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PREFACE TO THE FIRST EDITION

Cloud physics has achieved such a voluminous literature over the past few decades
that a significant quantitative study of the entire field would prove unwieldy. This
book concentrates on one major aspect: cloud microphysics, which involves the
processes that lead to the formation of individual cloud and precipitation particles.

Common practice has shown that one may distinguish among the following addi-
tional major aspects: cloud dynamics, which is concerned with the physics respon-
sible for the macroscopic features of clouds; cloud electricity, which deals with the
electrical structure of clouds and the electrification processes of cloud and precipi-
tation particles; and cloud optics and radar meteorology, which describe the effects
of electromagnetic waves interacting with clouds and precipitation. Another field
intimately related to cloud physics is atmospheric chemistry, which involves the
chemical composition of the atmosphere and the life cycle and characteristics of its
gaseous and particulate constituents.

In view of the natural interdependence of the various aspects of cloud physics,
the subject of microphysics cannot be discussed very meaningfully out of context.
Therefore, we have found it necessary to touch briefly upon a few simple and basic
concepts of cloud dynamics and thermodynamics, and to provide an account of
the major characteristics of atmospheric aerosol particles. We have also included
a separate chapter on some of the effects of electric fields and charges on the
precipitation-forming processes.

The present book grew out of a series of lectures given to upper division un-
dergraduate and graduate students at the Department of Atmospheric Sciences of
the University of California at Los Angeles (UCLA), and at the Department of
Physics of the New Mexico Institute of Mining and Technology at Socorro (New
Mexico Tech.). We have made no attempt to be complete in a historical sense,
nor to account for all the work which has appeared in the literature on cloud
microphysics. Since the subject matter involves a multitude of phenomena from
numerous branches of physical science, it is impossible to make such a book truly
self-contained. Nevertheless, we have considered it worthwhile to go as far as poss-
ible in that direction, hoping thereby to enhance the logical structure and usefulness
of the work. In keeping with this goal, our emphasis has been on the basic concepts
of the field.

This book is directed primarily to upper division and graduate level students who
are interested in cloud physics or aerosol physics. Since no specialized knowledge in
meteorology or any other geophysical science is presumed, the material presented
should be accessible to any student of physical science who has had the more or less
usual undergraduate bill of fare which includes a general background in physics,

xv



PREFACE TO THE FIRST EDITION

physical chemistry, and mathematics. We also hope the book will be of value to
those engaged in relevant areas of teaching and research; also, we hope it will
provide a source of useful information for professionals working in related fields,
such as air chemistry, air pollution, and weather modification.

In the preparation of this book we have incurred many debts. One of us (H.R.P.)
is extremely grateful to his long time associate Prof. A. E. Hamielec of McMaster
University at Hamilton, Canada, whose generous support provided the basis for
solving many of the hydrodynamic problems reported in this book. Gratitude is
also gladly expressed to the faculty and research associates at the Meteorological
Institute of the Johannes Gutenberg University of Mainz and at the Max Planck
Institute for Chemistry at Mainz, in particular to Profs. K. Bullrich and C. Junge,
and Drs. G. Hänel, F. Herbert, R. Jaenicke, and P. Winkler for the assistance
received during two stays at Mainz while on sabbatical leave from UCLA. In addi-
tion, sincere thanks are extended to the Alexander von Humboldt Foundation for
a U.S. Senior Scientist Award which made possible the second extended visit at
Mainz. Also, one of us (J.D.K.) is grateful to Drs. C. S. Chiu, P. C. Chen, and
D. T. Gillespie for informative discussions, and to Prof. M. Brook and Dr. S. Barr
for providing time away from other duties. Appreciation is expressed also to the
National Center for Atmospheric Research (NCAR) for the assistance provided
during a summer visit.

A large number of figures and tables presented in this book have been adapted
from the literature. The publishers involved have been most considerate in granting
us the rights for this adaptation. In all cases, references to sources are made in the
captions.

Our own research reported in this book has been supported over the years by
the U.S. National Science Foundation. We would like to acknowledge not only this
support, but also the courteous, informal, and understanding manner in which the
Foundation’s Officers, Drs. F. White, P. Wyckoff, E. Bierly, and F. Eden, conducted
their official business with us.

Special thanks go also to the editors of the D. Reidel Publishing Company of
Dordrecht, Holland, for providing a fruitful relationship with us.

Finally, we wish to express our sincere appreciation for the invaluable assistance
of T. Feliciello, A. C. Rizos, and P. Sanders, who typed the manuscript, and to
B. J. Gladstone who drew all the diagrams.
Los Angeles, H. R. PRUPPACHER

March 1978
Los Alamos, J. D. KLETT
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PREFACE TO THE SECOND EDITION

In the intervening eighteen years since the appearance of the first edition, research
in cloud microphysics has continued to expand at a rapid rate. In fact, we have
found it necessary to consider for inclusion in this edition the contents of over 5,000
articles, as well as dozens of books and conference proceedings published since the
first edition. Our approach to assimilating this material follows the philosophy of
the first edition, namely to attempt a balance between providing a necessary body
of descriptive and empirical knowledge, and a framework of theoretical generalities
and principles with which to rationalize the otherwise unmanageable mountain
of experimental facts. Such an effort naturally entails compromises and personal
choices, as a truly exhaustive and completely coherent account of a subject this
large cannot be confined within the bounds of a single volume of an acceptable
length. Nevertheless, we feel that the present volume does accommodate the most
significant advances that have occurred, and that it has been possible to close
some of the gaps and answer some of the major questions which characterized the
incompleteness of the subject at the time of the first edition.

As before, we have again attempted to enhance the appeal and clarity of the
book by making it as self-contained as possible. Our success in this respect has
been limited, not only because of the sheer volume of material, but also because of a
shift in style of the theoretical approach to the subject. Now that nearly everyone
has access to inexpensive desktop computers with more power than mainframes
at the time of the first edition, and similar access to greatly improved and easily
implemented numerical modeling software, a tendency has developed to address
theoretical issues by constructing and then incrementally augmenting numerical
models of great complexity, often of an ad hoc nature and with many adjustable
parameters. The underlying assumption that more and more physics can success-
fully be encoded this way into larger and larger programs is sometimes subject
to challenge; in any case, the resulting algorithms are often so complex that they
and their results have to be accepted largely on faith by other researchers. It is
obviously difficult to include an account of such theoretical work in a way that is
truly self-contained and logically complete.

We have also had to continue to be extremely restrictive in treating fields in-
timately related to cloud microphysics. Thus, as in our first edition, we could
touch only briefly on some simple concepts of cloud dynamics, and refer in places
only to the results of cloud dynamic models which include detailed microphysics.
(An excellent text on cloud dynamics is now available in the treatise by Cotton
and Anthes (1989).) We also had to leave out the extensive field of the interac-
tion between clouds and electromagnetic radiation, although we sometimes refer

xvii



PREFACE TO THE SECOND EDITION

to results derived from radar cloud studies and from studies on the effects of so-
lar and terrestrial radiation on the microstructure of clouds. Also, in the chapter
on cloud electricity we have had to omit many facets of clear weather electricity,
and the subject of the physics of lightning. On the other hand, we have amplified
the present edition by the inclusion of a chapter on cloud chemistry (Chapter 17).
This was prompted by the seriousness with which worldwide ecological problems
related to air, water, and ground pollution are viewed by the scientific community
in general. Our treatment of the subject is restricted to some basic processes that
must be considered in current pollution transport models.

Other changes in the book worth noting here include: (1) The descriptive ma-
terial in Chapter 2 on the microstructural features of clouds has been updated
and includes more diagrams to assist modelers, and much more information on
cirrus clouds. (2) The section on the structure of water in Chapter 3 reflects our
greatly improved knowledge of the specific heat, latent heat, and other proper-
ties of water, all the way down to –40°C; this supersedes previous extrapolations
from the Smithsonian Tables. As an example, the new data on the activation
energy for molecular transfer at the ice-water interface leads to homogeneous ice
nucleation rates in much better agreement with cirrus observations (described in
Chapter 7). Also, a distinct statistical mechanics theory for ice nucleation is now
included, and it is shown that the thermodynamic data are consistent with the
molecular data from ice physics research. (3) In Chapter 5 the values for surface
tension and interface energy below 0°C are recomputed due to the new results
in Chapter 3. (4) Size distribution measurements of the atmospheric aerosol now
extend down to and lower. This new data, and enhanced discussions of
gas-to-particle and drop-to-particle conversion, are included in Chapter 8. Also
included is new information on aerosols over the North and South Polar regions,
which is of relevance to the phenomenon of the Ozone Hole. (5) In Chapter 9,
new statistical mechanics modeling results for the heterogeneous nucleation of ice
on silver iodide and silicates supplement the previous thermodynamic approach.
(6) Numerical simulations of flow about spheres at Reynolds numbers too high for
steady axisymmetric flow, as well as for flow past cylinders and three types of snow
crystal shapes, are now included in Chapter 10. This gives rise to new ventilation
coefficients, hydrodynamic drag, and terminal velocities. Also, new data and mod-
eling concerning drop breakup and oscillations are provided. As an application,
improved non-equilibrium descriptions of oscillating drop shapes are given. (6) An
amplified treatment of drop condensation growth in stratus clouds and fogs is given
in Chapter 13. The chapter also includes new results on ventilation, and some sen-
sitivity studies on the effects of drop collision and coalescence on the early stages of
evolving spectra of cloud drops. (7) New parameterizations of experimental work
on drop coalescence are given in Chapter 14. Also, the new flow fields described
in Chapter 10 are used to determine collision cross-sections between various com-
binations of drops, finite-length cylinders, plates, and some other crystal shapes.
The problem of turbulence is also revisited, including its effect on the orientation
distribution of particles. (8) More complete simulations of stochastic drop breakup
and growth are given in Chapter 15, along with an expanded treatment of the
method of moments. (9) Chapter 16 has been enlarged with respect to parameteri-
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zations of experimental data on graupel, rime, hailstones, and the polycrystallinity
of frozen drops; there are also new theoretical modeling results on the growth rate
of graupel, snow crystals, and hailstones in dry and wet regimes, on the evolution
of ice particle size distributions taking various interactions into account, and on the
melting of ice particles. (10) In Chapter 18, the description of strongly electrified
clouds and cloud particles based on field studies has been updated and expanded
considerably. The major cloud charging mechanisms are reviewed in light of new
experimental data, and it is concluded that certain non-inductive mechanisms are
dominant and primarily responsible for the tripolar thundercloud charge distrib-
ution often observed. The sections on the effects of electric fields and charges on
drop shape and disruption, corona discharge, and the enhancement of collection and
scavenging processes for various types of cloud particles have also been expanded
and improved.

The overall scope and intended audience of the book remain unchanged. In
particular, we hope it may provide for the upper division and graduate level student
a quantitative survey of cloud microphysics, and that it will be a source of useful
information for those engaged in related areas of teaching and research, including
the fields of aerosol physics, cloud dynamics, climate modeling, air chemistry, air
pollution, and weather modification.

In the preparation of this book, we have again incurred many debts. One of us
(H.R.P.) is indebted to the German National Science Foundation (DFG) and to the
German Ministry for Research and Technology (BMFT) for generously support-
ing the research carried out at the Institute for Physics of the Atmosphere at the
Johannes-Gutenberg University of Mainz. He is particularly very grateful to his
longtime associates Prof. Andrea Flossmann and Dr. Subir Mitra, and to Drs. Ste-
fan Borrmann and Andreas Bott for fruitful and constructive criticism in preparing
this text. He is thankful to them, as well as to Profs. K. V. Beard and P. K. Wang,
for providing him with original figures, tables, and texts, in part still unpublished.
Thanks go also to all his students, who have provided through their questions in-
sights for clarifying many of the concepts presented in this book. He also warmly
thanks his wife Monica and his son Lukas for bearing the many years of hard-
ships with him. The second author (J.D.K.) would like to thank Prof. P. Chylek
for many stimulating and wide ranging discussions, and Dr. R. A. Sutherland of
the Army Research Laboratory of White Sands Missile Range, Dr. M. Farmer of
Correa Enterprises Inc., and Mr. J. Serna of the Physical Sciences Laboratory of
New Mexico State University for their indirect roles in providing financial support
that facilitated the completion of this project. He also thanks his wife Cathy, and
Mark, Lindsay, and Ali for keeping it all in perspective with love and good cheer.
Finally, we wish to express our sincere gratitude to Mrs. K. Franke who typed the
original manuscript, to Mr. Michael Lang for coordinating the text into to
Mrs. Cornelia Schrörs who set the tables and the figure captions, to Mr. Werner
Klaus Zangi who drew all the diagrams, and to Mrs. Renate Graf-Gries and Andrea
Richter who were kind enough to coordinate much of the clerical work.

Again, a number of figures and tables in this book have been adapted from
the literature. The publishers and authors involved have been most considerate in
granting us the rights for this adaptation. In all cases, references to sources are
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CHAPTER 1

HISTORICAL REVIEW

As one studies the meteorological literature, it soon becomes evident that cloud
microphysics is a very young science. In fact, most of the quantitative information
on clouds and precipitation, and the processes which are involved in producing
them, has been obtained since 1940. Nevertheless, the roots of our present knowl-
edge can be traced back much further. Although a complete account of the de-
velopment of cloud physics is not available, a wealth of information on the history
of meteorology in general can be found in the texts of Körber (1987), Frisinger
(1977), Middleton (1965), Khrgian (1959) and Schneider-Carius (1955). Based on
these and other sources, we shall sketch here some of the more important events in
the history of cloud physics. In so doing we shall be primarily concerned with de-
velopments between the century and the 1940’s, since ideas prior to that time
were based more on speculation and philosophical concepts than scientific fact and
principles. As our scope here is almost exclusively restricted to west European and
American contributions, we emphasize that no claims for completeness are made.

It was apparently not until the century that efforts were underway to give
names to the characteristic forms of clouds. Lamarck (1744-1829), who realized
that the forms of clouds are not a matter of chance, was probably the first to
formulate a simple cloud classification (1802); however, his efforts received little
attention during his lifetime. Howard (1772-1864), who lived almost contempora-
neously with Lamarck, published a cloud classification (1803) which, in striking
contrast to Lamarck’s, was well received and became the basis of the present clas-
sification. Hildebrandson (1838-1925) was the first to use photography in the study
and classification of cloud forms (1879), and may be regarded as the first to in-
troduce the idea of a cloud atlas. This idea was beautifully realized much later
by the International Cloud Atlas I (1975), II (1987) of the World Meteorological
Organization, the Cloud Studies in Color by Scorer and Wexler (1967) and the En-
cyclopedia Clouds of the World by Scorer (1972). In this last reference, excellent
colored photographs are provided together with a full description of the major gen-
era, species, and varieties of atmospheric clouds. An excellent collection of clouds,
photographed from satellites, is found in another book by Scorer (1986).

Both Lamarck and Howard believed the clouds they studied consisted of water
bubbles. The bubble idea was originated in 1672 by von Guericke (1602-1686), who
called the small cloud particles he produced in a crude expansion chamber ‘bullu-
lae’ (bubbles). Although he explicitly named the larger particles in his expansion
chamber ‘guttulae’ (drops), the bubble idea, supported by the Jesuit priest Pardies
(1701), prevailed for more than a century until Waller (1816-1870) reported in 1846
that the fog particles he studied did not burst on impact, as bubbles would have.

1
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Although this observation was confirmed in 1880 by Dines (1855-1927), it was left
to Assmann (1845-1918) to finally end the dispute through the authority of his
more comprehensive studies of cloud droplets under the microscope (1884).

The first attempt to measure the size of fog droplets with the aid of a microscope
was made by Dines in 1880. Some early measurements of the size of much larger
raindrops were made by ingeniously simple and effective means. For example, in
1895 Wiesner (1838-1916) allowed raindrops to fall on filter paper impregnated
with water-soluble dye and measured the resulting stains. A little later, Bentley
(1904) described an arrangement in which drops fell into a layer of flour and so
produced pellets whose sizes could easily be measured and related to the parent
drop sizes.

The elegant geometry of solid cloud particles has no doubt attracted attention
from the earliest times. Perhaps the first documentation of snow crystals that
exhibit a six-fold symmetry was due to an author named Han Ying who made this
observation in 1358 BC in China. It was not until centuries later that the same
observation also became documented in Europe by means of a woodcut done in 1555
by Olaus Magnus, Archbishop of Uppsala in Sweden. Kepler (1571-1630) was also
intrigued by the forms of snow crystals and asked ‘Cur autem sexangula?’ (‘But
why are they six-sided?’). Descartes (1596-1650) was perhaps the first to correctly
draw the shape of some typical forms of snow crystals (1635). Hooke (1635-1703)
first studied the forms of snow crystals under a microscope. Scoresby (1789-1857),
in his report on arctic regions (1820), presented the first detailed description of a
large number of different snow crystal forms and noticed a dependence of shape
on temperature. A dependence of the shape of snow crystals on meteorological
conditions was also noted by Martens (1675). Further progress was made when
Neuhaus (1855-1915) introduced microphotography as an aid in studying snow
crystals. Hellmann (1854-1939) pointed out in 1893 that snow crystals have an
internal structure, which he correctly attributed to the presence of capillary air
spaces in ice. The most complete collections of snow crystal photomicrographs
were gathered by Bentley in the U.S. (published by Humphreys in 1931), and
during a life’s work by Nakaya (1900–1962) in Japan (published in 1954).

It was also realized early that not all ice particles have a six-fold symmetry.
However, before the turn of the century, interest in the large and often quite
irregular shaped objects we now call hailstones was apparently restricted to their
outward appearance only. Volta (1745-1827) was among the first to investigate their
structure, and in 1808 he pointed out that hailstones contain a ‘little snowy mass’
at their center. In 1814 von Buch (1774-1853) advocated the idea that hailstones
originate as snowflakes. This concept was further supported by Waller and Harting
(1853), who investigated sectioned hailstones under the microscope. In addition to
finding that each hailstone has a center which, from its appearance, was assumed
to consist of a few closely-packed snowflakes, they discovered that hailstones also
have a shell structure with alternating clear and opaque layers, due to the presence
of more or less numerous air bubbles.

All known observations of cloud and precipitation particles were made at ground
level until 1783, when Charles (1746-1823) undertook the first instrumented balloon
flight into the atmosphere. Although frequent balloon flights were made from
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that time on, they were confined mostly to studies of the pressure, temperature,
and humidity of the atmosphere, while clouds were generally ignored. The first
comprehensive study of clouds by manned balloon was conducted by Wigand (1882-
1932), who described the in-cloud shape of ice crystals and graupel particles (snow
pellets or small hail) in 1903.

Attempts to provide quantitative explanations for the processes which lead to the
formation of cloud particles came relatively late, well into the period of detailed
observations on individual particles. For example, in 1875 Coulier (1824-1890)
carried out the first crude expansion chamber experiment which demonstrated the
important role of air-suspended dust particles in the formation of water drops from
water vapor. A few years later, Aitken (1839-1919) became the leading advocate
of this new concept. He firmly concluded from his experiments with expansion
chambers in 1880 that cloud drops form from water vapor only with the help of
dust particles which act as nuclei to initiate the new phase. He categorically stated
that ‘without the dust particles in the atmosphere there will be no haze, no fog, no
clouds and therefore probably no rain’. The experiments of Coulier and Aitken also
showed that by progressive removal of dust particles by filtration, clouds formed
in an expansion chamber became progressively thinner, and that relatively clean
air would sustain appreciable vapor supersaturations before water drops appeared.
The findings of Coulier and Aitken were put into a more quantitative form by
Wilson (1869-1959), who showed in 1897 that moist air purified of all dust particles
would sustain a supersaturation of several hundred percent before water drops
formed spontaneously. This result, however, was already implicitly contained in
the earlier theoretical work of W. Thomson (the later Lord Kelvin, 1824-1907),
who showed that the equilibrium vapor pressure over a curved liquid surface may
be substantially larger than that over a plane surface of the same liquid (1870).

As soon as experiments established the significant role of dust particles as pos-
sible initiators of cloud drops, scientists began to look closer at the nature and
origin of these particles. Wilson followed up his early studies with dust-free air
and discovered in 1899 that ions promote the condensation process, a result which
had been predicted theoretically in 1888 by J.J. Thomson (1856-1940). However,
it was soon realized that the supersaturations necessary for water drop formation
on such ions were much too large for them to be responsible for the formation of
atmospheric clouds. It was again Aitken who noticed in 1881 that due to their
different composition, some dust particles seem to be better nuclei than others.
He even surmised that ‘fine sodic chloride particles’ would condense vapor before
the vapor was cooled to the saturation point. This observation he attributed to
the ‘great attraction which salt has for water’. Aitken’s observations were further
extended by Welander (1897) and Lüdeling (1903), who suggested that Aitken’s
salt particles are injected into the atmosphere by the world oceans. The great
importance of such salt particles to serve as condensation nuclei was also realized
by Köhler (1888-1982) who pointed out that the presence of large numbers of hy-
groscopic particles generally should prevent large supersaturation from occurring
in clouds. Also, Köhler was the first to derive a theoretical expression for the vari-
ation of vapor pressure over the curved surface of an aqueous solution drop (1921,
1922, 1927). His pioneering studies became the foundation of modern condensation
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theory.
Although the sigificance of oceans as a souce of condensation nuclei was by

now clearly recognized, Wigand’s observations (1913, 1930) suggested that the
continents, and not the oceans, are the most plentiful source. Wigand’s conclusions
(1934) were supported by the studies of Landsberg (1906-1985) and Bossolasco
(1903-1981).

Lüdeling and Linke (1878-1944) were probably the first to determine the con-
centration of condensation nuclei in the atmosphere (1903, 1904). However, it was
Wigand who, during balloon flights from 1911 to 1913, first carried out detailed
studies of condensation nuclei concentrations at different levels in the atmosphere
as a function of various meteorological parameters. He discovered that their con-
centration was related to the temperature structure in the atmosphere, and was
significantly different inside and outside clouds. On comparing the concentrations
of condensation nuclei and cloud drops, Wigand concluded that there are sufficient
numbers of condensation nuclei in the amosphere to account for the number of
drops in clouds.

Studies during the same period brought out the fact that dust particles also play
an important role in the formation of ice crystals. Thus, those researchers who as-
cended into clouds with instrumented balloons, found ice crystals at temperatures
considerably warmer than the temperatures to which Fahrenheit (1686-1736) had
supercooled highly purified water in the laboratory in 1724. Nevertheless, Saus-
sure (1740-1799) pointed out in 1783 that, despite the large number of condensation
nuclei, cloud drops generally resist freezing to temperatures much below 0°C. This
implied that apparently only a few of the dust particles present in the atmosphere
act as ice-forming nuclei. Wegener (1880-1931) suggested that water drops form
on water-soluble, hygroscopic nuclei while ice crystals form on a selected group
of dust particles which must be water-insoluble. From his observations during a
Greenland expedition (1912-1913), he concluded that ice crystals form as a result
of the direct deposition of water vapor onto the surface of ice-forming nuclei. He
therefore termed this special group of dust particles ‘sublimation nuclei’. Wegener’s
mechanism of ice crystal formation by direct vapor deposition was also advocated
by Findeisen (1909-1945). On the other hand, Wigand concluded from his balloon
flights that ice crystal formation is often preceded by the formation of supercooled
water drops, which subsequently freeze as a result of contact with water-insoluble
dust particles. Other arguments against a sublimation mechanism for the forma-
tion of ice crystals were brought forward by Krastanow (1908-1977) who, in 1936,
theoretically demonstrated that the freezing of supercooled drops is energetically
favored over the formation of ice crystals directly from the vapor.

While all these studies provided some answers concerning why and how cloud
particles come into being, they did not provide any clues as to how a cloud forms
as a whole and why some clouds precipitate and others do not. One of the first
precipitation theories was formulated in 1784 by Hut ton (1726-1797). He envisioned
that the cloud formation requisite to precipitation is brought about by the mixing
of two humid air masses of different temperatures. The microphysical details of the
apportioning of the liquid phase created by this cooling process were not considered.
The meteorologists Dove (1803-1879) and Fitz Roy (1805-1865) evidently were in
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favor of his theory, since it seemed to predict the observed location of rain at the
boundary between ‘main currents of air’ (this is now interpreted as frontal rain).
Therefore, Hutton’s precipitation theory persisted for almost a century. When at
last given up, it was not for apparent meteorological reasons but for the physical
reason that, owing to the large amount of latent heat released during the phase
change of water vapor to water, Hutton’s process provides far too small an amount
of condensed water to explain the observed amounts of rain.

It finally became clear that only cooling by expansion of humid air during its
ascent in the atmosphere would provide clouds with sufficient condensed water to
account for the observed rain. Thus, Hamberger (1662-1716) noted in 1743 and
Franklin (1706-1790) in 1751 that air rises on heating. In turn, Ducarla-Bonifas
(1738-1816) and de Saussure (1740-1799) formulated a theory which made use
of this concept suggesting that warm moist air which rises will cool as it rises
and produce precipitation at a rate which is proportional to the rate of ascent
of the moist air. However, it was left to Erasmus Darwin (1731-1802) to clearly
formulate in 1788 the connection between expansion, cooling and condensation.
The first mathematical formulation of the cooling which is experienced by a volume
of expanding air was given by Poisson (1781-1840) in 1823, thus providing the
basis for understanding von Guericke’s ‘cloud chamber’ experiments carried out
150 years earlier. Soon afterwards, the idea of cooling by adiabatic expansion,
according to which there is no heat exchange between the rising parcel of air and
the environment, was applied to the atmosphere by Espy (1785-1860). He deduced
in 1835 from experiments and theory that, for a given expansion, dry air is cooled
about twice as rapidly as air saturated with water vapor, owing to the heat released
by condensing vapor. Also, Péclet (1793-1857) showed in 1843 that the rate of dry
adiabatic cooling for a rising air parcel is larger than the cooling usually observed
during balloon ascents in the atmosphere.

The first quantitative formulation of the ‘saturation adiabatic process’, accord-
ing to which the condensation products are assumed to remain inside the water-
saturated air parcel, was worked out by Lord Kelvin in a paper read in 1862 and
published in 1865. Meanwhile, in 1864, Reye (1838-1919) independently derived
and published formulations for the same process. A mathematical description of
the cooling rate of a lifted air parcel from which the condensation products are
immediately removed upon formation, a ‘pseudoadiabatic process’, was formulated
in 1888 by von Bezold (1837-1907). In 1884, Hertz (1857-1894) further extended
the thermodynamic formulation of a rising moist parcel of air. He suggested that if
such a parcel rises far enough, it will pass through four stages: (1) the ‘dry stage’
in which air is still unsaturated, (2) the ‘rain stage’ in which saturated water vapor
and water are present, (3) the ‘hail stage’ in which saturated water vapor, water,
and ice coexist, and (4) the ‘snow stage’ in which only water vapor and ice are
present.

In 1866, Renou (1815-1902) first pointed out that ice crystals may play an im-
portant role in the initiation of rain. Solely on the basis of the rather restricted
meteorological conditions he observed, Renou suggested that for development of
precipitation, two cloud layers are required: one consisting of supercooled drops
and another at a higher altitude which feeds ice crystals into the cloud layer below.
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More significant progress in understanding precipitation formation involving ice
crystals was achieved by Wegener (1911), who showed through thermodynamic
principles that, at temperatures below 0°C, supercooled water drops and ice crys-
tals cannot coexist in equilibrium. Using this result, Bergeron (1891-1977) proposed
in 1933 that precipitation is due to the colloidal instability which exists in clouds
containing both supercooled drops and ice crystals. Bergeron envisioned that in
such clouds the ice crystals invariably grow by vapor diffusion at the expense of the
supercooled water drops until either all drops have been consumed or all ice crys-
tals have fallen out of the cloud. Findeisen’s cloud observations (1938) produced
further evidence in favor of the Wegener-Bergeron precipitation mechanism.

Descartes (1637) had observed that hailstones often have a snowy globule in the
middle. In suggesting a mechanism for the formation of hailstones, he therefore
speculated that hailstones are the result of numerous snowflakes ‘being driven to-
gether by wind’. Later, Ducarla Bonifas (1738-1816) proposed with considerable
foresight in 1780 that ‘columns of air, more strongly heated than the surrounding
atmosphere, may violently rise to elevations where the temperature is sufficiently
low that the condensation products freeze to become little snowy globules which
further grow from the vapor and by collision with supercooled water drops until
they are heavy enough to fall back to Earth’. Similarly, von Buch in 1814 and
Maille (1802-1882) in 1853 suggested that hailstones originate as snow pellets and
grow further by collision with supercooled water drops. Much later, Köhler (1927)
applied the notion of collision growth to ice crystals, which he recognized might
collect supercooled cloud drops. He also noted, but did not explain, his observa-
tion that both drops and crystals have to be of a minimum critical size before such
growth may evolve.

The same basic idea of collisional growth, applied this time to cloud drops of
different size and hence different fall velocities, was put forth independently in 1715
by Barlow (1639-1719) and by Musschenbroek (1692-1761) in 1739. Musshenbroek
also proposed that drops growing by collision will not exceed a size of about 6 mm
in diameter, due to the observed instability of drops larger than this size. Reynolds
(1842-1912) expanded on the notion of collisional growth and showed by computa-
tion in 1877 that water drops above a certain size grow slower by vapor diffusion
than by collision with other drops.

A subtle aspect of the collisional growth process was discovered by Lenard (1862-
1947), who observed in 1904 that colliding drops do not always coalesce. This he
attributed correctly to the difficulty of completely draining all the air from between
the colliding drops. He also found (as had been noticed in 1879 by Strutt, later
Lord Rayleigh, 1842-1919) that small amounts of electric charge residing on drops
could build up attractive electric forces which are sufficiently large to overcome
the hydrodynamic resistance to coalescence. In agreement with the expectations of
Musschenbroek, Lenard concluded from his experiments that growth by collision-
coalescence continues until drops grow to a critical size, after which they become
hydrodynamically unstable and break up. He suggested that the fragment drops
may then continue to grow in the same manner, producing a ‘chain-reaction’ effect
of overall rapid growth.

Despite Lenard’s experimental results, the mechanism of growth by collision
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was paid little attention for a long time, since the Wegener-Bergeron-Findeisen
mechanism dominated the thinking of meteorologists, most of whom studied storm
systems at the middle and higher latitudes where the ice phase is quite common.
Simpson (1878-1965) attempted to revive the collision mechanism in his presidential
address to the Royal Meteorological Society in 1941. On the basis of reports from
airplane pilots who flew over India through precipitating clouds with tops thought
to be warmer than 0°C, and from some crude calculations made by Findeisen on the
rate at which unequal size cloud drops coagulate, Simpson asserted that he found it
untenable to assume that precipitation formation should be confined only to clouds
which reach subzero temperature levels. However, convincing quantitative support
for Simpson’s position had to await the late 1940’s, when radar observations and
military flights finally led to a general consensus that clouds need not reach subzero
temperature levels, and consequently need not contain ice crystals for precipitation
to occur.

* * *
In striking contrast to the rather slow development of cloud physics prior to

1940, an abrupt and accelerating increase in research and knowledge has occurred
since. A confluence of several factors has brought about this dramatic change. For
example, a surge of interest in cloud physics was closely tied to the military-related
research in meteorology which developed during the war years (1939-1945) and pro-
duced a great number of trained workers in meteorology. Also, several new observa-
tional techniques involving aircraft, radar, and other instruments became available
to scientists at a time when both the necessary funding and support personnel were
also relatively abundant. In addition, interest and support was stimulated by the
demonstration of Schaefer and Langmuir in 1946 that it is possible to modify at
least some clouds and affect their precipitation yield by artificial means. (They
seeded supercooled stratus clouds with dry ice, which caused the formation and
subsequent rapid growth of ice crystals. This induced colloidal instability led, in
about 20 minutes, to a miniature snowfall.) Finally, the fast pace of general tech-
nological advances has had a continuing great impact on cloud physics, insuring an
accelerated development by making available such important tools as computers,
satellites, rockets, and accurately controlled climatic chambers and wind tunnels.

To a large extent, the rapid progress referred to above can be characterized as a
fairly direct development of the ideas and discoveries which were made considerably
earlier. As we shall see, the period of progress since the beginning of the 1940’s
has not been characterized by numerous conceptual breakthroughs, but rather by
a series of progressively more refined quantitative theoretical and experimental
studies of previously identified microphysical processes.

As we shall also see, much remains to be learned in spite of the significant
advances of the past four decades. One principal continuing difficulty is that of
incorporating, in a physically realistic manner, the microphysical phenomena in
the broader context of the highly complex macrophysical environment of natural
clouds. This problem was well expressed 35 years ago in the preface to the first
edition of Mason’s (1957a) treatise on cloud micrphysics.

Although the emphasis here is upon the micro-physical processes, it is important
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to recognize that these are largely controlled by the atmospheric motions which are
manifest in clouds. These macro-physical features of cloud formation and growth,
which might more properly be called a dynamics, provide a framework of environ-
mental conditions confining the rates and duration of the micro-physical events.
For example, the growth or freezing of cloud droplets is accompanied by the re-
lease of great quantities of latent heat, profoundly influencing the motion of cloudy
air masses, while the motions which ultimately cause evaporation of the cloud
determine its duration, and will set a limit to the size which its particles can at-
tain. Progress in cloud physics has been hindered by a poor appreciation of these
interrelations between processes ranging from nucleation phenomena on the mole-
cular scale to the dynamics of extensive cloud systems on the scale of hundreds or
thousands of kilometers.

The problem of scale which Mason refers to provides a revealing point of view for
appreciating the extent of the difficulties one encounters. Thus, stating the case in a
very conservative manner, we are concerned in cloud microphysics with the growth
of particles ranging from the characteristic sizes of condensation nuclei
to precipitation particles for raindrops, for hailstone). This
means we must follow the evolution of the particle size spectrum, and the attendant
microphysical processes of mass transfer, over about seven orders of magnitude in
particle size. Similarly, the range of relevant cloud-air motions varies from the
characteristic size of turbulent eddies which are small enough to decay directly
through viscous dissipation since it is these eddies which turn out to
define the characteristic shearing rates for turbulent aerosol coagulation processses,
to motion on scales at least as large as the cloud itself Thus, relevant
interactions may occur over at least seven orders of magnitude of eddy sizes. Also,
in recent years it has become increasingly clear that a strong coupling may occa-
sionally occur between the particle growth processes, including the development of
precipitation, and the growth of the cloud electric field. Since in the atmosphere
field strengths range from the fair-weather value to fields of break-
down value to understand the formation of highly electrified clouds,
we must cope with about four orders of magnitude of electric field variation. At the
same time, we also must be concerned with various electrostatic force effects arising
from at least an eight order of magnitude range of particle charge, considering the
observed presence of 1 to free elementary charges to e.s.u.)
on atmospheric particles. If the electrostatic contribution to the large-scale cloud
energetics is also considered, a much larger charge magnitude range is involved.
Recent studies have shown further that atmospheric clouds and precipitation sig-
nificantly affect the chemical nature of the atmosphere in that they are able to
incorporate aerosol particles as well as certain gaseous atmospheric constituents,
which, once dissolved in the drops, allow chemical reactions to alter their chemical
nature. Since observations show that the concentration of aerosol particles ranges
from a few per in remote background air to a few million per in heavily
polluted air over cities, while the concentration of pullutant gases range from a
volume fraction of to one of in these same locations, we must follow
the uptake of atmospheric chemical constituents by clouds and precipitation over
about six orders of magnitude of concentration variation.
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It is clear, therefore, that a complete in-context understanding of cloud micro-
physics including dynamic, electrical and chemical effects must await some sort of
grand synthesis, an elusive and distant goal even from the point of view of presently
available models. We should emphasize that such an approach to the subject is
far beyond the scope of this book. Rather, our goal is to provide where possible
a reasonably quantitative account of the most relevant, individual microphysical
processes. In addition to whatever intrinsic interest and usefulness in other ap-
plication the separate case studies of this book may hold, we also hope they may
help provide a useful basis for an eventual integrated treatment of overall cloud
behavior. As we shall see, however, even this restricted approach to the subject
necessarily involves a degree of incompleteness, since many microphysical mech-
anisms are still not understood in quantitative detail. In this sense also cloud
microphysics is still a developing subject, and so is characterized to some extent
by inadequate knowledge as well as conflicting results and points of view.



CHAPTER 2

MICROSTRUCTURE OF  ATMOSPHERIC  CLOUDS  AND
PRECIPITATION

Before discussing the microphysical mechanisms of cloud particle formation, we
shall give a brief description of the main microstructural features of clouds. Here
we will be concerned primarily with the sizes, number concentrations, and geometry
of the particles comprising the visible cloud.

2.1 Microstructure of Clouds and Precipitation Consisting of
Water Drops

2.1.1 THE RELATIVE HUMIDITY INSIDE CLOUDS AND FOGS

Although the relative humidity of clouds and fogs usually remains close to 100%,
considerable departures from this value have been observed. Thus, reports from
different geographical locations (Pick, 1929, 1931; Neiburger and Wurtele, 1949;
Mahrous, 1954; Reiquam and Diamond, 1959; Kumai and Francis, 1962a,b) show
that the relative humidity of fogs has been found to range from 100% to as low as
81%. Somewhat smaller departures from saturation are usually observed in cloud
interiors. Warner (1968a) indirectly deduced values for the relative humidity in
small to moderate cumuli from measurements of vertical velocity and drop size.
From his results (shown in Figure 2.1), we see that in these clouds the relative
humidity rarely surpasses 102% (i.e., a supersaturation of 2%), and is rarely lower
than 98%. The median of the observed supersaturations was about 0.1%. Similarly,
Braham (in Hoffer, 1960) found, during several airplane traverses through cumulus
clouds, that in their outer portions the air generally had relative humidities between
95 and 100%, dipping to as low as 70% near the cloud edges where turbulent mixing
was responsible for entraining drier air from outside the clouds. In the more interior
cloud portions, the relative humidity ranged from 100% to as high as 107% (shown
in Figure 2.2). More recently, Politovich and Cooper (1988) deduced from flights
through 147 clouds over Miles City, Montana, that the supersaturation within these
clouds ranged between  –0.5 and 0.5% with an average of 0%.

Usually, the maximum supersaturation attained for a given updraft in a fog or
cloud is inferred from a comparison between the observed number concentration of
drops with the observed number concentration of aerosol particles which can form
drops at a given supersaturation (Squires, 1952, Warner, 1968a; Hudson, 1980;
Meyer et al., 1980; Paluch and Knight, 1984; Austin et al., 1985; Politovich and
Cooper, 1988). Recently, however, instruments have become available which are
able to measure the relative humidity in clouds more directly. Thus, the relative
humidty inside fogs (Figure 2.3) was measured by Gerber (1981) by means of a spe-

10
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cial dew point hygrometer developed one year earlier to measure relative humidity
above 100% (Gerber, 1980). We notice from Figure 2.3 that inside fogs the relative
humidity varies rapidly between subsaturated and supersaturated conditions. We
will show later in this chapter that the spatial and temporal non-uniformity of the
humidity inside clouds and fogs results in a corresponding rapid spatial variation
of the concentration of cloud drops and the cloud liquid water content.

2.1.2 MICROSTRUCTURE OF FOGS

Observations by Houghton and Radford (1938), Kojima et al. (1952), Mahrous
(1954), Reiquam and Diamond (1959), Kumai and Francis (1962a), Okita (1962),
Meszaros (1965), and Garland (1971) show that fogs, unlike clouds, are charac-
terized by relatively low water contents (generally less than small
drops (typically between and a few tens of micrometers, with a typical
mean diameter D between 10 and small number concentrations (1 to a few
hundreds per cubic centimeter), and liquid water contents ranging between 0.05 to

More recent studies on fogs have been carried out by Low (1975), Roach
et al. (1976), Pilie et al. (1975), Mack et al. (1980), Jiusto and Lala (1980, 1982),
Stanev et al. (1987), Uyeda and Yagi (1984), and Kunkel (1982). From some of
these more recent observations, Kunkel (1982) categorized the distributions of the
drop number concentration and liquid water content of advection fogs as
one of the three types shown in Figures 2.4 and 2.5, respectively. The common
feature of the three types in Figure 2.4 is the high concentration of particles be-
tween 0.5 and radius, which may be as large as several thousand per
(Garland, 1971). Kunkel suggests that these are haze particles consisting of moist
aerosol particles which have not yet been activated to actual drops (see Chapters 6
and 13). Before the advent of optical particle counters, these smaller particles went
virtually undetected since most other techniques available did not record droplets



MICROSTRUCTURE  OF  ATMOSPHERIC  CLOUDS  AND  PRECIPITATION 13

smaller than However, using optical particle counters, this detection limit
was eliminated. Hindman et al. (1977), Low et al. (1979), and Pinnick et al.
(1978) also reported the presence of such haze particles in fogs. From Figure 2.4
we note that the type A drop size distribution is strongly bimodal, type B has a
plateau, and type C shows a continuous simple decrease in number concentration
which can be represented by a power law. In contrast, the variation of the liquid
water content with drop size exhibits a single peak which appears either at a drop
diameter near (type A) or near (type C). A double peak at these two
diameters characterizes type B.

According to Kunkel (1982) and Low (1975), one may distinguish among three
stages during a fog event. In the formative stage, the droplet number concentration
increases with time resulting in increasing liquid water content, while the mean drop
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size may remain the same or may increase slightly. During the mature stage, the
number concentration, liquid water content, and mean drop size fluctuate rather
strongly around generally constant values. The final dissipative stage is a period
of decreasing drop concentration, drop size, and liquid water content. Figures 2.6
and 2.7 illustrate the large spatial variations of the drop number concentration and
liquid water content during fog events, as noted as a function of time by an observer
at a fixed observation site. The variation in time of the drop number concentration
ranges up to two orders of magnitude for certain size categories. Analogously, the
liquid water content may vary rapidly from near zero values up to (Fig.
2.7).

The vertical microstructure of fog is less well-known. Generally it is found that
with increasing height in the fog, the drop spectrum narrows and the mean drop
radius decreases slightly, while the liquid content rises to one or more maxima at
some midlevel height in the fog.

2.1.3 MICROSTRUCTURE OF CLOUDS

Turning now to the microstructure of clouds, we shall mainly be concerned with
cumulus clouds as these have been studied most often. In contrast to fogs and
also some stratiform clouds, the drop size distribution of cumulus clouds depend
strongly on the development stage of the clouds, ranging from an early developing
stage with no precipitation to the mature and eventually dissipating stage with
large cloud drops and precipitation. This is exemplified by Figures 2.8a,b,c which
show that non-precipitating fair weather continental cumuli have relatively narrow
drop size spectra, while the spectra of continental cumuli which have reached the
more mature stage of a cumulus congestus, cumulonimbus, or cumulus-complex,
are much broader. Cumulus clouds which are embedded in a stratus layer have an
even broader spectrum. However, we notice from these figures that at each devel-
opment stage the drop spectra may vary considerably. In contrast to continental
clouds, maritime clouds (Figure 2.9) have an even broader spectrum, and, in par-
ticular, have drop concentrations at the small drop size end which are one order of
magnitude smaller than the concentration in continental cumuli. Figure 2.10 ex-
tends the spectrum for tropical cumuli in Figure 2.9 to larger sizes and illustrates a
typical feature of cloud drop spectra in general: the concentration decreases sharply
from a few tens to few hundreds per cubic centimeter at the small drop size end to
between and for the large drops with diameters

Squires (1958a) has carried out detailed comparative studies of the drop spectra
of different types of clouds. The observational sequence shown in Figures 2.11a,b,c
illustrates the dependency of spectral shape on cloud type for situations in which
the nuclei on which drops form are essentially the same in type and concentration,
since a given air mass has spawned all three types shown. However, we can see
that even though there is little variation in liquid water content, the drops become
smaller, more numerous, and more homogeneous in size as one passes from the
orographic to the stratus to the cumulus cloud types. Continental cumuli appear
to represent an extension of this trend, in that the spectra are even narrower, the
concentrations even higher, and the average drop sizes even smaller (Figure 2.11d).
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For this case, a different air mass type with a correspondingly different aerosol
particle content is involved, and this largely accounts for the change from the
maritime spectrum. Squires’ observations clearly express the trend that high drop
concentrations in clouds are associated with narrow drop size spectra and small
drop sizes. This is the pattern usually encountered in continental type clouds,
while in maritime clouds low drop concentration are associated with broad size
spectra and large drop sizes.

Individual drop size spectra often tend to be bimodal (Eldridge, 1957; Durbin,
1959; Warner, 1969a), as exemplified by Figure 2.12a. During his flights through
clouds over the east coast of Australia, Warner (1969a) observed that the tendency
of a size distribution to be bimodal increased with height above cloud base and with
decreasing stability in the cloud environment (Figure 2.12b). The same tendency
was found by Politovich and Vali (1983) in cap clouds over Elk Mt., Wyoming.
Based on his observations, Warner suggested that bimodal drop size distributions
are the result of a mixing process between the cloud and the environment. Since
the drop size spectra were fairly uniform for a given level across a cloud and the
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bimodality was not confined to the cloud edges, Warner proposed that the mixing
process producing the bimodality is due mostly to entrainment of drier air at the
growing cloud top, and to a lesser degree, to entrainment at the cloud edges.
Figure 2.12b shows further that the fraction of drops larger than 25, 30, and
diameter increased rapidly with height above cloud base, indicating that the size
distribution experiences a broadening effect with increasing distance from cloud
base. Spectra with double maxima have also been observed by McLeod (1976)
in thunderstorm clouds over Alberta, by Meischner and Bögel (1988) in cumulus
clouds over the Alps, by Slingo et al. (1982) in stratocumulus clouds over England,
and by Ryan et al. (1972) in stratus clouds off the coast of California (Figure 2.13).
Figure 2.14 for a continental cumulus and Figure 2.15 for a maritime stratocumulus,
show that the relative size of the two maxima in the bimodal spectra varies with
location in the cloud and with the stage of development.

If we consider the spatial distribution of the drop size, number concentration, and
liquid water content, we find strongly inhomogeneous conditions. Thus, we notice
from Figure 2.16 that varies rapidly over short distances along a horizontal
flight path in a manner which is closely related to the variation of the vertical
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velocity in the cloud. From Figure 2.17, we see that varies essentially as the
total number concentration of drops. On the other hand, the mean drop diameter

only reflects the two main strong dips in Notice also that there exist some
‘steady’ regions inside clouds with little variation in drop diameter.

The observations of Zaitsev (1950), Draginis (1958), Squires (1958b), Durbin
(1959), Ackerman (1959, 1963), Huan (1963), Borovikov et al. (1963), Warner
(1955, 1969a), Vulfson et al. (1973) demonstrate that the cloud water content typ-
ically increases with height above the cloud base, assumes a maximum somewhere
in the upper half of the cloud, and then decreases again toward the cloud top. This
is illustrated in Figure 2.18a for an alto-cumulus-alto-stratus cloud, by Figure 2.18b
for a stratus cloud, both studied by Hoffmann and Roth (1988) in S. Germany, and
by Figure 2.19 for a small continental cloud studied by Huan (1963) in China.
We also notice from Figure 2.19 that, in contrast to the cloud in Figure 2.17, the
distribution of the liquid water content parallels the distribution of the drop size
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rather than the drop concentration. A rather symmetric distribution of the drop
concentration and liquid water content is seen for the cap-clouds observed by Poli-
tovich and Vali (1983) (Figure 2.20a,b). The pronounced spatial variations of the
cloud microphysical parameters in the vertical are exemplified in Figures 2.21a,b,c
by the observations of Heymsfield et al. (1991) in an alto-cumulus layer.

Although the liquid water content of clouds varies strongly from cloud to cloud,
one may use the following characteristic values (Borovikov et al., 1963): Cumulus

cumulus congestus and cumulonimbus, 0.5 to alto-cumulus-alto-stratus,
0.2 to stratus-stratocumulus, 0.1 to                      nimbo-stratus, 0.2 to

In cumulus with very high updrafts, liquid water contents of up to
and more have been observed (Poellot and Pflaum, 1989). Hobbs et al.

(1980), Gayet et al. (1978) and Musil and Smith (1989) found in some thunder-
storms liquid water contents up to which amounted to twice the adiabatic
value. They attributed this result to liquid water storage in accumulation zones
inside the cloud. In most cases, however, a comparison between the observed cloud

is found to decrease with increasing height above cloud base but to in-
crease with increasing cloud width. This implies that the entrainment is especially
pronounced near the cloud top, while the net dilution effect by entrainment is less
in wider clouds than narrower ones. Generally, lies between 0.1 and 0.6,
with near adiabatic values close to the cloud base, although near-adiabatic values
may occasionally be found also higher up (Blyth and Latham, 1990; Heymsfield et
al., 1978; Jensen et al., 1985).

Remote sensing with radar can provide useful information on the correlation

(early stage), 0.2 to Cumulus (later stage), 0.5 to dense

air shows that generally This fact is illustrated by Figure 2.22, which
implies that, as a cloud builds, drier air is constantly entrained and subsequently
saturated at the expense of some of the water released during ascent. In most cases,

water content computed on the basis of a saturated adiabatic ascent of moist
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between the cloud microstructure and the overall development of precipitating
clouds. Most of the early work was done with 10 or 3 cm radars which, in general,
could only detect drops larger than a few hundred microns in diameter. More
recent high power 3 cm radar, and most 1 cm radar, permit the detection of drops
with diameters larger than a few tens of microns (Mason, 1971; Battan, 1973).

From radar studies of various types of cumuli, Battan and Braham (1956), and
Morris (1957), found that the appearance of a radar echo is characteristically re-
lated to the cloud dimensions. Thus, Figure 2.23 shows that the probability of
an echo developing in a cloud grows with its cloud top height and width. Notice
that continental clouds need to build considerably higher than maritime clouds and
must become considerably wider before a radar echo appears. Since higher clouds
usually also have greater depths, we notice from Figure 2.24 that, as expected, the
appearance of a radar echo is more likely the greater the cloud depth.

2.1.4 FORMULATIONS FOR THE DROP SIZE DISTRIBUTIONS IN CLOUDS

AND FOGS

For many fog and cloud modeling purposes, it is necessary to be able to approximate
the observed drop size distribution by an analytical expression. Fortunately, drop
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size distributions measured in many different types of clouds and fogs under a
variety of meteorological conditions often exhibit a characteristic shape. Generally,
the concentration rises sharply from a low value to a maximum, and then decreases
gently toward larger sizes, causing the distribution to be positively skewed with a
long tail toward the larger sizes. Such a characteristic shape can be approximated
reasonably well by either a gamma distribution

or a lognormal distribution

where a is the drop radius, and n(a)da is the number of drops in the radius
range (a, a + da). Also, N is the total number of drops per unit volume, is the
standard deviation of the distribution and is the drop radius at the maximum of
the distribution. The parameters A, B, and may be related to moments of the
distribution. In order to describe a drop size distribution with two or more maxima,
one or more unimodal distributions may be superposed. As an example, according
to Khrgian and Mazin (in Borovikov et al. 1963) many drop size distributions with
a single maximum may also be quite well represented by a gamma distribution for
which and i.e.,

The parameters A and B can be related to any two moments of the distribution.
For example, in terms of the total concentration N (the zeroth moment), and the
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average radius  (the ratio of the first and zeroth moments) we find

and

Another related quantity of interest is the total mass concentration of liquid water.
Since this often turns out to be about one defines the cloud liquid

where is the density of water in and a is in cm. Then, for the Khrgian-
Mazin distribution, we find

and

Stanev et al. (1987), Low (1975) and Meszaros (1965) also found that the size
distributions of fog drops could be fitted by the Khrgian-Mazin distribution. An-
other convenient representation of the cloud drop size distribution is the empirical
formula developed by Best (1951a):

where F is the fraction of liquid water comprised of cloud drops with diameters
smaller than The characteristic parameters C and k vary with the li-
quid water content, the total drop concentration, and the maximum drop size in
the cloud. Best found Of course, it must
be remembered that these various analytical expressions only represent average
distributions. As we have seen in the previous section, individual drop size spectra
may be significantly different.

2.1.5 THE MEAN DISTANCE BETWEEN DROPS IN CLOUDS AND FOGS

From the previous section, it is clear that microstructure inhomogeneities in clouds
are rather pronounced. The question naturally arises as to whether such behavior

water content,        as follows:
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continues to hold down to the smallest scales of physical significance, such as dis-
tances of the order of the droplet separations. In general, given the many stochastic
influences on drop growth and drop spacing in a complex natural system such as
a cloud, one would indeed expect inhomogeneities, or fluctuations, to occur on all
length scales, including the smallest. In fact, in one sense this is trivially so: If one
measures the liquid water content over sample volumes of the order of average drop
volumes, for example, the result is bound to reflect the fundamental dichotomy of
being either inside or outside of a drop.

The more meaningful question is how to characterize the expected physical prop-
erty fluctuations on the smaller scales within clouds. Let us address this problem
briefly by focusing on the spacing of droplets in clouds. A simple estimate of the
expected nearest-neighbor distance for droplets may be obtained as follows: The
liquid water content of clouds, typically equal to of water per cubic
meter of air, may be approximated by the ratio of the volume of the average cloud
droplet (of radius to the volume of a sphere whose radius is the average
distance between droplets; thus,

which shows that clouds are rather sparse aerosols. In terms of the concentration n,
we note that and so also, A more detailed analysis,
given in Appendix A-2.1.5, shows that the above approximations are really quite
good; e.g., we find

Given this mean spacing, and assuming droplets are randomly distributed in
space, one can make various statistical predictions about the expected number
of droplets in a particular volume of cloud. The basis for this is the Poisson
discrete probability distribution function which defines the set of probabilities for
encountering any given number of randomly placed droplets in a given volume,
provided the mean number density is known, and that the process is truly random.
(Further details of this distribution are not needed here; any text on probability
theory may be consulted for more specifics. However, it may be noted that the
derivation of (2-11) in Appendix A-2.1.5 provides an example of the reasoning
characterizing Poisson statistics. Furthermore, Poisson statistics are used explicitly
in the discussion of drop collection in Chapter 15.)

Given the above framework, one can now take advantage of the greatly enhanced
measurement capability of recent years to search for possible deviations from the
default Poisson statistics. For example, Baker (1992) attempted to analyze the ar-
rival times of cloud droplets passing through the laser beam of a forward scattering
spectrometer probe (FSSP) mounted on an aircraft. Although small departures
from Poisson statistics were noted at scales between 0.5 and 5 cm, it was not
possible to relate the measurements to actual inter-droplet distances. Similarly,
Paluch and Baumgardner (1989) established with their FSSP measurements that
non-uniformities in the drop concentration existed at scales below 10 cm, except
deep inside a cloud where the drops were found to be randomly distributed.
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A more definite conclusion was reached by Kozikowska et al. (1984), who conjec-
tured, on the basis of holographic measurements in ground fog, that there appeared
to be droplet clustering and systematic deviations from a random spatial droplet
distribution. A quantitative study to test the conclusions of Kozikowska et al. was
carried out by Borrmann et al. (1993) and by Uhlig (1995) using holograms taken
inside stratus and stratocumulus clouds on Mt. Feldberg in Germany. An example
of the local drop size distribution inferred from the holographic method is given in
Figure 2.25.

Analysis of the mean distance derived from the holograms showed that within
the experimental error, the drop size spatial distribution deviated from Poisson
statistics, and hence from true randomness, by only a few percent. Thus, we de-
duce for example from Figure 2.25 and 2.11 that for
drops Comparison with the value of observed by Borrmann et
al. shows agreement with the assumption of randomness to within 8%. Mean
distances derived by Uhlig (1995) from her holograms, showed even smaller devi-
ations from randomness. However, somewhat larger deviations were found if the
formation of nearest-neighbor pairs was considered. Thus, in a previous theoret-
ical and experimental study, Raasch and Umhauer (1989) determined that about
59% of particles, distributed randomly in an infinite volume, form nearest-neighbor
pairs, in the sense that each droplet in a pair is the nearest-neighbor of the other.
The field observations of Borrmann et al. showed, however, that only 51% of the
particles in the observed collective formed such mutual nearest-neighbors, for a
deficit of 14% from the expected value if randomness prevailed. Of course, from
the mentioned tests on the mean distance, no conclusions can be drawn with re-
gard to the deviation from Poisson statistics of the individual distances between
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the drops. Therefore, Uhlig (1995) and Borrmann et al. (1993) subjected their
hologram data to additional tests which showed that for the number
of nearest-neighbor distances were up to 10% higher than the number predicted by
Poisson statistics. The data also showed that a substantial fraction of the drops in
the ensemble had nearest-neighbor distances of less than 100 drop radii. In fact,
in the distribution given by Figure 2.25, Borrmann et al. found that 40% of the
drops in the ensemble were closer to each other than 100 drop radii, 20% closer
than 70 drop radii, 10% closer than 60 drop radii, and 3% even closer than 10 drop
radii. This brings to mind the difficult matter of assessing how drop growth rates
are affected by the proximity of other drops and by the proximity of walls around
the drops (see also Sections 10.2.2.4, 13.2.2.1 and 14.2).

2.1.6 MlCROSTRUCTURE OF RAIN

A small difficulty arises in attempting to describe the spectra of rain, since rain-
drops are large enough to have a size-dependent shape which cannot be character-
ized by a single length (see Section 10.3.2). The conventional resolution, which we
adopt here, is to describe rain spectra in terms of the equivalent diameter de-
fined as the diameter of a sphere of the same volume as the deformed drop. When
falling at terminal velocity, drops are nearly perfect spheres if Larger
drops are slightly deformed and resemble oblate spheroids if
For the deformation becomes large and the drops resemble oblate
spheroids with flat bases (see Plate 1). Drops larger than about 10 mm in dia-
meter are hydrodynamically unstable and break up, even in a laminar air stream
(see Section 10.3.5).

In addition to the equivalent diameter there are three other quantities which
are commonly used to characterize rain: (1) the size distribution expressed
here in terms of the number of drops per cubic meter of air per mm size interval;
(2) the water content, given as

with in mm and in (3) the rainfall rate or intensity,  usually
expressed in

with the drop terminal velocity in
As illustrated in Figures 2.26 and 2.27 for warm rains over Hawaii, such rain

seldom includes drops larger than 2 to 3 mm in diameter (Blanchard, 1953, 1957).
Larger drops are found to be very rare in rains with (Mason
and Andrews, 1960; Diem, 1968; Blanchard and Spencer, 1970; Waldvogel, 1974;
Hodson, 1986; Zawadzki and de Agostoino, 1988; Willis and Hallett, 1991). In
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contrast, raindrops which exceed 2 to 3 mm in diameter are found in tropical
storms and hurricanes with (Willis, 1984; Willis and Tattelmann,
1989) and are common in thunderstorms, where large drops form from melting ice
particles.

Recent studies on Hawaiian rainbands, however, by Johnson et al. (1986), Beard
et al. (1986), and Rauber et al. (1991), confirm the existence of raindrops larger
than 3 mm in diameter, despite relatively small rainfall rates (Figure 2.28). The
largest drops recorded had diameters as large as 8 mm. Similar sizes were also
detected in convective clouds over the SE U.S. by Illingworth (1988). These obser-
vations are quite surprising, since model and laboratory studies support the view
that collisional break-up of drops rapidly destroys larger drops in natural clouds,
and generally limits the drop diameter to less than 2 to 3 mm (McTaggart-Cowan
and List, 1975; List and Gillespie, 1976; Gillespie and List, 1978; Takahashi, 1978c,
Low and List, 1982a,b). Two mechanisms for the development of raindrops larger
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than 2 to 3 mm in diameter were suggested by Rauber et al. (1991). They envi-
sion that giant drops may develop in maritime air on exceptionally large aerosol
particles acting as nuclei for the drops near cloud base (Johnson, 1982). These
already large drops then grow further by accretion of smaller drops to reach giant
size. Alternatively, they surmise that giant raindrops may develop when small rain-
drops re-circulate from the edge of the downdrafts in which they are contained into
updrafts with large numbers of cloud drops but essentially no raindrops. Thus,
fast growth occurs at the expense of the cloud drops without the encounter of
raindrops, which otherwise would have induced collisional break-up. Eventually,
as the updraft weakens, the giant drops fall to the ground through a relatively
raindrop-free cloud channel.

Several factors influence the spectral shape of rain at the small size end. Since
rain must fall against the cloud updraft, the strength of the latter tends by itself to
truncate the spectrum at some minimum size. However, this effect is largely masked
by the further processing of rain after it leaves the cloud. In particular, small drops
continue to be produced by breakup and evaporation. Some of these are consumed
by the latter process, while others are collected by larger drops. Also, near the
beginning of a rainshower, the drop spectrum at ground level may be expected to
be biased toward large sizes owing to the greater fall speeds of the larger drops,
and possibly toward small sizes owing to an initially high evaporation rate. The
overall shaping of the spectrum is obviously quite complicated, and determined in
part by such meteorological variables as temperature, relative humidity, and wind
in the subcloud region. Observations show that most precipitating drops which
reach the ground have



34 CHAPTER 2

Various empirical relations have been advanced to describe the size spectra of
raindrops. One often used is the size distribution proposed by Best (1950a), which
has essentially the same form as (2-9):

where and with in mm and in mm, and
where F is the fraction of water comprised of raindrops with equivalent diameters
smaller than Support for the Best distributions has been given by Shirvaikar
et al. (1981).

Probably the most widely used description for the raindrop spectrum is the
size distribution of Marshall and Palmer (MP) (1948), which is based on the ob-
servations of Laws and Parsons (1943). The Marshall-Palmer (MP) distribution
is

where and The parameter is
obtained by extrapolation and is assumed to be a constant (Figure 2.29). Knowing

and the mean diameter the mass weighted mean diameter the

content may be found from the definition of these quantities and (2-16), to give
with

and
More detailed studies, including those by Blanchard (1953), Okita (1958), Ma-

son and Andrews (1960), Caton (1966), and Blanchard and Spencer (1970), have
demonstrated that the MP distribution is not sufficiently general to describe most
observed raindrop spectra accurately. In particular, Joss et al. (1968), Joss and
Waldvogel (1969), Strantz (1971), Diem and Strantz (1971), Sekhorn and Srivastava

mass mode diameter  the total number of drops N, and the liquid watter
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(1971), Cerzwinski and Pfisterer (1972), and Waldvogel (1974) have pointed out

MP distribution wherein and

On analysis of 46 rain spectra obtained in southern Switzerland with
Joss et al. (1968) and Joss and Waldvogel (1969) found

Also, Waldvogel (1974) discovered that during a particular
rainfall, may suddenly change. Figure 2.30 gives an example of the variation of

and and of the raindrop distribution before, during, and after a sudden change
in (termed by Waldvogel, 1974). The changes of were found to
be related to changes in convective activity, i.e., air mass stability. However,
jumps’ were observed even during rainfalls of the same convective character with a
continuous rainfall rate. For this condition, the must be attributed to
changes in the microphysical processes occurring in the cloud system from which the
rain fell, or in the air during the fall of the drops from cloud to ground. Examples
of such are given in Table 2.1.

that cannot be considered constant, but rather is a function of    . Also, the func-
tional dependence on  varies. Thus, the observations of Sekhorn and Srivastava
(1971) during thunderstorm rains near Cambridge, Massachusetts, led to a modified

Although and varied considerably within each rainfall, and from one rainfall
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to another, at any particular moment, the raindrop-size distributions observed
over southern Switzerland could be approximated in many cases by an exponential
distribution of the MP type. Similarly, exponential type distribution were observed
by Okita (1958), Müller (1966), Sekhorn and Srivastava (1971), Pasqualuci (1982),
Willis (1984), Beard et al. (1986), Hodson (1986), Zawadzki and de Agostino
(1988), Rauber and Beard (1991), and Willis and Hallett, (1991). A plot of vs.

 based on over 300 individual raindrop spectra is given in Figure 2.31. We note
that decreases with increasing rain intensity. This implies that with increasing
rain intensity the raindrop spectra become broader.

Numerous studies (Baker and Hodson, 1985; Ulbrich, 1983, 1985; Willis 1984;
Willis and Tattelman, 1989) have also used the gamma distribution (Equation
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(2-1)) with to fit the observed raindrop spectra:

As another alternative, Feingold and Levin (1986), Mueller and Sims (1966),
Bradley and Stow (1974), and Markowiz (1976) have suggested using the lognormal
distribution (Equation (2-2)) in the variable

Detailed comparisons between the raindrop spectra actually observed and the
distributions given by (2-15) and (2-16) show that in most cases only a partial
fit can be acheived at best. This is demonstrated by Figures 2.32a,b,c showing a
comparison with a gamma and a MP distribution for rains from tropical storms
and hurricanes.

The observed raindrop spectra in Figures 2.30 and 2.32 also show, apart from
a main mode, some secondary modes. Such modes have also been identified by du
Toit (1967), Diem (1968), Diem and Strantz (1971), Strantz (1971), and Cerwin-
ski and Pfisterer (1972), Willis (1984), de Beaville et al. (1988), Takahashi (1978),
Battan (1977), Cataneo and Stout (1968), Steiner and Waldvogel (1987), Zawadzki
and de Agostino (1988), de Beauville et al. (1988). We shall show in Chapter 15
that it is reasonable to attribute the main mode as well as the subpeaks to colli-
sional drop breakup. In fact, inclusion of the collisional drop breakup mechanism
in stochastic drop growth models produces distinct peaks in the theoretically pre-
dicted rain drop distribution which appear at drop sizes similar to those observed.
Unexpectedly, these peaks are not present in all raindrop size distributions. One
explanation for this may be that the breakup-induced peaks become masked due
to turbulent and evaporative effects. Additional factors which complicate an inter-
pretation of observed raindrop distributions are related to instrumental problems.



raindrop spectometers. In fact, recent spectra for do not exhibit
any prominent subpeaks (Waldvogel, pers. comm. 1993). An additional factor
which makes data handling from raindrop spectrometers difficult is the fact that
raindrops arrive at the ground in groups of similar sizes, alternating with groups of
other sizes (Waldvogel, 1993, pers. comm.). Observations also show that rain often
commences with the arrival of the largest drops which somewhat later gives way
to a mix of large and small drops. This raindrop time-sorting of sizes causes the
‘instant’ spectra to be quite different from spectra obtained during longer exposure
times (Joss and Gori, 1978, Gori and Joss, 1980).

In addition to the parameters and the liquid water content of rains
also depends on the rainfall rate. This dependence is usually expressed by a law
of the form Measurements at various locations have shown that A and

that varies with distance from the cloud base, being higher just below the base
than at the ground. They attributed this behavior to the existence of a much
larger number of small drops at cloud base than at the ground, the drop depletion
being caused by collision and coalescence and by evaporation. One might expect
that due to drop breakup lower down in a rain shaft, the number of small drops
may increase again and perhaps even surpass the concentration at the top of the
shaft. However, the observations of Willis and Tattelman (1989) in rain shafts at
3000 and 450 m above ground show that drop growth by coalescence is sufficiently
efficient to remove most of the small drops formed by drop breakup, so that they
do not contribute significantly to the small drop size end of the spectrum.

2.2 Microstructure of Clouds and Precipitation Consisting of
Ice Particles

Since water readily supercools, particularly in small quantities, water clouds as
well as fogs are frequently found in the atmosphere at temperatures below 0°C.
Figure 2.33, based on a large number of aircraft observations over various parts
of the world, shows that supercooled clouds are quite a common occurrence in
the atmosphere, especially if the cloud top temperature is warmer than –10°C.
However, with decreasing temperature, the likelihood of ice increases such that at
–20°C only about 10% of clouds consist entirely of supercooled drops. Neverthe-
less, on some occasions, supercooled clouds have been observed at temperatures as
low as –35° C over Germany (Weickmann, 1949), –36° C over Russia (Borovikov
et al., 1963), and –40.7°C in wave clouds over the Rocky Mts. (Heymsfield and
Miloshevich, 1993). Also, Heymsfield (1977), Heymsfield and Sabin (1989), and
Sassen and Dodd (1988) reported frequent encounters of liquid drops even at the
cirrus cloud level (–38°C). Rauber and Tokay (1991), Rauber and Grant (1986),
and Hobbs and Rangno (1985) found that, quite unexpectedly, a narrow layer of
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Thus, McFarquhar and List (1992) and Waldvogel (1993 pers. comm.), pointed
out that the subpeaks found in raindrops distributions which were observed prior
to 1992 are most likely due to an erroneous processing of data acquired from the

vary between and As is also the case for
fogs and clouds, one finds that in rainschafts the spatial distribution of the liquid
water varies considerably. Thus, Blanchard (1953) and Okita (1958) pointed out
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supercooled water often occurs at the top of both stratiform and convective clouds.
This layer, which is approximately 30 m deep, sustains supercooled water as cold
as –31°C. Rauber and Tokay showed that such layers develop as a result of an
imbalance between the rate at which cloud water is produced by condensation and
the rate at which vapor is depleted through the growth of snow crystals by vapor
diffusion.

