of the ice, and on whether the uptake takes place on a
growing or non-growing ice surface. Thus, Mitra et al. (1990) and Diehl et al.
(1995) showed that during its growth from the vapor near —15°C, a dendritic
snow crystal takes up SOz, HNOg, and HCI in proportion to the amount of water
vapor converted to ice. Whether or not the gas molecules become incorporated
in the ice lattice during the growth of the crystal could not be determined. The
uptake of reactive gases on non-growing ice sufaces is somewhat better understood,
although a quantitative description of the uptake mechanism is still not available.
From the presently available experimental results, the following conclusions may
be drawn: (1) The quasi-water layer at the surface of ice plays a significant role in
the uptake of such gases. (2) Gas uptake is largest at temperatures near 0°C where
the quasi-water layer is thickest. This implies that the quasi-water layer is able to
‘dissolve’ a gas in a manner similar to bulk water. (4) Once ‘dissolved’, a highly
concentrated quasi-aqueous solution layer is formed above which the vapor pressure
is reduced below that over the intrinsic quasi-water layer. This has been verified
by Diehl et al. (1995) who showed that ice spheres, exposed to HNQO3 vapor prior
to evaporation, exhibit an evaporation rate which is considerably smaller than the
rate from spheres of a pure ice. (5) A vapor pressure reduction is associated with a
depression of the equilibrium melting temperature (see Section 4.9). This behavior
is quantitatively expressed in the phase diagrams for the systems HCl/H,O and
HNO3/H20 provided by Hanson and Mauersberger (1988a,b). These diagrams
delineate the conditions for the stability of the ice phase and the liquid phase in
terms of the saturation water vapor pressure (i.e., temperature) and the partial
pressure of the gas. As an example, the phase diagram for the system HCI/H,0
is given in Figure 5.14. From this diagram we note that at a given temperature
there exists a critical partial pressure of the gas above which the liquid will be the
stable phase. At such pressures, the quasi-solution layer is expected to continuously
thicken with time, allowing additional gas to be dissolved which in turn promotes
further melting. These expectations were verified by Mitra et al. (1990) and Diehl
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et al. (1995) for HCI (see Figure 5.15). A similar result was found by these authors
for HNQs, except that the amount of gas taken up by the ice surface was found to
be considerably larger than the amount taken up by HCI. (6) At a temperature and
partial gas pressure at which ice is the stable phase, no melting will be induced by
the dissolved gas and the quasi-liquid layer will have the thickness of the intrinsic
quasi-water layer. This case was documented by Dominé and Thiebert (1995) who
determined the uptake of HCI by single-crystalline bulk ice for partial gas pressures
below the critical values. As expected, significantly less gas was taken up under
these conditions, even considering that the ice samples of Dominé and Thiebert
were exposed to HCI for 3 weeks. (7) In the quasi-liquid layer, HCI, HNOg, and
802 in the presence of HoQ», dissociate into ions. Experiments of Diehl (1995)
showed that these gases do not desorb when exposed to a stream of ice-saturated
nitrogen gas. Desorption only occurs if, simultaneously, the ice sublimates in ice
sub-saturated air. (8) Gases such as HF,HCI, HNOj3, and SOs in the of presence of
H,03, enter bulk ice. This has been verified by a number of experimental studies
in which the diffusion coefficent for these gases in ice has been determined. Thus,
Wolff et al. (1989) reported an apparent diffusion coefficient for HCI in ice of
Duci < 107'° cm? sec™! at 185 K and Ducy > 1072 cm? sec™' at 253 K. More
specific values have been obtained by Krishnan and Soloman (1969) Dy = 2.2 x
1078 cm? sectat—18°C, 4.9x%x 1078 cm? sec™! at —11°C and 1.6 x10~7 cm? sec™?
at —4°C, by Haltenroth and Klinger (1969) Dur = 1.1x 1077 ecm? sec™! at —10°C,
8.2 x 1078 cm? sec™! at —20°C and 4.5 x 10~? cm? sec™! at —85°C, by Barnaal
and Scotfeld-Ellingson (1983) Duci & Dunos = 4 X 1072 ecm? sec™! at —15°C,
by Chu ef al. (1993) Dycr = 2 x 1072 cm? sec™! at —85°C, by Diehl (1995)
Duct = Dunog = 5 % 107? em? sec™ at —19°C. These values suggest that the
diffusivity of the mentioned gases is considerably larger than the diffusivity of HoO
in ice (see Chapter 3).

Although during freezing of aqueous solutions, certain ions, such as F~ and
NH} , may be trapped in the ice crystal lattice at lattice positions, and other ions
at lattice interstitial locations, Hallenorth and Klinger (1969) suggested that the
diffusion of a gas rather proceeds via existing grain boundaries in polycrystalline
ice, and via dislocations and small angle boundaries in single crystals of ice. Thus,
according to Truby (1955a), ice single crystals are composed of an immense number
of hexagonal prisms. Some of these are not exactly parallel to the crystallographic
axis of the crystal but deviate by a few minutes of arc. Hallenorth and Klinger

suggested that these mosaic boundaries may have a considerable influence on the
diffusion of a gas in ice.

5.9 Ice-Water Interface

Let us now consider a system consisting of an ice crystal surrounded by supercooled
water. As we shall see in the next chapter, for sufficiently small particles of ice
such a system can be in stable equilibrium, so that it is again possible to speak of
the interface energy of the boundary separating the phases.

Intuition tells us that the interface energy between ice and supercooled water,
ai/w, must be considerably less than cj/, simply because the forces between water
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Fig. 5-14: Phase diagram for the system HCl/H20. The horizontal dashed line corresponds
to 224 ppbv HCI. (From Hanson and Mauersberger, 1988b, with changes.)
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molecules and the spatial arrangement of molecules in supercooled water are not too
different from those in ice (Chapter 3). Unfortunately, it is very diflicult to deter-
mine oj;,, by experimental techniques, and the results of numerous attempts show
considerable spread (Figure 5.16). Nevertheless, all measurements agree on the
fact that oy, decreases with decreasing temperature. This is to be expected since
the structure of water becomes increasingly ice-like as the temperture decreases be-
low 0°C (see Chapter 3). In Figure 5.16, the extrapolation to temperatures below
—-35° C was carried out by considering the results of experiments carried out near
—40°C, as well as by forcing agreement with the singularity behavior of water near
—45°C (see Section 3.4).
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Fig. 5-16: Variation with temperature of the interface energy between water and ice. (1),
(2) Wood and Walton (1970); (3) Dufour and Defay (1963); (4) Rasmussen and MacKenzie
(1972); (5) Pruppacher (unpublished), based on data of Kubelka and Prokscha (1944);
(6) Pruppacher (unublished), based on data of Turnbull (1950); (7) Eadie (1971); x
Hoffer (1961); O Kuhns and Mason (1968); A Mason (1957a,b); Coriel et al. (1971); o
Ketcham and Hobbs (1969); + Pruppacher (unpublished), based on Antonovs rule; and
e Pruppacher (unpublished), based on latent heat of melting. The dashed line is the
proposed variation, consistent with the —45°C limit.

In addition to the experimental results plotted Figure 5.16, two indirect methods
for estimating g/, deserve attention. The first method is based on Antonoff’s rule
(Antonoff, 1907), which states that the interfacial tension between two mutually
saturated liquids (I1,I2) is given by the absolute difference between their respective
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surface tensions against the gas surrounding them, i.e.,

O fia ZJ Ol /g — Olajg l? (5_45)

where g indicates the gas in contact with the liquid. This can be interpreted as
a limiting form of Young’s relation, (5-23). Antonoff’s rule has been successfully
applied to the three phases of water substance, assuming that they are mutually
saturated. The analogous equation for ice, water and vapor is

Oijw = Oijy = Owjv: (5-46)

It should be emphasized that this relation is largely just a plausible conjecture for
the behavior of g/, with some additional indirect empirical support coming from
the success of Antonoff’srule in other applications. Using for ¢j/, a mean between
the values for the basal and the prism face, i.e., oj; & 104 erg cm~? (0°C) and
106 erg cm~? (—40°C), together with oy, ~ 76 erg cm~2 (0°C) and 88 erg cm~?
(-40°C), (5-46) predicts o/, = 28 erg cm™2 (0°C) and 18 erg cm™—2 (—40°C).

A second method for estimating o/, is based on knowledge of the latent heat
of fusion, .%,,,. To make this estimate, let us imagine that we ‘cut’ both a body
of ice and a body of water, each surrounded by water vapor, into two halves. In
so doing, the energy W, ; &~ .%, /2 is necessary to cut N4 bonds in the surface of
the ice, and the energy W, ,, ~ %4./2 is expended to ‘cut’N4 bonds in the surface
of the water. On joining one water-half to one ice-half, we may roughly assume
that the ice-half gains back the energy % /2. The net energy expended in cutting
the ice body is therefore approximately %, /2 — %, /2 ~ %, /2, which amounts to
5.0 x 1074 erg bond~! (0°C), and 3.40 x 10~!* erg bond~! (-40°C). Therefore
on taking into account the same bond coverages on the basal and prism planes as
used in Section 5.7.1, we obtain for the basal plane o, = 28.3 erg cm—2 (0°C),
and 19.2 erg em~2 (—40°C) and for the prism plane &,-/w = 30 erg cm™% (0°C),
and 20.5 erg em~? (-40°C).

Comparison of the results derived from these two semi-empirical methods with
experiment reveals an overall consistency. Unfortunately, however, the theoretical
estimates are insufficiently accurate for discriminating among the wide scatter of
experimental values. They do guide us, however, in making the following educated
guess as to a reasonable relation for the variation of o, with temperature.

oiw = 280+025T; -36<T <0°C, (5-47a)
oijw = a1 +aT+asT’ +aT%; -44<T<-36°C, (5-47h)

with gy, inerg em™2 and 7 in °C, and a; = 189.081, ap = 13.1625, a3 = 0.3469,
and a4 = 3.125 x 1073, Note that (5-47) does not descriminate between basal and
prism faces of the ice crystal lattice.

In closing this section, we shall briefly look at the structure of the ice-water
interface. As expected from the surface structure of ice crystals growing from
the vapor, one finds that ice crystals growing in supercooled water do not have a
smooth surface.
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Direct photographic evidence of the presence of steps at a growing ice-water in-
terface has been provided by Ketcham and Hobbs (1968) and Hobbs and Ketcham
(1969). Some of'the observed steps had spiral forms appearing at a number concen-
tration of about 102 cm~2, with step heights between 0.1 and 4 pum, and spacings
between the steps of 5 to 20 um. These observed step heights are enormous consid-
ering that they probably originated on screw dislocations. No explanation for this
observation is currently available except to say that, as in the case of step formation
at the ice-air interface, some sort of bunching mechanism may be operating.

Bryant and Mason (1960) have investigated the etched surfaces of ice grown
from supercooled water. Shallow etch-pits of about 100 um diameter and having
a number density of 10® cm™2 were observed on all crystal faces. Inside a large,
shallow pit, small pyramidal etch-pits of 5 to 10 um diameter were found in a
number of concentration of up to 10° em™2. Pyramid heights and base diameters
were about equal. The sides of the pyramidal pits were facetted in the form of
concentric steps, each of which had a height of a few tenths of a micron. In some
larger pyramidal pits, the concentric spiral steps reached heights of up to 1 um.

A similar etch pattern had been observed earlier by Truby (1955a,b). He noted
pyramidal etch-pits which were 0.2 to 0.5 pm in depth and 0.5 to 20 um in width.
At the pit walls, concentric steps of up to 0.05 um height were observed. Often the
pits had cores of up to 20 pm in depth.

These observers have suggested that the etch pattern at the surface of an ice
crystal grown from supercooled water is the result of dislocations introduced into
the ice during the freezing process by mechanical or thermal stresses. Gentile and
Drost-Hansen (1956), elaborating on this mechanism, have suggested that an ice
crystal represents a ‘socially unhappy arrangement’ of water molecules. The ‘un-
happiness’ is caused by the necessity for ‘opening up’ the bond angle of a water
molecule in order to conform to the tetrahedral lattice structure of ice. Such a
forced, bond angle opening introduces into the ice lattice a strain which is not uni-
formly distributed over the entire crystal volume. Rather, the strain energy tends
to be concentrated near lines parallel to the c-axis, thereby causing strain cores.
According to Gentile and Drost-Hansen, the strain energy may be relieved through
the incorporation of suitably-sized, foreign salt ions in optimal concentrations. This
may explain the observations of Truby (1955a,b), who noted that ice crystals grown
from 10™2 molar fluoride solutions did not exhibit any microstructure.

5.10 Ice Aqueous Solution Interface

Since cloud drops consist of weak aqueous salt solutions, it is worthwhile to de-
scribe briefly some of the processes which take place at the ice-solution interface.
Experimental observations such as those by Jaccard and Levi (1961), de Micheli
and Iribarne (1963), Gross (1967, 1968), Kvajic and Brajovic (1971) and Gross
et al. (1975, 1987) demonstrate that at the ice-aqueous solution interface, a seg-
regation process takes place which allows a small percentage of salt to enter the
ice, while the rest remains dissolved in solution. Salt ions do not enter the ice in
stoichiometric proportions. Rather, the experiments show that the interface be-
haves as a semi-permeable membrane, allowing certain types of salt ions to pass
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through and enter the ice lattice more readily than others. This phenomenon has
been found to be strongly dependent on the type of salt, the concentration of the
salt in solution, and the rate at which the ice-solution interface advances. Work
on this subject has been reviewed by Drost-Hansen (1967), Gross (1965, 1968),
Pruppacher et al. (1968), Cobb and Gross (1969), Shewchuk and Iribarne (1971),
Iribarne (1972), and Seidenstricker (1972).

The more recent studies have attempted to obtain information on the amount
of salt segregation at the interface between ice and an aqueous salt solution by
determining what is known as the segregation or partition coefficient, in some work
also called the retention coefficient. This coefficient is generally defined as the
ratio of the amount of foreign species in ice to the amount of this species in the
aqueous solution (Iribarne et al., 1990, 1983; de Michelis and Iribarne, 1963; Lamb
and Blumenstein, 1987; Snider et al, 1992; Iribarne and Pyshnov, 1990; Brill and
Ender, 1955; Jaccard and Levi, 1961; Gross, 1967, 1968; Gross et al., 1975, 1987).

In comparing the results of these studies, we find considerable agreement which
allows the following conclusions: (1) The amount of salt trapped in ice increases
with an increasing rate at which the ice solution interface advances implying that
salt segregation is most efficient if the interface advances slowly. Nevertheless, at
freezing rates of several centimeters per second, which are typical during the spon-
taneous growth of ice crystals in supercooled aqueous solutions, segregation is still
significant. (2) The amount of salt trapped in ice increases with increasing super-
cooling of the solution. This is partly due to the increased growth rate of ice at
lower temperatures, and also, for gases, due to their higher solubility in water at
lower temperatures. (3) The amount of foreign species trapped in ice is a function
of the type of species dissolved in water, and in particular of the type of ions into
which the species is dissociated in the solution. As expected from our discussion in
Chapter 3, generally negatively charged ions (anions) are more acceptable within
the ice lattice than are positively charged ions (cations). (4) Small ions are more
readily built into the ice lattice than are large ions or ions of complicated struc-
ture. (5) The two ions most readily accepted by the ice lattic are F~ and NHJ.
F~ is preferred because of its electronegativity and because of its ionic radius,
which is similar that of the oxygen atom in a water molecule. Although NH} does
not conform well with points (3) and (4), it is nevertheless preferred because of
its tetrahedral moleculear structure, which is analogous to the tetrahedral struc-
tural units in ice, and because of its ionic radius, which is similar to that of 0%,
thus making NH] isomorphous with H3O*. (6) Segregation of salts and ions is
most effective at concentrations in solution between 10~% and 10~ mole liter?.
In this concentration range, segregation usually exhibits a maximum. At higher
concentrations, segregation is progressively less effective. Generally, the partition
coefficient for salts varies between 102 and 10~4. (7) Due to ion separation at the
ice-solution interface, an interesting electrical effect occurs, known as the freezing
potential. Owing to the low conductivity of ice, the incorporated ions, distributed
throughout the ice volume, behave as a ‘frozen-in’ space charge. The charge of
opposite sign which remains in solution is distributed as a surface charge at the
ice-solution interface. This arrangement of charge results in the development of
an electrical potential between the ice and the aqueous solution. Typical freez-
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ing potentials range from several volts to several tens of volts, for some salts even
as much as a few hundred volts may be realized (Heinmetz, 1962; Workman and
Reynolds, 1950; Lodge et al., 1956; Pruppacher er al., 1968). Those interested in
freezing potentials may wish to consult, in addition to the previously mentioned
references, the theoretical explanations presented in Gross (1954), Le Febre (1967),
Chernov and Melnikova (1971), and Jindal and Tiller (1972). (8) Numerous stud-
ies have shown that also gases dissolved in water may be transferred into the ice
phase during the freezing of supercooled water containing dissolved gas. However,
as expected from the uptake of salt ions by ice, only a small percentage of the
gas present in supercooled water turns out to be actually transferred into the ice
phase. Thus, Snider al. (1992) found that the retention coefficient I' (defined as
the ratio of the gas concentration in the ice phase to the concentration of the gas
in the water in equilibrium with the surrounding gas) for a ventilated ice particle
growing by collision with water drops which contain HgQOs, is I' = 0.24 £ 0.07, a
value much lower than the value found for HzO3 by Iribarne and Pyshnov (1990)
for an unventilated ice surface. Jaccard and Levi (1960) found for NH3 and HF,
10~*<I'< 1072, depending on the concentration of the gas. For SOy, Iribarne et
al. (1990, 1983) found at —15°C I' = 0.25 for [SO,],= 19 ppmvand T' = 0.9 for
[SO2],= 190 ppbv, while Lamb and Blumenstein (1987) found I' = 0.01 near 0°C
and 0.12 near —20°C for, [SO2],= 700 ppbv.

5.11 Condensation, Deposition, and Thermal
Accommodation Coefficients

There are some important gas kinetic relations pertaining to surfaces which we
shall need in our discussions of nucleation and diffusion growth. Since they are of
an elementary nature, for the most part we wish only to record them here, without
derivations, for our future use.

Let & denote the concentration of molecules and ¥ the mean molecular speed in
a Maxwell-Boltzmann gas. Then, the number of molecules crossing per unit time
to either side of an arbitrarily oriented planar unit area in this gas is

wh = év/4. (5-48)

Also for such a gas, the relation between v and temperature is
1/2
v= (%) , (5-49)
T

where m is the molecular mass. And, if we may assume the gas is ideal, the gas
pressure is
p=2¢&kT. (5-50)

Let us now consider the water-vapor interface. On combining (5-48) to (5-50),
we find that the molecular flux of water vapor to the surface can be expressed as

wh = e/ (2 kT,)"/?, (5-51)
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TABLE 5.4
Accommodation coefficient (condensation coefficient) . , for water molecules on water
surface.

Observer Qe Observer [
Alty (1931) 0.006 to 0.016  Chodes et al. (1974) 0.033
Alty and Nicole (1931) 0.01 to 0.02 Golub et al. (1974) 0.12
Alty (1933) 0.04 Rogers and Squires (1974) 0.065
Alty and Mackay (1935) 0.036 Narusawa and Springer (1975) 0.038
Baramaev (1939) 0.033 Sinarwalla el al. (1975) 0.026
Pruger (1940) 0.02 Bonacci et al. (1976) > 0.7
Yamamoto and Miura (1949) 0.023 Neizvestnyy and Onishekenko (1979) > 0.3
Hammeke and Kappler (1953) 0.045 Neizvestnyy et al. (1979) > 0.3
Kappler and Hammeke (1955) 0.1 Wagner (1982) 1.0
Delaney et al. (1964) 0.0415 Fujikawa et al. (1983) 0.04
Jameson (1964) > 0.3 Garnier et al. (1987) 0.01
Kiriukhin and Plaude (1965) 0.019 Salk et al. (1988) 0.2-1.0
Maa, (1967) ~ 1.0 Hagen et al. (1989a)
Ahoy (1971) 0.8 clean drops 1.0
Levine (1973) 1.0 aged drops 0.01

where p = eis the vapor pressure, and T, is the vapor temperature. For example,
for saturated conditions at 20°C, w* = 8.5 x 10%' cm~2 sec™'. Of these imping-
ing molecules, only a fraction a., called the mass accommodation or condensation
coefficient, actually is retained by the water surface. Under equilibrium conditions
then, the rate w' at which molecules leave the surface must satisfy the relation

w' = a.wt at equilibrium. (5-52)

Experimental values for a, are listed in Table 5.4 based on a recent review of the
subject by Mozurkewich (1986). The data listed were derived from observations
with a quiescent or quasi-quiescent water surface, and from observation of growing
aerosol particles. We notice that these values scatter over a wide range from about
0.01 to 1.0. Mozurkewich concludes from his survey that for pure water and water
containing polar species, a, may be approximately taken as near unity.

The mean residence time 7, of a molecule in the water surface is given by

Ty =nfwl; (5-53)

where n & 10'® em~2 is the equilibrium number of water molecules present in one
cm? of water surface. Assuming a. = 0.04, we then find w' = 3.4 x10%° em =2 sec™!
and 75 & 3 sec at 20°C. This very short lifetime of a water molecule before it
evaporates from the water surface implies an extremely violent agitation; however,
because of the strong cohesion in the liquid surface this agitation is confined to
a layer of only a few molecular thicknesses. Note that this rapid exchange of
molecules applies only at equilibrium. Of course, w' should not be interpreted as
a net evaporation rate. Drop evaporation rates are discussed in Chapter 13.

We shall assume now that the flux of molecules leaving the water is independent
ofthe flux entering it, and that it is equal to the flux of molecules which would enter
the water if it were in equilibrium with the vapor phase for which e = egqa¢,w; 1.€.,
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TABLE 5.5
Accommodation coefficient (deposition coefficient) a4, for water molecules on an ice
surface.

Observer Temperature (°C) ag
Delaney et al. (1964) -2 to-13 0.014
Vulfson and Levin (1965 -6 to-7 0.04
Vulfson and Levin (1965 -10 to -11 0.7
Fukuta and Armstrong (1974) -25 0.12
Davy and Somorjai (1971) -45 0.36
Kramers and Stemerding (1951) -40 to -60 0.93
Tschudin (1945) -60 to -85 0.94
Davy and Somorjai (1971) -85 1.0
Koros et al. (1966) -115 to -140 0.83

w = acesar,w/(2mywkT,) /2, where T, is the temperature of the water surface.
Assuming T, & T, = T, we find for the net flux of molecules into the surface,

Wnet,w = 0tc(€ — €sat,w)/ (21w KT)/2 . (5-54)
Analogously, for the net flux of water molecules to an ice surface, we write

Whet,i — ad(e e esa.‘b,f)/(?'?rmwkT]l;z ’ (5'55)

where ay is called the deposition coefficient. Equations (5-54) and (5-55) are dif-
ferent forms of what is known as the Hertz-Knudsen equation.

More recently, Schrage (1953) and Patton and Springer (1969) have modified
this equation to account for the effect of net bulk vapor motion of the molecular
velocity distribution. According to these authors, a better representation for wyet
is

Wnetaw = Tm—(€ = €sar)/ (2MnKT)/2, (5-56)
¢

where B = 0.5, according to Schrage.