The mechanism which causes ice particles to grow by diffusion of water vapor
is called deposition. If ice particles have grown by deposition, they are called ice
crystals or snow crystals. Snow crystals may also grow by collision with supercooled
drops which subsequently freeze. This growth mechanism is called riming. Snow
crystals may also grow by collision with other snow crystals; this mechanism is
referred to as clumping or aggregation. Aggregates of snow crystals are called snow-
flakes. Of course, riming and clumping ice particles may also grow simultaneously
by deposition.

The terminology of ice particles formed as a result of riming is not very precise
and has not been generally accepted. In the initial stages of riming, as long as
the features of the original ice crystal are still well distinguishable, the ice particle
is simply called a lightly or densely rimed snow crystal. When riming of an ice
particle has proceeded to the stage where the features of the primary ice particle
are only faintly or no longer visible, the ice particle is called a graupel particle,
a soft hail particle, or a snow pellet. Such a particle has a white, opaque, and
fluffy appearance due to the presence of a large number of air capillaries in the
ice structure. It usually has a bulk density of less than (List, 1958a,b;
1965). In the later stages of riming, such particles may have a conical, rounded,
or irregular shape. An ice particle is called a small-hail particle or type-b ice pellet
if it has originated as a frozen drop or ice crystal and has grown by riming to
an irregular or roundish, semi-transparent particle (with or without a conical tip)
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of bulk density 0.8 to (List, 1958a,b; 1965). Such a particle may
contain water in its capillary system. Hard, transparent, globular, or irregular ice
particles consisting of frozen drops, or partially melted and subsequently refrozen
snow crystals or snowflakes with bulk densities between the density of ice and

prism planes of type (see Figure 2.35). Crystal planes of the type

are called type-a ice pellets or sleet (List, 1958a,b; 1965). Such particles
may also contain unfrozen water.

Unrimed, single snow crystals usually have maximum dimensions less than 5 mm.
Snowflakes may have maximum dimensions up to several centimeters, but they are
usually less than 2 cm. Rimed snow crystals, graupel particles, and ice pellets
usually have maximum dimensions of less than 5 mm. Ice particles grown by
riming are called hailstones if their maximum dimensions are typically larger than
5 mm.

Since radar echoes indicate the presence of large cloud or precipitation size
particles, and since these usually form once the temperature in a cloud is sufficiently
low, one would expect the probability of a radar echo to be related to temperature.
Indeed, in numerous clouds (Figure 2.34) the probability of an echo is often small
as long as the cloud top temperature is warmer than or only a few degrees below
0°C. The probability then becomes much larger once the cloud top reaches –20°C,
the temperature at which most clouds contain ice particles.

2.2.1 SHAPE, DIMENSIONS, BULK DENSITY AND NUMBER CONCENTRATION

OF SNOW CRYSTALS

Casual observation shows that snow crystals appear in a large variety of shapes
or ‘habits’. More detailed studies, however, reveal that from a crystallographic
point of view, snow crystals have one common basic shape, namely that of a six-
fold symmetric (hexagonal) prism with two basal planes of type (0001) and six



rarely. Crystal faces of the type which would contribute to a pyramidal
shape, also are metastable and rarely appear. This is also the case with faces of
the type The habit of a crystal is determined by the slowest growing faces.
Metastable faces, such as and grow quickly to become the
crystal’s edges and corners, while faces of the type (0001) and grow slowly
and become the bounding faces of the crystal.

Laboratory experiments reveal that the rate of propagation of the basal faces
(growth along c-axis), relative to that of prism faces (growth along the crystallo-
graphic direction of type varies with temperature and supersaturation in a
characteristic manner (Aufm. Kampe et al., 1951; Nakaya, 1954; Mason and Shaw,
1955; Kobayashi, 1957, 1958; Hallett and Mason. 1958). The results of these stud-
ies were consolidated by Kobayashi (1961), by Rottner and Vali (1974) and later
by Kumai (1982). A more detailed experimental study in terms of the ratio of the
height h to the diameter  of the crystals has been carried out by Fukuta (1985)
and Wang (1987). Apart from minor deviations, these most recent measurements
again corroborated the earlier results, which are summarized in Figures 2.36a,b.
At a large vapor density excess or supersaturation with respect to ice the snow
crystal shape changes with decreasing temperature from a plate to a needle, to a
column, to a sector plate, to a dendrite, back to a sector plate, and finally back to
a column. This cyclic plate-column-plate-column change in habit is due to a cyclic
change of the preferential growth direction along the crystallographic directions of
type and [0001], the changes occurring at temperatures near –4°C, –9°C,
and –22° C. While the former two transition temperatures are rather sharply de-
fined, the latter is diffuse, i.e., habit change may take place in a temperature range
of several degrees, centered around –22°C. In contrast, at very low vapor density
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which would contribute to a dodecagonal shape, are metastable and occur very
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excess, the crystal shape changes between a short column and a thick plate near
–9°C and –22°C. Close to or at ice saturation, the ice crystal shape ceases to
vary with temperature but rather assumes the equilibrium shape, which is a thick
hexagonal plate with a height to diameter ratio of 0.8 (see Section 5.7.2).

Thus, we see that although the temperature is the principal factor, humidity
conditions in the environment also control the important growth features of snow
crystals. For example, near –15°C, the snow crystal habit varies with increasing
vapor density excess from a thick plate to a thin plate, to a sector plate, and finally
to a dendrite for which preferential growth is along the crystallographic direction of
type Near –5°C, the ice crystal habit varies with increasing vapor density
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excess from a short solid column, to a hollow column, to a needle with pronounced
growth in the crystallographic direction [0001]. Laboratory observations of the ice
crystal habit at temperatures between –22 and –50°C have revealed no essen-
tially new habit features (Kobayashi, 1965a,b; Kumai, 1982). Long solid columns
(sheaths) appear between –45 and –50°C at low supersaturations, and change into
hollow columns as the supersaturation is raised.

Although the basic shape of ice crystals is hexagonal prismatic, laboratory ob-
servations have revealed a few snow crystals with other shapes. Trigonal prismatic
plates and columns, trigonal dendrites, and rhombic and scalene pentagonal ice
crystals were observed by Yamashita (1969, 1971, 1973) after seeding supercooled
clouds with a very cold body. Aufm Kampe et al. (1951) and Mason (1953) also
observed trigonal plates after seeding supercooled clouds with dry ice. Little is
known of the detailed growth conditions of such rare ice crystal shapes. Ohtake
(1970a,b) suspected that quasi-stable faces such as the pyramidal faces of type

or may develop at rapid cooling rates when the time to complete
a quasi-stable crystal face becomes comparable to the time for the completion of
a stable face. Kobayashi (1965a,b) found that at temperatures between –50 and
–90°C, pyramidal faces develop at the tip of prismatic columns.

So far, we have only considered snow crystals grown in the laboratory. It is es-
sential to ask whether natural snow crystals exhibit the same characteristic changes
in shape. Considerable uncertainties are involved in answering this question, due
to the inherent difficulties of accurately establishing the actual temperature and
humidity conditions of the locations at which the sampled snow crystals grew and
acquired their shape. However, a large number of observations in different parts
of the world have finally made a fairly definite conclusion possible. (Cloud ob-
servations have been made over Germany by Weickmann (1945, 1949, 1957a) and
Grunow (1960); over Canada by Gold and Power (1952,1954); over the U.S.S.R. by
Bashkirova and Pershina (1956, 1964a,b); over Japan by Magono (1960), Nakaya
and Higuchi (1960), Higuchi (1962a,b,c), Lee and Magono (1967), Magono et al.
(1959, 1960, 1962, 1963, 1965, 1966), and Tazawa and Magono (1973); over Aus-
tralia by Ono (1970); over Colorado and the Great Lakes region by Jiusto and
Weickmann (1973), and Weickmann (1972); and over the Pacific northwestern U.S.
by Hobbs et al. (1971a, 1972, 1974a).)

Observations prior to 1966 have been summarized in a diagram (Figure 2.37)
prepared by Magono and Lee (1966). Observations made after 1966, have generally
supported the Magono-Lee diagram. Comparison between Figures 2.36a,b and
Figure 2.37 shows that laboratory experiments are in basic agreement with the
Magono-Lee diagram.

The outstandingly beautiful photographs of snow crystals captured on the ground
by Bentley (Bentley and Humphreys, 1931, 1962), Nakaya (1954), and Magono and
Lee (1966), and of snow crystals captured during flights in cirrus clouds by We-
ickmann (1945), provide a comprehensive atlas of most snow crystal types found
in atmospheric clouds. An attempt to bring order into this multiplicity of crystal
forms has been made by Magono and Lee (1966). Although their classification
(Figure 2.38) has not yet been formally accepted on an international basis, it has
been found practical and is very widely used. Photographs of a few major snow
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crystal shapes are given in Plate 2.
A simple analytical model for approximating the major planar snow crystal

shapes has been formulated by Wang and Denzer (1983) and Wang (1987). For the
procedure to obtain these shapes, the reader is referred to the mentioned literature.

Let us now assume that a snow crystal of one particular habit, formed by growth
at a particular temperature and humidity, is suddenly moved into a new environ-
ment of different temperature and humidity where it continues to grow by vapor
diffusion. Under such conditions, the habit characteristic of the second tempera-
ture and humidity conditions becomes superimposed on the original habit. Thus,
a columnar snow crystal suddenly surrounded by conditions characteristic of plate-
like growth will develop end-plates (Figure 2.38, CPla). A stellar crystal suddenly
surrounded by conditions characteristic of needle growth will develop needles on the
branches, with the needles growing perpendicular to the plane of the crystal (Fig-
ure 2.38, CP3a). Although such snow crystals appear as combinations of different
shapes, from a crystallographic point of view they are still single ice crystals since
the crystallographic orientation of the c- and a-axes is still the same throughout
the crystal.

While some ice particles in clouds originate on water-insoluble aerosol particles
on which water vapor is deposited as ice, others originate as frozen drops. Var-
ious observers (e.g., Koenig, 1963; Braham, 1964) have studied frozen drops in
atmospheric clouds. They are irregular in shape, often with bulges and protrusions
formed during the freezing process. Ice particles formed from single-crystalline
frozen drops are likely to turn into two-layered crystals (Figure 2.39). The condi-
tions for the formation of such crystals were studied by Auer (1971, 1972a), Weick-
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mann (1972), Jiusto and Weickmann (1973), Parungo and Weickmann (1973), and
Hobbs et al. (1974b) who found that ice crystals with frozen drops in their centers
were quite abundant. Auer’s cloud studies indicated that at temperatures from –9
to –10°C, about 19% of the total snow crystal concentration could be attributed
to crystals each with a frozen drop at the center. At –15 to –16°C, this fraction
reached a maximum of 48%, and decreased to about 23% at temperatures between
–1 and –22°C. The diameter of the frozen center-drop was found to range be-
tween 2.5 and Observations of Hobbs et al. (1974b) in clouds over the U.S.
High Plains (see Fig. 2.40) showed that the most probable diameter of cloud drops
ranged between 10 and while the diameter of the frozen drops in the center
of double crystals was larger and ranged between 13 and This difference
reflects the volume dependence of freezing, to be discussed in Chapters 7 and 9,
where it will be shown that large drops are more likely to freeze than small ones.
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Drops which freeze polycrystalline and subsequently continue to grow by vapor
diffusion form spatial crystals (Higuchi and Yoshiida, 1967; Magono and Suzuki,
1967; Lee, 1972; Kikuchi and Ishimoto, 1974). Figure 2.41 illustrates how, in
principle, such a crystal develops. If, for example, such a frozen drop continues to
grow by vapor diffusion near – 15°C dendritic branches will emerge from the frozen
drop at various angles (Figure 2.38, P7b). Since polycrystalline drops are more
likely to occur at lower temperatures, they frequently develop into a combination of
columnar crystals. Note that, due to competition for water vapor, the columns may
have a conical or pyramidal shape (bullet-shape) pointing towards their common
growth center which is the frozen drop (Figure 2.38, C2a). A snow crystal of this
form is called a combination of bullets or a rosette. A single column broken off a
rosette is simply called a bullet (Figure 2.38, Clc, Cld). A rosette may consist of 2
to 9 bullets but most frequently consists of 3 to 4 bullets (Kikuchi, 1968).

Spatial crystals may also develop as a result of supercooled drops colliding with
a snow crystal. At temperatures of only a few degrees below 0°C, a drop colliding
with a snow crystal turns into an ice-single-crystal with a crystallographic orienta-
tion which may be the same or different from the snow crystal it contacts. If the
temperature is sufficiently cold, the colliding drop may turn into a polycrystalline
mass of ice. Further growth of such polycrystalline frozen drops by vapor diffusion
leads to a spatial snow crystal with two or more c-axis orientations (Figure 2.38,
P6a-d, P7a).

Several peculiar snow crystal shapes not classified by Magono and Lee were en-
countered by Kikuchi (1970), Kikuchi and Yanai (1971), and Magono et al. (1971)
at temperatures between –26 and – 30°C during an Antarctic expedition; by Thu-
man and Robinson (1954), Kumai (1965, 1966a, 1969a), and Ohtake (1967, 1968,
1970a,b) at temperatures between –30 and –55°C during ice fog in Alaska; and by
Itoo (1957) during a strong ground inversion at a station in central Mongolia. The
ice crystals observed at the Antarctic station consisted mostly of combinations of
bullets, columns, and side planes which very likely originated as a type of hoarfrost
snow-covered surfaces. In ice fog, Thuman and Robinson observed irregular part-
icles of ‘block-shape’ and polyhedral particles bounded by trapezoidal faces which
were portions of a hexagonal bi-pyramid. Pyramidal planes of type and
higher-order planes were also observed by Itoo in ‘diamond-dust’ snow crystals.

Another group of peculiar crystal shapes which develop at temperatures below
–25°C were discussed by Sato and Kikuchi (1989). These crystals, termed by
the authors Gohei twins, seagull type or V-shaped crystals, and spearhead type
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crystals result from an abnormal growth of their prism faces induced by
orientational faults during the ice nucleation of a supercooled drop.

Several theoretical models have been suggested to explain the origin of poly-
crystalline and peculiar types of snow crystals. Thus, Lee (1972) advanced a basal
misfit theory, Iwai (1971) adopted a penetration twin theory, Kobayashi et al.
(1976) and Furukawa (1982) used a generalized coincidence lattice site theory, and
Kobayashi et al. (1976) proposed a cubic structure model.

In most cases, it is sufficient to characterize the size of a snow crystal by two
dimensions: the crystal diameter (d) and the crystal thickness (h) in the case of
plate-like crystals, and the crystal length (L) and the crystal width (d) for columnar
type crystals. Detailed measurements of snow crystal dimensions have been carried
out in several locations. The length of columnar crystals and the diameter of plate-
like crystals were found to range typically between and 2 mm. The thickness
of plate-like crystals typically ranges from 10 to the width of the warm
temperature columns from 10 to and the width of needles ranges from 10
to about Maximum dimensions reach several milllimeters.

Observations have shown further that the thickness and diameter of plate-like
crystals, and the length and width of columnar crystals, are characteristically re-
lated to each other such that with increasing diameter of plate-like crystals their
thickness increases, and with increasing length of columnar crystals their width
also increases.

The significant fact is that a snow crystal, growing by vapor diffusion, distributes
its mass in a fairly predictable manner which obeys certain dimensional relations. A
comparison shows that, for a particular crystal type, the dimensional relationships
proposed by various authors agree reasonably well, though they were derived from
observations in clouds over different parts of the world. Davis (1974) combined
observations of his own with those of Auer and Veal (1970), Ono (1969, 1970),
Hobbs et al. (1974a), and Kajikawa (1972, 1973) to the best fit relationships given
in Table 2.2a in terms of a set of power laws. Size relationships for additional snow
crystal shapes are given in Table 2.2b.

Most ice crystals have a bulk density less than that of bulk ice. This is due to
small amounts of air in capillary spaces, and to the tendency of snow crystals to
grow in a skeletal fashion. In particular, columnar crystals often develop as hollow
crystals with ‘hour-glass’ air spaces at either end. Heymsfield (1972), on combining
his data with that of Ono (1970), determined relations between the bulk density and
the crystal dimensions (Table 2.3). Somewhat lower bulk densities for columnar
crystals were observed by Iwai (1973) and Jayaweera and Ohtake (1974). They
found that short columns had bulk densities close to that of ice. With increasing
L, however, the density decreased rapidly, reaching for mm. For
needles and sheaths, they found to if L > 1 mm. Table 2.3
also implies that larger dimensions correlate with lower bulk densities.

For computations involving cloud models, it is often necessary to have rela-
tions available between the mass and size of snow crystals. Due to rather large
uncertainties in the values for the bulk density of snow crystals, it is not advan-
tageous to derive such relations based on size and density of the crystals; rather,
one should obtain them from direct observation. Size-mass relationships for a few
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selected rimed and unrimed snow crystals observed during winter storms over the
Sierra Nevada by Mitchell et al. (1990), and for storms over Hokkaido (Japan) by
Kajikawa (1989) are given in Tables 2.4 a,b.

Since the probability for the occurrence of the ice phase in clouds increases with
decreasing temperature, we might expect a monotonic rise in the concentration of
such particles with decreasing temperature. This behavior turns out to hold only in
a minority of cases. More often, a rapid phase change to ice (glaciation) occurs, such
that the ice particle concentration is not a sensitive function of further temperature
lowering. We shall discuss this more fully in Section 9.2.7. At this point, we merely
note the net effect of glaciation. Figure 2.42 summarizes measurements of Hobbs et
al. (1974b) in clouds over the Cascade Mts. (Washington). It is seen that, in many
cases at temperatures between –4 and –25°C, the range of number concentrations
of ice particles varies little with cloud top temperature on the average, and that
the concentrations may reach values as high as Similar observations
were made in clouds over Australia by Mossop (1970), in clouds over Missouri by
Braham (1964) and Koenig (1963), and in clouds over the U.S. High Plains by
Hobbs and Rangno (1985), Hobbs and Rangno (1990), Rangno and Hobbs (1991)
and Hobbs and Atkinson (1976). In some cases, however, the number concentration
of ice particles does depend somewhat on cloud top temperature. Thus, we find
quite unexpectedly from Figure 2.43 that the largest ice crystal concentration does
not appear at the lowest temperature but in the temperature range –12 to –14°C.

Once formed, snow crystals in lower tropospheric snowstorms exhibit a charac-
teristic size distribution which for crystals smaller than 1 mm is highly peaked at
the small size end, the concentration decreasing rapidly toward the large size end
of the spectrum (Figure 2.44). The crystal shapes appearing in these storms are
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typically those for temperatures warmer than –25°C. The variation with height of
the snow crystal concentration in the cloud of Figure 2.44 is given in Figure 2.45).

The snow crystals in cirrus clouds which appear in the upper troposphere at tem-
peratures typically between –25 to –60°C have characteristic shapes. Ice clouds at
these levels typically consist of bullets, bullet rosettes, short hollow columns, thick
plates, and aggregates. Most of the crystals in these clouds form by homogeneous
ice nucleation in supercooled drops (see Section 7.2). Just prior to ice nucleation,
the relative humidity reaches above 90% to decrease rapidly thereafter. Thus, in
cirrus clouds over Wisconsin, Heymsfield et al. (1990) found dewpoints slightly
above those for ice saturation, indicating that the air in the core of these clouds
was ice supersaturated, decreasing rapidly to below ice saturation in the cirrus
tails. Sassen et al. (1989) found near ice saturation in cirrus over Utah, Colorado
and Wisconsin, while Heymsfield (1975a) measured ice subsaturation in cirrus over
Illinois.

The microstructure of cirrus clouds has been studied by Weickmann (1945,
1949), Kikuchi (1968), Rosinski et al. (1970), Heymsfield (1972; 1975a,b,c; 1977;
1986), and Heymsfield and Knollellenberg (1972), Heymsfield and Platt (1984),
Kajikawa and Heymsfield (1989), Heymsfield et al. (1990), Dowling and Radke
(1990), and Stephens et al. (1990). From these studies, it is apparent that the con-
centration of ice particles in cirrus typically ranges between 50 and The
maximum dimension of the crystals typically ranged between 100 and for
thick plates and columns, between 200 and for bullets and bullet rosettes,

to range between 0.05 to and to increase with increasing temperature,
and between 400 and for aggregates. The ice water content was found
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i.e., decreasing altitude in the atmosphere according to the relation:

with T in °C (Stephen et al. 1990, based on data of Heymsfield and Platt, 1984).
According to Heymsfield (1977), the mean length of columnar crystals relates ap-
proximately to the ice water content according to the data fit given by:

Equations (2-17) and (2-18) imply that the size of cirrus cloud crystals increases
with increasing temperature, as can be seen also from Figure 2.46.

In Table 2.5, dimensional and mass relationships for columnar and bullet crystals
at low temperatures are given according to the observation of Heymsfield (1975c).
Heymsfield and Platt (1984) suggested that the size spectra for cirrus crystals larger
than may be parameterized by the relation

where N is the total number concentration, is the maximum dimension of the
crystals, and is again the ice water content of the cirrus cloud. The variation
with height of the ice water content and ice crystal concentration inside a cirrus
cloud is shown in Figure 2.47.

The microstructure of the anvil of cumulonimbus clouds was studied by Bennetts
and Ouldridge (1984), Heymsfield and Knollenberg (1972), Hobbs et al. (1980),
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Heymsfield (1986), Heymsfield and Miller (1988), and Detwiler et al. (1992). Max-
imum ice particle concentrations and ice-water contents reached and

respectively. The ice particles in anvils consisted mostly of columns, bullet
rosettes, and aggregates.

In closing this section we want to touch briefly on the microstructure of one
additional form of ice cloud: the ice fog. Such a fog develops during a pronounced
ground inversion at very low temperatures. Most of the studies on ice fogs were
carried out in Fairbanks, Alaska by Thuman and Robinson (1954), by Ohtake
(1967, 1968, 1970a,b), and by Kumai (1965, 1966a,b, 1969a,b). Strong ground in-
versions and winter temperatures between –30 and –55°C often develop at this lo-
cation. Power plants, automobile exhausts, and exhausts from the heating systems
of dwellings act as sources of moisture and dust particles. Under these conditions,
ice crystals stay small and develop unusual forms. At –39 to –40°C, the crystals
have diameters which range from 2 to with most frequent diameters near

At warmer temperatures (–31 to –33°C) the size distribution broadens
to diameters between 5 and with a mode near 20 to The ice-water
content is low and ranges between (at –40°C) and (at
–30°C). The number concentration of ice crystals is very high, ranging between
100 and Due to this high concentration, the visibility in ice clouds is
severely reduced.

2.2.2 SHAPE, DIMENSIONS, BULK DENSITY, AND NUMBER CONCENTRA-

TION OF SNOWFLAKES, GRAUPEL, AND HAILSTONES

When certain conditions prevail in a cloud, snow crystals collide to form snowflakes
(Plate 3). Air temperature and snow crystal shape play the dominant roles in such
aggregation. Hobbs et al. (1974a,b) who studied cyclonic and orographic cloud
systems over the Cascade Mts. (State of Washington), and Rodgers (1974b) who
studied orographic cloud systems over Elk Mt. (Wyoming), established that the
probability for the occurrence of snowflakes is highest if the air temperature at the
site of their formation is near With decreasing temperature, the probability
of aggregation decreases with a secondary maximum near Both observa-

tals. These relations are expressible in terms of power laws of the form
where A and B are constants for an aggregate of component crystals of given shape,

is the mass of the snowflake, and is its maximum dimension (Table 2.6a,b).
Unfortunately, the above power law relation is supported only by the observations
in clouds over the Cascade Mts. Considering the multitude of possible snow crystal

tions show that the maximum dimensions of snowflakes are largest near In
addition to temperature, the snowflake size is strongly affected by the shape of the
component crystals. Aggregates of columns and needles tend to stay small, while
aggregates of dendritic crystals tend to become large. Although maximum snow-
flake diameters may be as large as 15 mm, most of the snowflakes have diameters
between 2 and 5 mm.

Observations of Locatelli and Hobbs (1974) in the Cascade Mts. further demon-
strated that, just as with single snow crystals, snow crystal aggregates tend to
follow dimensional relationships during their growth by collision with other crys-
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combinations in a crystal aggregate, and the large variety of bulk densities associ-
ated with each crystal type, it is not yet possible to state whether the values for A
and B given by these authors will apply to clouds over other regions as well.

The number of component crystals per snowflake was examined by Hobbs et al.
(1974a,b), and Rodgers (1974a). Although the results of their studies scattered
greatly, they indicate the expected trend that the number of component crystals
increases with increasing snowflake size. This correlation is more pronounced, the
smaller the component crystals (Figure 2.48).

The density of snow flakes was studied by Magono and Nakamura (1965), Matsuo
and Sasyo (1981b) and Sasyo and Matsuo (1980). Typically, the density was found
to range between 0.005 and with the most frequent values ranging
between 0.01 and

A law for the size distribution of snowflakes, which is analogous to the Marshall
and Palmer (1948) raindrop distribution, was proposed by Gunn and Marshall
(1958). From an extensive field study, these authors suggested the relation

relations for the variation of and with
Snowflake size distributions involving the actual size of the flakes were obtained

by Braham (1990), Herzegh and Hobbs (1985), Passarelli (1978a,b), Lo and Pas-

where is the equivalent
diameter of the water drop to which the ice crystal aggregate melts, and is the
rate of precipitation in mm of water per hour (Figure 2.49). Observations by
Sekhorn and Srivastava (1970) confirmed (2-20), although with somewhat different
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sarelli (1982), and Houze et al. (1979). In many cases, the size distribution of
flakes with dimensions larger than 2 mm could be fitted to an exponential law of

of this distribution ranged from to and the pa-
rameter from 1.14 to Often, however, significant deviations from
the exponential distribution occurred. Thus, Herzegh and Hobbs (1985) observed
subexponential distributions to be dominant in regions of weak stratiform clouds
with low liquid water content, while superexponential distributions occurred in
convective regions of clouds.

As snow crystals or snowflakes fall past the 0°C level they begin to melt (see
Section 16.3). Due to the limited rate at which the released latent heat can be
dissipated to the surrounding air, the flakes must fall over several hundred meters
in order to melt, typically at the +5°C level. This ‘melting layer’ is detected
by radar in terms of a ‘bright band’ caused by a sharp increase in reflectivity of
the scattered electromagnetic radiation orginating from the radar (Figure 2.50a).

the Marshall-Palmer type. For snowstorms over Lake Michigan, the parameter
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Data on the bright band have been accumulated over almost five decades since the
initial studies of Ryde (1946), who suggested that the bright band is associated
with the melting layer in the cloud. Subsequent field studies have confirmed the
early explanation (Cunningham, 1947; Hooper and Kippax, 1950; Marshall and
Gunn, 1952; Austin and Bemis, 1950; Mason, 1955; du Toit, 1967; Atlas et al.,
1969; Ohtake, 1969, 1970a,b,c; Heymsfield, 1979; Leary and Houze, 1979; Houze
et al. 1979; Stewart et al. 1984; Yokoyama and Tanaka, 1984; Yokoyama, 1985;
Marwitz, 1987a,b; Willis and Heymsfield, 1989; Klaasen, 1988).

The bright band is the result of several microphysical mechanisms acting in
sequence above, inside, and below the melting level. Between about –5 and 0°C,
snow crystals of different sizes and fall velocities tend to grow rapidly by aggregation
to form snow crystal aggregates (snowflakes) of rather similar fall velocities (1 to

and sizes up to 5 to 10 mm. Of course, this growth, promoted by
the quasi-liquid layer on ice (see Section 5.7.3), is associated with a reduction in
the number concentration of the ice particles. As the flakes pass through the 0°C



MICROSTRUCTURE  OF  ATMOSPHERIC  CLOUDS  AND  PRECIPITATION 63

level, they begin to melt and contain increased amounts of water with increasing
fall distance. This in turn causes the dielectric constant of the particles to increase
and to assume almost the value for water. Increased particle size and water content
enhances the radar reflectivity to a maximum value. Upon completion of melting,
the snowflakes collapse to raindrops of diameters typically between 1 and 2.5 mm,
depending on the diameter of the original flake. The sudden change in shape and
the associated reduction of the aerodynamic drag on the particle causes the fall
speed of the precipitating particles to increase sharply up to 4 to This
acts to decrease the concentration of the radar reflecting particles and hence the
reflected radar signal. A typical variation with height of the radar reflectivity
of a cloud bright band and the associated variation with height of the number
concentration and size of the precipitating particles is given in Figures 2.50b,c,d.

Studies of the size spectrum of precipitating particles falling through a melting
layer were carried out by Lo and Liu (1990), Stewart et al. (1984), Lo and Passarelli
(1982), Passarelli (1978a,b), Houze et al. (1979), Leary and Houze (1979), and
Gordon and Marwitz (1983). For the case of exponential size distributions, they
found that and decrease as the 0°C level is approached (Figure 2.51), due to
a broadening of the size spectra and a decrease in the number concentration. Once
through the 0°C level changes little while a sudden increase in takes place
due to the sudden narrowing of the particle distribution when the snow crystal
aggregates melt to smaller, faster falling drops.

From a comparison of the drop size spectrum just below the melting layer with
the spectrum of the melted snow flakes just above it, Ohtake (1969, 1970a,b,c)
concluded that snowflakes do not break up during their fall through the melting
layer, confirming earlier observations of du Toit (1967). On the other hand, Magono
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and Arai (1954), Gunn and Marshall (1958), Yokoyama and Tanaka (1984), Stewart
et al. (1984) and Yokoyama (1985) found evidence from their radar studies that
melting snowflakes do break up. Recent laboratory studies have finally settled the
problem (see Chapter 16) and show that, under certain conditions, melting snow
flakes do break up.

Rimed ice crystals and graupel are formed in clouds which contain both ice
crystals and supercooled drops. Field studies have shown that in such clouds both
snow crystals and frozen drops may serve as embryos for graupel formation. Thus,
Harimaya (1976) carefully sectioned and disassembled natural graupel particles
under the microscope to find both snow crystals and frozen drops as center particles.
The importance of frozen drops to the formation of graupel has also been stressed by
Pflaum et al. (1978), who experimentally studied the riming growth of frozen drops
and of crystal plates while they were freely suspended in the vertical air stream of
a wind tunnel. Considerable controversy exists in the literature with regard to the
type of ice particle which may serve as an embryo for conically shaped graupel.
Arenberg (1941) suggested that conical graupel originate on planar snow crystals
which, while falling under gravity, primarily rime on their bottom side. Under such
conditions, rime was assumed to build into a downward facing point, thus forming a
conical graupel with its apex down. Holroyd (1964) proposed that conical graupel
are the result of an aggregation of partially rimed needle crystals which continue
to rime after aggregation. Nakaya (1954), List (1958a,b), and Knight and Knight
(1973a), on the other hand, advocate the ideas of Reynolds (1876), who suggested
that conical graupel are the result of planar ice crystals which preferentially rime
on their bottom side, the rime fanning out into the wind rather than growing into
a point. Such behavior causes the development of a conical graupel which falls
with its apex up and has its embryo near the apex. Weickmann (1953, 1964) and
Takeda (1968) suggested that conical graupel can also start on frozen drops. This
suggestion was experimentally verified by the wind tunnel studies of Pflaum et al.
(1978). A systematic overview (Figure 2.52) of the different formation mechanisms
leading to graupel has been given by Harimaya (1976).

In studies of the initial stages of riming in various types of clouds, Ono (1969),
Wilkins and Auer (1970), Hobbs et al. (1971a), Kikuchi (1972a), and Iwai (1973)
found that both columnar ice crystals and ice crystal plates have to grow by diffu-
sion to a certain critical size before they can grow further by riming. An example
for this requirement is given in Figure 2.53 for planar crystals. We notice that with
increased branching of the crystal, the onset of riming increases from about
for a single plate to about diameter for a dendritic crystal. While the onset
of riming for plate-like crystals only depends on the crystal’s diameter, the on-
set for columnar crystals depends on their width as well as their length. Thus,
their critical width has to be near and their critical length between 125
and Verification of these results has been presented by Reinking (1979),
Borys (1983), and Auer (1970). Both Reinking (1979) and Bruntjes et al. (1987)
have pointed out that capped columns and double plate crystals are especially
good rimers. These crystals begin to rime at a diameter of and are heavily
rimed at diameters of 150 to Harimaya (1975) and Kikuchi and Uyeda
(1978) have shown that the onset of riming also depends on a critical drop size
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(Figure 2.54). One notices that drops of diameter less than are unlikely to
be involved in the riming process. The drops most likely to be found on rimed
crystals have diameters between 10 and Drops having diameters larger
than are generally absent. The larger a crystal grows by riming, the wider
is the size spectrum of the attached drops (Wilkins and Auer, 1970). Photographs
of rimed crystals (Wilkins and Auer, 1970; Zikumda and Vali, 1972; Iwai, 1973;
Knight and Knight, 1973a) show that plate-like and dendritic crystals are rimed
most intensely at the crystal edges, with considerably fewer frozen drops attached
to the interior surface portions of the crystal (Plate 4). Drops frozen onto simple
columnar crystals are uniformly distributed over the crystal surface (Plate 5), and
columns with end plates are most intensely rimed on the outer surface of an end
plate, with few or no drops attached to the columnar stem of the crystal.

Observations show that, as in the case of snowflakes, rimed single snow crystals,
rimed snow crystal aggregates, and graupel particles (Plate 6) also follow fairly
definite size-mass relationships during their growth (Table 2.7).

The bulk density of rimed ice particles varies greatly, depending on the denseness
of packing of the cloud drops frozen on the ice crystal. Table 2.8 shows that the
bulk density of graupel particles ranges from about to as high as

In clouds with sufficiently large updrafts, riming may continue until hailstones
are produced. We have already given a description of the various shapes they may
assume; some examples are shown in Plates 7 and 8. A variety of habits and surface
textures have been observed, including: conical shapes (Hallett, 1965; List, 1958b;
Mossop and Kidder, 1961), oblate spheroidal shapes (Carte and Kidder, 1961),
apple shapes (Kidder and Carte, 1964; Spengler and Gokhale, 1972), hailstones
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with spikes and lobes on the surface (Mossop, 1971a; Kidder and Carte, 1964;
Briggs, 1968; Browning and Beimers, 1967; Knight and Knight, 1970a,c; Bailey and
Macklin, 1968a; Browning, 1966), and irregular shapes (Rogers, 1971). Axis ratios
of oblate spheroidal hailstones in storms over Oklahoma, Colorado and Alberta
were measured by Knight (1986), Barge and Isaac (1973), and Matson and Huggins
(1980). They found that the ratio of the short to the long axis varied from 0.95 for
stones with 1 to 5 mm maximum dimension to about 0.6 to 0.7 for stones with 50
to 60 mm maximum dimension. Most stones had an axis ratio of 0.8.

Auer (1972b) and Auer et al. (1970) found that the size distribution of graupel
and hailstones often fits a relation of the form

where is the diameter of the ice particle, A = 561.3 and B = –3.4 (Auer, 1972b)
for storms over the High Plains, and A = 254 and B = –2.8 for storms over
northeastern Colorado. However, most studies showed that the size distribution
for graupel and hailstones are fitted best by an exponential distribution of the
Marshall-Palmer type (Figure 2.55a) (Xu, 1983; Cheng and English, 1983; Cheng et
al., 1985; Balakrishnan and Zrnic 1990; Douglas, 1964; Ziegler et al., 1983; Ulbrich,
1978; Federer and Waldvogel, 1975; Smith et al., 1975, 1976). For hailstorms over
Alberta (Canada), Cheng and English, (1983) found for the size distribution of
hailstones

where A = 115 and B = 3.63, with and Hailfall rates
for storms over Switzerland (Federer and Waldvogel, 1975) ranged from 2.6 to
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could be related to by The size distribution parameters
and varied between

agreeing quite well with the values found by Smith et al. (1976) for hailstorms over
N.E. Colorado.

While hailstones usually have diameters of a few centimeters, observations show
that large hailstones may have a major axis length as large as 6 to 8 cm. Hailstones
of even larger sizes have been observed by Browning (1966), and by Roos (1972),
who described a hailstone which weighed 766 g and had a circumference of 44 cm,
equivalent to a sphere radius of 7 cm.

Hailstones collected at the ground are usually hard ice particles. In early studies
on hail growth, this observation led to the assumption that hailstones always grow
as solid ice particles. However, in more recent experimental studies during which
hailstone growth was simulated in wind tunnels, List (1958a,b; 1959; 1960a,b)

with ice contents ranging between 0.05 to where



72 CHAPTER 2

and Macklin (1961) discovered that hailstones are not always hard particles but,
depending on the regime of growth, may also be ‘soft’ particles which consist of ice-
water mixtures, termed spongy ice by List. Such ice-water mixtures are produced
when the latent heat released during growth is not exchanged efficiently enough
between the hailstone and its environment to allow all the water collected by the
hailstone to freeze. That portion of the collected water which immediately freezes
produces a skeletal framework or mesh of dendritic ice crystals (see Chapter 16), in
which the unfrozen portion of the collected water is retained as in a sponge whose
surface temperature is at 0°C.

A few field studies have verified the spongy growth mode of hailstones in clouds.
Thus, Summers (1968) reported on the collection of soft or slushy hailstone samples
which fell during hailstorms in Alberta, Canada. Gitlin et al. (1968) and Browning
et al. (1968) used calorimetric methods to analyze freshly fallen hailstones at
various geographic locations. They found that water comprising up to 16% of
the total mass was embedded in the ice structure of some hailstones. In a more
definitive study, Knight and Knight (1973b) analyzed natural hailstones by the
quenching technique, and concluded that while some hailstones experience spongy
growth at times, this growth mode is not the rule for all hailstones.

Studies of hailstones by the thin section technique (List, 1961) reveal that usually
a hailstone has one distinct central growth unit or growth embryo (Knight and
Knight, 1970b). Hailstones with two centers of growth exist but are extremely
rare (Rogers, 1971). Considerable controversy exists in the literature concerning
the nature of this central growth unit. List (1958a,b; 1959; 1960a,b), and Knight
and Knight (1976, 1981) found that about 80% of the hailstones which fell in
Switzerland and in Colorado, respectively, had a graupel embryo which, in turn,
may have originated on a snow crystal or on a small frozen drop. Similarly, Mossop
and Kidder (1964) and Carte and Kidder (1966) found that a large percentage of
the hailstones collected during hailstorms in South Africa originated as graupel
particles. In contrast, however, Macklin et al. (1960) found that most hailstones
collected in England had clear growth centers, and they interpreted this to mean
that these hailstones originated as large frozen drops. Both types of growth centers
were found by Knight and Knight (1970b) and by Federer and Waldvogel (1978),
who examined a large number of hailstones which fell in the U.S. and in Switzerland,
respectively. They observed embryos of a few millimeters to 1 cm in diameter.
Some of these were more or less opaque and had conical shapes, while others were
clear or bubbly and had spherical shapes. Thus, present evidence indicates that
hailstones may originate either as graupel or frozen drops depending considerably
on geographic location. After analyzing a large number of hailstones to determine
the effects of regional differences on their embryo structure, Knight (1981) surmised
that for South Africa (Lowveld) 62 to 83% of the embryos were frozen drops. For
other locations, the percentages were the following: for Colorado, 6 to 27%, for
Switzerland 63%, for Oklahoma, 70% and for South Africa (Highveld) 35 to 54%.
An analysis of the size distribution of hailstones and their embryos observed during
a hailfall 4 June 1976 in China is given in Figures 2.55a and 2.55b, respectively.
We note that the hailstone embryos on that day had a most frequent size of 7 mm.

The bulk density of hailstones tends to vary radially from surface to core with
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alternating concentric layers of lower and higher density. The density of such
hailstone shells has been found to vary usually between 0.8 and but
shell densities as low as have also been observed (List, 1958a,b, 1959;
Macklin et al., 1960; Mossop and Kidder, 1961; Prodi, 1970; List et al., 1970a).
The density variations are a reflection of varying amounts of trapped bubbles (Plate
8, left side). Many of these bubbles are quite regularly grouped within concentric
layers, which alternately contain larger and smaller numbers. Hailstone shells with
a large number of bubbles appear quite opaque, while shells with only a few bubbles
appear as clear ice.

The size and number concentration of air bubbles in hailstones have been studied
by List (1958b), Macklin et al. (1970), List et al. (1972), and List and Agnew
(1973). From an examination of planar cuts through the stone centers, List and
his co-workers found that the bubble size distribution was lognormal. The planar
number concentration of bubbles varied across the slice surface by more than two
orders of magnitude, from about 50 to Opaque shells consisted of
numerous smaller bubbles, while clear, transparent shells contained fewer and larger
bubbles. In hailstone layers deposited in the dry growth regime, Carras and Macklin
(1975) found a volume air bubble concentration of to with air bubble

regime, the air bubble concentration was to and the bubbles had
diameters between 20 and

When thin sections of graupel particles and hailstones are studied by means of
polarized light, a second interesting structural feature is revealed: One finds that
the ice of the sections is polycrystalline, with large and small individual crystallites
(single ice crystals) in alternating layers (Plate 8, right side). Most crystallites
tend to assume preferred orientations (List, 1958a,b; 1960a,b). Detailed studies
of the size and orientation of crystallites in natural hailstones have been made by
Aufdermauer et al. (1963), Knight and Knight (1968a,b), List et al. (1970), Levi
et al. (1970a,b), Macklin et al. (1970), and Macklin and Rye (1974). These have
shown that transparent layers relatively free of air bubbles tend to consist of fairly
large crystallites, while opaque layers with relatively high air bubble concentrations
tend to consist of numerous small crystallites. List et al. (1970) determined that
in the slice-plane, crystallites have surface areas which range between and

Macklin et al. (1970) and Rye and Macklin (1975)
found that the crystallite length decreases from 8 to 0.25 mm and the width from
1 to 0.2 mm as the ambient temperature decreases from –5 to –30°C.

Although hailstone crystallites are randomly oriented in some shells, they assume
a preferred orientation in others. Aufdermauer et al. (1963), Knight and Knight
(1968), and Levi et al. (1970a,b) found that in some shells crystallites have their
crystallographic c-axis generally either parallel or at right angles to the hailstone’s
radial growth direction. List et al. (1970a,b) found crystallites with preferred c-
axis orientation parallel to the radial growth direction in the clear shells of the
hailstones, and with rather random orientations in opaque shells. A discussion of
the reasons for the polycrystallinity of hailstones and the preferred orientation of
crystallites under certain growth conditions is given in Chapter 16.

sizes ranging from 2 to in diameter. In layers deposited in the wet growth



CHAPTER 3

THE STRUCTURE OF WATER SUBSTANCE

In the previous chapter‚ we described the observed variety of shapes‚ sizes‚ and
concentrations of the solid and liquid particles which comprise clouds and precip-
itation. The remaining chapters will be devoted to exploring how such particles
come into‚ being and how they grow. Understanding these processes depends‚ to
a large extent‚ on knowledge of the physical properties of water vapor‚ water‚ ice‚
and‚ ultimately‚ on the physical characteristics of the water molecule itself. There-
fore‚ as a prelude to what will follow‚ this chapter will describe briefly some of
the relevant structural features of individual water molecules and their various
combinations in water vapor‚ bulk water‚ and ice.

For a detailed study of subjects covered in this chapter‚ the reader may refer
to the texts of Hobbs (1974)‚ Ben-Naim (1974)‚ Whalley et al. (1973)‚ Horne
(1972)‚ Franks (1972)‚ Fletcher (1970a)‚ Robinson and Stokes (1970)‚ Eisenberg
and Kauzmann (1969)‚ Riehl et al. (1969)‚ Kavanau (1964)‚ and Dorsey (1940).

3.1 Structure of an Isolated Water Molecule

Measurements of the heat capacity (IT cal of water vapor at
constant pressure near room temperature yield a value of approximately 4k per
molecule, where k is, the Boltzmann constant. For meteorological conditions

and 0.46 cal (Smithsonian Meteorological Tables, 1968; Landolt-Börnstein
1988).

Since quantum statistical mechanics shows that the vibrational degrees of free-
dom are frozen-in at these temperatures, we must interpret the heat capacity mea-
surements in terms of a contribution of (1/2)k from each of the three translational
degrees of freedom, and a contribution of (1/2)k from rotation about each of the
three axes for which the molecule has an appreciable moment of inertia. This in-
terpretation implies that the water molecule cannot have its three atoms arranged
in a linear fashion. The same conclusion is reached by investigating the electrical
properties of the water molecule. Since such measurements reveal a large electric
dipole moment of e.s.u. cm (see Hobbs, 1974; Eisenberg and
Kauzmann, 1969), a linear molecule is once again ruled out.

The geometry of the water molecule can be deduced accurately from studies of
the infrared spectrum of water vapor. On the basis of such measurements, Mecke
(1933) concluded that the three atoms are situated at the vertices of a triangle,
the geometry of which is given in Figure 3.1. Recent experiments show that the
equilibrium O—H bond length is 0.95718 Å and that the equilibrium H—O—H
bond angle is 104.523° (see Fletcher, 1970a; Hobbs, 1974).

74

of interest, the specific heat of water vapor varies between 0.44
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The structure of the water molecule is importantly affected by the electron
configuration around the oxygen atom.* In its ground state‚ an oxygen atom
has two electrons in the spherical 1s orbital‚ where they are bound tightly to the
atomic nucleus‚ and two electrons‚ less tightly bound‚ in the spherical 2s orbital. In
addition‚ two electrons can be considered to occupy the orbital‚ one electron
the orbital‚ and one electron the orbital. This electron configuration is
illustrated in Figure 3.2. Since the and orbitals may contain two electrons
each‚ these orbitals are incomplete. The electrons in these orbitals are therefore free
to couple with the electrons in the 1s orbital of the two hydrogen atoms‚ allowing
them to form two O—H bonds.

If these orbitals exactly described the O—H bond of a water molecule‚ one
would expect water to have a bond angle of 90°. Experimentally‚ however‚ one
finds that the bond angle is some 15° larger. One might try to explain this on
the basis of the fact that the O—H in a water molecule is not truly covalent but
is partly ionic; i.e.‚ the electrons are not evenly shared by the oxygen atom and a
hydrogen atom. Since oxygen is more electronegative than hydrogen‚ oxygen exerts
a greater force on the shared electron pair than does the hydrogen. Consequently‚
the electrons spend a greater portion of their time in the outer shell of the oxygen
atom than in the hydrogen shells‚ and so the positive charge of the hydrogen nuclei
is incompletely shielded by the electrons. Electrostatic repulsion between the two
hydrogen atoms must‚ consequently‚ lead to an increase of the bond angle.

*Generally‚ an atom’s ground state electron configuration is described by specifying the number
of electrons in each energy level or ‘shell’‚ characterized by the principal quantum number n

to use the spectroscopic notation in which the numbers            are replaced by the
respective letters s‚ p‚ d‚ f. The number of electrons in a shell is indicated by a superscript;
e.g.‚ means there are 6 electrons in the shell characterized by n =2‚ Each electron
is said to occupy an ‘orbital’ corresponding to given values of n‚ and the quantum number
m describing the z-component of the electron’s angular momentum. By the Pauli exclusion
principle‚ there is room in each orbital for two electrons‚ necessarily with opposite spins. It
is the outermost‚ valence electrons in incomplete orbitals which are responsible for covalent
and ionic chemical bonds. For further information‚ see any standard reference on quantum
mechanics‚ e.g.‚ Schiff (1968).

and the angular momentum quantum number    In listing these electrons‚ it is customary
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However‚ Heath and Linnett (1948) showed that this repulsion is insufficient
to account for the experimentally found bond angle. They suggested that a more
significant factor in opening up the bond angle is the mixing or ‘hybridization’
of the 2s orbital of the oxygen atom with its and orbitals‚ resulting in
the formation of four atomic orbitals. Two of these overlap with the
hydrogen orbitals‚ while the two remaining orbitals form two lobes on the side of
the oxygen atom away from the hydrogen atoms (Figure 3.2). These lobes‚ called
lone-pair hybrids‚ are symmetrically located above and below the molecular plane
and form roughly tetrahedral angles with the bond hybrids (exact tetrahedral angle‚
109.467°). It is this tetrahedral character of the water molecule which gives rise to
a tetrahedral coordination of water molecules in water and ice.

Duncan and Pople (1953) and Bader and Jones (1963) have carried out quantum
mechanical (‘molecular orbital theory’) calculations of the electron density distri-
bution around a water molecule. Their results confirm the distribution shown in
Figure 3.2‚ and show that there are four locations in the water molecule with high
electron density: close to the oxygen atom‚ close to each hydrogen atom‚ and at
the location of the lone pair orbitals which appear as an electron density bulge
‘behind’ the oxygen atom.

The charge distribution around a water molecule may also be approximated by
‘electrostatic’ or point charge models. In these models‚ point charges are assigned
whose sign‚ magnitude‚ and location are such that the molecule as a whole is
electrically neutral‚ and the electric dipole moment is equal to that experimentally
measured. Such models have been worked out by Bernal and Fowler (1933)‚ Verwey
(1941)‚ Rowlinson (1951)‚ Bjerrum (1951)‚ Pople (1951)‚ Campbell (1952)‚ and
Cohen et al. (1962). Although such models are convenient‚ in some cases they
generally do not correctly predict the higher electric moments (Kell‚ 1972a).
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3.2 Structure of Water Vapor

Experiments indicate that water molecules in water vapor tend to interact and form
clusters‚ in contrast to ideal gas behavior. Dimers as well as higher-order polymers
are considered to be present in water vapor‚ though in small concentrations only.
Recent experiments involving molecular beam techniques (Lin‚‚ 1973; Searcy and
Fenn‚1974) suggest that in highly supersaturated water vapor‚ clusters of up to 180
water molecules may be present. Clusters of 21 water molecules seemed to exhibit
particularly large stability. It is interesting to note that 21 water molecules can be
arranged in the form of a pentagonal dodecahedron with a molecule at each corner
and a single molecule in the center of the ‘cage’.

However‚ no conclusive evidence of the actual geometric arrangement‚ if any‚
of water molecules in such clusters in vapor is available at present. Studies on
the possible and more likely cluster types have been reviewed by Rao (1972) and
Kell (1972a). Theoretical studies of the formation of water clusters have been
carried out by Kistenmacher et al. (1974a‚b) and Abraham (1974a). Kistenmacher
et al. found two possible stable configurations for the dimers‚ a cyclic form and
an open form which was more stable. For the trimers and tetramers‚ the cyclic
forms seemed to be somewhat more stable than the open structures. For the large
clusters‚ the authors suggested not a single structure‚ but a statistical distribution
of different configurations‚ since many configurations with significantly different
geometry were found to possess nearly the same energy. The potential energy of
interaction‚ U‚ between a pair of water molecules has the general character of being
strongly repulsive at very close separations and weakly attractive at longer range.
One widely used and relatively simple expression for it is due to Stockmayer (1941):

where is the separation of the molecules‚ is the dipole moment of an isolated
water molecule‚ is the collision diameter (the molecular separation at which U = 0
if is an adjustable constant‚ and is a known function of the mutual
orientation of the two molecules.

The first term on the right side of (3-1) is just the dipole-dipole contribution to
the interaction energy‚ and may be attractive or repulsive‚ depending on the dipole
orientations. The second term represents contributions from: (1) the interaction
energy between a permanent dipole of one molecule and the dipole it induces in the
other (dipole-polarization or induction interaction)‚ (2) the net energy arising from
momentary‚ fluctuating dipoles interacting with the corresponding induced dipoles
(polarization-polarization or dispersion interaction). Even though the time average
of these dipole fiuctuations may be zero‚ the energy contribution is proportional to
their mean square‚ which is finite and positive. Both (1) and (2) are usually referred
to as van der Waal’s interaction‚ which by its nature can be seen to bring about an
attractive force between the molecules. The third term in (3-1) represents the short-
range repulsive forces‚ which may be loosely ascribed to the overlap of electronic
orbitals which are incompatible according to the Pauli exclusion principle.

There is little doubt that the Stockmayer potential or similar ones‚ such as Rowl-
inson’s (1949‚ 1951) potential‚ portray with fair accuracy the interaction between
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pairs of water molecules at large separations in dilute water vapor. This is evi-
denced by the fact that values for the second virial coefficient computed via (3-1)
can be made to fit experimental values. On the other hand‚ the same potential
functions yield values for the third virial coefficient of water vapor which disagree
substantially with experiment. Partly‚ this is due to the approximate nature of
(3 -1)‚ and partly because three-body interactions should also be included‚ since
other molecules in the system can significantly modify the interaction of a given
pair. In particular‚ the Stockmayer potential is insufficiently ‘directional’ in char-
acter to account for the geometry of cluster formation in water vapor. A recent‚
more complicated potential function which has proven to be of predictive value in
this respect is described briefly in Section 3.4.

3.3 Structure of Ice

At atmospheric pressures and at temperatures between about –80 and 0°C‚ water
substance crystallizes from its gaseous or its liquid state to form a sixfold-symmetric
or hexagonal solid called At different temperatures and pressures ice assumes
other crystalline modifications which are discussed‚ for example‚ in Fletcher (1970a)
and Hobbs (1974). We shall concern ourselves here only with henceforth
referred to simply as ‘ice’.

X-ray diffraction studies demonstrate that‚ in ice‚ each oxygen atom is sur-
rounded by four nearest-neighbor oxygen atoms at a distance of about

These four atoms form an almost regular tetrahedron. In turn‚ oxygen
tetrahedrons are joined together to form a hexagonal lattice (Figure 3.3). The
hexagonal space group is denoted by or and is characterized by 1
sixfold axis of rotation perpendicular to 1 mirror plane‚ (3 + 3) twofold axes of
rotation perpendicular to (3 + 3) mirror planes‚ and a center of symmetry.

Near 0°C‚ any given oxygen atom in ice also has 12 second nearest-neighbors at
a distance of about 4.52 Å‚ 1 third nearest-neighbor at 4.59 Å‚ 6 fourth nearest-
neighbors at 5.26 Å‚ 3 fifth nearest-neighbors at 5.31 Å‚ 6 sixth nearest-neighbors at
6.36 Å‚ 6 seventh nearest-neighbors at 6.46 Å, 9 eighth nearest-neighbors at 6.69 Å‚
2 ninth nearest-neigbors at 7.36 Å‚ and 18 tenth nearest-neighbors at 7.81 Å.
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Each water molecule in ice is hydrogen bonded to its four nearest-neighbors.
(Generally‚ a hydrogen bond may be defined as a valence linkage joining two elec-
tronegative atoms through a hydrogen atom.) This is brought about through the
formation of two hydrogen bonds by each water molecule‚ each bond
being directed towards a lone electron pair of a neighboring water molecule. This
manner of bonding leads to an open lattice structure‚ as illustrated in Figure 3.3.
Perpendicular to the c-axis‚ the ice lattice consists of open-puckered hexagonal
rings (with oxygen atoms alternately raised and lowered). Along the c-axis are
vacant shafts. Comparison shows that the arrangement of oxygen atoms in ice
is isomorphous with the wurtzite structure of ZnS and the tridymite structure of

Each unit cell of ice‚ a four-sided prism set on a rhombic base‚ contains four water
molecules and is characterized by the lattice constants and (Figure 3.4). X-
ray data for and (Blackman and Lisgarten‚ 1957; Lonsdale‚ 1958; La Placa
and Post‚ 1960; Brill and Tippe‚ 1967; Kumai‚ 1968) are summarized in Figure 3.5
as a function of temperature. These measurements show that and decrease
with decreasing temperature such that for all temperatures. Using
the values for and given in Figure 3.5‚ the volume of a unit cell of ice‚

varies from (0°C) to
(–180°C). Thus‚ the number of water molecules varies from
(0°C) to (–180°C)‚ considering four water molecules per unit cell.

The variation with temperature of ice density can either be determined from
measurements of the temperature variation of the unit cell of ice via the relation

or directly from observations (Ginnings and Corruccini‚ 1947;
La Placa and Post‚ 1960; Lonsdale‚ 1958). These fit the relation
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with T in °C and in for and
for the temperature range 0 to –180°C.

The positions of the hydrogen atoms in ice are subject to the Bernal-Fowler
(BF) rules (Bernal and Fowler‚ 1933). These require that: (1) each water molecule
is oriented such that its two hydrogen atoms are directed approximately towards
two of four oxygen atoms which surround it tetrahedrally‚ (2) there is only one
hydrogen atom on each O—O linkage‚ and (3) each oxygen atom has two nearest-
neighboring hydrogen atoms such that the water molecule as a structural unit is
preserved.

An ice structure which obeys the BF rules is termed ideal. Natural ice‚ how-
ever‚ does not behave ideally. Numerous experiments imply that a natural ice
lattice contains defects which violate the BF rules. The following major atomaric
defects are found in natural ice: stacking faults‚ chemical defects‚ molecular va-
cancies (Schottky defects)‚ interstitial molecules (Frenkel defects)‚ ionized states‚
and orientational defects (Bjerrum defects).

By means of regular oxygen tetrahedrons‚ one may build up a cubic as well
as a hexagonal lattice. If the arrangement is cubic‚ a diamond-type ice lattice is
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formed. Stacking faults occur when layers of cubic ice are intermixed in otherwise
hexagonal ice. Such faults are particularly prone to occur in ice formed from vapor
below about –80°C. Chemical defects result if foreign ions are built into the lattice
during ice growth in an aqueous solution. Salt ions are either built into lattice
voids or at regular lattice positions. Molecular vacancies denote the omission of
water molecules from regular ice lattice positions. Interstitial molecules are water
molecules occupying irregular positions in the ice lattice. Fletcher (1970a) estimates
the energy necessary for the formation of a mole of vacancies to be about 12.2 kcal,
whereas the energy necessary to form interstitial sites is about 14 to
He further estimates that in natural ice at –19°C, the concentration of vacancies
is about

Various authors (see Fletcher, 1970a; Hobbs, 1974) have shown that neither
molecular nor interstitial molecules are capable of, producing changes in the hy-
drogen configuration of ice. (These defects, therefore, cannot explain the electrical
properties of ice.) Rather, such changes are produced by ionic states and orien-
tational defects. Ice, like water, exhibits ionized states in violation
of the third BF rule. Such a state is created by the motion of a proton from
one neutral water molecule to another. According to Jaccard (1971), the con-
centration of ionized states in ice at –10°C is
He estimates the energy necessary for the formation of pairs of such states to be

mole ion pairs with a pair formation
energy of Orientational or Bjerrum defects violate the first and
second BF rules. Bjerrum defects consist either of a bond occupied by two protons
instead of one (doubly occupied bond: O—H----H—O, D-defect), or of a bond
which contains no proton at all (empty bond: O----O, L-defect). According to Jac-
card (1971), these defects occur in concentrations of
requiring an energy for pair formation of about 15.5 kcal

Pauling (1935, 1960) has pointed out that an ordered hydrogen arrangement
in ideal ice would conflict with the experimental fact that ice possesses zero-point
entropy. That is, from the relation S = kln W, wherein the entropy S is related to
the number of distinguishable microstates W, an ordered hydrogen arrangement
along with the restrictions of the BF rules would lead to and, thus,
at T = 0 K. Consequently, Pauling proposed a disordered hydrogen arrangement,
subject to the BF rules.

In Pauling's model, the zero-point entropy of ice may be deduced directly by
counting the allowed microstates. For this purpose, we assume a perfect ice lat-
tice which contains (Avogadro’s number) water molecules. There are then

OH----O bonds, on each of which the proton has two possible positions.

finds 16 such arrangements: one four six four and
one Only 6 out of these 16 arrangements are compatible with the third

about Comparable figures for ionized states in water are

This allows possible arrangements in ice if we assume, with Pauling, that
all arrangements are equally probable, and if we consider the first and second
BF rules. However, many of these arrangements are not consistent with the
third BF rule. To account for this, let us count all the possible arrangements
of the hydrogens in the immediate vicinity of a particular oxygen atom. One
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BF rule. Assuming‚ again with Pauling‚ that all the arrangements are equally
probable‚ the probability of a given oxygen atom having the correct arrangement

Hence‚ from which
More detailed computations (Nagle‚ 1966)

lead to in good agreement with the
experimentally found value of

One may challenge this result on the grounds that defects are present in a real
ice lattice‚ and energy differences exist between the various hydrogen arrangements.
(Gränicher et al.‚ 1957; Gränicher‚ 1958). As the temperature of a real ice lattice is
reduced‚ all molecules lose energy and tend to exist in the arrangement in which the
energy of the system is lowest. Now‚ thermodynamic equilibrium is achieved only
if opportunity is provided for the molecules to have free passage to all permitted
energy states. One may argue that in real ice such free passage is provided by
means of the migration of atomic defects‚ e.g.‚ ionized states and Bjerrum defects
which alter the atomic arrangement during migration. Such a mechanism would
lead to just one spatial arrangement at 0 K and‚ thus‚ to which is contrary
to observation.

Gränicher et al. (1957) and Gränicher (1958) also supplied a way out of this
dilemma. Their experimental studies on the electrical behavior of ice showed that
configurational changes due to the migration of atomic defects become negligible
below a temperature of about 75 K. Below this temperature‚ both the concentration
and diffusion rate of defects‚ which exponentially decrease with decreasing temper-
ature‚ are suficiently small that one may consider the hydrogen configuration to
be ‘frozen-in’. In addition‚ computations by Pitzer and Polissar (1956) showed
that above this freeze-in temperature‚ the energy differences between the various
possible hydrogen arrangements in ice are small compared to the thermal energy
kT. They become comparable to or larger than kT only if T < 60 K. These results
imply that real ice is disordered with respect to the hydrogen arrangement‚ since
the hydrogen arrangement freezes-in in any of the possible configurations at tem-
peratures where the difference between the configurational energies is still smaller
than kT.

Since in the Pauling-Bernal-Fowler model for ice each hydrogen atom has two
equally likely positions along a given O—O linkage‚ theirs may be regarded as
a ‘half-hydrogen’ model for ice. This model has been confirmed by the neutron
diffraction studies of Wollan et al. (1949) and Peterson and Levy (1957). The
model reflects explicitly the idea that the structure of ice is independent of the
positions of the hydrogen atoms.

Peterson and Levy also found the H—O—H valence angle to be nearly equal
to the corresponding O—O—O angle. The latter is nearly tetrahedral
and‚ therefore‚ about 5° larger than that of an isolated water molecule. This result
was questioned by Chidambaram (1961)‚ who argued that since the O—H----O
bond is more easily bent than the H—O—H valence angle‚ the latter angle should
not increase during solidification. On the other hand‚ he showed that the data of
Peterson and Levy are consistent with an ice structure in which the water mole-

around it is 6/16. Assuming further that all oxygen atoms in ice are in-
dependent‚ the total number of possible configurations is reduced by a factor of
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cules keep the valence angle which they have in the vapor state, but in which the
O—H----O bonds are slightly bent. In this structure, each H is about 0.04 Å off the
O----Oaxis. This means that the O—H----O bonds are bent by an average of 6.8°.
In support of his model, Chidambaram cited the small change of frequency for the
H—O—H bending mode when water vapor changes to ice, and the H—O—H an-
gle of water molecules in hydrated crystals, which deviates very little from 104.5°.
Chidambaram’s views are supported by nuclear magnetic resonance studies (see
Hobbs, 1974).

According to Eisenberg and Kauzmann (1969), three points of view may be
taken to define the molar hydrogen bond energy in ice. First, one may

at 0 K (Eisenberg and Kauzmann,
1969, based on values given by Whalley et al., 1973). More appropriately, one
may define in terms of the molar sublimation enthalpy of ice. Accord-
ing to Eisenberg and Kauzmann (1969) (0 K), and

(0°C) according to the experiments of Rossini et al.
(1952). With this definition we find and

In both of these definitions, we ascribe
the entire intermolecular energy in ice to hydrogen bonding. We therefore include
in the effects of dispersion and short-range repulsive forces which are present
not only in ice but also in crystals of non-hydrogen bonded substances. There-
fore, a third definition of is based on the premise that the contribution to

from hydrogen bonds is distinct from that of other forces and one may set
where represents the intermolecular energy asso-

ciated with the other forces. This definition suffers from the fact that is not
an observed quantity, and cannot presently be accurately calculated.

An accurate theoretical calculation of a single hydrogen bond in ice should in-
clude at least the effects of nearest-neighbors. To date, most investigators have
avoided detailed computations for these effects. Generally, the approach taken has
been to assume the total hydrogen bond energy as given by the sum of the four
component energies (dipole-dipole, dipole-polarization, polarization-polarization,
and short-range interactions), and to evaluate each of these by approximate meth-
ods for two neighboring water molecules at the relative positions found in ice. For
this purpose, various models for the charge distributions in a water molecule have
been assumed. For some component energies, rough estimates for the effect of
neighboring molecules have also been made. The results of the most pertinent
calculations on this subject have been summarized by Hobbs (1974) and Eisen-
berg and Kauzmann (1969). Other theoretical calculations have been carried out
by Rahman and Stillinger (1971), Stillinger and Rahman (1978), Morse and Rice
(1982) and Deutsch et al. (1983a,b). The values computed for range from 4
to

In another study, Morgensen and Eldrup (1978), Eldrup (1976) and Eldrup et

assume that is given by the lattice energy of one mole of ice (the dif-
ference in energy between one mole of isolated water molecules and one mole of
ice, both at 0 K and with motionless atoms), divided by the number of hydro-
gen bonds in a mole. Since both hydrogen atoms of a water molecule participate
in one H-bond (excluding the molecules at the surface of ice), one may estimate
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al. (1978) were able to determine the hydrogen bond energy in ice experimen-
tally. Using a positron annihilation method, they found for the activation enthalpy

to form a vacancy (v) in ice,
Since this energy involves breaking two hydrogen bonds, it follows that the en-
ergy of a hydrogen bond is given by Thus,

Considering only the bond con-
tribution to the nearest-neighbors of a given molecule in ice, we may express

(Nemethy and Sheraga, 1962a,b) where is the number of
nearest-neighbors and is the bond energy due to forces other than the hydrogen
bond. For we find  For the sublimation
enthalpy of ice, we have then the relationship

Although the value of obtained by Eldrup et al. (1978) is considerably lower
than the values previously published in the literature‚ we shall show later in this
chapter that this value is consistent with the enthalpy of melting for ice.

Lattice vacancies in ice allow water molecules to diffuse through the ice lat-
tice. Ramseier (1967) experimentally studied the self-diffusion mechanism of
through ice. He found for the diffusivity

with and with the activation enthalpy for self-diffusion
given by Two energies contribute to
the activation enthalpy to create a lattice vacancy, and the activation
enthalpy required for a lattice vacancy to migrate, Together with the
experimentally determined values for and Morgensen and Eldrup
(1978), Eldrup et al. (1978), and Eldrup (1976) deduced the value

The experimentally observed value for in Equation (3-4) may now be used to
justify indirectly the value obtained for and for For this purpose,
we follow Shewmon (1963) and Ramseier (1967) and write for the diffusivity of a
water molecule in ice

where is its mean square displacement in time (see Section 11.1). In terms
of the total number of diffusional ‘jumps’ which the molecule carries out and the
jump length approximated by the nearest-neighbor distance
we may express as

where the correlation factor with is a correction for the
random walk of the molecule in a direction which is dependent on the direction of
the previous jump. Now the number of jumps per second, depends on
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the number of jump directions‚ the frequency with which a molecule jumps
into an adjacent vacancy‚ and the number of vacancies as compared to the total
number of molecules N:

Considering (3-5) to (3-7)‚ we then obtain for the diffusivity in ice

Now the relative number of vacancies depends exponentially on the enthalpy
and entropy of vacancy creation according to

On the other hand‚ the jump frequency depends on the enthalpy and entropy of
vacancy migration according to

where is the frequency of oscillation of a water molecule in
the ice lattice (Hobbs‚ 1974; Zajac‚ 1958; Compaan and Haver‚ 1956). Comparing
(3-4) with (3-8) to (3-10) we find

Inserting (3-11a) into (3-4) we see that the diffusion of water molecules through
ice‚ being a constant pressure-constant temperature process‚ depends exponentially
on the molar activation energy with

and Thus‚

According to Zehner (1952)‚ is applicable to the for-
mation and migration process. Inserting now the values for
and into (3-11) we obtain in excellent agreement with the
experimental value of given the approximations made in deriving
(3-11).

In passing‚ it may be illustrative to determine how many vacancies are involved
in the diffusion of water molecules through ice. On evaluating (3-9) for this purpose‚
we find for 0°C: and for –40°C
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Thus‚ since for ice it follows that the concentration
of vacancies is (0°C) and (–40°C).

We have already noted above that water molecules in ice may carry out oscilla-
tions with an average period In addition‚ as we have just
seen‚ water molecules also undergo translational displacements with a frequency‚
obtained from (3-7) and (3-10)‚ of (0°C) and (–40°C)
and‚ thus‚ displacement periods of about sec (0°C) and sec
(–40°C)‚ in good agreement with the observed dielectric relaxation time for ice of

sec (–5 to –30°C) (Hobbs‚ 1974). In addition to vibration and
translation‚ water molecules in ice also undergo reorientation. According to Eisen-
berg and Kauzmann (1969)‚ a water molecule in ice waits about sec for
an orientational defect to arrive at its lattice site but then re-orients very rapidly
in about seconds.

In closing this section‚ we want to touch briefly on the specific heat of ice‚
which is a manifestation of the intermolecular vibrations of water molecules as
hindered translation and hindered rotation (Eisenberg and Kauzmann‚ 1969). The
measurements of Giauque and Stout (1936) and of Flubacher et al. (1960) show
that one may express the specific heat of ice between 0°C and – 40°C by the relation

with T in °C and in IT

3.4 Structure of Water and Aqueous Solutions

3.4.1 STRUCTURE OF WATER

As ice melts‚ the bulk density of water substance abruptly increases by about
9.1%. Contrary to what might be expected‚ X-ray measurements show that during
melting the intermolecular distance between first nearest-neighbors in water does
not decrease‚ but rather increases over that found in ice by about 3% at 0°C.
Consequently‚ the density increase must be attributed to a ‘filling-in’ of space by
water molecules which leave regular lattice positions to move into what were cavities
in the ice lattice. The X-ray findings are in accordance with this view‚ and show
that the number of first nearest-neighbors in water increases from 4.0 in ice to
4.4 at 1.5°C‚ reaching 4.9 at 83°C. But despite this ‘filling-in‚’ water has a very
open structure and a density lower than that of an ideal liquid with a close-packed
arrangement of molecules. This can be readily seen if we consider that the observed
density of water is and that therefore in water the average volume
of a water molecule‚ On the other hand‚ if we
were to regard a water molecule as a rigid sphere of radius equal to 1/2‚ the closest
approach distance of two nearest-neighbor water molecules‚ which is
the volume of a water molecule would be which is 2.7 times less than
that observed. If these spherical molecules were arranged in water in a hexagonal
close-packed arrangement (in which case a fraction 0.74 of space is filled with mass)‚
the density of water would have a value of or twice
the value observed.

is
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Experiments show that the density of water exhibits a maximum at about +4°C.
Above this temperature‚ decreases with increasing temperature due to an in-
crease in amplitude of the molecular vibrations which causes a general expansion
of the water volume. Below this temperature‚ is found to decrease with de-
creasing temperture due to an increasingly ice-like structural arrangement of the
water molecules.

According to Kell (1972b)‚ at atm‚ the best experimental values for the
density of water can be fitted to

with in with
B =

and T in °C. Equation (3-13) is applicable to the temperature
interval

For temperatures below 0°C‚ values for are available from Dorsch and Boyd
(1951) to –10°C‚ and from Hare and Sörensen (1987) down to –33°C. According
to Hare and Sörensen (1987)

with in and T in °C‚ with

and This expression applies in the temperature range 0 to
–33°C.

An extrapolation of to lower temperature (Figure 3.6) suggests a dramatic
decrease of with decreasing temperature below – 30°C‚ plunging rapidly to the
density of ice as –45°C is approached. Of course‚ such a low temperature could
only be reached if ice nucleation would not intervene. We shall show in Chapter 7
that in fact such low temperatures can be reached if experiments are carried out
with sufficiently small droplets of pure water. Angell (1982) suggested that the
dramatic plunge of at low temperature is due to an increased short-range order
in water.

In ascribing ‘structure’ to a fluid such as water‚ the time periods and
mentioned near the end of the previous section become especially relevant. In fact‚
we must consider three different time scales: times times intermediate to

and and times Assuming we were equipped with a camera which
had shutter speeds less than we could obtain a relatively sharp picture of the
actual position of a water molecule at any given instant. This would reveal the
instantaneous water structure called the I-Structure (Eisenberg and Kauzmann‚
1969). If the shutter speed were between and each molecule would complete
many oscillations while the shutter was open‚ and the resulting somewhat blurred
picture would provide information on the vibrationally averaged position of the wa-
ter molecules in water‚ i.e.‚ the V-Structure (Eisenberg and Kauzmann) of water.
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If the shutter speed were larger than the diffusionally averaged arrangement of
the water molecules or D-Structure (Eisenberg and Kauzmann)‚ could be found.
No experimental techniques are available at present to obtain information on the
I-Structure of a liquid. Experimental studies which employ infrared or Raman spec-
troscopy‚ or neutron scattering techniques‚ lead to information on the V-Structure‚
while X-ray studies determine the D-Structure.

Spectroscopic studies show that the frequency of oscillation for water molecules
is slightly smaller in water than in ice‚ the period of vibration being sec.
Studies on self-diffusion‚ viscosity‚ dielectric relaxation‚ and nuclear magnetic reso-
nance relaxation show that a water molecule in water has a characteristic displace-
ment period near 0°C of sec.

From X-ray data (Narten et al.‚ 1967; Narten and Levy‚ 1969‚ 1970‚ 1971‚ 1972)
one may derive the average number of molecules in a volume element of water
which is located at a distance from any given water molecule. Usually‚ however‚ one
does not plot but rather where represents the bulk density
of water expressed as the number of molecules per unit volume of water. Thus‚

is the factor by which the average local density of water molecules differs
at from the density of water molecules in bulk water‚ and so at large distances
from a given water molecule‚ On the other hand‚ in the vicinity of the
given molecule‚ the local density may differ considerably from bulk density. An
example of the radial distribution function for water of various temperatures
is given in Figure 3.7. The first maximum near 2.9 Å must be attributed to the
interactions between the oxygen atoms of nearest-neighbor water molecules. The
broad maxima near 4.5 and 7 Å result from interactions between the oxygen atoms
of second nearest and higher-order nearest-neighbor water molecules.
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Figure 3.7 also shows that with decreasing temperature‚ the maxima become
increasingly distinct‚ which implies that the number of water molecules participat-
ing in interactions at the distances of the intensity peaks increases. Thus‚ we see
that with decreasing temperature‚ water becomes structurally more ordered. This
trend continues‚ at temperatures below 0°C‚ with the scattering intensity peaks
continuing to become increasingly pronounced and shifting toward the X-ray in-
tensity maxima observed for ice (Dorsch and Boyd‚ 1951). We may conclude that‚
although the long-range order breaks down when ice melts‚ considerable local or-
dering persists in water. This implies that not all the hydrogen bonds which exist
in ice become broken when ice melts. At any moment‚ a certain number of H-bonds
are intact even though the location of the intact bonds in water rapidly fluctuates‚
since H-bonds break and reform in continuous succession. (It is interesting to note
the correlation between the maxima shown in Figure 3.7 and the nearest-neighbor
distances in ice; see Section 3.3.)

Information on the state of hydrogen bonds in water can also be obtained from
infrared and Raman spectra (Walrafen‚ 1966; 1967; 1968a‚b; 1972). Such spectra
confirm that water molecules exist as entities in water. They also give evidence
that some O—H groups in are hydrogen bonded and‚ therefore‚ point toward
a free‚ lone electron pair of a neighboring molecule‚ while other O—H groups
are non-directionally bonded to the surrounding water molecules and‚ hence‚ are
disoriented with respect to neighboring lone electron pairs (Kell‚ 1972a; Eisenberg
and Kauzmann‚ 1969). The latter are referred to as non-hydrogen bonded or
‘broken’ O—H groups. Estimates of the percentage of broken H-bonds in water as
a function of temperature are summarized in Figure 3.8.

As expected‚ the number of broken bonds decreases with decreasing temperature‚
reaching about 12% at 0°C. An extrapolation to lower temperatures suggests that
about 7% of the bonds are still broken at –20°C‚ while the percentage finally
approaches zero near –45°C. Of course‚ these percentages are somewhat deceiving
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in that even at –40°C a concentration of only 1.5% broken bonds means that of
the total number of bonds‚ (–40°C)(where
N is the total number of molecules)‚ as many as bonds are still
broken‚ although this translates into a percentage of only 1.5%.

These experimental findings are supported by recent studies which attempted to
simulate the molecular struture of water by purely theoretical methods (Rahman
and Stillinger‚ 1971; Stillinger and Rahman‚ 1972; Popkie et al.‚ 1973; Kisten-
macher et al.‚ 1974a‚b). Stillinger and Rahman applied conventional molecular
dynamics to a system of 216 water molecules which interacted via a potential func-
tion developed by Ben-Naim and Stillinger (1972) and Ben-Naim (1972). This pair
potential function is considerably more complicated than the Stockmayer poten-
tial (3-1). It is based on Bjerrum’s four-point charge model for a water molecule
and incorporates the linear bonding tendency between neighbors in a tetrahedral
pattern such as that found throughout the ice lattice‚ or locally around a given
water molecule in water. It has been argued by Stillinger (1970) and Stillinger and
Rahman (1972) that this potential function also incorporates the principal features
of non-additivity; i.e.‚ it takes into account the many-body aspect of the problem.

Another pair potential function has been developed by Clementi et al. (1973)‚
Popkie et al. (1973)‚ and Kistenmacher et al. (1974a‚b) (see also Abraham‚ 1974a‚
and Fromm et al.‚ 1975). This function is based on an analytically fitted Hartree-
Fock potential (Kern and Karplus‚ 1972)‚ the Bernal and Fowler (1933) point
charge model‚ and correlation energy corrections due to induced dipole interaction
and short-range effects. It was used in conjunction with the Monte-Carlo simula-
tion method of Barker and Watts (1969) to study a group of 125 water molecules.
The computations of Clementi‚ Popkie‚ and Kistenmacher‚ as well as those of Still-
inger and Rahman‚ yielded radial distribution functions for water molecules in
water which are in fair agreement with X-ray results. In addition‚ the molecu-
lar dynamics study of Stillinger and Rahman (1972) predicted that the hydrogen
bond rupture mechanism in water is characterized by an excitation energy of about
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This is in good agreement with the Raman and infrared
spectra of Walrafen (1966, 1967, 1968 a,b, 1972), Luck (1962, 1963, 1965), Worley
and Klotz (1966), Davis and Litovitz (1965), Senior and Varrall (1969), and Buijs
and Choppin (1963), who obtained 2.4 to for the energy

between 2.6 to or 5.2 to at temperatures
between –20 and –30°C. Finally, Bucaro and Litovitz (1971) inferred from depo-
larized light scattering measurenments a value of to
break a hydrogen bond in water.

Considerable uncertainties still exist as to how X-ray, infrared, and Raman stud-
ies should be interpreted in terms of the arrangement of the water molecules in wa-
ter. Most modern theories of water assume that water has a ‘structure’ which can
be described in terms of highly hydrogen-bonded, three-dimensional configurations
of molecules. We shall now briefly describe just the main features of some of the
more prominent models put forward for the water structure.

In the ‘quasi-crystalline model’, the water structure is assumed to resemble one
of several possible forms: a broken down structure (Bernal and Fowler, 1933;
Katzoff, 1934; Morgan and Warren, 1938), a quartz structure (Bernal and Fowler,
1933), a structure of octahedrally arranged molecules (Van Eck et al., 1958), or a
structural mixture of molecules arranged in a tridymite structure dispersed in a
denser ice-III structure (Jhon et al., 1966). In the ‘interstitial model’, the water
is visualized as consisting of a highly hydrogen bonded structure inside of which
non-bonded or partially bonded molecules occupy interstitial structure positions
(Samoilov, 1946, 1957; Forslind, 1952; Namiot, 1961; Danford and Levy, 1962;
Krestov, 1964; Gurikov, 1960, 1965). In the ‘clathrate† model’, water is assumed
to have a structure similar to the clathrate structure of gas hydrates except that,
instead of a gas molecule, a water molecule is held inside each cavity of a cage-like,
hydrogen bonded framework of pentagonal dodecahedron cages (Pauling, 1959,
1960; Frank and Quist, 1961). The ‘flickering cluster model’ makes use of the par-
tially covalent character of the hydrogen bond and assumes that H-bond formation
in water is a cooperative phenomenon, in that the formation of a hydrogen bond
between two water molecules reinforces the tetrahedral hybridization in the oxygen
atoms. This in turn strengthens all existing bonds and promotes the formation of
new bonds. Conversely, the breaking of an H-bond in water results in the almost
simultaneous rupture of a whole group of bonds, thus leading to the formation
and dissolution of water clusters in a ‘flickering’ manner (Frank and Wen, 1957 ;
Frank, 1958a,b). The ‘mixture model’ pictures water as a mixture of 0-, 1-, 2-, 3-,
and 4-bonded water molecules engaging in the formation of various sized clusters
(Haggis et al., 1952; Nemethy and Scheraga, 1962a,b, 1964; Walrafen, 1966, 1967,
1968a,b, 1972). Finally, the ‘bent-bond model’ assumes that few, if any, bonds

†A clathrate is a complex in which molecules of one substance are completely enclosed by
molecules of another substance.

to rupture a hydrogen bond, or 4.8 to since there are 2 H-bonds
per molecule. Bansil et al. (1982), Yeh et al. (1982), Hare and Sörensen (1990),
d’Arrigo et al. (1981), and Scherer et al. (1974) obtained Raman spectra for water
supercooled to as low as –30°C. Their values for the energy, required to break a hy-
drogen bond in water, tended to increase with decreasing temperature, and ranged
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between water molecules are broken upon melting of ice‚ but instead become bent
to various degrees (Pople‚ 1951).

Even though all of the models mentioned above were found to have certain
attractive features from the point of view of their capacities to explain some of
the observed physical properties of water‚ most of them suffer from a too highly
idealized and overly rigid arrangement of the water molecules. This becomes par-
ticularly obvious if we compare these models with the results of the molecular
dynamics model of Stillinger and Rahman (1972) mentioned above. Although the
results of their computations support the ‘mixture model’ for water in which water
molecules engage in a varying number of hydrogen bonds which locally tend to be
tetrahedrally oriented‚ some bending away from bond linearity was also found to
occur‚ especially at warmer temperatures. Furthermore‚ no clusters of molecules
arranged in the manner of or in any other ice-like or clathrate structures
were found for temperatures down to –8°C‚ and no obvious separation of water
molecules into ‘lattice’-molecules and ‘interstitial’-molecules was detected. On the
other hand‚ water molecules were frequently found to be arranged in polygons of 4
to 7 sides. Finally‚ a number of molecules exhibited ‘dangling’ O—H bonds which
were not included in H-bond formation and persisted over times longer than the
vibrational period of a water molecule.

The more recent studies of water at temperatures below 0°C of Hare and Sö-
rensen (1990)‚ Bansil et al. (1982) and Yeh et al. (1982)‚ as well as the low
angle X-ray scattering experiments of Bosio et al. (1981)‚ Stanley and Teixeira
(1980)‚ and Rice and Sceats (1981)‚ suggests that the hydrogen bond exhibits a
strongly cooperative nature which results in the formation of a network of clusters
of molecules with intact hydrogen bonds inside the cluster. Each cluster appears to
be bonded to the surrounding clusters by mostly non-hydrogen bond forces. With
decreasing temperature‚ these clusters grow increasingly larger. At the same time‚
the bond-links‚ which are bent at warm temperatures‚ become increasingly linear‚
resulting in an increase in bond energy.

According to Frank and Wen (1957)‚ the cooperative nature of the hydrogen
bond in water must be understood on the basis of a resonance among the following
three bond structures:

This gives formal recognition to the fact that chemical hydrogen bond formation
is an acid-base reaction. Thus, when a bond is formed, molecule (a) becomes more
acidic and molecule (b) more basic than the unbonded molecule. In this way, the
formation of an a—b bond makes molecule (a) capable of reacting with (c), and (b)
capable of reacting with (d). This process of dipole induction is self-propagating
and leads to cluster formation.

The tendency for cluster formation in supercooled water is reflected also in the
temperature variation of the specific heat. At temperatures above 0°C, measure-
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ments of the specific heat of water were made by Osborne et al. (1939). Between
0°C and +35°C their data fit the relation:

with in IT Measurements of below 0°C were made by Angell et
al. (1982) down to –37°C. Their data fit the relation

with in IT and T in °C, and with
A

plot of (3-16) demonstrates a strong rise of with decreasing temperature below
0°C, which is particularly pronounced below –30°C (Figure 3.9), and reflects the
increased structure in water. An analogous rise with decreasing temperature has
been observed for the viscosity of water by Hallett (1963a), White and Twinning
(1913), Stokes and Mills (1965), Mills (1971, 1973) Bingham and Jackson (1918),
Osipov (1977), and Kell (1972), as shown in Figure 3.10. Their data fit the relation:
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with in centipoise‚ T in °C‚ and with
and for T > 0°C; and with

and for temperatures between 0 and
–30°C.

We notice from Figures 3.9 and 3.10 that and increase exponentially with
decreasing temperature‚ seemingly to infinity as the temperature limit of –45°C is
approached‚ provided‚ of course‚ that ice nucleation does not intervene.

The repeatedly occurring limit of –45°C in the thermodynamic properties of wa-
ter led Angell (1982) to speculate that this limit represents a singularity reminiscent
of the exponential behavior observed for systems approaching phase transitions of
higher order. As a reason for this behavior‚ he suggests the presence of a coop-
erative process among the water molecules which dominates the behavior at low
temperature‚ as is‚ for instance‚ also observed for the ferromagnetic-paramagnetic
transition. In analogy‚ he suggests that the anomalies of supercooled water might
be described by an equation of the form

well-known for critical phenomena‚ predicting a rapid increase of the property Y as
T approaches where is the singularity temperature and where and are
parameters chosen to fit the property Y as a function of T. Angell (1982) suggests
that for water (–45 ± 3°C). It is also noteworthy (see Chapter 7
and Pruppacher (1995)) that is within about 2 K of the lowest temperature to
which the smallest observed water drops have been found to supercool.
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Of course‚ as expected‚ the pronounced clustering in water also affects the dif-
fusivity of water molecules in water. The self-diffusion coefficient of water has
been measured down to –31°C by Gillen et al. (1972) and Pruppacher (1972)‚ who
show that decreases progressively as the temperature decreases. Their results
fit the relation

with in T in °C‚ and with
and for temperatures between 0 and 50° C;

and the relation

with in and
and for temperatures between 0°C and – 40°C.

One may easily convince oneself (Wang‚ 1951a‚b; 1952) that viscous flow and self-
diffusion of water is controlled by the same structure-breaking mechanism involving
the formation and diffusion of vancancies. Therefore‚ both phenomena will have
the same energy of activation. In fact‚ one finds (Wang‚ 1952) that

Plotting as a function of temperature using both the self-diffusion and
the viscosity data‚ one obtains curve 1 in Figure 3.11. Note that in contrast to ice
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for which a plot of ln vs 1/T is linear‚ implying one value for in the
range –2 to – 36°C‚ increases rapidly with decreasing temperature. This
trend can be described approximately by the relation

with in T in °C, and
and for temperatures between +40°C and –40°C.

We notice from Figure 3.11 that as the temperature approaches –45°C
approaches the value found experimentally by Ramseier (1967)
for the activation enthalpy for self-diffusion in ice.

In Table 3.1, we have listed what seems to us the most reasonable experimentally
derived values for and In anology to ice, we find for the activation energy
for vacancy formation in water which also is plotted in
Figure 3.11. We notice that as –45°C is approached approaches a
value of which is the value observed by Eldrup et al. (1978) for

Of course, is composed of the activation enthalpy of vacancy
formation as well as the activation enthalpy of vacancy migration The
latter is simply given by the vertical difference of the curves and
(in Figure 3.11), and approaches the value for ice, namely as
–45° C is approached.

To check for consistency between the molecular parameters for water and ice and
the macroscopic characteristics of water and ice, we shall follow a suggestion of Luck
(1967) and Nemethy and Sheraga (1962a,b), and compute the molar enthalpies of
evaporation and melting to compare them with values derived from observed spe-
cific heats given by (3-12), (3-15), and (3-16) (see also Section 4.7). For this purpose
we shall use the following experimentally inferred values:

(0°C), and (–40°C); (0°C)
and 0.015 (–40°C); the number of nearest neighbor molecules
(0°C), and 4.0 (-40°C), according to Morgan and Warren (1938), Narten et al.
(1967), and Danford and Levy (1962); and
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with Assuming we obtain for water
(0°C), and (–40°C).

Based on bond energy considerations, the molar enthalpy of evaporation
may be written (Luck, 1967)

If we insert the above values into (3-23), we find
(0°C), and (–40°C). Considering the uncertainties in the val-
ues used and the approximate nature of (3-23), we find excellent agreement of
the computed values with the measurements of Osborne et al. (1939), who found

(0°C).
The results from (3-23) also agree with values for derived from (4-77)

using observed values for the specific heat extrapolated to temperatures below
–37°C. The values thus determined for the specific enthalpy of evaporation
(IT fit the relations

and

with
and For example, these expressions give an enthalpy of

evaporation of at T = –40°C, and at T = 0°C.
An analogous procedure may be used to compute the enthalpy of melting as-

suming Following Luck (1967), we then find

If we insert the appropriate values in (3-25) we obtain
(0°C), and (–40°C). This is in good agreement with the obser-
vations of Rossini et al. (1952) and Osborne et al. (1939) who found

(0°C), and also with the experiments of Dumas and Broto (1974),
who determined for T = –37.2°C that The
results from (3-25) also agree with values for deduced from (4-77) using
observed values for the specific heat extrapolated to temperatures below –37°C.
The values obtained in this way for the specific enthalpy of melting fit the
relation

with in IT T in °C, and
This expression gives

(0°C), and (–40°C).
The variation of and with temperature is illustrated in Figure 3.12.
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3.4.2 STRUCTURE OF AQUEOUS SOLUTIONS

Experiments show that the structure of water is altered when water-soluble salts‚
in part dissociated into ions‚ are dissolved in water. The aqueous solution resulting
from dissolving a salt in water would be an ideal solution if the dissolved salt
molecules or ions in no way affected the water molecules. In any real aqueous
solution‚ this is not the case. For example‚ some of the salt molecules or ions do
not fit into the water ‘structure’ and‚ therefore‚ distort it‚ causing a size effect.
Second‚ solute ions are prone to interact with the water-dipoles which‚ depending
on the size and electric charge of the ion‚ become grouped around the ion. This
effect is called hydration. Since large ions have weaker local electric fields than
small ions‚ the hydration effect is greater for small ions. In addition‚ hydration
is more pronounced for positive ions than for negative ones‚ since a positive ion
tends to interact with both lone electron pairs‚ which blocks the formation of two
H-bonds. On the other hand‚ a negative ion tends to interact with just one H—O
group of a water molecule‚ which blocks the formation of only one hydrogen bond.

Both the size and hydration effects cause hydrogen bonds in the vicinity of an ion
to be broken. Such structure breaking and lessening of the four-coordination among
the water molecules in water as a result of dissolved salts have been inferred from
X-ray‚ nuclear magnetic resonance‚ and infrared and Raman spectra studies‚ as well
as from studies on the dielectric properties‚ the viscosity‚ thermal conductivity‚ and
heat capacity of aqueous solutions‚ and from studies on the diffusion of water and
ions in aqueous solutions (Kavanau‚ 1964; Robinson and Stokes‚ 1970; Horne‚ 1972;
Franks‚ 1973; Ben-Naim‚ 1974). According to these investigations‚ it is useful to
visualize the arrangement of water molecules around an ion in the form of three
regions: (1) a region close to the ion where the water molecules are immobilized



salt concentration is larger than Since salts affect the specific
heat of water, it is quite reasonable to expect that the latent heats are affected also.
A quantitative assessment of the effect of salts is easily made by noting, that even
at concentrations as large as 5 moles per liter, the enthalpy of mixing of water in
an aqueous solution of NaCl affects the magnitude of the enthalpy of evaporation
by less than 0.2% and the enthalpy of melting by less than 2%. Thus, for most
purposes of atmospheric interest, we may assume that the specific enthalpies of
evaporation and melting for aqueous solution are given by their values for pure
water. Experiments show that dissolved salts also affect the density of water. As
expected from the ability of salt ions to break hydrogen bonds, the density of
aqueous solutions is found to increase with increasing salt concentration and with
increasing molecular weight of the salt. This behavior is illustrated in Figure 3.13
for a few salts typically found in the atmosphere.
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as a result of their electrical interaction with it, (2) a transition region further out
in which the water is less ordered than ordinary water because of the structural
disruption caused by the size and charge of the ion, and (3) the outermost region
consisting of ordinary water.

Since ions generally have a structure-breaking effect on water, it is not surpris-
ing to find from experiments that salts dissolved in water lower its heat capacity.
However, this lowering is small at high dilution and only becomes significant if the



CHAPTER 4

EQUILIBRIUM BETWEEN WATER VAPOR, WATER, AQUEOUS
SOLUTIONS, AND ICE IN BULK

In this chapter, we shall discuss the equilibrium thermodynamics of and between
the bulk phases of water, ice and aqueous solutions. In addition to providing useful
information on the behavior of water substance, this material, with surface effects
included, will also serve as a basis for our later discussion on the phase changes
which lead to cloud particle formation.

For background on the material covered in this chapter, the reader may wish to
refer to texts on chemical thermodynamics and physical chemistry such as Kortüm
(1972), Robinson and Stokes (1970), Prigogine and Defay (1967), Reiss (1965),
Kirkwood and Oppenheim (1961), Lewis and Randall (1961), and Glasstone (1959),
and the review acticles by Harrison (1965a,b) and Goff (1949).

4.1 Useful Thermodynamic Relations

Consider an open, homogeneous (single phase) thermodynamic system which may
exchange heat, pressure work, and mass with the environment. For small reversible
changes, the second law of thermodynamics tells us that the heat added may be
expressed as TdS, where T and S are respectively the temperature and entropy of
the system; the incremental pressure work done on the system is where
and V are the pressure and volume of the system, respectively; and the incremental
mass added is measured by where is the number of moles
of chemical component of the c components comprising the system. According
to the first and second laws of thermodynamics, the incremental change in the
internal energy of the system for reversible processes is

where

is called the chemical potential of component
Note that U and the independent state variables S, V, and are extensive

(proportional to in contrast to the intensive variables T, , and Let us
denote the extensive and intensive variables by and respectively.
Then, for constant we have so that

100
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or

which is called Euler’s equation.
If we subtract (4-1) from the differential of (4-3b), we obtain the Gibbs-Duhem

relation

or

where

is the mole fraction of component and and are mean molar quantities. The
result (4-4a) proves to be especially useful for exploring the relationships between
phases in equilibrium.

The study of some processes is facilitated by introducing other thermodynamic
potentials, in addition to the internal energy. We shall have occasion to use three:
the enthalpy the Helmholtz free energy and the Gibbs
free energy From (4-1), we see that

Also, from (4-3b) and (4-8) we find that  may be regarded as a partial molar
Gibbs free energy, i.e.,

Since dG is a perfect differential, we further conclude from (4-8) and (4-9) that

and
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where and are the partial molar entropy and volume of component respec-
tively.

From (4-6), we see that if and are held constant, then dH mea-
sures the change in heat content in a reversible process. Therefore, the enthalpy is
called the heat content of the system at constant pressure, and we may write

where is the mean molar heat capacity at constant and
Finally, useful relationships for evaluating the chemical potential from the enthalpy
may be easily derived: so that

where we have used (4-10); and

where we have used (4-11).

4.2 General Conditions for Equilibrium

The second law of thermodynamics provides, as a corollary, a quantitative criterion
for thermodynamic equilibrium. Consider an isolated system which is not in equi-
librium. In such a system irreversible processes evolve spontaneously. According
to the second law, the entropy of such a system will increase until eventually it
reaches a state where its entropy is a maximum. In such a state all irreversible
processes will have stopped and only those processes, if any, will continue which are
completely reversible. The system is then in a state of equilibrium. Thus, for such
a system held at constant U, V, and the criterion of equilibrium is

where refers to the virtual variation in entropy with respect to neighboring
states. An alternative expression for a system with constant S, V, and
is

In addition, the equilibrium is stable if unstable if
and conditionally stable or metastable if . Here is the second
virtual variation in entropy with respect to neighboring states.

Unstable equilibrium states cannot be realized in nature since natural systems
are continuously exposed to environmental perturbations which, even though very
small, are always sufficient to prevent the system from remaining in such a state.
On the other hand, metastable states frequently occur in nature. Supercooled
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water in an environment of moist air saturated with water vapor is an example of
such a system: while the supercooled water is in stable equilibrium with the water
vapor surrounding it, it is in unstable equilibrium with respect to ice into which it
would immediately transform if it came into contact with it.

Let us extend these equilibrium conditions to a heterogeneous isolated system
containing chemical components characterized by and By definition, a het-
erogeneous system consists of two or more phases which are separated from each
other by planar surfaces of discontinuity in one or more of the intensive variables.
Let us assume that all phases of a heterogeneous system are originally isolated
and each phase is in internal equilibrium. We may now ask what conditions on the
intensive variables are necessary and sufficient to insure equilibrium in the system
after the restraint of isolation of the phases has been removed. In seeking these
conditions, we shall assume that no chemical reactions occur and that the hetero-
geneous system itself remains isolated. After removing the restraint of isolation of
the phases of the system, each phase constitutes a homogeneous open system
for which the condition of equilibrium is given by (4-15). Also, since extensive
variables are additive, we may write

Then, from (4-1), the condition of equilibrium may be expressed as

where S, V, and      are held constant, according to

For simplicity, let us momentarily consider a system of just two phases which we
denote by and Then, from (4-17) and (4-18), we may express the equilibrium
condition as

The constraints of (4-18) have all been incorporated into this equation so that
and can be chosen independently. Therefore, the equation can be

satisfied only if the coefficients of each of the variations are equal to zero. Since the
same analysis could be applied to any pair of phases in a more complex system,
we conclude that the conditions for thermodynamic equilibrium of a heterogeneous
system in which all interface surfaces are perfectly deformable, heat conducting,
and permeable to all components are
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These three equations express the conditions of thermal, mechanical, and chemical
equilibrium, respectively.

4.3 Phase Rule for Bulk Phases

The discussion of systems in equilibrium is facilitated by what is known as the
Gibbs phase rule. This rule enables us to determine the variance of a system, i.e.,
the number of intensive variables which may be freely specified without causing
the system to depart from equilibrium. To derive the phase rule, let us consider
again the heterogeneous, isolated system of the previous section. As we have seen,
in equilibrium the system is characterized by a common T and and by a number
of mole fractions in the various phases. Let us denote the mole fraction of the

component in the phase by Then, for a system
of phases and components, there will be mole fractions altogether, giving
us a total of intensive variables at equilibrium. However, not all of these
are independent. Thus, for every phase we have the simple mass conservation
constraint that for a total of constraints. In addition, we have
the condition (4-22) on the chemical potentials, which constitute another
constraints for every for a total of constraints. Therefore, at equilibrium
the total variance, or number of thermodynamic degrees of freedom, is

which is the Gibbs phase rule for bulk phases. (As we shall see in Section 5.3, the
phase rule assumes a substantially different form if phases with curved interfaces
are present in a system.)

Let us consider some simple applications of (4-23). For a homogeneous fluid in
equilibrium, we have and so This is consistent with the familiar
circumstance that the equation of state of such a system provides one connection
among three thermodynamic state variables (e.g., T, For a mixture of two
gases, and therefore obviously, this is like the previous
example, except that now we can also freely choose the relative concentration of
the gases. For water in equilibrium with its vapor, and therefore

the system is monovariant, and the vapor pressure is a function only of
temperature. For water in equilibrium with its vapor and ice, and
therefore equilibrium is possible only for a single choice of T and pressure,
which defines the triple point temperature of the system. If this system is now
exposed to the atmosphere, (water substance and air), and therefore

However, if we make the reasonable assumption that the total gas pressure
remains constant, the system can have no further variance if it is to remain in
equilibrium. The system is now said to be at its ice point temperature Thus,
we see that the ice point temperature is a function of pressure. By convention the
concept of the ice point is restricted further by specifying that the pressure on the
system should be exactly one atmosphere (see Section 4.9).
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4.4 Ideal versus Real Behavior of Dry Air, Water Vapor, and
Moist Air

Let us now consider some of the equations of state we will need in order to apply
the equilibrium conditions (4-20) to (4-22). If we assume that water vapor behaves
as an ideal gas of non-interacting molecules, its equation of state may be written
in the following familiar forms:

where e denotes the water vapor pressure, is the molar volume of pure water
vapor, is the universal gas constant, is the Avogadro number, k
is the Boltzmann’s constant, is the number concentration of vapor
molecules, is the vapor density, is the specific gas content for water
vapor, and is the molecular weight of water.

A similar equation of state may be written for dry air if we regard it as a mixture
of ideal gases. Then, in a fixed volume V we have for the partial pressure of
the component, where is the mass of the
component. Applying Dalton’s law, we obtain

where denotes the pressure of dry air, is its molar volume,
its density, and its specific gas constant, with

It is important to assess the extent of deviations from ideality owing to molecular
interactions of the sort we discussed in the previous chapter. This problem has been
considered in detail by Goff (1942, 1949) and Goff and Gratch (1945, 1946), who
found that a virial expansion of the equation of state truncated at the fourth term
could be used to represent the behavior of real air and water vapor. Thus, the real
gas equations of state can be expressed adequately in the following form:

Values for the virial coefficients (A) may be determined experimentally from
accurate measurements of the state variables. Alternatively, they may be computed
theoretically, at least in principle, by using the methods of statistical mechanics
(e.g., Hirschfelder et al., 1954). Of course, in order to do this, one must model the
intermolecular forces. Both routes have encountered great difficulties for the case of
water vapor (e.g., Kennard, 1938; Harrison, 1965a; Kell et al., 1968; Eisenberg and
Kauzmann, 1969; Ben-Naim, 1974). The presently accepted values for

and are tabulated in Goff (1949), Harrison (1965a) and the Smithsonian
Meteorological Tables (SMT).
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It is customary to express the deviation from ideal gas behavior in terms of
what is known as the compressibility factor, values of which may be
computed once the virial coefficients are known. A few selected values for and

are given in Table 4.1. These show that the ideal gas law for both dry air and
water vapor is in error by less than 0.2% throughout the range of meteorological
interest. Fortunately, therefore, the simple expressions (4-24) and (4-25) can be
used with confidence.

In view of these results, it is perhaps almost obvious that moist air can also
be treated as an ideal gas (see Table 4.1). We say almost, because there remains
the possibility that the forces of interaction between water molecules and some
species of air molecules might be much greater than the water-water or air-air
interactions. A partial explanation of why this, in fact, does not occur may be given
by considering the example of the van der Waal’s interaction (see Chapter 3): the
strength of this force depends on the mean square fluctuation of the electric dipole
moment and the molecular polarizability. Neither of these parameters shows an
extremely wide range in nature and so, accordingly, the van der Waal’s interaction
is relatively insensitive to the molecular species involved.

The ideal gas law for moist air may be written in analogy to (4-25) as

where is determined in the same fashion as However, it is customary and
more convenient to write the equation of state in the form used for dry air, with
the moisture correction associated with the temperature. Proceeding in this way,
we have for the pressure and density of moist air, and Then,
from (4-24) and (4-25), we find
with or

where called the virtual temperature of moist air, is given by

Physically, is the temperature which dry air would have to have in order for its
density to match that of the actual air. Since moist air has a lower
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density than dry air at the same temperature, so that always. However,
the extent of the difference is not large: a reasonable upper bound for e is the
saturation value at 30°C, which is only about 4% of standard sea level pressure;
hence

We have now introduced two quantities, the virtual temperature and the
water vapor density or absolute humidity which provide a measure of the water
vapor content of air. There are, in addition, several other such ‘moisture variables’
in common use. Among the most important are the mixing ratio the specific
humidity the relative humidity the mole fraction of water vapor the
saturation ratio and the supersaturation These are defined as follows:

where the subscript sat refers to the maximum possible saturated value. Air for
which (100%) is saturated; if (>100%), it is said to be supersatu-
rated, corresponding to if (<100%), air is said to be subsaturated.
The moisture variables are also connected by various relationships, such as

and

4.5 Chemical Potential of Water Vapor in Humid Air, and of
Water in Aqueous Solutions

We are now in a position to derive the chemical potential of water vapor and,
through the equilibrium conditions, the chemical potential of water in aqueous
solutions. From (4-11) we have, for an ideal gas in a mixture of ideal gases,

so that, upon integration,

where the integration constant depends only on the temperature. For such a
mixture, the partial pressure is so that also

Therefore, if we assume pure water vapor at pressure e is an ideal gas, its chem-
ical potential is
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where is the chemical potential at a standard state of unit pressure. Simi-
larly, the chemical potential of water vapor in humid air at total pressure

is

From (4-44) with , we see that this last result may also be expressed as

which shows that since
In contrast to pure gases whose chemical potentials vary logarithmically with

pressure, the chemical potential of a pure liquid is proportional to pressure, to an
excellent approximation. This is obvious from (4-11), on realizing that liquids are
nearly incompressible. Thus, for water we have

from which the chemical potential is found to be

As we have seen, if a liquid and gas are in equilibrium, the chemical potential of a
given component will be the same in both phases (Equation (4-22)). Consequently,
from (4-42), the chemical potential of component in a liquid solution, which is in
equilibrium with its vapor at partial pressure is

In addition, experiments show that for the so-called ‘ideal’ solutions, for which there
are no interactions between the solvent and solute molecules, the equilibrium vapor
pressure of any component is porportional to its mole fraction in the solution. (This
is known as Raoult’s law, about which more will be said in the following section.)
Assuming Raoult’s law, we then have where is the mole fraction
of component in the solution, and is the partial pressure of component in
equilibrium with the pure liquid phase of at the same temperature. Then, as a
function of , the chemical potential becomes

where is a function of both temperature and total pressure, but is independent
of the composition of the solution.

In clouds, the liquid phase is rarely present in the form of pure water, but rather
is generally a dilute aqueous salt solution. Therefore, (4-50) is especially relevant to
us, and we may use it to write the chemical potential for water in an ideal aqueous
salt solution in the following form:
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where is the mole fraction of water, and being,
respectively, the number of moles of water and salt in the solution. By analogy, one
would expect that the chemical potential of the salt component could be expressed
in the same way, viz.,

In passing, we may note that for the
chemical potential of pure water at There is no analogous simple physical
interpretation for the quantity Experiments show that most dilute so-
lutions of non-electrolytes are in conformity with (4-51) and (4-52). In general,
however, real aqueous solutions depart from such ideal behavior. It is customary
to account for non-ideal solutions through the replacement of the mole fraction
by the activity, where is called the rational activity coefficient. Thus, for
real aqueous salt solutions, we write

The importance of the activity to us is that it provides a direct measure of the
equilibrium water vapor pressure over a real salt solution, or, in other words, the
generalization of Raoult’s law to real solutions. We now turn to a demonstration
of this property.

4.6 Equilibrium Between an Aqueous Salt Solution and
Water Vapor

Consider a system consisting of water vapor in equilibrium with an aqueous salt
solution, both at temperature T and pressure e (here but for brevity we
omit the subscript in the development which follows). From (4-22), we have

On substituting this equilibrium condition into (4-53) for we obtain

According to the phase rule, the present system of two components and two
phases is divariant Let us now fix T and investigate the variation of
with e. Then, from (4-55) and (4-56), we see that equilibrium can be maintained
for variable e only if

Now, on substituting (4-11) and noting that (4-57) becomes
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which, upon integration, yields

where we have again recognized explicitly that and where is an
unknown function of T. We may determine by taking the limit which
corresponds to the case, of pure water; i.e., where is the
saturation vapor pressure over pure water at temperature T. Therefore, (4-59)
becomes

where we have now similarly replaced by the more complete notation
which denotes the equilibrium vapor pressure over an aqueous salt solution at
temperature T.

Equation (4-60) is the desired extension of Raoult’s law. For an ideal solution,
and we recover the original Raoult’s law:

where and
Let us now consider briefly the problem of finding values of for use in (4-

60). In the literature of cloud physics, the most commonly followed practice in
expressing deviations from ideality has been to use the van’t Hoff factor i, originally
introduced by van’t Hoff in his classic studies of osmotic pressure to account, in
some poorly understood manner, for the degree of ionic dissociation in electrolytes.
McDonald (1953a) effectively defined the factor i through the relation

This approach has been followed, for example, in the well-known cloud physics
texts of Fletcher (1962a) and Mason (1971), who use this definition of i in their
descriptions of the behavior of solution drops.

However, as pointed out by Low (1969a), the use of the van’t Hoff factor has
the practical disadvantage that relatively few values for it are available. Also, it
is no coincidence that this approach is out of the mainstream of modern physical
chemistry, which has largely ignored the van’t Hoff factor altogether. Therefore,
following Low (1969a,c), we shall now briefly introduce those parameters which
are regarded by contemporary physical chemists as providing a more fundamental
measure of non-ideality, and for which abundant tabulated data exist.

First of all, we introduce the molality concentration scale, in place of the mole
fraction. The molality is defined as the number of moles of salt dissolved in
1000 g of water, so that
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or

where again, M refers to molecular weight and to mass. It is convenient also to
define the quantity

which, in combination with (4-63), gives

For example, if the aqueous salt solution is present in the form of a drop of radius
and density one finds

Now, whereas before we associated the rational activity coefficient with the
mole fraction , we now associate a quantity called the mean activity coefficient,
and denoted by with the molality Then, in terms of and the water
activity of a solution of one salt in concentration turns out to be expressible in
the form (e.g., Robinson and Stokes, 1970; Lewis and Randall, 1961; Low, 1969a):

where is the total number of ions a salt molecule dissociates into. This is a useful
result, because extensive data for exist.

Another quantity which appears often in the physical chemistry literature is
called the molal or practical osmotic coefficient,       of the salt in solution.  This is
just the expression in parentheses in (4-67):

and therefore also

For aqueous solutions which contain several salts, and this is generally the case for
cloud drops, the practical osmotic coefficient for the mixture is obtained by taking
a weighted average over the molality of each component in the solution (Hänel,
1976; Thudium, 1978):
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This result holds on the assumption that interactions between the salts in solution
may be disregarded.

The parameter was apparently first brought to the attention of cloud physi-
cists by Byers (1965). As for sources of these various measures of non-ideality, we
note that Robinson and Stokes (1970) have tabulated values for and as a
function of for a large number of salts. Values for and i have been computed
and tabulated by Low (1969a,b) for some typical salts present in the atmosphere.
(Incidentally, we should perhaps emphasize that the parameter i in Byers’ descrip-
tion of solution drops is not the van’t Hoff factor but rather is In Table 4.2
we have provided values of and i for a few salts and concentrations. Note
that for a solution to behave ideally, and

Significant departures from ideality are evident in Table 4.2 and in Figure 4.1.
It is seen that the interaction of salt ions with water molecules results in a larger
reduction of vapor pressure than is predicted by the original Raoult’s law (4-61).
Figure 4.2 illustrates this fact. It also shows the fairly strong dependence of vapor
pressure reduction on the type of salt. This behavior may be used as a measure for
the hygroscopic nature of salt. It has been customary to express the hygroscopicity
of salts in terms of the relative humidity at which a dry salt changes (‘deliquesces’)
into a saturated salt solution (see Table 4.3). Of course, this is also the relative
humidity at which the saturated salt solution is in equilibrium with the environ-
mental water vapor. Low (1969a) has proposed an alternative definition in which
hygroscopicity is expressed in terms of the amount of salt required per 100 g of
pure water to achieve a specified degree of vapor pressure lowering, i.e., a specified
activity of water in solution. Low felt this definition to be somewhat more directly
relevant to applications in weather modification experiments, where one generally
wishes to obtain the maximum possible vapor pressure reduction for a given mass
of hygroscopic salt. A comparison between the values given in Table 4.3 and Fig-
ure 4.3 shows that each of the two definitions leads to a different ranking for the
hygroscopic salts.

Note also that, because of the temperature dependence of the saturation ra-
tio through (Equation (4-60)), the relative humidity at which salts deliquesce
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changes noticeably with temperature. For example, experiments by O’Brien (1948),
Lagford (1961), Hedlin and Trofimenkoff (1965), Roussel (1968), and Admirat and
Grenier (1975) show that the relative humidity at which most salts in the at-
mosphere transform into a saturated salt solution increases by 2 to 30% as the
temperature varies from +20 to –20°C. This, in part, reflects the experimental
fact that the solubility of the salts studied decreases with decreasing temperature.

4.7 Latent Heat of Phase Change and its Temperature
Variation

It is well-known that whenever a new phase appears, a certain amount of heat,
the latent heat of phase change, is released or consumed. This latent heat can be
defined in terms of the difference between the heat content (enthalpy) of the two
phases involved in the phase change. Let us assume that inside a closed system
consisting of two phases, a unit mass of water substance is reversibly transferred
from phase say water, of moles to phase say water vapor, of moles,
during which time and T of the system remain constant. The total enthalpy
change must then be
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But since the system is closed, Therefore, denoting the partial molar
enthalpies by we find

which defines the latent heat of phase change per mole in passing from phase to
phase Also, since for a closed system at constant T and we have
we may also write

Let us denote the molar latent heats of evaporation, sublimation, and melting
for pure water substance by and respectively. Then, simple conser-
vation of energy (the first law of thermodynamics) applied to the triple point state
where ice, vapor, and water are in equilibrium tells us that

To find the temperature dependence of the latent heat, we may substitute (4-10)
into (4-73) to obtain

using (4-22). If we now take the total differential of this equation, and apply (4-10)
through (4-12), we find

To a first approximation, we may ignore the second term and obtain Kirchoff’s
equations:

These turn out to be excellent approximations for most purposes. Observed values
for the latent heats of evaporation of sublimation and of melting in
IT cal/g and for the specific heats of water vapor of water and of ice in
IT cal and their variation with temperature, are given in Chapter 3.

4.8 Clausius-Clapeyron Equation

The conditions for equilibrium derived in Section 4.2 find a useful application in
what is known as the Clausius-Clapeyron equation. In order to derive this equation,
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consider a system of one component and two phases, and From the phase
rule, we know there is one degree of freedom, so that, for instance, the pressure is a
function only of temperature for those states corresponding to equilibrium between
the two phases. The Clausius-Clapeyron equation provides an expression for the
slope of this phase boundary curve in the plane. This may be obtained by
noting that for small displacements along the curve, since along
the curve (or, more accurately, on either side of the curve). Then, from (4-4b), we
find

or

using (4-73). This is the Clausius-Clapeyron equation. As one direct application of
its use note that it provides the expression for which is needed to integrate
(4-76).

Considering the bulk phases to be water and water vapor, we thus find the
saturation vapor pressure is determined from the equation

since Analogously, if the bulk phases are ice and water vapor, or ice
and water, we have

and

If we further assume the ideal gas law (Equation (4-24)), we obtain

and

If one includes the approximate temperature dependence given by (4-77), then
(4-83) and (4-84) determine and respectively, to an accuracy quite suf-
ficient for applications in cloud microphysics. In addition, as a practical alternative,
Lowe and Ficke (1974) have provided expressions which they feel are convenient for
typical modern numerical simulations of cloud physical processes. Their expres-
sions are given in Appendix A-4.8, Equation (A.4-1). They are curve fits based on
the Goff (1942, 1949) integrations of the Clausius-Clapeyron equation, wherein the
virial equation of state for water vapor was used. For practical purposes, the reader
may also use the so-called Magnus Equation as given in the Landolt-Börnstein Ta-
bles (1988) (see Appendix A-4.8, Equations (A.4-2) and (A.4-3)). Goff’s accurate
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values are tabulated in the Smithsonian Meteorological Tables. Unfortunately,
these suffer from the 1954 revision of the temperature scale (Stille, 1961). How-
ever, comparison shows that both the SMT values and the values subsequently
revised by Goff (1957, 1965) agree to within 0.035% over the whole temperature
range of meteorological interest (Murray, 1967a, 1970). According to Goff (1965),

and
The former result is in excellent agreement with the experimental value obtained
at the U.S. National Bureau of Standards by Guilder et al. (1975) who determined

(±0.00010 mb, at the 90% confidence level).

The temperature variation of the saturation vapor pressures is shown in Fig-
ure 4.4. Note that for T < 0°C. This is also obvious on comparison
of (4-80) and (4-81), since A closer inspection of Figure 4.4 reveals a
single maximum for the difference which we can calculate by noting
that the slopes of the curves are equal where the difference is a maximum. There-
fore, on setting (4-83) and (4-84) equal for the temperature which yields a
maximum difference, we find

Now, if we integrate the difference between (4-80) and (4-81) from to
273.15 K, holding constant and taking into account that at

we find that
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Combining (4-85) and (4-86), we obtain the following expression for

Solving this equation by iteration gives or about –11.8°C. This
agrees to within 0.1°C with the value found from the Goff expressions for
which again indicates the accuracy of the ideal gas law approximation. Finally, the
variation of is illustrated in Figure 4.5.

Of course, the interesting point to emphasize here is that air saturated with
respect to ice is always subsaturated with respect to water, with the consequence
that supercooled water drops and ice crystals cannot co-exist in equilibrium. As
we mentioned in Chapter 1, this important fact, as first realized by Wegener in
1911, is the basis of the Wegener-Bergeron-Findeisen precipitation mechanism.

It is also worth emphasizing that at sufficiently low temperatures, air may
be ice-supersaturated but water-subsaturated. This is illustrated in Figure 4.6.
Similarly, Figure 4.7 shows the ice-supersaturations which are required for water-
supersaturation to occur also.
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Let us now consider the equilibrium between bulk ice and water which is de-
scribed by (4-82). No simplification can be made in this equation since
Since at all temperatures below 0°C, we find that In
fact, experiments show that at 0°C, which means
that, at any given temperature, ice melts on applying sufficiently high pressures.
The temperature variation of the melting pressure of ice is given in Figure 4.8. As
an example, we note that at  –10°C a very large pressure of 1100 atm. is required
to melt ice. As we mentioned briefly earlier, it is a consequence of this melting
pressure effect that the triple point of water substance is slighty higher than the
ice point. Experiments have shown that by opening a vessel in which ice, water
and water vapor are originally in equilibrium, and exposing it to air of 1 atm., the
equilibrium temperature is reduced by 0.0098±0.0003°C, the pressure effect con-
tributing 0.0075°C, while an additional 0.0023°C is due to the dissolved air. By
international agreement, the total temperature difference between the triple point
and ice point has been set equal to 0.0100°C, and the temperature of the triple
point itself has been set equal to (Stille, 1961). Therefore, the
temperature of the ice point is

In addition to affecting the melting temperature of ice, pressure also affects its
crystal structure. The phenomenon that a single chemical substance may appear
in different crystallographic modifications is called polymorphy. At present, 11
polymorphic forms of ice have been found. Hobbs (1974) and Fletcher (1970a) have
discussed in detail these crystallographic forms and the thermodynamic conditions
for which they are stable and in equilibrium with each other. They are of little
concern to us since they are not stable at typical atmospheric temperatures and
pressures.



by the quantity where The reason for this behavior
(discussed in Chapters 7 and 9) rests in the fact that, during a phase change, the
new phase always appears in the form of a small particle with a highly curved sur-
face. The equilibrium conditions for such highly curved phases are not described
by the Clausius-Clapeyron equation.

Another, similarly incorrect prediction is made by Figure 4.4. If water vapor
is cooled isobarically below the triple point, the sublimation curve is crossed be-
fore the evaporation curve. This means that, upon cooling, those conditions are
reached at which ice is the stable phase before water is; i.e., the phase diagram
for bulk water predicts that ice will appear first at temperatures below the triple
point. Observations, however, show that unless suitable impurities are present, the
metastable phase, i.e., supercooled water, always appears before ice. The reason
for this behavior again lies in the fact that phase change proceeds via the formation
of new phase particles with highly curved surfaces. We shall show in Chapters 7
and 9 that, unless suitable impurities are present in the system, the formation of
water drops is energetically favored at all temperatures over the formation of ice
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Let us consider Figure 4.4 once more and note an interesting observation which
can be made regarding the transformation of one phase into another. Suppose, for
instance, that water vapor is cooled at constant pressure above the triple point.
We see that eventually a temperature is reached at which the vapor is saturated
(curve a). Upon further cooling, the evaporation curve is crossed and conditions
are reached at which water is the stable phase. On cooling still further, the melt-
ing curve is crossed and conditions are reached at which ice is the stable phase.
However, observations show that neither water nor ice appear at the temperatures
predicted by the equilibrium phase diagram for bulk water substance. Unless suit-
able impurities are present in the vapor or on the walls enclosing the system, the
water vapor supersaturates and water supercools. (By definition, the supersatura-
tion of water vapor is described by (4-37), and the supercooling of water is defined



122 CHAPTER 4

crystals directly from the vapor.
Thus far, we have displayed the equilibrium behavior of bulk water substance

in the form of a phase diagram. Further information on the equilibrium
behavior may be obtained from a phase diagram (Figure 4.9). Note that
during isothermal compression, a state (e.g., state A) is reached at which water
vapor is saturated with respect to water. If the walls enclosing the vapor are ideally
rough, further compression results in the condensation of vapor to liquid. Along
the line AB, which remains constant as the specific volume decreases
from that of pure vapor to that of pure liquid water. The small compressibility of
liquid water is revealed by the steep excursion of the isotherm to the left of B.

At the top of the phase boundary curve is the critical point where the distinction
between liquid and gas vanishes. At this extraordinary point, the surface tension or
surface energy of the interface separating the phases becomes zero. Atmospheric
water always lies far below the critical point, which occurs at bars
(1 bar = 106 dynes = 0.9869 atm.) and The concept of
the critical point illuminates the distinction between water vapor and the other,
permanent, atmospheric gases: the latter have critical temperatures far below at-
mospheric temperatures and, thus, never change phase. Note that this is not a
consequence of an insufficiently massive atmosphere, as no amount of pressure can
liquify them as long they remain above the critical temperature.

For completeness, in Figure 4.10 the thermodynamic surface of water in
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space is shown. The projection of this surface on the plane and the
plane yields the phase diagrams shown in Figures 4.4 and 4.9, respectively.

4.9 Equilibrium Between an Aqueous Salt Solution and Ice

Experiments have shown that the equilibrium temperature between ice and an
aqueous salt solution is lower than that between ice and pure water. This is a direct
consequence of the lowering of vapor pressure over a salt solution, as illustrated
in Figure 4.11. In order to derive an expression for this temperature lowering
effect, consider a system open to the atmosphere, and consisting of air and an
aqueous salt solution in equilibrium with ice (assumed to be free of salt) of chemical
potential The condition of chemical equilibrium between the pure ice and water
in aqueous solution, assuming and T to be uniform throughout the system, is
just from (4-22). Therefore, on substitution from (4-53), we
obtain

From the phase rule, (4-23), we have (water, ice, air), (salt, water,
air) and, thus, Let us assume the atmospheric air pressure is fixed at
1 atm., so that Then, the equilibrium temperature becomes a function of
the salt concentration, and we must therefore investigate the variation of with
T. Directly from (4-88), we see that equilibrium can be maintained for variable T
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only if

On substituting (4-13a) and (4-72), this becomes

which, upon integration, yields assuming is independent of T,

The unknown function may be determined by noting that for
thus, the equilibrium freezing temperature may be determined from the relation

Since we have as expected. The extent of the temperature
lowering effect is generally measured by the equilibrium freezing point depression,
defined as

using (4-69). Let us now suppose the solution is very dilute, so that
and Then, ln and (4-93) becomes, using (4-65),



THERMODYNAMIC EQUILIBRIUM 125

where

is the molal equilibrium freezing point depression. For water at 0°C, we find
For non-ideal or more concentrated solutions, (4-95) is

inadequate. For these more realistic cases, depends noticeably on the na-
ture of the dissolved salt, i.e., its degree of dissociation and the capability of its ions
in solution for interacting with each other and the water molecules. The deviation
of the molal equilibrium freezing point depression from ideality is illustrated in
Figure 4.12 which shows experimental values for (In Figure 4.12 the
small difference between the molal and molar units has been neglected.)



CHAPTER 5

SURFACE PROPERTIES OF WATER SUBSTANCE

In clouds, the liquid and solid phases of water are highly dispersed, with a large
surface-to-volume ratio. As might be expected, this necessitates going beyond the
bulk phase descriptions of the previous chapter, even for the most rudimentary
understanding of the formation and growth of cloud particles. Therefore, in this
chapter we shall consider briefly the essential distinctive surface properties of ice
and water, and explore some of their more immediate consequences. Additional
relevant material may be found in Hobbs (1974), Samorjai (1972), Bikerman (1970),
Flood (1967), Reiss (1965), Osipow (1962), Defay et al. (1966), Davies and Rideal
(1961), Adamson (1960), Ono and Kondo (1960), and Landau and Lifschitz (1958).

5.1 Surface Tension

Phases in contact are separated by a thin transitional region, generally only a few
molecules thick; consequently, a useful abstraction is to regard such an interface
as a geometrical surface. This permits a relatively simple and generally adequate
description of surface effects via the usual straightforward machinery of macro-
scopic thermodynamics. Of course, this ceases to be a reasonable procedure when
the bulk phases themselves have a similar microscopic thickness. In this chap-
ter, we shall not consider such difficult circumstances. Such problems do arise,
however, in the theory of homogeneous nucleation (Chapter 7); there we shall see
how macroscopic thermodynamics must be supplanted, at least in part, by a de-
tailed statistical mechanics approach in order that a satisfactory understanding of
nucleation phenomena can be achieved.

The extension of our thermodynamic systems to include surface effects is con-
ceptually simple: in complete analogy to the contribution of pressure-volume
work to the internal energy, we now introduce a contribution where denotes
the area of the surface of separation, and is the surface tension. The quantity

is an intensive thermodynamic variable, and is seen to have the dimensions of
energy per unit area, or force per unit length. The physical basis of this formu-
lation is probably familiar to the reader from the example of a liquid drop: on
average, molecules in the drop interior find themselves in a symmetrical, attractive
force field, while molecules in the surface layer do not, and in fact experience a
net attractive force toward the interior. As a consequence of this inward pull, the
surface is in a state of tension, and it requires work to extend the surface further.
On the molecular level, this work is seen to be that required to bring molecules
from the interior to the surface, against the attractive forces.

The thermodynamic properties of the surface are so distinctive that it is con-
ceptually useful to regard it as a separate phase, having its own entropy,

126
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adsorbed number of moles of chemical component and so forth.
Then, in accordance with the discussion above, the change in internal energy

of the surface phase for reversible processes is (cf. (4-1)):

where the are the surface chemical potentials.

5.2 Equilibrium Conditions

Let us now generalize our discussion in Section 4.2 of the equilibrium between

and Similarly, the total internal energy
is and the generalized equilibrium condition which replaces
(4-15) is

Then, from (4-1), (5-1), and (5-2), the expanded form of the equilibrium condition
is

where, from the constraint of isolation of the system as a whole, we have the
additional conditions

None of these conditions is violated if we conceive a set of infinitesimal variations
forwhich and Let us also suppose the bulk phase is a sphere
of radius so that With these specializations and (5-4), (5-3)
becomes

Since and represent independent and arbitrary variations, each
coefficient must vanish. A similar result would have been obtained had we originally

two bulk phases  and by also taking into account the surface phase
which separates them. Proceeding as before, we imagine that each bulk phase is
originally isolated and in internal equilibrium. After removing the constraint of
isolation, we seek the conditions on the intensive variables which are necessary and
sufficient to insure equilibrium throughout the system, which remains isolated as a
whole. The independent extensive variables for the entire system are V = V' + V",
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chosen Therefore, the condition of thermodynamic equilibrium
leads finally to

Comparison with (4-20) to (4-22) shows that only the condition of mechanical
equilibrium has a new form; this is expressed by (5-7) and is called the Laplace
formula. It may also be obtained by more elementary means, e.g., by equating the
surface tension force along the circumference of a great circle of the sphere with
the pressure difference acting across the great circle area.

The extension of these results to a more general system comprised of phases
and spherically curved interfaces is obvious: for thermodynamic equilibrium to
exist we must have uniform temperatures (thermal equilibrium) and uniform chem-
ical potentials (chemical equilibrium) throughout the entire system. Additionally,
a relation of the form of (5-7) (mechanical equilibrium) must hold for every pair
of bulk phases, the greater pressure occurring on the concave side of the interface
whose radius of curvature replaces in (5-7).

5.3 Phase Rule for Systems with Curved Interfaces

Let us now consider the generalization of the phase rule (Section 4.3) to a system
of bulk phases, components, and curved surface phases. As before, we want
to determine the number of intensive variables which may be altered independently
without causing the system to depart from equilibrium. In this connection, there-
fore, we must consider what to use for the intensive variable corresponding to the
quantity the number of moles of component adsorbed into the interface
An obvious natural choice is the adsorption, defined by

where is the area of the interface
The number of intensive variables required to specify the state of the system

in equilibrium must therefore include: (1) the common temperature T; (2) the
adsorptions in the surface phases; (3) the mole fractions in the bulk
phases (4) the pressures of the bulk phases; and (5) the

mean radii of curvature . This constitutes a total of
intensive variables. Constraints among them include the following: (1) the mole
fractions must sum to unity for each bulk phase, leading to constraints; (2)
the chemical potentials must be equal for all the phases for every leading to

constraints; (3) each interface gives rise to a conditional of mechanical
equilibrium like (5-7), leading to constraints. This gives a total of
constraints, and so we find for the variance of the system,
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An interesting feature of this result is that the variance is independent of the
number of bulk and surface phases.

Note that in the case that one of the components of the system is not present in
one of the phases (e.g., humid air surrounding aqueous NaCl solution), one of the
equations relating the chemical potentials disappears. On the other hand, for the
phase in question, one must write and add the relation
This expresses the fact that component is not present in the phase Thus,
the total number of relations remains the same and (5-10) does not change.

Let us now consider four simple examples which will illustrate the use of (5-10).
First, consider a system of uniform temperature T in which a pure water drop of
radius is surrounded by pure water vapor of pressure From (5-10), w = 2
since Thus, we may choose, for example, to hold T constant and study the
dependence of on Second, consider a system of uniform temperature T in
which a drop of pure water of radius is surrounded by humid air of total pressure

From (5-10), w = 3; to study the dependence of on we must hold both
T and constant. Third, consider a system of uniform temperature T in which
an aqueous solution drop of radius is surrounded by humid air of pressure
Since (water, salt, air), we find w = 4. However, since the total mass of
salt in the drop does not change, even though the drop may change its radius by
acquiring or losing water as a result of water vapor diffusion to or from the drop,
the mole fraction of the water in solution becomes a function of the drop radius.
This constitutes an additional relation not considered in (5-10). Thus, w = 3 as
in the case of a pure water drop in humid air, and we may again choose to hold
T and the total gas pressure constant and study the dependence of on
Fourth, consider a system of uniform temperature T in which a pure water drop
of radius and a spherical ice crystal of radius are surrounded by humid air of
total gas pressure From (5-10), w = 3. We may choose to hold constant and,
thus, dispose of one of the intensive variables, so that the system at equilibrium is
divariant. This is in contrast to a system of 3 bulk phases which, at equilibrium,
is non-variant once is fixed (Section 4.3). Thus, we may independently vary
and and investigate the effect of their variation on the equilibrium temperature
of the system. It is clear that if and are given, the system has no further
variance at equilibrium.

5.4 Water-Vapor Interface

The difference between the pressure inside a water drop of radius and the
pressure of vapor with which it is in equilibrium is given by (5-7):

where now we have introduced the subscript w/v for the surface tension to em-
phasize that it is the water-vapor interface which is involved. Given that

at 0°C, we see that the pressure difference is about 1.5 atm. for
smaller drops have correspondingly larger internal pressure.
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For practical purposes, one may replace in (5-11) by the surface
tension for a water-humid air interface. Experiments by Richards and Carver
(1921) and Adam (1941) have shown that increases by less than 0.05% if air
at 1 atm. is replaced by pure water vapor at saturation pressure (at the same
temperature).

Recent experimental studies and theoretical modeling involving molecular dy-
namics have shown that water molecules on the liquid side of the water interface
tend to project both hydrogen atoms preferentially towards the liquid interior,
exposing the oxygen atom to the vapor side. This arrangement yields a surface
potential of +0.16 Volt at 300 K (Matsumoto and Kataoke, 1988; Wilson and
Pokorille, 1987; Gok et al., 1988).

5.4.1 EFFECT OF TEMPERATURE ON THE SURFACE TENSION OF WATER

As would be expected on consideration of the effects of thermal agitation, the
surface tension of water decreases with increasing temperature. This behavior has
been investigated experimentally by Dorsch and Hacker (1951) and Gittens (1969).
Their results are shown in Figure 5.1. Although the measurements of Gittens have
been carried out by a more refined experimental technique, we have preferred the
values of Dorsch and Hacker, who extended their measurements into the regime of
supercooled water, thus making possible an extrapolation to near –40°C. In order
to be consistent with our discussion in Section 3.4, we have used as a criterion for
the extrapolation the occurrence of sigularity behavior of liquid water near –45°C.
The proposed values for the surface tension fit the relation

where is in erg T in °C, and where

5.4.2 SURFACE TENSION OF AQUEOUS SALT SOLUTIONS

Let us now consider the effect of dissolved salts on the surface tension of water.
Given that the liquid surface is in a state of strain owing to a residual force field,
we expect that the adsorption onto the surface layer of some chemical component
to concentrations higher than that which appears in the bulk phase will occur if
such behavior will serve to lower the state of strain, and vice versa. Therefore, we
expect that if a solute can lower the surface tension, it will appear in a greater
relative concentration at the interface than in the bulk solution. Materials which
cause this to happen to a marked degree are called surface active. Conversely,
solutes which can increase the surface tension should appear in a relatively weaker
concentration at the interface; this behavior is known as negative adsorption.
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An expression relating surface tension to adsorption may be derived most easily
by integrating (5-1) in the same manner that led to (4-3). The result is

Now, on subtracting (5-1) from the differential of this equation, we obtain the
surface phase form of the Gibbs-Duhem equation (cf. (4-4)):

or

where we have used (5-9) and is the surface specific entropy. For
constant T, (5-15) reduces to the Gibbs adsorption isotherm equation:
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Let us apply this result to the case of a binary solution of a salt in water. Denote
the chemical potential of the salt in the solution-vapor interface by For
equilibrium changes, we have from (5-8), where is the chemical
potential of the salt in the bulk phase. For the latter, however, we have the form
(4-54); therefore, at constant T and the adsorption of the salt is described by

Also, from 4-4a we have therefore, on substituting (4-53) and
(4-54) for and into this expression, and introducing (4-69), we obtain another

of the quantity in (5-9). Implicit in our abstraction of the transition zone
between bulk phases to a geometric surface of separation has been the assumption
of the homogeneity of these adjacent phases up to their contact with the surface.
Thus, in the expression where is the total number of moles

that if mole then at larger
concentrations, meaning (Jones and Ray, 1937). If we
evaluate (5-18) for a 1 molal NaCl solution at 0°C
we obtain mole salt molecules
This implies that the surface of such a solution lacks salt molecules
to make the surface phase homogeneous with the bulk. Let us now consider a
spherical drop of aqueous NaCl solution and seek the drop size below which the
error due to omitting the surface salt deficiency is less than 1%. This condition
can be expressed by the inequality For
and mole we find Thus, a drop
consisting of one-molal sodium chloride solution can be considered a homogeneous
salt solution if its radius is larger than about We shall see that this criterion
is fulfilled by most cloud drops during the condensation process (see Chapter 13).