Experimentally determined values for a4 are listed in Table 5.5. We see from
this table that the deposition coefficient for water molecules on ice exhibits a trend
from values near unity at very low ice surface temperatures near 0°C. This result
may be interpreted as evidence for the quasi-liquid film which has been postulated
to exist on an ice surface.

Conceptually, one expects that water molecules striking a water or ice surface
suffer inhibited accommodation with respect to heat as well as mass flow. In order
to take this effect into account, one introduces a thermal accommodation coefficient.
In the context of interest to us, this coefficient is defined as the ratio of water vapor
molecules which on collision with a (macroscopic) water drop or ice particle achieve
thermal equilibrium with it, to the total number of water vapor molecules striking
the surface. This definition may also be expressed as

T -T3

oar = m N (5-57)
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where 7" and T are the kinetic temperature of the gas molecules incident on,
and reflected by, the surface of the body with which the environment attempts
thermal equilibrium, and T3 is the surface temperature of the body. From our
verbal definition a7, it is clear that (5-57) is simply a statement of the balance
of thermal energy into and out of the surface. Experiments by Alty and Mackay
(1935), which unfortunately are the only ones available, show that for a water
surface, ar ~ 0.96. This indicates that most gas molecules thermally equilibrate
with a water surface during their residence time on that surface. No measurements
for an ice surface are available.



CHAPTER 6

EQUILIBRIUM BEHAVIOR OF CLOUD DROPS AND ICE
PARTICLES

Having established some background for use in studying the bulk and surface prop-
erties of water and aqueous solutions, it is appropriate now to take a closer look
at the equilibrium behavior of typical and/or idealized cloud particles of ice and
water. In particular, we shall study the equilibrium of (1) a pure water or aque-
ous solution drop surrounded by water vapor or humid air, (2) an ice crystal in
humid air, (3) an ice crystal and a separate solution drop in humid air, and (4) an
ice crystal immersed in a solution drop in humid air. We shall see later that the
relationships provided by these case studies are needed in order to formulate the
conditions for which cloud drops and ice crystals are nucleated in the atmosphere
(Chapters 7 and 9).

6.1 General Equilibrium Relation for Two Phases Separated
by a Curved Interface

In this section, we shall return to the system first discussed in Section 5.2, in which
a spherical bulk phase ” of radius @ is imbedded in another bulk phase '. We
suppose each phase contains component k& and other components constituting a
non-ideal mixture. Also, we allow mass transfers to occur between phases, but
exclude chemical reactions. We further assume thermal equilibrium, and let T
denote the common temperature.

Our goal is to obtain a single equation relating the differentials of T',p’, 0,a, and
the activities aj, and aj for component k. There are, of course, several possible
starting points for accomplishing this; here we shall follow a particularly efficient
procedure suggested by Dufour and Defay (1963). We begin with the chemical
potential of component k in either of the bulk phases (cf. (4-53)):

(D, T, a) = peo(®,T) + ZT Inay . (6-1)
On dividing this expression by 7, forming the total difierential, and using (4-13a)
and (4-13b), we find that for equilibrium changes

B _ _Piogp , Vko
d(T)“ 7a-dT + —22dp + Rdlnay. (6-2)

Now in equilibrium we have uj, = pf also; consequently, we may write

d (%) =d (%5*) . (6-3)
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Therefore, on combining this equality with (6-2) as applied to both bulk phases,
we may eliminate direct reference to the chemical potentials and obtain

(ko = Pio) Vk.0

~— g T+
Finally, we invoke the condition of mechanical equilibrium, (5-7), and introduce
the latent heat .#""/’, from (4-72); the desired form is thereby obtained from (6-4):

U”
dp' — %dp” + #dIn(ay /ay) = 0. (6-4)

Ll (Vho — o) ,, 2Vko, (0 ¢y
~ ST 4 Mgy — d(a)-i-.@dln{ak/dk)—o. (6-5)

This result may well be regarded as the ‘master equation’ for this chapter, because
special cases of it describe nearly every situation we discuss. It is obvious that
(6-5) contains the Clausius-Clapeyron equation as a special case which is readily
obtained by letting aj, = 1,a) = 1, and (1/a) = 0.

6.2 Effect of Curvature on Latent Heat of Phase Change

Perhaps the reader is disturbed by a bit of sleight-of-hand we used in arriving at
(6-5): In substituting #/'¢" for the enthalpy difference in (6-4), we glossed over
the fact that the pressures are not equal in phases ' and ”; thus, (4-72) does not
strictly apply. We shall now estimate the error incurred by ignoring this pressure
difference.
Evidently, the error is measured by
D” ahﬂ
Ao = o 1) - hioW D) = [ (Go0) w0 (69)
» " " apﬂ' T

pl
But from (4-6) we see that (6h/0p)r = v + T(0s/dp)r, where s is the molar
entropy, while from (4-10) and (4-11) we find (8s/0p)T; consequently,

ohy 0) G g o
——=) =vp,-T (———) : (6-7)
( BP’ ! T aT "
For either water or ice, the second term in (6-7) is negligible in comparison with
the first; furthermore, since the compressibilities of water and ice are very small

(see Section 6.4), we may regard vy, as constant when inserted into (6-6), and so
obtain

Ahj o~ v o(p" = P') = 20590 /a. (6-8)

Now, if we denote the latent heat of pure substance & in passing from phase
to spherical phase ' of radiusa by (Z#/§')s, We see that

(L6")a = (L6 oo — Db - (6-9)
Consequently, for the case of a pure water drop in equilibrium with water vapor,

we can write
(—ge,ﬁ)n o Ahw,l’) A QOwKVMw
(38.0)00 (ge.ﬂ)eo Pw(-ﬁ,o)ma )

(6-10)
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This demonstrates that the latent heat of evaporation decreases with decreasing

radius of curvature of the water surface. At 0°C, the second term on the right

side of (6-10) has the value6.1 x 107%/a, for @ in cm. Thus, the error in setting

(Zey0)a = (Ze,0)oo becomes less than 1%, as long as a > 6 x 107 cm.
Analogously, we find for the latent heat of sublimation

(Lada oy _ 2oixMu
(Z5)oo Pi(Le)oott

At 0°C, the second term on the right side of this equation has the value 7.7 x
10~?/a, so that the error in setting (%)a = (L)oo is less than 1%, as long
as a>8 x 1077 cm. Considering (4-74), we find that it is also justified to set
(ZLm0)a = (Fm,0)oo With an error of less than 1%, as long as a>2 x 10~7 cm.

(6-11)

6.3 Generalized Clausius-Clapeyron Equation

We noted in Section 6.1 that (6-5) contains, as a special case, the Clausius-
Clapeyron equation for a pure substance in bulk phases of negligible curvature.
We may now very easily derive its extended form for the case where the curvature
matters. For this purpose, consider again a pure water drop in equilibrium with
vapor at pressure p' = €g,w. Wehave aj, = ay = 1, and so we may rearrange (6-5)

to read
dea,w _ (-fe,l])n 2'Uw‘tl d(aw/v/a)
dT T(‘b‘v'ﬂ — Vy '0) ('U\. N1 R ‘Uw‘g) dT ’
According to the phase rule for curved phases, (5-10), the present system has
two degrees of freedom. Let us hold the radius a constant and study the variation
of egw with 7. Then, substitution of (6-10) and (4-80) into (6-12) leads to the
desired extension of the Clausius-Clapeyron equation:
deu,w desat.,w 2[dw/v e T(dow{v/dT)ﬂ]

aT ~ 4T  aT[(wve/vwe) =1] (6-13)

(6-12)

where we should recall that the equilibrium vapor pressure €, over a curved water
surface actually has the physical meaning (€sat,w)a = €a, and the equilibrium vapor
pressure esag,w Over a plane water surface has the meaning (€sag,w)oo = €sat,w- Since
doy,/y/dT < 0 for all 7, curvature is seen to decrease the temperature variation of
the saturation vapor pressure. On evaluating the terms in (6-13) at 20°C, we have

de, w
F(_d:a_f{j__—)_g— m1-— l%_—ﬁ ; (6-14)
(*#=)

for @ in cm. Thus, the quantitative effect is quite small (less than 1% difference
for a>107% c¢m),as we might expect from our previous studies of the effects of
curvature.

In the remainder of this chapter, we shall ignore the small influence of curvature
on latent heat.
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6.4 Equilibrium Between a Pure Water Drop and Pure Water
Vapor or Humid Air

We may suppose a system comprised of a pure water drop (") in an environment of
humid air (') contains just two components, air and water, since there is negligible
selective adsorption of the gaseous constituents of air. Therefore, the system has
a variance of three according to the phase rule. We shall keep the temperature T
and the total gas pressure constant, and study the variation of the water vapor
pressure e, with radius a. With vy, = vw,0,8; = av, and aj = aw, (6-5) reduces
to

~ Pwoy (2£2) + #dlna, =0, (6-15)
T a
since for a pure water drop a, = 1. Assuming ideal gas behavior, we have

ay = Xy = €y /p' Making this substitution and disregarding for the moment
the compressibility of water, we may immediately integrate (6-15) between oo and

a to obtain
€a,w _ 2Uw.00w/a _ ZMwa;'a

- = s 6-16.
in €sat,w ATa ZT pwa (6-16a)
or -
€a,w _ wOw/a
o exp (‘—W’pra ) ; (6-16b)

This is the Kelvin equation, first derived by W. Thomson (later Lord Kelvin, 1870).
It demonstrates that at any given temperature, the saturation vapor pressure over
the surface of a water drop is larger than that over a flat surface, and increasingly
so with decreasing radius. Accordingly, in the atmosphere large drops must grow
by vapor diffusion at the expense of the smaller ones.

Since the Kelvin equation assumes equilibrium between the drop and its environ-
ment, we of course have e, w = €, the partial pressure of vapor in the environment.
Hence, we can also say that equilibrium requires an environmental supersaturation
of 8y,w = (€a,w/€sat,w) — 1 > 0; also, the Kelvin equation may be expressed in terms
of the saturation ratio Sy,w = €4,w/€sat,w in the form

2Mwo‘w)fa

InS,w= .
DS = TG

(6-17)

A numerical evaluation of (6-17) is plotted in Figure 6.1 for 20°C and —20°C.
Note that the effect of curvature becomes important only for @ <107% em (0.1 pm),
and that the temperature dependence is relatively weak.

Let us assume now that air is absent from the system and that the water drop is
surrounded instead by pure water vapor. From the phase rule, it follows that this
system has two independent intensive variables. Of these we shall keep T constant
and again determine the variation of e, w With a. Under these conditions, the first
and last terms of (6-5) are zero (aj = ay = X, = 1, assuming ideal gas behavior),
and we obtain

WO ge o _Vw0g.  2Wwo o (Tw/a) _
20 deq.m — 2 deaw — a( : )_0. (6-18)
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Fig. 6-1: Variation of the equilibrium vapor pressure over a water sphere and over an
ice sphere with sphere size, for different temperatures. For curves (1) and (2), ordinate

represents ea,w/esat,w - For curves (3) and (4), ordinate represents e, ;/eqa; ;

On substituting the ideal gas law for vy ¢ and integrating between oo and a (6-18)
yields

€a,w

2My 0wy M,
In(Sy w) =In (—) = + (€a,w — €sat,w), (6-19)
v,w Jvapor e ZTpua @ T t

€gat,w

which demonstrates that (Sy,w)vapor > (Sv,w)air- However, the difference is small:
Comparison of (6-17) and (6-18) shows that

ln(S‘, w)vapor €a,w — €sat,w
—_— el <1, 6-20
ln(sv,w)air (20'“,/‘, /a) ( )

for all cases of interest.

Notice that in our derivation of the Kelvin equation, we assumed nowhere that
the surface tension is independent of the curvature of the drop. However, we did
assume that the compressibility of water is negligible. This latter assumption has
been investigated by Dufour and Defay (1963), who found that the inclusion of
compressibility leads to the following modification of (6-17):

2
lnS,,,w _ ag;:’:,o (1 _ I‘Gw,{):w/a) ’

where vy is the molar volume of pure water in bulk, in contrast to wy,e in
(6-17) which is actually the molar volume evaluated at the internal pressure of

(6-21)
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the drop, and kwpo = —(1/Vw,0)(vw,0/0pw)T is the compressibility. Since in
the temperature range +30 to —30°C k0 varies between 45 x 10~12 and about
70 x 10~'2 ecm? dyne™! (Handbook of Chemistry and Physics), we readily find
that (kw,00w/a/a) < 1 for all drop radii encountered in clouds. We may therefore
represent v,,,0 by its bulk value with negligible error.

6.5 Equilibrium Between an Aqueous Solution Drop and
Humid Air

Let us now investigate the more interesting and realistic case of the equilibrium
between a drop of an aqueous salt solution (") and an environment of humid air
("). We assume that the dissolved substance has no vapor pressure of its own, and
that its mass in the drop remains constant. The first of these assumptions holds
for all salts typically found in the atmosphere. The second assumption holds for
at least the early stages of cloud drop formation; during the later stages of growth,
solutes may be added to the drop by means of various scavenging mechanisms.

According to (5-10), this system has three components, and so w = 4. However,
the required constancy of salt mass in the drop introduces an additional relation
between the drop radius and the mole fraction of water in solution, which makes
w = 3. The volume of the solution drop is given by 4ma®/3 = nyvy, + n,v,. Since
Xw = Nw/(nw + ns), Wwhere n,,v,,v, are constants, the additional relation is

1 Mg NsUw
——-=1+—-—=1+m3——.
Xw T el (PY P

(6-22)

Let us now determine the dependence of the saturation vapor pressure e, on
radius, subject to the conditions of constant 7, n,, and total air pressure p. This
time only the last two terms of (6-5) survive, and since we now have aj, = av = € /p
but a} = a,, # 1, the following result is obtained:

2Uw,0 Os/a s
- @Td( 3 )+dlneu—dlnaw—0. (6-23)

On integration from a,€,, 8w t0 @ = 00, €, = €sat,w, aw = 1 this equation yields

€a 2My0y)s
In - =lnay + -—-——§pr& (6-24a)
or
€q QMWUs,fa)
=awexp| ———— ) , 6-24b
esat,w o P ( -@prﬂ ( )

where a,, is given by (4-68) and (4-69). For a,, = 1, (6-24) reduces to the Kelvin
law, while for a flat water surface, the generalized Raoult’s law, (4-60), is recovered.

Unfortunately, no information is available on the curvature dependence of the
activity coefficient of water in an aqueous solution. However, in view of our previous
discussion of the effects of curvature, it seems very reasonable to regard it as
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negligible, and we shall do so here. Considering (4-69) and (4-66), we may replace
ay in (6-24b) by

v®,;m,M,, /M, ) (6-25)

= (‘ (@ra®/3)p! — m,

Therefore, for a drop in equilibrium with its environment (e = €;), (6-24) may also
be written in the form

(6-26a)

2MW sfa - 8 w 8
Sv,wzexp[ Oy v®,m,M, /M, }

ATpwa  (4ma®p}[3) —m,
o oM &,y My /M
w0s/a V@M My (Mg
v,w = = . 6-26b
v = @ Tha ~ Urapif3) - m, (6:350)
Now for a sufficiently dilute solution such that m, € my, 0s/a & Ow/a, ®5 & 1 and
p! & py (6-26b) reduces to the more convenient form

A B
InSyw= e (6-27)
where
2My0y 3.3 x107° _ 3vm,M, _4.3vm,
A=—r, X7 S oM.~ M, (6-28)

in cgs units and with 7 in K. Finally, if s /egat,w = 1, (6-27) reduces further to

T L (6-29)

Equations (6-26) to (6-29) are different forms of the Kohler equations (Kohler,
1921ab, 1922, 1927, 1936).

As we have seen, the vapor pressure over a pure water drop always obeys the
inequality e, w > €sat,w. In contrast, the vapor pressure over an aqueous solution
drop may be larger or smaller than eg¢ w depending on whether the solute term
(the second term on the right side of (6-26) and (6-27)) is smaller or larger than
the curvature term. This, in turn, implies that an aqueous solution drop may be
in equilibrium with a subsaturated environment. Specifically, if 24 < B, then
€a < Cgat,w-

The Kohler equations are plotted in Figure 6.2 for solution drops of two repre-
sentative salts. The maxima in the curves are found from (6-29) to occur approxi-
mately at the critical radius a. = (3B/A)'/?, corresponding to s, = [(ea/€sat,w) —
1], = (443 /27B)'/2. (In the remainder of this chapter, we shall use the subscript ¢
to denote conditions at the critical radius.) It is interesting to note that for @ > a.
the solution drop is in unstable equilibrium with its environment, just as a pure
water drop is in unstable equilibrium at all sizes. For @ < a. on the other hand,
the solution drop is in stable equilibrium. This behavior can be understood on
realizing the environment effectively provides an infinitely large reservoir of water
vapor at constant pressure. For example, suppose the equilibrium state is given by
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a point on the descending branch (a > a.) of one of the equilibrium growth curves
in Figure 6.2. Assume now that a small perturbation causes a few molecules of
water to be added to the drop. At the slightly larger new radius, the equilibrium
vapor pressure is lower; hence, vapor will continue to flow to the drop, and it will
grow ever larger. Conversely, a small evaporation excursion will produce a slightly
smaller radius for which the equilibrium vapor pressure is higher than that provided
by the environment, and the drop will therefore continue to evaporate. If the drop
is pure water, it will evaporate completely. On the other hand, if it is a solution
drop, it will diminish in radius until it has reached a size which corresponds to an
equilibrium state on the ascending branch (a < a.) ofthe given equilibrium curve.
Now it will be in stable equilibrium. For da > 0(< 0), we see that de, > 0(< 0);
i.e., the environmental vapor pressure is insufficient (excessive) for equilibrium at
the new radius, and evaporation (condensation) will ensue to oppose the initial
radius perturbation.

— 05
i /\\
= ,-" X m (1) Puse watey,
— o4} I @NaCl 16 g
A | 3 @NaCl 1670
‘:f I A)NaCi 1070
w Q3
<
mﬂ
— 02 -
olt
1o}
x
B oo} 4
!
< i
S !
e Qa L Ll
m4

DROP RADIUS (cm)

Fig. 6-2: Variation with drop size of the equilibrium vapor pressure over an aqueous

solution drop; for NaCl particles (solid lines) and (NH4)2504 particles (dashed lines) of

various masses, and for 20°C and ¢, = 1. (Based on Equation 6-26 solved by Hénel,
1976.)

If the environment has reached a supersaturation equal to or larger than [(e,/
€sat,w) — 1]¢, it is said to have reached the supersaturation needed to activate the
drop. We note also that it is customary to call the radius of an aqueous solution
drop which is in equilibrium with an environment of Sy, = 1.0, the potential radius
ap; i.€., a = a, for (eq/€sat,w) = Sv,w = 1.0, fromwhich B = Aa2. Thus, we may
write (6-27) in terms of a, as

2
nSyw = A (l ~ ﬂ—”) . (6-30)

This expression implies that aqueous solution drops which have the same potential
radius exhibit the same equilibrium variation of S, . with drop size.
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Equation (6-26) shows how the equilibrium behavior of an aqueous solution drop
depends on the total mass mg, of salt in the drop, as well as on the type of salt
(@5, M, v). This dependence is also illustrated in Figure 6.3, which shows that the
smaller the mass of the salt in the drop, the higher the maximum, and the steeper
the pre-maximum branch of the equilibrium curve for that drop. The effect of the
type of salt in solution is also illustrated in Figure 6.2 for drops containing NaCl
and (NH4)2804. By comparing the figure with (6-27) and (6-28), we see that the
dominant influence is the molecular weight of the salt, which is much larger for
(NH4)250y4, than for NaCl, so that the equilibrium curves for a solution drop of
(NH4)2504 lie above the corresponding ones for NaCl.

Q51 8, & (1) NaCl, €,21.0
= [ (2) NoCl, €,40.4
S al ] (31 NaCl, €,20.1
~~ & (41 HaCl, €,20.00
3 (4) 15) [HH, 1350, €510
2 a3t 16 (NN 1350,,€,+0.4
,.E‘J 171 {HH 413504, €,20.1
© 18) [NH4)2 504,€470.01
2 gzt 19) PURE WATER
QlF
—_— 10F
i
2
£ o
=]
(1]
e OB i1
g i0* i0°

DROP RADIUS (cm)

Fig. 6-3: Variation of the equilibrium vapor pressure over an aqueous solution drop formed

from a mixed aerosol particle of radius ry = 0.lpm containing various volume frac-

tions €, NaCl and (NH4)2SO4 and a water insoluble substance, for 20°C and for &,
= 1.0. (Based on solutions to Equation 6-34, solved by Hinel, 1976.)

Temperature has only a small effect on the equilibrium conditions for solution
drops, as Table 6.1 shows. The trend, such as it is, indicates that the supersatura-
tion necessary to hold a given solution drop in equilibrium increases with decreasing
temperature.

Table 6.2 lists the amount of water which is acquired and the salt dilution which
is experienced during equilibrium growth of an aqueous solution drop of given
salt content at different environmental equilibrium humidities. It is seen that the
dilution of the salt solution is generally small, as long as the drop is in equilibrium
with an environment of Sy <0.9. However, the dilution increases quite rapidly as
Sy,w increases beyound 1.0 and approaches (Sy,w)ec-

6.6 Equilibrium Between Humid Air and an Aqueous
Solution Drop Containing a Solid Insoluble Substance

Most atmospheric aerosol particles are mixed, i.e., they are composed of water
soluble and insoluble substances (see Chapter 8). The purpose of this section is



176 CHAPTER 6

TABLE 6.1
Critical equilibrium radius a. and critical equilibrium supersaturation (sy,w). for aqueous
solution drops containing different amounts of NaCl. p;(20°C) = 2.16 g cm™ | p,(—10°C)
=2.17 g cm™, &, = 1.0 . (Based on Low, 1969d, and of Hénel, 1976.)

mu(g) 10" 107" (i 10" 107"
o 20°C 222710 4.797x 107 1.033x 10°° 2.27x107° 4797 x10°*
(em) —10°C 2.224x 107 4792 % 10°* 1.032 x 10°* 2.224x 107° 4792 x107°
(Suw)e 20°C 3.660 x 107" 1.143x 107" 3.578x 1072 1.126 x 1072 3.558x 1073
(%) -10°C 4738x 107" 1.480 % 107" 4628x 1072 1.455 % 1072 4.595x 107?
a. 20°C 1.947x107°  6.212x107° 1.988 x 107 6.358 < 107* 2012x 107}

(cm) -10°C 1.783x 107*  5.679x 107" 1.819x 107 5.826x 107 1.844x 107

to study the effect of a solid insoluble substance within an aqueous solution drop
on the equilibrium conditions for that drop. In this study, we shall assume that
the insoluble particle does not take up any water by itself and does not adsorb salt
ions, and that it is completely submerged.

Since the molality of the solution drop is unaffected by the addition of the
insoluble particle, we may take (6-24) as our starting point. For a,, , we invoke
(4-65) and (4-69) to obtain

Inay = _VésmaMw/mst [6—3])
or
3 v®,Myem my
M, my’
where €m = mg/mny is the mass fraction of water soluble material m, in a mixed
aerosol particle of mass in my and radius ry. Assuming that the total drop volume

Va can be approximated by Va = Vi + Vv = (mw/pw) + (mn/pa), from which
mn/mw = (pn/pw)l(a/rn)® — 1], we find from (6-31) with (6-24)

Ina, = (6-32)

€a 2Mwa's/a v®em M, pN?"S
— — 8 w N
Csat,w P { ‘@pra Mspw (03 i r?\!) ] 1 (6—33)
and with &y = £,,(pn/ps)s
€ _ - 2My04)a _ v®,e, My psr -
Esat,w P .@pra M_,pw(a3 e "?\r) ! ( )

where v = mn /(47 /3)pn. Also, the densities PN, ps,and p, of the aerosol particle
and its soluble and insoluble fractions are related according to
PN = psEy + pu(l — Ev) (6-35)

and
Pu

T T—emll- (pufpa)l

PN (6-36)
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Equations (6-32) to (6-34) are different forms of a relationship first derived by
Junge (1950) and later refined by Junge and McLaren (1971).

Equation (6-34) has been solved by Hinel (1976) for aerosol particles of different
masses mpy containing a water insoluble substance and {NH4)2SO4 or NaCl in
various volume proportions. The results of these computations are summarized in
Figure 6.3 and Table 6.3. We notice that the water uptake by the aerosol particle
increases with increasing water soluble fractions of the particle. For a given &, or
£, the water uptake also increases with increasing total mass of the aerosol particle
on which the drop forms.

The maxima in the curves of Figure 6.3 are found by differentiating (6-33) ap-
proximated as in (6-29):

A Bri
Syyw = — — EE":J'E'_-;“; (6—37)
N
with X7 -
2Myoy w VREm My pN
A= —= = — 6-38
ZT pw Mspw ( )
The result for the activation radius a, is
D (D? A
e = -E_ + (T - E) § (6—39)
with
2B2A - 6BASv‘w
b= Bl —3575,m (6-40)
and ;
E 3p4 (6-41)

T 3Bs2, - 3B%gw

Expressing (6-37) in terms of ry , we find for the critical radius rn,. of a dry
aerosol particle which at a given supersaturation s, becomes activated at the
radius a.:

a3(A - sywae) 17/°

T A+ (B -svwae

TN (6-42)
Ifthe number concentration of aerosol particles as a function of their size is known,
(6-42) permits determining the number of aerosol particles which become activated
at a given super-saturation.

6.7 Equilibrium Conditions for Ice Particles

We now consider three equilibrium situations involving the ice phase: (a) an ice
particle () in humid air ('), (b) an ice particle (") and a separate supercooled
solution drop ("“)in humid air ('), and (c) an ice partide (") in a supercooled
solution drop (') in humid air. These three cases are illustrated in Figure 6.4.
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Fig. 6-4: The three basic equilibrium types involving ice crystals.

If we assume a spherical ice particle, the analysis of case (a) proceeds in strict
analogy to the derivation of the Kelvin equation, (6-16), and we find the saturation
Vapor pressure OVer ice, e, j;, varies with radius according to

€q,i 20i0/a 2My0j/s

=@ =exp| ——) , 6-43
et = e w7e) = (Fra )
and for the case of equilibrium between the ice particle and the environmental
Vapor e = e, ;

; 2Myo;
- €a.i =1n S\r,i - wj/a .
Csat,i ZTpia

This result is plotted as curves 3 and 4 of Figure 6.1 (for 0 and —20°C). The
behavior is seen to be very similar to that for a pure water drop, except that at
small radii, (eg,i/€sas,i) > (€a,w/€sat.w). This is primarily a consequence of the
inequality cj/a > Oy/a-

If we abandon the requirement that the ice particle be spherical and, instead,
make it a hexagonal prism which follows Wulff’s relations (Section 5.7.2), then, in
place of (6-38) we have

(6-44)

& (B)
RT €q,i - ogja) - gi/a

Do P onei h  pB

(6-45)

where h(?) and h(®) are the perpendicular distances from the crystal center to the
prism and basal planes, respectively. Thus, the conditions at equilibrium for the
hexagonal prism which are compatible with Wulff’s relations are formally similar
to those which apply to the cases of a water drop and an amorphous sphere of ice.

We now turn to case (b) to study the equilibrium behavior ofa system comprised
of'a spherical ice particle ofradius a;, and a separate aqueous solution drop of radius
a4, both surrounded by humid air. As in Section 6.5, we have three components,
and we assume the constraint ny = constant, so that w = 3. Let us hold the
environmental pressure p constant and determine the independent variations of a;
and a4 with the equilibrium temperature.

On proceeding to specialize (6-5) in the appropriate, and by now familiar man-
ner, we obtain for the solution drop

.Z’e‘n 21.’“;‘(] Tsfa s
- 54 dT — T d( = )+.@dlnea—§?dlnaw——0, (6-46)
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and for the ice particle

7 2v; (O
~ T - % (ﬂ) +Adlne, ;=0. (6-47)

aj

These equations express the separate equilibrium balances between the drop and
its environment and the ice particle and its environment. To put the drop and ice
crystal in equilibrium with each other as well, requires that e, = e, j. Imposing this
condition, we may eliminate the vapor pressure term between (6-46) and (6-47) to
obtain

P (U"’“) 4 My (%) ~#TdInay =0.  (6-48)
T pw aq pi aj

An approximate integral of (6-48) between T = Tg,aq — 00,8 = 00,84 = 1
and T = Te,aq4,0;, 3w 1S

g:e_ 2Mwas/a _ 2Mwai/a ;@Tv‘i’sm,ng/Mg

Znoln (6-49)

To  Pwad piai  (4madpl/3) —m,
where we have used (6-25) for a, and employed an overbar to denote mean values
over the temperature interval (Tg,Te). For a pure water drop, this reduces to

by 2 ("—“”i— = 5’—) . (6-50)
To Zno \Pwaa pio

Inspection of these equations reveals that the presence of salts lowers the equi-
librium temperature, as expected from the behavior of water in bulk. This effect
is evident in Figure 6.5. However, we see that for NaCl the concentration has to
be larger than about 10~2 mole liter* to cause a noticeable effect. The figure also
indicates that, while for a pure drop of given size, the equilibrium temperature T
decreases with decreasing ice particle size, T, increases with decreasing drop size
for a given ice particle size. This opposing behavior derives from the different de-
pendencies of temperature with saturation vapor pressure over ice and supercooled
water.

In Figure 6.6 we have plotted the separate solutions to (6-46) ( for a,, = 1)and (6-
47); the curve intersections therefore constitute states satisfying (6-48). This figure
shows that for all drops and ice particles with (ag,a;) > 10~* cm, the equilibrium
temperature is essentially equal to the triple point for bulk phases (point A). The
figure also reveals the contrary temperature dependence referred to above: for a
drop of ag = 10~* em and an ice particle of a; = 5 x 107¢ cm, T, = —3.8°C
(point B), while for ag = 10~* cm and a; = 1078 cm, T, = —18°C (point D). On
the other hand, for an ice particle of @; = 10~® c¢m and a drop of aj = 1076 cm,
Te = —12.5°C (point C), a warmer temperature than for point D. Finally, we note
that for a; = aq,€,,i < €a,w for T < 0°C, the same behavior as for ice and water in
bulk (a;j,aq) —+ co.

Let us now consider case (c¢) and determine the equilibrium temperature for
a spherical ice particle inside a supercooled aqueous solution drop which is itself
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Fig. 6-5: Variation of the equilibrium temperature with drop size, ice particle size, and

concentration of salt in solution, for a system which consists of a pure water or aqueous

solution drop and an ice particle both surrounded by humid air, m, = 10"1® g NaCl.
(Based on solutions to Equation 6-48.)
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in equilibrium with the environmental humid air. As in case (b), such a system
has three independent variables. Of these, we shall keep the total gas pressure p
constant and study the variation of the equilibrium temperature with the radii a4
and aj.

For this case, (6-5) becomes with a; =1

ZTdl = 1
T o ) + na, =0, (6-51)

or, on substituting the condition of mechanical equilibrium, (5-7),

204/s w ifs
- 'y_’"’UdT.,_ng (_L - _1_) d (._a_l_) - Eﬁid (a’/ ) +%Tdlnay =0,
1

I Pw P a4 pi a;
(6-52)
Integrating as in case (b), we find
- To _ 2My0,a (1 1 ) 2My0i/, RTv®,;moM, /M,
Gl = ——— | — — — |+ — + , (6-53
ML= " \n ) o @ - el -my &)
which for a pure water drop becomes
2M. 2Myo0;
n Lo _ 2Mww/a (}- - i) + ¥ “‘°_’” . (6-54)
TB -gpm,oad Pi Pw _gm‘op;ﬂ.;

If the drop is much larger than the ice crystal, this last equation reduces to

2Myoi/y
s il (6-55)
Te  Zmobiai

Finally, if T¢ is close Tp, we may write

OMwTo0ise
(AT)u =Ty~ Tym —g U (6-56)
-?m,ﬂp;'ai

Equations (6-54) to (6-56) are different forms of a relation first derived by J.J.
Thomson (1888).

For a solution drop, we may obtain a similar simplification of (6-53) for the case
aq > a; and assuming ojj = Oj/y!

2MyTo0 )y RToTv®,m, M, /M,
(AT)e = —5—— = 3 -
ZLmobiai -gm.o[(4ﬁadp£/3) —m,]

(6-57)

The second term may be recognized as a combination of (4-94) and (4-66) and,
thus, is the equilibrium freezing point depression, (AT)e,s, due to the presence of
salts in bulk solution. Therefore, to the precision indicated in the derivations of
(6-56) and (6-57), we may write

(AT)e = (AT)e,a + (AT )e,s 5 (6-58)
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i.e., the total equilibrium freezing point depression is simply the sum of contribu-
tions from the separate curvature and solute effects.

A numerical solution of (6-52) is displayed in Figure 6.7. In accordance with (6-
56), the equilibrium freezing temperature is seen to decrease with decreasing size of
the ice particle. This decrease becomes particularly pronounced for a < 10~ cm,
and is further enhanced by the solute effect if the salt concentration is larger than
about 0.1 mole liter™*.
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Fig. 6-7: Variation of the equilibrium temperature with drop size, ice particle size and
concentration of salt in solution for a system which consists of an ice particle contained
in a pure water or aqueous solution drop surrounded by humid air. (Based on solution to

Equation 6-52.)

6.8 Experimental Verification

Several experimental difficulties have been encountered in attempting to verify the
various equilibrium relationships discussed in the previous sections. The major
difficulty in verifying the Thomson equation, (6-56), has arisen from a lack of ac-
curate values for gjsy. Generally, therefore, the approach has been to assume the
equation is correct and deduce values for gj/y; these in turn can be compared with
other independently determined values for this quantity. Pawlow (1910), Meissner
(1920), Tammann (1920), and Kubelka (1932) were among the first to verify ex-
perimentally that the melting temperature of a pure solid substance is dependent
on whether the substance is present in bulk or in the form of small particles. Ex-
periments for the ice-water system were first carried out by Kubelka and Prokscha
(1944), Skapski et al. (1957), and Skapski (1959). These experiments involved
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measuring the melting temperature of ice contained in pores and capillaries, or of
ice in the form of thin wedges. Unfortunately, this method is subject to a consid-
erable number of errors, and the interface energies obtained only agreed to within
20% with values derived from independent measurements. In subsequent years,
more accurate techniques involving electron microscopy and electron diffraction
have been developed and perfected (Wronski, 1967; Pocza et al., 1969; Sambles,
1971). These more recent tests of the Thomson equation for tin, indium, lead,
and gold particles of radii between 10:® and 3 x 10~7 cm have yielded excellent
agreement between experiment and theory.

Uncertainties concerning the Kelvin equation, (6-16), have been due mainly to
the fact that the liquids tested were held in capillaries (see Skinner and Sambles,
1972). The first successful attempt to test the Kelvin equation for freely falling
drops was carried out by Gudris and Kulikova (1924), who established its validity
to within 10%. Subsequently, La Mer and Gruen (1952), experimenting with freely
falling droplets in mixtures of dioctylphtalate and toluene, and of oleic acid and
chloroform, verified the Kelvin equation to within 5% for drops larger than 0.1 pm
radius. More recently, Sambles et al. (1970) and Sambles (1971), through electron
microscope studies of the evaporation rates of small drops of lead, silver, and gold,
established the correctness of the Kelvin law to within 5% for drops of sizes between
0.1 and 0.003 pm.

Quantitative experimental studies to verify (6-26) and (6-34) for increasing or
decreasing relative humidity were carried out first by Junge (1936) and by Orr et al.
(1958a,b) for Aitken sized particles, by Junge (1952a) for large and giant particles,
and more recently by McMurry and Stolzenburg (1989) using differential mobility
analyzers. An alternative method was used by Alofs et al. (1979), Gerber et al.
(1977), Hoppel (1979) and Hoppel et al. (1981), who tested (6-26) and (6-34) by
determining the critical supersaturation required to activate NaCl and (NH4)2S504
particles. The earlier as well as the later tests were found to agree well with (6-26)
and (6-34). An example of this agreement is given in Figure 6.8 which compares
the critical supersaturation for the activation of NaCl and (NH4)2S04 particles
with (6-42).

Unfortunately, the experiments just described provide support for the equilib-
rium growth equations only as far as the average size of a large number of particles
in a given size category is concerned. More definite experimental verification of
the equilibrium growth equations was provided by Tang (1976), Tang and Muck-
elwitz (1978, 1984, 1994), Fung et al. (1987), Richardson ef al. (1986a) and Tang
et al. (1986) who studied the growth of single aerosol particles freely suspended
by an elctrodynamic suspension technique in a humidified chamber. The resulting
equilibrium growth and evaporation behavior of an (NH4)2504 aerosol particle is
shown in Figure 6.9a where comparison is made with the predictions of (6-26).
We notice from this figure that, during growth, excellent agreement between the-
ory and observation was obtained for relative humidities above the deliquescence
point. In Figure 6.9b, the equilibrium growth and evaporation behavior of a mixed
particle consisting of NaNQg, NasSO04, and (NH4)9504 is shown. Comparing the
relative humidity for the onset of deliquescence of this mixed particle with the on-
set of deliquescence for the pure components, given in Table 4.3, we notice that
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Fig. 6-8: Critical supersaturation to activate aerosol particles of (NH4)2SO4 and NaCl.
Comparison of experiment with theory. (Based on data of Alofs et al., 1979, Gerber ef
al., 1977, and Hoppel et al., 1981.)

deliquescence of the mixed particle begins at a relative humidity which is lower
than that required for any of the components. Note also from this figure that equi-
librium growth and shrinking of a solution drop follows the same curve only above
the deliquescence point. Below the relative humidity for deliquescence, a shrink-
ing drop does not solidify as expected from its growth curve. Instead, the drop
supersaturates with respect to the salt in it and continues to shrink at decreasing
relative humidities in agreement with (6-26). At some unpredictable relative hu-
midity, salt nucleation sets in inside the highly supersaturated drop. This behavior
is illustrated in Figure 6.9a,b in terms of the ‘hysteresis loop’, which is described
by the drops equilibrium growth and shrinking. These experiments suggest that
during the evaporation of atmospheric clouds, some of the drops may be present in
a metastable state consisting of a solution, highly supersaturated with respect to
the salt contained in them. Such drops have been observed to exist in urban and
rural atmospheres at relative humidities between 45 and 75% (Rood et al., 1989).

A similar hysteresis behavior was noticed by Winkler (1967, 1968, 1970, 1973)
and by Winkler and Junge (1972) during studies of the equilibrium growth and
evaporation of aerosol particle deposits. Three such hysteresis curves are given
in Figure 6.10 for deposits of pure salt particles of known chemical composition.
As expected, observation and theoretical prediction are in good agreement for the
equilibrium growth at relative humidities above the deliquescence point. The hys-
teresis behavior of natural aerosol deposits is exemplified in Figures 6.11 and 6.12.
No comparison with theory could be made since the chemical composition of the
deposits was not known. As expected from the equilibrium growth of pure salt
particles, natural aerosol deposits begin to take up water at relative humidities
well below the deliquescence point, although the actual amount of water taken up
is small for relative humidities up to the deliquescence point. Above this point the
water uptake rapidly increases. Note that the equilibrium growth curve for de-
posits of aerosol particles of continental type are smooth (Figure 6.11) while those
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Fig. 6-9: Variation with relative humidity of the equilibrinm size of an aerosol particle

(a.% of (NH4)2804 at 25° C, and (b) of a mixture oqNaCI NapSO4 and NaNOg at 17.5°

C, freely levitated in air by an electrodynamic levitation technique. (From Tang and
Munkelwitz, 1984, with changes.)

of maritime origin exhibit a characteristic near-discontinuity near 75% relative hu-
midity (Figure 6.12). This ‘sea-salt discontinuity’ is due to the presence of NaCl
in the deposit which has a deliquescence point near 75% relative humidity. We
further note that at any given relative humidity maritime aerosol deposits take up
considerably more water than continental aerosol deposits. This is due to the large
portion of water-soluble, hygroscopic compounds in the former deposits, and also
due to the stronger water uptake of NaCl as compared to the (NHq4)2S04 prevalent
in continental aerosols.

Three factors help explain why aerosol deposits take up water at a value of
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Fig. 6-10: Equilibrium growth curves of pure salt deposits (256°C). (From Winkler, 1967;
by courtesy of the author.)
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Fig. 6-11: Equilibrium growth curve of an urban aerosol deposit collected at Mainz,
Ggermany during a north east wind. (From Winkler, 1967; by courtesy of the author.)
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Fig. 6-12: Equilibrium growth of a maritime aerosol deposit collected at Helgoland Island,
for west wind. (From Winkler, 1967; by courtesy of the author.
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e/€sat,w less than that necessary for equilibrium with a salt saturated solution.
Firstly, the water solubility of any substance is a function of particle size. Sol-
ubility is enhanced especially if the particle size decreases below about 0.1 pym.
This solubility enhancement was predicted qualitatively by Ostwald (1900) and
Freundlich (1926) through a Kelvin law type analysis, and has been quantitatively
established by the experiments of Dundon and Mack (1923), May and Kolthoff
(1948), and Orr et al. (1958a,b). The experiments of Orr et al. showed that NaCl
particles of 0.020 gm radius go into solution at a relative humidity of 69 to 70%,
while NaCl particles of 1 um radius need a relative humidity of 74%. Particles of
(NH4)2S04 with radii of 0.015 gm were found to form a saturated solution drop at
68% relative humidity; KCl particles of 0.03 pgm radius went into solution at 78%
relative humidity. These values are considerably below the relative humidities nec-
essary for salt in bulk, which are 75.3% for NaCl, 80% for (NH4)2S04, and 84.3%
for KCL

Secondly, aerosol particles contain air capillaries in which condensation of water
vapor proceeds at a relatively low saturation ratio. This can be explained if we
consider that the meniscus of water in a capillary with water wettable walls is
concave, in contrast to the convex surface of a water drop. Therefore, instead of
(6-16), we now have

e exp (—M) , (6-59)
eaat,w

which means that the smaller the radius of curvature a of the water surface in
the capillary, the lower the equilibrium vapor pressure over it. For only partially
wettable capillary walls characterized by a contact angle @, the argument of the
exponential must be multiplied by cos@®, but this does not change the qualitative
effect of capillary spaces in the particle surface.

The third reason for the occurrence of deliquescence is simply that all solids show
some affinity for water vapor and, thus, adsorb it onto their surfaces, as discussed
in the previous chapter. The amount of adsorbed water vapor may be considerable,
even at low relative humidities.

The development of a hysteresis loop in an equilibrium growth curve has three
main causes. Firstly, evaporating salt solutions tend to supersaturate with respect
to the salt in solution, as we stated earlier. This is due to the fact that the
crystallization of salt requires surmounting an energy barrier unless suitable solid
particles are present in the solution to serve as centers for crystallization. Thus,
as the relative humidity decreases, the equilibrium growth curve is determined
by the water vapor pressure over the supersaturated salt solution, until, at some
undetermined relative humidity, the salt crystallizes. This behavior is in contrast to
the growth during increasing relative humidity, which is assisted by the adsorption
and deliquescence behavior of the substances in the aerosol deposit.

Secondly, air capillaries in aerosol particles behave differently during increasing
relative humidity when they become filled, than during decreasing relative humidity
when they are being emptied. Figure 6.13 demonstrates this hysteresis effect in a
cylindrical capillary with an opening narrower than the body of the capillary. From
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(6-59), it follows that such a capillary begins to fill at a higher relative humidity
than that at which it begins to empty.

WATER VAPOR T“ﬁ! VAPOR
y- L\
—
———— ATER
]
=+
WATER =

BEING “FILLED" BEING “EMPTIED"

Fig. 6-13: Schematic behavior of a cylindrical bottle-type capillary during condensation
and evaporation.

A third reason for the hysteresis loop is that water-insoluble substances such
as clays behave differently during water adsorption than desorption, due to the
presence of alkali ions in the silicate lattice. During increasing relative humidity
(adsorption), the tendency of these ions to be bonded to the clay surface dominates
their tendency to hydrate (to become surrounded by and weakly bonded to water
molecules), particularly at low humidities. During the desorption which occurs with
decreasing humidities, however, the silicate ions are already largely hydrated, and
so their tendency to remain hydrated dominates the tendency to become bonded
again to the clay surface.



CHAPTER 7

HOMOGENEOUS NUCLEATION

Our outline in the previous three chapters of the equilibrium thermodynamics of
the phases of water is insufficient for an understanding of cloud particle formation,
since we did not come to grips with the crucial question of how a new phase is
initiated. Consider, for example, that on the basis of the Kelvin equation alone,
the formation of a water drop from homogeneous water vapor would be precluded
because the vapor pressure required to hold a microscopic quantity of newly formed
phase in equilibrium would be quite enormous. This expectation is in disagreement
with experimental observations which show that a large but finite supersaturation
exists above which homogeneous phase change does take place. The reason for this
behavior is that the formation of a new phase at the expense of a metastable original
phase (‘mother phase’) does not begin in a continuous manner, but rather takes
place spontaneously as a result of fluctuations in time and space of temperature
and density in the original phase, provided that a critical supersaturation of the
vapor or a critical supercooling of the water drops is exceeded. This spontaneous
process is called nucleation.

From our studies of adsorption we might expect that nucleation could be greatly
assisted if suitable solid surfaces were present. In fact, as we know from Chapter 1,
such heterogeneous nucleation has long been recognized as being generally respons-
ible for cloud formation. However, in order to clarify the physical principles involved
in the nucleation process, we shall assume for now that all foreign substances are
absent, and study homogeneous nucleation which occurs when only water substance
is present. Homogeneous nucleation of drops in supersaturated vapor can only be
realized under laboratory conditions and does not occur in the atmosphere. On
the other hand, we shall see in Section 7.2 that homogeneous ice nucleation in
supercooled water drops is the controlling mechanism for the formation of cirrus
clouds in the atmosphere.

Some useful references for the material in this chapter include the texts by Abra-
ham (1974b), Zettlemoyer (1969), Defay et al. (1966), Hirth and Pound (1963),
Dufour and Defay (1963), Frenkel (1946), and Volmer (1939), and the review ar-
ticles by Chalmers (1964), McDonald (1962, 1963a), Turnbull (1956), Dunning
(1955), and Hollomon and Turnbull (1953).