This estimate is also in accord with a detailed study by Tsuji (1950) of the effect
of salt adsorption at the surface of a solution drop, formed by condensation of a
salt particle, on the equilibrium vapor pressure over the drop. The results of his

form for

In order to interpret this result, we must consider more closely the meaning

of a solution drop, we see therefore that if there
must be a higher concentration of salt in the transition region than in the interior
of the drop, and vice versa. Consequently, the result (5-18) does support our
qualitative expectations: for positive (negative) adsorption, the surface tension
decreases (increases) with increasing concentration.

For most salts which are present in clouds, it has been found experimentally

of component in the real system, the quantities are the corresponding
number of moles in the homogeneous phases and  assumed to retain their
bulk properties up to the geometric interface. Referring now to the present example
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computations show that the inhomogeneity due to adsorption at the drop surface
is negligible for salt masses (NaCl) larger than but becomes increasingly
significant for smaller salt masses. As we shall see in Chapter 6, only salt particles
of masses larger than contribute importantly to the formation of cloud
drops by condensation. The effect of solution inhomogeneity may, therefore, be
neglected in studying the condensation process.

Just as one may replace by a negligible error results on substituting
the surface tension of an aqueous salt solution exposed to humid air, for the

quantity Experimental values for of a few selected salts are given in
Figures 5.2a,b. These values are in good agreement with those of Low (1969b). We
note that for the monovalent as well as the bivalent salts, is approximately
linear. Since the slopes of these curves have a negligible dependence on temperature
over the range of meteorological interest, Hänel (1970) suggested the following
empirical relation:

where the first term on the right is given by (5-12), and B in the second term can
be obtained from the slopes of the curves in Figure 5.2.

5.4.3 RADIUS DEPENDENCE OF SURFACE TENSION

A last relevant consideration for this section is the possible dependence of
(or on the curvature of the water phase. Given that the surface tension
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arises from attractive forces between molecules near the surface, we might expect
that only an alteration of the average geometrical configuration of these molecules
on a size scale comparable to the effective range of the attractive forces would
significantly affect the surface tension. Thus, we would expect a dependence of

on size only for extremely small drops consisting of merely a few tens or
hundreds of water molecules.

Several investigations of this problem have been carried out. Tolman (1949a,b)
and Koenig (1950) suggested finding the answer on the basis of a quasi-thermodyna-
mic approach. Kirkwood and Buff (1949) and Buff (1951, 1955) utilized statistical
mechanics methods. Benson and Shuttleworth (1951) based their study on mole-
cular interactions. Although all three approaches qualitatively predict that the
surface tension of water decreases with decreasing radius of curvature of the water
surface, there is little quantitative agreement among them. Tolman estimated that

for a drop which consists of 13 water molecules (equivalent to a drop radius
of 4.6 × based on and is 40%
smaller than that for a plane water surface. In contrast, Benson and Shuttleworth
computed the surface tension of a small group of water molecules by counting the
number of bonds which had to be broken in order to cut off the group of molecules
from the bulk water structure. In order to estimate the interaction energy between
water molecules in water, Benson and Shuttleworth assumed that only the first
and second nearest neighbors had to be considered. In this manner they predicted
that the surface tension for a drop of 13 water molecules is only about 15% smaller
than that for a plane water surface. Since the quasi-thermodynamic approach is
not rigorous for such small water drops, one would tend to prefer the result of Ben-
son and Shuttleworth. However, the success of the molecular interaction method
obviously depends on the accuracy with which the structure of water can be de-
scribed. In this context, our discussion in Chapter 3 suggests that a hexagonal,
close-packed structure such as that used by Benson and Shuttleworth can hardly
describe the actual water structure accurately. Therefore, both the thermodynamic
and molecular methods must be treated with caution.

No trustworthy experimental determination of is available for any
liquid except for the measurements of Sambles et al. (1970), who experimentally
tested the Kelvin law (see Chapter 6) for evaporating lead droplets. They concluded
that the surface tension of these droplets did not deviate from the values over a
flat surface, even if the drops were as small as

We shall now present a simple, approximate, quasi-thermodynamic derivation
of the radius dependence of following Defay et al. (1966). From (5-11) we have,
for a displacement at equilibrium,

Also, from (4-4b) we find, at constant T, and
But here consequently, we may express the right side of (5-20) in the
form Then, on substituting from (5-15),
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(5-20) becomes

Assuming is independent of we may integrate (5-21) to obtain

where is the surface tension of a plane water surface.

This is in fair agreement with estimates made by Tolman
(1949a,b).

Table 5.1 lists results for computed from (5-22), using the above value
for and the approximation It is seen that the radius
dependence becomes important for as expected. It is clear from the
derivation and discussion that these values are not likely to be very accurate for such
small sizes; nevertheless, they should be adequate for our purposes. Unfortunately,
more rigorous values are presently not available.

5.5 Angle of Contact

So far, we have considered water or solution drops which are surrounded by vapor
or moist air only. Let us now consider a drop of water which is bounded by two
phases: moist air and a solid phase on which the drop is resting (Figure 5.3). If the
water only partially wets the solid, it will form a ‘cap’ which makes contact with
the underlying surface at an angle the contact angle for water on this surface.
If the water wets the solid completely, A surface which is readily wetted

The adsorption may be estimated in the following manner. Our thermo-
dynamic formalism requires for complete consistency that we choose the surface
of separation between phases to be the same as the surface of tension in which
the net surface forces appear to lie. Only for this choice can we be sure that the
bulk volumes defined by the position of the dividing surface are identical with
those appearing in the equation for mechanical work on which (5-1) and (5-3) are
based. Of course, in practice it is essentially impossible to know exactly where
the surface of tension is and, fortunately, for most purposes it turns out not to be
necessary. Nonetheless, in the present instance there is some predictive value in
realizing that the surface of tension, which is our reference surface for measuring
adsorption, must lie slightly below the free surface of a mass of water molecules
comprising a drop. Since the forces of attraction between the molecules in the
first layer act nearly along the lines connecting their centers, we may suppose that
the surface of tension is about half a molecular thickness below the free surface.
Therefore, the amount of water adsorbed on the dividing surface may be estimated
as half the mass of the first molecular layer. Then, taking 9.6 to be the
area occupied by each water molecule at the surface (Defay et al., 1966), their
surface density is and we find that is approximately
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by water is called hydrophilic; a surface which is not is called hydrophobic. The
contact angle for water on various solid surfaces is given in Table 5.2.

The contact angle is determined by the condition of mechanical equilibrium:
there must be no net force component along the solid surface. From Figure 5.3,
this condition, known as Young’s relation, is easily seen to be given by

This relation, though quite useful, does rest on some idealizations which, of course,
are not found in practice. Some difficulties which complicate its use include: (1)
the roughness of the substrate (Osipow, 1962); (2) the presence or absence of
hydrophilic sites embedded in the surface (Zettlemoyer et al., 1961); (3) the satu-
ration state of the surrounding vapor (Corrin, 1975; also see Section 5.6); (4) the
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dependence on whether the cap is advancing or receding (‘contact angle hysteresis’)
(Osipow, 1962). A few values for and are presented in Table 5.3.

It is customary in the cloud physics literature to speak of the ‘wetting coefficient’,
or ‘compatibility parameter’; this is just the quantity apparently
introduced by Fletcher (1958). In analogy to the case of water on a solid substrate,
Fletcher also defined compatibility parameters for ice on a solid substrate. These
definitions are as follows:

Of course, formally identical defining equations can be set up for the case of an
environment of pure water vapor and, in fact, one finds  and

5.6 Adsorption of Water Vapor on Solid Surfaces

Most solids, especially in highly dispersed form, adsorb water vapor onto their
surfaces. This reflects the tendency toward spontaneous reduction of surface energy,
in the same way as was discussed in Section 5.4 in the context of the adsorption of
dissolved salts onto the surface of tension.

Two main types of forces attract molecules to a solid surface: physical forces
(physical adsorption) and chemical forces (chemical adsorption or chemisorption).
The former are due to dispersion forces (attractive), forces caused by the presence
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of permanent dipoles (attractive), and short range repulsion forces. The latter are
due to a transfer of electrons between the solid surface and the adsorbed water
molecules and, thus, involve valency forces.

If the binding force between the molecules in the first adsorbed layer and the
newly arriving molecules is larger than the binding force between the molecules
in the first adsorbed layer and the surface of the solid, a higher vapor pressure is
required for formation of the first layer than for any subsequent layer. On such
walls, called hydrophobic walls, a critical supersaturation is required to form the
first adsorbed layer, and then subsequent layers are formed spontaneously. On the
other hand, if the water molecules in the first layer are more strongly bonded to the
solid surface than to the newly arriving molecules, the wall becomes covered with
molecules at relative humidities below 100%. However, for the completion of the
first and all subsequent adsorbed layers, the relative humidity in the environment
must continuously be raised. On such walls, termed hydrophilic walls, the thickness
of the adsorbed layer of water molecules increases as the relative humidity of the
environment increases, and may be several molecular layers thick before a relative
humidity of 100% is reached.

The adsorption behavior of a solid surface is generally characterized by a plot
of the amount of gas adsorbed as a function of the gas pressure at constant tem-
perature. The contour which describes such a functional variation is called an
adsorption isotherm. For physical adsorption, Brunauer et al. (1967) distinguish
five main types of adsorption isotherms (see Figure 5.4). Type I represents mono-
layered adsorption; types II and III represent monolayered adsorption at low pres-
sures, followed by the adsorption of further layers with increasing pressure; types
IV and V represent mono- and multilayered adsorption which occurs in the pres-
ence of condensation, at subsaturation pressures, in the capillary pores of the solid
surface.

Various theories have been advanced to describe the processes of adsorption of
gases and vapors onto solid surfaces. Since the physics of adsorption is a large
and quite complicated subject in its own right, we must refrain from treating it
here in great detail. However, since studies of the adsorption of water vapor on
solid surfaces have frequently and very successfully been used to characterize the
nucleating properties of these surfaces, it is important that we at least become
familiar with the basic features of the most widely used models for the adsorption
phenomenon. For further information, the reader may refer to sources such as
Bowers (1953), Meyer (1958), Pierce (1960), Osipow (1962), Flood (1967), Dunning
(1967), Clark (1970), and Samorjai (1972).

The three most widely used theoretical adsorption isotherms are those of Lang-
muir (1918) (L-equation); Brunauer, Emmett, and Teller (1967) (BET-equation);
and Frenkel (1946), Halsey (1948), and Hill (1946, 1947, 1949, 1952) (FHH-equa-
tion). Because of its simplicity and because it serves as a prototype for the others,
we shall now sketch a derivation of the Langmuir isotherm. Langmuir (1918) was
the first to realize that adsorbed films are often just molecular monolayers, owing to
the very short range of intermolecular forces. Accordingly, he treated adsorption in
terms of a dynamic balance between molecules entering and leaving a unimolecular
layer. Proceeding in this way, let denote the magnitude of the gas particle flux,
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i.e., the number of molecules striking the surface per unit area and time. Suppose a
fraction α of these adhere, and that the fraction of the surface covered by molecules
is f. Then, the rate of evaporation of gas molecules per unit area can be expressed
as where is a constant, while the rate of deposition of molecules per unit area
is For a condition of dynamic equilibrium, these rates are equal and so

But is proportional to the gas pressure (see (5-51)), and for
a monolayer, where V is the volume of gas adsorbed at the equilibrium
gas pressure and is the gas volume necessary to form a complete monolayer.
Therefore, for T = constant the balance may be expressed in the form

where b is a constant for the given adsorbing material. This is the L-equation.
At low pressures, (5-25) predicts that adsorption is proportional to gas pressure;

this is known as Henry’s law. The type-I isotherm in Figure 5.4 is of the Langmuir
form. An experimental example of this type is the adsorption of or CO onto
silica at 0°C.

The BET theory extends the Langmuir theory to include the adsorption of two
or more molecular layers. The BET-equation can be written as

or

where is the number of vapor molecules adsorbed on the surface, is the
number of adsorption sites available on the solid surface, is a constant for a given
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solid, T = const., and is the saturation vapor pressure for the vapor being
adsorbed. The BET theory assumes: (1) that all adsorption sites on the adsorbing
surface are equivalent; (2) that each molecule adsorbed in a particular layer is a
possible site for adsorption of a molecule in the next layer; (3) that no horizontal
interaction between adsorbed vapor molecules takes place; (4) that the heat of
adsorption is the same for all molecules in any given adsorbed layer; and (5) that
the heat of adsorption is equal to the latent heat of evaporation for the condensed
gas in bulk for all adsorbed layers except the first. Of course, assumptions (1), (3),
and (4) also apply to the L theory.

If is plotted against a type-II isotherm is obtained if Such
an isotherm is obtained, for instance, if nitrogen is adsorbed on an ice surface
(Figure 5.5). A type-III isotherm results if If is plotted
against (5-26) yields a straight line with a slope of and an
intercept of from which and can be determined. The total surface
area of the adsorbing solid can be computed from a known value of and of the
area occupied by one molecule adsorbed on the surface. From this, one can compute
the specific surface area per unit mass of the adsorbing solid. Nitrogen, argon, and
krypton turn out to be the gases best suited for such surface area determinations.

At pressures close to saturation, the adsorbate consists of multilayers and has
properties similar to the condensate in bulk. For such conditions, the adsorption
mechanism is probably best described by the FHH theory, which can be expressed
by the relation

where A and B are constants for any particular adsorbing solid for T = const.
Thus, a plot of vs. on a doubly logarithmic scale exhibits a linear
variation from which A and B can be determined.

Of course, the Gibbs adsorption isotherm (5-16) may also be used to study the
adsorption behavior of a solid surface. As an example of its use, we shall now



have for equilibrium changes, and assuming ideal gas
behavior. Then, from (5-15) we have, at constant T,

which upon integration yields

The quantity is known as the spreading pressure.
If in a particular experiment the mass of adsorbed water vapor is mea-

sured as a function of e in an environment of pure water vapor, then
where is the mass of the adsorbing solid (N) , and where is

its specific surface area (determined by a separate experiment); with this informa-
tion, may be found from (5-29).

ice supersaturation of this led to
From (5-31) one finds that from which for , we
find This trend is as expected; adsorption lowers the surface energy
of the solid substrate, enabling the drop on the solid surface to pull itself together
further.

Because of its ice nucleating properties, silver iodide has been the object of
numerous adsorption studies in the recent past. It is seen in Figure 5.6a,b that the
adsorption of nitrogen on a sample of powdered AgI is characterized by a type-II
adsorption isotherm which can be fitted to give a straight BET adsorption curve.
From such a curve one may determine the number of adsorption sites available
to molecules, and the total surface area of the absorbing AgI sample. Knowing

the higher the vapor pressure e, the greater the adsorption of water on a
given solid surface; from (5-15), a change in surface tension must result if T = con-
stant. This, in turn, alters the contact angle. Proceeding in this manner, we
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determine the dependence of the contact angle for water on a solid on the environ-
mental vapor pressure, following Corrin (1975). The reasoning is straightforward:

For two different pressures and , we have

Consequently, the corresponding contact angles determined from (5-23) will also
be different, and in fact

This shows that the contact angle for water on a solid substrate increases with
increasing vapor pressure. For example, Barchet and Corrin (1972) studied the
adsorption of water vapor onto pure silver iodide (AgI) at T = –10°C, and at an
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the total surface area of the sample makes it possible to determine the amount
of water adsorbed per unit surface area from the adsorption characteristics of the
same sample for water vapor.

The adsorption chacacteristics of AgI for water vapor have been studied by
Coulter and Candela (1952), Birstein (1955, 1956), Zettlemoyer et al. (1961, 1963),
Tcheurekdjian et al. (1964), Corrin et al. (1964, 1967), Barchet and Corrin (1972),
and Gravenhorst and Corrin (1972) using AgI of various purity. Type-II as well as
type-III isotherms were observed, depending mainly on the method of preparing
the AgI. Silver iodide samples, strongly contaminated with water-soluble impurities
such as and KI salts, characteristically gave type-III isotherms. Figure 5.7a
illustrates the adsorption behavior of water vapor onto ‘pure’ AgI, and Figure 5.7b
shows the adsorption behavior of water vapor on AgI of various purity. We notice
that the amount of water vapor adsorbed increases with increasing vapor pressure,
rising particularly strongly as saturation is approached, and that the presence of
impurity ions such as and in the AgI lattice enhances the adsorption of
water vapor.

Some AgI samples were found to give adsorption isotherms for water vapor which
could be fitted to a linear BET curve from which the number of adsorption sites
available to molecules could be determined. Other samples did not behave in
this manner, requiring instead alternative methods to estimate the number of water
adsorbing sites (Tcheurekdjian et al., 1964; Corrin and Nelson, 1968). Comparison
between the adsorption properties of AgI for water vapor and those for nitrogen
demonstrated that the number of AgI surface sites available to water molecules is
significantly less than the total number of sites present. This suggested that an AgI
surface basically behaves like a hydrophobic surface with a few water receptive, i.e.,
hydrophilic, sites. Zettlemoyer and co-workers suggested that chemical impurity
ions built into the AgI lattice may serve as such hydrophilic sites.

Since water molecules are rather weakly bonded to the AgI surface surrounding
a site, they diffuse relatively easily towards the site to form a three-dimensional
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(3-D) water cluster. This results in the build-up of adsorbed multilayers before the
completion of an adsorbed monolayer. The concept of water clusters was strongly
advocated also by Corrin and co-workers. They too interpreted the adsorption
behavior on impure AgI surfaces in terms of 3-D water clusters, which they found
even at low relative humidities over highly localized surface impurity sites.

However, ‘pure’ AgI essentially free of impurity ions was found to behave dif-
ferently. The studies of Corrin and co-workers suggested that on the surface of
‘pure’ AgI no 3-D water clusters build up at low relative humidities. Instead, the
adsorption behavior suggests the formation of two-dimensional water patches in
which the water molecules are distributed over a relatively wide area, exhibiting
strongly cooperative, lateral interaction. Multilayers begin to build up only at high
relative humidities.

Zettlemoyer (1968) found that, similarly to impure AgI, silica compounds doped
with salt ions adsorbed considerably more water than undoped silica characterized
by a fully hydroxylized surface. The larger adsorption was attributed to the doped
ions acting as hydrophilic sites over which water clusters are built up. To confirm
their results, Federer (1968) studied the adsorption behavior of water vapor on
surfaces of silicon doped with boron and phosphorous. He noted a pronounced
correlation between the amount of water adsorbed and the specific electric resis-
tance of the adsorbens (see Figure 5.8a). Federer found that the samples of higher
specific resistance (lower concentration of doping atoms) had a larger total den-
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sity of adsorption sites, but that the sites on samples of lower specific resistance
(higher concentration of doping atoms) were more active, and could adsorb more
water. Through a study of the electrical surface potential of doped silicon, he con-
cluded that the amount of charge exchanged between physically adsorbed water
molecules and the substrate increases with an increase in doping. Since in giving
up charge to the substrate, such molecules are chemisorbed, and since chemisorbed
water molecules are preferred sites for subsequent further adsorption (Wanlass and
Eyring, 1961), Federer interpreted the positive correlation noted between doping
and adsorption in terms of a positive correlation between doping and the creation
of active chemisorption sites.

A type of cluster-forming active site quite different from those mentioned above
was photographically studied by Pruppacher and Pflaum (1975) on single crystals
of Their studies showed that the tendency for water cluster formation
strongly correlated with the location of the ferroelectric domains in and
was particularly favored in regions where the electric dipole in the surface was
oriented horizontally, and on the boundaries separating ferroelectric domains.

Experiments indicate that clays (a significant component of the atmospheric
aerosol (see Chapter 8)) are uniformly hydrophilic and strongly adsorb water mole-
cules over their entire surface. Nuclear magnetic resonance (NMR) studies by Wu
(1964) at temperatures down to –10°C verified that water molecules are very
tightly bound to clay surfaces, where they are arranged close to the surface in a
structure significantly different from that of ice. His observations showed that these
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strongly adsorbed water molecules experience a considerable loss of translational
and rotational degrees of freedom. A similar observation was made by Morariu
and Mills (1972) who found that at a coverage of one statistical monolayer, the
diffusivity of water molecules on clay surfaces was almost one order of magnitude
smaller than water diffusivity in bulk. Extrapolation of their data to higher cover-
age showed that the bulk value of the water diffusivity was approached only after
the formation of about 15 monolayers. Expressed in another way, in the temper-
ature interval between –22 and +15°C the activation energy for self-diffusion of
water molecules on a clay surface was found to be higher by about
than the corresponding value for bulk water.

In accordance with NMR and diffusivity studies, measurements by Palmer (1952)
showed that the static dielectric constant for water adsorbed on clays varies between
4 and 3.14. This is considerably below the value of about 81 for water in bulk,
and is indicative of a reduction of the freedom of movement of the adsorbed water
molecules, so that the degree of dipole alignment in an applied electric field is
lessened.

Figure 5.8b illustrates the adsorption behavior of two typical samples of clay.
One notices that in the BET classification, both depicted adsorption curves are
type-II isotherms.

5.7 Ice-Vapor Interface

5.7.1 SURFACE ENERGY OF ICE

By the surface energy of ice we mean the energy required to form a unit area of new
surface. For ideal crystalline ice, this energy may be identified with one half the
energy per unit area, which is needed to split an infinite crystal parallel to a
particular crystallographic plane and separate the two parts by an infinite distance.
(The factor 1/2 accounts for the fact that by cleaving the crystal, two new surfaces
are created.) It is then natural to take as the surface tension or interfacial
energy, between the particular ice crystal face and water vapor or air, assuming
the presence of such gases does not significantly affect the surface energy. Owing to
the structure of the crystal lattice, it is clear that will generally be different for
different surface orientations with respect to the crystallographic axes, in contrast
to the behavior of liquids.

To obtain one must determine the binding energy, or work of cohesion;
for a molecule on the crystal surface. Now for a cut perpendicular (parallel) to
the crystallographic a water molecule which is hydrogen bonded across the
cleavage plane loses one nearest neighbor molecule and three (four) next nearest
neighbor molecules. A water molecule which is not hydrogen bonded across the
cleavage plane loses three (two) next nearest neighbor molecules. Therefore, a water
molecule may be regarded as losing one nearest and six next nearest neighbors by
cutting along a basal or prism plane. If we disregard the forces of interaction due to
third and higher order nearest neighbors the energy per bond required for cleavage
of an ice crystal can therefore be expressed as
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where and are the average interaction potentials between the molecules in
the first and second interaction zones. The interaction potentials and for
intermolecular spacings of and respectively, were
computed by Reuck (1957) on the basis of Rowlinson’s (1951) force constants, which
take account of the multipole electrostatic interaction forces, induction forces, and
repulsion forces. As a result, Reuck found, for

value for the sublimation energy and consider
or as the interaction energy between a water molecule and
its neighbors in ice.

All that remains now to estimate the surface energy of ice is to count the areal
density of bonds at the basal and prism faces of the unit cell of ice (Figure 3.4). For
a basal plane, the area is Since this area is occupied by 2(1/3 + 1/6) = 1
bond the density of bonds in the basal plane is For
the bond density is Similarly, for a prism plane, the area of
the unit cell is and the occupancy is (4 × 1/4) + (2 × 1/2) = 2 bonds. Since

estimates for the basal face of ice and
for the prism face. The corresponding values for the surface energies are

and Similar estimates were made by Mason
(1952, 1954a) and McDonald (1953b).

McDonald (1953b) has pointed out, however, that the surface energies thus com-
puted pertain to a ‘fresh’ surface. Since molecules in a freshly cleaved surface will
not remain in their original position but will relax into new equilibrium positions,
the surface energy of an ‘aged’ surface is somewhat less than that of ‘fresh’ surface.

The significance of such relaxation can be appreciated if we calculate for
water at 0°C in the same manner as was just done for ice, and compare results with
the experimentally determined values of surface tension. Proceeding in this manner,
but now considering evaporation rather than sublimation enthalpy, we suppose that

i.e., as before, we assume that for a molecule to get from the interior
to the surface requires breaking roughly half the bonds which must be severed for
a complete escape. Thus, using the fact that = 3.75 ×

at 0°C and at
– 40° C, and assuming at these temperatures a structural similarity between water
and ice so that the areal bond density is approximately we
obtain a hypothetical cleavage energy for the water surface of (0°C)
and (– 40°C). However, from experiments we know that (0°C)

with an extrapolated value of at –40°C. Thus, for
water at least, the real, ‘relaxed’ surface has less than half the surface energy
predicted for a hypothetical ‘freshly cut’ surface.

or erg molecule, i.e., since there are two bonds per
molecule. This theoretical estimate is quite close to the experimetally determined
value for the sublimation enthalpy of ice, (see Section 3.3).
In order to estimate the surface energy of ice, we prefer to use the experimental

at –20°C, we obtain a bond density of
for the prism plane.

Multiplying now these bond densities by the energy per bond, we arrive at the
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In order to arrive at a suitable correction for the ice surface energy calcula-
tion, McDonald suggested subtracting from the which
we obtained from our cleavage computation. However, McDonald realized this
might over-correct because of the difference between and Therefore, he
suggested reducing the correction by the factor = 0.88 (0°C) and 0.92
(–40°C); for the corrected surface energies of ice this yields the final values of

100 erg (0°C), i.e., 102 erg (–40°C), and erg (0°C),
i.e., 111 erg (–40°C).

The values deduced above for corrected for the disposition of the water
molecules at the ice surface, agree well with the experimental estimate of Ketcham
and Hobbs (1969) who found = (106 ± 3) erg

In deducing these surface energies we have only considered elastic relaxation.
Still neglected is the fact that the ice surface exhibits a quasi-liquid layer to tem-
peratures considerably below 0°C (see Section 5.7.3). This layer further reduces
the surface energy of ice, as suggested by Furukawa et al. (1987) and Beaglehole
and Nason (1980). Unfortunately, no quantitative corrections for this effect are
available at present.

5.7.2 WULFF’S THEOREM

Wulff’stheorem (Wulff, 1901) provides a description of the equilibrium shape of a
crystal from a knowledge of the variation of surface tension with crystal face orien-
tation. It should be emphasized that this equilibrium shape is not often oserved,
since actual crystal geometries are strongly influenced by thermal and diffusion gra-
dients, and other kinetic effects associated with active growth (see Section 13.3.3).

Because work is required to form new surface, the equilibrium shape must be
the one which minimizes the total surface energy for a given volume. For a concise
treatment of the problem along these lines, the reader is referred to Landau and
Lifschitz (1958). Here we shall outline a simpler, more heuristic derivation following
Dufour and Defay (1963).

Consider a crystal which has a volume V" and is bounded by faces, each
of which has a surface area Let the crystal be surrounded by its own vapor
(or melt) of volume V' and pressure and suppose the whole system is contained
in a cylinder whose volume V = V' + V" can be varied by a piston. By moving
this piston, the work may be done on the system; this may also be
written as

where and where we have assumed a uniform pressure within
the crystal. But for normal outward displacement of the
faces by (see Figure 5.9). Furthermore, the volume of the crystal is

and on differentiation, this yields
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so that

Therefore, the work done on the system may also be expressed as

Now consider a system just like the above except that the crystal is replaced by
a drop of the same volume. The work done may again be expressed as in (5-33).
However, on invoking the condition of mechanical equilibrium, (5-7), we can write
the last term in (5-33) in the form where is the area of the
drop; therefore,

Comparison of (5-35) and (5-36) shows that a complete analogy between the two
systems can be maintained by setting

so that also

From (5-37), we have

This constitutes Wulff’s theorem: In equilibrium, the distance of any crystal face
from the center of the crystal is proportional to the surface tension of that face.

Let us use Wulff’s theorem to estimate the equilibrium crystal shape for ice.
From (5-39) we have

inserting our previously determined values for the surface tensions. Referring to
Figure 5.10, we see that where is the radius of the circle inscribed in
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where is the radius of the circle circumscribed in the basal plane.
Inserting the values for and into (5-40), we find

The equilibrium form is thus predicted to be a hexagonal prism with a ratio of axial
length to hexagonal diameter (the observed ‘diameter’ of an ice crystal is usually
given in terms of the diameter of the circle circumscribed within the basal plane of
the crystal) of about 0.8 (Krastanow, 1943; Higuchi,1961).

This result is in excellent agreement with the observations of Kobayashi (1961)
who found that at very low excess vapor pressures for ice crystals
grown at However, at warmer temperatures, no trend to a
limiting habit could be observed, while at These latter
results could be explained if it is assumed that Kobayashi’s experimental arrange-
ment could not reproduce equilibrium conditions outside the studied temperature
interval. Another possibility is that is temperature dependent in a way which
is different for the basal and prism faces. This could possibly arise from temper-
ature dependent behavior of surface defects, for example. However, at present no
information on this point is available. On the other hand, at temperatures warmer
than –10°C, the equilibrium shape is controlled by the quasi liquid layer on the
ice surface (see Section 5.7.3) which causes the prism faces to disappear from the
equilibrium form. Colbeck (1985) experimentally found that in this temperature
range the equilibrium form is a rounded plate with a thickness to diameter ratio of
0.4.

In computations of the rate of homogeneous and heterogeneous ice nucleation,
one generally assumes that ice particles of spherical shape are nucleated. It is,
however, more realistic to suppose that the nucleated ice particles have hexagonal
shape. To take this into account, Dufour and Defay (1963) defined the shape
factor of a Wulff type crystal ((5-39), (5-40)) by the relation Using
Figure 5.10, we find where from (5-40) We then
obtain for the shape factor (Dufour and Defay obtained by
assuming of course, for a sphere:

the basal plane, and that where H is the height of the ice prism. Also,
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5.7.3 STRUCTURE OF REAL ICE SURFACES

Surface energies characterize the average conditions on a surface. For understand-
ing the detailed behavior of an ice crystal during growth and evaporation by vapor
diffusion, we must consider in addition the microscopic, topographic surface fea-
tures which are typically present.

Experimental studies show that crystalline solids have rough surfaces, i.e., they
contain molecular, microscopic, and even macroscopic steps. Such steps often are
the result of crystallographic dislocations induced in the crystal by mechanical
stresses, thermal stresses, and/or accidental assimilation of foreign solid particles
during the crystal’s growth. These may cause lattice layers to slip along definite
boundaries called dislocations. There are two main types of dislocation: edge dislo-
cations and screw dislocations. In a crystal with the former, the boundary between
slipped and unslipped regions extends perpendicular to the slip direction. An edge
dislocation may thus be thought of as being caused by inserting an extra plane of
atoms into the crystal. In a crystal with a screw dislocation, the boundary between
the slipped and unslipped regions extends parallel to the slip direction, and so a
screw dislocation may be thought of as being caused by cutting part way through a
crystal with a knife, then shearing it parallel to the plane of cutting by one atomic
spacing. Steps from screw dislocations transform successive atom planes into a
helical or screw-type surface, hence the name (Figure 5.11).

Several studies have shown that molecular steps resulting from dislocations can
be made visible at the ice surface by the method of thermal etching (see, e.g.,
Hobbs, 1974). During this process, the ice surface is subjected to slow evapora-
tion. Since a surface molecule at a topographic imperfection is surrounded by fewer
molecules than a molecule elsewhere in the surface, it is less strongly bonded to the
surface. Topographic surface imperfections are therefore the location of preferred
evaporation. As water molecules are removed preferentially from such locations,
topographic imperfections are made visible in the form of etch-pits (Figure 5.12).
Thermal etching is thus capable of revealing the location of dislocations in the crys-
tal. During thermal etching screw dislocations ‘unwind’ in a screw-type manner,
causing the formation of etch-pits with spirally stepped walls. Step heights have
been found to vary between 0.01 and It has been suggested that micro-
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scopically visible spiral step heights of as much as several tenths of a micron do
not represent the original step height of an emerging screw dislocation, but rather
result from a bunching of monomolecular layers (Frank, 1958). The number density
of etch-pits has been found to range between and as expected from
the number density of dislocations estimated on the basis of other methods.

In analogy to the etch-pits which appear at the locations of emergent crystal-
lographic dislocations during very slow evaporation of an ice surface, small raised
surface features termed hillocks have been observed to appear on a nascent, slowly
growing ice surface at the site of emergent dislocations. This demonstrates that
sites of emergent crystal dislocations are not only sites of preferred evaporation but
also sites of preferred ice crystal growth. The reason for such a site serving as a
preferred growth center lies in the fact that considerably less energy is involved in
the propagation of an ice crystal face by the addition of water molecules to steps
and ledges already present on the ice surface than by nucleation of new growth
layers on a perfectly smooth ice surface.

At conditions where an ice crystal freely grows or evaporates in air, the sub-
microscopic surface roughness is found to manifest itself in the form of facetted
surfaces. Such crystals are said to have a hopper structure (Figure 5.13). For sur-
face ridges to be visible, the ice crystal diameter needs to exceed a few hundred
microns. The ridges are considered to result from the bunching of much thinner
growth layers.

The bunching mechanism of growth layers at the surface of ice crystals which
grow in a vapor environment was studied by Mason et al. (1963). According to
these authors, the bunching of monolayers on a growing ice surface is the result
of interference between propagating steps. At the low supersaturations typical
for atmospheric clouds, new layers on an ice surface originate at topographical
surface imperfections and at the edges and corners of ice crystals. There the vapor
concentration gradient which constitutes the driving force for diffusional growth, as
well as the temperature gradient which controls the dissipation of the latent heat
released during growth, are high relative to the center of an ice crystal face. Once a
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step is formed, it advances chiefly by the addition of water molecules brought to the
step by surface diffusion. In isolation, each layer moves across the ice crystal surface
with the same speed However, if two layers have originated sufficiently close
to each other, competition for adsorbed water molecules tends to slow down both
steps. If an additional layer originates some distance behind the pair of interfering
steps, it will initially travel at the speed of an isolated step until it catches up with
the interfering step pair, when it too will slow down, and so on. Eventually, the
pile-up or bunching of monolayers will produce a microscopically visible step.

In order to estimate the time required for the bunching of monolayers, we let
denote the average migration distance which an adsorbed molecule travels by

surface diffusion before re-evaporating. Then, assuming that direct arrival of mole-
cules to the step front from the vapor is negligible in comparison to the surface
diffusion flux, we see that steps grow by collecting molecules from a diffusion zone
of width Furthermore, two such fronts can be expected to experience con-
siderable interference when their separation becomes less than this amount. We
therefore expect the time needed for the two fronts to merge to be proportional to

and inversely proportional to the characteristic step speed In this manner,
or simply by strict, dimensional analysis, given that and are the only relevant
parameters, we estimate the time required for the formation of a step of N unit
heights to be within an order of magnitude of the quantity A detailed
calculation by Mason et al. (1963) provides a more quantitative estimate, viz.:

This expression agrees well with their observations, giving sufficient evidence that
surface diffusion is, in fact, the dominant process behind the bunching mechanism.

Since, as mentioned, the formation and propagation of layers is favored at the
edges and corners of the ice crystal, as compared to its face center where the growing
layers slow down, freely growing ice crystals preferentially thicken at the crystal’s
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periphery, leading to the observed hopper structure depicted in Figure 5.13. More
details on the growth rate of individual crystal faces and its effect on the crystal
shape will be given in Section 13.3.3.

In studying the adhesive properties of ice, Faraday (1860) conjectured that a
‘quasi-liquid’ layer exists at the interface between ice and air, and that this layer
solidifies only when sandwiched between two ice surfaces. Although this possibil-
ity obviously has considerable bearing on the feasibility of the collection growth
of ice crystals in clouds, it was not until much later that the idea was pursued
more quantitatively. In support of Faraday’s quasi-liquid film hypothesis, Nakaya
and Matsumoto (1953, 1954) and Hosier et al. (1957), who measured the force re-
quired to separate two ice spheres brought into contact while hanging side by side,
noted that the adhesive force was relatively large close to 0°C, but decreased with
decreasing temperature and humidity of the surrounding air. In an ice saturated
atmosphere, Hosler et al. (1957) found that the adhesive force decreased to zero if
the ambient temperature decreased below –25° C. This result was taken to mean
that quasi-liquid films on ice may be stable down to this temperature.

Further indirect evidence for the presence of a quasi-liquid layer at the ice-air
interface has been provided by Bullemer and Riehl (1966), Jaccard (1967), Ruepp
and Kass (1969), Maidique et al. (1971), and Maeno (1973), Caranti and Illing-
worth (1983), who showed that the surface electrical conductivity of ice increased
significantly at temperatures warmer than –10°C, and particularly at temperatures
warmer than – 4°C, by Kvlividze et al. (1970, 1974) and Mizuno and Hanafusa
(1987), who studied the layer using a nuclear magnetic resonance method, by Man-
tovani et al. (1980), who measured the surface viscosity of ice, by Beaglehole and
Nason (1980), who determined the extent of the layer by means of a He-Ne laser
light reflected from the ice surface, and by Goleki and Jaccard (1978), who probed
the ice surface by a proton back-scattering technique.

An early attempt at a physical explanation for the existence of a disordered,
quasi-liquid layer at the ice-air interface was provided by Weyl (1951), who sug-
gested that it can be explained in terms of the tendency of any system to minimize
its surface energy. A rearrangement of water molecules to provide such a mini-
mization of surface energy is easily possible in liquid water where the molecules are
highly mobile. On the other hand, in ice the long-range order of water molecules
prevents an easy rearrangement of the molecules. However, according to the views
of Weyl, breakdown of this long-range order may still occur near 0°C inside a thin
layer at the ice-air interface. Weyl’s conjectures were followed up more quantita-
tively by Fletcher (1962b, 1963, 1968, 1973). By taking into account the structure
of a real ice crystal lattice and considering all the defects which occur in such a
lattice (see Chapter 3), Fletcher (1973) developed a molecular thermodynamics
model, from which it was possible to compute the lowering of the surface energy of
ice when a quasi-liquid layer is present, and the temperature range for which such
a film is stable. The thickness h of the quasi-liquid layer could not be expressed
rigorously in a simple manner as a function of temperature T, but the following
approximate relation was derived graphically from the computed variation of h vs.
T:
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where h is in T in K, K, A = 20 to 50, and B = 25. In fair
agreement with Fletcher, Mazzega et al. (1976) found from experiments that A =
37 and B = 25. Some additional support for Fletcher’s values for the thickness of
the quasi-liquid layer came from the recent theoretical model of Chen and Crutzen
(1994) who adapted the transition layer concept of Lacman and Stranski (1972) as
modified by Kuroda and Lacman (1982). On the other hand, the results of Fletcher
and of Mazzega et al. have been criticized by Goleki and Jaccard (1978), who found
experimentally that the thickness of the disordered layer at the ice surface is about
10 times thicker than the value obtained by Mazzega et al. (1976) approaching
about at –1°C, and becoming near zero at –55°C, with A = (940 ± 170)
and B = (540 ± 140). The thickness of the layer at –1°C agrees well with the
thickness derived from measurements of the dielectric constant by Lagourette et
al. (1976), and with Jellinek’s (1967) and Weyl’s (1951) estimate derived from
mechanical work of adhesion. Goleki and Jaccard suggested that the differences
between the various literature values for the thickness of the surface layer on ice
are perhaps due to the different nature of the experimental techniques used, and
also due to the lack of reliable values for the parameters in the theoretical models.

Direct evidence for the presence of highly mobile water molecules at the sur-
face of ice has been presented by Bryant et al. (1959), Hallett (1961), and Mason
et al. (1963). They found that water molecules at the surface of ice migrate for
considerable distances before they become part of the ice crystal lattice. Quanti-
tative measurements on the surface diffusion of water molecules on ice have been
carried out by Mizuno and Hanafusa (1987) using a nuclear magnetic resonance
technique. These showed that the diffusivity increases with increasing tempera-
ture from at –20°C to at –1.5°C,
indicating increased mobility of the molecules with increasing temperature. We
note from these values that the diffusivity is a few orders of magnitude smaller
than the diffusivity of water molecules in water (3-19 and 3-20) but about two
orders of magnitude larger than the diffusivity in bulk ice (see Section 3.3). As
expected, the energy of activation for surface diffusion of lies in
between that for diffusion in water and in ice. It is interesting to note that the
NMR signal indicated mobile molecules at the surface even at temperatures as low
as –100°C. This result, however, should not be taken to mean that the mobile
molecules form a quasi-liquid layer down to these low temperatures. Rather, as
Goleki and Jaccard suggest, they form a ‘disordered’ or ‘amorphous’ layer due to
oxygen atoms exercising large amplitude vibrations which are transmitted into the
interior of the crystal by the directionality of the hydrogen bonds. Stillinger and
Rahman (1972), Hale et al. (1981), and Kiefer and Hale (1977) have a somewhat
different view, and suggest from their theoretical models that the surface diffusion
of water molecules proceeds in the form of vascillating tours of molecules in a force
field of a constantly changing network pattern rather than via occasional jumps
between discrete binding sites in the ice lattice.

The work of Kuczynski (1949), Kingery (1960a,b), Kuroiwa (1961, 1962), Hobbs
and Mason (1964), Hobbs and Radke (1967), Itagaki (1967), and Kikuchi (1972)
showed that the quasi-liquid layer mechanism is not the only one which can explain
the sticking together of two ice surfaces. The formation of a ‘neck’ joining two ice
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surfaces in contact may proceed in four additional ways: (1) by viscous and plastic
flow of water substance under surface tension forces, (2) by evaporation of water
substance from the convex surface portion of the ice system, its transfer through the
environment and subsequent condensation onto the strongly concave neck joining
the two ice surfaces, (3) by volume diffusion of water substance resulting from a
local excess of ice lattice vacancies which arise from the deficit in pressure produced
by the surface tension forces in the neck region, and (4) by surface diffusion of
water substance arising from the difference in concentration of adsorbed molecules
existing in the neck and the rest of the ice system, again set up by the surface
tension forces. Theoretical expressions for the growth rate of the neck by each
of these four mechanisms have been derived by Kuczynski (1949). His theoretical
considerations, as well as the experiments carried out by the authors mentioned
above, demonstrated that the growth rate of the neck joining the two surfaces is of
the general form

where A(T) is a function of temperature and the type of neck-forming (‘sintering’)
mechanism, is the width of the neck after time and is the radius of curvature
of the two surfaces in contact. For the case of spherical particles of radius in
contact, for process (1); for process (2);
for process (3); and for process (4).

In an experimental study and re-analysis of earlier work, Hobbs and Mason
(1964) concluded that the adhesion of spherical ice particles is mainly the result of
the evaporation-condensation mechanism (2). Later, however, Hobbs and Radke
(1967) and Kikuchi (1972b) showed that volume diffusion of water molecules (mech-
anism 3), caused by the existence of a large concentration of molecular vacancies in
ice just beneath the concave surfaces of the neck, contributes almost equally to its
growth. While these two mechanisms may jointly determine the rate of growth of
the neck, the initial ‘bridging’ between the two ice particles in contact is, according
to Hobbs (1974), most likely the result of a quasi-liquid layer.

5.8 Adsorption of Reactive Gases on Ice Surfaces

We have already shown in Section 5.6 that at –196°C (77 K) the surface of ice is
solid and acts towards gases such as nitrogen and argon as a low-energy and rather
inert adsorbent (Adamson et al., 1967). The adsorption isotherm for on ice at
this temperature has been plotted in Figure 5.5. Considering that near 0°C a quasi-
liquid layer exists on the ice surface, one expects that, with increasing temperature,
the adsorption behavior of ice changes progressively. In verification of this, Orem
and Adamson (1969) showed that the adsorption behavior of non-polar hydro-
carbons such as n-hexane and n-pentane on ice changes noticeably at a temperture
near –35° C. They suggested that at temperatures above –35° C the ice surface
becomes actively involved in the adsorption process by forming a clathrate with
the adsorbed molecules. A similar behavior was found by Adamson and Jones
(1971) and by Ocampo and Klinger (1982, 1983) who studied the adsorption of

on ice at temperatures between –78°C (195 K) and 0°C. They found that the
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variation of the molecular coverage with relative pressure becomes rapidly steeper
at temperatures above –35°C. They also showed that at any given temperature, the
surface coverage spontaneously changes from a weakly covered surface for a non-
polar adsorbent to that of a very polar, strongly adsorbing surface if the relative
pressure rises above a critical value. In explaning their results, they pointed out, as
did Orem and Adamson for the n-alkanes, that the molecules become trapped
and form a clathrate after striking the highly mobile water moleclules in the quasi-
liquid layer on ice.

Reactive gases such as HCl, exhibit a more complicated behavior.
The uptake of such gases by planar ice surfaces, ice spheres and dendritic snow
crystals has been studied by Sommefield and Lamb (1986), Clapsdale and Lamb
(1989), Valdez et al. (1989), Mitra et al. (1990), Conklin and Bales (1993), Conklin
et al. (1993), Diehl et al. (1995), Dominé and Thiebert (1995) and by Laird and
Sommerfeld (1995). As expected, these observations show that the amount of gas
taken up by an ice surface increases with increasing gas partial pressure in air and
with increasing time of exposure to the gas. On the other hand, the observations
demonstrate that the gas uptake is dependent on the type of gas, the temperature,
the crystalline structure of the ice, and on whether the uptake takes place on a
growing or non-growing ice surface. Thus, Mitra et al. (1990) and Diehl et al.
(1995) showed that during its growth from the vapor near –15°C, a dendritic
snow crystal takes up and HCl in proportion to the amount of water
vapor converted to ice. Whether or not the gas molecules become incorporated
in the ice lattice during the growth of the crystal could not be determined. The
uptake of reactive gases on non-growing ice sufaces is somewhat better understood,
although a quantitative description of the uptake mechanism is still not available.
From the presently available experimental results, the following conclusions may
be drawn: (1) The quasi-water layer at the surface of ice plays a significant role in
the uptake of such gases. (2) Gas uptake is largest at temperatures near 0°C where
the quasi-water layer is thickest. This implies that the quasi-water layer is able to
‘dissolve’ a gas in a manner similar to bulk water. (4) Once ‘dissolved’, a highly
concentrated quasi-aqueous solution layer is formed above which the vapor pressure
is reduced below that over the intrinsic quasi-water layer. This has been verified
by Diehl et al. (1995) who showed that ice spheres, exposed to vapor prior
to evaporation, exhibit an evaporation rate which is considerably smaller than the
rate from spheres of a pure ice. (5) A vapor pressure reduction is associated with a
depression of the equilibrium melting temperature (see Section 4.9). This behavior
is quantitatively expressed in the phase diagrams for the systems and

provided by Hanson and Mauersberger (1988a,b). These diagrams
delineate the conditions for the stability of the ice phase and the liquid phase in
terms of the saturation water vapor pressure (i.e., temperature) and the partial
pressure of the gas. As an example, the phase diagram for the system
is given in Figure 5.14. From this diagram we note that at a given temperature
there exists a critical partial pressure of the gas above which the liquid will be the
stable phase. At such pressures, the quasi-solution layer is expected to continuously
thicken with time, allowing additional gas to be dissolved which in turn promotes
further melting. These expectations were verified by Mitra et al. (1990) and Diehl
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et al. (1995) for HCl (see Figure 5.15). A similar result was found by these authors
for except that the amount of gas taken up by the ice surface was found to
be considerably larger than the amount taken up by HCl. (6) At a temperature and
partial gas pressure at which ice is the stable phase, no melting will be induced by
the dissolved gas and the quasi-liquid layer will have the thickness of the intrinsic
quasi-water layer. This case was documented by Dominé and Thiebert (1995) who
determined the uptake of HCl by single-crystalline bulk ice for partial gas pressures
below the critical values. As expected, significantly less gas was taken up under
these conditions, even considering that the ice samples of Dominé and Thiebert
were exposed to HCl for 3 weeks. (7) In the quasi-liquid layer, HCl, and

in the presence of dissociate into ions. Experiments of Diehl (1995)
showed that these gases do not desorb when exposed to a stream of ice-saturated
nitrogen gas. Desorption only occurs if, simultaneously, the ice sublimates in ice
sub-saturated air. (8) Gases such as HF,HCl, and in the of presence of

enter bulk ice. This has been verified by a number of experimental studies
in which the diffusion coefficent for these gases in ice has been determined. Thus,
Wolff et al. (1989) reported an apparent diffusion coefficient for HCl in ice of

at 185 K and at 253 K. More
specific values have been obtained by Krishnan and Soloman (1969)

at–18°C, at –11°C and
at –4°C, by Haltenroth and Klinger (1969) at –10°C,

at –20°C and at –85°C, by Barnaal
and Scotfeld-Ellingson (1983) at –15°C,
by Chu et al. (1993) at –85°C, by Diehl (1995)

at –19°C. These values suggest that the
diffusivity of the mentioned gases is considerably larger than the diffusivity of
in ice (see Chapter 3).

Although during freezing of aqueous solutions, certain ions, such as and
, may be trapped in the ice crystal lattice at lattice positions, and other ions

at lattice interstitial locations, Hallenorth and Klinger (1969) suggested that the
diffusion of a gas rather proceeds via existing grain boundaries in polycrystalline
ice, and via dislocations and small angle boundaries in single crystals of ice. Thus,
according to Truby (1955a), ice single crystals are composed of an immense number
of hexagonal prisms. Some of these are not exactly parallel to the crystallographic
axis of the crystal but deviate by a few minutes of arc. Hallenorth and Klinger
suggested that these mosaic boundaries may have a considerable influence on the
diffusion of a gas in ice.

5.9 Ice-Water Interface

Let us now consider a system consisting of an ice crystal surrounded by supercooled
water. As we shall see in the next chapter, for sufficiently small particles of ice
such a system can be in stable equilibrium, so that it is again possible to speak of
the interface energy of the boundary separating the phases.

Intuition tells us that the interface energy between ice and supercooled water,
must be considerably less than simply because the forces between water
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molecules and the spatial arrangement of molecules in supercooled water are not too
different from those in ice (Chapter 3). Unfortunately, it is very diflicult to deter-
mine by experimental techniques, and the results of numerous attempts show
considerable spread (Figure 5.16). Nevertheless, all measurements agree on the
fact that decreases with decreasing temperature. This is to be expected since
the structure of water becomes increasingly ice-like as the temperture decreases be-
low 0°C (see Chapter 3). In Figure 5.16, the extrapolation to temperatures below
–35° C was carried out by considering the results of experiments carried out near
–40°C, as well as by forcing agreement with the singularity behavior of water near
–45°C (see Section 3.4).

In addition to the experimental results plotted Figure 5.16, two indirect methods
for estimating deserve attention. The first method is based on Antonoff’s rule
(Antonoff, 1907), which states that the interfacial tension between two mutually
saturated liquids is given by the absolute difference between their respective
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surface tensions against the gas surrounding them, i.e.,

where indicates the gas in contact with the liquid. This can be interpreted as
a limiting form of Young’s relation, (5-23). Antonoff’s rule has been successfully
applied to the three phases of water substance, assuming that they are mutually
saturated. The analogous equation for ice, water and vapor is

It should be emphasized that this relation is largely just a plausible conjecture for
the behavior of with some additional indirect empirical support coming from
the success of Antonoff’s rule in other applications. Using for a mean between
the values for the basal and the prism face, i.e., (0°C) and

(–40°C), together with (0°C) and

A second method for estimating is based on knowledge of the latent heat
of fusion, To make this estimate, let us imagine that we ‘cut’ both a body
of ice and a body of water, each surrounded by water vapor, into two halves. In
so doing, the energy is necessary to cut bonds in the surface of
the ice, and the energy is expended to ‘cut’ bonds in the surface
of the water. On joining one water-half to one ice-half, we may roughly assume
that the ice-half gains back the energy The net energy expended in cutting
the ice body is therefore approximately which amounts to

(0°C), and (–40°C). Therefore
on taking into account the same bond coverages on the basal and prism planes as
used in Section 5.7.1, we obtain for the basal plane _ (0°C),
and (–40°C) and for the prism plane (0°C),
and (–40°C).

Comparison of the results derived from these two semi-empirical methods with
experiment reveals an overall consistency. Unfortunately, however, the theoretical
estimates are insufficiently accurate for discriminating among the wide scatter of
experimental values. They do guide us, however, in making the following educated
guess as to a reasonable relation for the variation of with temperature.

with in erg and T in °C, and
and Note that (5-47) does not descriminate between basal and
prism faces of the ice crystal lattice.

In closing this section, we shall briefly look at the structure of the ice-water
interface. As expected from the surface structure of ice crystals growing from
the vapor, one finds that ice crystals growing in supercooled water do not have a
smooth surface.

(–40°C), (5-46) predicts (0°C) and - (–40°C).
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Direct photographic evidence of the presence of steps at a growing ice-water in-
terface has been provided by Ketcham and Hobbs (1968) and Hobbs and Ketcham
(1969). Some of the observed steps had spiral forms appearing at a number concen-
tration of about with step heights between 0.1 and and spacings
between the steps of 5 to These observed step heights are enormous consid-
ering that they probably originated on screw dislocations. No explanation for this
observation is currently available except to say that, as in the case of step formation
at the ice-air interface, some sort of bunching mechanism may be operating.

Bryant and Mason (1960) have investigated the etched surfaces of ice grown
from supercooled water. Shallow etch-pits of about diameter and having
a number density of were observed on all crystal faces. Inside a large,
shallow pit, small pyramidal etch-pits of 5 to diameter were found in a
number of concentration of up to Pyramid heights and base diameters
were about equal. The sides of the pyramidal pits were facetted in the form of
concentric steps, each of which had a height of a few tenths of a micron. In some
larger pyramidal pits, the concentric spiral steps reached heights of up to

A similar etch pattern had been observed earlier by Truby (1955a,b). He noted
pyramidal etch-pits which were 0.2 to in depth and 0.5 to in width.
At the pit walls, concentric steps of up to height were observed. Often the
pits had cores of up to in depth.

These observers have suggested that the etch pattern at the surface of an ice
crystal grown from supercooled water is the result of dislocations introduced into
the ice during the freezing process by mechanical or thermal stresses. Gentile and
Drost-Hansen (1956), elaborating on this mechanism, have suggested that an ice
crystal represents a ‘socially unhappy arrangement’ of water molecules. The ‘un-
happiness’ is caused by the necessity for ‘opening up’ the bond angle of a water
molecule in order to conform to the tetrahedral lattice structure of ice. Such a
forced, bond angle opening introduces into the ice lattice a strain which is not uni-
formly distributed over the entire crystal volume. Rather, the strain energy tends
to be concentrated near lines parallel to the thereby causing strain cores.
According to Gentile and Drost-Hansen, the strain energy may be relieved through
the incorporation of suitably-sized, foreign salt ions in optimal concentrations. This
may explain the observations of Truby (1955a,b), who noted that ice crystals grown
from molar fluoride solutions did not exhibit any microstructure.

5.10 Ice Aqueous Solution Interface

Since cloud drops consist of weak aqueous salt solutions, it is worthwhile to de-
scribe briefly some of the processes which take place at the ice-solution interface.
Experimental observations such as those by Jaccard and Levi (1961), de Micheli
and Iribarne (1963), Gross (1967, 1968), Kvajic and Brajovic (1971) and Gross
et al. (1975, 1987) demonstrate that at the ice-aqueous solution interface, a seg-
regation process takes place which allows a small percentage of salt to enter the
ice, while the rest remains dissolved in solution. Salt ions do not enter the ice in
stoichiometric proportions. Rather, the experiments show that the interface be-
haves as a semi-permeable membrane, allowing certain types of salt ions to pass
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through and enter the ice lattice more readily than others. This phenomenon has
been found to be strongly dependent on the type of salt, the concentration of the
salt in solution, and the rate at which the ice-solution interface advances. Work
on this subject has been reviewed by Drost-Hansen (1967), Gross (1965, 1968),
Pruppacher et al. (1968), Cobb and Gross (1969), Shewchuk and Iribarne (1971),
Iribarne (1972), and Seidenstricker (1972).

The more recent studies have attempted to obtain information on the amount
of salt segregation at the interface between ice and an aqueous salt solution by
determining what is known as the segregation or partition coefficient, in some work
also called the retention coefficient. This coefficient is generally defined as the
ratio of the amount of foreign species in ice to the amount of this species in the
aqueous solution (Iribarne et al., 1990, 1983; de Michelis and Iribarne, 1963; Lamb
and Blumenstein, 1987; Snider et al, 1992; Iribarne and Pyshnov, 1990; Brill and
Ender, 1955; Jaccard and Levi, 1961; Gross, 1967, 1968; Gross et al., 1975, 1987).

In comparing the results of these studies, we find considerable agreement which
allows the following conclusions: (1) The amount of salt trapped in ice increases
with an increasing rate at which the ice solution interface advances implying that
salt segregation is most efficient if the interface advances slowly. Nevertheless, at
freezing rates of several centimeters per second, which are typical during the spon-
taneous growth of ice crystals in supercooled aqueous solutions, segregation is still
significant. (2) The amount of salt trapped in ice increases with increasing super-
cooling of the solution. This is partly due to the increased growth rate of ice at
lower temperatures, and also, for gases, due to their higher solubility in water at
lower temperatures. (3) The amount of foreign species trapped in ice is a function
of the type of species dissolved in water, and in particular of the type of ions into
which the species is dissociated in the solution. As expected from our discussion in
Chapter 3, generally negatively charged ions (anions) are more acceptable within
the ice lattice than are positively charged ions (cations). (4) Small ions are more
readily built into the ice lattice than are large ions or ions of complicated struc-
ture. (5) The two ions most readily accepted by the ice lattic are and

is preferred because of its electronegativity and because of its ionic radius,
which is similar that of the oxygen atom in a water molecule. Although does
not conform well with points (3) and (4), it is nevertheless preferred because of
its tetrahedral moleculear structure, which is analogous to the tetrahedral struc-
tural units in ice, and because of its ionic radius, which is similar to that of
thus making isomorphous with (6) Segregation of salts and ions is
most effective at concentrations in solution between and
In this concentration range, segregation usually exhibits a maximum. At higher
concentrations, segregation is progressively less effective. Generally, the partition
coefficient for salts varies between and (7) Due to ion separation at the
ice-solution interface, an interesting electrical effect occurs, known as the freezing
potential. Owing to the low conductivity of ice, the incorporated ions, distributed
throughout the ice volume, behave as a ‘frozen-in’ space charge. The charge of
opposite sign which remains in solution is distributed as a surface charge at the
ice-solution interface. This arrangement of charge results in the development of
an electrical potential between the ice and the aqueous solution. Typical freez-
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ing potentials range from several volts to several tens of volts, for some salts even
as much as a few hundred volts may be realized (Heinmetz, 1962; Workman and
Reynolds, 1950; Lodge et al., 1956; Pruppacher et al., 1968). Those interested in
freezing potentials may wish to consult, in addition to the previously mentioned
references, the theoretical explanations presented in Gross (1954), Le Febre (1967),
Chernov and Melnikova (1971), and Jindal and Tiller (1972). (8) Numerous stud-
ies have shown that also gases dissolved in water may be transferred into the ice
phase during the freezing of supercooled water containing dissolved gas. However,
as expected from the uptake of salt ions by ice, only a small percentage of the
gas present in supercooled water turns out to be actually transferred into the ice
phase. Thus, Snider al. (1992) found that the retention coefficient (defined as
the ratio of the gas concentration in the ice phase to the concentration of the gas
in the water in equilibrium with the surrounding gas) for a ventilated ice particle
growing by collision with water drops which contain is a
value much lower than the value found for by Iribarne and Pyshnov (1990)
for an unventilated ice surface. Jaccard and Levi (1960) found for and HF,

depending on the concentration of the gas. For Iribarne et
al. (1990, 1983) found at for and for

while Lamb and Blumenstein (1987) found near 0°C
and 0.12 near –20°C for,

5.11 Condensation, Deposition, and Thermal
Accommodation Coefficients

There are some important gas kinetic relations pertaining to surfaces which we
shall need in our discussions of nucleation and diffusion growth. Since they are of
an elementary nature, for the most part we wish only to record them here, without
derivations, for our future use.

Let denote the concentration of molecules and the mean molecular speed in
a Maxwell-Boltzmann gas. Then, the number of molecules crossing per unit time
to either side of an arbitrarily oriented planar unit area in this gas is

Also for such a gas, the relation between and temperature is

where is the molecular mass. And, if we may assume the gas is ideal, the gas
pressure is

Let us now consider the water-vapor interface. On combining (5-48) to (5-50),
we find that the molecular flux of water vapor to the surface can be expressed as
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where is the vapor pressure, and is the vapor temperature. For example,
for saturated conditions at 20° C, Of these imping-
ing molecules, only a fraction called the mass accommodation or condensation
coefficient, actually is retained by the water surface. Under equilibrium conditions
then, the rate at which molecules leave the surface must satisfy the relation

Experimental values for are listed in Table 5.4 based on a recent review of the
subject by Mozurkewich (1986). The data listed were derived from observations
with a quiescent or quasi-quiescent water surface, and from observation of growing
aerosol particles. We notice that these values scatter over a wide range from about
0.01 to 1.0. Mozurkewich concludes from his survey that for pure water and water
containing polar species, may be approximately taken as near unity.

The mean residence time of a molecule in the water surface is given by

of water surface. Assuming we then find
and sec at 20°C. This very short lifetime of a water molecule before it
evaporates from the water surface implies an extremely violent agitation; however,
because of the strong cohesion in the liquid surface this agitation is confined to
a layer of only a few molecular thicknesses. Note that this rapid exchange of
molecules applies only at equilibrium. Of course, should not be interpreted as
a net evaporation rate. Drop evaporation rates are discussed in Chapter 13.

We shall assume now that the flux of molecules leaving the water is independent
of the flux entering it, and that it is equal to the flux of molecules which would enter
the water if it were in equilibrium with the vapor phase for which i.e.,

where is the equilibrium number of water molecules present in one
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where is the temperature of the water surface.
Assuming we find for the net flux of molecules into the surface,

Analogously, for the net flux of water molecules to an ice surface, we write

where is called the deposition coefficient. Equations (5-54) and (5-55) are dif-
ferent forms of what is known as the Hertz-Knudsen equation.

More recently, Schrage (1953) and Patton and Springer (1969) have modified
this equation to account for the effect of net bulk vapor motion of the molecular
velocity distribution. According to these authors, a better representation for
is

where B = 0.5, according to Schrage.
Experimentally determined values for are listed in Table 5.5. We see from

this table that the deposition coefficient for water molecules on ice exhibits a trend
from values near unity at very low ice surface temperatures near 0°C. This result
may be interpreted as evidence for the quasi-liquid film which has been postulated
to exist on an ice surface.

Conceptually, one expects that water molecules striking a water or ice surface
suffer inhibited accommodation with respect to heat as well as mass flow. In order
to take this effect into account, one introduces a thermal accommodation coefficient.
In the context of interest to us, this coefficient is defined as the ratio of water vapor
molecules which on collision with a (macroscopic) water drop or ice particle achieve
thermal equilibrium with it, to the total number of water vapor molecules striking
the surface. This definition may also be expressed as
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where T' and T are the kinetic temperature of the gas molecules incident on,
and reflected by, the surface of the body with which the environment attempts
thermal equilibrium, and is the surface temperature of the body. From our
verbal definition it is clear that (5-57) is simply a statement of the balance
of thermal energy into and out of the surface. Experiments by Alty and Mackay
(1935), which unfortunately are the only ones available, show that for a water
surface, This indicates that most gas molecules thermally equilibrate
with a water surface during their residence time on that surface. No measurements
for an ice surface are available.



CHAPTER 6

EQUILIBRIUM BEHAVIOR OF CLOUD DROPS AND ICE
PARTICLES

Having established some background for use in studying the bulk and surface prop-
erties of water and aqueous solutions, it is appropriate now to take a closer look
at the equilibrium behavior of typical and/or idealized cloud particles of ice and
water. In particular, we shall study the equilibrium of (1) a pure water or aque-
ous solution drop surrounded by water vapor or humid air, (2) an ice crystal in
humid air, (3) an ice crystal and a separate solution drop in humid air, and (4) an
ice crystal immersed in a solution drop in humid air. We shall see later that the
relationships provided by these case studies are needed in order to formulate the
conditions for which cloud drops and ice crystals are nucleated in the atmosphere
(Chapters 7 and 9).

6.1 General Equilibrium Relation for Two Phases Separated
by a Curved Interface

In this section, we shall return to the system first discussed in Section 5.2, in which
a spherical bulk phase of radius   is imbedded in another bulk phase . We
suppose each phase contains component and other components constituting a
non-ideal mixture. Also, we allow mass transfers to occur between phases, but
exclude chemical reactions. We further assume thermal equilibrium, and let T
denote the common temperature.

Our goal is to obtain a single equation relating the differentials of                  and
the activities and for component There are, of course, several possible
starting points for accomplishing this; here we shall follow a particularly efficient
procedure suggested by Dufour and Defay (1963). We begin with the chemical
potential of component in either of the bulk phases (cf. (4-53)):

On dividing this expression by T, forming the total difierential, and using (4-13a)
and (4-13b), we find that for equilibrium changes

Now in equilibrium we have also; consequently, we may write

167
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Therefore, on combining this equality with (6-2) as applied to both bulk phases,
we may eliminate direct reference to the chemical potentials and obtain

Finally, we invoke the condition of mechanical equilibrium, (5-7), and introduce
the latent heat from (4-72); the desired form is thereby obtained from (6-4):

This result may well be regarded as the ‘master equation’ for this chapter, because
special cases of it describe nearly every situation we discuss. It is obvious that
(6-5) contains the Clausius-Clapeyron equation as a special case which is readily
obtained by letting and

6.2 Effect of Curvature on Latent Heat of Phase Change

Perhaps the reader is disturbed by a bit of sleight-of-hand we used in arriving at

But from (4-6) we see that where is the molar
entropy, while from (4-10) and (4-11) we find                   consequently,

For either water or ice, the second term in (6-7) is negligible in comparison with
the first; furthermore, since the compressibilities of water and ice are very small
(see Section 6.4), we may regard as constant when inserted into (6-6), and so
obtain

Now, if we denote the latent heat of pure substance in passing from phase
to spherical phase of radius by we see that

Consequently, for the case of a pure water drop in equilibrium with water vapor,
we can write

(6-5): In substituting for the enthalpy difference in (6-4), we glossed over
the fact that the pressures are not equal in phases  and ; thus, (4-72) does not
strictly apply. We shall now estimate the error incurred by ignoring this pressure
difference.

Evidently, the error is measured by
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This demonstrates that the latent heat of evaporation decreases with decreasing
radius of curvature of the water surface. At 0°C, the second term on the right
side of (6-10) has the value                    for     in cm. Thus, the error in setting

becomes less than 1%, as long as
Analogously, we find for the latent heat of sublimation

At 0°C, the second term on the right side of this equation has the value 
so that the error in setting is less than 1%, as long

as Considering (4-74), we find that it is also justified to set
with an error of less than 1%, as long as

6.3 Generalized Clausius-Clapeyron Equation

We noted in Section 6.1 that (6-5) contains, as a special case, the Clausius-
Clapeyron equation for a pure substance in bulk phases of negligible curvature.
We may now very easily derive its extended form for the case where the curvature
matters. For this purpose, consider again a pure water drop in equilibrium with
vapor at pressure We have and so we may rearrange (6-5)
to read

According to the phase rule for curved phases, (5-10), the present system has
two degrees of freedom. Let us hold the radius a constant and study the variation
of with T. Then, substitution of (6-10) and (4-80) into (6-12) leads to the
desired extension of the Clausius-Clapeyron equation:

where we should recall that the equilibrium vapor pressure over a curved water
surface actually has the physical meaning and the equilibrium vapor
pressure over a plane water surface has the meaning Since

for all T, curvature is seen to decrease the temperature variation of
the saturation vapor pressure. On evaluating the terms in (6-13) at 20°C, we have

for in cm. Thus, the quantitative effect is quite small (less than 1% difference
for as we might expect from our previous studies of the effects of
curvature.