191



192 CHAPTER 7

7.1 Homogeneous Nucleation of Water Drops and Ice
Crystals from Water Vapor

7.1.1 EQUILIBRIUM POPULATION OF EMBRYOS AND ENERGY OF EMBRYO
FOrRMATION

Within the metastable bulk phase of water vapor are small molecular clusters
which result from the chance agglomeration of water molecules; these are generally
referred to as embryos if the vapor pressure is below the critical value required for
nucleation. Such embryos have small binding energies and are easily disrupted by
thermal agitation. However, at a critical vapor pressure some embryos will reach
a critical (germ) size, which are in unstable equilibrium with the mother phase. A
germ will proceed to grow spontaneously and thereby produce a macroscopic phase
change if, as a result of fluctuations in the mother phase, its size increases by even
an infinitesimal amount.

Therefore, in order to understand the nucleation phenomenon, one must first
learn something about the prenucleation embryos. For the sake of simplicity and
on considering the relative populations of i-mers (embryos consisting of i molecules
and denoted by A;), it is generally assumed that these grow by the capture of
single molecules (monomers). A further convention is to assume a state of dynamic
equilibrium for the i-mers, which we may express in the form

A +Ai=4;, i=12,... (7—1)

(the forward and reverse rates are assumed equal). On adding up a series of such
equations, we have also

1A = A;. {7—2)

As this represents an equilibrium situation, the corresponding statement in terms
of chemical potentials is

i = fi, (7-3)
where p; is the chemical potential of an i-mer.

7.1.1.1 Formal Statistical Mechanics Description

Let us now proceed to determine the number Nj; of i-mers in a volume V of vapor
held at temperature 7. As we are dealing in principle with a microscopic fluctu-
ation phenomenon, it is appropriate to apply, insofar as possible, the machinery
of statistical mechanics. For this purpose, we make the standard assumption that
the vapor system consists of a mixture of non-interacting ideal gases; i.e., each
collection of i-mers is considered to be an ideal gas of indistinguishable particles.
Then, in view of the fact that we may expect small fluctuations in Nj, it is compu-
tationally convenient to determine N; via the grand partition function of the grand
canonical ensemble (see Appendix A-7.1). An alternative description in terms of
the canonical ensemble has been given, for example, by Dunning (1969).
The grand canonical partition function for the component gases of i-mers is
(A.7-15):
2; =) [exp(u:Ni/KT)Q(N:) , (7-4)

N;
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where Q(N;) is the canonical partition function for the gas of ¢-mers:

N
Q) = %—, (7-5)

from (A.7-6). In this expression, g; is the partition function for a single i-mer.
Then, from (A.7-12) and (A.7-14), the size distribution N; is given as

dln 2;
N; = kT . 7-6
( L )w (7-6)

The convenience of the grand partition function is that it can easily be re-
arranged in a manner which greatly simplifies the indicated calculation in (7-6).
Thus, on substituting (7-5) into (7-4), we have

Z [a: exp(u./kT)] = explg: exp(pi /KT)]. (7-7)

Consequently, we find immediately from (7-6) that
N; = giexp(u:/kT) . (7-8)

By writing (7-8) once more for ¢ = 1 and combining these two equations with (7-3),
we can eliminate direct reference to the chemical potential to get

N; = (Mi/a1)'a;, (7-9)

which is known as the ‘mass action law’. This result may also be expressed in a
form containing a Boltzmann factor, viz.,

N; = Ngat,w exP[*‘Aqbi/kT] s (7'10)

where Ag; represents the energy required to form an embryo of ¢ molecules. Com-
paring (7-10) with (7-9), for the energy of embryo formation, we find

Adi . .
—k% = iIn(g/Neat.w) — In(@i /Naat.w) — 110 Sy - (7-11)

Here Ngat,w is the number of water molecules in V for conditions at saturation with
respect to a flat water surface, and Sy,w = Ni/Ngat.w = €/€sar.w is the saturation
ratio of the system.

The determination of N; has now been reduced to the problem of evaluating
the partition function g; for the i-mer. Unfortunately, however, no one has yet
found an accurate ab initio way to do this. This is hardly surprising, since g
depends on the complex structure of the #-mers which is largely unknown and
on a realistic intermolecular interaction potential suitable for an arbitrary poly-
molecular aggregate, which is not available.

Consequently, at this point, a much more heuristic approach is necessary. Prob-
ably the most successful such procedure is that of Plummer and Hale (1972) and
Hale and Plummer (1974a,b), who postulated certain allowed structures for the
i-mers, and proceeded to work out the corresponding g;’s.
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7.1.1.2 Molecular Model Method

As mentioned in the previous section, the procedure followed by Plummer and
Hale is to assume certain structures for the embryo i-mers and to determine the
corresponding g;’s. The size distribution is then available directly from (7-10) and
(7-11). A direct determination of the partition function g; would require a realistic
description of the inter-action potential for the cluster-vapor system. Unfortu-
nately, a realistic intermolecular potential which can be applied to an arbitrary
number of water molecules in large clusters is not available. Therefore, Plummer
and Hale assumed the following form for g;:

¢ = G;, 74, R,V 3i,B,C 5 (7-12)

where g; 7 and ¢; g are the translational and the rotational partition functions of
the i-mer, and where g; v = i intrailibGi,inter 1S the vibrational partition function
given in terms of the intramolecular, intermolecular, and librational contributions,
gi,p = exp(—E; p/kT) is the contribution of the intermolecular binding energy
E; p to the partition function, and g;¢ is the configurational contribution to the
partition function.

Each of these quantities has been evaluated semi-empirically in a manner de-
scribed by Plummer and Hale (1972), Plummer (1973), and Hale and Plummer
(1974a). In these evaluations, it was assumed: (1) that i-mers have a well-defined
structure, (2) that each structure has a lifetime sufficiently long to characterize
its internal vibrational spectrum, and (3) that the internal structure of a water
molecule is negligibly affected by cluster formation.

The assumed structure for water clusters in supersaturated vapor is that of
closed or partially closed clathrates composed of five-membered rings (Pauling,
1962). An example of such a structure for a 20-mer is shown in Figure 7.1a. These
cluster forms fulfill the imposed criteria that the molecules associate by hydrogen
bonding with bond angles which are roughly tetrahedral, that the number of bonds
be maximized, and that the forms possess near-spherical symmetry. This choice of
geometry is supported by the studies of Lin (1973) and Searcey and Fenn (1974)
(see Section 3.2).

However, these perfectly ordered clathrate structures cannot be used to repre-
sent arbitrarily large i-mers, since it becomes difficult to maintain the closed ‘cages’
without grossly distorting the bond angles and lengths. This results in the occur-
rence of considerable bond strain for 7 > 80, the effect of which has been studied by
Hagen (1973).

For the study of prenucleation embryos of ice in vapor, Hale and Plummer
(1974a) assume an ice-I, structure composed of rings containing six water mole-
cules each (see Section 3.3). A typical structure with 20 molecules is shown in
Figure 7.1b.

7.1.1.3 The Classical Description

Since we cannot rigorously proceed beyond (7-9) or (7-10) and (7-11), there arises
the possibility that an earlier resort to intuition and approximate physical modeling
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Fig. 7-1: Cluster models used in the theory of Hale and Plummer (1974a,b?. (a) Cluster of

20 water molecules arraged in a clathrate structure forming a pentagonal dodecahedron.

(b) Cluster of 20 water molecules arranged in an ice-I;, structure. (Based on Hale and
Plummer, 1974a,b.)

might, in some respects, be more appropriate. Not surprisingly, this is the historical
route of development of the subject (e.g., Volmer and Weber, 1926; Farkas, 1927;
Becker and Doring, 1935; and Zeldovich, 1942). These workers arrived relatively
quickly at a complete description for N; via two major assumptions: (1) the prenu-
cleation embryos may be regarded as water spheres, characterized by the usual
macroscopic densities and surface tensions, and (2) they are distributed according
to the Boltzmann law.

The assumption of a Boltzmann distribution like (7-10) is quite reasonable: the
i-mers are in thermal equilibrium, and the probability that they have a certain
energy (Ag); is just the probability for their existence, if we interpret (Ag¢); as the
energy of formation of the i-mer.

Let us therefore consider the energy of formation of a drop of radius a. We may
assume the required phase change occurs at constant temperature. However, it is
not a constant pressure process, according to (5-11). On the other hand, we may
assume that the total volume V of the system considered (the mother phase plus
the condensed phase) remains constant. Therefore, the Helmholtz free energy F
is the proper thermodynamic potential to use in our description. (Elaborations
of the point that F, rather than the traditionally used Gibbs function G, is the
proper potential may be found in Abraham (1968) and Dufour and Defay (1963).
For practical purposes, the resulting differences turn out to be negligible.)

Suppose the system to be comprised, after the phase change, of n,, moles of water
within the drop, and n, moles of water vapor. We neglect any adsorption of water
onto the interface (g); i.e., we assume n{?) = 0. The total system Helmbholtz free
energy at this time is thus given, considering (4-3b) and (5-13) and the definition
F=U-TS, by

Fy = nypiy2 + Nwlhw — ex(V — Vo) = puViw + O’w/‘,ﬂ 5 (7-13)

where we have used the subscript 2 to denote the post-phase change condition.
Similarly, before the phase change we have

Fi =(ny +nw)pvy —e1V. (7-14)
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Further, we may assume that the small amount of new phase negligibly affects the
vapor, so that g, ; = p,2 = iy, and e; = ep = e; therefore, by subtraction we find
for the energy of new phase formation

(AF]T,V = F2 e Fl = nw[ﬂw(pw’T) - ,u.v(e, T)] = Vw (pw - E) + Uwfvn' (7'15)

On introducing the mechanical equilibrium conditions (5-11) and noting that V,, =
afl/3, we may express (7-15) as

(‘ﬁF)T‘V = nw[.uw (pw‘ T) ST p’V(e: T)} + aw,’vﬂls » (7’16)

We recall now that for T = constant, duy = vwdpw, so that on integration and
ignoring the compressibility of water, this leads to

Hw (pwa T) = Pw (e: T) = Uy (pw = E) . (7'17)

Substituting (7-17) into (7-15) and using Vi, = n.v. = af)/3 as well as (5-11), we
obtain

(AF)ry = nwluw(e,T) — pv(e,T)] + 0w/ Q2 (7-18)
= (AF)yo + (AF)sur, (7-19)

where the first term is the volume or bulk free energy change and the second is the
surface energy change.

Let us now express these results on a molecular scale, assuming that we may still
employ macroscopic densities and surface tensions. Then, from (7-18), the energy
of formation of an 7-mer is

&Fi = i[ﬂ'W(e! T) - ﬂ‘v [e! T)] o+ O-w/vﬂi . (7'20)

This form has not made use of the assumption of spherical geometry; consequently,
it will hold for complex i-mer shapes. (However, it may be necessary to generalize
the surface term. See Section 5.7.) At equilibrium, we also have fw(pyw,T) =
iiv(e, T),where p,, refers to the pressure in the water germ. Thus, (7-17) becomes

_ 2'[:"w0'w/v

frw(e,T) - (e, T) = —Ow (Pw — e) = ay

(7-21)
In the last step, we have invoked mechanical equilibrium again. Going one step
further, we may introduce the saturation ratio through the Kelvin law, (6-17), and
arrive at the result

jiw(e,T) = jty(e,T) = =kT'In S, ,, . (7-22)
Consequently, another form of (7-20) is
AF; = 064,),Q; —ikTInS, 4. (7-23)
In terms of the i-mer radius, this is
3
AF; = 41620,y — YT S, ,, . (7-24)

30y,
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We have now reached our goal of describing the distribution of prenucleation
embryos via the classical approach: the energy of formation AF; has been deter-
mined as a function of embryo size, and so we now merely identify AF; = A¢; in
(7-10) to obtain

N; = Ny exp[-AF; [T}, (7-25)
or with Cy = Ni/V,

Ci = Csar €Xp[—AF; /kT]. (7-26)
(For a highly detailed and quite different derivation of the same result, see Dufour
and Defay, 1963.)

The behavior of AF; as given in (7-24) is shown in Figure 7.2. We see that
for vapor just saturated with respect to bulk water, the energy of i-mer formation
rapidly increases with size (as a?, from (7-24)). However, the behavior is seen to be
quite different for supersaturated vapor. In this case, the curves each have a single
maximum at some radius @;max, SO that -mers of radius a; > a;max require a work
of formation which decreases with increasing size. Thus, AF; max fOr @; = @; max
evidently represents the energy barrier to nucleation.
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Fig. 7-2: Energy of i-mer formation as a function of i-mer size, for 0° C. (From Elements
of Cloud Physics by H.R. Byers, copyrighted by University of Chicago Press, 1965.)

Consequently, through the classical approach we have available not only N, but
also a description of the germ radius a, as a function of supersaturation. This is

given by a, = a;max; by differentiating (7-24) and setting the result equal to zero
to obtain the maximum, we find

_ 21}waw_/v QMwawfv
Qg = Oimax = =

KTInSyw  RTpylnSew ' (7-27)
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i.e., the Kelvin law is obtained, as is necessary for consistency since the germ is in
(unstable) equilibrium with the vapor. Furthermore, by inserting this result into
(7-24), the energy barrier to nucleation, or the free energy of germ formation, is
found to be

T /v lﬁﬂM‘f,aixv
= AF;max = = , -2
AFy = AFimax = =3 = 3570 5y )P (7-28)

where Q, = 4ma? is the surface area of the germ. This is the classical estimate
of the amount of energy which must be supplied by fluctuations in the metastable
mother phase in order for nucleation to occur.

With regard to Figure 7.2, Byers (1965) has stressed that physical reasoning does
not suggest that embryos for i > g are to be found in large numbers increasing
with size, as we might expect from the negative exponent of AF; (Equation (7-26)).
After all, our physical concept of the nucleation event assumes that clusters which
reach a size i = g are in metastable equilibrium, which may lead spontaneously to
the growth of a macroscopic new phase. Following Byers, we therefore have marked
the curves beyond the maximum by a dashed line.

It is worthwhile at this point to record also the analogous expressions for homo-
geneous nucleation of ice in vapor. Obviously, (7-27) and (7-28) will also hold for
a spherical ice germ in unstable equilibrium with water vapor, if we merely replace
Uw by ¥j, pw by pj, Ov/w by Ov/is and Sy,w by Sv,i-

As we shall see, these results of the classical theory provide a simple basis for
predicting nucleation rates which are very similar to those actually observed. This
is a much better outcome than we might have expected, in view of the first rather
dubious assumption, referred to at the beginning of this section, which serves as
half of the foundation for the classical description. Thus, it does not seem very
likely that small clusters of molecules should exhibit macroscopic properties. And
even if one could assume the macroscopic description is correct in principle, there
would still arise conceptual difficulties in its application. In particular, it is not
easy to decide where to locate the surface of separation between the phases, since
the actual phase transition region may have a thickness comparable to the germ
radius (see, for example, Ono and Kondo, 1960). Also, some size correction for the
macroscopic surface tension would appear to be in order (recall Section 5.4.3 and
Table 5.1).

We have already made some remarks in defense of the assumption of a Boltz-
mann distribution for the prenucleation embryos. However, here again conceptual
difficulties arise in implementing the assumption. The difficulty this time is in de-
scribing accurately the contributions to the free energy of formation of the embryo.
The classical account of AF; assumes the embryos are at rest in the mother phase.
This is obviously incorrect, but the error which results thereby is not obvious.

Nevertheless, some confirmation of the classical approach comes from the results
of the molecular model. For this purpose, we identify AF; from the classical model
with A¢; from the molecular model, obtained according to the model calculations
of ¢; inserted into (7-11), and plot them together as a function of the number of
molecules in a cluster. The values for the case of water embryos are shown in
Figure 7.3. The effects of bond strain for the larger clusters is also indicated; this



HOMOGENEOUS NUCLEATION 199

causes only a small increase in the formation energy. The general good agree-
ment with the classical model is most impressive and surprising, considering the
theoretical deficiencies of the latter.

Before closing this section we should also mention another approach to the homo-
geneous nucleation problem, which is to use Monte-Carlo techniques to evaluate
AF;. The method is based on a stochastic process which generates a Boltzmann-
weighted set of configurations for a given closed system containing a fixed number
of molecules. For details, see Abraham (1974b). Though this method holds great
promise for the future, it imposes a heavy computational burden on present gen-
eration computers, and it has so far been possible to simulate the growth of only
small clusters. Consequently, we shall not consider it further here.

80
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Fig. 7-3: Energy of embryo formation vs. embryo size (in number of molecules) at Sv,w

=5and T = 273° K for: (1) the classical liquid drop model, (AF);/x T =9.3 i*/® —1.6i

(solid line); (2) the molecular model, (A®);/kT (crosses); (3) the molecular model with

strain (triangles); and (4) the least-squares fit to (A®);/kT = 12.8 i ?/® — 2.40i (dashed

line)). (From Hale and Plummer, 1974b; by courtesy of Am. Meteor. Soc., and the
authors.)

7.1.2 THE NUCLEATION RATE J

When homogeneous nucleation of water from the vapor occurs, what is observed
is the (rather sudden) formation of a cloud of small drops. Thus, the experimental
quantity of interest is the rate at which drops appear in the system as a function
of the prevailing saturation ratio Sy,. Let us denote this rate by J, measured
as the number of drops appearing per unit volume and per unit time. We shall
make the traditional assumption that J corresponds completely to the rate of germ
formation; i.e., it is the nucleation rate.

A simple and direct way to estimate J has probably occurred to the reader:
assume (7-26) holds for i = g, and determine J as the rate at which the ¢ = Ny /V
germs per unit volume collect single molecules from the vapor; i.e., set

J=ewtQ,, (7-29)
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where wt, given by (5-48), specifies the flux of water molecules to the germs.
The estimate (7-29) was first made by Volmer and Weber (1926). It is a quite
reasonable first approximation, in that we are interested only in describing the onset
of nucleation; for this purpose one might well expect the equilibrium distribution
(7-26) for i = g to provide an adequate basis for estimating J.

Let us reflect now on how we might improve our estimate. Two factors which we
have so far neglected naturally suggest themselves for consideration. Firstly, germ
evaporation as well as condensation should be accounted for. Secondly, we should
recognize that as embryos flow through the phase-change ‘bottleneck’ created by
the energy which is required to form a germ-sized embryo, their distribution will
not, in principle, be the equilibrium distribution of (7-26), since it assumes no mass
flux up the size spectrum.

An improvement which recognizes these features was first carried out by Farkas
(1927) and Becker and Doring (1935); other refinements and extensions have been
made by Volmer (1939), Zeldovich (1942), Turnbull and Fischer (1949), Farley
(1952), and Frenkel (1946). The key simplifying assumption introduced by these
authors is that the new size distribution may be regarded as being in a steady
state. As we shall see, J can then be found without difficulty.

For this purpose, let us first estimate the time required to reach a steady state
once a given vapor supersaturation is achieved. If we denote the time dependent
concentration of embryos of size ¢ by fi, then, the generalization of (7-29) which
includes the effect of evaporation is

Ji = fi_ywi iy — fiw'Q, (7-30)

where w' is the flux of water molecules leaving the embryo surface. Here J; is the
number of embryos vol~! sec™! entering the size category i. A special case of this
equation is the equilibrium situation for which J; = 0; for this case we have

0=ci1w*Qiy —cwi Q. (7-31)
We may combine these two equations to eliminate w;:
! !
Ji = ciciwt iy (Ll - f*-) . (7-32)
Ci—1 Ci
From the definition of J;, the first time variation of f is given by

af! _0J;
E = Ja . Jg+]. i 81 . (7—33)
Let us now pass over to an approximately equivalent continuous description. Then,
in place of (7-32) we have J; & —c;w¥Q;_18(f!/e;) /84, and (7-33) becomes
afi a . & s
Dt m ciw €l Bi (files)] - (7-34)
Assuming further that e;w*$;_; is roughly constant, this equation reduces to a
diffusion equation in f]/c; with diffusion coefficient w€;_,:

! s 4
3({;?0:) ~ W %(f:/cs) ) (7-35)
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Thus, the characteristic time to achieve the quasi-steady state germ concentration
is just T & (9%/wtQy_1)/? (Farley, 1952). For water germs in typical expansion
chambers, T ~ 10~¢ to 10~ sec, which is about 10~3 of the time during which the
supersaturation remains essentially constant. Thus, the steady state assumption is
consistent with usual experimental conditions.

Let us now proceed to find J; = J = constant, assuming a steady state concen-
tration which we shall denote by f;. Surprisingly, it turns out we do not have to
determine f; to find J. However, we do need to use boundary conditions on f;,
which we choose as follows: (1) fi/c1 = 1; this is reasonable since the monomer
population is relatively enormous and need not deviate significantly from the equi-
librium concentration in order to produce a substantial nucleation rate. (2) fg =0
for some G > g; the results are extremely insensitive to the choice of G, which
makes this a reasonable working assumption.

From (7-32), we may now immediately obtain J by summing over i as follows:

G-1 G-1
Y Jewt Q=) (fi -~ E) il g (7-36)

=1 i=1 o Cit =

or

G-1 4 ==

i=1

a result in which f; does not appear. Now ¢; will have a minimum near ¢ = g
(recall (7-26) and Figure 7.2, and so the dominant contributions to J will come
from terms in that neighborhood. Hence, we may approximate the sum in (7-37)
as

I~ 3
o ciwt;  wiQge,

(7-38)

where the factor Z—! effectively counts the number of contributing terms; i.e., it
measures the width of the minimum in the curve for ¢;. From (7-37), we then
obtain

J = il ey (7-39)

By comparing with (7-29), we see that (7-39) differs from the equilibrium approxi-
mations result only by the factor Z, called the Zeldovitch factor (Zeldovitch, 1942).

The Zeldovitch factor is obtained by expanding ¢; about the minimum in a
Taylor series through terms of the second order in %; this produces a Gaussian
approximation to the curve in that neighborhood, and Z~! is identified with the
width (i.e., the standard deviation) of the Gaussian curve. Proceeding in this way,
we write AF; in (7-26) as

2
AF; ~ (AF,) + % [%;(AR-)] (i—9). (7-40)

i=g
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On abbreviating B, = [(d?/di?)(AF})]i=g(< 0) we find, with ¢y = Cg,sat,w
x exp[—AF, [kT] from (7-26),

o oy B0 -

The Zeldovitch factor may then be found from (7-38)
+o0
R DI 2 /2KT]dx -42
2%y D [ el /AT, (7-42)
3 —oo

where we have set x = i — g. Evaluation of the integral gives

2rkT 12
-1 _ -
Z = (— B, ) : (7-43)

Using (7-23) and recognizing that §; o i%/2, this leads to

AF 1/2
7= [mﬁ_g?] . (7-44)

This expression is suitable for arbitrary geometries. Two additional forms which
hold for spherical water germs are:

I Syw\? 204 (Owv\1/2
Z_( 6mg ) *uﬂ_g“(kT) * (7-45)

where g = (4n/ 3)03/1'1“,. The mathematical approximations involved in passing
from (7-37) to (7-39) and (7-44) produce an error of about 1% (Cohen, 1970),
which is insignificant in comparison with the uncertainties in AFj.

Numerical evaluation of (7-45) shows that Z is typically O(10~!). This result
is in qualitative accord with our expectations: A finite rate of germ production
should deplete the embryo population to something below the equilibrium level.

Collecting results, the nucleation rate of water germs from the vapor may be
expressed as

J= csat,ww¢ﬂgzexp[_AF§/kT] . (7'46)

This holds even for non-spherical germs, if (7-44) is used to describe Z. Other
versions for spherical germs include

J = 2Csat,wW'Ow (0w /v /KT)'/? exp[—AF, /KT] (7-47)

using the second form of (7-45), and

o [2N3 Mooy 13 2
J= ;‘_ ( AT w7 ) (So )" Sy expl-AF, /KT, (7-48)
» ;
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TABLE 7.1
Variation of the nucleation rate J as a function of saturation ratio over water and over
ice for homogeneous nucleation of water drops and ice crystals in water vapor at —12° C
for a; = a4 = 1.0 . (Based on data of Dufour & Defay, 1963.

Sv.w 2 3 4 5 6
Sy.i 2.249 3.374 4.499 5.623 6.748
J(drops cm™3 sec1)1.9 x 107112 7.0 x 10-31 1.1 x 10010 7.1 x 102 6.0 x 10°
I (ice crystals 9.2 x 10394 27 % 10163 1.2 x 1098 4.4 x 109 3.4 x 1052
em™3 sec’l)

using (5-51) for w* and the first form of (7-45), together with y = My, [paNa,
Csat,w = ©sat,w/kT, and k = Z[N 4. Of course, equations exactly analogous to
(7-47) and (7-48) hold for the nucleation rate of spherical ice germs from the vapor
(Wlth Caat,w ~—* Cgat,i» Uy — Vj, Qe = 04, S\r,w — Sv,l'! Pw = Pi, Owiv —F Tifvy and
esat,w - eaat,l')'

Inspection of (7-46) to (7-48) and (7-28) shows that J is extremely sensitive to
Sy,w, since the term in the exponent varies as S 2. This is indicated further in
Table 7.1, in which a numerical evaluation of (7-48) and its counterpart for ice
are presented. We see, for example, that for water germs, J increases by 5 orders
of magnitude as Sy, increases from 5 to 6. This behavior enables one to define,
from an experimental point of view, a critical saturation ratio (Sy,w)erit at which
drops suddenly appear in the vapor; by convention, (Syw)eri¢ has been taken to
correspond to J = 1 germ cm™3 sec™?.

Table 7.1 also indicates that the nucleation rate of ice germs from the vapor
remains near zero for all realizable supersaturations. This follows from the fact
that AFy o 0®; then, since o}, > 0wy , We have AFyice > AF, water and, hence,
Jice € Juuter for a given S, . This behavior apparently holds for 7 down to at
least —100°C. This is in contrast to predictions based on the phase diagram for
bulk water, which merely reinforces again the notion that surface effects dominate
in nucleation phenomena. On the other hand, the nucleation prediction is in agree-
ment with Ostwald’s rule of stages (Ostwalds Stufenregel) (Ostwald, 1902) which
states that a supersaturated phase (water vapor) does not directly transform into
the most stable state (ice), but rather into the next most stable or metastable
state (supercooled water). Although Krastanow (1940) proposed a reversal of this
rule for water substance below about —65°C, Dufour and Defay (1963) have shown
Krastanow’s result to be erroneous, since it was based on incorrect values for g/,
and w;, and neglected the variation of @y /s With temperature. A correct evaluation
of the nucleation rate equations demonstrates that at temperatures warmer than
—100°C no reversal of Ostwald’s rule takes place. It must be stressed that this
result is only applicable to homogeneovs nucleation. If nucleation is heterogeneous,
Ostwald’s rule does, indeed, reverse under certain conditions (see Chapter 9).

In Figure 7.4, a comparison is made between the classical model for a drop
and ice crystal (for a crystal with a shape factor s = 16, see Section 5.7.2) with
the clathrate and ice cluster model of Hale and Plummer. We notice excellent
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Fig. 7-4: Critical supersaturation for drop and ice nucleation (with respect to liquid water)

predicted for J =1 cm? sec’! by the classical and the molecular model; for e = g = 1.0.

Curves (3) and (4): for ice crystal nucleation in supersaturated vapor with s = 16. Curves

(1) and (2): for water drop nucleation in supersaturated vapor. (From Hale and Plummer,
1974a, with changes.)

agreement between the classical drop model and the clathrate cluster model. The
agreement is less satisfactory between the classical ice model and the ice cluster
model. Nevertheless, the general agreement is quite surprising in view of the as-
sumptions made in both theories: namely, the assumption in the classical theory
that py, p; and oy, oy,; can be described by values which apply to macroscopic
phases, and, for the molecular model, the assumption that the cluster takes on the
shapes given in Figure 7.1a,b. It may be that the agreements are quite fortuitous
and the result of compensating errors between the models as well as within a par-
ticular model. Thus, Lee et al. (1973) found from studies on spherical solid argon
clusters, that the capillarity approximation overestimates the number of surface
atoms in the cluster, but at the same time underestimates the surface free energy
per surface atom. We further note from (7-28) that ay/w, or ;i appears in the
numerator and py, or pjin the denominator, so that errors in & and p due to the
neglect of the cluster character of very small drops (or ice crystals) might com-
pensate. We also note from Figure 7.4 that both models uphold the Ostwald rule
of stages and predict that in homogeneous vapor at temperatures below 0°C ice
appears via the freezing of supercooled water drops rather than directly from the
vapor, as also expected from Table 7.1.

7.1.3 EXPERIMENTAL VERIFICATION

The various shortcomings inherent in the theories of homogeneous nucleation have
made extensive comparison with experiment especially important. Following Wil-
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son (1899), many experimenters have employed the expansion chamber technique
to determine the onset of homogeneous water drop formation in supersaturated
vapor. A review of many such studies has been given by Mason (1957a). Later,
Katz and Ostermier (1967), and Heist and Reiss (1973) have used the diffusion
chamber technique to study homogeneous water drop formation. Both experimen-
tal techniques have several major shortcomings and basic difficulties which are
hard to overcome. Problems inherent in the diffusion cloud chamber technique
have been discussed by Fitzgerald (1970, 1972), while difficulties of the expansion
chamber technique have been discussed by Barnard (1953), Mason (1957a), Allard
and Kassner (1965), Carstens et al. (1966), Carstens and Kassner (1968), Kassner
et al. (1968a,b), and Allen and Kassner (1969).

In addition to the experimental problems of design and technique, Allen and
Kassner (1969) and Hagen et al. (1982) gave evidence of the fact that the mole-
cules of any carrier gas with which a cloud chamber is purged may act as nucle-
ation centers to form clathrates. Under these conditions, nucleation is not truly
homogeneous. Still another uncertainty arises from the fact that the condensation
coefficient e, is not accurately known (see Table 5.4).

In spite of these reservations, Figure 7.5 indicates a reasonably good agreement
between experiment and both the classical theory and the molecular clathrate
cluster theory of Hale and Plummer (1974b). This is particularly true for the
expansion chamber studies of Kassner er al. (1971), Kassner et al. (1975, pers.
comm.), Miller et al. (1983), and the diffusion chamber studies of Heist and Reiss
(1973). From the discussion of Section 7.1.2, we must interpret the agreement
between the classical theory and experiment as being partly fortuitous and due to
compensating errors in the theory (see also Hale and Plummer, 1974a, and Lee et
al, 1973).

Some of'the earlier experimental ice nucleation studies by Sander and Damkohler
(1943), Cwilong (1947), and Pound et al. (1955) were interpreted to mean that,
below a certain temperature, ice forms directly from the vapor. However, Fournier
d’Albe (1949), Mason (1952a), Mossop (1955), Kachurin et al. (1956), Maybank
and Mason (1959), Anderson et al. (1980), Hagen et al. (1981, 1982), DeMott
et al. (1992) and DeMott and Rogers (1990) demonstrated conclusively that in
supersaturated homogeneous vapor and at temperatures between 0 and —70° C, ice
is always the result of the freezing of supercooled drops. Thus, present experiments
support both the molecular ice cluster theory of Hale and Plummer (1974a,b) and
the classical theory in their prediction that Ostwald’s rule of stages indeed applies
to the homogeneous phase change of water substance.

7.2 Homogeneous Nucleation of Ice in Supercooled Water
7.2.1 THE NUCLEATION RATE J

In order to apply the nucleation rate equation to the nucleation of ice crystals in
supercooled water, we must realize that the main difference between nucleation of
ice embryos from supersaturated vapor and from supercooled water lies in the
growth mechanism of the embryos. As we have seen, in the former case, the
growth of an embryo is controlled by the monomer flux from the vapor. In the



206 CHAPTER 7

J=1
a.=0.01 W Allen & Kassner (1969)

8
411 O Kassner et al. (1975)
3
o J=101 - X Volmer & Flood (1934) | axperiment
ag= O Frey (1941) {expansion)
l$-.|$'|1:|[A (1954)
@ Scharrer (1939)
- =~ Madonna el al. (1961)
o 6
E T mamnsﬁn}w
EZ] Helst & Reiss (1973) | (difiusion)
=
g s T e W
’é + Hale & Plummer (1974b), J=1, a =1
=
&
3
2
TEMPERATURE (°C)
1 4 — i i i i

50 40 30 20 -0 0 020 30 40

Fig. 7-5: Critical supersaturation for drop nucleation predicted by the classical and the
molecular model for various values of J and a.. Comparison of theory with experiment.

latter case, where water molecules are essentially already in contact with the ice-
embryo, growth is a matter of molecular reorientation involving the breaking of
water-to-water bonds and the formation of water-to-ice bonds. During this process,
which proceeds at constant temperature and constant pressure, a water molecule
must pass from its average equilibrium position of minimum potential energy in
water to a new equilibrium position in ice, the two positions being separated by
an energy barrier Ag¥. Expressed in another way, Ag¥ is the molar Gibbs free
energy of activation for diffusion of water molecules across the water-ice boundary.
Using the ‘absolute reaction rate theory’ (Glasstone et al., 1941; Eyring and Jhon,
1968), Turnbull and Fischer (1949) have shown that this energy barrier leads to
the following expression for the diffusive flux density of water molecules across the
ice surface:

NkT
Wi = —— exp(-Ag?/RT), (7-49)

where h is Planck’s constant and N, is the number of monomers of water in contact
with unit area of the ice surface. Dufour and Defay (1963) estimate N, to be about
5.85 x 10'* cm—2, while Eady (1971) finds 5.30 x 10'? cm~? using a molecular
model. Using wﬁm in place ofthe factor w* in (7-46) or (7-47), we can immediately
write down the homogeneous nucleation rate for ice germs in supercooled water in
a form analogous to (7-47)

o Uy
J = 2cnWiiats (“’f“‘) exp [— ae 9] , (7-50)

kT kT
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or, with (7-49)

_ pokT\ (Gijw\1/? _AgF  AF,
J_ZN‘(p,-h)(kT) *P\"@T " XT | (F-51)

We note from (7-51) that, in contrast to ice nucleation from supersaturated vapor,
ice nucleation in supercooled water has to overcome two energy barriers. We shall
now discuss both barriers in sequence.

7.2.2 THE ENERGY OF GERM FORMATION

In order to evaluate (7-50) or (7-51), we must determine the work of ice germ for-
mation AF,. As in the case of nucleation from the vapor phase we may proceed
along two avenues and use either the classical approach based on thermodynamic
arguments or follow a molecular approach and apply statistical mechanics to su-
percooled water. We shall briefly touch on both of these approaches.

7.2.2.1 Classical Model

Using the classical approach, the energy of ice-germ formation in supercooled water
is obtained following the same line of reasoning that applies to a water germ (cf.
(7-28))

oimQy  4m(a)30ip

3 3 ’
where (a;), is found from (6-52) for the case that a4 < @; and no salts are in
solution, and assuming that the supercooling required for ice nucleation to occur
is sufficiently small so that average values for the latent heat of freezing and the
density of ice may be used over the temperature interval of interest.

However, in the next few paragraphs it will be shown that homogeneous ice
nucleation becomes significant only at supercoolings larger than 35°C. In this tem-
perature range, the parameters pw, pj, Zm and oj;, which appear in (7-52) and
(6-52) vary significantly with decreasing temperature (see Chapters 3 and 5), thus
prohibiting the use of average values over the temperature interval. Therefore,
(aj)g in (7-52) has to be computed by integrating the full equation (6-52) if ice is
nucleated inside an aqueous solution drop of a given size. For ag < a; and for pure
water (a,, = 1), (a;), can be obtained by integrating (6-52) without the second and
fourth term.

AF, = (7-52)

7.2.2.2 The Molecular Model

In an attempt to evade the assumptions of the classical theory, Eadie (1971) for-
mulated an expression for the energy of ice germ formation in water by using a
statistical approach similar to that employed later by Hale and Plummer (1974a,b)
for the formation of water and ice germs in supersaturated vapor. Eadie based
his approach on the statistical thermodynamic model of water by Nemethy and
Sheraga (1962a,b) and Vand and Senior (1965a,b). In this model, it is assumed
that the molecules in water can be partitioned into five classes according to the
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number of H-bonds in which they participate, i.e., from none in the completely
unbonded state to four in an ice-like state. In each of the five classes, the mole-
cules undergo restricted translational, vibrational and rotational motions in the
field of the nearest neighbor molecules. The canonical partition fuction for water
consisting of 4-bonded molecules can, in analogy to (7-5), be written as

N

Q=Y nmpL, (7-53)
(Ny)

where N; is the number of molecules in the molecular class j of j-bonded molecules,
(N;) denotes summation over all distinct distributions of the N = Z;‘.:D N; mole-
cules of the system into the five molecular classes, and g; is the j-bonded molecule
partition function.

Eadie modified this expression by following a suggestion of Vand and Senior
(1965a,b), wherein a degeneracy factor w is included to account for the number of
distinguishable ways in which the j hydrogen bonds in which a molecule in the jth
molecular class participates can be distributed among the four possible directions
with respect to the molecule:

. (7-54
Wj = -
T )
With this adjustment the partition function becomes
Q=Y NHL (‘""’J) . (7-55)
(N;)

Next, the partition function is approximately evaluated by equating In ¢ with the
logarithm of the maximal term in the sum on the right-hand side of (7-55). Using
Sterling’s approximation for this purpose, the logarithm of a term in the sum over
distinct distributions in (7-55) is

4
InT = N(InN ~1)+ Y Njlin(wjg;) - (ln N; - 1)]. (7-56)

=0

The values of the N;’s for which In 7' is a maximum subject to the constraint that
the total number of molecules remains constant can be obtained by the method of
Lagrange multipliers; the result is that the equilibrium value for the mole fraction
of molecules in the jth class is given by

Nr w.q-

_I_Vl = 4—3—3—-— B (7—57)
Y wig;
j=0

On substituting this result into (7-56), the canonical partition function is obtained:

4
InQ =NIn (Z ujqj) . (7-58)

i=0
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Based on (7-58), Eadie assigned to a monomer in supercooled water the average
partition function given by

4
@=) wig (7-59)
Jj=0
Then, considering the mass action law (7-9), the number of ice clusters (i-mers)
consisting of 1 water molecules is

N i
Ni=d (—1) , (7-60)
q1

where g; is the molecular partition function for an ice i-mer. As before, we may
express this result in a form containing the Boltzmann factor:

—Ag;
, = [\ — 2
N; 1exp( 8 ) , (7-61)
where Ag¢; represents the energy required to form an ice embryo of i-molecules.
Combining (7-59) to (7-61), we find for the energy required to form an ice embryo
of i-molecules. Combining (7-59) to (7-61), we find for the energy of ice embryo
formation:

A¢' =iln [Z w;g; /M] — In(g}/N1). (7-62)

j=0

Eadie estimated ¢} by assuming an ice-like geometry for the ¢-mers, with molecules
arranged in the form of a hexagonal prism with its height equal to the diameter
of a basal face. He then determined the total number of molecules, the number
of doubly (i3), triply (i3), and quadruply (i4) bonded molecules in an i-mer, and
the number of broken bonds on the surface of the i-mer. The required bookeeping
is formidable and cannot be repeated here, but the result is that the ice #-mer
partition function is obtained from the relation

is! 2i2s
g; =

(i3 — %34)'334' (22 — 323 = 324)7123'32

(qI)M(q )334+524(q3)13'—'34+‘28(q )32 123124

(7-63)
where g = exp(—f;/kT) is the molecular partition function for the quadruply
bonded molecules in the interior of an ice cluster given by the observed molecular
chemical potential ;.'Lj' fo iCC ;24 = XHig, ?',23 = 2XH(1 i XH)‘J:Q, i34 = XH‘ig,
and where Xy is the average fractlon of hydro%en bonding between molecules in
the liquid, given by Xy = 4_, (4 [Dw;a;/ Tjmo wigj- The energy of ice germ
formation is then obtained as tile maximum in a plot of A¢; versus i.

7.2.3 THE MOLAR ACTIVATION ENERGY Ag¥

In most earlier work, Ag¥ has been identified with the experimentally determined
activation energy (Ag)act,w for self-diffusion in water given by (3-21) (see also
Section 5.9). Such identification led in the past to a serious underestimate of
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the theoretical nucleation rate in comparison to the rate derived for temperatures
between —43 to —33°C from cloud chamber studies (Butorin and Skripov, 1972;
Hagen et al., 1981; DeMott and Rogers, 1990), and from field experiments carried
out at the cirrus cloud level (Sassen and Dodd, 1988; Heymsfield and Sabin, 1989;
Heymsfield and Uriboshavich 1993). This discrepancy is evident from a comparison
of curves (1) and (2) in Figure 7.6. The reason for this discrepancy lies in the fact
that (Ag)acs,w increases rapidly with decreasing temperature (see Figure 3.11),
due to an increasingly bonded water structure (see Section 3.4). In contrast, cloud
chamber studies of Hagen er al. (1981) suggest that below —32°C Ag* sharply
decreases with decreasing temperature. They argued that the reason for this lies
in the fact that, with decreasing temperature, the freezing process becomes an
increasingly cooperative phenomenon where increasingly larger clusters of water
molecules transfer across the ice-water interface by breaking only hydrogen bonds
at the cluster periphery, but not in the interior of the cluster.

10 S Y 2 rei Hagen etal (1981)
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comected i
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Fig. 7-6: Variation of the rate of homogeneous ice nucleation in supercooled water. (1)

Classical theory based on values for o}y, Lm, pw, p; available prior to 1978 and for A

g=|‘ = (Ah)act,w - (2) Classical theory based on recent values for o;,, Lm and on A g=I=

given by curve 3 in Figure 3-11. Dashed line: molecular model of Eadie (1971). Cloud

chamber experiments: () Hagen et al. (1981), H data of Hagen et al. (1981) extrapolated

by author to warmer temperatures, x DeMott and Rogers (1990), and observations at the
cirrus cloud level (Sassen and Dodd, 1988).

In order to arrive at a more realistic estimate for Ag¥ , we may therefore follow
Hagen er al. (1981) and solve (7-51) subject to observed values for J. In order
to test whether the laboratory and field data given in Figure 7.6 are sufficiently
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accurate for such computation, we shall compare them with the results from drop
freezing experiments in the laboratory.

For this purpose, we note that J in (7-51) is given in terms of the number of
germs in 1 em® of supercooled water which is equivalent to a drop of 6.2 mm
radius. Since the drops studied in the labortory and in the field are considerably
smaller than this size, it is necessary to formulate an ice nucleation theory for
smaller volumes of water. Let us follow first a heuristic approach and consider
a population of Ny isolated water drops, all having the same temperature 7" and
the same volume V4. We shall assume further that a nucleation event in any one
drop is independent of that in any other drop. Given these conditions, we may
express the number of ice-germs produced during the time dt in the volume N, Vg
of unfrozen water as

Nig(t +dt) = N;,(t) = N,VaJ(T) dt, (7-64)

where N, is the number of unfrozen drops and J(T) is the rate of ice-germ forma-
tion.

We shall also assume that ice formation is the result of only one nucleation
event per drop. This assumption is reasonable, since the growth velocity of ice
is very large at the supercoolings where homogeneous ice-nucleation takes place.
This makes it very likely that the first germ formed grows quickly enough to con-
vert the drop into ice before any other germ is formed. The first germ receives
additional protection from the fact that, during its growth, latent heat is released
which immediately raises the temperature of water in the drop. This reduces the
nucleation rate of other germs to a negligible value.

For these conditions the increase of ice-germs is given by d Ny, the increase in the
number of frozen drops N;. Also, since the total number Np of drops is constant,
we have dN,, = —dN;. Hence, we arrive at the simple differential equation

dN, = —N,VaJ(T)dt (7-653)
o 1 4N,
u - |
- 5 g = V(). (7-65b)

Integrating from Ny at t = 0 to N, at t, and assuming constant temperature 7,
we find

Nu = Noexp[-VaJ(T)1]. (7-66)

This indicates how, at constant temperature, the number of unfrozen drops de-
creases with increasing time.

Of course, we could have obtained (7-66) immediately by considering that ice
nucleation, proceeding homogeneously in the drops, is a stochastic process. This
implies that the freezing events are Poisson distributed (see, e.g., Melissinos, 1966).
Therefore, the probability that, out of a population of Ny drops, N¢ drops have
frozen during the time interval t = 0 to ¢ = # is

(Atg)Nf exp(—Atg)

Ne=0,1,2,... (7-67)
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with A = Vg J(T'). The probability that during the time interval ¢ = 0 to ¢ = & no
freezing events take place is then

P(Ng = 0,t) = exp[—VaJ(T)ts]. (7-68)

Identifying P(N; = 0, ¢5) with (N, /Nyp), i.e., with the ratio of the N, drops which
survived freezing to the whole population of drops, we recover (7-66). One read-
ily also sees that half of the drop population has frozen after the time ¢, =
0.693/V4J(T).

For a constant rate of cooling, 74, = —dT'/dt, we obtain, instead of (7-65b),

1 dN, _ VaJ(T)
(Nu dT )_ﬁ T )
or, after integration,
To
No=Noesp | ~(Vaj) [ J(T)ar | (7-70)
T

We notice from (7-69) that that the smaller the rate at which a drop is cooled or
the larger the volume of a drop, the less it can be supercooled before it freezes.

These findings are physically reasonable if we consider that the larger the volume
of a drop, the larger is the probability for a density fluctuation in the drop and,
thus, the larger is the probability that an ice germ will be produced. It is also rea-
sonable that, in a given volume of supercooled water, the probability for a density
fluctuation and, thus, the probability for ice-formation, increases with increasing
time during which the water is exposed to a certain change in temperature.