In the remainder of this chapter, we shall ignore the small influence of curvature
on latent heat.
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6.4 Equilibrium Between a Pure Water Drop and Pure Water
Vapor or Humid Air

We may suppose a system comprised of a pure water drop  in an environment of
humid air  contains just two components, air and water, since there is negligible
selective adsorption of the gaseous constituents of air. Therefore, the system has
a variance of three according to the phase rule. We shall keep the temperature T
and the total gas pressure constant, and study the variation of the water vapor
pressure with radius With and (6-5) reduces
to

since for a pure water drop Assuming ideal gas behavior, we have
Making this substitution and disregarding for the moment

the compressibility of water, we may immediately integrate (6-15) between and
to obtain

or

This is the Kelvin equation, first derived by W. Thomson (later Lord Kelvin, 1870).
It demonstrates that at any given temperature, the saturation vapor pressure over
the surface of a water drop is larger than that over a flat surface, and increasingly
so with decreasing radius. Accordingly, in the atmosphere large drops must grow
by vapor diffusion at the expense of the smaller ones.

Since the Kelvin equation assumes equilibrium between the drop and its environ-
ment, we of course have the partial pressure of vapor in the environment.
Hence, we can also say that equilibrium requires an environmental supersaturation
of also, the Kelvin equation may be expressed in terms
of the saturation ratio in the form

A numerical evaluation of (6-17) is plotted in Figure 6.1 for 20°C and –20°C.
Note that the effect of curvature becomes important only for
and that the temperature dependence is relatively weak.

Let us assume now that air is absent from the system and that the water drop is
surrounded instead by pure water vapor. From the phase rule, it follows that this
system has two independent intensive variables. Of these we shall keep T constant
and again determine the variation of with Under these conditions, the first
and last terms of (6-5) are zero assuming ideal gas behavior),
and we obtain
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On substituting the ideal gas law for and integrating between and (6-18)
yields

which demonstrates that However, the difference is small:
Comparison of (6-17) and (6-18) shows that

for alI cases of interest.
Notice that in our derivation of the Kelvin equation, we assumed nowhere that

the surface tension is independent of the curvature of the drop. However, we did
assume that the compressibility of water is negligible. This latter assumption has
been investigated by Dufour and Defay (1963), who found that the inclusion of
compressibility leads to the following modification of (6-17):

where is the molar volume of pure water in bulk, in contrast to in
(6-17) which is actually the molar volume evaluated at the internal pressure of
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the temperature range +30 to –30°C varies between and about
(Handbook of Chemistry and Physics), we readily find

that for all drop radii encountered in clouds. We may therefore
represent by its bulk value with negligible error.

6.5 Equilibrium Between an Aqueous Solution Drop and
Humid Air

Let us now investigate the more interesting and realistic case of the equilibrium
between a drop of an aqueous salt solution and an environment of humid air

. We assume that the dissolved substance has no vapor pressure of its own, and
that its mass in the drop remains constant. The first of these assumptions holds
for all salts typically found in the atmosphere. The second assumption holds for
at least the early stages of cloud drop formation; during the later stages of growth,
solutes may be added to the drop by means of various scavenging mechanisms.

According to (5-10), this system has three components, and so w = 4. However,
the required constancy of salt mass in the drop introduces an additional relation
between the drop radius and the mole fraction of water in solution, which makes
w = 3. The volume of the solution drop is given by Since

where are constants, the additional relation is

Let us now determine the dependence of the saturation vapor pressure on
radius, subject to the conditions of constant T, and total air pressure This
time only the last two terms of (6-5) survive, and since we now have
but the following result is obtained:

On integration from this equation yields

or

where is given by (4-68) and (4-69). For (6-24) reduces to the Kelvin
law, while for a flat water surface, the generalized Raoult’s law, (4-60), is recovered.

Unfortunately, no information is available on the curvature dependence of the
activity coefficient of water in an aqueous solution. However, in view of our previous
discussion of the effects of curvature, it seems very reasonable to regard it as

the drop, and is the compressibility. Since in
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negligible, and we shall do so here. Considering (4-69) and (4-66), we may replace
in (6-24b) by

Therefore, for a drop in equilibrium with its environment (6-24) may also
be written in the form

or

Now for a sufficiently dilute solution such that and
(6-26b) reduces to the more convenient form

where

in cgs units and with T in K. Finally, if (6-27) reduces further to

Equations (6-26) to (6-29) are different forms of the Köhler equations (Köhler,
1921a,b, 1922, 1927, 1936).

As we have seen, the vapor pressure over a pure water drop always obeys the
inequality                   In contrast, the vapor pressure over an aqueous solution
drop may be larger or smaller than        depending on whether the solute term
(the second term on the right side of (6-26) and (6-27)) is smaller or larger than
the curvature term. This, in turn, implies that an aqueous solution drop may be
in equilibrium with a subsaturated environment. Specifically, if then

The Köhler equations are plotted in Figure 6.2 for solution drops of two repre-
sentative salts. The maxima in the curves are found from (6-29) to occur approxi-
mately at the critical radius corresponding to   –

(In the remainder of this chapter, we shall use the subscript c
to denote conditions at the critical radius.) It is interesting to note that for
the solution drop is in unstable equilibrium with its environment, just as a pure
water drop is in unstable equilibrium at all sizes. For          on the other hand,
the solution drop is in stable equilibrium. This behavior can be understood on
realizing the environment effectively provides an infinitely large reservoir of water
vapor at constant pressure. For example, suppose the equilibrium state is given by
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a point on the descending branch                of one of the equilibrium growth curves
in Figure 6.2. Assume now that a small perturbation causes a few molecules of
water to be added to the drop. At the slightly larger new radius, the equilibrium
vapor pressure is lower; hence, vapor will continue to flow to the drop, and it will
grow ever larger. Conversely, a small evaporation excursion will produce a slightly
smaller radius for which the equilibrium vapor pressure is higher than that provided
by the environment, and the drop will therefore continue to evaporate. If the drop
is pure water, it will evaporate completely. On the other hand, if it is a solution
drop, it will diminish in radius until it has reached a size which corresponds to an
equilibrium state on the ascending branch of the given equilibrium curve.
Now it will be in stable equilibrium. For we see that
i.e., the environmental vapor pressure is insufficient (excessive) for equilibrium at
the new radius, and evaporation (condensation) will ensue to oppose the initial
radius perturbation.

If the environment has reached a supersaturation equal to or larger than
it is said to have reached the supersaturation needed to activate the

drop. We note also that it is customary to call the radius of an aqueous solution
drop which is in equilibrium with an environment of the potential radius

from which Thus, we may
write (6-27) in terms of as

This expression implies that aqueous solution drops which have the same potential
radius exhibit the same equilibrium variation of       with drop size.
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Equation (6-26) shows how the equilibrium behavior of an aqueous solution drop
depends on the total mass of salt in the drop, as well as on the type of salt

This dependence is also illustrated in Figure 6.3, which shows that the
smaller the mass of the salt in the drop, the higher the maximum, and the steeper
the pre-maximum branch of the equilibrium curve for that drop. The effect of the
type of salt in solution is also illustrated in Figure 6.2 for drops containing NaCl
and By comparing the figure with (6-27) and (6-28), we see that the
dominant influence is the molecular weight of the salt, which is much larger for

than for NaCl, so that the equilibrium curves for a solution drop of
lie above the corresponding ones for NaCl.

Temperature has only a small effect on the equilibrium conditions for solution
drops, as Table 6.1 shows. The trend, such as it is, indicates that the supersatura-
tion necessary to hold a given solution drop in equilibrium increases with decreasing
temperature.

Table 6.2 lists the amount of water which is acquired and the salt dilution which
is experienced during equilibrium growth of an aqueous solution drop of given
salt content at different environmental equilibrium humidities. It is seen that the
dilution of the salt solution is generally small, as long as the drop is in equilibrium
with an environment of However, the dilution increases quite rapidly as

increases beyound 1.0 and approaches

6.6 Equilibrium Between Humid Air and an Aqueous
Solution Drop Containing a Solid Insoluble Substance

Most atmospheric aerosol particles are mixed, i.e., they are composed of water
soluble and insoluble substances (see Chapter 8). The purpose of this section is
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to study the effect of a solid insoluble substance within an aqueous solution drop
on the equilibrium conditions for that drop. In this study, we shall assume that
the insoluble particle does not take up any water by itself and does not adsorb salt
ions, and that it is completely submerged.

Since the molality of the solution drop is unaffected by the addition of the
insoluble particle, we may take (6-24) as our starting point. For we invoke
(4-65) and (4-69) to obtain

or

where is the mass fraction of water soluble material in a mixed
aerosol particle of mass in and radius Assuming that the total drop volume

can be approximated by from which
we find from (6-31) with (6-24)

and with

where Also, the densities and of the aerosol particle
and its soluble and insoluble fractions are related according to

and
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Equations (6-32) to (6-34) are different forms of a relationship first derived by
Junge (1950) and later refined by Junge and McLaren (1971).

Equation (6-34) has been solved by Hänel (1976) for aerosol particles of different
masses containing a water insoluble substance and or NaCl in
various volume proportions. The results of these computations are summarized in
Figure 6.3 and Table 6.3. We notice that the water uptake by the aerosol particle
increases with increasing water soluble fractions of the particle. For a given or

the water uptake also increases with increasing total mass of the aerosol particle
on which the drop forms.

The maxima in the curves of Figure 6.3 are found by differentiating (6-33) ap-
proximated as in (6-29):

with

The result for the activation radius is

with

and

Expressing (6-37) in terms of we find for the critical radius of a dry
aerosol particle which at a given supersaturation becomes activated at the
radius

If the number concentration of aerosol particles as a function of their size is known,
(6-42) permits determining the number of aerosol particles which become activated
at a given super-saturation.

6.7 Equilibrium Conditions for Ice Particles

We now consider three equilibrium situations involving the ice phase: (a) an ice
particle  in humid air , (b) an ice particle and a separate supercooled
solution drop  in humid air , and (c) an ice partide in a supercooled
solution drop in humid air. These three cases are illustrated in Figure 6.4.
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If we assume a spherical ice particle, the analysis of case (a) proceeds in strict
analogy to the derivation of the Kelvin equation, (6-16), and we find the saturation
vapor pressure over ice, varies with radius according to

and for the case of equilibrium between the ice particle and the environmental
vapor

This result is plotted as curves 3 and 4 of Figure 6.1 (for 0 and –20°C). The
behavior is seen to be very similar to that for a pure water drop, except that at
small radii, This is primarily a consequence of the
inequality

If we abandon the requirement that the ice particle be spherical and, instead,
make it a hexagonal prism which follows Wulff’s relations (Section 5.7.2), then, in
place of (6-38) we have

where and are the perpendicular distances from the crystal center to the
prism and basal planes, respectively. Thus, the conditions at equilibrium for the
hexagonal prism which are compatible with Wulff’s relations are formally similar
to those which apply to the cases of a water drop and an amorphous sphere of ice.

We now turn to case (b) to study the equilibrium behavior of a system comprised
of a spherical ice particle of radius and a separate aqueous solution drop of radius

both surrounded by humid air. As in Section 6.5, we have three components,
and we assume the constraint so that w = 3. Let us hold the
environmental pressure constant and determine the independent variations of
and with the equilibrium temperature.

On proceeding to specialize (6-5) in the appropriate, and by now familiar man-
ner, we obtain for the solution drop
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and for the ice particle

These equations express the separate equilibrium balances between the drop and
its environment and the ice particle and its environment. To put the drop and ice
crystal in equilibrium with each other as well, requires that Imposing this
condition, we may eliminate the vapor pressure term between (6-46) and (6-47) to
obtain

An approximate integral of (6-48) between
and is

where we have used (6-25) for and employed an overbar to denote mean values
over the temperature interval For a pure water drop, this reduces to

Inspection of these equations reveals that the presence of salts lowers the equi-
librium temperature, as expected from the behavior of water in bulk. This effect
is evident in Figure 6.5. However, we see that for NaCl the concentration has to
be larger than about to cause a noticeable effect. The figure also
indicates that, while for a pure drop of given size, the equilibrium temperature
decreases with decreasing ice particle size, increases with decreasing drop size
for a given ice particle size. This opposing behavior derives from the different de-
pendencies of temperature with saturation vapor pressure over ice and supercooled
water.

In Figure 6.6 we have plotted the separate solutions to (6-46) ( for     00     ) and (6-
47); the curve intersections therefore constitute states satisfying (6-48). This figure
shows that for all drops and ice particles with the equilibrium
temperature is essentially equal to the triple point for bulk phases (point A). The
figure also reveals the contrary temperature dependence referred to above: for a
drop of and an ice particle of
(point B), while for and (point D). On
the other hand, for an ice particle of cm and a drop of

(point C), a warmer temperature than for point D. Finally, we note
that for for T < 0°C, the same behavior as for ice and water in
bulk

Let us now consider case (c) and determine the equilibrium temperature for
a spherical ice particle inside a supercooled aqueous solution drop which is itself
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in equilibrium with the environmental humid air. As in case (b), such a system
has three independent variables. Of these, we shall keep the total gas pressure
constant and study the variation of the equilibrium temperature with the radii
and

For this case, (6-5) becomes with

or, on substituting the condition of mechanical equilibrium, (5-7),

Integrating as in case (b), we find

which for a pure water drop becomes

If the drop is much larger than the ice crystal, this last equation reduces to

Finally, if is close we may write

Equations (6-54) to (6-56) are different forms of a relation first derived by J.J.
Thomson (1888).

For a solution drop, we may obtain a similar simplification of (6-53) for the case
and assuming

The second term may be recognized as a combination of (4-94) and (4-66) and,
thus, is the equilibrium freezing point depression, due to the presence of
salts in bulk solution. Therefore, to the precision indicated in the derivations of
(6-56) and (6-57), we may write
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i.e., the total equilibrium freezing point depression is simply the sum of contribu-
tions from the separate curvature and solute effects.

A numerical solution of (6-52) is displayed in Figure 6.7. In accordance with (6-
56), the equilibrium freezing temperature is seen to decrease with decreasing size of
the ice particle. This decrease becomes particularly pronounced for
and is further enhanced by the solute effect if the salt concentration is larger than
about

6.8 Experimental Verification

Several experimental difficulties have been encountered in attempting to verify the
various equilibrium relationships discussed in the previous sections. The major
difficulty in verifying the Thomson equation, (6-56), has arisen from a lack of ac-
curate values for Generally, therefore, the approach has been to assume the
equation is correct and deduce values for these in turn can be compared with
other independently determined values for this quantity. Pawlow (1910), Meissner
(1920), Tammann (1920), and Kubelka (1932) were among the first to verify ex-
perimentally that the melting temperature of a pure solid substance is dependent
on whether the substance is present in bulk or in the form of small particles. Ex-
periments for the ice-water system were first carried out by Kubelka and Prokscha
(1944), Skapski et al. (1957), and Skapski (1959). These experiments involved
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measuring the melting temperature of ice contained in pores and capillaries, or of
ice in the form of thin wedges. Unfortunately, this method is subject to a consid-
erable number of errors, and the interface energies obtained only agreed to within
20% with values derived from independent measurements. In subsequent years,
more accurate techniques involving electron microscopy and electron diffraction
have been developed and perfected (Wronski, 1967; Pocza et al., 1969; Sambles,
1971). These more recent tests of the Thomson equation for tin, indium, lead,
and gold particles of radii between and have yielded excellent
agreement between experiment and theory.

Uncertainties concerning the Kelvin equation, (6-16), have been due mainly to
the fact that the liquids tested were held in capillaries (see Skinner and Sambles,
1972). The first successful attempt to test the Kelvin equation for freely falling
drops was carried out by Gudris and Kulikova (1924), who established its validity
to within 10%. Subsequently, La Mer and Gruen (1952), experimenting with freely
falling droplets in mixtures of dioctylphtalate and toluene, and of oleic acid and
chloroform, verified the Kelvin equation to within 5% for drops larger than
radius. More recently, Sambles et al. (1970) and Sambles (1971), through electron
microscope studies of the evaporation rates of small drops of lead, silver, and gold,
established the correctness of the Kelvin law to within 5% for drops of sizes between
0.1 and

Quantitative experimental studies to verify (6-26) and (6-34) for increasing or
decreasing relative humidity were carried out first by Junge (1936) and by Orr et al.
(1958a,b) for Aitken sized particles, by Junge (1952a) for large and giant particles,
and more recently by McMurry and Stolzenburg (1989) using differential mobility
analyzers. An alternative method was used by Alofs et al. (1979), Gerber et al.
(1977), Hoppel (1979) and Hoppel et al. (1981), who tested (6-26) and (6-34) by
determining the critical supersaturation required to activate NaCl and
particles. The earlier as well as the later tests were found to agree well with (6-26)
and (6-34). An example of this agreement is given in Figure 6.8 which compares
the critical supersaturation for the activation of NaCl and particles
with (6-42).

Unfortunately, the experiments just described provide support for the equilib-
rium growth equations only as far as the average size of a large number of particles
in a given size category is concerned. More definite experimental verification of
the equilibrium growth equations was provided by Tang (1976), Tang and Muck-
elwitz (1978, 1984, 1994), Fung et al. (1987), Richardson et al. (1986a) and Tang
et al. (1986) who studied the growth of single aerosol particles freely suspended
by an elctrodynamic suspension technique in a humidified chamber. The resulting
equilibrium growth and evaporation behavior of an aerosol particle is
shown in Figure 6.9a where comparison is made with the predictions of (6-26).
We notice from this figure that, during growth, excellent agreement between the-
ory and observation was obtained for relative humidities above the deliquescence
point. In Figure 6.9b, the equilibrium growth and evaporation behavior of a mixed
particle consisting of and is shown. Comparing the
relative humidity for the onset of deliquescence of this mixed particle with the on-
set of deliquescence for the pure components, given in Table 4.3, we notice that
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deliquescence of the mixed particle begins at a relative humidity which is lower
than that required for any of the components. Note also from this figure that equi-
librium growth and shrinking of a solution drop follows the same curve only above
the deliquescence point. Below the relative humidity for deliquescence, a shrink-
ing drop does not solidify as expected from its growth curve. Instead, the drop
supersaturates with respect to the salt in it and continues to shrink at decreasing
relative humidities in agreement with (6-26). At some unpredictable relative hu-
midity, salt nucleation sets in inside the highly supersaturated drop. This behavior
is illustrated in Figure 6.9a,b in terms of the ‘hysteresis loop’, which is described
by the drops equilibrium growth and shrinking. These experiments suggest that
during the evaporation of atmospheric clouds, some of the drops may be present in
a metastable state consisting of a solution, highly supersaturated with respect to
the salt contained in them. Such drops have been observed to exist in urban and
rural atmospheres at relative humidities between 45 and 75% (Rood et al., 1989).

A similar hysteresis behavior was noticed by Winkler (1967, 1968, 1970, 1973)
and by Winkler and Junge (1972) during studies of the equilibrium growth and
evaporation of aerosol particle deposits. Three such hysteresis curves are given
in Figure 6.10 for deposits of pure salt particles of known chemical composition.
As expected, observation and theoretical prediction are in good agreement for the
equilibrium growth at relative humidities above the deliquescence point. The hys-
teresis behavior of natural aerosol deposits is exemplified in Figures 6.11 and 6.12.
No comparison with theory could be made since the chemical composition of the
deposits was not known. As expected from the equilibrium growth of pure salt
particles, natural aerosol deposits begin to take up water at relative humidities
well below the deliquescence point, although the actual amount of water taken up
is small for relative humidities up to the deliquescence point. Above this point the
water uptake rapidly increases. Note that the equilibrium growth curve for de-
posits of aerosol particles of continental type are smooth (Figure 6.11) while those
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of maritime origin exhibit a characteristic near-discontinuity near 75% relative hu-
midity (Figure 6.12). This ‘sea-salt discontinuity’ is due to the presence of NaCl
in the deposit which has a deliquescence point near 75% relative humidity. We
further note that at any given relative humidity maritime aerosol deposits take up
considerably more water than continental aerosol deposits. This is due to the large
portion of water-soluble, hygroscopic compounds in the former deposits, and also
due to the stronger water uptake of NaCl as compared to the prevalent
in continental aerosols.

Three factors help explain why aerosol deposits take up water at a value of
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less than that necessary for equilibrium with a salt saturated solution.
Firstly, the water solubility of any substance is a function of particle size. Sol-
ubility is enhanced especially if the particle size decreases below about
This solubility enhancement was predicted qualitatively by Ostwald (1900) and
Freundlich (1926) through a Kelvin law type analysis, and has been quantitatively
established by the experiments of Dundon and Mack (1923), May and Kolthoff
(1948), and Orr et al. (1958a,b). The experiments of Orr et al. showed that NaCl
particles of radius go into solution at a relative humidity of 69 to 70%,
while NaCl particles of radius need a relative humidity of 74%. Particles of

with radii of were found to form a saturated solution drop at
68% relative humidity; KCl particles of radius went into solution at 78%
relative humidity. These values are considerably below the relative humidities nec-
essary for salt in bulk, which are 75.3% for NaCl, 80% for and 84.3%
for KCl.

Secondly, aerosol particles contain air capillaries in which condensation of water
vapor proceeds at a relatively low saturation ratio. This can be explained if we
consider that the meniscus of water in a capillary with water wettable walls is
concave, in contrast to the convex surface of a water drop. Therefore, instead of
(6-16), we now have

which means that the smaller the radius of curvature   of the water surface in
the capillary, the lower the equilibrium vapor pressure over it. For only partially
wettable capillary walls characterized by a contact angle the argument of the
exponential must be multiplied by but this does not change the qualitative
effect of capillary spaces in the particle surface.

The third reason for the occurrence of deliquescence is simply that all solids show
some affinity for water vapor and, thus, adsorb it onto their surfaces, as discussed
in the previous chapter. The amount of adsorbed water vapor may be considerable,
even at low relative humidities.

The development of a hysteresis loop in an equilibrium growth curve has three
main causes. Firstly, evaporating salt solutions tend to supersaturate with respect
to the salt in solution, as we stated earlier. This is due to the fact that the
crystallization of salt requires surmounting an energy barrier unless suitable solid
particles are present in the solution to serve as centers for crystallization. Thus,
as the relative humidity decreases, the equilibrium growth curve is determined
by the water vapor pressure over the supersaturated salt solution, until, at some
undetermined relative humidity, the salt crystallizes. This behavior is in contrast to
the growth during increasing relative humidity, which is assisted by the adsorption
and deliquescence behavior of the substances in the aerosol deposit.

Secondly, air capillaries in aerosol particles behave differently during increasing
relative humidity when they become filled, than during decreasing relative humidity
when they are being emptied. Figure 6.13 demonstrates this hysteresis effect in a
cylindrical capillary with an opening narrower than the body of the capillary. From
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(6-59), it follows that such a capillary begins to fill at a higher relative humidity
than that at which it begins to empty.

A third reason for the hysteresis loop is that water-insoluble substances such
as clays behave differently during water adsorption than desorption, due to the
presence of alkali ions in the silicate lattice. During increasing relative humidity
(adsorption), the tendency of these ions to be bonded to the clay surface dominates
their tendency to hydrate (to become surrounded by and weakly bonded to water
molecules), particularly at low humidities. During the desorption which occurs with
decreasing humidities, however, the silicate ions are already largely hydrated, and
so their tendency to remain hydrated dominates the tendency to become bonded
again to the clay surface.



CHAPTER 7

HOMOGENEOUS NUCLEATION

Our outline in the previous three chapters of the equilibrium thermodynamics of
the phases of water is insufficient for an understanding of cloud particle formation,
since we did not come to grips with the crucial question of how a new phase is
initiated. Consider, for example, that on the basis of the Kelvin equation alone,
the formation of a water drop from homogeneous water vapor would be precluded
because the vapor pressure required to hold a microscopic quantity of newly formed
phase in equilibrium would be quite enormous. This expectation is in disagreement
with experimental observations which show that a large but finite supersaturation
exists above which homogeneous phase change does take place. The reason for this
behavior is that the formation of a new phase at the expense of a metastable original
phase (‘mother phase’) does not begin in a continuous manner, but rather takes
place spontaneously as a result of fluctuations in time and space of temperature
and density in the original phase, provided that a critical supersaturation of the
vapor or a critical supercooling of the water drops is exceeded. This spontaneous
process is called nucleation.

From our studies of adsorption we might expect that nucleation could be greatly
assisted if suitable solid surfaces were present. In fact, as we know from Chapter 1,
such heterogeneous nucleation has long been recognized as being generally respons-
ible for cloud formation. However, in order to clarify the physical principles involved
in the nucleation process, we shall assume for now that all foreign substances are
absent, and study homogeneous nucleation which occurs when only water substance
is present. Homogeneous nucleation of drops in supersaturated vapor can only be
realized under laboratory conditions and does not occur in the atmosphere. On
the other hand, we shall see in Section 7.2 that homogeneous ice nucleation in
supercooled water drops is the controlling mechanism for the formation of cirrus
clouds in the atmosphere.

Some useful references for the material in this chapter include the texts by Abra-
ham (1974b), Zettlemoyer (1969), Defay et al. (1966), Hirth and Pound (1963),
Dufour and Defay (1963), Frenkel (1946), and Volmer (1939), and the review ar-
ticles by Chalmers (1964), McDonald (1962, 1963a), Turnbull (1956), Dunning
(1955), and Hollomon and Turnbull (1953).

191
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7.1 Homogeneous Nucleation of Water Drops and Ice
Crystals from Water Vapor

7.1.1 EQUILIBRIUM POPULATION OF EMBRYOS AND ENERGY OF EMBRYO

FORMATION

Within the metastable bulk phase of water vapor are small molecular clusters
which result from the chance agglomeration of water molecules; these are generally
referred to as embryos if the vapor pressure is below the critical value required for
nucleation. Such embryos have small binding energies and are easily disrupted by
thermal agitation. However, at a critical vapor pressure some embryos will reach
a critical (germ) size, which are in unstable equilibrium with the mother phase. A
germ will proceed to grow spontaneously and thereby produce a macroscopic phase
change if, as a result of fluctuations in the mother phase, its size increases by even
an infinitesimal amount.

Therefore, in order to understand the nucleation phenomenon, one must first
learn something about the prenucleation embryos. For the sake of simplicity and
on considering the relative populations of (embryos consisting of molecules
and denoted by it is generally assumed that these grow by the capture of
single molecules (monomers). A further convention is to assume a state of dynamic
equilibrium for the , which we may express in the form

(the forward and reverse rates are assumed equal). On adding up a series of such
equations, we have also

As this represents an equilibrium situation, the corresponding statement in terms
of chemical potentials is

where is the chemical potential of an

7.1.1.1 Formal Statistical Mechanics Description

Let us now proceed to determine the number of in a volume V of vapor
held at temperature T. As we are dealing in principle with a microscopic fluctu-
ation phenomenon, it is appropriate to apply, insofar as possible, the machinery
of statistical mechanics. For this purpose, we make the standard assumption that
the vapor system consists of a mixture of non-interacting ideal gases; i.e., each
collection of is considered to be an ideal gas of indistinguishable particles.
Then, in view of the fact that we may expect small fluctuations in it is compu-
tationally convenient to determine via the grand partition function of the grand
canonical ensemble (see Appendix A-7.1). An alternative description in terms of
the canonical ensemble has been given, for example, by Dunning (1969).

The grand canonical partition function for the component gases of is
(A.7-15):

CHAPTER 7
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where is the canonical partition function for the gas of

from (A.7-6). In this expression, is the partition function for a single
Then, from (A.7-12) and (A.7-14), the size distribution is given as

The convenience of the grand partition function is that it can easily be re-
arranged in a manner which greatly simplifies the indicated calculation in (7-6).
Thus, on substituting (7-5) into (7-4), we have

Consequently, we find immediately from (7-6) that

By writing (7-8) once more for and combining these two equations with (7-3),
we can eliminate direct reference to the chemical potential to get

which is known as the ‘mass action law’. This result may also be expressed in a
form containing a Boltzmann factor, viz.,

where represents the energy required to form an embryo of molecules. Com-
paring (7-10) with (7-9), for the energy of embryo formation, we find

Here is the number of water molecules in V for conditions at saturation with
respect to a flat water surface, and is the saturation
ratio of the system.

The determination of has now been reduced to the problem of evaluating
the partition function for the Unfortunately, however, no one has yet
found an accurate ab initio way to do this. This is hardly surprising, since
depends on the complex structure of the which is largely unknown and
on a realistic intermolecular interaction potential suitable for an arbitrary poly-
molecular aggregate, which is not available.

Consequently, at this point, a much more heuristic approach is necessary. Prob-
ably the most successful such procedure is that of Plummer and Hale (1972) and
Hale and Plummer (1974a,b), who postulated certain allowed structures for the

and proceeded to work out the corresponding
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7.1.1.2 Molecular Model Method

As mentioned in the previous section, the procedure followed by Plummer and
Hale is to assume certain structures for the embryo and to determine the
corresponding The size distribution is then available directly from (7-10) and
(7-11). A direct determination of the partition function would require a realistic
description of the inter-action potential for the cluster-vapor system. Unfortu-
nately, a realistic intermolecular potential which can be applied to an arbitrary
number of water molecules in large clusters is not available. Therefore, Plummer
and Hale assumed the following form for

where and are the translational and the rotational partition functions of
the and where is the vibrational partition function
given in terms of the intramolecular, intermolecular, and librational contributions,

is the contribution of the intermolecular binding energy
to the partition function, and is the configurational contribution to the

partition function.
Each of these quantities has been evaluated semi-empirically in a manner de-

scribed by Plummer and Hale (1972), Plummer (1973), and Hale and Plummer
(1974a). In these evaluations, it was assumed: (1) that have a well-defined
structure, (2) that each structure has a lifetime sufficiently long to characterize
its internal vibrational spectrum, and (3) that the internal structure of a water
molecule is negligibly affected by cluster formation.

The assumed structure for water clusters in supersaturated vapor is that of
closed or partially closed clathrates composed of five-membered rings (Pauling,
1962). An example of such a structure for a 20-mer is shown in Figure 7.1a. These
cluster forms fulfill the imposed criteria that the molecules associate by hydrogen
bonding with bond angles which are roughly tetrahedral, that the number of bonds
be maximized, and that the forms possess near-spherical symmetry. This choice of
geometry is supported by the studies of Lin (1973) and Searcey and Fenn (1974)
(see Section 3.2).

However, these perfectly ordered clathrate structures cannot be used to repre-
sent arbitrarily large since it becomes difficult to maintain the closed ‘cages’
without grossly distorting the bond angles and lengths. This results in the occur-
rence of considerable bond strain for the effect of which has been studied by
Hagen (1973).

For the study of prenucleation embryos of ice in vapor, Hale and Plummer
(1974a) assume an structure composed of rings containing six water mole-
cules each (see Section 3.3). A typical structure with 20 molecules is shown in
Figure 7.1b.

7.1.1.3 The Classical Description

Since we cannot rigorously proceed beyond (7-9) or (7-10) and (7-11), there arises
the possibility that an earlier resort to intuition and approximate physical modeling
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might, in some respects, be more appropriate. Not surprisingly, this is the historical
route of development of the subject (e.g., Volmer and Weber, 1926; Farkas, I927;
Becker and Döring, 1935; and Zeldovich, 1942). These workers arrived relatively
quickly at a complete description for via two major assumptions: (1) the prenu-
cleation embryos may be regarded as water spheres, characterized by the usual
macroscopic densities and surface tensions, and (2) they are distributed according
to the Boltzmann law.

The assumption of a Boltzmann distribution like (7-10) is quite reasonable: the
are in thermal equilibrium, and the probability that they have a certain

energy is just the probability for their existence, if we interpret as the
energy of formation of the

Let us therefore consider the energy of formation of a drop of radius a. We may
assume the required phase change occurs at constant temperature. However, it is
not a constant pressure process, according to (5-11). On the other hand, we may
assume that the total volume V of the system considered (the mother phase plus
the condensed phase) remains constant. Therefore, the Helmholtz free energy F
is the proper thermodynamic potential to use in our description. (Elaborations
of the point that F, rather than the traditionally used Gibbs function G, is the
proper potential may be found in Abraham (1968) and Dufour and Defay (1963).
For practical purposes, the resulting differences turn out to be negligible.)

Suppose the system to be comprised, after the phase change, of moles of water

onto the interface i.e., we assume The total system Helmholtz free
energy at this time is thus given, considering (4-3b) and (5-13) and the definition

where we have used the subscript 2 to denote the post-phase change condition.
Similarly, before the phase change we have

195

within the drop, and moles of water vapor. We neglect any adsorption of water

by
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Further, we may assume that the small amount of new phase negligibly affects the
vapor, so that and therefore, by subtraction we find
for the energy of new phase formation

On introducing the mechanical equilibrium conditions (5-11) and noting that
we may express (7-15) as

We recall now that for T = constant, so that on integration and
ignoring the compressibility of water, this leads to

Substituting (7-17) into (7-15) and using as well as (5-11), we
obtain

where the first term is the volume or bulk free energy change and the second is the
surface energy change.

Let us now express these results on a molecular scale, assuming that we may still
employ macroscopic densities and surface tensions. Then, from (7-18), the energy
of formation of an is

This form has not made use of the assumption of spherical geometry; consequently,
it will hold for complex shapes. (However, it may be necessary to generalize
the surface term. See Section 5.7.) At equilibrium, we also have

where refers to the pressure in the water germ. Thus, (7-17) becomes

In the last step, we have invoked mechanical equilibrium again. Going one step
further, we may introduce the saturation ratio through the Kelvin law, (6-17), and
arrive at the result

Consequently, another form of (7-20) is

In terms of the radius, this is
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We have now reached our goal of describing the distribution of prenucleation
embryos via the classical approach: the energy of formation has been deter-
mined as a function of embryo size, and so we now merely identify in
(7-10) to obtain

or with

(For a highly detailed and quite different derivation of the same result, see Dufour
and Defay, 1963.)

The behavior of as given in (7-24) is shown in Figure 7.2. We see that
for vapor just saturated with respect to bulk water, the energy of formation
rapidly increases with size (as from (7-24)). However, the behavior is seen to be
quite different for supersaturated vapor. In this case, the curves each have a single

of formation which decreases with increasing size. Thus, for
evidently represents the energy barrier to nucleation.

Consequently, through the classical approach we have available not only but
also a description of the germ radius as a function of supersaturation. This is
given by by differentiating (7-24) and setting the result equal to zero
to obtain the maximum, we find

maximum at some radius so that of radius require a work
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i.e., the Kelvin law is obtained, as is necessary for consistency since the germ is in
(unstable) equilibrium with the vapor. Furthermore, by inserting this result into
(7-24), the energy barrier to nucleation, or the free energy of germ formation, is
found to be

where is the surface area of the germ. This is the classical estimate
of the amount of energy which must be supplied by fluctuations in the metastable
mother phase in order for nucleation to occur.

With regard to Figure 7.2, Byers (1965) has stressed that physical reasoning does
not suggest that embryos for are to be found in large numbers increasing
with size, as we might expect from the negative exponent of (Equation (7-26)).
After all, our physical concept of the nucleation event assumes that clusters which
reach a size are in metastable equilibrium, which may lead spontaneously to
the growth of a macroscopic new phase. Following Byers, we therefore have marked
the curves beyond the maximum by a dashed line.

It is worthwhile at this point to record also the analogous expressions for homo-
geneous nucleation of ice in vapor. Obviously, (7-27) and (7-28) will also hold for
a spherical ice germ in unstable equilibrium with water vapor, if we merely replace

by by by and by
As we shall see, these results of the classical theory provide a simple basis for

predicting nucleation rates which are very similar to those actually observed. This
is a much better outcome than we might have expected, in view of the first rather
dubious assumption, referred to at the beginning of this section, which serves as
half of the foundation for the classical description. Thus, it does not seem very
likely that small clusters of molecules should exhibit macroscopic properties. And
even if one could assume the macroscopic description is correct in principle, there
would still arise conceptual difficulties in its application. In particular, it is not
easy to decide where to locate the surface of separation between the phases, since
the actual phase transition region may have a thickness comparable to the germ
radius (see, for example, Ono and Kondo, 1960). Also, some size correction for the
macroscopic surface tension would appear to be in order (recall Section 5.4.3 and
Table 5.1).

We have already made some remarks in defense of the assumption of a Boltz-
mann distribution for the prenucleation embryos. However, here again conceptual
difficulties arise in implementing the assumption. The difficulty this time is in de-
scribing accurately the contributions to the free energy of formation of the embryo.
The classical account of assumes the embryos are at rest in the mother phase.
This is obviously incorrect, but the error which results thereby is not obvious.

Nevertheless, some confirmation of the classical approach comes from the results
of the molecular model. For this purpose, we identify from the classical model
with from the molecular model, obtained according to the model calculations
of inserted into (7-11), and plot them together as a function of the number of
molecules in a cluster. The values for the case of water embryos are shown in
Figure 7.3. The effects of bond strain for the larger clusters is also indicated; this
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causes only a small increase in the formation energy. The general good agree-
ment with the classical model is most impressive and surprising, considering the
theoretical deficiencies of the latter.

Before closing this section we should also mention another approach to the homo-
geneous nucleation problem, which is to use Monte-Carlo techniques to evaluate

The method is based on a stochastic process which generates a Boltzmann-
weighted set of configurations for a given closed system containing a fixed number
of molecules. For details, see Abraham (1974b). Though this method holds great
promise for the future, it imposes a heavy computational burden on present gen-
eration computers, and it has so far been possible to simulate the growth of only
small clusters. Consequently, we shall not consider it further here.

7.1.2 THE NUCLEATION RATE J

When homogeneous nucleation of water from the vapor occurs, what is observed
is the (rather sudden) formation of a cloud of small drops. Thus, the experimental
quantity of interest is the rate at which drops appear in the system as a function
of the prevailing saturation ratio Let us denote this rate by J, measured
as the number of drops appearing per unit volume and per unit time. We shall
make the traditional assumption that J corresponds completely to the rate of germ
formation; i.e., it is the nucleation rate.

A simple and direct way to estimate J has probably occurred to the reader:
assume (7-26) holds for and determine J as the rate at which the
germs per unit volume collect single molecules from the vapor; i.e., set
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where given by (5-48), specifies the flux of water molecules to the germs.
The estimate (7-29) was first made by Volmer and Weber (1926). It is a quite
reasonable first approximation, in that we are interested only in describing the onset
of nucleation; for this purpose one might well expect the equilibrium distribution
(7-26) for to provide an adequate basis for estimating J.

Let us reflect now on how we might improve our estimate. Two factors which we
have so far neglected naturally suggest themselves for consideration. Firstly, germ
evaporation as well as condensation should be accounted for. Secondly, we should
recognize that as embryos flow through the phase-change ‘bottleneck’ created by
the energy which is required to form a germ-sized embryo, their distribution will
not, in principle, be the equilibrium distribution of (7-26), since it assumes no mass
flux up the size spectrum.

An improvement which recognizes these features was first carried out by Farkas
(1927) and Becker and Döring (1935); other refinements and extensions have been
made by Volmer (1939), Zeldovich (1942), Turnbull and Fischer (1949), Farley
(1952), and Frenkel (1946). The key simplifying assumption introduced by these
authors is that the new size distribution may be regarded as being in a steady
state. As we shall see, J can then be found without difficulty.

For this purpose, let us first estimate the time required to reach a steady state
once a given vapor supersaturation is achieved. If we denote the time dependent
concentration of embryos of size by then, the generalization of (7-29) which
includes the effect of evaporation is

where is the flux of water molecules leaving the embryo surface. Here is the
number of embryos entering the size category A special case of this
equation is the equilibrium situation for which for this case we have

We may combine these two equations to eliminate

From the definition of the first time variation of is given by

Let us now pass over to an approximately equivalent continuous description. Then,
in place of (7-32) we have and (7-33) becomes

Assuming further that is roughly constant, this equation reduces to a
diffusion equation in with diffusion coefficient
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Thus, the characteristic time to achieve the quasi-steady state germ concentration
is just (Farley, 1952). For water germs in typical expansion
chambers, to sec, which is about of the time during which the
supersaturation remains essentially constant. Thus, the steady state assumption is
consistent with usual experimental conditions.

Let us now proceed to find assuming a steady state concen-
tration which we shall denote by Surprisingly, it turns out we do not have to
determine to find J. However, we do need to use boundary conditions on
which we choose as follows: (1) this is reasonable since the monomer
population is relatively enormous and need not deviate significantly from the equi-
librium concentration in order to produce a substantial nucleation rate. (2)
for some the results are extremely insensitive to the choice of G, which
makes this a reasonable working assumption.

From (7-32), we may now immediately obtain J by summing over as follows:

or

a result in which does not appear. Now will have a minimum near
(recall (7-26) and Figure 7.2, and so the dominant contributions to J will come
from terms in that neighborhood. Hence, we may approximate the sum in (7-37)
as

where the factor effectively counts the number of contributing terms; i.e., it
measures the width of the minimum in the curve for From (7-37), we then
obtain

By comparing with (7-29), we see that (7-39) differs from the equilibrium approxi-
mations result only by the factor Z, called the Zeldovitch factor (Zeldovitch, 1942).

The Zeldovitch factor is obtained by expanding about the minimum in a
Taylor series through terms of the second order in this produces a Gaussian
approximation to the curve in that neighborhood, and is identified with the
width (i.e., the standard deviation) of the Gaussian curve. Proceeding in this way,
we write in (7-26) as
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On abbreviating we find, with
from (7-26),

The Zeldovitch factor may then be found from (7-38)

where we have set Evaluation of the integral gives

Using (7-23) and recognizing that this leads to

This expression is suitable for arbitrary geometries. Two additional forms which
hold for spherical water germs are:

where The mathematical approximations involved in passing
from (7-37) to (7-39) and (7-44) produce an error of about 1% (Cohen, 1970),
which is insignificant in comparison with the uncertainties in

Numerical evaluation of (7-45) shows that Z is typically This result
is in qualitative accord with our expectations: A finite rate of germ production
should deplete the embryo population to something below the equilibrium level.

Collecting results, the nucleation rate of water germs from the vapor may be
expressed as

This holds even for non-spherical germs, if (7-44) is used to describe Z. Other
versions for spherical germs include

using the second form of (7-45), and



HOMOGENEOUS NUCLEATION 203

using (5-51) for and the first form of (7-45), together with
and Of course, equations exactly analogous to

(7-47) and (7-48) hold for the nucleation rate of spherical ice germs from the vapor
(with and

Inspection of (7-46) to (7-48) and (7-28) shows that J is extremely sensitive to
since the term in the exponent varies as This is indicated further in

Table 7.1, in which a numerical evaluation of (7-48) and its counterpart for ice
are presented. We see, for example, that for water germs, J increases by 5 orders
of magnitude as increases from 5 to 6. This behavior enables one to define,
from an experimental point of view, a critical saturation ratio at which

correspond to
Table 7.1 also indicates that the nucleation rate of ice germs from the vapor

remains near zero for all realizable supersaturations. This follows from the fact
that then, since we have and, hence,

for a given This behavior apparently holds for T down to at
least –100°C. This is in contrast to predictions based on the phase diagram for
bulk water, which merely reinforces again the notion that surface effects dominate
in nucleation phenomena. On the other hand, the nucleation prediction is in agree-
ment with Ostwald’s rule of stages (Ostwalds Stufenregel) (Ostwald, 1902) which
states that a supersaturated phase (water vapor) does not directly transform into
the most stable state (ice), but rather into the next most stable or metastable
state (supercooled water). Although Krastanow (1940) proposed a reversal of this
rule for water substance below about –65°C, Dufour and Defay (1963) have shown
Krastanow’s result to be erroneous, since it was based on incorrect values for
and and neglected the variation of with temperature. A correct evaluation
of the nucleation rate equations demonstrates that at temperatures warmer than
–100°C no reversal of Ostwald’s rule takes place. It must be stressed that this
result is only applicable to homogeneovs nucleation. If nucleation is heterogeneous,
Ostwald’s rule does, indeed, reverse under certain conditions (see Chapter 9).

In Figure 7.4, a comparison is made between the classical model for a drop
and ice crystal (for a crystal with a shape factor s = 16, see Section 5.7.2) with
the clathrate and ice cluster model of Hale and Plummer. We notice excellent

drops suddenly appear in the vapor; by convention, has been taken to
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agreement between the classical drop model and the clathrate cluster model. The
agreement is less satisfactory between the classical ice model and the ice cluster
model. Nevertheless, the general agreement is quite surprising in view of the as-
sumptions made in both theories: namely, the assumption in the classical theory
that and can be described by values which apply to macroscopic
phases, and, for the molecular model, the assumption that the cluster takes on the
shapes given in Figure 7.1a,b. It may be that the agreements are quite fortuitous
and the result of compensating errors between the models as well as within a par-
ticular model. Thus, Lee et al. (1973) found from studies on spherical solid argon
clusters, that the capillarity approximation overestimates the number of surface
atoms in the cluster, but at the same time underestimates the surface free energy
per surface atom. We further note from (7-28) that or appears in the
numerator and or in the denominator, so that errors in and due to the
neglect of the cluster character of very small drops (or ice crystals) might com-
pensate. We also note from Figure 7.4 that both models uphold the Ostwald rule
of stages and predict that in homogeneous vapor at temperatures below 0°C ice
appears via the freezing of supercooled water drops rather than directly from the
vapor, as also expected from Table 7.1.

7.1.3 EXPERIMENTAL VERIFICATION

The various shortcomings inherent in the theories of homogeneous nucleation have
made extensive comparison with experiment especially important. Following Wil-
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son (1899), many experimenters have employed the expansion chamber technique
to determine the onset of homogeneous water drop formation in supersaturated
vapor. A review of many such studies has been given by Mason (1957a). Later,
Katz and Ostermier (1967), and Heist and Reiss (1973) have used the diffusion
chamber technique to study homogeneous water drop formation. Both experimen-
tal techniques have several major shortcomings and basic difficulties which are
hard to overcome. Problems inherent in the diffusion cloud chamber technique
have been discussed by Fitzgerald (1970, 1972), while difficulties of the expansion
chamber technique have been discussed by Barnard (1953), Mason (1957a), Allard
and Kassner (1965), Carstens et al. (1966), Carstens and Kassner (1968), Kassner
et al. (1968a,b), and Allen and Kassner (1969).

In addition to the experimental problems of design and technique, Allen and
Kassner (1969) and Hagen et al. (1982) gave evidence of the fact that the mole-
cules of any carrier gas with which a cloud chamber is purged may act as nucle-
ation centers to form clathrates. Under these conditions, nucleation is not truly
homogeneous. Still another uncertainty arises from the fact that the condensation
coefficient is not accurately known (see Table 5.4).

In spite of these reservations, Figure 7.5 indicates a reasonably good agreement
between experiment and both the classical theory and the molecular clathrate
cluster theory of Hale and Plummer (1974b). This is particularly true for the
expansion chamber studies of Kassner et al. (1971), Kassner et al. (1975, pers.
comm.), Miller et al. (1983), and the diffusion chamber studies of Heist and Reiss
(1973). From the discussion of Section 7.1.2, we must interpret the agreement
between the classical theory and experiment as being partly fortuitous and due to
compensating errors in the theory (see also Hale and Plummer, 1974a, and Lee et
al., 1973).

Some of the earlier experimental ice nucleation studies by Sander and Damköhler
(1943), Cwilong (1947), and Pound et al. (1955) were interpreted to mean that,
below a certain temperature, ice forms directly from the vapor. However, Fournier
d’Albe (1949), Mason (1952a), Mossop (1955), Kachurin et al. (1956), Maybank
and Mason (1959), Anderson et al. (1980), Hagen et al. (1981, 1982), DeMott
et al. (1992) and DeMott and Rogers (1990) demonstrated conclusively that in
supersaturated homogeneous vapor and at temperatures between 0 and –70° C, ice
is always the result of the freezing of supercooled drops. Thus, present experiments
support both the molecular ice cluster theory of Hale and Plummer (1974a,b) and
the classical theory in their prediction that Ostwald’s rule of stages indeed applies
to the homogeneous phase change of water substance.

7.2 Homogeneous Nucleation of Ice in Supercooled Water

7.2.1 THE NUCLEATION RATE J

In order to apply the nucleation rate equation to the nucleation of ice crystals in
supercooled water, we must realize that the main difference between nucleation of
ice embryos from supersaturated vapor and from supercooled water lies in the
growth mechanism of the embryos. As we have seen, in the former case, the
growth of an embryo is controlled by the monomer flux from the vapor. In the



an energy barrier Expressed in another way, is the molar Gibbs free
energy of activation for diffusion of water molecules across the water-ice boundary.
Using the ‘absolute reaction rate theory’ (Glasstone et al., 1941; Eyring and Jhon,
1968), Turnbull and Fischer (1949) have shown that this energy barrier leads to
the following expression for the diffusive flux density of water molecules across the
ice surface:

where h is Planck’s constant and is the number of monomers of water in contact

while Eady (1971) finds using a molecular
model. Using in place of the factor in (7-46) or (7-47), we can immediately
write down the homogeneous nucleation rate for ice germs in supercooled water in
a form analogous to (7-47)
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latter case, where water molecules are essentially already in contact with the ice-
embryo, growth is a matter of molecular reorientation involving the breaking of
water-to-water bonds and the formation of water-to-ice bonds. During this process,
which proceeds at constant temperature and constant pressure, a water molecule
must pass from its average equilibrium position of minimum potential energy in
water to a new equilibrium position in ice, the two positions being separated by

with unit area of the ice surface. Dufour and Defay (1963) estimate to be about
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or, with (7-49)

We note from (7-51) that, in contrast to ice nucleation from supersaturated vapor,
ice nucleation in supercooled water has to overcome two energy barriers. We shall
now discuss both barriers in sequence.

7.2.2 THE ENERGY OF GERM FORMATION

In order to evaluate (7-50) or (7-51), we must determine the work of ice germ for-
mation As in the case of nucleation from the vapor phase we may proceed
along two avenues and use either the classical approach based on thermodynamic
arguments or follow a molecular approach and apply statistical mechanics to su-
percooled water. We shall briefly touch on both of these approaches.

7.2.2.1 Classical Model

Using the classical approach, the energy of ice-germ formation in supercooled water
is obtained following the same line of reasoning that applies to a water germ (cf.
(7-28))

where is found from (6-52) for the case that and no salts are in
solution, and assuming that the supercooling required for ice nucleation to occur
is sufficiently small so that average values for the latent heat of freezing and the
density of ice may be used over the temperature interval of interest.

However, in the next few paragraphs it will be shown that homogeneous ice
nucleation becomes significant only at supercoolings larger than 35°C. In this tem-
perature range, the parameters which appear in (7-52) and
(6-52) vary significantly with decreasing temperature (see Chapters 3 and 5), thus
prohibiting the use of average values over the temperature interval. Therefore,

in (7-52) has to be computed by integrating the full equation (6-52) if ice is
nucleated inside an aqueous solution drop of a given size. For and for pure
water can be obtained by integrating (6-52) without the second and
fourth term.

7.2.2.2 The Molecular Model

In an attempt to evade the assumptions of the classical theory, Eadie (1971) for-
mulated an expression for the energy of ice germ formation in water by using a
statistical approach similar to that employed later by Hale and Plummer (1974a,b)
for the formation of water and ice germs in supersaturated vapor. Eadie based
his approach on the statistical thermodynamic model of water by Nemethy and
Sheraga (1962a,b) and Vand and Senior (1965a,b). In this model, it is assumed
that the molecules in water can be partitioned into five classes according to the
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number of H-bonds in which they participate, i.e., from none in the completely
unbonded state to four in an ice-like state. In each of the five classes, the mole-
cules undergo restricted translational, vibrational and rotational motions in the
field of the nearest neighbor molecules. The canonical partition fuction for water
consisting of molecules can, in analogy to (7-5), be written as

where is the number of molecules in the molecular class of molecules,
denotes summation over all distinct distributions of the mole-

cules of the system into the five molecular classes, and is the molecule
partition function.

Eadie modified this expression by following a suggestion of Vand and Senior
(1965a,b), wherein a degeneracy factor is included to account for the number of
distinguishable ways in which the hydrogen bonds in which a molecule in the
molecular class participates can be distributed among the four possible directions
with respect to the molecule:

With this adjustment the partition function becomes

Next, the partition function is approximately evaluated by equating ln with the
logarithm of the maximal term in the sum on the right-hand side of (7-55). Using
Sterling’s approximation for this purpose, the logarithm of a term in the sum over
distinct distributions in (7-55) is

The values of the for which ln T is a maximum subject to the constraint that
the total number of molecules remains constant can be obtained by the method of
Lagrange multipliers; the result is that the equilibrium value for the mole fraction
of molecules in the class is given by

On substituting this result into (7-56), the canonical partition function is obtained:
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Based on (7-58), Eadie assigned to a monomer in supercooled water the average
partition function given by

Then, considering the mass action law (7-9), the number of ice clusters
consisting of water molecules is

where is the molecular partition function for an ice As before, we may
express this result in a form containing the Boltzmann factor:

where represents the energy required to form an ice embryo of
Combining (7-59) to (7-61), we find for the energy required to form an ice embryo
of Combining (7-59) to (7-61), we find for the energy of ice embryo
formation:

Eadie estimated by assuming an ice-like geometry for the with molecules
arranged in the form of a hexagonal prism with its height equal to the diameter
of a basal face. He then determined the total number of molecules, the number
of doubly triply and quadruply bonded molecules in an and
the number of broken bonds on the surface of the The required bookeeping
is formidable and cannot be repeated here, but the result is that the ice
partition function is obtained from the relation

where is the molecular partition function for the quadruply
bonded molecules in the interior of an ice cluster given by the observed molecular
chemical potential fo ice,

the liquid, given by The energy of ice germ
formation is then obtained as the maximum in a plot of versus

7.2.3 THE MOLAR ACTIVATION ENERGY

In most earlier work, has been identified with the experimentally determined
activation energy for self-diffusion in water given by (3-21) (see also
Section 5.9). Such identification led in the past to a serious underestimate of

and where is the average fraction of hydrogen bonding between molecules in
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the theoretical nucleation rate in comparison to the rate derived for temperatures
between –43 to –33°C from cloud chamber studies (Butorin and Skripov, 1972;
Hagen et al., 1981; DeMott and Rogers, 1990), and from field experiments carried
out at the cirrus cloud level (Sassen and Dodd, 1988; Heymsfield and Sabin, 1989;
Heymsfield and Uriboshavich 1993). This discrepancy is evident from a comparison
of curves (1) and (2) in Figure 7.6. The reason for this discrepancy lies in the fact
that increases rapidly with decreasing temperature (see Figure 3.11),
due to an increasingly bonded water structure (see Section 3.4). In contrast, cloud
chamber studies of Hagen et al. (1981) suggest that below –32°C sharply
decreases with decreasing temperature. They argued that the reason for this lies
in the fact that, with decreasing temperature, the freezing process becomes an
increasingly cooperative phenomenon where increasingly larger clusters of water
molecules transfer across the ice-water interface by breaking only hydrogen bonds
at the cluster periphery, but not in the interior of the cluster.

In order to arrive at a more realistic estimate for we may therefore follow
Hagen et al. (1981) and solve (7-51) subject to observed values for J. In order
to test whether the laboratory and field data given in Figure 7.6 are sufficiently
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accurate for such computation, we shall compare them with the results from drop
freezing experiments in the laboratory.

For this purpose, we note that J in (7-51) is given in terms of the number of
germs in of supercooled water which is equivalent to a drop of 6.2 mm
radius. Since the drops studied in the labortory and in the field are considerably
smaller than this size, it is necessary to formulate an ice nucleation theory for
smaller volumes of water. Let us follow first a heuristic approach and consider
a population of isolated water drops, all having the same temperature T and
the same volume We shall assume further that a nucleation event in any one
drop is independent of that in any other drop. Given these conditions, we may
express the number of ice-germs produced during the time in the volume
of unfrozen water as

where is the number of unfrozen drops and J(T) is the rate of ice-germ forma-
tion.

We shall also assume that ice formation is the result of only one nucleation
event per drop. This assumption is reasonable, since the growth velocity of ice
is very large at the supercoolings where homogeneous ice-nucleation takes place.
This makes it very likely that the first germ formed grows quickly enough to con-
vert the drop into ice before any other germ is formed. The first germ receives
additional protection from the fact that, during its growth, latent heat is released
which immediately raises the temperature of water in the drop. This reduces the
nucleation rate of other germs to a negligible value.

For these conditions the increase of ice-germs is given by the increase in the
number of frozen drops Also, since the total number of drops is constant,
we have d Hence, we arrive at the simple differential equation

or

Integrating from at to at and assuming constant temperature T,
we find

This indicates how, at constant temperature, the number of unfrozen drops de-
creases with increasing time.

Of course, we could have obtained (7-66) immediately by considering that ice
nucleation, proceeding homogeneously in the drops, is a stochastic process. This
implies that the freezing events are Poisson distributed (see, e.g., Melissinos, 1966).
Therefore, the probability that, out of a population of drops, drops have
frozen during the time interval to is
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with The probability that during the time interval to no
freezing events take place is then

Identifying with i.e., with the ratio of the drops which
survived freezing to the whole population of drops, we recover (7-66). One read-
ily also sees that half of the drop population has frozen after the time

For a constant rate of cooling, we obtain, instead of (7-65b),

or, after integration,

We notice from (7-69) that that the smaller the rate at which a drop is cooled or
the larger the volume of a drop, the less it can be supercooled before it freezes.

These findings are physically reasonable if we consider that the larger the volume
of a drop, the larger is the probability for a density fluctuation in the drop and,
thus, the larger is the probability that an ice germ will be produced. It is also rea-
sonable that, in a given volume of supercooled water, the probability for a density
fluctuation and, thus, the probability for ice-formation, increases with increasing
time during which the water is exposed to a certain change in temperature.

Frequently in the literature, the freezing temperature of a population of drops is
characterized by the median freezing temperature i.e., the temperature where
50% of drops are still unfrozen, i.e., With this, (7-70) becomes

Unfortunately, there is considerable scatter among experimentally derived values
available in the literature for the median freezing temperature of water drop pop-
ulations. This is not surprising, since water cannot easily be purified to such an
extent that it consists almost entirely of water molecules, although some workers
have gone far in devising techniques to reach such a desired state of purification
(Mossop, 1955; Haller and Duecker, 1960; Pruppacher, 1963a). Additional uncer-
tainties in providing homogeneous conditions arise from the need to support the
water samples. Fortunately, a careful analysis of the lowest freezing temperatures
recorded give a more consistent picture. These values are plotted in Figure 7.7
as a function of drop diameter, using letter symbols. Assuming now that at the
lowest observed supercooling 99.99% of a population of equally sized water drops
are frozen when cooled at a rate we find, instead of (7-71),
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Equation (7-72) may be solved to obtain as a function of drop size for
given values of J. Although we mentioned earlier that observational values for
J are only available for the temperature range –44 to –33°C (see Figure 7.6), it
turns out that J contributes only negligibly to (7-72) at temperatures warmer than
–33° C, so that this contribution may safely neglected. One therefore may solve
(7-72) by using J-values derived from a best fit to the observations between –44
and –33°C. The results of this computation for and
are given by the continuous curves (1) and (2) in Figure 7.7. We notice from this
figure that for a given drop size, is in excellent agreement with the largest
drop supercooling observed in the laboratory. Assuming that this agreement can
be taken as support for the J-values given as curve (2) in Figure 7.6, one may
extrapolate curves (1) and (2) in Figure 7.7 to –27°C by requiring consistency with
a similar extrapolation of curve (2) in Figure 7.6. The values for J thus obtained
are listed in Table 7.2. We note from this table and curve (2) in Figure 7.6 that



214 CHAPTER 7

J rises strongly with increasing supercooling, rising eventually without bound as a
supercooling of –45°C is approached. This tendency is a direct consequence
singularity behavior observed for water at –45°C (Section 3.4). Finally, the values

of the

listed in Table 7.2 may be used to estimate from (7-51). For this purpose,
we compute from (7-52) with (5-47a,b) for (3-25) for (3-

(1981), decreases rapidly with increasing supercooling, approaching zero
as the temperature approaches the singularity temperature of –45°C. As seen in
Figure 3.11, at temperatures warmer than –29°C, the transfer of water molecules
across the water-ice interface is controlled by the self-diffusion of water molecules
through bulk water, while at temperatures below –32°C, the controlling mechanism
is the transfer of increasingly large clusters, as suggested by Hagen et al. (1981).
At temperatures between –29 and –32°C, a transition regime exists in which the
mechanism of growth of ice embryos is not well defined.

In order to check whether the semi-empirically derived values for are sup-
ported by the results from the molecular model of Eadie, we plotted in Figure 7.6

2) for and (3-14) for The resulting values for are listed in
Table 7.3, and plotted as curve 4 in Figure 3.11. As anticipated by Hagen et al.
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the J-values listed by Eadie. We notice a surprising good agreement between the
molecular and the classical model for supercoolings between 33 and 42°C. Un-
fortunately, this agreement is purely accidental. A careful inspection of Eadie’s
molecular model shows that his computations of J was based on an estimate of the
activation energy for transfer of molecules across the water ice boundary using
values given by Dufour and Defay (1963) which, in turn, were based on Dorsey’s
(1940) data of the activation energy for viscous flow. These were significantly lower
than the values derived from recent data of viscosity and self-diffusion given in Fig-
ure 3.11, resulting in an overestimate of J. At the same time, Eadie’s molecular
model significantly overestimates the interface energy and therefore ,
when compared with the values given in Figure 5.17. This causes an under-
estimate of J. Since these two errors tend to compensate each other, the apparent
agreement between the J-values of the classical and of the molecular model cannot
be used to substantiate the values derived from nucleation experiments via
the classical model.

We finally may add that drops at cirrus level may contain dissolved salts which
lower the temperature even further before homogeneous ice nucleation sets in. Un-
fortunately, values for and are not known for solution drops.



CHAPTER 8

THE ATMOSPHERIC AEROSOL AND TRACE GASES

From Chapter 6‚ it is evident that an understanding of the cloud forming processes
in the atmosphere requires knowledge of the physical and chemical characteristics
of the atmospheric aerosol. In discussing this gaseous suspension of solid and liquid
particles‚ it is customary to include all gases except water vapor‚ and all solid and
liquid particles except hydrometeors‚ i.e.‚ cloud and raindrops‚ and ice particles. In
addition‚ it is the atmospheric aerosol with its gaseous and particulate constituents
which also determines the chemical characteristics of the clouds and precipitation.
This is simply a result of the fact that a considerable fraction of the atmospheric
gases and aerosol particles become scavenged by clouds and precipitation‚ where
they may partially dissolve and undergo chemical reactions (see Chapter 17). In
the present chapter‚ we shall present a brief discussion of the physical and chem-
ical characteristics of the gaseous constituents of the atmosphere‚ followed by a
more detailed description of the main characteristics of the atmospheric aerosol
particles. For background on the subjects covered‚ the reader is referred to the
texts of Junge (1963a)‚ Butcher and Charlson (1972)‚ Hidy (1972)‚ Rasool (1973)‚
Twomey (1977)‚ Friedlander (1977)‚ Hidy (1984)‚ Finlayson and Pitts (1986)‚ Sein-
feld (1986)‚ Warneck (1988) and Jaenicke (1988). Most of the data on which this
chapter is based are derived from these sources and from literature citations therein.

8.1 Gaseous Constituents of the Atmosphere

Up to an altitude of about 85 km‚ the composition of the atmosphere is essentially
uniform. In this layer‚ called the homosphere‚ the gaseous constituents are present
in quasi-constant proportions (see Table 8.1). Above about 85 km‚ the compo-
sition of the atmosphere begins to vary markedly due to gravitational separation
of the chemical constituents‚ and due to solar radiation which dissociates some of
the constituents and stimulates the formation of new chemical species. This outer
portion of the atmosphere is called the heterosphere. For a discussion of the chem-
ical characteristics of the higher atmosphere‚ the reader is referred to the texts of
Brasseur and Solomon (1984)‚ Shimazaki (1985)‚ and Warneck (1988).

One may classify the gaseous constituents of the atmosphere according to their
residence times. For quasi-constant constituents‚ the residence time is of the order
of thousands of years or more; slowly varying constituents have residence times of
a few months to a few years; and fast varying constituents have residence times of
a few days or less.

The quasi-constant gaseous constituents of the atmosphere are Ar‚He‚
Ne‚ Kr‚ and Xe. Slowly varying gaseous constituents include CO‚
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and Fast varying gaseous constituentsinclude
and radicals such as OH‚ NO‚ The only gases which can be considered
‘permanent’ are the nobel gases‚ Ne‚ A‚ Kr‚ Xe‚ since they have negligible sources
or sinks in the atmosphere. All other gases‚ including He‚ and have
sources and sinks and therefore a finite residence time.

Tables 8.2 summarizes the sources and sinks of the slowly and fast varying gases
in the atmosphere. In Table 8.3‚ estimates are listed for some of the emission rates
of these gases. These numbers are very rough and can only serve as a general
guide. In Tables 8.4 and 8.5‚ we have selected from the wealth of observations
on the trace gas concentrations a few typical values. Again‚ these data may only
serve as a guide. Without considering the Arctic regions‚ we notice from Tables 8.4
and 8.5 that the trace gas concentrations are generally highest in urban air‚ less in
continental rural air‚ and least in maritime air.

Observations show that‚ with the exception of ozone‚ the trace gas concentration
generally decreases roughly exponentially with increasing height in the first 6 km of
the atmosphere. This is also evident from some of the mountain stations listed in
Table 8.5‚ and from Figures 8.1 to 8.5. In these figures‚ the concentration variation
with height of a few selected trace gases is given.

All tropospheric gases have sinks (see Table 8.2)‚ since they undergo various
chemical reactions‚ including chemical decomposition and photodissociation. They
also are scavenged by cloud drops and rain drops due to their solubility in water.
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The various precipitation mechanisms subsequently lead to the permanent depo-
sition (wet-deposition) of the scavenged gases. Trace gases also undergo chemical
reactions and adsorption mechanisms on the Earth’s surface. The mechanisms
involved in this dry deposition of gases have been discussed by Warneck (1988)‚
Seinfeld (1986)‚ Finlayson and Pitts (1986)‚ Hicks (1984)‚ Pruppacher et al. (1983)‚
and Georgii and Pankrath (1982). The mechanisms involved in wet deposition will
be discussed in Chapter 17. The presence of sinks imply that the atmospheric gases
have a definite residence time in the atmosphere. The residence times of some of
these gases (other than those considered semi-permanent in Table 8.1) are listed in
Table 8.6.

8.2 Atmospheric Aerosol Particles (AP)

Aerosol particles (AP) in the atmosphere have sizes which range from clusters of a
few molecules to and larger. Junge (1955‚1963a) suggested dividing the AP
into 3 size categories. Particles with dry radii he called Aitken particles
to pay tribute to Aitken who studied the behavior of these particles in great detail
(see Chapter 1). Particles with dry radii Junge called large
particles‚ and particles with dry radii he called giant particles. More
recently‚ it has become customary to follow Whitby (1978) and regard the AP with
diameters as belonging to the nuclei mode‚ particles with
as belonging to the accumulation mode‚ and particles with as belonging
to the coarse mode. In this classification‚ Whitby considers particles with
as fine particles.

Particles are injected into the atmosphere from natural and anthropogenic or
man-made sources. Most come from the Earth’s surface‚ but some arise from the
Earth’s interior through volcanic action‚ while others enter the atmosphere from
outer space. The concentration of AP varies greatly with time and location‚ and de-
pends strongly on the proximity of sources‚ on the rate of emission‚ on the strength
of convective and turbulent diffusive transfer rates‚ on the efficiency of the various
removal mechanisms (see Chapter 17) and on the meteorological parameters which
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affect the vertical and horizontal distributions as well as the removal mechanisms.
Observations confirm that the concentration of AP decreases with increasing dis-
tance from the Earth’s surface. This is expected from the atmospheric density
profile‚ and also because the surface constitutes the major source of AP‚ while re-
moval mechanisms operate continuously throughout the atmosphere. In fact‚ it is
estimated that 80% of the total aerosol particle mass is contained below the lowest
kilometer of the troposphere. The AP concentration also decreases with increasing
horizontal distance from the seashore towards the open ocean‚ because the land is
a more effficient source of particles than the ocean. Thus‚ it is estimated that 61%
of the total AP mass is introduced in the Northern Hemisphere‚ as compared to
the Southern Hemisphere which is covered with a smaller land mass. Within the
Northern Hemisphere‚ most of the aerosol particle mass enters the atmosphere at
latitudes between 30 and 60° N‚ since this latitude belt contains about 88% of all
anthropogenic sources for particulates.

The removal rate of aerosol particles by self-coagulation is proportional to the
square of the particle concentration‚ while the removal by interaction with cloud
drops and raindrops is proportional to the first power of the particle concentration
(see Chapter 11). Consequently‚ the removal rate of AP may become very small if
their concentration is sufficiently small. Indeed‚ Junge (1957b‚ 1963a) and Junge
and Abel (1965) have demonstrated the existence of a rather stable background
AP population of a few hundred particles This fairly uniform atmospheric
background aerosol exists over land at heights above about 5 km‚ and over the
oceans far from shore above about 3 km (Junge‚1969a).

Aerosol particles of terrestrial origin are formed by three major mechanisms: (1)
gas-to-particle conversion (GPC)‚ (2) drop-to-particle conversion (DPC) involving
the evaporation of cloud and raindrops which contain dissolved and suspended mat-
ter‚ and (3) bulk-to-particle conversion (BPC) involving mechanical and chemical
disintegration of the solid and liquid Earth surface.

8.2.1 FORMATION OF AEROSOL PARTICLES BY GAS TO PARTICLE

CONVERSION (GPC)

Several pathways are possible to form AP by GPC. We shall briefly discuss three
of these pathways. The first pathway involves the homogeneous nucleation of new
particles in supersaturated vapors. Such nucleation may take place in plant ex-
halations‚ combustion products and in volcanic plumes‚ which include vapors that
have low boiling point temperatures. These vapors readily condense to drops or
directly to solid particles relatively close to their source. Some substances typi-
cally involved in this mechanism are soot‚ tars‚ resins‚ oils‚ sulfuric acid‚ sulfates‚
carbonates‚ and others. Most of these substances are the result of industrial op-
erations and man-made or natural fires. AP formed in this manner cover a wide
range of sizes‚ but the majority lay within the Aitken particle size range. Detailed
discussions of this mode of AP formation are given by Dunham (1966)‚ Sutugin
and Fuchs (1968‚ 1970)‚ and Sutugin et al. (1971).

The second pathway involves homogeneous nucleation of particles by gas phase
chemical reaction. Many of these reactions are catalyzed by the ultraviolet portion
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of the Sun’s radiation. These effects have been discussed by Briccard et al. (1968‚
1971)‚ Mohnen and Lodge (1969)‚ Vohra et al. (1969)‚ Cox and Penkett (1970)‚
Vohra and Nair (1970)‚ Vohra et al. (1970)‚ and Mohnen (1970‚ 1971). Thus‚
Gerhard and Johnstone (1955) proposed that sulfur trioxide may be the
result of the following chain of reactions proceeding at the Earth’s surface in bright
sunlight:

where is an activated state of and M is a chemically neutral gas molecule
(e.g.‚ that must be present for the reaction to proceed. In very polluted city
air‚ Cadle and Powers (1966) suggested

in competition with

while Junge (1963a‚b) proposed

Warneck (1988) considered a two step reaction involving the radical OH

with a hydroxyl sulfur dioxide adduct as intermediate product. Once
formed‚ quickly hydrates to sulfuric acid according to

Sulfuric acid droplets then form by binary nucleation in the sulfuric acid-water
vapor mixture. Nitric acid vapor may form according to

Nitric acid droplets then form by binary nucleation in nitric acid-water vapor mix-
tures. At night time, nitric acid drops may form in a three step reaction
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Due to its high solubility in water‚ nitrogen pentoxide then quickly dissolves
in water droplets to produce nitric acid droplets according to

Other vapor reactions not involving water vapor which produce AP are

On the surface of preexisting particles gas to particle conversion may cause the
formation of new compounds. Thus‚ on the surface of sodium chloride particles‚
sodium nitrate may form according to

The binary nucleation of sulfuric acid droplets in a mixture of vapor and
water vaper has been theoretically studied by Kreidenweiss and Seinfeld (1988)‚
Warren and Seinfeld (1985)‚ Yue (1979)‚ Yue and Hamill (1979)‚ Stauffer (1976)
and Mirabel and Katz (1974). The results predicted for the nucleation of sulfuric
acid drops have been experimentally verified by Mirabel and Chavelin (1978). As
another application of homogeneous nucleation theory discussed in Chapter 7‚ we
will briefly outline the procedure needed to derive the rate of binary nucleation of
sulfuric acid droplets in a vapor mixture. For this purpose‚ we will
follow Yue and Hamill (1979)‚ and index the water vapor by ‘A’ and the acid vapor
by ‘B’. For where is the concentration of a species in the mixture‚ and
considering (7-46)‚ the nucleation rate of acid droplets (as the number of drops

is given by

where Z is the Zeldovich Factor (see (7-39))‚ and if the sulfuric acid
germ is assumed to be spherical. From (5-51) with one finds for the
molecular flux

where is the accommodation coefficient‚ is the mass of one molecule‚
and is the free energy change associated with the formation of a sulfuric acid
embryo in the binary vapor mixture. According to (7-28)

where is the surface tension of the binary nucleated droplet. The radius of the
germ may be computed analogously to the procedure outlined in Section 7.1.1.3.
However‚ instead of (7-18)‚ we have now
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where is the chemical potential of the species and the number of moles. Con-
sidering (6-24)‚ can be expressd in a form analogous to (7-23):

where a is the activity of the species‚ is the saturation ratio for
the water vapor‚ is the relative acidity‚ and and are the
equilibrium vapor pressures of water vapor and acid over a flat surface of the pure
substance. Here is obtained from with being the
density of the liquid mixture‚ and M the molecular weight of the species. Analogous
to Figure 7.2‚ and exhibit maxima at critical values of and at
which These maxima are obtained from the conditions

These two equations when solved simultaneously describe a saddle point in a three-
dimensional system in which the is plotted as a function of and
This saddle point represents the nucleation barrier which the embryos have
to overcome in order to become stable and grow. The critical compositions which
pertain to this condition are and On applying (8-18) simultaneously to
(8-17)‚ we find in place of (7-27) for water vapor alone the following generalized
Kelvin equations:

and

where

For given environmental conditions and T‚ the critical composition
i.e.‚ and radius at the saddle point can be calculated from a simul-
taneous solution of (8-19) to (8-21). From this‚ can be obtained from (8-15).
Knowing the nucleation rate J can be computed from (8-13). An expres-
sion for the Zeldovich factor Z has been worked out by Kreidenweiss and Seinfeld
(1988). The results of such a computation are given in Figure 8.6 for the nucle-
ation of sulfuric acid drops in mixtures of and water vapor‚ and mixtures
of MSA (methansulfonic acid‚ and water vapor. We notice that the
nucleation rates are highly dependent on the environmental conditions. As a rule‚
higher concentrations of vapor and vapor and lower temperatures will
lead to higher nucleation rates. Among these three parameters‚ the nucleation rate
is most sensitive to the concentration of water vapor. It also is seen that nucleation
of and MSA in the absence of water vapor‚ i.e.‚ for zero relative humidity‚
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proceeds at very similar relative acidities. This is due to similar physical proper-
ties for the pure gases‚ most importantly for the surface tension. As the relative
humidity increases‚ the differences in the nucleation rates of and MSA be-
come increasingly noticeable. The reason for these differences are attributed by
Kreidenweiss and Seinfeld to differences in the free energies of mixing as compared
to a hypothetical ideal solution‚ and also to differences of the vapor pressures.

Hegg et al. (1990‚ 1992)‚ applied the theory outlined above to the homogeneous
nucleation of sulfate particles in the immediate surroundings of maritime clouds
where he had observed large numbers of condensation nuclei. He assumed that

forms from via (8-6) to (8-8) and this‚ in turn‚ forms DMS (dimethyl-
sulfide‚ Considering the observed DMS concentration of 85 pptv‚ an
OH concentration of molecules and the observed humidity at and
above the cloud level‚ Hegg et al. computed the dashed line in Figure 8.7. We
notice that the theoretical results predict well the observed enhanced concentra-
tion of aerosol particles (CN) just above the cloud top. Similar observations and
computations on GPC in marine air have been carried out by Covert et al. (1992)‚
Easter and Peters (1994) and Weber et al. (1995). Very recently‚ Bigg (1996) sug-
gested that a binary nucleation of particles in sulfuric acid-water vapor mixtures
may be aided by very sudden mixing events caused by breaking Kelvin-Helmholtz
waves which occur preferentially in those regions where the nucleation process is
most effective: in layers of strong thermal and moisture stratification‚ wind shear‚
and the presence of a gravity wave of longer period than the Kelvin-Helmholtz
instabilities.

The third pathway for a gas to particle conversion involves pre-existing aerosol
particles. According to Seinfeld and Bassett (1982) and Warren and Seinfeld
(1985a‚b)‚ the rate-controlling step in this conversion is one or a combination of
three mechanisms: the rate of diffusion of the vapor molecules to the surface of
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the particles (diffusion controlled growth)‚ the rate of surface reaction involving
the adsorbed vapor molecules and the particle surface (surface reaction controlled
growth)‚ and the rates of reaction involving the dissolved species‚ which are as-
sumed to be present uniformly throughout the volume of the particle (volume
reaction controlled growth).

In diffusion controlled growth‚ the mass rate of change of a particle results from
the diffusion of vapor molecules of a species A to the particle. Following Warren
and Seinfeld (1985) and Seinfeld and Bassett (1982) this rate can be expressed (see
Chapter 13) as

where is the radius of the particle‚ is the density‚ the mass‚
the concentration of speciesA‚ the molecular weight‚ the partial pressure of
A in air‚ the equilibrium vapor pressure of A just above the particle surface‚

the diffusivity inair‚ the Knudsen number‚ the free path length
of air molecules‚ is the vapor pressure of species A over a flat surface‚ is
the molar volume of condensed A‚
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and given by the Kelvin law (6-16)‚ is

Seinfeld and Bassett (1982) define the dimensionless time and particle mass by
and They further set and define a

reference growth rate as With these‚
they obtain the dimensionless growth rate

where and For perfect absorp-
tion‚ as well as the second term in the square brackets of (8-26) are zero.

In surface reaction controlled growth‚ we are concerned with the rate at which
adsorbed species A become converted to another species B. Assuming that the
concentration of adsorbed A on the surface is and‚ further‚ that the rate of
conversion to B is proportional to with the rate constant the rate of mass
growth of the particle is‚ according to Seinfeld and Bassett (1982)‚

The surface concentration may be found for a steady state by equating (8-27)
to (8-23)‚ subject to (8-24) and (8-25) and with where is an
equlibrium constant (see Chapter 17). When the rate determining step is the
surface reaction‚ may then be approximated by

Substituting (8-28) into (8-27) and making the equation dimensionless as before‚
except now with we obtain the dimensionless
growth law

For volume reaction controlled growth‚ the key rate is that for which dissolved
species A is converted to another species B. If the concentration of dissolved A is

and its rate of conversion to B is proportional to with the rate constant
the rate at which the particle gains mass due to the volume reaction is (Seinfeld
and Bassett (1982))

As before‚ Seinfeld and Bassett obtain for steady state conditions by equating
(8-30) to (8-23)‚ subject to (8-24) and (8-25) and with where
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is again an equilibrium constant. Assuming that the rate-determining step is the
volume reaction‚ they therefore obtain the following for

Substituting (8-31) into (8-30) and making the equation dimensionless as before‚
but now with they finally obtain the dimensionless
growth law

For the purpose of comparing the above three growth mechanisms, Seinfeld and
Bassett used measurements of power plant plume by Elgroth and Hobbs (1979)
as the initial distribution With this distribution, Seinfeld and Bassett
evaluated the three growth laws by computing the dimensionless mass distribution

where is the mass of particles
having logarithm of diameter in the range and where

is understood as and is the particle diameter. M
is related to N by For the initial distribution

was set to a choice such that the maximum value of
was taken to be 2.878, corresponding to a critical

diameter of 0.01 for a sulfuric acid-water aerosol particle at 25°C, and K was
set to 0.1282. The results of these computations axe plotted in Figure 8.8 for the
time at which the total mass added to the particulate phase was equal to seven
times the initial aerosol mass. We notice from this figure that the mass added by
diffusion controlled growth and surface growth is distributed over a very narrow size
range, with a peak just below a particle diameter of In contrast, the mass
added by volume reaction controlled growth is distributed over a broad diameter
range with a main peak above diameter, indicating that by this mechanism
particles are produced which are much larger than those produced by the two other
mechanisms.

8.2.2 FORMATION OF AEROSOL PARTICLES BY DROP PARTICLE CONVER-

SION (DPC)

Clouds and precipitation act as a sink for aerosol particles and atmospheric trace
gases. Aerosol particles become incorporated into cloud drops and cloud ice crystals
by acting as nucleation centers (see Chapter 9). Additionally‚ cloud drops‚ rain-
drops and ice particles pick up aerosol particles by various collision mechanisms
(see Chapter 17). Since most gases are – at least to a certain degree – soluble
in water‚ they will enter cloud and raindrops by diffusion. Inside the cloud and
rainwater‚ the soluble aerosol particles and some of the gases will dissociate into
ions. If a cloud drop or raindrop evaporates‚ all dissolved material will eventually
crystallize to form a solid mass‚ of which the water insoluble particles which had
entered the drops will be a part. In this manner‚ an aerosol particle results which
has chemical and physical characteristics quite different from those possessed be-
fore entering the drop. Thus‚ Hegg et al. (1980) noticed‚ on passing from the
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upstream to the downstream side of an altocumulus lenticularis‚ that the particle
size spectrum had shifted towards larger sizes (Figure 8.9). They attributed this
shift to DPC. A similar result was obtained by Flossmann (1993)‚ who numerically
simulated the growth and subsequent evaporation of a convective cloud which was
allowed to scavenge both aerosol particles and gases. Heintzenberg et al. (1989)
came to the same conclusion by comparing the size distribution (Figure 8.10b)
of evaporated cloud drops of radii larger than sampled near the base of a
stratocumulus cloud‚ with the size distribution of aerosol particles (Figure 8.10a)
in nearby clear air. The pronounced shift of the size spectrum to larger sizes due
to the ‘processing’ of the clear air particles and trace gases (not measured) by the
cloud is clearly noticeable from Figure 8.10. In addition‚ Hoppel (1994) suggested
that DPC be the cause for the double maximum found in maritime aerosol par-
ticle spectra. We thus conclude that clouds act as a source for atmospheric aerosol
particles as well as a sink.

In Chapter 6 (see Figures 6.9 to 6.12)‚ we have already shown that cloud drops
which have formed on water soluble nuclei exhibit a hysteresis effect‚ in that they
do not transform into the dry state at the same relative humidity at which their nu-
clei went into solution. For example‚ deliquescence of ammonium sulfate particles
takes place at a relative humidity of about 80%. On the other hand‚ crystallization
of this salt from a salt supersaturated solution drop requires a relative humidity as
low as 35%. Similar low relative humidities were found to be required for the crys-
tallization of other salts out of pure salt solution drops‚ and for the crystallization
of dissolved material in drops grown on natural aerosol particles (Shaw and Rood‚
1990; Orr et al.‚ 1958a‚b; Tang and Munkelwitz‚ 1983; Spann and Richardson‚
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1985‚ and Cohen et al. 1987).
These observations appear to suggest that except in air over deserts and in sub-

tropical high pressure systems‚ the DPC mechanism will rarely lead to dry aerosol
particles. On the other hand‚ in the literature‚ the aerosol size distribution of
atmospheric aerosol particles is generally presented as pertaining to dry particles.
Three explanations for this apparent discrepancy may be offered: (1) The aerosol
particles counted become dry as they pass through the particle counting system
used. (2) Laboratory experiments overestimate the reduction in relative humidity
necessary to initiate the crystallization of solution drops. Nucleation of salt in a
supersaturated solution is a time dependent phenomenon. During an experimental
situation in the laboratory‚ nucleation is ‘forced’ to take place over a time period



236 CHAPTER 8

much shorter than the time available for drop evaporation in the atmosphere. (3)
During evaporation in the atmosphere‚ supersaturated drops may collide with wa-
ter insoluble particles‚ which may initiate a heterogenous crystallization process
at relative humidities much higher than those observed under clean laboratory
conditions.

For a number of years‚ one assumed that salt particles which result from evap-
orating aqueous solution drops would break up into smaller portions due to stress
which developed during the drying process. While Dessens (1946‚1947‚1949)‚ Facy
(1951)‚ Twomey and McMaster (1955)‚ Radke and Hegg (1972)‚ and Cheng (1988)
believed they had evidence for particle fragmentation during the drying of drops‚
Lodge and Baer (1954)‚ Blanchard and Spencer (1964)‚ Liu (1976)‚ Pinnick and
Auverman (1979)‚ Tang and Munckelwitz (1984) and Baumgärtner et al. (1989)
found no evidence for such fragmentation. The discrepancy between the results of
the various investigators was resolved by Mitra et al. (1992a)‚ who by wind tunnel
experiments‚ showed that the drying process of freely air suspended aqueous solu-
tion drops is not accompanied by fragmentation of the drying salt particles. The
presence of water insoluble particles inside the drying salt solution drop did not
alter the result. One may‚ therefore‚ safely assume for cloud modeling purposes
that the evaporation of a cloud drop results in the formation of one aerosol par-
ticle consisting of all the dissolved and undissolved matter which had entered the
drop during its life time. However‚ solution drops drying on hydrophilic filaments
(Plate 9a) do break up during the drying process‚ an effect which is prevented if
a hydrophobic filament is used (Plate 9b). Fragmentation may also occur if salt
particles‚ which resulted from the drying of salt mixtures such as ocean water‚ col-
lide with solid surfaces since these particles are hollow and very fragile‚ as shown
by Cheng et al. (1988)‚ Baumgärtner et al. (1989) and Mitra et al. (1992)‚ (see
Plate 9i‚k). Ranz and Marshall (1977)‚ Charlesworth and Marshall (1960)‚ Leong
(1987 a‚b‚ 1981)‚ and Mitra et al. (1992a) concluded from their studies that the
particle cavities shown in Plate 9k are not the result of a mass loss during the
crystallization process‚ but rather are a result of the growth mode of the salt in
the solution drop: crystallization begins at the upstream side of the solution drop
and continues as a shell upward and inward. Since for typical salinities there is not
sufficient salt to fill the whole volume of the drop‚ a hollow salt particle results with
a cavity opening at the downstream side of the falling drop. Salt particles resulting
from the drying of solution drops containing only one salt may at times also appear
hollow‚ depending on the rate of drying. Generally‚ NaCl particles of diameters
less than are single crystalline cubes (Mitra et al. 1992; Baumgärtner et al.
1989)‚ while particles are spherical (Plate 9c‚f). Larger NaCl particles
are single or polycrystalline with surface steps defining cubic forms (Plate 9d‚e).

particles larger than are always roundish (Plate 9g‚h) with pro-
nounced surface steps‚ and do not exhibit any features of the orthorhombic form a
macroscopic ammonium sulfate crystal has.
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8.2.3 FORMATION OF AEROSOL PARTICLES BY BULK TO PARTICLE

CONVERSION (BPC)

8.2.3.1 BPC at the Solid Earth Surface

It is well-known that plants release various types of organic particulates‚ such as
pollen‚ seeds‚ waxes‚ and spores which are distributed by air motions throughout
the atmosphere (Gregory‚ 1961). A detailed study of the seasonal variation of
pollen and spores was made by Grosse and Stix (1968)‚ Stix (1969)‚ and Stix
and Grosse (1970). Diameters of these particles were found to range typically
between 3 and It has also been shown that the atmosphere harbors large
collections of microbial bodies‚ both living and dead (Gregory‚ 1967; Valencia‚ 1967;
Parker‚1968). Lodge and Pate (1966) reported that substantial amounts of organic
materials rise from tropical forest floors into the atmosphere. They concluded
that these particles were produced by aerobic bacterial decay of tree leaf litter.
In related work‚ Parkin et al. (1972) found humus from vegetation‚ dark plant
debris‚ and fungus debris on aerosol particles which were carried in the westerlies
over the Atlantic from the eastern United States. Rasmussen and Went (1965)
and Went et al. (1967) captured organic particles which originated from decaying
mid-latitude forest litter. Went’s studies showed that the number concentration of
organic particles was largest during periods of rapid plant litter decay. A variety of
organic compounds were also identified in snow and rain by Shutt (1907)‚ Fonselius
(1954)‚ and Munzah (1960).

The mass concentration of a large variety of organic components were studied
in the field by Ketseridis et al. (1976a‚b‚ 1978)‚ Ketseridis and Eichmann (1978)‚
Doskey and Andren (1986)‚ and Simonett and Mazurek (1982). Pollen‚ spores‚ mi-
croorganisms‚ seeds‚ bacteria‚ and molds were investigated by Rüden et al. (1978)
and Gregory (1978) as a function of height above the ground. They also noticed
a significant dependence of the concentration of these particles on the relative hu-
midity‚ temperature‚ and the intensity of the solar radiation. The total biogenic
fraction of the atmospheric aerosol particles of a radius larger than found in
air sampled at Mainz‚ Germany‚ was determined by Matthias (1992) to vary from
a few % up to 40% with respect to the number concentration‚ and up to 15% with
respect to volume. Organic particles in the air are also present as elemental carbon‚
i.e.‚ soot particles‚ obviously resulting from combustion processes. Such particles
have been studied at different locations by Meszaros (1984)‚ Okita et al. (1986)‚
and Heintzenberg and Covert (1984)‚ Hansen and Rosen (1984)‚ Rosen and No-
vakov (1983)‚ Chylek et al. (1987). As expected‚ the largest concentration occurs
in air over cities; but somewhat unexpectedly‚ measurable concentrations occur
also in air over oceans. A summary of the role of organic materials in atmospheric
aerosols has been given by Jaenicke (1978b)‚ and Due et al. (1983). Some recent
measurements of carbon rich (C-rich) particles in the upper troposphere and lower
stratosphere were carried out by Sheridan et al. (1994). Two main classes of C-
rich particles were observed: (1) a class consisting of soot particles with chain-like
structure‚ each chain being composed of small spherules of 20 to in diameter‚
and (2) non-chain type C-rich particle with elements of Ti‚ Fe‚ Ni‚ Cr inclusions.
Similar observations were made by Blake and Kato (1995).



THE ATMOSPHERIC AEROSOL AND TRACE GASES 241

About one third of the Earth’s land area is covered by rocks or soil devoid
of vegetation (Meigs‚ 1953). The exposed silicate compounds are chemically and
mechanically disintegrated by the combined action of wind‚ water‚ temperature
variations‚ and gases such as oxygen‚ carbon dioxide‚ and others. This weathering
forms particles which have diameters mostly larger than The loose silicate
material‚ usually with considerable amounts of organic material attached‚ is then
transported upward by air motions. Clays‚ which are layersilicates and consist
mainly of and MgO‚ are most easily disrupted by weather-
ing. Frequently‚ they are present as kaolinite‚ montmorillonite‚ illite‚ attapulgite‚
halloysite‚ and vermiculite (for details on the chemical compositon and special
properties of clays‚ see‚ e.g.‚ Grim‚ 1953).

Airborne silicates emitted by the Sahara desert have been identified by Prospero
and Bonati (1969)‚ Prospero et al. (1970)‚ Chester and Johnson (1971)‚ Jaenicke
et al. (1971)‚ Parkin et al. (1972)‚ Schütz and Jaenicke (1974)‚ Schütz (1980)‚
Prospero et al. (1981)‚ d’Almeida and Schütz (1983)‚ Talbot et al. (1986)‚ Schütz
(1989)‚ and Fitzgerald (1991) in air over the Sahara and westward over the Atlantic;
by Delany et al. (1967) and Prospero (1968) in air over the Isles of Barbados; by
Abel et al. (1969) in air over the Island of Teneriffa; and by Rex and Goldberg
(1958) and Ferguson et al. (1970) in air over the Pacific and Indian Oceans. The
Saharan dust was found to occur preferentially at atmospheric levels of between 1.5
and 3.7 km (Pospero and Carlson‚ 1972). The size of the silicate particles ranged
typically between 0.3 and radius‚ with a mode (most probable radius) near
2 to Deserts and semi-arid regions in North China and Mongolia are another
significant source of silicates. Isono et al. (1959) identified clay particles in air over
Japan which originated in North China or Mongolia‚ where they became airborne
during large dust storms. Similarly‚ Darzi and Winchester (1982) identified at
Mauna Loa (Hawaii) silicate particles transported eastward from North China.
Isono et al. (1970) have provided evidence that some of these clay minerals are
transported by the upper level westerlies across the Pacific and deposited over the
northwestern coast of the U.S. Dust outbreaks over the deserts of the Middle East
were observed by Savoie et al. (1987) in terms of a sudden increase of the silicate
content of aerosol over the North Indian Ocean. Aerosol particles sampled over the
dusty High Planes in the U.S. contained between 45 to 83% siliceous material.

The mechanism by which clays and other soil or sand particles become airborne
has been investigated by Chepil (1951‚ 1957‚ 1965)‚ Chepil and Woodruff (1957‚
1963)‚ Owen (1964)‚ Bagnold (1965)‚ Gillette et al. (1972‚ 1974)‚ Gillette and
Walker (1977)‚ Gillette (1978a‚b)‚ and by Borrmann and Jaenicke (1987). It is well-
known that adjacent to a smooth surface and at wind speeds below some critical
value‚ a laminar boundary layer exists‚ even if the air flow is otherwise turbulent.
On the other hand‚ if the surface is rough due to the presence of irregular soil
and sand particles‚ turbulent motion may prevail right down to the surface. Such
turbulent flow can cause a rough soil or sand surface to be eroded either by direct
aerodynamic pick-up of the particles‚ or as a result of the bombardment by particles
performing a bouncing motion called saltation. Conditions for saltation derived by
Owen (1964) are summarized in Figure 8.11. During saltation‚ individual grains
follow distinctive trajectories determined by the size and shape of the particles.
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The air in the saltation layer is strongly sheared. The lift force responsible for the
particles’ saltation ensues from the combined action of the particles’ momenta and
the environmental vorticity.

According to observations by Chepil (1951)‚ the minimum threshold wind ve-
locity for direct aerodynamic pick-up of soil particles is a strong function of particle
size. If particles were entrained by such a mechanism into the air layers adjoin-
ing the surface‚ one would expect greatly differing particle size distributions with
height‚ owing to gravitational sorting and the effects of vertical wind shear. Such
a dependence was not found by Gillette et al. (1974)‚ Gillette and Walker (1977)‚
Gillette (1978a‚b) and Borrmann and Jaenicke (1987)‚ who experimentally stud-
ied the size distribution of airborne particles from soil surfaces eroded by wind.
Therefore‚ they concluded that sandblasting (saltation erosion) of the soil surface
is the dominant mechanism by which particles become airborne. Wind tunnel ex-
periments of Borrmann and Jaenicke (1987)‚ and controlled field experiments of
Gillette et al. (1974)‚ and Gillette and Walker (1977) involving saltation-erosion
on known soil and sand areas have allowed a determination of the vertical flux of
soil particles and their mass distribution. These are consistent with the fluxes and
mass distributions observed over the Libyan Desert (Schütz and Jaenicke‚ 1974;
d’Almeida and Schütz‚ 1983).

After becoming airborne‚ silicate particles readily coagulate with other AP‚ thus
becoming of mixed compositions. It is therefore not surprising that the bulk density
of continental aerosol material varies over a range which may differ considerably
from the bulk density of (quartz)‚ which is to
According to d’Almeida and Schütz (1983)‚ some Sahara dust particles contain the
elements Hf and Zr‚ and therefore have the much higher bulk density of approxi-
mately Hänel and Thudium (1977) found‚ for
to (desert‚ Israel)‚ (urban‚ Mainz)‚
(Jungfraujoch‚ Switzerland)‚ and (rural‚ Deuselbach‚ Ger-
many). Joshi (1988) observed (Bombay‚ India). These



THE ATMOSPHERIC AEROSOL AND TRACE GASES 243

values are to be compared with the densities of NaCl sea salt
and

Particles emitted by volcanoes also are often the result of a combination of both
mechanical disintegration and gas-to-particle conversion. For example, during the
eruptions of Krakatoa in 1883 in the East Indies and Gunung Agung in Bali in
1963, some of the emitted particles consisted simply of silicates from the crater
walls, others consisted of finely divided solidified lava, while still others consisted
of sulfates, fluorides, chlorides, and sulfuric acid. The particles, which ranged from
submicron size to greater than were injected into both the troposphere
and stratosphere. Similar results were found by Stith et al. (1978) who studied six
volcanoes in Alaska and the State of Washington. More recently, Rose et al. (1982)
and Hobbs et al. (1982, 1983) studied particles emitted by the Mt. St. Helens
volcano (Oregon) in 1980. The particle sizes ranged from 0.001 to Also, the
mass concentration showed a wide variation, ranging typically between a few tens
to a few hundreds with a peak mass concentration of and
a total particle number concentration of to Unfortunately, no direct
measurements are available on the size distribution and chemical composition of
the aerosol particles emitted during the eruption of Mt. Pinatubo (Phillipines)
in June 1991, although significant changes in the particle size distribution of the
stratosphere were noted by Wilson et al. (1993) and Borrmann et al. (1993).

Particles injected into the atmosphere by industrial processes are also often
the result of mechanical disintegration and gas-to-particle conversion. Hobbs and
Radke (1970) found, downstream of paper mill exhausts, particles of

and which ranged from submicron
size to several hundred microns, with a mode from 1 to diameter. Serpolay
(1958, 1959) and Soulage (1961) found a large number of metal and metal oxide
particles downstream of steel foundries and electric steel mills.

8.2.3.2 BPC at the Surface of Oceans

Wind blowing across an ocean surface causes the formation of waves which produce
spray drops at their crests. The finer of these drops remain airborne and eventually
evaporate to give solid AP. A more important source of AP results from the bursting
of bubbles produced by the entrainment of air at the wave crests.

Experimental studies of Woodcock et al. (1953)‚ Kientzler et al. (1954)‚ Knel-
man et al. (1954)‚ Mason (1954b)‚ Moore and Mason (1954)‚ and Blanchard (1954)
show that each air bubble which reaches the ocean surface develops a spherical cap
which strains‚ thins‚ and then bursts. After the bubble cap has burst‚ fragments of
the cap-film are thrown upward by the air which escapes from the bubble orifice.
Now deprived of its cap‚ the bubble fills with water rushing down the sides of the
cavity‚ which subsequently emerges from the center as a narrow jet. As the jet
rises‚ it becomes unstable and eventually disintegrates into a few large and sev-
eral small drops. Bubbles of 2 mm diameter project drops up to heights of nearly
20 cm above the ocean surface; drops from both larger and smaller bubbles gener-
ally reach lower heights (Blanchard‚ 1963; Hayami and Toba‚ 1958). Depending on
the relative humidity and turbulence of the air‚ some of the drops formed by the
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collapsing jet and by the shattered bubble cap fall back to the ocean surface. The
remainder evaporate while airborne‚ leaving a small sea salt particle light enough
to be carried aloft by air motions. The different stages in the production of sea salt
particles by this bubble-burst mechanism are described schematically in Figure 8.12.

A sea salt particle is mainly composed of NaCl, the most abundant salt in ocean
water. In addition, it often contains small amounts of and

However, the chemical composition of sea salt particles deviates considerably
from the composition of ocean water. Junge (1972b) suggested that this is partly
a result of ion fractionation occurring during the bubble burst mechanism. Since
organic materials often reside in the ocean surface, they too may become airborne
and become part of the sea salt particles (Blanchard, 1964, 1968; Garret, 1965,
1969). Subsequent to its formation, a sea salt particle may change its composition
further as a result of both chemical reactions with atmospheric trace gases and
coagulation with other AP in the atmosphere. Thus, in air over the Atlantic near
the Sahara Desert, sea salt particles may have silicates admixed. It is therefore not
surprising that the bulk density of maritime aerosol material varies over a range
which may differ considerably from the bulk density of the salt that crystallizes
from evaporating ocean water. Such salt has a bulk density of In
contrast, Hänel and Thudium (1977) observed (West coast,
Ireland), and Fischer and Hänel (1972) observed (North
Atlantic, near Sahara). Note that

During the bursting of a bubble of about in diameter, the jet breakup
produces on average 5 larger drops (Blanchard and Woodcock, 1980). With in-
creasing bubble size, this number decreases to about 1 larger drop from bubbles
of diameters larger than 3 mm (Cipriano et al., 1983). These larger drops have
diameters of about one tenth the diameter of the parent bubble. Assuming that
the density of a sea salt particle is that the density of ocean water is

and that its salinity is we find a bubble of 2 mm diam-
eter produces a salt particle of which is equivalent to a dry radius
of about Similarly, bubbles of 100 and diameter produce salt parti-
cles of and g, which are equivalent to dry radii of about
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1.3 and respectively. In addition to these large drops, jet breakup bubbles
of diameters larger than 2 mm also eject a group of smaller drops at low angles
to the horizontal. These drops have diameters of 5 to and produce sea salt
particles of masses to corresponding to dry radii of 0.6 to

There has been some speculation that salt particles of even smaller size
are produced by the splintering of the drying remnants of solution drops (Mason,
1971). However, the wind tunnel studies of Mitra et al. (1992a) have disproven
the existence of such a mechanism.

The bursting of the bubble cap produces a large number of smaller drops lead-
ing to salt particles of a mass smaller than those from jet breakup. Mason (1954b,
1957b) found that most of the salt particles from the bubble cap have masses
less than equivalent to a dry radius of less than about The
largest particles had masses up to equivalent to a dry radius of about

while the smaller particles had masses as low as equivalent to a
dry radius of These results were essentially confirmed by Twomey (1960).
Blanchard (1963) suggested, and Day (1964) and Cipriano and Blanchard (1981)
confirmed, that the number of bubble cap droplets decreases with decreasing bub-
ble size, and that bubbles in diameter smaller than produce no cap drops
(see Figure 8.13). Thus, bubbles smaller that in diameter produce sea salt
particles only as a result of jet breakup. However, there also appears to be a lower
size limit to the production of air bubbles. According to Woodcock (1972), Wood-
cock and Duce (1972), Resch and Avellan (1981), Johnson and Cooke (1979), and
Wu (1981), who studied the size distributions of bubbles on the ocean surface, air
bubbles smaller than in diameter are unlikely to exist near the surface, since
bubbles of such sizes rise extremely slowly in ocean water, providing sufficient time
for them to be dissolved. Consequently, sea salt particles produced by jet droplets
necessarily have masses larger than about The bubble size distributions,
studied by Resch and Avellan (1981), Wu (1981), Cipriano and Blanchard (1981),
and Johnson and Cooke (1979) show further that the distributions have a definite
maximum at bubble radii between 50 and the number falling off rapidly
towards larger bubble sizes.

According to Blanchard and Woodcock (1957), the number of bubbles of radii
R to R + dR bursting per per sec in a foam patch on the ocean surface is given
approximately by Assuming that each bubble produces one jet
drop which remains airborne, the rate of jet particle production in
by bubbles of radii larger than is then
One may assume this relation is applicable to bubble radii larger than Day
(1964) determined that for bubbles of radii larger than the number of cap
drops per bubble varies with bubble size as Mason (1971) deduced from
this information that the rate of cap particle production by bubbles
of radii larger than can be described by
which is applicable to bubbles larger than radius. Note that these results
only apply to drop production by single bubbles. Experiments by Mason (1957b)
and Twomey (1960) suggest that the rate of cap drop production is considerably
larger if bubbles break in clusters.

Observations by Moore and Mason (1954) at a height of 10 m over the Atlantic
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showed that sea salt particles of mass g are formed at a rate of
particles of at a rate of and

particles of g at a rate of over areas where bubbles
are bursting. Blanchard (1969) found, off the Hawaiian coast, the somewhat larger
total particle number of Using photographic observations of
the state of the ocean surface at different times during a whole year, Blanchard
(1963) estimated that, on a global average, 3.4% of the Earth’s oceans are covered
with breaking bubbles. Although Monahan (1968, 1969, 1971) and Williams (1970)
argued that this figure was too large, Blanchard (1971a) upheld his original estimate
by pointing out that the bubble-burst mechanism operates not only in the areas
covered by white-caps, but also in the areas immediately adjacent to them. Thus,
Blanchard (1969) suggested that the average sea salt particle production is 0.034 ×

corresponding to a global production rate of about
particles Assuming that on the average an airborne sea salt particle has a
mass of one estimates 300 Tg for the global production rate of
sea salt. This is in agreement with estimates by Erikson (1959), and by Peterson
and Junge (1971).

Within this context, it is useful to test whether the flux of salt particles due to the
bubble burst mechanism may account for the number of cloud condensation nuclei
from which cloud drops are formed. Cipriano et al. (1983) used two routes of argu-
mentation to explore this question. For the first argument they followed Twomey
and Wojciechowski (1969), and assumed on global average a columnar concentra-
tion of cloud condensation nuclei of throughout the troposphere.
Assuming a residence time for the salt particles of three days they
deduced a nuclei flux of about If this flux of nuclei could be
represented by a flux of salt particles only, and one assumes a 3% bubble coverage
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of the oceans‚ the salt particle flux would need to be about or
about seven times larger than the flux observed in the laboratory and in the field
over breaking waves of (Moore and Mason‚ 1954; Cipriano et al.
1983; Cipriano and Blanchard‚ 1981). One concludes from this estimate that the
data do not support a breaking wave origin for all the cloud condensation nuclei in
the troposphere.

The second argument of Cipriano et al. (1983) tested whether the data sup-
port a breaking wave origin for cloud condensation nuclei at least in the maritime
boundary layer. This boundary layer is typically 2 km deep (Blan-
chard and Woodcock‚ 1980). Assuming a typical droplet concentration in martime
clouds of (Squires and Twomey‚ 1958; Jiusto‚ 1966)‚ the columnar concen-
tration of cloud condensation nuclei to support this drop condensation would be

Assuming again a three day residence time for aerosol particles‚
the required particle flux to support the observed drop concentration would be
about If one requires that this nuclei flux be made up of salt par-
ticles from breaking waves‚ assuming again a 3% bubble coverage over the ocean‚
the required salt particle flux would need to be The salt particle
flux of observed in the laboratory and in the field implies a cloud
condensation nucleus flux of at a supersaturation of 1% (see Ta-
ble 9.3). Thus‚ we see that even in the maritime boundary layer‚ the observed sea
salt particle flux falls short by a factor of about 6 from accounting for the maritime
cloud formation.

Observations show that the ocean surface is not a source of inorganic salts only‚
but of organic materials as well. Wilson (1959)‚ Blanchard (1964‚ 1968)‚ Goetz
(1965)‚ and Garret (1967‚ 1970) found organic substances present in the ocean
surface which become airborne through the bubble-burst mechanism. Goetz (1965)
and Blanchard (1969) captured airborne‚ submicron-sized‚ organic particles which
originated at the ocean surface. Zoebell and Matthews (1936) and Stevenson and
Collier (1962) showed that air above oceans contained numerous micro-organisms
indigenous to marine water. Studies of organic compounds in snow and rain also
suggest a marine source for these materials (Wilson‚ 1959; Newmann et al.‚ 1959).
Of course‚ significant amounts of surface active materials at the ocean surface also
affects the bubble-burst mechanism through lowering the surface tension (Patterson
and Spillane‚ 1968).

8.2.4 AP FROM EXTRATERRESTRIAL SOURCES

Extraterrestrial particles continuously enter the Earth’s atmosphere at speeds great
enough to produce strong frictional heating. The resulting light phenomenon is
called a meteor and the particle itself is called a meteoroid. The vast majority of
meteoroids are believed to be permanent members of the solar system. Meteoroids
produce meteors at an average height of about 95 km‚ and nearly all of them
completely disintegrate and their meteors disappear by the time they have reached
an altitude of about 80 km. The small fraction which do survive the fall to Earth
are termed meteorites. Some of these are quite large‚ one of the largest on display
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in a single piece has a mass of 14 tons. This contrasts with an average meteoroid
mass of a few grams or less.

Most meteorites are very small‚ having been nearly consumed before slowing
sufficiently to reach temperatures below the burning point; such particles are called
micrometeorites. Most of these are derived from a large pool of interplanetary
dust which is concentrated in a lens-shaped volume located about the plane of the
ecliptic. These particles move around the Sun in orbits similar to that of the Earth‚
and enter the Earth’s atmosphere with small geocentric velocities. Their diameters
range between about 1 and Particles which result from the condensation
of evaporated meteoroids are considerably smaller‚ ranging between and a
few Ångstrøms (Rosinski and Snow‚ 1961).

Chemically‚ meteorites are divided into four main groups: irons (siderites)‚ stony
irons (siderolites)‚ stones with small spheroidal aggregates (chondrites)‚ and stones
without such aggregates (achondrites). Common minerals in meteorites include
kamacite‚ taenite‚ troilite‚ olivin‚ orthopyroxene‚ pigeonite‚ diopside‚ and plagio-
clase. Elements typically found in meteoritic aerosol material are Fe‚ Si‚ Mg‚ S‚ Ca‚
Ni‚ Al‚ Cr‚ Mu‚ Cl‚ K‚ Ti‚ and Co (Cameron‚ 1981). Measurements in the upper
troposphere and lower stratosphere by Sheridan et al. (1994) showed that metallic
particles contained elements such as Fe‚ Ti‚ Al‚ Zu‚ Sn. Such particles appeared
always as discrete particles which were not associated with detectable quantities of
sulfate‚ commonly observed at these levels of the atmosphere.

8.2.5 RATE OF EMISSION OF PARTICULATE MATTER INTO THE AT-

MOSPHERE

Attempts to estimate the rate at which particulate matter is injected from the
Earth’s surface or from space into the atmosphere‚ have encountered considerable
observational difficulties. Similar difficulties are involved in estimating the rate
at which aereosol particles are produced inside the atmosphere. The estimates of
Robinson and Robbins (1971) and of Peterson and Junge (1971) are summarized
in the form of a table in SMIC (1971). This table has been extended by Jaenicke
(1988) to include other authors. The values listed by Jaenicke are reproduced here
as Table 8.7. Although the values given in this table are only rough estimates‚
they testify to the rather large amounts of material which enter the atmosphere.
The data also suggest that the man-made contribution to the total particulate load
in the atmosphere ranges between 5 and 65%‚ depending on the estimates of the
source strength.

8.2.6 RESIDENCE TIME OF AP

It is considerably more difficult to estimate residence times for aerosol particles than
for gaseous constituents of the atmosphere. The reason for the additional difficulty
lies mainly in the fact that aerosol particles‚ particularly those at the smaller end of
the size spectrum‚ undergo a continuous change in size and composition and‚ thus‚
lose their identity as a result of coagulating with other particles. Consequently‚ the
term residence time is not only a measure of the time a species resides in a reservoir
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but it is also a measure of the spatial and temporal variation of the concentration
of that species in the reservoir (Jaenicke, 1988).

The results of estimates made prior to 1970 have been summarized in SCEP
(1970). More recent measurements have been obtained by using

and HTO isotopes (Martell, 1970, 1971; Poet et al., 1972; Moore
et al., 1973; Ehhalt, 1973; Weickmann and Pueschel, 1973; Martell and Moore,
1974; Tsunogai and Fukuda, 1974). The more recent estimates have been collected
by Jaenicke (1988) in Figure 8.14. From this figure it is seen that the residence
time is longest for a particle in the size range to The residence time
decreases towards larger sizes due to the increased fall velocity of the particles and
therefore their increased tendency to fall out. The residence time also decreases
towards smaller sizes due to an increased tendency of a particle to coagulate with
other particles. From Figure 8.15, the residence time of AP can also be seen to
increase with height in the atmosphere. It ranges from a few days in the lower
troposphere to a few weeks in the upper troposphere, to several weeks, months and
even years at increasingly higher levels above the troposphere. This behavior is
somewhat expected considering that clouds are most abundant below 6 km where
they constitute a major sink for aerosol particles.

Of course, the residence time of an aerosol particle is also affected by its chemical
composition, in particular its solubility in water. We will see in Chapter 9 that salt
particles are preferred cloud condensation nuclei, so that they are rapidly removed
from the atmosphere due to their involvement in forming cloud drops. Thus, Junge
(1972b) showed that unrealisitic values for are obtained if sedimentation is
the only removal mechanism considered. He suggested that sea salt particles have
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their major sink at the cloud level. Using his own estimates and those of Erikson
(1959)‚ Junge suggested days for This is the value
we used earlier in Section 8.2.3.2 to show that the sea salt particle flux cannot
account solely for maritime cloud formation.

8.2.7 WATER-SOLUBLE FRACTION OF AP

Atmospheric AP have a wide range of water-solubilities. Compounds such as NaCl‚
and other salts typically found in the

atmosphere are highly water-soluble‚ while substances such as silicates and metal
oxides are practically water-insoluble. Substances such as and have
a measurable but rather low solubility. In contrast to solid particulates‚ most gases
exhibit measurable water-solubility. While and are highly
soluble in water‚ where they dissociate into ions‚ other gases such as CO‚ and

have a moderate solubility and are molecularly dissolved.
The water-solubility of any compound is temperature-dependent. Most salts

suspended as particulates in the atmosphere dissolve by means of an endothermic
(heat-consuming) process‚ so that their solubility increases with increasing tem-
perature. On the other hand‚ gases such as NO‚
and dissolve by means of an exothermic (heat-releasing) process‚ causing their
solubility to increase with decreasing temperature. It is worth noting also that the
solubility of a gas increases as its partial pressure increases (see Chapter 17).

The solubility of a salt (given in terms of the maximum mass of salt which can
be dissolved in a given mass of water) is not directly related to its hygroscopicity or
vapor pressure reducing power (see Chapter 4)‚ but is a function of the interaction
energy between the water molecules and the salt ions in water‚ and of the lattice
energy of the salt crystal. Therefore‚ the solubility of a salt does not predict the
relative humidity at which a particle of that salt changes into a solution drop; nor‚
once dissolved‚ does it predict the effect which the salt has on the equilibrium
growth behavior of that drop.

Chemical analysis of AP shows that most individual AP are of a mixed chemical
nature‚ and contain both water-soluble and water-insoluble substances. This fact
was first pointed out by Junge (1950)‚ who termed these AP mixed particles or
Mischkerne. A mixed particle may be formed (1) by condensation or adsorption of
foreign gases onto the surface of AP; (2) by coagulation of AP with other AP; (3)
by solution of gases in cloud and raindrops followed by chemical reaction with other
dissolved substances or insoluble particles in the water‚ and subsequent evaporation
of the drop; (4) by coagulation of cloud drops with other cloud drops containing
substances of a different chemical nature in dissolved form‚ and subsequent evapo-
ration of the drops; and (5) as a result of the simultaneous condensation of vapors
emitted during combustion processes. Most particles emitted into the atmosphere
are also of a mixed type‚ such as sea salt particles‚ organic plant material‚ and soil
derived particles.

According to Junge (1972c)‚ one generally may assume that AP at the Earth’s
surface consist typically of about 50% water-soluble inorganic material‚ about 30%
water-insoluble inorganic material‚ and about 20% organic material. However‚ ac-
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cording to Table 8.8‚ the water soluble fraction in aerosol particles is quite
variable. This is not surprising considering the large number of chemical com-
pounds from which aerosol particles may be formed. Unfortunately‚ the chemical
composition of the aerosol samples listed in Table 8.8 was not evaluated at the time
at which the water soluble fraction was determined. Therefore‚ we do not know
which chemical compounds contributed to the water soluble and the water insoluble
portions of the particles. Also‚ only deposits of aerosol particles in given size inter-
vals were studied‚ rather than single particles. The values for therefore reflect
the ‘inner mixture’ of single particles as well as the ‘outer mixture’ of particles of
different composition. Nevertheless‚ we may notice that maritime air generally con-
sists of AP with while continental air contains AP with
Studying the water soluble fraction in aerosol particles of sampled at
Mt. Feldberg (near Frankfurt/Main)‚ Eichel (1994) found that the particles could
be grouped into 3 solubility categories: a group with a group with

and a group with

8.2.8 TOTAL MASS AND NUMBER CONCENTRATION OF AP

8.2.8.1 Number Concentration (except Polar Aerosols)

Table 8.9 summarizes typical values for the number concentration of AP of all
sizes, irrespective of their chemical type. The total particle concentration in air
over land generally ranges between and In air over cities, the
concentration may even be as large as while in air over rural areas, near
seashores, and at mountain stations, the concentration is usually only a few hundred
to a few thousand Thus, Landsberg (1938) found an average minimum AP
concentration of over rural areas, while Auer (1966) reported
at the remote Yellowstone Park (Wyoming). Lower values were found by Landsberg
at mountain stations, where the average minimum decreased to a few hundred

Similarly, Junge et al. (1969) found at Crater Lake (Oregon, 1100 m) a
total AP concentration of during subsidence conditions. However, under
normal conditions, the concentration varied typically between 1000 and
Bullrich et al. (1966) found a value of 600 in air above the trade wind
inversion over Hawaii on Mt. Haleakala (3050 m). These data imply that the
number concentration of AP decreases with increasing distance from the aerosol
particle source.

Let us now look at number concentrations of AP of a specific chemical type.
Schütz and Jaenicke (1974) found near the ground over the Libyan Desert silicate
particle concentrations of
and at mean wind speeds of and

respectively. d’Almeida et al. (1991) reported 250 to for
various locations in the Sahara. Schütz (1989) found for atmospheric conditions
80 to on the west coast of Africa at the latitude of the Sahara, and
800 to during dust storms. Further west of the North African coast,
the concentration of silicate particles varied between 400 and at various
locations on the subtropical Atlantic.
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Grosse and Stix (1968), Stix (1969), and Stix and Grosse (1970) found that
in air over Darmstadt (Germany) the daily average concentration of pollen and
spores ranged from a few hundred (maximum values of during the
months of December to April, to a few thousand (maximum values of a few
ten thousand during the months of May to October. During the months of
October and November, intermediate values were found.

Rüden et al. (1978) observed micro-organisms in concentrations of 160 to
bacteria in concentrations of 500 to and molds up to

at 20 m above ground. Gregory (1978) found spores and pollen in concentrations
up to during short periods, with averages of at 2 m above
ground. Matthias (1992) investigated the total number of biogenic particles in
air over Mainz and found that the number concentration ranged between 300 and

Soot particles were measured by Meszaros (1981, 1984) and Heintzen-
berg and Covert (1984). Meszaros observed the highest concentrations in air over
Budapest, Hungary less in rural air of Hungary and
lowest numbers in air over the Atlantic (340 to

Particles containing sulfates, nitrates, chlorides, and calcium and ammonium
compounds are found to be present in preferred size ranges. Junge (1953, 1954)
found, from an analysis of air over Frankfurt/Main (Germany), over Round Hill
near Boston (U.S.), at the Taunus Observatory (800 m, Germany), and at the
Zugspitze Observatory (3000 m, Germany), that particles in the size range

seemed to consist mainly of ammonium sulfate. These results were sup-
ported by Georgii et al. (1971), who found that in air over West Germany more
than 95% of the sulfate mass of AP was contained in particles with Sim-
ilarly, in air over Crater Lake (2200 m Oregon), 86% of the sulfur was contained
in particles less than radius (Junge et al, 1969). Junge (1953, 1954) also
noticed that much of the NaC1 was contained in particles of In
agreement with this, Junge et al. (1969) observed at Cape Blanco (Oregon) that
92% of the chloride was contained in particles larger than radius. According
to Meszaros (1969), AP of purely continental origin contain most of the nitrate as
ammonium nitrate in the ‘large’ AP range, while the water-soluble calcium is found
primarily in AP of the Aitken size range. On the other hand, Junge (1954) found
that in air near the east coast of the U.S., nitrate was predominant as in
AP of the ‘giant’ size range.

Table 8.10 illustrates that at locations over oceans, relatively remote from an-
thropogenic sources, the total concentration of AP generally ranges between 300
and with minimum values close to One would expect that
in the air close to the ocean surface, sea salt particles would dominate the AP
concentrations. However, this does not happen, and at average wind conditions,
the concentration of such particles is found to be less than Only in air
over very agitated seas during storms does the concentration increase to a few tens

During storm conditions off the coast of Denmark, Schmidt (1972) found
sea salt particles with in concentrations of 24 to In air
over the southern hemispheric Atlantic and Indian Oceans, Meszaros and Vissy
(1974) found that the maximum concentration of sea salt particles varied between
4 and accounting only for from 5 to 49% of the total number of particles,
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which ranged from 12 to for On the other hand‚ the
same authors found the concentration of particles varied between 17
and accounting for 36 to 74% of the total number of particles. This result
is not surprising in light of our discussion in the previous section where we pointed
out that the ocean is a significant source of organic sulfur in the form of DMS‚
which in marine air is converted to sulfate.

8.2.8.2 Mass Concentrations (except Polar Aerosols)

Table 8.11a summarizes typical values for the mass concentration of AP of all sizes
irrespective of their chemical type. We notice that the total mass concentration
generally ranges from 10 to a few hundred micrograms per cubic meter air. As
expected from their number concentration‚ the mass load is highest in air over
cities‚ less over rural areas‚ and lowest in air over oceans. Also‚ the mass load
generally decreases with increasing elevation.

We shall now briefly turn to the mass concentration of AP of a specific chemical
type. In Tables 8.11b and 8.11e‚ the mass concentrations of non-sea salt sulfate
(NSS) and nitrate particles are listed for various urban‚ rural and ocean stations.
We notice that the mass load of these particles typically ranges between 5 and
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in air over cities‚ decreases to 1 to in air over rural stations‚
and assumes values between 0.1 and in maritime air.

Mass concentrations of AP separated according to the major size ranges and
constituents have been determined by Junge (1956) for air over various continental
and coastal stations (Figure 8.16). Note that with increasing proximity to oceans‚
the concentration of ‘large’ particles containing and de-
creases. The same holds true for the concentration of ‘giant’ particles containing

and while particles containing in this size range become
more frequent with increasing proximity to oceans. This trend has also been found
by Rossknecht et al. (1973) in Oregon‚ Lodge (1955) in Puerto Rico‚ and Twomey
(1955) in Australia.

In Table 8.11d‚ the mass concentration of silicate particles is listed for sta-
tions over desert areas and stations inside and outside the particle plumes down-
wind of deserts. We notice from this table that deserts are a significant source
of aerosol particles. These may become transported downwind over considerable
distances. Thus‚ according to Prospero and Bonatti (1969)‚ Parkin et al. (1970‚
1972)‚ Jaenicke et al. (1971)‚ Junge and Jaenicke (1971)‚ Junge (1972b)‚ and Pros-
pero and Carlson (1972)‚ the mass concentration of silicate particles in air over the
Atlantic may range up to near the African coast within the Sahara
dust layer typically located at about 3 km over the Atlantic. Outside this particle
plume‚ the concentration is significantly lower‚ usually or less. The
size of these silicate particles generally ranges between 0.3 and radius.

In Table 8.11e‚ the mass load due to particulate carbon in the atmosphere is
given for a number of different stations. We notice that‚ contrary to expectation‚
these particles are widespread and not limited to the combustion sources of urban
areas. We note that even over oceans‚ the mass load of particulate carbon ranges
between 0.1 and Evidence for the dispersion of combustion aerosols in the
global troposphere has also been provided by the presence of black carbon in remote
areas such as Spitzbergen and the South Pole (Andreae‚ 1983a; Heintzenberg‚ 1982;
Hanson et al.‚ 1988; Cachier et al.‚ 1990; Clarke‚ 1989).

Table 8.11f lists the mass concentration of sea salt particles found in air over
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various oceans. As is the case with the number concentration‚ the total mass
concentration of sea salt particles over oceans is found to be strongly dependent
on the wind speed at ocean level. The observed dependence is summarized in
Table 8.11g. We notice that the sea salt mass concentration increases exponentially
with increasing wind speed. Using the values for A and B given by Lovett (1978)
and Erikson et al. (1986) in Table 8.12‚ we find that the sea salt concentration
varies from with a light breeze (Beaufort 2) to for full gale
force winds (Beaufort 10).
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In conclusion‚ we shall consider briefly two types of aerosol of special significance:
the Arctic aerosol‚ being the precursor of severe Arctic haze events‚ with an associ-
ated significant reduction in visibility‚ and the Antarctic aerosol‚ being of interest
in conjunction with the observed ozone depletion events in the stratosphere.

A summary on the characteristics of Arctic air pollution has been provided in
the text of Stonehouse (1986). Measurements of the chemical composition and of
the mass and number concentration of Arctic aerosol particles have been carried
out by Wilson et al. (1990‚ 1991)‚ Hofmann (1990a‚b)‚ Barrie (1986)‚ Barrie et al.
(1981)‚ Heintzenberg (1987)‚ Radke et al. (1984)‚ Bailey et al. (1984)‚ Leaitch et
al. (1984)‚ Lazrus and Ferek (1984)‚ and Hoff et al. (1983). These studies‚ which
covered different Arctic regions such as Alaska‚ Arctic Canada‚ Arctic Norway‚
Sweden‚ Greenland‚ and Spitzbergen‚ have shown that air masses‚ despite their
large distance from the main aerosol sources‚ are being polluted by man-made mid-
latitudinal emissions from fossil fuel combustion‚ smelting‚ and industrial processes.
Arctic air pollution is most pronounced from December to April. The reason for
this lies in the characteristics of the Arctic air mass‚ which exhibits subzero tem-
peratures during much of the year‚ with the lowest values in winter. What little
precipitation occurs mostly falls as drizzle from low stratus in the summer. Winter
is characterized by very stable stratification and low levels of solar radiation. The
absence of precipitating clouds and the pronounced temperature inversion associ-
ated with a strongly reduced vertical exchange of air during the winter half-year‚
favours the formation of a pronounced visibility-reducing haze layer. Also‚ during
winter‚ the Arctic air mass extends sufficiently far south to allow the industrial re-
gions to emit their pollution into this air mass. Most of the pollution mass is found
to be located in the lowest 5 km of the troposphere. Chemically‚ sulfate is the most
abundant compound found in the aerosol‚ its mass concentration ranging typically
between 1.5 and In addition‚ nitrates‚ chlorides‚ and various metallic
compounds‚ as well as combustion-generated carbon‚ were found. Most particles
sampled had sizes ranging between 0.1 to with a maximum volume concen-
tration near diameter. They are present in concentrations ranging between
50 and with highest concentrations near the top (about 3 km) of the
haze layer. These particles‚ foremost those containing graphitic carbon and sulfate‚
scatter and absorb visible radiation efficiently (Bodhaine et al.‚ 1981; Rosen et al.‚
1981‚) and appear to be responsible for the turbid Arctic haze. Apart from aerosol
particles‚ gases such as perfluorocarbons‚ and pesticides are also present in
Arctic air. The acidic nature of Arctic pollution is reflected in the acidity of the
cloud and precipitation water‚ of the snow pack‚ and of the glacier snow in the
Arctic.

The aerosol over the ice sheet of the Antarctic has been studied by Hogan (1975)‚
Hogan et al. (1979)‚ Parungo et al. (1979)‚ Ito (1985)‚ Bodhaine et al. (1986)‚
Ito et al. (1986)‚ Shaw (1988)‚ and Harvey et al. (1991). These studies all per-
tain to measurements close to the ground. Vertical variations will be discussed
in Section 8.2.10. In air near the surface‚ Harvey et al. found at Buttler Point

8.2.8.3 Total Mass and Number Concentration of Particles in Polar, Tro-
pospheric Aerosols
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station during summertime the total number concentration of ‘large’ and ‘giant’
particles typically range between about 9 and The total number of Aitken
particles ranged between a maximum of 6008 and a minimum of with a
mean of The total mass concentration ranged between about 0.1 and

Aerosol particles were found to be made typically of crustal material,
meteoritic compounds, NaCl, and The mass concentration of
sulfate ranged between 0.3 and that of nitrate between 0.14 and 0.19,
and that of chloride between 0.26 and Particles with diameters less
than consisted entirely of sulfur compounds, while particles with diameters
above consisted of sea salt. These mass concentrations are similar to those
reported by Bigg (1980) at the South Pole for particle sizes between
0.06 and in diameter, and those reported by Radke and Lyons (1982) 90 m
above the ice shelf

8.2.9 SIZE DISTRIBUTION OF AP

The size distribution of aerosol particles may be expressed in various ways. If
denotes the number of AP with radii between and then the

total concentration of AP of radii larger than is

Accordingly‚ we also have

Because of the wide range of particle sizes‚ it is often more convenient to express
the size distribution in logarithmic form bydefining as the number of
AP in the interval Then‚ the relation between N and is

It is customary to use logarithms to base 10. Adopting this convention and using
the usual notation ln for the natural logarithm‚ we see that

On the basis of his own observations and those of others‚ Junge (1952b‚ 1953‚
1955‚ 1969a‚ 1972a‚b‚c‚ 1974) found that for the concentration of AP
decreases with increasing size such that can be expressed approximately as
a power law function of so that

where C and are constants. The other forms of this law become
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and

The corresponding log radius volume (V) surface and mass distributions
are

and

Note that in the special case of
Representative size distributions of AP over continents are given in Figures 8.17

and 8.18. The figures demonstrate that for the concentration of AP
decreases with increasing particles size‚ the decrease roughly following a power law
with on the average. Another example of a power law is shown in
Figure 8.19 for the background aerosol in Nepal at 4900 m elevation (Ikegami et
al.‚ 1978).

It has become customary in the literature to subdivide the aerosol in continen-
tal air masses into the categories urban‚ rural‚ remote continental‚ background‚
desert‚ and polar aerosol (Jaenicke‚ 1988). For each aerosol type‚ numerous mea-
surements of the size distribution are available in the literature. Jaenicke (1988)
has attempted to characterize these distributions by a ‘typical’ distribution apply-
ing to each category. These are given in Figure 8.20a‚b in terms of the number and
corresponding volume distributions. We notice from Figure 8.20a that the num-
ber distribution of each category can be approximated by a Junge power law for

A power law also fits the size distribution of Arctic aerosol particles
of observed by Radke et al. (1984) at Barrow Alaska (Figure 8.21)
and the size distribution of particles in Antarctica for observed by Ito
(1985) (see Figure 8.22).

A power law also approximates the size distribution of particles of a specific
chemical type. For silicate particles in air over the Libyan Desert‚ for instance‚
Schütz and Jaenicke (1974) found for and for

on the average. An example of such a distribution is given in Figure 8.23
based on the observations of d’Almeida and Schütz (1983). Gillette et al. (1974)
found similar results near Big Spring‚ Texas. A power law was found to apply
also to sulfate particles of sampled by Georgii and Gravenhorst
(1972) in continental air over Germany (see Figure 8.24); to biogenic particles of

studied by Matthias (1992) in Mainz‚ Germany (see Figure 8.25); to soot
particles of (Figure 8.26) observed by Meszaros (1984); and to NaCl
and particles of in maritime air (Figure 8.27) analyzed by
Meszaros and Vissy (1974).

Inspection of all these figures show that near the AP concentration
reaches a maximum. This might have been expected on the basis of the rapid
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attachment of particles smaller than to larger ones by thermal (Brown-
ian) coagulation‚ in a way which reduces their number concentration progressively
with decreasing size (see Section 11.5). However‚ Junge (1972b) speculated that‚
following a local minimum caused by the coagulation effect‚ the AP concentra-
tion rises once more as result of continuous gas-to-particle conversion for particles

A local minimum and a second maximum was indeed observed by
Junge (1972b) and Abel et al. (1969) over the North Atlantic. It is also implied by
the measurements of Meszaros and Vissy (1974) over the oceans of the Southern
Hemisphere‚ since the total concentration of Aitkenparticles they observed was
larger by one order of magnitude than the concentration of AP with

Maritime aerosol particles usually exhibit a bimodal size distribution. This
feature‚ illustrated in Figures 8.28a‚b‚ has been confirmed in numerous field studies
over the Atlantic and Pacific by Hoppel et al. (1990‚ 1986‚ 1985) and Hoppel
and Prick (1990). We notice from Figure 8.28a that the first mode in the number
distribution occurs at a particle radius of 0.03 to separated from the second
mode at about by a minimum at a particle radius of about This
feature is also well-documented by other observers‚ e.g.‚ Haaf and Jaenicke (1980)‚
and Meszaros and Vissy (1974) (see also Fitzgerald ‚ 1991). Chemical analysis
(Meszaros and Vissy‚ 1974)‚ as well as analysis by heating the aerosol samples‚
shows that the particles in both modes of Figure 8.28 consist of as the
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particles are volatile when heated above 150°C (Twomey‚ 1968‚ 1971; Dinger et al.‚
1970). The volatility of ammonium salts has also been documented by Pinnick et
al. (1987)‚ who experimentally determined that and sublime
above 120 and 150°C‚ respectively‚ while NaCl does not sublime‚ but rather melts at
800°C and boils at 1400°C. Hoppel et al. (1990‚ 1986‚ 1985) and Hoppel and Frick
(1990) have argued that the sulfate particles making up the first mode are due to
GPC involving the conversion of DMS to sulfate. The sulfate particles
making up the second mode are considered to be the result of DPC involving
drops of maritime stratus‚ stratocumulus and cumulus‚ which‚ during their life
time‚ absorbed DMS-derived After oxidation of the absorbed in the
cloud water‚ sulfate particles form subsequent to cloud evaporation (Hoppel‚ 1994).
Assuming that during the approximate nine day residence time of atmospheric
water vapor‚ about nine evaporation condensation cycles take place on the average‚
sufficient aerosol material would be produced by DPC to account for the second
peak in the distribution (Hoppel et al. 1990‚ 1986‚ 1985).

An important feature exhibited by all the maritime volume spectra is the inflec-
tion point in the radius range 0.3 to (see Figure 8.28b). Fitzgerald (1991)
suggests that in this size range a transition takes place between two totally different
sources of particles: (1) the bubble-burst mechanism producing sea salt particles‚
and (2) the various mechanisms producing sulfate particles. This result is also con-
sistent with the conclusion of Junge (1963a) and the field observation of Parungo
and Pueschel (1980)‚ Savoie and Prospero (1982)‚ Mamane and Mehler (1987) and
Parungo et al. (1986a‚b)‚ who showed by chemical analysis that sulfate particles
occur in the submicron size range‚ while particles in the supermicron size range
consist of sea salt particles‚ some of which have become converted to by
reaction with

However‚ in the previous section‚ we noted that during the bubble-burst mech-
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anism‚ the disruption of the bubble cap produces sea salt particles of radius be-
tween 0.3 and We must therefore expect that sea salt particles are not
only present in the supermicron size range‚ but also in the submicron size range.
This expectation is well-documented by the observations of Meszaros and Vissy
(1974)‚ which are shown in Figure 8.26. We notice that the size distribution of
NaCl particles ranges down to about radius. This figure shows further
that an inflection is also present in the number distribution of sea salt particles.
Meszaros and Vissy suggested that this is due to a change in the particle produc-
tion mechanisms. Thus‚ sea salt particles of
are due almost exclusively to jet drops formed during the bubble-burst mechanism‚
while particles of result from
the disintegration of the bubble cab. Woodcock and Duce (1972) and Woodcock
(1972) independently drew the same conclusions from their observations of sea salt
particles over the Pacific near Hawaii and over the Gulf of Alaska. Thus‚ we con-
clude that the transition from an ammonium sulfate dominated marine aerosol to
a sodium chloride dominated one is regulated by the transition between the two
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sea salt production mechanisms.
The multimodal nature of the atmospheric aerosol demonstrates clearly that

the Junge power law alone does not suffice to describe the size distribution. Better
descriptions may be constructed through the superposition of analytical forms such
as the gamma or lognormal distributions. For example‚ Jaenicke (1988) suggested
to describe the aerosol size distribution by a relation of the form

where often it suffices to let and where is the total number of particles
in mode is the corresponding geometric mean aerosol particle radius‚ and
is the standard deviation of the mode. Values for and for the model
distributions given in Figure 8.20 are listed in Jaenicke (1988) and in Table 8.13.