Frequently in the literature, the freezing temperature of a population of drops is
characterized by the median freezing temperature Ty, i.e., the temperature where
50% of drops are still unfrozen, i.e., Ny, = Np/2. With this, (7-70) becomes

To
/ J(T)AT = 0.693./Va . (7-71)

Tm

Unfortunately, there is considerable scatter among experimentally derived values
available in the literature for the median freezing temperature of water drop pop-
ulations. This is not surprising, since water cannot easily be purified to such an
extent that it consists almost entirely of water molecules, although some workers
have gone far in devising techniques to reach such a desired state of purification
(Mossop, 1955; Haller and Duecker, 1960; Pruppacher, 1963a). Additional uncer-
tainties in providing homogeneous conditions arise from the need to support the
water samples. Fortunately, a careful analysis of the lowest freezing temperatures
recorded give a more consistent picture. These values are plotted in Figure 7.7
as a function of drop diameter, using letter symbols. Assuming now that at the
lowest observed supercooling 99.99% of a population of equally sized water drops
are frozen when cooled at a rate +,, we find, instead of (7-71),



HOMOGENEOUS NUCLEATION 213

(1)

L 1 %% RN JS————— - .
— -
¢ i
o 35l
-
S ?
& 4o}
o -
-l
w ol o

o

10® 10° 10* 10° 102 10" 10° 10' 102

DROP DIAMETER (cm)

Fig. 7-7: Lowest temperatures to which pure water drops of given size and exposed to
cooling rates between 1°C min™! and 1°C sec’! have been supercooled during laboratory
experiments: H (Hoffer, 1961), M (Mossop, 1955), D (DeMott and Rogers, 1990), B (Bigg,
1953b), P (Pruppacher and Neiburger, 1963), L (Langham and Mason, 1958), Ha (Hagen
et al., 1981), Ru (Rouleau, 1958), K (Kuhns and Mason, 1968), Y (Bayardelle, 1955), R
(Rasmussen, 1982), A (Anderson et al., 1980), Bs (Butorin and Skripov, 1972), and Bc
(Broto and Clausse, 1976). Curves 1 and 2: Temperature at which 99.99% of a population

of uniform-sized water drops freezes when exposed to cooling rates of 1° C min™! and 1°

C sec'l, respectively (from Equation 7-72, with J values consistent with curve 2 in Figure
7-6.)

To
f J(T)dT = 9.217:/Va. (7-72)
Too.00

Equation (7-72) may be solved to obtain Tgp.99 as a function of drop size for
given values of J. Although we mentioned earlier that observational values for
J are only available for the temperature range —44 to —33°C (see Figure 7.6), it
turns out that J contributes only negligibly to (7-72) at temperatures warmer than
—33° C, so that this contribution may safely neglected. One therefore may solve
(7-72) by using J-values derived from a best fit to the observations between —44
and —33°C. The results of this computation for 7. = 1°C sec™* and 1°C min™*
are given by the continuous curves (1) and (2) in Figure 7.7. We notice from this
figure that for a given drop size, Tyg.99 1S in excellent agreement with the largest
drop supercooling observed in the laboratory. Assuming that this agreement can
be taken as support for the J-values given as curve (2) in Figure 7.6, one may
extrapolate curves (1) and (2) in Figure 7.7 to —27°C by requiring consistency with
a similar extrapolation of curve (2) in Figure 7.6. The values for J thus obtained
are listed in Table 7.2. We note from this table and curve (2) in Figure 7.6 that
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TABLE 7.2

Variation of the nucleation rate J as a function of temperature for homogeneous nucleation
ice in supercooled water.

Supercooling J Supercooling J
(°C) (cm™3 sec’l) (°C) (cm™3 sec1)
29 46 x 1011 37 30 x 107
30 43 x 1078 38 50 x 108
31 15 x 108 39 90 x 109
32 65 x 1073 40 10 x 1011
33 15 x 100 41 20 x 10!2
34 30 x 102 42 10 x 104
35 20 x 104 43 50 x 1015
36 10 x 106 44 20 x 1017
TABLE 7.3

Variation with temperature of the activation energy for transfer of
water molecule across the ice-water interface.

Temperature  Activation energy  Temperature Activation energy

(°C) (keal molel) (°C) (kcal mole™1)
-29 10.00 -37 7.75
-30 10.00 -38 7.65
-31 10.00 -39 7.45
-32 9.60 -40 7.25
-33 9.20 -41 6.85
-34 B.60 -42 6.00
-35 8.20 -43 5.15
-36 7.90 -44 4.45

J rises strongly with increasing supercooling, rising eventually without bound as a
supercooling of —45°C is approached. This tendency is a direct consequence of the
singularity behavior observed for water at —45°C (Section 3.4). Finally, the values
listed in Table 7.2 may be used to estimate AgHT') from (7-51). For this purpose,
we compute AF, from (7-52) with (5-47a,b) for o/ (T), (3-25) for Luo(T), (3-
2) for pi(T) and (3-14) for pw(T). The resulting values for AgHT) are listed in
Table 7.3, and plotted as curve 4 in Figure 3.11. As anticipated by Hagen et al.
(1981), AgHT') decreases rapidly with increasing supercooling, approaching zero
as the temperature approaches the singularity temperature of —45°C. As seen in
Figure 3.11, at temperatures warmer than —29°C, the transfer of water molecules
across the water-ice interface is controlled by the self-diffusion of water molecules
through bulk water, while at temperatures below —32°C, the controlling mechanism
is the transfer of increasingly large clusters, as suggested by Hagen ef al. (1981).
At temperatures between —29 and —32°C, a transition regime exists in which the
mechanism of growth of ice embryos is not well defined.

In order to check whether the semi-empirically derived values for Ag¥ are sup-
ported by the results from the molecular model of Eadie, we plotted in Figure 7.6
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the J-values listed by Eadie. We notice a surprising good agreement between the
molecular and the classical model for supercoolings between 33 and 42°C. Un-
fortunately, this agreement is purely accidental. A careful inspection of Eadie’s
molecular model shows that his computations of J was based on an estimate of the
activation energy Ag¥ for transfer of molecules across the water ice boundary using
values given by Dufour and Defay (1963) which, in turn, were based on Dorsey’s
(1940) data of the activation energy for viscous flow. These were significantly lower
than the values derived from recent data of viscosity and self-diffusion given in Fig-
ure 3.11, resulting in an overestimate of J. At the same time, Eadie’s molecular
model significantly overestimates the interface energy o/, and therefore AF, ,
when compared with the g, values given in Figure 5.17. This causes an under-
estimate of J. Since these two errors tend to compensate each other, the apparent
agreement between the J-values of the classical and of the molecular model cannot
be used to substantiate the Ag* values derived from nucleation experiments via
the classical model.

We finally may add that drops at cirrus level may contain dissolved salts which
lower the temperature even further before homogeneous ice nucleation sets in. Un-
fortunately, values for Ag* and aiss are not known for solution drops.



CHAPTER 8

THE ATMOSPHERIC AEROSOL AND TRACE GASES

From Chapter 6, it is evident that an understanding of the cloud forming processes
in the atmosphere requires knowledge of the physical and chemical characteristics
of the atmospheric aerosol. In discussing this gaseous suspension of solid and liquid
particles, it is customary to include all gases except water vapor, and all solid and
liquid particles except hydrometeors, i.e., cloud and raindrops, and ice particles. In
addition, it is the atmospheric aerosol with its gaseous and particulate constituents
which also determines the chemical characteristics of the clouds and precipitation.
This is simply a result of the fact that a considerable fraction of the atmospheric
gases and aerosol particles become scavenged by clouds and precipitation, where
they may partially dissolve and undergo chemical reactions (see Chapter 17). In
the present chapter, we shall present a brief discussion of the physical and chem-
ical characteristics of the gaseous constituents of the atmosphere, followed by a
more detailed description of the main characteristics of the atmospheric aerosol
particles. For background on the subjects covered, the reader is referred to the
texts of Junge (1963a), Butcher and Charlson (1972), Hidy (1972), Rasool (1973),
Twomey (1977), Friedlander (1977), Hidy (1984), Finlayson and Pitts (1986), Sein-
feld (1986), Warneck (1988) and Jaenicke (1988). Most of the data on which this
chapter is based are derived from these sources and from literature citations therein.

8.1 Gaseous Constituents of the Atmosphere

Up to an altitude of about 85 km, the composition of the atmosphere is essentially
uniform. In this layer, called the homosphere, the gaseous constituents are present
in quasi-constant proportions (see Table 8.1). Above about 85 km, the compo-
sition of the atmosphere begins to vary markedly due to gravitational separation
of the chemical constituents, and due to solar radiation which dissociates some of
the constituents and stimulates the formation of new chemical species. This outer
portion of the atmosphere is called the heterosphere. For a discussion of the chem-
ical characteristics of the higher atmosphere, the reader is referred to the texts of
Brasseur and Solomon (1984), Shimazaki (1985), and Warneck (1988).

One may classify the gaseous constituents of the atmosphere according to their
residence times. For quasi-constant constituents, the residence time is of the order
of thousands of years or more; slowly varying constituents have residence times of
a few months to a few years; and fast varying constituents have residence times of
a few days or less.

The quasi-constant gaseous constituents of the atmosphere are N3, O2, Ar,He,
Ne, Kr, and Xe. Slowly varying gaseous constituents include CHy, O3, N2 O, CO,

216
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TABLE 8.1
Composition of clean, dry air. (Based on U.S. Standard Atmosphere, 1962)
Constituent gas Content Constituent gas Content
(% by vol.) (% by vol.)

Nitrogen, No 78.084 Helium, He 0.000524
Oxygen, Oq 20.9476 Krypton, Kr 0.000114
Argon, A 0.934 Hydrogen, Hy 0.00004
Neon, Ne 0.001818 Xenon, Xe 0.0000087

COg, and Hy. Fast varying gaseous constituentsinclude SO5, HgS, NO, NO,, NHg,
and radicals such asOH, HO2,NO, NO3. The only gases which can be considered
‘permanent’ are the nobel gases, Ne, A, Kr, Xe, since they have negligible sources
or sinks in the atmosphere. All other gases, including Oz, N2, He, and Hg, have
sources and sinks and therefore a finite residence time.

Tables 8.2 summarizes the sources and sinks of the slowly and fast varying gases
in the atmosphere. In Table 8.3, estimates are listed for some of the emission rates
of these gases. These numbers are very rough and can only serve as a general
guide. In Tables 84 and 8.5, we have selected from the wealth of observations
on the trace gas concentrations a few typical values. Again, these data may only
serve as a guide. Without considering the Arctic regions, we notice from Tables 8.4
and 8.5 that the trace gas concentrations are generally highest in urban air, less in
continental rural air, and least in maritime air.

Observations show that, with the exception of ozone, the trace gas concentration
generally decreases roughly exponentially with increasing height in the first 6 km of
the atmosphere. This is also evident from some of the mountain stations listed in
Table 8.5, and from Figures 8.1 to 8.5. In these figures, the concentration variation
with height of a few selected trace gases is given.

B 4
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Fig. 8-1: Seasonally averaged meridional distribution of ozone. (From Fishman and
Crutzen, 1978a,b, with changes.)

All tropospheric gases have sinks (see Table 8.2), since they undergo various
chemical reactions, including chemical decomposition and photodissociation. They
also are scavenged by cloud drops and rain drops due to their solubility in water.
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TABLE 8.2
Sources and sinks for major atmospheric gases, other than Na.
Gas Sources Sinks
CcO Combustion, biomass burning, biological Oxidation in l;.fper atmosphere,
activity in soil and in oceans, biological uptake by bacteria,
volcanoes, oxidation of CHy uptake by soil-surface
COq Combustion, cement production, Photosynthesis by biosphere,
volcanoes, burning of carbon compounds absorption by oceans
by animals and bacteria, respiration,
biomass burning
O3 Dissociation of Og by solar radiation Photochemical dissociation in upper
and subsequent collision of O with O, atmosphere, collision of Oz with O,
dissociation NOg by solar radiation NO, OH or HOo
and subsequent collision of O with Og
CHy Escape from oil wells and mines, Photochemical reaction with NO,
bacterial decomposition of organic NQOg, and O3 in upper atmosphere,
matter, biomass burning, exhalations dissociation %y solar radiation at
from biosphere; solvent use, volcanoes high altitudes
N5O Bacterial decomposition in soil and in Photodissociation in upper
oceans, in release from ocean artificial, atmosphere, decomposition by
combustion biological activity in soil
NOx Bacterial activity in soil, combustion, Chemical reactions (with HC.,
volcanoes, lightning, biomass burning oxidation to nitrates)
NH3z  Bacterial activity in soil, combustion, Chemical reactions (with SO5,
volcanoes, fertilzer loss, biomass oxidation to nitrates)
burning
HyS Decomposition of organic matter in soil Chemical reactions (oxidation to
and in stagnating water, volcanoes. sulfate), uptake by soil and
oceans
SO Combustion, volcanoes Chemical reactions (oxidation to
sulfate), uptake by soil and
oceans
COSs Soil emission, ocean Loss to stratosphere,
hydrolysis in ocean water
DMS  Bacterial decomposition in ocean water Chemical reactions
oxidation to sulfate)
HCHO Biomass burning, emission from industry ollision of HCHO with OH
combustion, decomposition of CO radicals
OH O3 X7 O(1D) + 05(1Ag) CO+ OH— COy +H
O(ID) + Ny — O(3P) +Ny H+ O3 +M — HO5 + M
O(D) + H,0 — 20H HOs + NO — NOs + OH
hy
H,0O HO9 + HO93 — HoO9 + O Hy0p — OH + OH
Lk H0§+H 6‘.;‘ &2-21-1 02 a.c%.inzgasoxidant
H02+H%)2-H0~—-—-> Oy + 09 + Hs0
HO9 OH + CHy — %20 + CHg HO9 4+ HOg — H909 4 O9

CHz + O + M — CH305 + M
CH302 +NO —> CH3O + NOg
CH30 4 Og —s HCHO + HO,

HO + NO — NO9 + OH
HOg + O3 — 205 + OH
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TABLE 8.3

Anthropogenic- and natural emission rates for slow
and fast varying trace gases (1 Tg = 10'% g).

Gas Production rate
(Tg/yr)
COy 205 x 102 (1986)
CcO 15 - 28 x 102
CH,4 225 - 854
NsO 17 - 69 as N
NOx 19 - 99 as N
NHj 22 - 83
HsS 75 - 122 as S
S0, 50 - 100 as S
COoS 12 as S
DMS 20 - 60 as S
TABLE 8.4
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Background concentration of slowly varying trace gases in air of the troposphere.

Gas Concentration

CHy4 1.4-20 ppmv

COq 355 ppmv (1993)
co 10 - 250 ppbv

O3 20 - 300 ppbv

N9O 300 - 400 ppbv

ig. 8-2: Vertical distribution of NOx in continental air. Dots:

-
o

b vyl
0.1 1.0 10

CONCENTRATION (ppbv)

ALTITUDE (km)
oOnN A O ©

over wheatland

(Wyoming), open circles: over Denver (Colorado), both based on Kley et al. (1981);
open triangles and solid triangles: flights over Germany based on Georgii and Jost (1964).

(From Warneck, 1988, with changes.)
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TABLE 8.5

Surface concentration of fast varying trace gases in air.
(a) HNOg, nitric acid

Continental air ppbv

Clermont, California, urban 4.4 Forrest et al. (1982)
Res. Triangle Park, N. Carol. rural 0.54 Shaw et al. (1982)
Abbeville, Luisiana, rural 0.72 Cadle et al. (1982)
Warren, Michigan, suburban 0.96 Cadle (1985)

Jillich, Germany, suburban, winter  1.02 Meixner et al. (1985)
Colorado, 3050 m.a.s.l 0.02 - 0.7 Parish et al. (1986)
Maritime air ppbv

Pacific 0.038 - 1.02 Huebert 8980}
Pacific 0.11 Huebert & Lazrus (1980a,b)
W. Pacific 0.14 - 0.90 Okita et al. (1986)
Bermuda 0.044 - 0.126 Wolff et al. (1986)
Marina Loa, Hawaii 0.018 - 0.09 Galasyn et al. (1987)

(b) NHg, ammonia

Continental air ppbv

‘West Germany, winter 7.9 + 5.3 Georgii & Miiller (1974
summer 22.4 + 13.1 Georgii & Miiller (1974

Swiss Alps summer 0.26 Georgii & Lenhard (1978)

Netherlands 4.9 £ 2.5 Bos (1980)

Sweden 0.28 Ferm (1979)

Warren, Michigan, winter 1.05 Cadle et al. (1982

Commerce City (Colorado), winter 4.5 Cadle et al. (1982

Maritime air ppbv

Central Atlantic 0.26 Georgii & Gravenhorst (1972)

Saragasso Sea 7.9 *

N. Pacific 1.52 Tsunogai (1971)

Tropical Pacific 0.74 »

S. Pacific 0.17 ”

Antarctica 0.02 Gras (1983)

(c) NOx (NO, nitric oxide; NOq, nitrogen dioxide)

Continental air pPpbv

London 13 - 26 Williams et al. (1988)

Loop Head, Ireland 23 - 82 »

Claremont, California 48 - 62 Atkinson et al. (1986)

Deuselbach, Germany, rural 11.5 - 16.3 Broll et al. (1984)

England, rural 10 + 82 Harrison & McCartney

White Water, rural 1.3-75 Atkinson et al. (1986)

Death Valley < 0.3 i

Wank Peak (1780 m), Germany 25-7 Reiter et al. (1987)

Niwotridge (2910), Colorado 0.24 - 0.30 Bollinger et al. (1984)
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TABLE 8.5 (continued.)

Maritime air

Mid Pacific

Atlantic

Tropical Pacific

Mauna Loa, Hawaii (2500 m)

(d) SOq, sulfur dioxide

Continental air

New York City

Frankfurt a.M

England, rural

Sweden, rural

Colorado, rural

Zugspitze (3000 m), Germany
US at 5-6 km

Maritime air

Atlantic

N. Atlantic
Central Atlantic
S. Indian Ocean
Pacific

(e) HaS, hydrogen sulfide

Continental air

Bowling Green, Miss.; urban
Frankfurt a. M.

Toulouse

Loire Valley, France, rural
Pine forest, rural

Pic du Midi (2980 m), France
Ivory Coast, tropical forest

Maritime air

‘Wallops Islands
Atlantic
Pacific

(f) CH3SCHg, dimethylsulfide (DMS)

Maritime air

Equatorial Pacific
Cape Grim
Bahamas

N. Atlantic
Saragasso Sea

pptv

30

20 - 70
2.8-5.7
30

ppbv

60.5 - 324
8.8 - 95.7
4.3
1.3-9.1
0.13 - 0.5
8.6

0.16

pptv

27.5 - 121
38.5 - 51.2
1.3 -12.6
45.9 - 4253

pPptv

40 - 110
0.7 - 31
42 - 70

pptv

48 - 289
25 - 354
4 - 494
2 - 302
1- 767

Atkinson et al. (1986)
Broll et al. (1984)
Liu et al. (1983)
Noxon (1981)

Greenburg & Jacobs (1956)
Georgii (1960)
Meetham (1959)
Egner & Erikson (1955)
Georgii (1970)

» 1960

Maroulis and Bandy (1980)

Herrman & Jaeschke (1984)
Nguyen et al. (1983)

Maroulis et al. (1980)

Breeding et al. (1973)
Biirgermeister (1984)
Delmas et al. (1980)

n
n

Maroulis & Bandy (1974)
Barnard et al. (1982)
Andreae & Raemdonk (1983)

Andreae et al. (1988)

ERE- I ]
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TABLE 8.5 (continued.)

Gulf of Mexico and Carribean

Flight over Puerto Rico
S. Pacific Ocean

(g) CS2, Carbondisulfide

Harewell, England
Philadelphia, clean

% polluted
Flight over Puerto Rico
Free troposphere

(h) COS, Carbonylsulfide

Troposphere
Pacific

(i) HCHO, formaldehyde

Continental air

Los Angeles

New York City

Osaka

Deuselbach, Germany, rural
Warren, Mich., rural

Maritime air

Cape Point, S. Africa
Pacific

Atlantic

Mauna Loa Obs. (Hawaii)
upslope
downslope
maximum

(k) HCOOH, formic acid

Continental air

Central Africal
urban
Austria, rural
semi-rural
Amazonas, rain forest

CHAPTER 8

0 - 800
408 - 562
45 - 672

pptv

80 - 300
27 - 47
76 - 304
11 - 166
<3

pPptv

500
500 - 525

ppbv

2-40
2-40
1.6 - 8.5
23-39
1.3-6.3

ppbv

0.2 -0.8
0.8-11

o

.0
6
0.33

Salzman & Cooper (1988)
Carrol (1985)
Bates et al. (1992)

Sandalls & Penkett (1977)
Maroulis & Bandy (1980)

Carrol (1985)
Bandy et al. (1981)

Khalil & Rasmussen (1984)
Torres et al. (1980)

Grosjean et al. (1983)
Cleveland et al. (1977)
Kuwala et al. (1983)
Schubert et al. (1984)
Lipari et al. (1984)

Fushimi & Miyake (1980)
n

Neitzert & Seiler (1981

Lowe & Schmidt (1983

Heikes (1992)

Helas (1989
Dawson & er (1988)
Puxbaum et al. (1988)

»

Helas (1989)
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TABLE 8.5 (continued.)

Maritime air ppbv

N. Pacific 0.8 Arlander et al. (1990)
S. Pacific 0.22 ?

N. Indian Ocean 0.75 »

S. Indian Ocean 0.19 »

(1) CH3COOH, acetic acid

Continental air ppbv
Central Africa 0.6 - 2.7 Helas (1989)
urban 4 Dawson & Farmer (1988)
Bragzil, rain forest 0.2-22 Helas (1989)
Maritime air ppbv
N. Pacific 0.8 Arlander et al. (1990)
S. Pacific 0.28 »
N. Indian Ocean 0.69 ”
S. Indian Ocean 0.29 <
(m) HoO3, hydrogen peroxide
Continental air ppbv
numerous locations 0.05 - 4 Gunz & Hoffmann (1990)
max. in summer
Arkansas summer 1-6 Ray et al. (1992)
winter 0-05 "
N. Carolina (at 2000 m) 0.63 + 0.57 Claiburn & Aneja (1991)
Maritime air ppbv
Equatorial Atlantic 3.5 Jacob & Klockow (1992)
Mauna Loa Obs. (Hawaii)
upslope 1.05 Heikes (1992)
downslope 0.9
maximum 3.2
N. Pacific average 0.4-05 Lind et al. (1987)
maximum 0.9
N. Pacific off the coast of
St. of Washington 0.3-1.0 Lee & Busness (1989)
Q02 4 0 (ppbv)
g2 P
w
=
0 2 : :i 0 2 4

MIXING RATIO (pg ni3)

Fig. 8-3: Vertical distribution of gaseous ammonia and ammonium cont.ainin% particles
over Europe, based on data of Lenhard (1977) and Georgii and Lenhard (1978). (From
Georgii and Lenhard, 1978, with changes.)
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Fig. 8-4: Vertical distribution of SOy over various locations. (1) W. Germany in winter,
(2) W. Germany in summer, (3) French coast, (4) Atlantic, (5) Sweden. Based on data of
Jost (1974), Gravenhorst (1975) and Rodhe (1972). (From Georgii, 1982, with changes.)

~
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Fig. 8-5: Vertical distribution of H2S over various locations. (1) Over Mainz-Nierstein,
Germany, (2) over Aschaffenburg, Germany, (3) over the North Sea and Sylt. Based on
data of Lenhard (1977).



THE ATMOSPHERIC AEROSOL AND TRACE GASES 225

TABLE 8.6
Residence time in the lower troposphere of various atmospheric trace gases.
Gas residence time
COq 4- 10 yr exchange with ocean mixed layer
~ 20 yr exchange with ocean deep sea
15- 75 yr exchange with biosphere
COS 2- 40 yr
NoO 10 - 100 yr
0%4 4- O9yr
co 2- 6 months
O 4 - 5 months
582, HsS few days
CH3SCHj, CSq few days
HNOg, NOx few days
NHg few days

The various precipitation mechanisms subsequently lead to the permanent depo-
sition (wet-deposition) of the scavenged gases. Trace gases also undergo chemical
reactions and adsorption mechanisms on the Earth’s surface. The mechanisms
involved in this dry deposition of gases have been discussed by Warneck (1988),
Seinfeld (1986), Finlayson and Pitts (1986), Hicks (1984), Pruppacher er al. (1983),
and Georgii and Pankrath (1982). The mechanisms involved in wet deposition will
be discussed in Chapter 17. The presence of sinks imply that the atmospheric gases
have a definite residence time in the atmosphere. The residence times of some of
these gases (other than those considered semi-permanent in Table 8.1) are listed in
Table 8.6.