Some aerosol size distributions are too complex to be easily fitted by any simple
theoretical distribution. Such an example is shown in Figures 8.29 for the size
distribution of particles sampled relatively close to volcanic emission sites. Another
complex distribution is given in Figure 8.30 for the case of an aerosol sampled near
burns of forest slash.
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8.2.10 VERTICAL VARIATION OF THE NUMBER AND MASS CONCENTRATION

From Tables 8.9 and 8.11a‚b‚c‚ which include observations at higher elevations‚ it
is evident that the number and mass concentrations of aerosol particles decrease
with increasing altitude.

More detailed studies of the variation of the total number concentration of
aerosol particles with altitude have been made‚ e.g.‚ by Isaac and Daum (1987)
over Ontario‚ Canada‚ and by Selezneva (1966) over the continental U.S.S.R. The
latter measurements are exhibited in Figure 8.31‚ and show that in the lowest
6 km of the atmosphere the number concentration decreases exponentially. A simi-
lar variation of Aitken particles with height was found in air over the mid and lower
latitudes by Weickmann (1957b)‚ Junge (1961‚ 1963b)‚ and Junge et al. (1961a)
in air over Germany‚ the eastern U.S.‚ and India‚ and by Rosen et al. (1978) in
air over Fairbanks (Alaska)‚ Panama‚ and Laramie (Wyoming). We note from
these observations‚ illustrated by Figure 8.32 of Junge (1963b) that‚ following an
exponential decrease of the particle concentration in the lowest 5 to 6 km of the
troposphere‚ the concentration in the upper troposphere remains nearly constant
at a value between 50 to with a most frequent value near



THE ATMOSPHERIC AEROSOL AND TRACE GASES 271



272 CHAPTER 8



THE ATMOSPHERIC AEROSOL AND TRACE GASES 273

Aerosol particles of these concentrations constitute what is termed the tropospheric
background. This background aerosol is clearly evident in the tropospheric distri-
bution of number and mass load summarized in Figures 8.33 and 8.34 (Jaenicke‚
1992).

In contrast to the total number concentration and mass load of AP‚ the vertical
variation of AP of a specific chemical type often shows a quite irregular decrease
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with altitude. These irregularities are mainly due to a specific sink mechanism
for the particles. For example‚ water soluble particles act as cloud condensation
nuclei and therefore will experience local minimum concentrations near the cloud
level. The vertical variation of chloride particle concentrations has been measured
by Twomey (1955) over Australia‚ by Byers et al. (1957) over various locations
between central Illinois and the Gulf of Mexico‚ and by Podzimek and Cernoch
(1961) over northern Bohemia. All three investigators agreed that chloride particles
are very efficiently removed at cloud level.

Georgii et al. (1971) made a detailed study of the vertical variation of sulfate
particles over various locations in Germany. Although the concentration varied
strongly from day to day‚ average concentrations decreased with increasing height in
a manner illustrated in Figure 8.35. Two additional observations of cloud physical
significance were made by Georgii et al.: (1) Local maxima in the concentration
of sulfate particles were found at cloud level and most often just below cloud
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base. This observation was interpreted in terms of a sulfate-forming process taking
place inside cloud drops. Further evidence for this effect was given by Radke and
Hobbs (1969)‚ and by Easter and Hobbs (1974). (2) The sulfate content of AP
of a given size was found to increase with height while at the same time the size
of particles containing a given percentage of sulfate was found to decrease with
height (see Figure 8.36). Considerable structure in the vertical variation of the
total particle concentration has also been found by Dreiling (1992) during flights
over Germany. The results of one particular flight are given in Figure 8.37a‚b in
terms of the particle number distribution (a)‚ and the particle surface distribution
(b). We notice the very pronounced structure in the number and surface area
distributions of AP which reflects the temperature inversion near 1400 altitude‚ as
well as inhomogeneities in the aerosol concentration due to other causes.

The vertical variation of sea salt over the oceans was studied by Woodcock (1953,
1957) and Lodge (1955) over subtropical oceans, by Junge et al. (1969) over Cape
Blanco (Pacific Coast, Oregon), and by Hobbs (1971) and Blanchard et al. (1984)
over the Pacific. Although on individual days a vertical profile may look rather
irregular (Lodge, 1955), in the mean an exponential decrease is observed above
0.5 km, suggesting that sea salt over the oceans is essentially confined to the lowest
2 to 3 km of the troposphere. This behavior is illustrated in Figure 8.38.

Figures 8.27 and 8.39a,b display some measurements of AP size distributions
over the Northern and Southern Hemispheric oceans. It is evident that, for

the size distributions over oceans may be represented adequately by power
laws with As expected, the distributions shift towards lower concen-
trations with increasing height (compare Figures 8.39a and 8.39b). Note that
Figure 8.39b describes the background aerosol. Figures 8.39b and 8.27 further
indicate that the size distribution becomes steeper for a trend also indi-
cated in the continental distribution. Note that no clear upper limit in particle size
can be seen. Although particles of are produced by the bubble-burst
mechanism at the ocean surface, Toba’s (1965a,b) theoretical estimates suggest
that gravity prevents such particles from penetrating the turbulent boundary layer
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over the oceans to reach higher layers. As an explanation of their presence‚ Toba
(1965a‚b) and Junge (1963‚ 1972b) have suggested that these particles represent
residues of evaporated drops.

Above the local tropopause‚ the total number concentration of AP decreases
rapidly to reach values between 1 and 10 particles (ambient) near 20 km
altitude. The early observations of Junge et al. (1961a)‚ and the later observations
of Rosen et al. (1978) for mid and low latitudes‚ show that the concentration re-
mains near this value at least up to about 30 km (see Figure 8.32). More recent
observations in air over Arctic Kiruna (69°N)‚ Sweden shows the same trend (Fig-
ure 8.40). A somewhat different trend is seen in Figure 8.41 for air over McMurdo
Station (78°S)‚ Antarctica. Here we notice that the total number concentration of
AP reaches a broad minimum between 15 and 22 km and then increases again to
reach concentrations between 50 and (ambient) near 25 km (Hoffmann
and Deshler‚ 1991). According to these authors‚ this increase in particle concen-
tration has a photochemical origin. Studies of the total particle concentration of
the stratosphere by Rosen (1974)‚ Podzimek et al. (1974‚ 1975)‚ Käselau (1975)‚
and Cadle and Langer (1975) have shown that immediately above the tropopause
the concentration of Aitken particles may be subject to orders of magnitude varia-
tions. Podzimek et al. and Cadle and Langer suggested that these fluctuations in
concentration may also be the result of gravity waves lifting particle-rich air masses
from below.

In contrast to the vertical fall-off in the total number concentration of AP‚
the concentration of ‘large’ particles first decreases in the troposphere‚ but then
increases again in the stratosphere to a broad maximum between 15 and 25 km
(Figure 8.42). This aerosol layer was first observed by Junge et al. (1961a‚b)‚
Chagnon and Junge (1961) and Junge and Manson (1961). Following Junge’s
measurements‚ other researchers verified the existence of this layer and established
it as a world-wide phenomenon (Rosen‚ 1969; Lazrus and Gandrud‚ 1974; Turco
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et al.‚ 1982; McCormick et al.‚ 1981; Hofmann‚ 1990a‚b; Wilson et al.‚ 1992‚ 1993;
Brock et al.‚ 1995).

The transport of ‘large’ particles from the troposphere to the stratosphere by
turbulent diffusion through the tropopause‚ or by large-scale air exchange with the
troposphere‚ has been considered as not a likely cause of the Junge layer‚ since
such an explanation would not be consistent with the sharp decrease in the num-
ber of Aitken nuclei above the tropopause. Early attempts to study the chemical
composition of particles in the Junge layer by Junge and Manson (1961)‚ Junge et
al. (1961a)‚ Chagnon and Junge (1961)‚ Friend (1966)‚ Schedlovsky and Paisley
(1966)‚ Lazrus et al. (1971)‚ and Cadle (1973) demonstrated that sulfur‚ present
as is the predominant compound of these particles‚ with and as
the major cations. Since a large portion of these particles deliquesce to solution
drops at a relative humidity of 72 to 80%‚ Junge and Manson (1961) and Cadle
(1972) believed that is the major constituent. Further evidence for the
presence of sulfate particles in the stratosphere has been given by Bigg (1975) who
analyzed stratospheric particles forced to impact on specially treated electron mi-
croscope screens. Bigg found that the submicron particles consisted predominantly
of ammonium sulfate near the tropopause‚ and of sulfuric acid at higher altitudes.
The acid particles were often‚ but not always‚ in a frozen state. The presence of
free sulfuric acid was further confirmed by Rosen (1971)‚ Bigg (1975)‚ Arnold and
Fabian (1980)‚ and Arnold et al. (1980‚ 1981)‚ who found that the sulfuric acid
vapor in air was present in equilibrium with the aerosol at altitudes between 27
and 33 km.

Analysis of individual AP in and immediately above the Junge layer revealed
further that numerous particles contained one or more water-insoluble‚ dense in-
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clusions (Mossop‚ 1963a‚ 1965). Photographs with an electron microscope showed
that some of the AP sampled above the Junge layer at 20 to 40 km‚ had the shape
of compact spherules‚ while others looked like fluffy‚ highly branched chains‚ and
still others had crystalline shapes (Bigg et al. 1970‚ 1971‚ 1972; Sheridan et al.‚
1994). The observations of these authors had been interpreted to mean that the
sulfate formation mechanism in the stratosphere is heterogeneous‚ in that insol-
uble particles‚ some possibly of extraterrestrial origin‚ and some possibly in situ
produced by combustion from high flying aircraft‚ act as nuclei to initiate sulfuric
acid drops. A heterogeneous nucleation mechanism for the sulferic acid droplets
was also advocated by Turco et al. (1982).

Although volcanic eruptions were found to play a significant role in forming the
sulfuric acid aerosol in the stratosphere by injecting sulfur dioxide to altitudes 20
to 25 km‚ where it is subsequently converted to sulfuric acid vapor and eventually
to a sulfuric acid aerosol by GPC‚ observations demonstrate that a stable layer of
sulfur containing particles persists in the stratosphere even during periods with-
out major volcanic eruptions. In the upper troposphere‚ the concentration of
is low because of its reactivity and its water solubility. Thus‚ at the tropopause
one finds        in concentrations of less than 100 pptv. Above the tropopause‚ the

concentration is found to rise again with altitude (Ockelmann‚ 1988; Meixner‚
1981). Therefore‚ originating in the troposphere‚ is not believed to be capa-
ble of producing the Junge layer. Crutzen (1976) suggested that a sulfur bearing
compound which is chemically inert and water insoluble‚ such as carbonylsulfide
(COS)‚ may instead be responsible for the in situ production of the background
aerosol in the Junge layer. As shown in Table 8.5h‚ the mixing ratio of COS in
the troposphere is about 500 pptv‚ varying little with altitude in the troposphere.
On the other hand‚ the observations of Inn et al. (1981) indicate a marked de-
crease of COS above 15 km‚ with a mixing ratio of only 10 to 20 pptv at 30 km.
This has been taken as an indication that COS contributes substantially to the
formation of the sulfate aerosol layer in the stratosphere. Also‚ carbon disulfide

which becomes converted to COS in the troposphere‚ may act as a source
for sulfate in the stratosphere. According to Brock et al. (1995)‚ these gases
oxidize in the stratosphere to vapor which subsequently condenses onto
preexisting particles by heterogeneous nucleation. The sources of the nuclei on
which this condensation proceeds are only poorly known. During non-volcanic
periods the stratospheric degree of supersaturation with respect to is insuf-
ficient for particle formation via homogeneous nucleation. Thus‚ sources outside
the stratosphere must provide the nuclei to maintain the Junge layer during vol-
canically quiescent periods. Meteoritic materials and in situ produced combustion
particles have already been cited above as possible nuclei. On the other hand‚
evidence cited by Brock et al. (1995) suggests that the particles produced by
homogeneous nucleation of particles in the upper troposphere of the
tropics also constitute a possible source of nuclei upon which sulfur gases condense
in the stratosphere.

Early measurements showed that at mid-latitudes‚ during 1959 and 1960‚ the
concentration of ‘large’ particles in the troposphere decreased falling
to a minimum between (ambient)‚ and rose again to a pronounced
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maximum of 0.05 to between 15 and 25 km‚ with a stable concentration
of about at 20 km (Penndorf‚ 1954; Junge et al. 1961a‚b;
Changnon and Junge‚ 1961; Junge and Manson‚ 1961; Mossop‚ 1963a‚ Friend‚
1966).

However‚ on March 17‚ 1963‚ an event took place which altered substantially
the stratospheric particle concentration between the early measurements and the
measurements which followed later. These changes were due to the eruption of
Mt. Agung on Bali‚ which increased the stratospheric loading by at least one
order of magnitude in the Northern Hemisphere‚ and possibly even more in the
Southern Hemisphere. In order to check for any long lasting effects of this and
other volcanic eruptions‚ the vertical variation of the aerosol concentration in the
upper troposphere and stratosphere were studied: (1) at mid-latitudes (Laramie‚
Wyoming 41°N) by Hofmann and Rosen (1981)‚ Hofmann et al. (1975‚1976)‚ and
Rosen et al. (1975a‚b) during a period of relative quiet volcanic activity in 1971
to 1973‚ before the eruption of Fuego in Gatemala in 1974; (2) during the quiet
period of 1978 to 1979 before the eruption of Mt. St. Helens in Oregon‚ U.S.A. in
1980‚ and the eruption of El Chichon in Mexico in 1982; and (3) during the quiet
period of 1988 to 1989 after the effects of the volcanic eruptions of El Chichon‚ Mt.
St. Helens‚ and of Nevada del Ruiz in Colombia in 1985 had subsided.

We note from the observations of Hofmann (1993‚ priv. comm.) made in 1989
(Figure 8.43)‚ that in comparison to the pre-1960 period (Figure 8.41)‚ the whole
vertical concentration profile of AP with had shifted to higher concen-
trations. This shift was already noted in 1972 and again in 1978 by Hofmann and
Rosen (1981a‚b) and Hofmann et al. (1975‚ 1976). While stable concentrations
before 1960 were about for AP with measurements‚ begun
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in 1971 at Laramie (Wyoming), indicated a new stable concentration of
for these particle sizes. Comparison of these data with those of Junge led

Hofmann and Rosen (1981a,b) and Hofmann (1990a,b) to conclude that the back-
ground or non-volcanic stratospheric sulfur particle concentration at mid-latitudes
increased by (9 ± 2%) per year during the 20 years following 1959. Comparison
of the AP mass concentrations between 1979 and 1989 indicated that at 20 km
altitude a further increase of the aerosol mass mixing ratio by (5 ± 2%) per year
may have had occurred. Due to a lack of appropriate data, it could not be deter-
mined whether the general increase of the stratospheric mass load of AP is due to
anthropogenic or natural causes such as volcanic eruptions. Such eruptions have
had, as expected, significant immediate effects on the aerosol population in the
stratosphere, increasing their mass load, their number concentration, and shifting
their size distribution to larger particle sizes. Measurements of the stratospheric
aerosol just after volcanic eruptions were carried out by Hofmann and Rosen (1983,
1984), McCormick and Swissler (1983), Hofmann et al. (1985) and Snetsinger et
al. (1987) following the eruption of El Chichon, by Hofmann and Rosen (1982)
and Lezberg et al. (1982) following the eruption of Mt. St. Helens, and by Wil-
son et al. (1992, 1993) and Borrmann et al. (1993) following the eruption of Mt.
Pinatubo. However, these measurements compared to those during volcanic quiet
periods showed that, generally, the volcanic effects had subsided after a period of
two to five years.

In the Arctic and Antarctic stratosphere, the temperature in their respective
winters decreases to such low values that the aerosol particles of the Junge Layer (a
typical size distribution of the unactivated AP in the Antarctic stratosphere is given
in Figure 8.44) are able initiate polar stratospheric clouds (PSC’s) by condensation.
The formation of such clouds have been observed and studied, among others, by
Hofmann and Deshler (1989, 1991), Ferry et al. (1989), Fahey et al. (1989),
Gandrud et al. (1989), Arnold et al. (1989), Hofmann et al. (1990), Schlager
et al. (1990), Dye et al. (1992), Pueshel et al. (1990, 1992), Carlslaw et al.
(1994) and McKenzie et al. (1995). Examples for PSC formation observed in the
Antarctic and Arctic stratosphere are given in Figures 8.40 and 8.45, respectively.
The corresponding size distributions of the PSC particles are given in Figures 8.46
and 8.47, respectively. According to Hofmann and Deshler (1989), the development
of a mono- or bimodal size distribution is controlled by the cooling rates occurring
over a particular location.

Unfortunately, a detailed discussion of the various mechanisms which had been
considered in the past for the formation of PSC particles would lead us much too
far afield. However, since heterogeneous chemical reactions on the surface of PSC
particles are believed to initiate the catalytic destruction of ozone in the polar
lower stratosphere, we shall briefly summarize some considerations of McKenzie et
al. (1995). For more details, the reader is referred to references cited by McKenzie
et al. (1995) and Carlslaw et al. (1994).

According to McKenzie et al. (1995), two main classes of PSC exist, one of
which (type I) forms at some temperature above the frost point, while the other
(type II) forms near or below the frost point. While type-II particles mainly consist
of ice, type-I PSC particles contain large amounts of nitric acid. Type-I particles
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are usually subdivided further into type Ia particles which are relatively large and
anisometric‚ and type Ib particles which are smaller and more spherical.

The mechanisms for the formation of PSC particles have to allow for the follow-
ing possible particle compositions: binary solution‚ solid sulfuric acid
tetrahydrate (SAT)‚ ternary solution (STS)‚ binary
solution‚ and solid nitric acid trihydrate (NAT). As a probable route for the forma-
tion of PSC particles‚ McKenzie et al. (1995) consider the following mechanisms:
As a direct nucleation of nitric acid phases onto frozen sulfuric acid aerosol (SAT)
has to be ruled out‚ it appears likely that PSC particles form via the condensation
growth and subsequent freezing of ternary solution droplets.
Since a homogeneous nucleation of SAT or NAT does not occur from ternary solu-
tions‚ formation of NAT and SAT must occur heterogeneously after the tempera-
ture of the air has fallen sufficiently low and enough nitric acid has been dissolved
in the solution drops. Frozen particles‚ once formed‚ are then able to efficiently
reduce the nitric acid vapor pressure in the air to the equilibrium vapor pressure
for over NAT. If the temperature of the drops decreases further close to‚ or
even below‚ the ice frost point‚ and the droplets are still in the liquid phase‚ water
ice will be nucleated.



CHAPTER 9

HETEROGENEOUS NUCLEATION

Observations summarized and discussed in Chapter 2 show that supersaturations
as high as several hundred percent, which would be necessary for drop formation
in homogeneous water vapor (see Chapter 7), do not occur in the atmosphere, but
that typically supersaturations remain below 10% and most often even below 1%.
This indicates that drop formation in the atmosphere occurs via heterogeneous
nucleation involving aerosol particles (AP). Aerosol Particles which are capable
of initiating drop formation at the observed low supersaturations are called cloud
condensation nuclei (CCN). All AP are eventually able to initiate drops provided
that the supersaturation of the water vapor in their environment is high enough.
Therefore, in air the total number of aerosol particles per unit volume is often
measured in terms of the total number of drops per unit volume observed in a
cloud chamber at supersaturations of several hundred percent. The aerosol particle
concentration determined in this fashion is then simply called the concentration of
condensation nuclei (CN).

Observations summarized in Chapter 2 show also that cloud glaciation generally
begins at temperatures much too warm for homogeneous freezing of water. For
example, on one occasion, Mossop et al. (1968) observed ice crystals in a long lived
cumulus cloud whose top was probably never colder than –4°C, and which was not
seeded with ice particles from clouds at higher altitudes. Such behavior indicates
that some fraction of the local AP also can serve as ice forming nuclei (IN).

In this chapter, we shall discuss the atmospheric CCN and IN, including their
modes of action, sources, concentrations, and other characteristic features.

9.1 Cloud Condensation Nuclei (CCN)

9.1.1 NUMBER CONCENTRATION AND CHEMICAL COMPOSITION OF CCN

The results of a comprehensive study by Twomey and Wojciechowski (1969) of CCN
concentrations over various parts of the world are summarized in Figures 9.1a,b,c.
We notice that the number of CCN increases with increasing supersaturation. This
is expected from Figures 6.2 and 6.3, which show that as the supersaturation rises,
increasingly smaller aerosol particles can be activated to form drops. We also notice
from Figure 9.1 that no systematic latitudinal variation in concentration is evident.
The observations also confirm previous conclusions that continental air masses are
generally richer in CCN than are maritime air masses. Within a particular air mass,
at flight level the variation of the median CCN concentration was surprisingly small.
At supersaturations betwen 0.1 and 10%, the median concentration of CCN was
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found to range from a few tens to a few hundred in air over oceans, and from
a few hundred to a few thousand in air over the continents.

The concentration of CCN can often be expressed adequately by a relation
of the form

where is the supersaturation (%) and C and are constants for a given air
mass. Then, by definition, C is also the CCN concentration at a supersaturation of
1%. Values for C and at various maritime and continental locations are given in
Tables 9.1 and 9.2. As expected, the values for C and vary considerably depending
on the type of airmass present at the particular observation site. According to Hegg
et al. (1991a), the CCN spectra also vary with season, such that the values for
C and are generally larger in summer than in winter. In Table 9.3, ratios of

for maritime aerosols are given. These ratios range from 0.2 to 0.6,
with a median value of 0.5. Hence, only about 50% of the aerosol particles in
a marine atmosphere are commonly active as CCN at supersaturation of 1% or
less (Hegg and Hobbs, 1992). Much lower values for are found for
continental aerosols due to much higher values for the CN (see Table 9.4). This
implies that a large total concentration of AP does not necessitate a large number
of CCN. In particular, we notice that for continental aerosols, the fraction of aerosol
particles capable of serving as CCN may be as large as 0.1, but is typically 0.01 or
less.

Generally, CCN concentrations in maritime and modified maritime air masses
which have been over land less than two days rarely exceed while concen-
trations in excess of are found in air which has been over land for several
days (Twomey, 1959a, 1963; Jiusto, 1966, 1967; Jiusto and Kocmond, 1968; Radke
and Hobbs, 1969; Wieland, 1956). The largest concentrations are usually found in
air over cities or industrial complexes. This behavior is illustrated in Figure 9.2.
The same behavior has been noticed for other geographic locations by Hoppel et
al. (1973).



HETEROGENEOUS NUCLEATION 289



290 CHAPTER 9

In relatively pure air with close to ‘background’ AP concentrations at locations
distant from sources, the concentration of CCN is very small. For example, at
Yellowstone Park (Wyoming), Auer (1966) measured CCN concentrations at 1%
supersaturation which ranged from zero to with an average of In
1968, Kikuchi (1971) observed at an Antarctic Station (69°S) CCN concentrations
as low as zero, but generally near at 1% supersaturation. In flights
over the North Atlantic, Iceland, and Greenland, Flyger et al. (1973) found at
1% supersaturation a CCN concentration which in 45% of the cases was less than

in 80% of the cases was less than and in 92% of the cases was
less than

Most CCN spectra have been obtained for supersaturations found at cloud level
typically ranging between 0.2 and about 2%. However, fogs form frequently at
lower supersaturations, namely between 0.02 and 0.2%. CCN spectra for these
supersaturation have been obtained by Hudson (1983, 1980) at three different lo-
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cations (Figure 9.3). Aerosol particles which become activated to drops in this
supersaturation range are sometimes termed fog condensation nuclei.

At a given location, the CCN concentration is found to vary with time over
several orders of magnitude, depending on the proximity of sources and on meteo-
rological factors such as wind direction, air mass type, precipitation, and decreasing
or, increasing cloudiness (Twomey, 1959a; Jiusto, 1966; Radke and Hobbs, 1969).
Figure 9.4 illustrates a typical time variation of the CCN concentration. Notice the
effect of air mass changes, wind speed, and wind direction on the CCN concentra-
tion. Twomey and Davidson (1970, 1971) showed that at a given location, repeat-
able patterns can be detected in the diurnal variation of the CCN concentration.
Thus, a noon maximum and a late evening maximum were observed consistently
during a one year observation period at Robertson (N.S.W., Australia). Evidence
for a long-range transport of CCN has been given by Borys and Rahn (1981) who
studied the CCN concentration in Iceland.

Observations also show that the CCN concentration may vary significantly with
increasing altitude. Accordingly, errors are expected if estimates of cloud micro-
physical properties are made from ground based CCN concentrations (Hobbs et
al. 1978). Generally, the CCN concentration over continents decreases with height
above ground (see Figure 9.5), reaching concentrations near the top of the mix-
ing layer which are much lower than those near the ground (Squires and Twomey,
1966). Similar features were observed for continental air over Florida and Arizona
by Hoppel et al. (1973), and by Hobbs et al. (1985) over Montana. Over oceanic
regions, the CCN concentration often shows a different variation with height. The
observations of Squires and Twomey (1966), Hoppel et al. (1973), Saxena and
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Rathore (1984), Hegg et al. (1990a), and Hegg and Hobbs (1992) have established
that over oceans the CCN concentration may remain fairly constant with height
(as indicated in Figure 9.5) or even may increase with height, reaching a max-
imum value just above the mean cloud layer. Saxena and Rathore (1984) have
attributed this behavior to incloud sulfate production. Hegg et al. (1990, 1991a)
have suggested that a local maximum may occur due to an in situ photochemi-
cal gas-to-particle conversion, leading to the production of CN which subsequently
continue to grow to CCN in the humid local environment of clouds. It is also worth
noting that vertical variations in the CCN concentration are usually measured at
one particular supersaturation, which may accentuate an over or underestimate of
the decrease in CCN concentration with height. For example, Figure 9.6 shows
that the decrease with height is much more pronounced when determined at 1.5%
than at 0.2% supersaturation (Hobbs et al., 1985).

Measurements by Radke (1970) at the downstream side of mountain ‘cap’ clouds
and mountain lee wave clouds showed that increased CCN concentration at higher
elevations may also be due to ‘drop-to-particle conversion’ (see Section 8.2.2). We
notice from Figures 9.7a,b that the number concentration of CCN on the evapo-
rating side of the mountain cap cloud or the mountain lee wave cloud is a factor
two to three higher than the concentration on their upstream side.

From our discussions in Chapter 6, we expect that those AP which consist of
water-soluble, hygroscopic substances are most suitable for initiating the forma-
tion of water drops from water vapor, and therefore will most likely act as CCN.
It would seem reasonable, therefore, to assume that the oceans are the most sig-
nificant source for CCN. However, we recall from Chapter 8 that even close to the
ocean surface, the concentration of sea salt particles is too small by a factor of
10 (e.g., Hobbs, 1971). This conclusion is based on direct measurements of the
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sea salt particle concentration, as well as on indirect estimates from their rate of
production and their residence time. For example, Twomey (1968, 1969, 1971)
and Dinger et al. (1970) found that most soluble AP over both oceans and land
were volatile when subjected to temperatures above 300°C and, thus, behaved
analogously to or possibly On the other hand, NaCl aerosols
withstood temperatures of up to 500°C. Similarly, Dinger et al. (1970) measured
the concentration of CCN activated at 0.75% supersaturation in air over the North
Atlantic and over the east coast of Barbados (West Indies), and found that out of
a typical population of near the ocean surface as many as 50 to
were volatile at 300°C and, thus, did not consist of NaCl. With increasing height,
the percentage of volatile AP increased, reaching almost 100% above about 3 km.
On the basis of these measurements, Twomey and Dinger et al. suggested that over
the ocean only a small percentage of CCN consist of NaCl, while most are very
likely composed of non-sea salt sulfate (commonly abbreviated NSS). This sugges-
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tion is in good agreement with the findings of Meszaros and Vissy (1974) discussed
in Chapter 8, and with most more recent CCN studies (Bigg, 1986; Parungo et
al., 1986a,b; Clarke et al., 1987; Ayers and Gras, 1991; Quinn et al., 1990). These
studies generally show that sea salt dominates the supermicron particle size range,
while the NSS dominates the submicron size range.

Because the concentration of CCN is mainly determined by the submicron par-
ticles, these results suggests that it is the NSS that determines the CCN activation
spectrum. This has led to the hypothesis (e.g. Charlson et al., 1987) that the
marine sulfur cycle modulates marine cloud structures and, thus, possibly, climate.
Recent field studies revealed that sea salt particles at times may also be present
in the submicron size range of marine air (Parungo et al., 1986a,b; Hoppel et al.,
1990). This is somewhat expected on the basis of the fact that sea salt parti-
cles produced by the bubble burst mechanism include sizes which range between
0.3 and in agreement with the shipboard measurements of Parungo et al.
(1986a,b).

In this context, one realizes rather quickly that the NSS could hardly be due to
transportation from land sources alone. In search for other sources, many workers
have suggested that organic sulfur emanated from the ocean surface is such a
source. Indeed, several recent studies have revealed correlations between the CCN
concentration and the concentration of dimethylsulfide (DMS) (Hegg et al., 1991b;
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Gras, 1990) and of methanesulfonic acid (MSA) (Ayers and Gras, 1991; Hoppel,
1987). For DMS, this is illustrated by the linear increase of the CCN concentration
with increasing gas concentration of DMS (Figure 9.8). The significance of DMS
as a source of CCN via gas-to-particle conversion is also hinted at by Nguyen et
al. (1978), Andreae et al. (1985), Andreae and Raemdonck (1983), Bates et al.
(1987) and Barnard et al. (1982), who have estimated that the total flux of DMS
from oceans amounts to In addition to representing a source of
organic gases which eventually are converted to CCN, the ocean surface has been
shown also to be a direct source of organic particles which are introduced into the
air by the bubble burst mechanism (Blanchard, 1971b; Spillane et al., 1986).

The work of Winkler (1970) suggests that also over the land a considerable frac-
tion of AP consists of volatile organic material. Further, Table 17.2 demonstrates
that cloud and fog drop residues often contain combustion products and other or-
ganic material some of which are of biogenic origin, suggesting that they may also
serve as CCN. This notion is supported by the observations of Twomey (1960),
Twomey and Warner (1967), Warner and Twomey (1967), Warner (1968b), and
Woodcock and Jones (1970), who observed a significant local increase in the con-
centration of CCN as a result of the burning of sugar cane leaves in Hawaii and
Australia, and by Hobbs and Radke (1969), who observed a similar CCN increase
as a result of forest fires.

Several studies have shown that combustion particles, which appear to be rather
water insoluble, can nevertheless serve as CCN. Hallett et al. (1989), Hudson et
al. (1991), Pitchford et al. (1991) and Hagen et al. (1989b) studied carbon
particles with diameters between 0.02 and derived from acetylene burners,
from burning wood, and from aviation fuel. The supersaturations at which particles
in this size range could be activated to drops ranged betweeen 0.7 and 9% and,
according to Hagen et al. (1989b), were about 6 times as high as those required to
activate NaCl particles of the same size. In contrast, Hallett et al. (1989) found
that the critical supersaturation for an acetylene combustion aerosol did not differ
much from that for particles of the same size. They also found that
the fraction for polydisperse aerosols was as high as 0.85 for particles
derived from burning chaparral brush, 0.72 for particles from burning pine wood,
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and 0.5 for particles from burning acetylene. Stith et al. (1981) studied the CCN
formation during prescribed burns of forest slash. They found to CCN
per gram of wood burned. The number of CCN in a fire plume reached 2000
to at a supersaturation of 0.2% comparing to 100 at the
same supersaturation in ambient air. However, Hallett et al. (1989) found that
particles from jet exhaust appear to be relatively inactive as CCN. Nevertheless,
a completely different situation arises at the rear of a jet engine at high altitudes,
where the exhaust provides a high water supersaturated environment in which
drops, and subsequently ice particles, form very prolifically. Weingärtner et al.
(1993) studied the hygroscopic nature of combustion aerosols generated by a spark
ignition engine using unleaded gasoline. The particles thus generated had diameters
ranging between 29 and 111 nm and were found to begin growing at a relative
humidity of 95%. Ambient combustion particles began their growth at a relative
humidity of 85%, in agreement with the field observations of Svenningsen (1992). In
contrast, pure graphite particles did not act as CCN up to 120% relative humidity.

Volcanic emissions of CCN have been investigated by Rogers et al. (1981). Us-
ing a U-2 aircraft at 13 to 19 km altitude during the eruption after Mt. St. Helens
volcano, they found at 13.6 km CCN concentration up to at 1% super-
saturation; this is about one order of magnitude higher than the concentrations
otherwise found at this altitude. Hobbs et al. (1982), who also studied particles
in the plume of the Mt. St. Helens volcano, found that 554 and

in (9-1).
Particles emitted into the atmosphere by the surface of deserts also serve as

CCN. Thus, Desalmand (1987) found CCN concentrations up to at
supersaturation between 0.3 and 0.8 during dust storms south of the Sahara desert.
This is somewhat surprising as desert particles are generally assumed to be mostly
water insoluble silicates.

Considering the definition of CCN, it is reasonable to assume that their concen-
tration in a given air volume is to a large extent indicative of the drop concentration
in a cloud which forms in that air volume. In fact, the concentrations would indeed
be equivalent if the cloud updraft reached the particular supersaturation at which
the CCN concentration was determined. The actual supersaturation reached in a
given cloud will depend on the size distribution of AP present in the rising air,
their chemical nature, the moisture content of the atmosphere, and its thermody-
namic state which largely determines the updrafts that can develop (see Chapter
13). However, we may assume roughly that cloud supersaturations rarely exceed a
few percent. At these values, the concentrations of CCN over continents typically
range from 100 to 1000 , while over oceans they range from a few tens to a few
hundred (Twomey and Wojciechowski, 1969). These values agree well with
the drop concentrations found in continental and maritime clouds (see Chapter 2).

9.1.2 MODE OF ACTION OF WATER-SOLUBLE AND MIXED CCN

The nucleation of water drops by water-soluble or mixed AP is controlled by the
mass and chemistry of the water-soluble component. As we have seen, at a specific
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relative humidity, which for most soluble compounds in the atmosphere is well
below 100% (Table 4.3), the soluble components of the AP deliquesce into aqueous
solution drops. As the relative humidity in the environment rises, such a drop will
undergo a slow equilibrium growth by diffusion of water vapor until, if it reaches a
critical supersaturation, it will become activated and, henceforth, grow freely and
comparatively swiftly, again by vapor diffusion, into a macroscopic cloud drop.

In Chapter 6, we showed that the critical equilibrium supersaturation for ac-
tivation can be computed from (6-26) and (6-33) for any given composition of
the mixed aerosol particle. Junge and McLaren (1971) and subsequently Hoppel
(1979) used similar equations to determine the critical equilibrium supersaturation
as a function of aerosol particle size. While Junge and McLaren (1971) assumed
NaCl for the water soluble portion of two typical size distributions for atmospheric
mixed aerosol particles in various volume proportions, Hoppel actually determined
the chemical composition (i.e., the quantity B in (6-29) and (6-38)) of the aerosol
particles whose size distribution he had measured. From the known size distribu-
tions, their computations permitted the determination of the number of AP which
become activated to drops (which is the number of CCN) at any specified supersat-
uration. Although Junge and McLaren’s computations did not permit any rigorous
comparison with observed CCN spectra, since they knew neither the size spectrum
nor the composition of the particles which formed the CCN, their results allowed
the conclusion that the chemical composition of AP has little effect on the shape
of the CCN spectrums, although it strongly effects the CCN concentration at any
given supersaturation. Also, they deduced that the shape of the CCN spectrum
depended strongly on the AP size distribution. Similar results were obtained by
Fitzgerald (1973, 1974). In contrast to the computations of Junge and McLaren
(1971), the results of Hoppel (1979) allowed a direct comparison between the CCN
spectrum computed from the aerosol size distribution (Figure 9.9a) and measured
B, and the CCN spectrum observed by him using various experimental techniques
(Figure 9.9b). We notice from Figure 9.9b that the CCN spectrum derived from
the observed size distribution shows good agreement with the observed CCN spec-
trum, giving experimental suppport to the Köhler and Junge equations developed
in Chapter 6.

9.1.3 NUCLEATION OF DROPS ON WATER-INSOLUBLE CCN

Let us now consider AP which are wettable by water but completely water-insoluble.
For the sake of simplicity, it is useful to assume that a water embryo or germ nu-
cleated in supersaturated vapor on a water-insoluble, partially wettable surface
assumes the shape of a spherical cap. Although no direct observations of the shape
of water germs are available, some experimental justification for the spherical cap
assumption has been provided by Gretz (1966a), who used an electron microscope
to study the nature and appearance of silver embryos deposited from supersatu-
rated silver vapor on a tungsten substrate.
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9.1.3.1 Nucleation on a Planar Substrate

Our present goal is to determine the rate at which water drops are nucleated on
an insoluble AP surface. Let us first consider the simplest possible model for
this process, and assume the surface on which the nucleation occurs is planar and
energetically homogeneous.

We shall adopt the classical theory of nucleation (Chapter 7) for this problem.
This procedure is amply justified in view of the success of the theory, its simplicity,
and the ease with which it may be extended to new situations. In this and the
next section, we follow most closely the works of Fletcher (1958, 1959a,b, 1962a),
Hirth and Pound (1963), and Pound et al. (1954).

Let be the concentration of single water molecules adsorbed on a surface and
assume they are in metastable equilibrium with the new phase embryos residing
there also. By invoking the classical theory of nucleation, we can express the
embryo concentration on the surface in a form analogous to (7-26), viz.,

where is the energy of formation on the surface. Then, the rate at
which germs are formed per unit time and per unit surface area may be written,
in analogy to (7-40), as

where is the Zeldovich factor for surface nucleation (see
7-45).
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In this expression, may be taken to have the same meaning as in (7-40),
if we assume the germs grow by direct addition of water molecules from the vapor.
For this case, we have from (5-51), and assuming the result

where we have approximated the cap surface area by
On the other hand, if we assume that growth occurs primarily by surface diffu-

sion of adsorbed water molecules to the germs, then the quantity must be
interpreted as the product of the number of adsorbed water molecules in position to
join the germ, and the frequency with which such an adsorbed
molecule will jump to join the germ; i.e., in this case we have

where isthe circumference of the cap germ (see Figure 9.10a), is
the activation energy for surface diffusion of a water molecule on the substrate,

is the frequency of vibration of an adsorbed molecule normal to the surface
and is the average distance a molecule moves in a diffusion step

or jump.

The assumed steady concentration may be determined, in principle at least,
by equating the flux density of water molecules to the surface with the outward
flux of desorbed molecules; the latter is given by
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where is the energy of desorption per molecule. On setting this result equa
to (5-5), we obtain

Therefore, on combining (9-3), (9-4), and (9-7), the rate of surface nucleation
for the case of germ growth by direct vapor deposition is

Similarly, combining (9-3), (9-5), and (9-7) gives the corresponding rate for the
case of growth by surface diffusion of adsorbed molecules:

If we assume and compare (9-8) with (9-9), we find the surface
diffusion nucleation rate is faster by the factor exp experi-
mental determination of the energy terms is difficult, but generally the qualitative,
outcome is

Let us now turn to the determination of the energy of germ formation,
As is always done in the classical approach, we shall assume macroscopic values
of all relevant parameters. Then, on writing in terms of bulk volume and
surface contributions (recall (7-19)), we have only to cope with a simple geometry
problem, namely that of finding the surface and volume of the cap embryo shown
in Figure 9.10a. Proceeding in this manner, we write the energy of formation
on the surface in the form

where is the volume, is the bulk energy
change per unit volume from (7-21)], and the last term
in (9-10) represents the total surface energy of the

In terms of the lengths x, y, and h defined by Figure 9.10a, the volume is

where Similarly, and
with and so that
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making use of Young’s relation (5-23). Therefore, (9-10) becomes

As in the case of homogeneous nucleation, we identify the energy of germ for-
mation as the maximum in the curve of i.e., we set
for fixed to find the germ radius, which is

This result, the same as for homogeneous nucleation, could have been written down
immediately on realizing that the curved surface of the germ must be in equilibrium
with the vapor. Substituting this result into (9-14) for the energy of germ
formation is

where

(Volmer, 1939).
If the substrate is completely wettable by water, then and there

is no energy barrier to nucleation. At the other extreme of a non-wettable surface
and the energy of germ formation for homogeneous

nucleation. Of course, this last result is also as expected: The germ drop rests
on the non-wettable surface, but does not otherwise interact with it. In, general,

confirming that the presence of a foreign surface serves to lower the
free energy barrier to nucleation.

As we have seen, the rate of embryo growth by surface diffusion of adsorbed
molecules dominates, to some extent, the rate of growth by direct deposition of
molecules from the vapor. Unfortunately, however, the former process involves
contributions which are not accurately known, and so we must be content to pro-
ceed with the latter process in order to arrive at a numerical evaluation of the
nucleation rate. Thus, Fletcher (1962a) used (9-8a) to estimate The monomer
concentration was obtained by assuming adsorption yields essentially a mono-
layer at the supersaturations involved. In this manner, Fletcher estimated the
prefactor to the exponential term in (9-8a) (the ‘kinetic coefficient’) to be of the
order of to Choosing as representative,
he used (9-8a) and (9-17) to evaluate as a function of contact angle
for and T = 0°C; the results are shown in Figure 9.11. It is
seen that the critical saturation ratio for nucleation of water on a water-insoluble,
partially wettable, planar substrate increases monotonically with contact angle.
The increase is small at small and large wetting angles, and is almost linear for
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9.1.3.2 Nucleation on a Curved Substrate

Fletcher (1958, 1959a) has extended the theory presented in the last section to
include an account of the effects of the finite size of the nucleating particle. In this
extension, the substrate is assumed to be a sphere of radius The determination
of the energy of germ formation is carried out just as before; only the geometry
has changed somewhat. Thus, from Figure 9.10b, if we let
and then the volume of the embryo is
b)/3]— and the surfaces bounding the embryo are
and With these we find

and

where and

By substituting (9-19) and (9-20) into (9-10) we find, as before, that
occurs at where the latter is given by (9-15). Accordingly, the

energy of germ formation becomes

where
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with

Let us consider the nucleation rate per particle, to a first approximation, we
simply have or

using (9-8a). The kinetic coefficient in this equation has been estimated by Fletcher
(1958, 1959a,b) to be about (this assumes We also notice that
for (9-22) reduces to and (9-21) to the energy
required to form a drop germ homogeneously above a surface area of

Figure 9.12 presents a plot of the relations (9-21) to (9-24), giving the critical
saturation ratio for germ at 0°C, as a function of for
various contact angles. It is seen that for all values of increases
rapidly if and that for a given substrate particle size, crit in-
creases monotonically with increasing contact angle. These results clearly indicate
that water-insoluble, partially wettable, spherical AP must be large and exhibit
low contact angles for water if they are to serve as CCN.

McDonald (1964) has extracted an approximate solution from (9-21) to (9-24) for
the most interesting and relevant case of small contact angles and supersaturations;
the result is

where corresponds again to germ at 0°C, and
where again This equation is plotted in Figure 9.13, where comparison
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is also made with the critical supersaturation required to activate mixed AP con-
taining various volume proportions of NaCl. The figure reveals a strong dependence
of on contact angle. For example, if we consider that the supersaturation
reached in clouds is typically smaller than 3%, we must require that AP of radii

have contact angles less than 12° if they are to serve as CCN in this
supersaturation range.

Unfortunately, little is known about the contact angle for insoluble AP, except
for some measurements of water against certain silicates (see Table 5.2). These
values suggest that silicate particles are not likely to serve as CCN. Even if the
contact angle on insoluble AP were zero, it would still be very unlikely that many
such particles would become involved in the condensation process, because sufficient
soluble, and mixed particles are generally available to nucleate at significantly lower
supersaturations. Although continents release predominantly insoluble AP, many
of these soon coagulate with soluble AP to become mixed particles, which are then
competitive with CCN from the oceans.

Recently, Mahata and Alofs (1975) modified the heterogeneous nucleation theory
of Fletcher to consider nucleation on an insoluble, partially wettable, spherically
concave substrate of radius of curvature (see Figure 9.10c). The only change
from the previous theory is one of geometry. Thus, in place of (9-19) we now have

while the surface energy contribution still has the form of (9-20); however, in
contrast to the convex case, we now have
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and The resulting free energy of germ
formation is given by (9-21), where instead of (9-22) and (9-23), we have

and

Mahata’s computations, based on Fletcher’s value of for the
kinetic coefficient in (9-8a) (and with the minor change of setting instead
of 0°C), are shown in Figure 9.14. The results indicate that concave surface features
can significantly enhance the capacity of AP to serve as CCN.

Of course, one should realize that this enhancement results from an ‘inverse
Kelvin law’ effect which must break down at some minimum radius. Mahata as-
sumes, somewhat arbitrarily, that this cut-off should occur near radius.
The figure shows that surface roughness of this resolution has the effect, at 3%
supersaturation, of inducing nucleation for contact angles This is consid-
erably less stringent than the 12° figure for convex surface features, but is still
insufficient to indicate that many insoluble AP could act as CCN.
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9.1.4 EXPERIMENTAL VERIFICATION OF HETEROGENEOUS WATER DROP

NUCLEATION

Since water-soluble and mixed AP deliquesce and subsequently grow with increas-
ing relative humidity, it is appropriate to test the theory of nucleation on such
particles in two ways: (1) by experimentally determining the equilibrium growth
of these particles, and (2) by determining the number of particles of given size and
composition which become activated at a given supersaturation. The results of
such equilibrium growth experiments, discussed in Chapter 6, have been found to
be in good accord with theory. Observed CCN concentrations have been cited in
Section 9.1.2, where it was pointed out that the agreement with theory is satisfac-
tory as regards the shape of the CCN spectral curve and the actual concentrations
of activated drops.

Attempts to verify experimentally the predictions of water drop nucleation on
water-insoluble, partially wettable substrates have been made by Twomey (1959b),
Koutsky et al. (1965), Isaka (1972), van de Hage (1972), and by Mahata and Alofs
(1975). Their experiments were carried out in diffusion chambers where nucleation
was forced to take place on plane substrates for which the contact angle of water had
been measured separately. Unfortunately, the results derived from the experiments
show considerable disagreement. While the critical supersaturations necessary for
onset of drop nucleation were found by van de Hage and by Isaka to be significantly
lower for all wetting angles than those predicted by theory, those measured by
Twomey agree well with theory up to

In a critical review, Mahata and Alofs (1975) pointed out some serious experi-
mental difficulties involved in such measurements, and expressed the opinion that
these were the cause of the contradictory results. In an attempt to avoid the errors
of previous investigators, they carried out new experiments, the results of which
are reproduced in Figure 9.15. It is seen that their measured critical supersatu-
rations as a function of contact angle agree fairly well with those of Koutsky et
al (1965) up to a supersaturation of about 10%, corresponding to a contact angle
of about 25°. In this range, the experimental results also agree with the predic-
tions of the classical theory, especially if a size correction for is made, such
as (5-22). Since the supersaturation in atmospheric clouds rarely exceeds 10%, the
disagreement between experiment and theory at larger contact angles is of little
significance.

The success of the classical nucleation theory in its simple extension to hetero-
geneous nucleation is surprisingly good, as it has several apparent deficiencies: (1)
The theory assumes that a macroscopic contact angle and a macroscopic interfacial
free energy and bulk density applies to submicron-sized water germs. (2) It treats
the surface of a nucleating substrate as energetically homogeneous. (3) The the-
ory, in Fletcher’s version, assumes that a water embryo on the nucleating substrate
grows by the addition of water molecules directly from the vapor.

Let us now elaborate on some of these criticisms. (1) The concept of a contact
or wetting angle was discussed in Section 5.5. The angle is defined as the limiting
angle of water toward the solid surface on which the drop rests, the system being in
equilibrium with saturated vapor. As pointed out by Corrin (1975), contact angles
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are measured under the microscope with a linear resolution generally no better
than This implies that the angle is not truly measured at the surface of the
substrate, but is inferred by extrapolation from measurements of the drop profile
well removed, on a molecular scale, from the surface. The phenomenon of hysteresis
adds to the difficulties in measuring contact angles, making any measurement hard
to reproduce. Even if contact angles could be measured accurately, the values
would only apply to macroscopic systems and would have little meaning in the
case of water-‘caps’ of germ-size. In addition, one has to recall that the contact
angle is not only a function of the surface properties of the substrate, but is also a
function of temperature and super saturation.

Criticisms of the assumption of macroscopic interface free energies and bulk
densities for small systems such as water germs have already been expressed in
Chapter 7 in the context of homogeneous nucleation, and need not be repeated
here.

(2) The classical theory assumes that the thermodynamic functions employed
are independent of location on the nucleating substrate. This implies that the sub-
strate surface is treated as energetically homogeneous. It is well-known, however,
that surfaces are energetically heterogeneous. This behavior is well-documented by
numerous adsorption studies, some of which were discussed in Chapter 5. These
studies show that the surfaces of many solids do not adsorb water molecules uni-
formly, but rather preferentially at certain active sites. It is at these locations that
phase changes are most likely to occur.

One may distinguish among three types of active sites for preferred adsorption
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of water molecules from the vapor and, hence, preferred water drop formation.
The first type of site is represented by a morphological surface inhomogeneity such
as a step, crack, or cavity at the surface of the nucleating substrate. The second
type is represented by a chemical inhomogeneity in the surface, generally caused
by the presence of a foreign ion, which is hydrophilic relative to the rest of the
solid surface. The third type of site is represented by electrical inhomogeneities
other than ions in the surface of the nucleating substrate. Such sites may consist of
sharply defined boundaries between surface regions of different electric field sign,
or of locations where the electric field vector in the substrate surface is oriented
parallel to the surface.

Morphological surface inhomogeneities are high energy sites where surface forces
are available to effectively tie water molecules to the surface. Chemical inhomo-
geneities attract water molecules to the substrate surface by means of electric forces
which develop between the dipole moment of the water molecule and the net dipole
or charge on the foreign atom or ion. Growth of a water cluster at such a site is
also aided by the relatively higher mobility of molecules on the substrate surface
surrounding the hydrophilic site. Electric inhomogeneities other than ions attract
water molecules to the substrate surface through interaction between local electric
dipoles in the solid substrate and the dipole of a water molecule. Growth of water
clusters at such sites can be aided if the diffusivity of water molecules on surface
regions with either an inward-directed or an outward-directed electric field is high
as compared to the diffusivity over the boundary between regions of electrically
different sign, or as compared to the diffusivity over an area where the electric field
vector in the substrate is oriented parallel to the substrate, since then both the
positive and the negative ends of the water molecule are partially tied down.

(3) The adsorption studies of Corrin et al., Zettlemoyer et al., Federer, and
Pruppacher and Pflaum referred to in Chapter 5 indicate that new phase embryos
do not grow solely by the addition of water molecules directly from the vapor, but
rather to a large extent as a result of surface diffusion of water molecules. (See also
the statement immediately following (9-9).)

We recall that for the case of homogeneous nucleation, the deficiencies of the
classical approach have been circumvented, in some instances, by the molecular
model method of Hale and Plummer. Unfortunately, it is difficult to extend this
method to a study of heterogeneous nucleation. This is because little is known
of the mode and energy of interactions between clusters of water molecules and
substrate molecules. The major problem in determining the interaction energy
is that it is specific to each solid and to each crystallographic face of that solid.
Furthermore, it is a function of position on each crystallographic face, due to the
heterogeneous nature of the surface. In spite of the difficulties, some progress on
applying the molecular method to heterogeneous nucleation has been reported in
the literature and will be discussed in the next section, especially since this work
applies to the heterogeneous nucleation of ice.
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9.2 Ice Forming Nuclei (IN)

9.2.1 NUMBER CONCENTRATION OF IN

Ice forming nuclei exhibit four basic modes of action. In the first, water vapor at
temperatures below 0°C is adsorbed directly from the vapor phase onto the surface
of the IN where, at sufficiently low temperatures, it is transformed into ice. This
mode, called the deposition mode, requires that the environment is supersaturated
with respect to ice. Once water saturation is reached and surpassed, a second mode
of action may take over: the condensation freezing mode. In this mode, an aerosol
particle at temperatures below 0°C acts as a CCN to form a drop which freezes
at some time during the condensation stage. In the third mode, the immersion
mode, the IN becomes immersed into a drop at temperatures warmer than 0°C.
Freezing is subsequently initiated whenever the temperature of the drop has become
sufficiently low. In the fourth mode of action, the contact mode, the IN initiates
the ice phase at the moment of its contact with the supercooled drop. Any of the
scavenging mechanism discussed in Chapter 17 may provoke such a contact.

Aerosol particles which initiate the ice phase by the first mode of action are
called deposition or sorption-nuclei, those acting by the second mode condensation
freezing nuclei, those acting by the third mode immersion nuclei, and those acting
by the fourth mode contact nuclei. An aerosol particle of given size and chemical
composition may act as IN in one or possibly even in all of the four modes. In each
mode the temperature at which ice is initiated is quite specific and may not be the
same as the temperature characteristic of another mode. Unfortunately, none of the
presently available devices which count the fraction of AP acting as IN is capable
of allowing for the four different modes of action, nor can they realistically simulate
the time scale over which temperatures and supersaturation vary in atmospheric
clouds. Therefore, the IN concentrations quoted in the literature have to be treated
with considerable caution.

In Figures 9.16 and 9.17, a selected number of IN concentration measurements
are reproduced as a function of temperature and location. One notices that the
mean or median IN concentration exhibits no systematic variation with geographic
location. This suggests that, far from sources, the atmospheric aerosol is quite
uniform with respect to its ability to initiate the ice phase. Figures 9.16 and 9.17
also show that the IN counts increase nearly exponentially with decreasing tem-
perature. A convenient approximate statement of the behavior, due to Fletcher
(1962a), is

where where is the number of IN per liter
active at a temperature warmer than T, and where Bowdle et al.
(1985) found for the High Planes (Montana). and

For comparison with observations (9-29) has been included in Figures 9.16
and 9.17. The wide scatter of the IN counts in Figure 9.16 at any particular
temperature can be attributed to a number of causes. Most obviously, the IN
count at a particular station is closely coupled to the type of aerosol of the airmass
present which, in turn, is a function of the immediate history of this airmass with
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regard to its length of stay over aerosol sources. Thus, one finds pronounced day
to day variations of the IN concentrations (see Figure 9.18). Similar observations
were made by Bigg and Hopwood (1963) and Kikuchi (1971), who measured at an
Antarctic station IN concentration maxima as high as at –20°C alternating
with practically zero concentration. High concentration counts were found to last
up to two days.

Short-term, positive anomalies in the IN concentration have also been found to
occur at other latitudes. Such anomalies, termed IN-storms, are characterized by a
sudden rapid increase of the IN concentration within a day or less, to values which
may be several orders of magnitude larger than the typical average. After a few
days, this rapid rise is followed by a similar rapid decrease in concentration.

Various explanations for these IN-storms have been offered. Bigg and Miles
(1963, 1964), Droessler (1964), and Bigg (1967) attempted to explain this phenom-
enon on the basis of an extra-terrestrial source of IN. They hypothesized that local
subsidence of air from a nucleus-rich stratosphere, occurring in the vicinity of jet
streams, gives rise to layers in the troposphere which have relatively high concen-
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trations of IN. It was supposed that the particles in these layers are transported
to the ground by vertical mixing. In support of this hypothesis, Droessler (1964)
found that a pronounced IN-storm which occurred in December, 1963, in S.E. Aus-
tralia was accompanied by a stable jet stream situation, stratospheric subsidence in
the vicinity of the IN-storm area, and an associated unstable troposphere. Further
support to this concept was given by Telford (1960), Bigg et al. (1961), and Bigg
and Miles (1963), who found that the IN concentration was significantly higher in
the upper troposphere and lower stratosphere than at the ground, and by Rosinski
(1967b) who found the highest IN concentrations in the vicinity of jet streams.
A second explanation for the phenomenon of IN-storms was given by Isono et al.
(1959, 1970) and Hobbs et al. (1971b,c), based on air trajectory analysis. They
concluded that local IN sources, such as vulcanic eruptions or dust storms in North
China and Mongolia or in the Sahara Desert, inject IN which are advected over
thousands of miles by strong tropospheric winds such as jet streams; intermittent
vertical mixing and deposition should then follow. As a third alternative, Isono
and Tanaka (1966), Georgii and Kleinjung (1968), and Ryan and Scott (1969)
attributed IN-storms to the local formation of IN by evaporation of cloud and pre-
cipitation particles. A fourth explanation was given by Higuchi and Wushiki (1970)
who noted that aerosols, sampled at Barrow (Alaska) at air temperatures between
–20 and –40°C, and on Mt. Fuji (3776 m, Japan) at air temperatures between 0
and –27°C, contained IN concentrations which were considerably higher when the
aerosol samples were kept below 0°C than when the samples were heated above
0°C. They concluded, therefore, that terrestrial AP become activated at sufficiently
cold temperatures, such as those found in the upper troposphere or in polar air
masses.

A second cause for the wide scatter in the IN counts in Figure 9.16 lies in the
measuring technique of the IN concentration itself. Thus, Hussain and Saunder
(1984), Al Naimi and Saunders (1985), Cooper (1980), Rogers (1982) and Meyers
et al. (1992) argued that the widely used static filter technique would underestimate
the actual number of IN by as much as one order of magnitude as compared to
the more recently developed continuous flow chamber technique which allows the
aerosol particle to remain freely suspended in air. This is illustrated in Figure 9.19
which shows that, at any given temperature, a much larger number of AP act as
IN in the contact mode than in the immersion or deposition mode. We note, in
addition, the much higher IN counts in all three modes for air at Elk Mt. than for
air at Laramie.

A third cause for the scatter in past IN measurements lies in the fact that the
dependence of on relative humidities has been disregarded. Experiments by
Bryant et al. (1959), Mason and Van den Heuvel (1959), Roberts and Hallett
(1968), Gagin (1972), Matsubara (1973), Huffman (1973a,b), Schaller and Fukuta
(1979), Hussain and Saunders (1984), Al Naimi and Saunders (1985), Stein and
Georgii (1982), Rosinski et al. (1991), and Meyers et al. (1992) have shown that
ice nucleation may proceed not only at water saturation (Weickmann, 1949), but
also at relative humidities less than 100% with respect to water, as long as there
is supersaturation with respect to ice. All of these investigators found that at any
given temperature the number concentration of IN increases with increasing ice
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supersaturation according to the relation

with in and in %, and where C and are ‘constants’ for a given
air mass. Thus, Huffmann (1973), Hussain and Saunders (1984), and Stein and
Georgii (1982) found that with high values of applying to the more
polluted air masses. As long as remains below water saturation, the IN act in
the deposition mode. Above water saturation the IN may continue to act in this
mode or in the condensation freezing mode.

Unfortunately, without special equipment, it is not possible in practice to dis-
tinguish between the separate contributions of the deposition and condensation
freezing modes when an air parcel becomes supersaturated with respect to water
(Meyers et al., 1992).

At any given temperature, the ice nucleus concentration generally increases as
the saturation ratio with respect to water increases. This increase is char-
acteristic to each temperature (Figure 9.20a). However, if as expressed in
the form given in (9-30), is plotted as a function of ice supersaturation below
water saturation the temperature dependence disappears (Figure 9.20b) and the
increase of , becomes a single function of (Stein and Georgii, 1982; Huff-
man, 1973a,b). Using data from continous flow chambers, this has been expressed
by Meyers et al. (1992) in the form

with in and A = –0.639 and B = 0.1296, for the number of ice forming
nuclei acting in the deposition and condensation freezing mode. Earlier, Cotton et
al. (1986) combined the results of Fletcher and Huffman to give
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with and being the fractional ice super-
saturation at According to Meyers et al. (1992), (9-31b) underpredicts the
number of ice nuclei and suggest that (9-13a) is more realistic. For the number of
ice buclei acting in the contact mode, Meyers et al. (1992) suggested using

with a = –2.80 and b = 0.262, based on measurements of Vali (1974,1976), Cooper
(1980) and Deshler (1982).

In order to characterize the temperature and humidity conditions at which a
given aerosol particle acts in one or another ice nucleation mode, Schaller and
Fukuta (1979), confirming the earlier studies of Roberts and Hallett (1968) and
of Isono and Ishizaka (1972), have demonstrated in their diffusion chamber that
an aerosol particle of given chemical composition acts in the deposition mode only
if the air temperature has fallen below a characteristic value. Thus, we see in
Figure 9.21 that silver iodide particles act as condensation freezing nuclei above a
characteristic temperature of –9°C. Below –9°C, they act as deposition nuclei if a
critical ice supersaturation is surpassed. A much lower characteristic temperature
of about –18°C, and a correspondingly higher critical supersaturation, are required
for clay particles (kaolinite). These experiments demonstrate that, in contrast to
the case of homogeneous nucleation (Chapter 7), Ostwald’s rule of stages becomes
inverted below the characteristic temperature. This implies that below this tem-
perature the metastable phase, i.e., the supercooled water, is no longer prerequisite
for the ice phase to appear.

The rapid increase in activity of aerosol particles as ice nuclei with increas-
ing supersaturation, in particular as the humidity rises above water saturation
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(e.g. Gagin, 1972; Rosinski et al., 1975; Schaller and Fukuta, 1979; Hussain and
Saunders, 1984; deMott and Grant, 1984; Gagin and Nozyce, 1984, Al Naimi and
Saunders, 1985; Blumenstein et al., 1987), prompts the question as to whether in
atmospheric clouds the supersaturation with respect to water indeed may reach sig-
nificantly above 100%. We have discussed this question in Section 2.1.1 and pointed
out that accurate data derived from in situ measurements of the humidity in clouds
are scarce. On the other hand, numerical modeling studies of atmosphere clouds
suggest (Clark, 1973; Hall, 1980; Young, 1974; Ochs, 1978; Ahr et al., 1989b) that
pockets of high supersaturation may exist in cumuli-form clouds associated with
the initiation of pronounced growth of cloud drops by collision and coalescence.
As growth of drops by collision and coalescence sets in, the total drop number
concentration abruptly falls, and the supersaturation rises due to a reduced total
surface area of the drops onto which water vapor can condense.

In some studies (Dye and Hobbs, 1968; Nix and Fukuta, 1974; Rosinski et
al., 1975; Gagin, 1972; Gagin and Nozyce, 1984), it has been proposed that high
supersaturation with respect to water may be reached in the vicinity of freezing
cloud and precipitation drops, or growing graupel. However, Rangno and Hobbs
(1991) and Baker (1991b) discounted such effects on the basis that freezing drops
and growing graupel: (1) warm their immediate surrounding, thus counteracting
any rise in supersaturation; (2) affect the humidity of only very small volumes
of air; and (3) produce, if any, only very short lived effects due to the effective
ventilation of their surface.

Considering that the AP concentration generally decreases with increasing height
(Chapter 8), one might expect the same for the concentration of IN; however, we
are also forewarned from the vertical variation of CCN to expect a more complex
behavior. We notice from Figure 9.22 that for the indicated geographic location,



316 CHAPTER 9

the IN concentration indeed varies with height as expected from the variation of the
AP. On the other hand, Hobbs et al. (1978) found no variation with height up to
5 km in air over the High Plains (Montana). The general uniformity of ice nucleus
concentration with height was also observed in the earlier airborne measurements
of Murgatroyd and Garrod (1957) and Kassander et al. (1957). In addition, as we
have noted already, Telford (1960), Bigg et al. (1961), and Bigg and Miles (1963)
found that in air over Australia, the concentration of IN was significantly higher
at 13 to 27 km altitude than at the ground. Analogously, Rosinski (1967b) found
over Colorado that on some occasions the IN concentration was highest near the
jet stream. In more detailed investigations, Bigg and Miles (1964) and Bigg (1967)
found that at ground level in the Southern Hemisphere, high IN concentrations
occurred in long strips of 100 to 300 km width, as well as inside elongated layers
at 4 and 11 km altitude. These banded regions were narrower and had higher IN
concentrations aloft than at the ground. Isolated smaller regions with high con-
centrations were also found. These regions of high concentration were found to be
mostly confined to the latitude belt from 23 to 30°S. In addition to these anom-
alous regions, broad regions at 10 to 12 km altitude were found near the equator
where the air was markedly deficient in IN.

Huffman (1973b) observed that the vertical IN concentration profiles often ex-
hibit a pronounced layer-structure even in the lowest few kilometers above ground.
For example, a strong concentration maximum was observed during a few days of
summertime sampling at about 500 m above ground over St. Louis and over north-
east Colorado. No temperature inversion was present at the time over north-east
Colorado, and the inversion over St. Louis was considerably above the IN con-
centration maximum; thus, the concentration maxima appear not to be correlated
with the temperature inversion. It is likely that IN concentration maxima in the
atmosphere and IN storms at the ground are closely related and have the same
causes.

In some recent studies, Berezinski et al. (1988) concluded from a large num-
ber of aircraft flights over the European Territory of the U.S.S.R., that the IN
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concentration decreases with height more slowly than the concentration of AP of
corresponding sizes. This would imply an increase in the relative ice forming activ-
ity with increasing height. As reasons for such behavior, Berezinski et al. (1988)
suggested (1) a shift of the AP size spectrum towards larger particles just under-
neath inversions, (2) an improvement of the ice-nucleability of AP, followed by
drop-to-particle conversion during the evaporation of clouds, and (3) a decrease
in the CCN portion of the AP spectrum during cloud formation, which generally
leaves water insoluble particles unaffected.

9.2.2 SOURCES AND CHEMICAL COMPOSITION OF IN

Some clues as to possible sources of IN are provided by the chemical identification
of AP found at the center of snow crystals. Such studies were carried out by Kumai
(1951, 1957, 1961, 1976), Isono (1955), Kumai and Francis (1962b), and Rucklidge
(1965) using electron microscope and electron-diffraction techniques. Typically, one
solid silicate particle, usually identified as clay, was found in the central portion of
a snow crystal. The diameters of the particles ranged from 0.1 to These
findings suggest that desert and arid regions of the Earth surface are a major source
of IN. In support of this possibility, Isono et al. (1959, 1970) and Hobbs et al.
(1971b,c) used an air mass trajectory analysis to show that high IN concentrations
over Japan and the northwestern U.S. are often the result of local dust storms
over arid regions of North China and Mongolia. During such storms, clay particles
become airborne and are transported towards Japan and eastward to the U.S.
continent via the jet stream.

A detailed analysis of the central particles of snow crystals is given in Table 9.5.
We notice that the central particle consist of clay minerals such as illite, kaolin-
ite, halloysite, and vermiculite, the last being the most abundant (Kumai, 1976),
although some central particles may also be composed of hygroscopic materials,
combustion products, and micro-organisms. In Table 9.6, the chemical composi-
tion of IN is separated according to three nucleation temperatures. Notice that
the clay particles dominate the IN composition at temperatures between –12 and
–20°C. Soulage (1955, 1957) dissected the residue of snow crystals and found that
the larger particles consisted of a mixture of soluble and insoluble materials. Ku-
mai (1966b, 1969b) found that about 2% of the central particles of his sample of
ice crystals consisted of spherical particles (spherules) of diameter between 0.6 and

some of which were identified as extraterrrestrial material. In addition to
a large central particle, numerous smaller particles of diameters between 0.05 and

were found in the outer portions of the crystals. This led to the supposi-
tion that the central particle was instrumental in the nucleation of the snow crystal,
while all other particles were subsequently captured.

The notion that surface soils act as an IN source is also strongly supported by
laboratory experiments. The ice-forming capability of silicate particles collected
at various parts of the Northern Hemisphere has been tested by Schaefer (1950),
Pruppacher and Sänger (1955), Mason and Maybank (1958), Isono et al. (1959),
Mason (1960a), Isono and Ikebe (1960), and Roberts and Hallett (1968). When
these particles were allowed to function as IN in the deposition mode at water
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saturation, the threshold ice-forming temperature (which is conventionally taken
as the temperature at which 1 particle in produces an ice crystal) was found to
range typically between –10 and –20°C. Clay particles, such as kaolinite, anauxite,
illite, and metabentonite, have a threshold temperature as warm as –9°C (Mason,
1960a).