8.2 Atmospheric Aerosol Particles (AP)

Aerosol particles (AP) in the atmosphere have sizes which range from clusters of a
few moleculesto 100 um and larger. Junge (1955,1963a) suggested dividing the AP
into 3 size categories. Particles with dry radii r < 0.1 pm he called Aitken particles
to pay tribute to Aitken who studied the behavior of these particles in great detail
(see Chapter 1). Particles with dry radii 0.1 < r < 1.0 um Junge called large
particles, and particles with dry radii # > 1.0 um he called giant particles. More
recently, it has become customary to follow Whitby (1978) and regard the AP with
diameters r < 0.1 pm as belonging to the nuclei mode, particleswith 0.1 < r < 1pm
as belonging to the accumulation mode, and particles with » > 1 pm as belonging
to the coarse mode. In this classification, Whitby considers particles with r < 1 pm
as fine particles.

Particles are injected into the atmosphere from natural and anthropogenic or
man-made sources. Most come from the Earth’s surface, but some arise from the
Earth’s interior through volcanic action, while others enter the atmosphere from
outer space. The concentration of AP varies greatly with time and location, and de-
pends strongly on the proximity of sources, on the rate of emission, on the strength
of convective and turbulent diffusive transfer rates, on the efficiency of the various
removal mechanisms (see Chapter 17) and on the meteorological parameters which
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affect the vertical and horizontal distributions as well as the removal mechanisms.
Observations confirm that the concentration of AP decreases with increasing dis-
tance from the Earth’s surface. This is expected from the atmospheric density
profile, and also because the surface constitutes the major source of AP, while re-
moval mechanisms operate continuously throughout the atmosphere. In fact, it is
estimated that 80% of the total aerosol particle mass is contained below the lowest
kilometer of the troposphere. The AP concentration also decreases with increasing
horizontal distance from the seashore towards the open ocean, because the land is
a more effficient source of particles than the ocean. Thus, it is estimated that 61%
of the total AP mass is introduced in the Northern Hemisphere, as compared to
the Southern Hemisphere which is covered with a smaller land mass. Within the
Northern Hemisphere, most of the aerosol particle mass enters the atmosphere at
latitudes between 30 and 60° N, since this latitude belt contains about 88% of all
anthropogenic sources for particulates.

The removal rate of aerosol particles by self-coagulation is proportional to the
square of the particle concentration, while the removal by interaction with cloud
drops and raindrops is proportional to the first power of the particle concentration
(see Chapter 11). Consequently, the removal rate of AP may become very small if
their concentration is sufficiently small. Indeed, Junge (1957b, 1963a) and Junge
and Abel (1965) have demonstrated the existence of a rather stable background
AP population of a few hundred particles cm~3. This fairly uniform atmospheric
background aerosol exists over land at heights above about 5 km, and over the
oceans far from shore above about 3 km (Junge,1969a).

Aerosol particles of terrestrial origin are formed by three major mechanisms: (1)
gas-to-particle conversion (GPC), (2) drop-to-particle conversion (DPC) involving
the evaporation of cloud and raindrops which contain dissolved and suspended mat-
ter, and (3) bulk-to-particle conversion (BPC) involving mechanical and chemical
disintegration of the solid and liquid Earth surface.

8.2.1 FORMATION OF AEROSOL PARTICLES BY GAS TO PARTICLE
CONVERSION (GPC)

Several pathways are possible to form AP by GPC. We shall briefly discuss three
of these pathways. The first pathway involves the homogeneous nucleation of new
particles in supersaturated vapors. Such nucleation may take place in plant ex-
halations, combustion products and in volcanic plumes, which include vapors that
have low boiling point temperatures. These vapors readily condense to drops or
directly to solid particles relatively close to their source. Some substances typi-
cally involved in this mechanism are soot, tars, resins, oils, sulfuric acid, sulfates,
carbonates, and others. Most of these substances are the result of industrial op-
erations and man-made or natural fires. AP formed in this manner cover a wide
range of sizes, but the majority lay within the Aitken particle size range. Detailed
discussions of this mode of AP formation are given by Dunham (1966), Sutugin
and Fuchs (1968, 1970), and Sutugin er al. (1971).

The second pathway involves homogeneous nucleation of particles by gas phase
chemical reaction. Many of these reactions are catalyzed by the ultraviolet portion
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of the Sun’s radiation. These effects have been discussed by Briccard er al. (1968,
1971), Mohnen and Lodge (1969), Vohra et al. (1969), Cox and Penkett (1970),
Vohra and Nair (1970), Vohra et al. (1970), and Mohnen (1970, 1971). Thus,
Gerhard and Johnstone (1955) proposed that sulfur trioxide (803) may be the
result of the following chain of reactions proceeding at the Earth’s surface in bright
sunlight:

S0, % 803, (8-1)
SO; +M — SOz + M; SO} + 0s — SO4, (8-2)
S04 +S0; — 2803, (8-3)

where 8O3 is an activated state of SOg, and M is a chemically neutral gas molecule
(e.g., Ng) that must be present for the reaction to proceed. In very polluted city
air, Cadle and Powers (1966) suggested

SO, +0+M — SOz + M (8-4a)

in competition with

0:+0+M — Os, (8-4b)
while Junge (1963a,b) proposed
SO +0+M — SO3 + 0. (8-5)
Warneck (1988) considered a two step reaction involving the radical OH

SO, + OH — HOSO,, (8-6a)

HOSO0;2 + Oz — SO3 + NOg, (8-6b)

with a hydroxyl sulfur dioxide adduct (HOSO,) as intermediate product. Once
formed, 803 quickly hydrates to sulfuric acid according to

S03 + H, O — HyS0;4. (8—7)

Sulfuric acid droplets then form by binary nucleation in the sulfuric acid-water
vapor mixture. Nitric acid vapor may form according to

NO, + OH + M — HNO; + M. (8-8)

Nitric acid droplets then form by binary nucleation in nitric acid-water vapor mix-
tures. At night time, nitric acid drops may form in a three step reaction

NO; + O3 — NOj3 + O2, (8-9a)

NOg + NOg = N3O5. (8—9b)
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Due to its high solubility in water, nitrogen pentoxide NoOjs then quickly dissolves
in water droplets to produce nitric acid droplets according to

N2Os + (HgO)]iq —+ HNO; . (8—9(7)
Other vapor reactions not involving water vapor which produce AP are
HNO3 + NH; = NH4N03 ' (8—10)

HCI + NH; = NH,CI. (8-11)

On the surface of preexisting particles gas to particle conversion may cause the
formation of new compounds. Thus, on the surface of sodium chloride particles,
sodium nitrate may form according to

NaCl + HNO3 = NaNOj + HCI. (8-12)

The binary nucleation of sulfuric acid droplets in a mixture of HoSO4 vapor and
water vaper has been theoretically studied by Kreidenweiss and Seinfeld (1988),
Warren and Seinfeld (1985), Yue (1979), Yue and Hamill (1979), Stauffer (1976)
and Mirabel and Katz (1974). The results predicted for the nucleation of sulfuric
acid drops have been experimentally verified by Mirabel and Chavelin (1978). As
another application of homogeneous nucleation theory discussed in Chapter 7, we
will briefly outline the procedure needed to derive the rate of binary nucleation of
sulfuric acid droplets in a HoSOy4 - HoO vapor mixture. For this purpose, we will
follow Yue and Hamill (1979), and index the water vapor by ‘A’ and the acid vapor
by ‘B’. For c¢g € ca, where ¢ is the concentration of a species in the mixture, and
considering (7-46), the nucleation rate of acid droplets (as the number of drops
cm~3 sec™!) is given by

J = Q,whcaZ exp(—AF, /kT), (8-13)

where Z is the Zeldovich Factor (see (7-39)), and ©, = 4wa? if the sulfuric acid
germ is assumed to be spherical. From (5-51) with ¢ = e/kT, one finds for the
molecular flux

wg = acg(kT/2rmg)'/?, (8-14)

where a is the accommodation coefficient, mp is the mass of one H,SO4 molecule,
and AFj is the free energy change associated with the formation of a sulfuric acid
embryo in the binary vapor mixture. According to (7-28)

AF, = o€, /3 = 4ma}/3, (8-15)
where o is the surface tension of the binary nucleated droplet. The radius a4 of the
germ may be computed analogously to the procedure outlined in Section 7.1.1.3.

However, instead of (7-18), we have now

AF(na,nB) = na(ph — 4%) + ne(ph — ph) + 4rao, (8-16)
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where p is the chemical potential of the species and n the number of moles. Con-
sidering (6-24), AF can be expressd in a form analogous to (7-23):

AF(na,ng) = —naRTIn S—A - npRTIn -S—El + 4rma’o, (8-17)
aA aB

where a is the activity of the species, Sao = €fe€sarw is the saturation ratio for
the water vapor, Sg = pB/pOB is the relative acidity, and esat,w and p% are the
equilibrium vapor pressures of water vapor and acid over a flat surface of the pure
substance. Here a is obtained from (47/3)a3p = na Ma + ngMp, withp being the
density of the liquid mixture, and M the molecular weight of the species. Analogous
to Figure 7.2, AF vs na and ng exhibit maxima at critical values of ns and ng at
which (AF)max = AF,. These maxima are obtained from the conditions

OAF OAF
ety :0; =0. 8-18
(5‘”)&),38 (3ﬂB)nA )

These two equations when solved simultaneously describe a saddle point in a three-
dimensional system in which the AF-surface is plotted as a function of na and ng.
This saddle point represents the nucleation barrier AF, which the embryos have
to overcome in order to become stable and grow. The critical compositions which
pertain to this condition are na,, and ng,g. On applying (8-18) simultaneously to
(8-17), we find in place of (7-27) for water vapor alone the following generalized
Kelvin equations:

20Mp X, dp 3X; do
Wi IO ol Wi S ol Rl -
% .@T,a‘m(SA/a.A}( p AX! 275 dX] (5-19)
and
X 1-X!
Gy = B ( goidp  BH-%) do ) ) (8-20)
ZTpln(Sg/an) pdX; 2 o dXj
where
X_; = nB,gMB/(nA,yMA +nB_QMB). (8-21)

For given environmental conditions Sa, Sg, and 7, the critical composition X;,
i.e., na,g, NB,g, and radius a, at the saddle point can be calculated from a simul-
taneous solution of (8-19) to (8-21). From this, AF, can be obtained from (8-15).
Knowing AF,, the nucleation rate J can be computed from (8-13). An expres-
sion for the Zeldovich factor Z has been worked out by Kreidenweiss and Seinfeld
(1988). The results of such a computation are given in Figure 8.6 for the nucle-
ation of sulfuric acid drops in mixtures of HoSO4 and water vapor, and mixtures
of MSA (methansulfonic acid, CH2SO3H) and water vapor. We notice that the
nucleation rates are highly dependent on the environmental conditions. As a rule,
higher concentrations of HeSQ4 vapor and H2O vapor and lower temperatures will
lead to higher nucleation rates. Among these three parameters, the nucleation rate
is most sensitive to the concentration of water vapor. It also is seen that nucleation
of HS04 and MSA in the absence of water vapor, i.e., for zero relative humidity,
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proceeds at very similar relative acidities. This is due to similar physical proper-
ties for the pure gases, most importantly for the surface tension. As the relative
humidity increases, the differences in the nucleation rates of HoSO4 and MSA be-
come increasingly noticeable. The reason for these differences are attributed by
Kreidenweiss and Seinfeld to differences in the free energies of mixing as compared
to a hypothetical ideal solution, and also to differences of the vapor pressures.

J (cm3®sec™)

=7 -5 -3 -1
M | 40" a0 4107 onuso,
— PPMMSA
477 H,80,-H,0
] wmsa-no

RELATIVE ACIDITY (p Jp g)

Fig. 8-6: Nucleation rates of aqueous acid droplets at 25°C and various relative humidities
as a function of relative acidity. (From Kreidenweiss and Seinfeld, 1988, with changes.)

Hegg et al. (1990, 1992), applied the theory outlined above to the homogeneous
nucleation of sulfate particles in the immediate surroundings of maritime clouds
where he had observed large numbers of condensation nuclei. He assumed that
H2S04 forms from SO; via (8-6) to (8-8) and this, in turn, forms DMS (dimethyl-
sulfide, CH3SCHj3). Considering the observed DMS concentration of 85 pptv, an
OH concentration of 5 x 10% molecules em™2, and the observed humidity at and
above the cloud level, Hegg et al. computed the dashed line in Figure 8.7. We
notice that the theoretical results predict well the observed enhanced concentra-
tion of aerosol particles (CN) just above the cloud top. Similar observations and
computations on GPC in marine air have been carried out by Covert e al. (1992),
Easter and Peters (1994) and Weber er al. (1995). Very recently, Bigg (1996) sug-
gested that a binary nucleation of particles in sulfuric acid-water vapor mixtures
may be aided by very sudden mixing events caused by breaking Kelvin-Helmholtz
waves which occur preferentially in those regions where the nucleation process is
most effective: in layers of strong thermal and moisture stratification, wind shear,
and the presence of a gravity wave of longer period than the Kelvin-Helmholtz
instabilities.

The third pathway for a gas to particle conversion involves pre-existing aerosol
particles. According to Seinfeld and Bassett (1982) and Warren and Seinfeld
(1985a,b), the rate-controlling step in this conversion is one or a combination of
three mechanisms: the rate of diffusion of the vapor molecules to the surface of
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Fig. 8-7: Comparison of observed CN concentration off the Pacific NW Coast (solid line)
with concentration of particles resulting from binary nucleation of sulfuric acid droplets
from Hy0 - HyS0, vapor system (dashed line); shaded region represents the cloud layer.
(From Hegg et al., 1990; by courtesy of the authors, copyright Amer. Geophys. Union.)

the particles (diffusion controlled growth), the rate of surface reaction involving
the adsorbed vapor molecules and the particle surface (surface reaction controlled
growth), and the rates of reaction involving the dissolved species, which are as-
sumed to be present uniformly throughout the volume of the particle (volume
reaction controlled growth).

In diffusion controlled growth, the mass rate of change of a particle results from
the diffusion of vapor molecules of a species A to the particle. Following Warren
and Seinfeld (1985) and Seinfeld and Bassett (1982) this rate can be expressed (see
Chapter 13) as

S = 4nrDa(en - eas)f (Nica), (3-22)
2.\ 1/3
= () B ), 629

where r is the radius of the particle, p is the density, m the mass, ca = pa My /ZT
the concentration of species A, Ma the molecular weight, pa the partial pressure of
A in air, PA,S the equilibrium vapor pressure of A just above the particle surface,
D the diffusivity inair, Nk, = Aa/r the Knudsen number, A, the free path length
of air molecules, pa, o is the vapor pressure of species A over a flat surface, va is
the molar volume of condensed A,

(1+ Nkn)
1+ 1.71Nk, + 1.33NZ,,’

f(Nka) = (8-24)
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and pa,s , given by the Kelvin law (6-16), is

B 2000\ _ 321\ /3 opl/3u
PAS = PAco €XP | “orp | = PAvo |\ 37 RTmil?

Seinfeld and Bassett (1982) define the dimensionless time 7 and particle mass g by
T = (dm/dt),t/pX3 and pu = m/pA}. They further set S = pa/pa, and define a
reference growth rate as (dm/dt), = (487%)1/3(A\aDaAMapa,oo/#T). With these,
they obtain the dimensionless growth rate

(8-25)

B WA1S(r) ~ exp(K )] f (Nkcn), (8-26)

where K = (327/3)'/3(owa [N\®T), and Nk, = 3u/47)1/3. For perfect absorp-
tion, pa.g as well as the second term in the square brackets of (8-26) are zero.

In surface reaction controlled growth, we are concerned with the rate at which
adsorbed species A become converted to another species B. Assuming that the
concentration of adsorbed A on the surface is ¢g and, further, that the rate of

conversion to B is proportional to es with the rate constant ks, the rate of mass
growth of the particle is, according to Seinfeld and Bassett (1982),

%{E = 47r‘;"2MBkscs . (8-27)
The surface concentration ¢g may be found for a steady state by equating (8-27)
to (8-23), subject to (8-24) and (8-25) and with ps,0 = Hseg, where Hg is an
equlibrium constant (see Chapter 17). When the rate determining step is the
surface reaction, ¢g may then be approximated by

1/3 1/3
PA (327 gp'/ up
cs N T exp [ ( 3 ) g,—hTmllfi] ; (8-28)

Substituting (8-28) into (8-27) and making the equation dimensionless as before,

except now with (dm/dt), = (3611')” SMBkspA'oHs, we obtain the dimensionless

growth law

dp _ S8 exp(—Ku=13

praaly exp(=Ku™'/7). (8-29)
For volume reaction controlled growth, the key rate is that for which dissolved

species A is converted to another species B. If the concentration of dissolved A is

¢y, and its rate of conversion to B is proportional to ¢, with the rate constant k,,

the rate at which the particle gains mass due to the volume reaction is (Seinfeld

and Bassett (1982))

dm 4rm 4
— = 37 Mske, . (8-30)

As before, Seinfeld and Bassett obtain ¢, for steady state conditions by equating
(8-30) to (8-23), subject to (8-24) and (8-25) and with ps,o = H,e, where H,
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is again an equilibrium constant. Assuming that the rate-determining step is the
volume reaction, they therefore obtain the following for cy:

Cy & p—Aexp [, (.3173)1!3 apPva

H, 3 RTm3|" (8-31)

Substituting (8-31) into (8-30) and making the equation dimensionless as before,
but now with (dm/dt), = A2 Mgkypa,o/Hy, they finally obtain the dimensionless
growth law
L = Spexp(~Ku") (8-32)
For the purpose of comparing the above three growth mechanisms, Seinfeld and
Bassett used measurements of power plant plume by Elgroth and Hobbs (1979)
as the initial distribution Ng(g). With this distribution, Seinfeld and Bassett
evaluated the three growth laws by computing the dimensionless mass distribution
M(log,o Dy, T), where (pA2)?*n, M (log,o Dp,7)dlog g Dp is the mass of particles
having logarithm of diameter in the range log,, D, and log,q Dp-+d logyq Dp, where
log,o Dp is understood as log,4(Dp/1 um), and D, is the particle diameter. M
is related to N by M(logyo Dyp,7) = 6.9p*N(p,7). For the initial distribution
n, was set to 1.645 x 10 pg~tem—3, a choice such that the maximum value of
M (logyo Dy, 7 = 0) is 1.0. S was taken to be 2.878, corresponding to a critical
diameter of 0.01 gm for a sulfuric acid-water aerosol particle at 25°C, and K was
set to 0.1282. The results of these computations axe plotted in Figure 8.8 for the
time ¢ at which the total mass added to the particulate phase was equal to seven
times the initial aerosol mass. We notice from this figure that the mass added by
diffusion controlled growth and surface growth is distributed over a very narrow size
range, with a peak just below a particle diameter of 0.1 gm. In contrast, the mass
added by volume reaction controlled growth is distributed over a broad diameter
range with a main peak above 0.1pm diameter, indicating that by this mechanism
particles are produced which are much larger than those produced by the two other
mechanisms.

8.2.2 FORMATION OF AEROSOL PARTICLES BY DROP PARTICLE CONVER-
sioN (DPC)

Clouds and precipitation act as a sink for aerosol particles and atmospheric trace
gases. Aerosol particles become incorporated into cloud drops and cloud ice crystals
by acting as nucleation centers (see Chapter 9). Additionally, cloud drops, rain-
drops and ice particles pick up aerosol particles by various collision mechanisms
(see Chapter 17). Since most gases are — at least to a certain degree — soluble
in water, they will enter cloud and raindrops by diffusion. Inside the cloud and
rainwater, the soluble aerosol particles and some of the gases will dissociate into
ions. If a cloud drop or raindrop evaporates, all dissolved material will eventually
crystallize to form a solid mass, of which the water insoluble particles which had
entered the drops will be a part. In this manner, an aerosol particle results which
has chemical and physical characteristics quite different from those possessed be-
fore entering the drop. Thus, Hegg ef al. (1980) noticed, on passing from the
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Fig. 8-8: Dimensionless mass distributions for three particle growth mechanisms for the
case that the ratio of mass added by gas to particle conversion to initial mass is 7. (From
Seinfeld and Bassett, 1982; by courtesy of the authors, copyright Amer. Geophys. Union.)

upstream to the downstream side of an altocumulus lenticularis, that the particle
size spectrum had shifted towards larger sizes (Figure 8.9). They attributed this
shift to DPC. A similar result was obtained by Flossmann (1993), who numerically
simulated the growth and subsequent evaporation of a convective cloud which was
allowed to scavenge both aerosol particles and gases. Heintzenberg er al. (1989)
came to the same conclusion by comparing the size distribution (Figure 8.10b)
of evaporated cloud drops of radii larger than 4 ym, sampled near the base of a
stratocumulus cloud, with the size distribution of aerosol particles (Figure 8.10a)
in nearby clear air. The pronounced shift of the size spectrum to larger sizes due
to the ‘processing’ of the clear air particles and trace gases (not measured) by the
cloud is clearly noticeable from Figure 8.10. In addition, Hoppel (1994) suggested
that DPC be the cause for the double maximum found in maritime aerosol par-
ticle spectra. We thus conclude that clouds act as a source for atmospheric aerosol
particles as well as a sink.

In Chapter 6 (see Figures 6.9 to 6.12), we have already shown that cloud drops
which have formed on water soluble nuclei exhibit a hysteresis effect, in that they
do not transform into the dry state at the same relative humidity at which their nu-
clei went into solution. For example, deliquescence of ammonium sulfate particles
takes place at a relative humidity of about 80%. On the other hand, crystallization
of this salt from a salt supersaturated solution drop requires a relative humidity as
low as 35%. Similar low relative humidities were found to be required for the crys-
tallization of other salts out of pure salt solution drops, and for the crystallization
of dissolved material in drops grown on natural aerosol particles (Shaw and Rood,
1990; Orr et al., 1958a,b; Tang and Munkelwitz, 1983; Spann and Richardson,
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Fig. 8-9: Particle size spectra measured upwind and downwind of a wave cloud over Mt.
Rainier (Washington). (From Hegg et al., 1980, with changes.)

1985, and Cohen et al. 1987).

These observations appear to suggest that except in air over deserts and in sub-
tropical high pressure systems, the DPC mechanism will rarely lead to dry aerosol
particles. On the other hand, in the literature, the aerosol size distribution of
atmospheric aerosol particles is generally presented as pertaining to dry particles.
Three explanations for this apparent discrepancy may be offered: (1) The aerosol
particles counted become dry as they pass through the particle counting system
used. (2) Laboratory experiments overestimate the reduction in relative humidity
necessary to initiate the crystallization of solution drops. Nucleation of salt in a
supersaturated solution is a time dependent phenomenon. During an experimental
situation in the laboratory, nucleation is ‘forced’ to take place over a time period

3000 300

a g (b)
§ 2000} @ < 20}
L !E'
_g -
g 1000 & 100

0 L 4 iaanil [N EEET ? ] Al 1 I EET]

0.01 0.1 1.0 0.01 0.1 1.0
PARTICLE RADIUS (pm) PARTICLE RADIUS (pm)

Fig. 8-10: Average size distribution of aerosol particles from evaporated cloud drops.
(a§ particles in cloudless air, (b) residual particles from evaporated cloud drops. (From
Heintzenberg, 1989, with changes.)
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much shorter than the time available for drop evaporation in the atmosphere. (3)
During evaporation in the atmosphere, supersaturated drops may collide with wa-
ter insoluble particles, which may initiate a heterogenous crystallization process
at relative humidities much higher than those observed under clean laboratory
conditions.

For a number of years, one assumed that salt particles which result from evap-
orating aqueous solution drops would break up into smaller portions due to stress
which developed during the drying process. While Dessens (1946,1947,1949), Facy
(1951), Twomey and McMaster (1955), Radke and Hegg (1972), and Cheng (1988)
believed they had evidence for particle fragmentation during the drying of drops,
Lodge and Baer (1954), Blanchard and Spencer (1964), Liu (1976), Pinnick and
Auverman (1979), Tang and Munckelwitz (1984) and Baumgirtner et al. (1989)
found no evidence for such fragmentation. The discrepancy between the results of
the various investigators was resolved by Mitra ef al. (1992a), who by wind tunnel
experiments, showed that the drying process of freely air suspended aqueous solu-
tion drops is not accompanied by fragmentation of the drying salt particles. The
presence of water insoluble particles inside the drying salt solution drop did not
alter the result. One may, therefore, safely assume for cloud modeling purposes
that the evaporation of a cloud drop results in the formation of one aerosol par-
ticle consisting of all the dissolved and undissolved matter which had entered the
drop during its life time. However, solution drops drying on hydrophilic filaments
(Plate 9a) do break up during the drying process, an effect which is prevented if
a hydrophobic filament is used (Plate 9b). Fragmentation may also occur if salt
particles, which resulted from the drying of salt mixtures such as ocean water, col-
lide with solid surfaces since these particles are hollow and very fragile, as shown
by Cheng ef al. (1988), Baumgértner et al. (1989) and Mitra et al. (1992), (see
Plate 9i,k). Ranz and Marshall (1977), Charlesworth and Marshall (1960), Leong
(1987 a,b, 1981), and Mitra et al. (1992a) concluded from their studies that the
particle cavities shown in Plate 9k are not the result of a mass loss during the
crystallization process, but rather are a result of the growth mode of the salt in
the solution drop: crystallization begins at the upstream side of the solution drop
and continues as a shell upward and inward. Since for typical salinities there is not
sufficient salt to fill the whole volume of'the drop, a hollow salt particle results with
a cavity opening at the downstream side of the falling drop. Salt particles resulting
from the drying of solution drops containing only one salt may at times also appear
hollow, depending on the rate of drying. Generally, NaCl particles of diameters
less than 1um are single crystalline cubes (Mitra et al. 1992; Baumgértner et al.
1989), while (NH4)2S04 particles are spherical (Plate 9c,f). Larger NaCl particles
are single or polycrystalline with surface steps defining cubic forms (Plate 9d,e).
(NH4)2SO04 particles larger than 1 pum are always roundish (Plate 9g,h) with pro-
nounced surface steps, and do not exhibit any features of the orthorhombic form a
macroscopic ammonium sulfate crystal has.
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(k)

Plate 9. Examples of drop to particle conversion. (a) NaCl solution drop of 300 um
diameter drying on a hydrophilic filament; (b) NaCl particle of 150 ym diameter formed
after drying of a NaCl solution drop on a hydrophobic filament. (c) NaCl particles of
submicrom size formed after evaporation of NaCl solution drops freely falling in air; (d)
NaCl particle of 6 um diameter formed by evaporation of NaCl solution drop falling
in air; (e) NaCl particle of 80 pm diameter formed by evaporation of NaCl solution drop
freely falling in air; (f) (NH4)2SO4 particles of submicron size formed after evaporation of
(NH4)2SO4 solution drop freely falling in air; (g) (NH4)2504 particles of 10 pm diameter
formed after evaporation of (NH4)2SO, solution drop freely falling in air; (h) (NH4)2SO04
particle of 80 um diameter formed after evaporation of (NH4)2504 solution drop freely
falling in air; (i) sea salt particle of 30 pm diameter formed after evaporation of ocean
water drops freely falling in air; (k) sea salt particle of 80 um diameter formed after
evaporation of an ocean water drop freely falling in air. (a,b,c,e,f,g,hk from Mitra and
Brinkmann, by courtesy of the authors; d, from Prof. Krebs, Inst. of Radiochemistry,
Techn. Univ. Miinich, by courtesy of the author; i, from Dr. Roger Cheng, University of
Klbany, .Y., by courtesy of the author.fer
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8.2.3 FORMATION OF AEROSOL PARTICLES BY BULK TO PARTICLE
CONVERSION (BPC)

8.2.3.1 BPC at the Solid Earth Surface

It is well-known that plants release various types of organic particulates, such as
pollen, seeds, waxes, and spores which are distributed by air motions throughout
the atmosphere (Gregory, 1961). A detailed study of the seasonal variation of
pollen and spores was made by Grosse and Stix (1968), Stix (1969), and Stix
and Grosse (1970). Diameters of these particles were found to range typically
between 3 and 150 um. It has also been shown that the atmosphere harbors large
collections of microbial bodies, both living and dead (Gregory, 1967; Valencia, 1967;
Parker,1968). Lodge and Pate (1966) reported that substantial amounts of organic
materials rise from tropical forest floors into the atmosphere. They concluded
that these particles were produced by aerobic bacterial decay of tree leaf litter.
In related work, Parkin er al. (1972) found humus from vegetation, dark plant
debris, and fungus debris on aerosol particles which were carried in the westerlies
over the Atlantic from the eastern United States. Rasmussen and Went (1965)
and Went et al. (1967) captured organic particles which originated from decaying
mid-latitude forest litter. Went’s studies showed that the number concentration of
organic particles was largest during periods of rapid plant litter decay. A variety of
organic compounds were also identified in snow and rain by Shutt (1907), Fonselius
(1954), and Munzah (1960).

The mass concentration of a large variety of organic components were studied
in the field by Ketseridis er al. (1976a,b, 1978), Ketseridis and Eichmann (1978),
Doskey and Andren (1986), and Simonett and Mazurek (1982). Pollen, spores, mi-
croorganisms, seeds, bacteria, and molds were investigated by Riiden et al. (1978)
and Gregory (1978) as a function of height above the ground. They also noticed
a significant dependence of the concentration of these particles on the relative hu-
midity, temperature, and the intensity of the solar radiation. The total biogenic
fraction of the atmospheric aerosol particles of a radius larger than 2 ym found in
air sampled at Mainz, Germany, was determined by Matthias (1992) to vary from
a few % up to 40% with respect to the number concentration, and up to 15% with
respect to volume. Organic particles in the air are also present as elemental carbon,
i.e., soot particles, obviously resulting from combustion processes. Such particles
have been studied at different locations by Meszaros (1984), Okita er al. (1986),
and Heintzenberg and Covert (1984), Hansen and Rosen (1984), Rosen and No-
vakov (1983), Chylek er al. (1987). As expected, the largest concentration occurs
in air over cities; but somewhat unexpectedly, measurable concentrations occur
also in air over oceans. A summary of the role of organic materials in atmospheric
aerosols has been given by Jaenicke (1978b), and Due et al. (1983). Some recent
measurements of carbon rich (C-rich) particles in the upper troposphere and lower
stratosphere were carried out by Sheridan et al. (1994). Two main classes of C-
rich particles were observed: (1) a class consisting of soot particles with chain-like
structure, each chain being composed of small spherules of 20 to 30 ym in diameter,
and (2) non-chain type C-rich particle with elements of Ti, Fe, Ni, Cr inclusions.
Similar observations were made by Blake and Kato (1995).



THE ATMOSPHERIC AEROSOL AND TRACE GASES 241

About one third of the Earth’s land area is covered by rocks or soil devoid
of vegetation (Meigs, 1953). The exposed silicate compounds are chemically and
mechanically disintegrated by the combined action of wind, water, temperature
variations, and gases such as oxygen, carbon dioxide, and others. This weathering
forms particles which have diameters mostly larger than 0.1 um. The loose silicate
material, usually with considerable amounts of organic material attached, is then
transported upward by air motions. Clays, which are layersilicates and consist
mainly of SiOg, Al,03, FesO3, and MgO, are most easily disrupted by weather-
ing. Frequently, they are present as kaolinite, montmorillonite, illite, attapulgite,
halloysite, and vermiculite (for details on the chemical compositon and special
properties of clays, see, e.g., Grim, 1953).

Airborne silicates emitted by the Sahara desert have been identified by Prospero
and Bonati (1969), Prospero ef al. (1970), Chester and Johnson (1971), Jaenicke
et al. (1971), Parkin et al. (1972), Schiitz and Jaenicke (1974), Schiitz (1980),
Prospero et al. (1981), d’Almeida and Schitz (1983), Talbot et al. (1986), Schiitz
(1989), and Fitzgerald (1991) in air over the Sahara and westward over the Atlantic;
by Delany et al. (1967) and Prospero (1968) in air over the Isles of Barbados; by
Abel et al. (1969) in air over the Island of Teneriffa; and by Rex and Goldberg
(1958) and Ferguson et al. (1970) in air over the Pacific and Indian Oceans. The
Saharan dust was found to occur preferentially at atmospheric levels of between 1.5
and 3.7 km (Pospero and Carlson, 1972). The size of the silicate particles ranged
typically between 0.3 and 20 um radius, with a mode (most probable radius) near
2 to 5 um. Deserts and semi-arid regions in North China and Mongolia are another
significant source of silicates. Isono et al. (1959) identified clay particles in air over
Japan which originated in North China or Mongolia, where they became airborne
during large dust storms. Similarly, Darzi and Winchester (1982) identified at
Mauna Loa (Hawaii) silicate particles transported eastward from North China.
Isono et al. (1970) have provided evidence that some of these clay minerals are
transported by the upper level westerlies across the Pacific and deposited over the
northwestern coast of the U.S. Dust outbreaks over the deserts of the Middle East
were observed by Savoie ef al. (1987) in terms of a sudden increase of the silicate
content of aerosol over the North Indian Ocean. Aerosol particles sampled over the
dusty High Planes in the U.S. contained between 45 to 83% siliceous material.

The mechanism by which clays and other soil or sand particles become airborne
has been investigated by Chepil (1951, 1957, 1965), Chepil and Woodruff (1957,
1963), Owen (1964), Bagnold (1965), Gillette et al. (1972, 1974), Gillette and
Walker (1977), Gillette (1978a,b), and by Borrmann and Jaenicke (1987). It is well-
known that adjacent to a smooth surface and at wind speeds below some critical
value, a laminar boundary layer exists, even if the air flow is otherwise turbulent.
On the other hand, if the surface is rough due to the presence of irregular soil
and sand particles, turbulent motion may prevail right down to the surface. Such
turbulent flow can cause a rough soil or sand surface to be eroded either by direct
aerodynamic pick-up ofthe particles, or as a result of the bombardment by particles
performing a bouncing motion called saltation. Conditions for saltation derived by
Owen (1964) are summarized in Figure 8.11. During saltation, individual grains
follow distinctive trajectories determined by the size and shape of the particles.
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The air in the saltation layer is strongly sheared. The lift force responsible for the
particles’ saltation ensues from the combined action of the particles’ momenta and
the environmental vorticity.
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Fig. 8-11: Range of wind speed and grain size in which saltation of quartz grains can
occur in the atmosphere. (From Owen, 1964; by permission of Cambridge University
Press.)

According to observations by Chepil (1951), the minimum threshold wind ve-
locity for direct aerodynamic pick-up of soil particles is a strong function of particle
size. If particles were entrained by such a mechanism into the air layers adjoin-
ing the surface, one would expect greatly differing particle size distributions with
height, owing to gravitational sorting and the effects of vertical wind shear. Such
a dependence was not found by Gillette et al. (1974), Gillette and Walker (1977),
Gillette (1978a,b) and Borrmann and Jaenicke (1987), who experimentally stud-
ied the size distribution of airborne particles from soil surfaces eroded by wind.
Therefore, they concluded that sandblasting (saltation erosion) of the soil surface
is the dominant mechanism by which particles become airborne. Wind tunnel ex-
periments of Borrmann and Jaenicke (1987), and controlled field experiments of
Gillette et al. (1974), and Gillette and Walker (1977) involving saltation-erosion
on known soil and sand areas have allowed a determination of the vertical flux of
soil particles and their mass distribution. These are consistent with the fluxes and
mass distributions observed over the Libyan Desert (Schiitz and Jaenicke, 1974;
d’Almeida and Schiitz, 1983).

After becoming airborne, silicate particles readily coagulate with other AP, thus
becoming of mixed compositions. It is therefore not surprising that the bulk density
of continental aerosol material varies over a range which may differ considerably
from the bulk density of SiO (quartz), which is p(8i0O2) = 2.65 to 2.66 g cm™3.
According to d’Almeida and Schiltz (1983), some Sahara dust particles contain the
elements Hf and Zr, and therefore have the much higher bulk density of approxi-
mately 4 g em™3. Hinel and Thudium (1977) found, for 0.05 < » < 5um, p = 2.6
to 2.7 g em™2 (desert, Israel), p = 1.8 to 3.5 g cm™3 (urban, Mainz), p = 2.9 gcm™3
(Jungfraujoch, Switzerland), and p = 1.8 to 3.3 g em™2 (rural, Deuselbach, Ger-
many). Joshi (1988) observed p = 1.24 to 1.95 g cm™ (Bombay, India). These
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values are to be compared with the densities of NaCl (p = 2.17 g cm™3), sea salt
(p=2.25 g em™3) and (NHy)2S04 (p=1.77 g cm™3).

Particles emitted by volcanoes also are often the result of a combination of both
mechanical disintegration and gas-to-particle conversion. For example, during the
eruptions of Krakatoa in 1883 in the East Indies and Gunung Agung in Bali in
1963, some of the emitted particles consisted simply of silicates from the crater
walls, others consisted of finely divided solidified lava, while still others consisted
of sulfates, fluorides, chlorides, and sulfuric acid. The particles, which ranged from
submicron size to greater than 100 pum, were injected into both the troposphere
and stratosphere. Similar results were found by Stith ef al. (1978) who studied six
volcanoes in Alaska and the State of Washington. More recently, Rose et al. (1982)
and Hobbs er al. (1982, 1983) studied particles emitted by the Mt. St. Helens
volcano (Oregon) in 1980. The particle sizes ranged from 0.001 to 2 um. Also, the
mass concentration showed a wide variation, ranging typically between a few tens
to a few hundreds pg m™2 with a peak mass concentration of 11 829 ug m~2, and
a total particle number concentration of 10* to 108 cm=3. Unfortunately, no direct
measurements are available on the size distribution and chemical composition of
the aerosol particles emitted during the eruption of Mt. Pinatubo (Phillipines)
in June 1991, although significant changes in the particle size distribution of the
stratosphere were noted by Wilson et al. (1993) and Borrmann er al. (1993).

Particles injected into the atmosphere by industrial processes are also often
the result of mechanical disintegration and gas-to-particle conversion. Hobbs and
Radke (1970) found, downstream of paper mill exhausts, particles of NapSOy,
NH4HSO3, Ca(HSO3)2, NaOH, NasSOg, and HySO4, which ranged from submicron
size to several hundred microns, with a mode from 1 to 10 um diameter. Serpolay
(1958, 1959) and Soulage (1961) found a large number of metal and metal oxide
particles downstream of steel foundries and electric steel mills.

8.2.3.2 BPC at the Surface of Oceans

Wind blowing across an ocean surface causes the formation of waves which produce
spray drops at their crests. The finer of these drops remain airborne and eventually
evaporate to give solid AP. A more important source of AP results from the bursting
of bubbles produced by the entrainment of air at the wave crests.

Experimental studies of Woodcock et al. (1953), Kientzler et al. (1954), Knel-
man et al. (1954), Mason (1954b), Moore and Mason (1954), and Blanchard (1954)
show that each air bubble which reaches the ocean surface develops a spherical cap
which strains, thins, and then bursts. After the bubble cap has burst, fragments of
the cap-film are thrown upward by the air which escapes from the bubble orifice.
Now deprived of its cap, the bubble fills with water rushing down the sides of the
cavity, which subsequently emerges from the center as a narrow jet. As the jet
rises, it becomes unstable and eventually disintegrates into a few large and sev-
eral small drops. Bubbles of 2 mm diameter project drops up to heights of nearly
20 cm above the ocean surface; drops from both larger and smaller bubbles gener-
ally reach lower heights (Blanchard, 1963; Hayami and Toba, 1958). Depending on
the relative humidity and turbulence of the air, some of the drops formed by the
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collapsing jet and by the shattered bubble cap fall back to the ocean surface. The
remainder evaporate while airborne, leaving a small sea salt particle light enough
to be carried aloft by air motions. The different stages in the production of sea salt
particles by this bubble-burst mechanism are described schematically in Figure 8.12.

Fig. 8-12: Four stages in the production of sea salt particles by the bubble-burst mecha-

nism. (a) Film cap protrudes from the ocean surface and begins to thin. (b) Flow down

the sides of the cavity thins the film which eventually ruptures into many small fragments.

(c) Unstable jet breaks into few drops. (d) Tiny salt particles remain as drops evaporate;
new bubble is formed. (From Day, 1965, with changes.)

A sea salt particle is mainly composed of NaCl, the most abundant salt in ocean
water. In addition, it often contains small amounts of CO2™, 803_, K+, Mg?*t, and
Ca?t. However, the chemical composition of sea salt particles deviates considerably
from the composition of ocean water. Junge (1972b) suggested that this is partly
a result of ion fractionation occurring during the bubble burst mechanism. Since
organic materials often reside in the ocean surface, they too may become airborne
and become part of the sea salt particles (Blanchard, 1964, 1968; Garret, 1965,
1969). Subsequent to its formation, a sea salt particle may change its composition
further as a result of both chemical reactions with atmospheric trace gases and
coagulation with other AP in the atmosphere. Thus, in air over the Atlantic near
the Sahara Desert, sea salt particles may have silicates admixed. It is therefore not
surprising that the bulk density of maritime aerosol material varies over a range
which may differ considerably from the bulk density of the salt that crystallizes
from evaporating ocean water. Such salt has a bulk density of2.25 g cm™3. In
contrast, Hanel and Thudium (1977) observed pp = 1.93 g em™3 (West coast,
Ireland), and Fischer and Hénel (1972) observed pp = 2.45 to 2.64 g cm™3 (North
Atlantic, near Sahara). Note that pp(NaCl) = 2.165 g cm 3.

During the bursting of a bubble of about 300 um in diameter, the jet breakup
produces on average 5 larger drops (Blanchard and Woodcock, 1980). With in-
creasing bubble size, this number decreases to about 1 larger drop from bubbles
of diameters larger than 3 mm (Cipriano et al., 1983). These larger drops have
diameters of about one tenth the diameter of the parent bubble. Assuming that
the density of a sea salt particle is 2.25 g em™2, that the density of ocean water is
1.03 g em™3, and that its salinity is 35 g kg™!, we find a bubble of 2 mm diam-
eter produces a salt particle of 1.5 x 10”7 g, which is equivalent to a dry radius
of about 25 um. Similarly, bubbles of 100 and 20 pm diameter produce salt parti-
cles of 1.9 x 101! and 1.5 x 103 g, which are equivalent to dry radii of about
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1.3 and 0.3 pm, respectively. In addition to these large drops, jet breakup bubbles
of diameters larger than 2 mm also eject a group of smaller drops at low angles
to the horizontal. These drops have diameters of 5 to 30 gm and produce sea salt
particles of masses 2.4 x 10712 to 5.1 x 1071 g, corresponding to dry radii of 0.6 to
3.8 um. There has been some speculation that salt particles of even smaller size
are produced by the splintering of the drying remnants of solution drops (Mason,
1971). However, the wind tunnel studies of Mitra er al. (1992a) have disproven
the existence of such a mechanism.

The bursting of the bubble cap produces a large number of smaller drops lead-
ing to salt particles of a mass smaller than those from jet breakup. Mason (1954b,
1957b) found that most of the salt particles from the bubble cap have masses
less than 2 x 10714 g, equivalent to a dry radius of less than about 0.1 gm. The
largest particles had masses up to 2 x 10712 g, equivalent to a dry radius of about
0.3 um, while the smaller particles had masses as low as 107!® g, equivalent to a
dry radius of 0.07 um. These results were essentially confirmed by Twomey (1960).
Blanchard (1963) suggested, and Day (1964) and Cipriano and Blanchard (1981)
confirmed, that the number of bubble cap droplets decreases with decreasing bub-
ble size, and that bubbles in diameter smaller than 100 um, produce no cap drops
(see Figure 8.13). Thus, bubbles smaller that 100 gm in diameter produce sea salt
particles only as a result of jet breakup. However, there also appears to be a lower
size limit to the production of air bubbles. According to Woodcock (1972), Wood-
cock and Duce (1972), Resch and Avellan (1981), Johnson and Cooke (1979), and
Wu (1981), who studied the size distributions of bubbles on the ocean surface, air
bubbles smaller than 20 um in diameter are unlikely to exist near the surface, since
bubbles of such sizes rise extremely slowly in ocean water, providing sufficient time
for them to be dissolved. Consequently, sea salt particles produced by jet droplets
necessarily have masses larger than about 1073 g. The bubble size distributions,
studied by Resch and Avellan (1981), Wu (1981), Cipriano and Blanchard (1981),
and Johnson and Cooke (1979) show further that the distributions have a definite
maximum at bubble radii between 50 and 75 pm, the number falling off rapidly
towards larger bubble sizes.

According to Blanchard and Woodcock (1957), the number of bubbles of radii
R to R+ dR bursting per em? per sec in a foam patch on the ocean surface is given
approximately by 3 x 107¢(dR/R*). Assuming that each bubble produces one jet
drop which remains airborne, the rate of jet particle production in em~2 sec™?
by bubbles of radii larger than Ry is then 3 x 1078 [~ dR/R* = 1 x 107%(1/R}).
One may assume this relation is applicable to bubble radii larger than 50 um. Day
(1964) determined that for bubbles of radii larger than 50 pm, the number of cap
drops per bubble varies with bubble size as 10*R%2. Mason (1971) deduced from
this information that the rate of cap particle production (em=2 sec~1) by bubbles
of radii larger than Rq can be described by 3 x 10~2 f;: dR/R? = 3 x1072(1/R,),
which is applicable to bubbles larger than 50 um radius. Note that these results
only apply to drop production by single bubbles. Experiments by Mason (1957b)
and Twomey (1960) suggest that the rate of cap drop production is considerably
larger if bubbles break in clusters.

Observations by Moore and Mason (1954) at a height of 10 m over the Atlantic
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Fig. 8-13: Mean number of droplets resulting from the disintegration of an air bubble cap
in salt water as a function of equivalent diameter of the air bubble. (From Day, 1964;
by courtesy of Quart. J. Roy. Meteor. Soc.).

showed that sea salt particles of mass m; > 107*% g are formed at a rate of
40 cm™2 sec™!, partic