Surprisingly, clays such as kaolinite often exhibited varying ice nucleating abili-
ties, or ‘nucleabilities’, depending on the location at which the clays were sampled.
Similarly, soils from different parts of Australia were found to be generally less
active than those from the Northern Hemisphere, the threshold temperature of
Australian soils ranging between –18 and –22°C (Paterson and Spillane, 1967).
The observations suggest that other substances admixed to soils in small quantities
may importantly affect their ice nucleation behavior.

In an attempt to identify more quantitatively the chemical compounds in AP
acting as IN, Parungo et al. (1976), Kikuchi et al. (1982), and Grosch (1978)
carried out an analysis of the various elements contained in IN. They found that
the elements particularly prevalent in IN were Si, Al, Mg Ca, K, Fe, S, and Cl. All
but the last two are characteristic of silicate minerals.

Experiments by Roberts and Hallett (1968) showed that clay particles having
been involved once in ice crystal formation, can exhibit a considerably improved
nucleability. AP which behave in such a manner are termed preactivated. Roberts
and Hallett showed that the IN activity spectrum for each of the tested clays,
containing particles of diameters between 0.5 and shifted by more than 10°C
towards warmer temperatures (Figure 9.23) provided that the temperature of the
air in which the clay particles were kept never rose above 0°C, and its relative
humidity never fell below 50%.

Clays also seem to exhibit significant differences in their ice nucleating ability
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according to their mode of action. Isono and Ikebe (1960), Mason (1960a), and
Roberts and Hallett (1968) showed that kaolinite acting in the deposition mode has
a typical activation temperature of about –9°C, and reaches full activity (1 to 1
ice crystal production ratio) near –20°C, while montmorillonite has an activation
temperature of about –25°C, and reaches full activity near –30°C. In contrast,
Hoffer (1961) found that the warmest freezing temperature of 50 to radius
drops containing kaolinite and montmorillonite was –13.5°C, and that the median
freezing temperatures were –24.0 and –32.5°C, respectively. Gokhale and Spengler
(1972), on the other hand, found that drops of 2 to 3 mm radius, freely suspended
in the air stream of a wind tunnel, froze at temperatures as warm as –2.5°C,
with full activity between –6 and –8°C, when contacted by red soil, sand, or
clay particles. In agreement with the observations of Hoffer and of Gokhale and
Spengler, Pitter and Pruppacher (1973) found from wind tunnel experiments that
freely falling drops of radius froze at temperatures below –14° C when
freezing was initiated from within a drop by kaolinite or montmorillonite (freezing
mode), with full activity being achieved below –28°C. On the other hand, the same
drops froze at temperatures as warm as –4°C and with full activity near –14°C
when contacted by dry clay particles (contact mode). These results are illustrated
in Figure 9.24.

While monitoring the IN concentration in Japan, investigators detected another
source of IN. Isono and Komabayasi (1954), Isono (1959b), and Isono et al. (1959)
observed that pronounced IN storms arose following the eruption of volcanoes.
As an example of this effect, the time variation of the IN concentration during the
eruption of the volcano Asama is given in Figure 9.25. In support of the notion that
volcanoes act as IN sources, Mason and Maybank (1958), Isono et al. (1959), and
Isono and Ikebe (1960) found during laboratory experiments that volcanic ash and
other volcanic materials were capable of serving as IN with threshold temperatures
as warm as –7.5°C. A similar threshold temperature was found by Schnell et al.
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(1982) for AP in the effluent of Mt. St. Helen volcano (U.S.A.). However, in
contrast to these findings, Price and Pales (1963) found no significant increase of
the IN concentration during the eruption of volcanoes on the Hawaiian Islands,
indicating that not all volcanic material has a high ice nucleability. Particles from
the effluent of the Mt. Usu volcano (Japan) were found by Tanaka (1980) to act as
IN following (9-29) with and These particles
also exhibited a remarkable increase in effectiveness above water saturation.

From Table 9.5, it is evident that some of the center particles consist of combus-
tion products. This finding suggests natural or anthropogenic combustion sources
for IN. In support of this notion, Hobbs and Locatelli (1969) observed a signifi-
cant increase in the concentration of IN downwind of a forest fire, and Pueschel
and Langer (1973) observed increased IN concentrations during sugar cane fires
in Hawaii. In contrast, deMott (1990) and Hallett et al. (1986) found that soot
particles from crude oil and acetylene burners were not active as IN at a temper-
ature above –15°C. In fact, in most cases, the soot particles acted as CCN once
the supersaturation with respect to water rose above about 2% and subsequently
froze at temperature below –20°C through the soot particles acting as immersion
IN inside the drops.

Evidence for the effectiveness of other sources of anthropogenic IN has been
provided by Soulage (1958, 1964), Telford (1960), Admirat (1962), Langer and
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Rosinski (1967), and Langer (1968), who showed that certain industries, in par-
ticular, steel mills, aluminum works, sulfide works, and some power plants, release
considerable amounts of IN into the atmosphere. The particles emitted from elec-
tric steel furnaces in France were found to be of particularly high effectiveness as
IN, with a threshold temperature of about –9°C, Wirth (1966). Soulage (1966),
and Georgii and Kleinjung (1968) showed that the mean IN concentration is com-
paratively high throughout heavily industrialized Europe. For example, the mean
IN concentration observed during the summer of 1964, at 10 different locations
in Europe ranged from 2.6 to at –20°C. Similarly, Schnell et al. (1980)
observed IN from steel mills to be active at temperatures as high as –6 to –8°C,
and to appear in concentrations of up to 5 times ambient levels at temperatures
between –10 to –12°C.

These high IN concentrations can be understood in part from the fact that some
of the particles emitted during industrial processes consist of metal oxides, most
of which are known to have a high nucleability. Thus, Fukuta (1958), Serpolay
(1958, 1959), Mason and van den Heuvel (1959), Katz (1960), Pueschel (1978)
found that the oxides NiO, CoO, CdO, and
exhibit threshold temperatures between –5 and –12°C, while oxides such as CuO,

SnO, ZnO, MgO, NiO, PbO, and BaO have
threshold temperatures of between –12 and –20°C. Also, particles of portland
cement were found to
act as IN at temperatures as warm as –5°C (Murty and Murty, 1972).

Although some specific anthropogenic sources may emit IN, the anthropogenic
emission from urban complexes as a whole is generally deficient in IN. Thus, studies
by Braham (1974) and Braham and Spyers-Duran (1975) carried out in the area
of St. Louis show that, on the average, fewer IN were found downwind of the city
than upwind. This suggests that anthropogenic combustion products emitted into
the air over urban areas are generally poor IN and, in addition, are capable of
deactivating existing IN.
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Two processes have been suggested by which IN become deactivated. Georgii
(1963) and Georgii and Kleinjung (1967) showed that foreign gases such as

and severely reduce the ability of atmospheric AP to serve as IN. The
higher the concentration of these gases, the stronger is the deactivation. A second
mechanism of deactivation was proposed by Georgii and Kleinjung (1967). They
suggested that in urban areas, where the concentration of Aitken particles may
reach and higher, IN become deactivated as a result of coagulation with
these particles, which are generally found to be poor IN. In support of this mech-
anism, Georgii and Kaller (1970) computed the time necessary for deactivation of
IN of various sizes by coagulation with Aitken particles of various sizes and number
concentrations. In these computations it was assumed (1) that coagulation is the
result of Brownian diffusion, (2) that the effects of forced convection and turbu-
lence can be neglected, (3) that an IN can be considered to be deactivated when
covered with a monolayer of Aitken particles, (4) that the sticking efficiency is
unity, (5) that the Aitken particles and the IN are spherical, (6) that the size of an
IN remains constant, implying that the small size increase due to the added Aitken
particles can be neglected, and (7) that there is no depletion of Aitken particles in
the environment of an IN. Since some of these assumptions have opposite effects,
it was considered that the over-all model should be fairly realistic.

The deactivation time determined by Georgii and Kaller is

where the coverage number is
the packing density of the Aitken particles around the IN, is the radius of the
Aitken particle, is the radius of the IN, is the number concentration of
Aitken particles, and KB is the coagulation constant (see Chapter 11). The result
of a numerical evaluation of (9-32) is given in Figure 9.26. It is seen that the
time to deactivate IN decreases with increasing concentration of Aitken particles,
with decreasing IN size for a constant Aitken particle size, and with increasing
Aitken particle size for a constant IN size. Figure 9.26 implies that IN may become
completely deactivated during 0.5 to 3 days, i.e., 12 to 72 hours (which is the
residence time of AP in the lowest atmospheric layers) if the air is strongly polluted,
i.e., If partial coverage of the surface of IN may
result in partial deactivation.

Laboratory and field studies also demonstrate that IN may have a biogenic
source. Vali (1968a,b) noted during experiments that soils with a relatively high
content of organic matter exhibited a higher ice nucleability than pure clays or
sand. This observation led him to suggest that decaying plant material contributes
to the IN content of the atmosphere. Subsequent detailed studies by Schnell (1972,
1974), Fresch (1973), Vali and Schnell (1973), Schnell and Vali (1976), and Vali et
al. (1976) showed that some IN in soils are produced by decomposition of naturally
occurring vegetation such as tree leaves. Leaf derived nuclei (LDN) were found to
initiate ice by the freezing mode at temperatures typically between –4 and –10°C.
The diameter of these particles ranged between 0.005 and
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The global ubiquity of these biogenic IN was established by testing plant lit-
ter collected at various geographic locations in different climatic zones (Vali and
Schnell, 1973). Highly active IN (active as immersion freezing nuclei at –1.3°C)
were found to be present during the early stages of decay of aspen leaves. Fresch
(1973) demonstrated that the ice forming capability of these decaying leaves is
closely related to a single strain of aerobic bacteria (pseudomonas syringae), which
by themselves act as IN. Similarly, the leaves of citrus plants were also found to
carry bacteria which act as IN (Levin et al. 1980). Such nuclei were termed bac-
teria derived nuclei (BDN). Whether or not LDN and BDN are to be regarded
as acting independently of each other has not been established. Schnell (1974,
1977) and Fall and Schnell (1984) also found that some organic material from the
ocean surface, termed ocean derived nuclei (ODN), can be quite effective IN. Thus,
marine phytoplankton at La Jolla, California, containing pseudomonas fluorescens
bacteria, and sea water containing erwinia herbicola bacteria at the same site gave
ice nucleation threshold temperatures of –2 to –3°C. These experiments showed
that LDN, BDN, and ODN may act as IN in both the immersion freezing and
deposition modes, being generally more efficient in the immersion freezing mode.
Wind tunnel studies by Levin and Yankowski (1983) and Yankowski et al. (1981)
with water drops freely suspended in the air stream of a wind tunnel and nucleated
by dessicated bacterial cells, showed that these particles acted as IN both in the
immersion freezing mode as well as in the contact mode at threshold temperatures
between –2 and –5°C. Maki and Willoughby (1978) studied bacteria from various
leaves, and showed that about one ice forming nucleus is formed among 20 to 100
bacteria cells, their ice nucleation activity being associated with properties of their
cell wall.

Except for the ODN mentioned above, the world oceans are not a source of
IN. Field observations by Mossop (1956), Georgii and Metnieks (1958), Georgii
(1959a), Isono et al. (1959), Carte and Mossop (1960) and Murty (1969) have
demonstrated that maritime air masses are consistently deficient in IN. The inverse



HETEROGENEOUS  NUCLEATION 325

correlation between the concentration of sea salt particles and the IN concentration
is illustrated in Figure 9.27. Laboratory studies carried out in cloud chambers
by Hosler (1951), Birstein and Anderson (1955), Pruppacher and Sänger (1955),
Fukuta (1958), and Sano et al. (1960) corroborate this notion. Their experiments
showed that AP consisting entirely of NaCl, and

salts typically found in the atmosphere, did not act as IN at temperatures
warmer than –18°C.

Following a suggestion by Bowen (1953, 1956a,b), several researchers have advo-
cated an extraterrestrial source of IN. Accounts of earlier arguments for and against
the Bowen hypothesis have been given by Fletcher (1961, 1962a) and Mossop
(1963b). Later evidence seems to be just as controversial. For example, Bigg (1963)
and Bigg and Miles (1964) found a close correlation between the moon phase and
the IN concentration, which was interpreted by them in terms of a lunar modu-
lation of the extraterrestrial influx of IN. Bigg and Miles (1963, 1964) and Bigg
(1967) suggested that an extraterrestrial influx of IN would explain the increase in
the IN concentration with height, and the peculiar layered vertical structure in the
concentration of IN which is often found over the Southern Hemisphere. Support
for the Bowen hypothesis was also given by Maruyama and Kitagawa (1967), who
gave evidence of a positive correlation between the IN concentration and the oc-
currence of meteorite showers. However, no such correlation was found by Georgii
(1959b), Gagin (1965), or Isono et al. (1970). Reinking and Lovill (1971) also took
issue with the Bowen hypothesis. They found at a high mountain observatory that
a large IN concentration was not accompanied by a high ozone concentration, as
would have been expected for a downward transport of extraterrestrial IN. Evi-
dence against the Bowen hypothesis was also given by Mason and Maybank (1958)
and by Qureshi and Maybank (1966), who tested the ice nucleating efficiency of
ground meteorite materials. All samples tested by Mason and Maybank acted as
IN below –17°C, while Qureshi and Maybank found three samples to be active be-
tween –13 and –15°C, and all others below –16°C. Bigg and Giutronich (1967), on
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the other hand, criticized the early laboratory experiments as being unrealistic and
showed that freshly condensed particles formed from artificially evaporated mete-
orite material acted as an abundant source of IN at –10°C and water saturation.
In contrast to these experiments, however, Gokhale and Goold (1969) found that
particles of extraterrestrial material which were sampled at an altitude of 80 km,
did not act as IN at –20°C.

However, as was pointed out somewhat earlier by Junge (1957a), even if clear
evidence were available that certain types of meteorite materials possess ice forming
capabilities at temperatures warmer than –15°C, it would remain physically and
meteorologically quite unrealistic to assume that meteorite shower particles, which
typically have a broad size distribution, could reach the troposphere as a sharply
defined cloud, and then become responsible for world-wide rainfall anomalies after
a time lag of 30 days between the meteor shower and the rainfall occurrence, as
envisioned by the Bowen hypothesis. It is obvious from this controversy that more
evidence is needed to settle the question of an extraterrestrial source of IN. Our
present knowledge of the behavior of terrestrial AP seems, however, to suggest
that no extraterrestrial source of significant strength needs to be invoked in order
to explain the observed characteristics of atmospheric IN.

9.2.3 THE MAIN REQUIREMENTS FOR IN

If we compare the number concentration of IN with the total AP, it becomes clear
that the ice forming process is very selective. Consider, for example, that at a
temperature as low as –20°C, at which the atmosphere typically contains 1 IN
the ratio of the number concentration of IN to that of AP is as small as for
a total AP concentration of only In polluted areas and at warmer
temperatures, this ratio is even smaller. The reason for this selectivity lies in
the fact that an aerosol particle must have a number of specific characteristics in
order to serve as an ice forming nucleus. The most important of these will now be
discussed.

9.2.3.1 Insolubility Requirement

In general, IN are highly water-insoluble. The negative correlation which is ob-
served between the concentrations of IN and sea salt particles gives some evidence
of this fact (Figure 9.27). The obvious disadvantage of a soluble substrate is that
its tendency to disintegrate under the action of water prevents it from, providing a
rigid substrate needed for ice germ formation. In addition, the presence of salt ions
causes a lowering of the effective freezing temperature (recall Section 6.7; also, see
Section 9.2.5).

9.2.3.2 Size Requirement

Field studies have shown that AP of the Aitken size range are considerably less
efficient IN than ‘large’ AP. For example, it can be seen from Figure 9.28a that
the concentration of IN active at temperatures warmer than –20°C is positively
correlated with the concentration of large particles, but is uncorrelated with the
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number of Aitken particles (Figure 9.28b). Although it is tempting to interpret
such observations in terms of an IN size effect alone, they may partly reflect a
dependence of AP chemistry on size (e.g., silicate particles, which are known to be
good IN, are mostly confined to the ‘large’ size range).

However, there are other clear indications that IN size is important. For example,
IN must have a size comparable to or larger than that of the critical ice embryo or
germ. Estimates of the size cut-offs imposed by this requirement can be obtained
from inspection of Figures 6.5 and 6.7. From the former figure, we see that in vapor
at water saturation the radius of an ice germ is at –5°C and
at –20°C, while from the latter figure we find that inside a water drop at -5 and
–20°C the ice germ radius is 0.010 and respectively. For AP to act as
IN at the temperatures indicated, they evidently must have radii larger than these.
Observations show that, indeed, AP found in the center portions of ice crystals are
considerably larger than the germ sizes indicated.

Such trends have been confirmed by several laboratory experiments. For exam-
ple, Hosler and Spalding (1957), Sano et al. (1960), Edwards and Evans (1960),
Edwards et al. (1962), and Gerber (1972) showed that below about ra-
dius, the effectiveness of IN progressively decreases with decreasing size, becoming
increasingly temperature dependent and negligibly small if the particle radius is
less than about (100 Å). However, the exact value of this cut-off seems to
be dependent on the chemical composition of the IN and on its mode of action.
For IN acting in the deposition mode, the cut-off seems to depend on the vapor
supersaturation of the environment. IN acting in the freezing mode tend to be less
affected by size. Unfortunately, no studies have been reported on the size effect of
IN acting in the contact mode.

These observations suggest that IN typically have sizes larger than In-
deed, Rosinski et al. (1980), Georgii and Stein (1981) and Stein and Georgii (1983)
found from studies of the central particles of snow crystals, that the diameter of
IN typically ranges between 0.1 and with a mode between 0.5 and
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A size dependence quite different from that just described was found by Vali
(1968a), who studied the freezing temperature of aqueous suspensions of surface
soils which contained large quantities of organic material. By filtering these sus-
pensions, Vali showed that organic particles attached to surface soil may initiate
water freezing at temperatures as warm as –8°C, even though their diameters may
be as small as These results were confirmed by Schnell (1972, 1974) who,
as mentioned earlier, chemically isolated some organic, ice nucleation active mate-
rials. He found that organic particles such as those derived from tree leaf litter,
could have diameters as small as 0.025 to and still be capable of initiating
freezing at temperatures between –5 and –8°C.

Since the solubility of a substance increases with decreasing particle size (see
Section 6.9), we might have expected, on this basis alone, to find that IN occur
predominantly in the larger size ranges of AP. The existence of very small organic
IN is consistent with the fact that such particles are known to be highly water-
insoluble.

9.2.3.3 Chemical Bond Requirement

Numerous experimental studies show that the chemical nature of an IN, expressed
in terms of the type and strength of the chemical bonds exhibited at its surface, also
affects its nucleation behavior. Considering the fact that an ice crystal lattice is
held together by hydrogen bonds (O—H----O) of specific strength and polarity, it is
quite reasonable to assume that an IN must have similar hydrogen bonds available
at its surface in order to exhibit good ice-nucleability. Fukuta (1966) found that, in
addition to having similar bond strength and polarity, a hydrogen-bonding molecule
at the IN surface should also possess rotational symmetry. While asymmetric
molecules tend to point their active H-bonding groups inward to achieve minimum
free energy at the solid surface, molecules with rotational symmetry cannot avoid
exposing their active H-bonding groups, thus allowing maximum interaction with
an oncoming water molecule.

In view of this bond requirement, it is not surprising that certain organic com-
pounds have been found to behave as excellent IN. Head (1961a,b, 1962a,b) was one
of the first to demonstrate experimentally that hydrogen-bonding groups such as
—OH, and their geometric arrangement at the surface of an organic
substrate, are of importance to ice nucleation. Other experiments have shown that
in the deposition mode metaldehyde has an ice nucleation threshold
temperature as warm as –0.4°C (Fukuta, 1963), cholesterol has a
threshold of –1 to –2°C (Fukuta, 1963; Fukuta and Mason, 1963), and phloroglu-
cinol has a threshold temperature of –2 to –4°C (Langer et
al., 1963; Fukuta, 1966). Many other organic compounds have also been found
to be ice nucleation active at temperatures warmer than –10°C (Komabayasi and
Ikebe, 1961; Fukuta and Mason, 1963; Langer et al., 1963; Barthakur and May-
bank, 1963, 1966; Garten and Head, 1964; Parungo and Lodge,1965, 1967a; Evans,
1966; Fukuta, 1966).
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9.2.3.4 Crystallographic Requirement

Experiments have also shown that the geometrical arrangement of bonds at the
substrate surface is often of equal or greater importance than their chemical nature.
Since ice nucleation on a foreign substrate may be regarded as an oriented (or
epitaxial) overgrowth of ice on this substrate, it is quite reasonable to assume that
this overgrowth is facilitated by having the atoms, ions, or molecules which make up
the crystallographic lattice of the substrate exhibit, in any exposed crystallographic
face, a geometric arrangement which is as close as possible to that of the water
molecules in some low index plane of ice. In this manner, atomic matching across
the interface between ice and the substrate particle may be achieved.

If there are but small crystallographic differences between ice and the substrate,
either or both the ice lattice and the substrate may elastically deform so that
they may join coherently. Thus, strain considerations suggest that the solid sub-
strate should have an elastic shear modulus which is as low as possible in order
to minimize the elastic strain energy. If there are large crystallographic differences
between ice and the substrate, dislocations at the ice-substrate interface will result,
leaving some molecules unbonded across the interface and causing the ice germ to
be incoherently joined to the substrate. The interface may then be pictured as
being made up of local regions of good fit bounded by line dislocations. These
dislocations at the interface will raise the interface free energy. In addition, any
elastic strain within the ice embryo will raise its bulk free energy. Both effects will
reduce the ability of the AP to serve as an IN.
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The apparent crystallographic misfit or disregistry is usually defined by

where is the crystallographic lattice parameter of a particular face of the
nucleus, is the corresponding constant in the ice lattice, and are inte-
gers chosen such that is minimal. An example of the crystallographic matching
between the (0001) planes of ice and CuS is shown in Figure 9.29. In order to
determine the actual crystallographic misfit, it is necessary to allow for strain. As-
suming the embryo can be strained by the amount where
and are the lattice parameters of the ice in the strain-free and the strained
conditions, respectively, and assuming the substrate strain is negligible, the actual
crystallographic misfit between the embryo and a particular face of the IN is given
by If the embryo fits the surface element of the IN coherently. If
the ice embryo cannot be strained by the full amount, then and the ice
embryo joins the IN incoherently.

The effect of the crystallographic properties of IN on ice nucleation has been
studied by a large number of investigators (see Mason, 1971). Some selected results
of these studies are summarized in Table 9.7a,b where the threshold temperature
for ice nucleation in the deposition mode is listed for various chemical compounds
as a function of their crystallographic characteristics. Note, in particular, the
relatively good ice nucleability of kaolinite. From Figure 9.30, this appears to be
due to the pseudohexagonal arrangement of the hydroxyl (—OH) groups at the
surface of the lattice. Other substances listed in Table 9.7a,b also seem to derive
their warm ice nucleation threshold from a close fit of their crystal lattice to that
of ice. An unequivocal proof of the necessity, although not of the sufficiency, for
a substrate to meet certain crystallographic requirements for good ice nucleability,
was given by Evans (1965). From a study of the effectiveness with which AgI
nucleates and the high pressure modification ice-III, he was able to show
that even under conditions where ice-III is the stable phase, which has a
closer crystallographic fit to AgI than ice-III, was consistently nucleated by Agl.
However, despite the obvious importance of the crystallographic properties of a
substrate to its ice nucleability, Table 9.7a,b demonstrates clearly that no unique
correlation can be established between the ice nucleation threshold and any of the
crystallographic characteristics such as symmetry or misfit. The main reason for
this irregular behavior is the role played by active sites, which we will discuss next.

9.2.3.5 Active-Site Requirement

Experiments have established that ice nucleation, like heterogeneous water nucle-
ation, is a very localized phenomenon in that it proceeds at distinct active sites
on a substrate surface. Not surprisingly, it happens that sites which are capable
of adsorbing water molecules are also sites at which ice nucleation is initiated.
Therefore, our previous descriptions of the adsorption properties of active sites in
Section 5.6, and of the character and types of water active sites given at the end of
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Section 9.1.4, both serve to describe the behavior of IN active sites as well. Con-
sequently, for the most part, in the material which follows we will attempt merely
to supplement our previous descriptions.

As expected, in laboratory studies one finds that at any given temperature only
a fraction of the total number of available IN active sites is capable of initiating the
ice phase. Since the nucleation sites active at a given temperature are not equally
distributed among all the particles present, one then finds that only a fraction of
the aerosol particles present form ice particles . Of course, as expected from Fig-
ures 9.16 and 9.17 the lower the temperature the larger the number of ice nucleation
active sites and, thus, the larger the number of aerosol particles which can initiate
an ice crystal. This expectation has been verified by the experiments of Serpo-
lay (1959), Katz (1960, 1961, 1962), Edwards et al. (1962), Roberts and Hallett
(1968), Edwards and Evans (1968, 1971), and Mossop and Jayaweera (1969) who
showed that the ice nucleation active fraction of a population of AP of given size
and chemical composition increases with decreasing temperature. This behavior is
illustrated by Figure 9.31 for aerosol particles of various artificial chemicals and by
Figure 9.32 for natural aerosol particles. It is noteworthy from Figure 9.32 that the
ice-forming activity of each size fraction considered reaches 100% as a temperature
of –45°C is approached.

A reasonable interpretation of these results is that a given solid substance has
a characteric area density of ice nucleation active sites of varying quality, which
progressively become activated as the temperature is lowered. Eventually, freezing
becomes independent of the substrate, and at sufficiently low temperatures, homo-
geneous nucleation takes over, leading to 100% ice nucleation efficiency at –45°C,
the singularity temperature of water discussed in Section 3.4.1 and Section 7.2.3.

The discovery of ice nucleation active sites provides an explanation for the size
effect discussed in Section 9.2.3.2. Thus, the smaller an aerosol particle the smaller
also the probability that this particle contains an active site which is capable of
initiating ice nucleation at a given temperature. However, the presence of active
sites also implies that experiments on nucleation thresholds should be interpreted
with caution, since the outcome may well depend on the area of the substrate un-
der study. For example, the experiments by Mason and van den Heuvel (1959),
Isono and Ishizaka (1972),and Bryant et al. (1959) typically involved fields of view
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under the microscope of about and led to observations of ice nucle-
ation at water saturation (ice supersaturations of from 7 to 12%) for temperatures
between –7.5 and –12°C, and at ice supersaturations of about 12% for tempera-
tures between –12 and –20°C. In contrast to these results, Anderson and Hallett
(1976), who observed considerably larger substrate areas, found that ice could be
nucleated at ice supersaturations as low as 3% for temperatures between –7.5 and
–20°C. These results are also consistent with the observations of Barchett (1971),
who found from adsorption studies that the onset of ice nucleation in the deposi-
tion mode (1 ice germ per AgI sample of about 0.8 g, with a specific area of as
large as at temperatures between –4 and –10°C required an ice
supersaturation, independent of temperature, of only about 3% (equivalent to a
water-subsaturation of about 7% at –10°C and of about 3.3% at –6.5°C).

Numerous studies have attempted to characterize an active site. As is well-
known, electron microscopy reveals that a solid surface is rarely completely smooth,
but rather contains numerous topographic surface features. Experimental evidence
for the effectiveness of topographic surface features to initiate the ice phase from
the vapor has been given by Bryant et al. (1959), Fukuta et al. (1959), Fletcher
(1960), Hallett (1961), and Kobayashi (1965a,b), who studied the ice nucleating
properties of CuS, AgI, and in the depositional mode. Photographs taken
during the course of these studies revealed that ice crystals appear preferentially
at cleavage and growth steps, at cracks, and in cavities, and at the edges of the
substrate surface (see Plate 10). These results are supported by the study of Hallett
and Srivastava (1972), who showed that the ice nucleability of a AgI single crystal
surface could be improved by etching or scratching. However, such behavior has not
always been observed. For example, Federer (1968), working with single crystals
of Si, GaAs, and GaSe, found that the area density of ice crystals formed by vapor
deposition on these substrates was not closely correlated to the area density of
steps caused by emerging dislocations.

Chemical impurities present at the surface of a solid constitute another type
of active site. Indeed, adsorption studies by Gravenhorst and Corrin (1972) have
established that particles from AgI samples containing impurity ion such as
and have a considerably higher ice nucleation efficiency than ‘pure’ AgI. This
behavior is shown in Figure 9.33. The lower nucleation efficiency of ‘pure’ AgI was
attributed by Barchett an Corrin (1972) to the presence of relatively inactive phys-
ical adsorption sites at its surface, causing water molecules initially to be adsorbed
in the form of extended water ‘patches’ within which the water molecules exhibit
strong lateral interaction. Only on approaching water saturation do multilayers
develop with an adsorbate-vapor interface which assumes the energetic properties
of a liquid-like surface prior to nucleation.

We further recall from Section 5.6 that the efficiency with which a doped silicon
surface adsorbs water molecules increases as the number of doped surface sites
increases (i.e., it increases with decreasing electric conductivity of the sample). As
expected, therefore, ice nucleation is most active on silicon particles with a large
number of doped surface sites, or with a low electric conductivity (see Figure 9.34).
The same effect was found by Stinebaugh et al. (1980) by doping silicon with atoms
other than boron. The experiments with doped solid surfaces suggest that an ice
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nucleation active site is hydrophilic, and surrounded by a hydrophobic region. One
reason for this is that it is easier for water molecules to join a disordered water
cluster on a low energy (hydrophobic) surface than to enter an oriented array of
water molecules on a polar (hydrophylic) surface. Similarly, it is easier for a water
cluster than an oriented film to achieve an ice-like structure. Also, as we have
indicated previously, the growth of an ice embryo is facilitated by surface diffusion
of weakly adsorbed molecules near the active site.

The advantage of having a low energy, non-polar substrate was pointed out by
Fletcher (1959b). As we know from Chapter 3, water dipoles in ice may assume
a large number of orientations. Hence, Fletcher was able to demonstrate theoret-
ically that a polar substrate can reduce the configurational entropy, and therefore
raise the free energy of an ice embryo growing on it. In consequence, Fletcher
predicted that AgI surfaces exposing either or exclusively should be poorer
ice nucleation substrates than those where both ions are present.

Three additional effects which demonstrate the importance of active sites for
nucleation in the deposition mode are worth mentioning. In order to discuss the
first effect, let us recall from Figure 9.23 that, under certain conditions, IN may
become activated (or ‘trained’), and in this state exhibit a considerably improved
ice nucleability (memory effect). To behave in this manner, the IN either must have
been previously involved in an ice nucleation process and formed a macroscopic
ice crystal, or they must have been exposed to temperatures below – 40°C. Earlier
explanations of this phenomenon conjectured the retention of ice remnants in small
cavities or capillaries where they could survive relative humidities considerably
below ice saturation due to the negative curvative effect, as long as the temperature
of the environment remained below 0°C. However, the work of Roberts and Hallett
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(1968) and of Edwards and Evans (1971) has shown that the observations are better
explained in terms of the retention of patches of ordered, ice-like layers of water
molecules at the surface of a substrate, where each patch can be considered to
represent the remnant of a macroscopic ice crystal which developed over an active
site.

The second effect involves the previously mentioned observation that foreign
gases or vapors such as strongly reduce the nucleability of IN
(Georgii, 1963; Georgii and Kleinjung, 1967). Since the adsorption studies dis-
cussed in Chapter 5 have demonstrated that such foreign gases are adsorbed at
active sites, we see that the observed suppression of nucleation is caused by the
occupancy of active sites by molecules other than

The third effect involves the characteristic time lag for the appearance of an ice
crystal on the surface of a substrate once it has been exposed to supersaturated
vapor at a temperature below 0°C. As shown for an AgI surface by Anderson
and Hallett (1976), this time is longest at temperatures near 0°C and low excess
vapor densities, but it rapidly decreases with decreasing temperature and increasing
excess vapor density (Figure 9.35). Obviously, each active site on a surface requires
a critical supersaturation which must be applied for a critical length of time for an
ice embryo to form and to grow to a macroscopic crystal.

So far we have discussed the significance of active sites to ice nucleation in the
deposition mode, and it remains for us to consider their significance in the freezing
and contact modes. Unfortunately, no quantitative experiments are available to
help elucidate this problem. One can merely speculate that the nucleation process
proceeds somewhat differently in the freezing mode than it does in the deposition
mode. Once a water-insoluble AP becomes submerged in water, it is surrounded
by an abundance of water molecules. At any one moment, a large number of these
molecules are linked together into small structural units in which some of them
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tend to be tetrahedrally bonded, while other bonds seem to ‘dangle’ (Stillinger
and Rahman, 1972; see also Section 3.4). Suppose now that the surface of the
submerged solid particle is generally hydrophobic, but contains hydrophilic sites
where water molecules are preferentially adsorbed. . The molecules most likely to
be adsorbed are those which exhibit ‘dangling’ bonds. In this manner, the already
existing structural units become ‘anchored’ to the solid surface, causing them to be
less vulnerable to destruction by the heat motion in the water. As the temperature
of the water is lowered, more and more ‘dangling’ bonds become ‘hooked’ to the
particle’s surface, thus allowing individual structural units to be ‘joined’ together
to form clusters in which individual water molecules have considerable freedom
to move their dipoles into an orientation most favorable for a tetrahedral, ice-like
arrangement. Eventually, the anchored 3-D cluster may reach germ size.

If, on the other hand, we consider a particle with a surface which has a strong,
uniform affinity to water due to the presence of an array of strongly hydrating
ions, polar groups, hydroxyl or oxygen atoms in the solid surface,
water molecules will become adsorbed in a close array with most of the dipoles
of individual molecules oriented more or less alike. Such an arrangement is not
conducive to ice nucleation, due to the structural entropy penalty imposed on
such an adsorbed layer. In this case, a second or even more adsorbed layers may
be required before the freedom of orientation among the water molecules in the
outermost adsorbed layer is sufficiently large for some of them to assume ice-like
orientations while others remain anchored. Mechanisms similar to these have been
proposed by Evans (1967a,b) and Edwards et al. (1970), based on their studies of
heterogeneous ice nucleation in supercooled water.

There is also little known quantitatively about the importance of active sites
to ice formation in the contact mode. Observations have shown that dry particles
of many compounds such as clays, sand, soil, CuS, organic compounds, etc., are
considerably better IN when acting in the contact mode rather than in the freez-
ing or deposition modes (Rau, 1950; Levkov, 1971; Fletcher, 1962; Gokhale and
Spengler, 1972; Pitter and Pruppacher, 1973). In an attempt to explain this effect,
Fletcher (1970b) and Guenadiev (1970) pointed out that the observed differences
between nucleation in the contact and freezing modes may be caused by the partial
solubility of any solid, especially when in the form of small particles. Thus, it is
reasonable to assume that active sites at the surface of a particle are especially
vulnerable to erosion by dissolution after a particle has become immersed in water.
In support of this notion, Hallett and Srivastava (1972) found that prolonged im-
mersion in water reduced the nucleation effciency of Agl single crystals. However,
although the erosion effect may account for some differences between the contact
and freezing modes, it cannot explain the significant difference between the ice
nucleability of some clays in the contact and deposition modes. In addition, the
erosion effect is unable to account for the fact that in all three modes, AgI exhibits
practically the same threshold temperature of –4°C for particles of the same size.

A different explanation for contact nucleation was given by Evans (1970). He
suggested that only those compounds initiate ice formation in the contact mode
which exhibit a strong affinity for water, thus adsorbing water molecules from
the liquid or vapor in a close array. In such a case, as mentioned previously,
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ice nucleation is hindered due to a structural entropy penalty imposed on the
adsorbed layer. However, during the initial brief moments of contact between a
particle and a supercooled water drop, adsorption is incomplete and disordered
despite the strong aflinity. Thus, during this period, the energy barrier to the
formation of a more ordered, ice-like arrangement may be considerably lower and,
thus, nucleation may be much more likely, than in an adsorbed and firmly attached
oriented array. Although this explanation is attractive, it hinges on the assumption
that the time required for building up an oriented water film is much longer than the
time needed to form an ice germ in the disordered-adsorbed layer. Unfortunately,
this assumption has not yet been justified.

A third explanation for contact nucleation has been given by Guenadiev (1972)
and Cooper (1974). They conjectured that an IN acting in the contact mode
must build up a critical ice embryo which is in equilibrium with the water of the
supercooled drop, rather than with the surrounding water vapor. Since at any
given temperature, the former requirement is less stringent, an IN may nucleate on
contact with a supercooled drop even though the ice particle is of sub-germ size
with respect to ice formation from the vapor. Although this mechanism can account
for clay particles being better IN in the contact mode than in the deposition mode,
it cannot explain, for example, why AgI exhibits the same nucleation threshold in
both modes, nor can it explain why clay particles exhibit a better ice nucleability in
the contact mode than in the freezing mode. In addition, computations by Grover
(1978) show that the water vapor density decreases very rapidly with distance from
the surface of a drop falling in sub-saturated air and reaches water saturation only
at the drop surface itself. Thus, an AP which approaches a supercooled drop on a
collision trajectory in a water subsaturated environment will not encounter a water
saturated air layer, as was assumed by Cooper (1974), although it may be exposed
to a thin layer of air which is ice supersaturated. The thickness of this layer depends
strongly on the drop size and its fall speed, and on the relative humidity of the
environmental air. One would therefore expect that contact nucleation is a function
of drop size and of the relative humidity of the air. However, no dependence on
either of these parameters was detected in the nucleation studies by Rau (1950),
Gokhale and Goold (1968), Levkov (1971), Gokhale and Spengler (1972), and Pitter
and Pruppacher (1973). Also, the question is left open as to whether the short
time spent by a particle on its collision trajectory inside the region which is ice
supersaturated is sufficient to build up ice embryos of germ size on its surface.

Another interesting explanation of the contact nucleation mechanism has been
given by Fukuta (1975a,b), who studied the freezing behavior of supercooled drops
frozen by contact with various organic substances. As other workers had found
for inorganic substances, Fukuta observed that the drop freezing temperature via
contact nucleation was significantly warmer than that of drops frozen by the same
particles submerged within them. He interpreted his results to indicate that the re-
duction in ice-forming ability which the particles suffered when immersed in drops
was not due to the dissolution of nucleation active sites. Rather, Fukuta suggested,
on the basis of experiments carried out by Pruppacher (1963c), that the difference
in freezing temperature was associated with the movement of the water-air inter-
face relative to the solid substrate surface during contact. He suggested that the
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mechanically forced rapid spreading of water along the hydrophobic solid surface
forces its local wetting, and thereby temporarily creates local high interface-energy
zones which can increase the likelihood of ice nucleation. Although the explanation
of the creation of such zones seems somewhat incomplete, it is a simple matter to
show that, should they exist, the consequence would be an enhanced nucleation
efficiency. Thus, on adapting (9-9) and (9-10) to the case of ice nucleation inside
the drop on the solid surface it contacts, we find the energy of embryo formation,
assuming a planar substrate, is

The creation of a transient high energy zone would correspond to an increase in
which (9-34) shows would lower the formation energy of ice embryos.

9.2.4 THEORY OF HETEROGENEOUS ICE NUCLEATION

9.2.4.1  The Classical Model

Let us now turn to the classical theoretical model for heterogeneous ice nucle-
ation. The treatment closely parallels that given previously in Section 9.1.3 for
heterogeneous water nucleation. In view of the complex nature of IN, and our
previous discussions of the limitations of the classical approach, we cannot expect
too much of the following description. Nevertheless, it is the most comprehensive
theory available and is capable of correctly predicting at least some of the observed
features of ice nucleation.

We shall follow Fletcher (1958, 1959b, 1962a) and assume that an ice embryo
on a curved solid substrate can be described by the spherical cap model. Then,
the work of ice-germ formation from the vapor may, through arguments strictly
analogous to those presented in Section 9.1.3.2, be expressed as

where is given by (9-22) and by (5-24a). If the embryos are assumed to
grow by direct vapor deposition, then the nucleation rate per particle, is given
by combining (9-24) and (9-35).

For an environment which is saturated with respect to water, one may write
and therefore from (4-86b), In with

For these conditions, and assuming
1 germ and, further, that the kinetic coeffcient has a value of
about Fletcher has determined the variation of temperature with particle
radius and compatibility parameter the results are shown in Figure 9.36.
It is seen that there is little dependence on radii for a given but
that below this size the ice nucleation efficiency decreases rather sharply. The nu-
cleability also decreases rapidly with decreasing i.e., with increasing interface
free energy between ice and the substrate particle, for a given particle size.

Let us now turn to the case of heterogeneous ice nucleation in supercooled water.
The rate of germ formation per unit area per unit time may be obtained by
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combining (9-2), (9-3), and (7-49):

This equation may be simplified somewhat, since it happens that the factor
is approximately unity under typical conditions. (One might have expected this to
be so, since we have noted in Section 7.1.2 that while counts the
number of water molecules contacting the ice germ; an estimate that this count is
O(10) is quite reasonable.) Therefore, an approximate description of the nucleation
rate per particle is

Assuming a spherical cap germ as before, and following familiar arguments, the
quantity in (9-36) and (9-37) may be expressed as one-third the surface
energy of the germ, multiplied by the geometric factor of (9-22); using (6-55) for
the germ radius, we have

where is given by (5-24b). Computations of (9-37) and (9-38) have been
carried out by Fletcher (e.g., 1959b, 1969) but, unfortunately, these do not include
the temperature dependencies of and However, a suitably
corrected computation (unpubl.), supports the essential results of Fletcher (1969).
Their results are shown in Figure 9.37, where it has been assumed that

and germ It is seen from the figure that for
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the ice nucleation efficiency is relatively insensitive to however,
it decreases rapidly for smaller sizes. For a fixed the required supercooling
increases rapidly with decreasing Comparison with Figure 9.36 shows that
the nucleability is less sensitive to the size and compatibility parameter of an IN in
the freezing mode than in the deposition mode at water saturation. We also note
from Figure 9.37 that by approaching homogeneous nucleation conditions, i.e., with
decreasing radius of the aerosol particle and decreasing compatability factor, ice
nucleation approaches the limiting value at –45°C, as expected from Sections 3.4,
7.2.3 and Figure 9.32.

Recalling now the experimental observations discussed in the previous section,
we find that the classical theory is successful in qualitatively predicting the ob-
served decrease in ice nucleation ability with decreasing AP size. Quantitatively,
however, observations show a considerably stronger size dependence, for small sizes
in particular. The classical theory also qualitatively predicts the observed decrease
in nucleability with decreasing i.e., with increasing interface free energy
between ice and the substrate. On the other hand, in practice it cannot discrimi-
nate among various aerosol particles, since and (i.e., have not been
determined for any substance. Even if these quantities were accessible to experi-
mental determination, the derived values would pertain to an average, macroscopic
behavior of the particular substrate face studied. Such values would clearly be un-
satisfactory since heterogeneous ice nucleation occurs preferentially at the location
of microscopic active sites, and is controlled by the nature of these sites rather than
by the average behavior of the surface.

In view of these shortcomings, it is not surprising, for example, that the classi-
cal theory makes the seriously erroneous prediction that all AP of a given size and
chemical composition will have the same ice nucleation efficiency. This prediction
is in complete disagreement with observation which show that at any given temper-
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ature, the nucleability varies from particle to particle, and that the ice nucleating
active fraction of such a homogeneous set of particles increases with decreasing
temperature (see Figures 9.31, 9.32, and 9.34). In addition, experiments do not
substantiate the theoretical prediction that the nucleation efficiency is less depen-
dent on the compatibility between ice and the substrate in the freezing mode than
in the deposition mode.

9.2.4.2 Extensions of the Classical Model

Thus far, two attempts have been made to improve the classical theory. First of
all, efforts have been made to include the effects of the elastic strain produced
within an ice germ due to the misfit between the ice and substrate lattices. This
gives rise to modifications in the interface energy, and so the as well as
the bulk free energy contribution of the ice germ. According to Turnbull
and Vonnegut (1952), the concentration of dislocations at the interface depends
linearly on while the term has to be added to In the case of
coherent nucleation, i.e., the concentration of dislocations at the interface
zero, and the requires no correction. In most cases where this is
probably a reasonable approximation to make.

For the case of ice germ formation from the vapor, the only formal change
required by these modifications is that in (9-35) must be replaced
by where C is a constant whose value depends on the elastic
properties of ice. Similarly, for the case of ice germ formation in supercooled water,

replaces in (9-38). The effect is thus easy
to interpret as a shift in or As an example, the additional required
depression of the ice nucleation threshold temperature as a function of is plotted
in Figure 9.38, where the value for C is taken as following
Turnbull and Vonnegut (1952). Granted that this refinement to the clasical theory
is highly idealized, it is nevertheless encouraging to note the qualitative agreement
of the figure with observation, namely that the temperature for the onset of ice
nucleation is caused to decrease with an increase in the crystallographic misfit
between ice and the nucleating substrate, in particular for misfits larger than 1%.

Fletcher (1969) has provided a second extension of the classical theory by con-
structing a simple model for the effect of active sites on the nucleating substrate.
He supposed that, for the case of ice nucleation in the freezing mode on a parti-
cle of radius an active site could be represented by a patch of area on
which The remainder of the surface was assumed to be characterized by

The formulation is quite straightforward. Thus, without the active site, the
total surface energy of the ice embryo would be in strict analogy to (9-11)

using (5-24b). We may
now take the presence of the active site into account by replacing the last term
above with In this manner, the expression
analogous to (9-10) and (9-11) for the energy of formation is
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The last term on the right side of this expression represents the correction due to
the presence of the active site. Since it does not involve the geometry of
it is also not involved in the process of maximizing to determine
Therefore, we have immediately the result

where is given by (6-55) (it is assumed the germ still possesses the standard
spherical cap geometry) and is given by (9-22).

The solution of (9-37) together with (9-40) for germ is
shown in Figure 9.39. It can be seen that, as expected, the larger α is for a given
the warmer is the temperature at which the ice nucleation in the freezing mode is
initiated. Thus, while a particle of bearing no active site would
initiate ice nucleation at –17°C, a particle bearing an active site of
i.e., is capable of initiating ice formation at –4°C, a truly
potent effect. If and or the particle
is capable of initiating ice nucleation at a temperature near –12°C. Of course, a
major drawback to this extension of the classical theory is that neither the area
occupied by an ice nucleation active site nor the which characterizes the
site is known a priori.

9.2.4.3 The Semi-Empirical Statistical Mechanics Model

Significant progress toward a quantitative description of the heterogeneous ice nu-
cleation problem has been made by applying the ab initio approach of Hale and
Plummer (see Chapter 7) using statistical mechanics in combination with an em-
pirical molecular model (Ward et al., 1982, 1983; Hale and Kiefer, 1980; Hale et
al., 1980). In analogy to (7-9) and (7-10), we may write for the heterogeneous
formation of an ice embryo from the vapor
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and

Analogously to the homogeneous nucleation equation (7-11) follows

where now

and

where is the number of ice embryos on the substrate considered, the
number of water molecules adsorbed on the subtrate, the number of wa-
ter molecules in the gas phase above the substrate, the number of water
molecules in equilibrium with a plane water surface, the partition function for
an ice embryo of on the substrate, the partition function of the
monomers on the substrate, and the partition function of water vapor. The
formulation above assumes that the adsorbed on the substrate form a mix-
ture of non-interacting ideal gases, that the system consists only of single molecules
in the vapor phase, and that the total number of molecules in the vapor and in the
surface clusters remain constant.

In order to evaluate for a phase adsorbed on a solid surface, one cannot
proceed in the manner that was possible in homogeneous nucleation, where we had
only to consider the interactions. In the present case, we have to con-
sider, in addition, the interaction between the water molecules and the substrate.
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In order to do this, Ward et al. (1982, 1983) proceeded in a semi-empirical fashion,
assuming as before that the interaction is described by the effective
pair potential of Stillinger and Rahman (1978), while the interaction between the

and the substrate is given by the semi-empirical effective pair potential of Hale
and Kiefer (1980). Assuming further that the total number of bonds available for
bonding to the substrate remains fixed and that the clusters on the substrate in-
teract with the surface through bonds between the surface clusters and the surface
monomers, a Monte Carlo method was used to let the molecules arrange themselves
on the substrate. In this manner was determined as a function of cluster size,
and from thatfollowed and the critical cluster size Inserting this result into
a formulation similar to (9-8) or (9-9), the steady state nucleation rate on the
model substrate was found. This procedure was applied to the basal plane of silve-
riodide (AgI), where the surface was modeled by an infinite array of point charge
atoms. At –8°C (265 K) and water saturation the critical cluster
size was and with a monomer concentration on the
surface of This large nucleation rate was taken to imply that a
monolayer on the AgI surface forms rapidly, and that the nucleation of ice occurs
after the deposition of just a few adsorbed layers. A closer look at the substrate
surface shows that the Agl organized the adsorbed water molecules in the first and
second monolayers in a solid-like plane of five and six membered rings centered on
the iodine atoms. This is illustrated in Figure 9.40, which shows that the preferred
adsorption sites for the on the AgI surface are the interstitial positions where
no substrate atoms lie directly below in the first and second layers of the substrate,
and that about 50% of the water molecules have positions which correspond to a
perfect (0001) plane of ice. Reversing the temperature, this layer was shown to
melt at about 300 K. The numerical simulation was found to be consistent with
the experimental findings of Bakhanova and Kiselev (1972, 1974), who observed an
ice-like IR absorption band for a thin film of on AgI at a temperature near
264 K. Using the same model, Hale et al. (1980) investigated the effect of atomic
impurities and other defects in the AgI surface on the cluster formation. Thus,
by replacing an in the surface of the AgI lattice by a impurity ion, or
by creating a vacancy by removing an ion in the surface of the AgI lattice, a
stabilization of the formed clusters was observed.

A numerical study similar to that with a AgI substrate was later performed
at 265 K by Raego (1986) with silica substrates including pure and a
substrate doped with hydroxyl (OH) groups. As expected, the substrate organized
the molecules on the (111) surface in the form of five and six membered rings.
Also as expected, the OH groups were found to stabilize the clusters.

9.2.5 HETEROGENEOUS FREEZING OF SUPERCOOLED WATER DROPS

Experiments with water drops containing various impurities have revealed that
their freezing temperature (usually expressed in terms of the median freezing tem-
perature of a population of drops of volume is a function of the drop vol-
ume. Such a dependence was first suggested by Heverly (1949) and subsequently
verified in a quantitative manner by Dorsch and Hacker (1950), Levine (1950),
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Bigg (1953b, 1955), Mossop (1955), Carte (1956, 1959), Kiryukhin and Pevzner
(1956), Langham and Mason (1958), Barklie and Gokhale (1959), Stansbury and
Vali (1965), Vali and Stansbury (1965, 1966), and Vali (1971). The experimentally
derived volume relationship can be expressed as

where is the median freezing temperature in °C below
is the median freezing temperature in °C, and A and B are constants for a

particular water sample. Figure 9.41 demonstrates this behavior for various water
samples. In order to understand the physical basis of such a relationship, we shall
consider two different points of view.

The ‘classical’ point of view was adopted by Bigg (1953a,b, 1955), Carte (1956,
1959), and Dufour and Defay (1963), who attempted to explain the freezing be-
havior of a population of water drops by assuming that at a given temperature all
equal-sized ice embryos formed in a population of equal-sized supercooled water
drops have an equal probability of reaching the size of a critical embryo or germ
as a result of random fluctuations among the water molecules. Although these
fluctuations were envisioned to form ice germs more efficiently in the presence
of foreign particles, the effect of such particles in the water was considered non-
specific, i.e., they were assumed to enhance the efficiency of the random nucleation
process but not disturb its stochastic nature (stochastic hypothesis). Under these
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conditions, the theory becomes equivalent to that given for homogeneous freezing
in Section 7.2.3. In particular we may use (7-67) to express the relative change in
the number of unfrozen drops during the time interval dt as

where From his experiments, Bigg (1953b) deduced that

where a is a constant of the order of unity. Therefore, for we have from
(9-47) and (9-48) the approximate result that

since Thus, the stochastic hypothesis leads to the prediction that
at constant supercooling, the fraction of drops of volume frozen per unit time
interval is constant, and is larger, the larger the supercooling.

On the other hand, if the drop population is cooled at a constant cooling rate
then, instead of (9-49), we find

In other words, the fraction of drops of volume frozen per unit temperature
interval, while being cooled at a constant rate, increases exponentially with in-
creasing supercooling, the fraction being smaller, the larger the cooling rate at any
one supercooling.
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The integral of (9-49) is

where Thus, the number of unfrozen drops decays exponentially
with time at a given supercooling. In terms of the time needed to freeze one
half of the drop population, i.e., (9-51) states that

where We see that the median freezing time
decreases exponentially with supercooling.

Similarly, integration of (9-50) at constant yields

so that for any given rate of cooling, the number of unfrozen drops decreases
exponentially with increasing supercooling, and for any given supercooling, the
number of unfrozen drops decreases with a decreasing rate of cooling. In terms of
the median freezing temperature where (9-53) becomes

where Thus, the median freezing temperature
lowers logarithmically, with increasing cooling rate. Given the form of C it is also
clear that for fixed this relationship, namely

is consistent with (9-46) in its account of the volume dependence of the drop freezing
temperature, where

Bigg (1953a,b) used water of high purity and found B = 2.9 ×
Barklie and Gokhale (1959) used water of less purity and found

for distilled water, for tap
water, and for rain water. The parameter a ranged
between 0.57 and 0.75 with a mean of 0.65 independent of the
type of water.

A second point of view was developed by Levine (1950) and Langham and Ma-
son (1958), who attributed heterogeneous drop freezing entirely to the singular
freezing characteristics of AP which have become incorporated in drops (singular
hypothesis). They assumed that every particle contained inside a drop has one char-
acteristic temperature at which freezing will be initiated in the drop. According to
the singular hypothesis, then, the freezing temperature of a drop is determined by
that particle in the drop which has the warmest characteristic temperature. It also
implies that the number of ice germs formed in a drop volume at a supercooling
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is given by the number of particles inside the drop which become active
as IN between 0°C and i.e., Therefore, on intergrating
(9-47), we have

For the distribution Langham and Mason assumed the empirical form of (9-29):

so that also

In contrast to the classical stochastic model, (9-58) predicts that the number
of unfrozen drops is independent of the cooling rate. The equation also predicts
that the number of frozen or unfrozen drops will not change with time for a given
supercooling. In terms of the median freezing temperature, (9-58) states that

where Thus, we see further that the experi-
mentally observed volume dependence is predicted both by the stochastic and the
singular models, and so cannot be used to choose between them.

However, there are other corresponding predictions of the two models, such as (9-
53) and (9-58), which may be checked against experimental data. Such comparisons
have been made by Barklie and Gokhale (1959), Stansbury and Vali (1965), and
Vali and Stansbury (1965, 1966). For drops of distilled water containing a large
population of relatively small particles, it was found that, at a given cooling rate,
the fraction of drops frozen per unit temperature interval increased exponentially
with increasing supercooling (Figure 9.42), which is in accord with the dependence
predicted by the classical stochastic model, and in direct conflict with the singular
model, which predicts the fraction should be independent of However, the
variation with was found to be less than that expected on the basis of the
stochastic model. Also, at a constant temperature, the fraction of drops frozen per
unit time interval was found to decrease exponentially with time as
(Figure 9.43), in contrast to both the stochastic model which predicts the fraction
remains constant, and the singular hypothesis which predicts that the number of
new freezing events is zero.

These studies suggest that the actual drop freezing mechanism is better rep-
resented by some combination of the stochastic and singular mechanisms than
by either one acting alone. This observation is also more consistent with the
known characteristic features of IN acting in the freezing mode, as discussed in
Section 9.2.3. Thus, the singular characteristics of drop freezing can be attributed
to the nature of the active sites on particles contained in the drop, and to the av-
erage chemical and crystallographic properties of the particles. On the other hand,
the stochastic aspect of the drop freezing process can be attributed to the random
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manner in which, at any given supercooling, the water molecules in water join the
clusters adsorbed at the active sites to eventually form an ice-like germ.

However, it should be recognized that the linear relationship between ln and
in the singular model derives from a particular (exponential) size distribution

for There is no reason to believe that such a functional dependence holds
even approximately for all temperatures. Indeed, curve (1) in Figure 9.41 suggests
that, for the particular water sample studied, the variation of the median freezing
temperature of a population of water drops is not linear with ln at temperatures
warmer than –15°C. However, the behavior observed is physically reasonable since,
on the basis of the singular hypothesis, one must expect that at temperatures
approaching 0°C, the number of particles serving as IN in the freezing mode will
rapidly decrease. This implies that above a certain temperature, the volume of a
water sample which contains a particle that can nucleate ice will be progressively
larger than that predicted by the ln law.

We have pointed out in Chapter 8 that the major portion of aerosol particles
consists of water-soluble substances. Hence, through various nucleation and scav-
enging processes, cloud water acquires both soluble and insoluble substances. The
question then arises as to the effect of dissolved salts on the nucleating behavior
of solid particles. This problem was studied by Pruppacher (1963a) and Prup-
pacher and Neiburger (1963), who also critically summarized relevant earlier work.
Through experiments with drops of filtered solutions of various salts, they found
that alkali- and earth alkali-halides, as well as other salts commonly found in the
atmospheric aerosol, have a negligible effect on the freezing temperature of water
drops if their concentrations are less than For larger concentrations,
the salts studied invariably depressed the drop freezing temperatures. Their results
can be summarized by the empirical relation

where is the median supercooling of a population of aqueous solution drops
containing particles of a radius less than is the median supercooling
of a population of drops of the same size and same water from which the solution
was made, is the equilibrium freezing point depression of the particular
salt in solution (see Section 4.9), and is a small temperature departure which
varied between 0 and 2.5°C, being largest for solutions with salt ions which have a
large tendency to disrupt the water structure and, hence, inhibit the formation of
ice embryos.

Kuhns (1968), Parungo and Lodge (1967b), Pena et al. (1969), and Pena and
Pena (1970) studied the effect of gases, in solution-equilibrium with pure water
drops, on the freezing temperature of these drops. Kuhns found that the freezing
temperature was affected by less than 1°C if the drops were in solution equilib-
rium with He, and air. Pena and Pena’s observations supported Kuhns’
results, but in addition they found that some organic gases such as and

slightly depressed the freezing temperature, while depressed it strongly.
Pena and Pena concluded that the clathrate structures which are induced by these
gases at low temperatures are not conducive to ice formation. A similar conclusion
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was reached by Pruppacher (1962), and Parungo and Wood (1968), who studied
the effect of organic macromolecules in water. Parungo and Wood showed that
the freezing temperature of water drops which contained macromolecules of dis-
solved substances such as agar, gelatin, citrus pectin, ovalbumin, bovin albumin,
ribonucleic acid (RNA), and deoxyribonucleic acid (DNA) deviated by less than
1°C from that of pure water if the solute concentrations ranged between 0.01 and
1%. These results imply that water molecules, although immobilized by their inter-
action with macromolecules, are not arranged in an ice-like manner which would
promote ice-germ formation, despite the fact that some macromolecules such as
DNA have atomic spacings which closely agree with those present in ice (Jacobson,
1953; Watson and Crick, 1953).

Hoffer (1961) and Pruppacher and Neiburger (1963) suggested that the surfaces
of insoluble particles of in aqueous solution drops may be ren-
dered ice nucleation active by physical adsorption of ions or by chemical reactions
between the salt ions and the particle. However, Hoffer showed that the freezing
temperature of drops which consisted of solutions of typical atmospheric salts such
as and and containing typical aerosol insolubles, such as illite,
kaolinite, montmorillonite, or halloysite, was not affected by the salt if its con-
centration was less than and was progressively lowered at larger
concentrations. These results were essentially confirmed by Reischel (1972) and
Reischel and Vali (1975), who found that salts present in the atmosphere affected
the freezing temperature of water drops, which contained leaf-derived IN, by less
than 1.5°C. A similar result was found for drops containing clay particles, except
when or were present. In the latter case, the freezing temper-
ature was shifted to warmer temperatures by up to 4°C at a salt concentration
of about but by less than 1°C if the concentration was less than

No explanation for the effects at larger concentrations was offered.
Junge (1952c) suggested that the freezing temperature of drops formed by con-

densation on mixed AP is affected by the presence of soluble material, particularly
during the early stages of condensation, i.e., prior to activation of the drop. This
fact is evident from Table 6.3, where the concentration of salt at the point of activa-
tion is listed for AP composed of NaCl and in various proportions. By compar-
ing the results given in this table with the concentration requirement for a negligible
effect on the freezing temperature of a solution drop, which is we
learn that mixed particles have to have masses larger than and have to
contain more than 35% (by mass) salt in order for the drop to grow large enough so
that the concentration of salt in solution is less than at the point of
activation of the drop. This requirement is not fulfilled for most atmospheric AP.
Thus, prior to and at their point of activation, most atmospheric solution drops will
consist of salt solutions too concentrated for ice nucleation. This implies, as Junge
(1952, 1952c) suggested, that most mixed AP must form drops which have sizes
beyond activation before the salt concentration is sufficiently low for a freezing or
contact nucleus to initiate freezing.
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9.2.6 DISCREPANCY BETWEEN THE CONCENTRATIONS OF IN AND THE

CONCENTRATION OF ICE PARTICLES

If one compares the concentrations of IN and ice particles at nearby locations in
clouds, a rather unexpected discovery may be made. One finds that in many clouds,
particularly at relatively warm temperatures, the concentration of ice particles may
exceed by many orders of magnitude the concentration of IN determined at the
cloud top temperature. Observations to this effect were made by Hobbs (1969)
and Hobbs et al. (1974b) over the Cascade Mts. (State of Washington), by Auer
et al. (1969) in stable cap clouds over Wyoming, by Isono (1965), Ono (1972), and
Magono and Lee (1973) over Japan, by Mossop (1970, 1971, 1972), Mossop et al.
(1967, 1968, 1970, 1972), Mossop and Ono (1969) in cumulus clouds over Australia
and Tasmania, and by Braham (1964) and Koenig (1963, 1965) in cumulus clouds
over Missouri.

These observations show that the ice enhancement ratio or enhancement factor
defined as the ratio of the ice particle concentration to the IN concentra-

tion determined at the cloud top temperature, can be as large as to at
temperatures near –5°C. With decreasing cloud top temperature, tends to de-
crease reaching unity at cloud top temperatures near –20°C. Figure 9.44 presents
some observations of for a variety of clouds sampled over Montana. We no-
tice that varies approximately with the cloud top temperature (in °C) as

if we disregard some of the extraordinary high values for
at temperatures between –12 and – 16°C. This ‘local’ maximum in re-

sults from the maximum in the ice particle concentration of Figure 2.44 for that
temperature region where delicate dendritic snow crystals are formed, and which
can easily fragment.

The efficiency with which secondary ice particles are produced by mechanical
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fracturing of fragile crystals, was studied by Hobbs (1969, 1972, 1974b), Hobbs and
Farber (1972), Jiusto and Weickmann (1973), Vardiman (1974) and Vali (1980).
These studies showed that the mechanical fracturing mechanism may, indeed, sig-
nificantly enhance the ice particle concentration in these clouds. This conclusion
was supported by the large number of ice crystal fragments collected in these clouds,
and by the observation that over 50% of all stellar ice crystals collected at the
ground had pieces (branches and portions of branches) missing. A similar obser-
vation was made on sector type crystals. Also, needles were often found fractured,
especially at their tips. Ice crystals with spatial extensions and radiating assem-
blages of various crystal types often had portions missing. Similar observations
were reported by Grant (1968) and by Vardiman and Grant (1972a,b) in clouds
over the Colorado Rockies.

Figure 9.44 suggests that, in addition to mechanical fracture of fragile ice crystals
formed at temperatures near –12 to –16°C, there must be other ice enhancing
mechanisms. Mossop (1970, 1971) and Mossop et al. (1970, 1972) in their review
articles, suggest that ice enhancement may also be the result of the fragmentation
of relatively large individual cloud drops during freezing, or ice splinter formation
during the riming of ice particles. We shall now discuss these in sequence.

Several observations have implied that the presence of large drops leads to ef-
ficient ice multiplication. Thus, observations by Ono (1972) in Japan, Mossop
(1970, 1972), Mossop et al. (1968, 1970, 1972) in Australia, and Koenig (1963)
and Braham (1964) in Missouri are consistent with the interpretation that drops
of diameter are required. These observations have been interpreted in
terms of an ice multiplication mechanism involving the shattering or partial frag-
mentation of relatively large, freezing cloud drops.

Although earlier studies by Mason and Maybank (1960) suggested copious splin-
ter formation during the freezing of supercooled drops, Dye and Hobbs (1966, 1968)
demonstrated that Mason and Maybank’s results were biased by the presence of
abnormally large concentrations of They showed that drops freezing at rest
in ordinary air and in thermal equilibrium with their surroundings did not shatter,
although the formation of cracks, spikes, and protuberances was frequent. This
result was essentially confirmed by Johnson and Hallett (1968) and Pena et al.
(1969).

However, Johnson and Hallett found that whether or not a freezing drop shat-
tered also depended crucially on whether or not the drop rotated during freezing,
thus allowing a more or less radially uniform dissipation of the latent heat. This
finding raised some questions as to the realism of drop splintering and shattering
experiments which are carried out with drops that freeze while being suspended in
a fixed orientation on fibers and other mounts. Under such conditions, the lower
or upstream side of a drop is colder than the upper or downstream side, since the
former is much more effectively ventilated (see Section 13.2.3). Consequently, one
would expect from the studies of Johnson and Hallett that the resulting asymmetric
freezing would tend to inhibit shattering. Pitter and Pruppacher (1973), however,
demonstrated by wind tunnel experiments that immediately after nucleation, a
freezing supercooled water drop, which is freely falling at its terminal velocity in
air, begins to tumble and spin as it falls along a helical path, thus providing for a
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nearly radially symmetric heat loss from the drop to the environment during the
initial stages of freezing. As expected from the findings of Johnson and Hallett,
Hobbs and Alkezweeney (1968) observed, during experiments in which drops were
allowed to fall freely in a long shaft, that a small but measurable fraction of drops
with diameters between 50 and shattered at temperatures between –20
and –32°C; similar results were obtained at –8°C. However, none shattered if the
drop diameter was less than Similarly, Kuhns (1968) found no shattering
for 10 to diameter drops of very pure water frozen between –36 and –38°C,
and Brownscombe and Goldsmith (1972) found no shattering for drops of 20 to

diameter frozen at –10 to –15°C. On the other hand, Brownscombe and
Thorndyke (1968) observed that a small fraction of 40 to diameter drops
nucleated internally at temperatures between –5 and –15°C, shattered with 2
to 3 ice splinters being produced per drop. Similarly, a small fraction of 120 to

diameter drops shattered when nucleated at –5 to –15° C by contact with
ice crystals.

From their observations, Brownscombe and Thorndyke deduced that the ice
particle enhancement factor (denned by Mossop et al. (1970) as the ratio of ice
particles produced to drops frozen) was finite but rather small, ranging between
values of 1.12 to 1.30. Only on one occasion did they find an enhancement factor
of 2.45. Similarly, Bader et al. (1974) observed for single free falling drops of
30 to in diameter, an enhancement factor < 10. Takahashi and Yamashita
(1969, 1970) deduced an enhancement factor of 1.74 near –15°C for drops of 74 to

in diameter. Both at colder and warmer temperatures, the enhancement
factor was less. Pruppacher and Schlamp (1975) carried out wind tunnel studies
with drops of in diameter freely suspended in the air stream and nucleated
by contact or freezing nuclei. They found an enhancement factor of 1.22 to 1.72
at temperatures between –7 and –23°C, the maximum enhancement occurring at
temperatures between –11 and –15°C.

These observations suggest that shattering and splintering of freezing drops
freely falling in the atmosphere results in an ice multiplication factor which at
times surpasses a value of 2 but rarely, if ever, exceeds a value of 10. Further
evidence that freezing drops at times do fragment in clouds has been provided
by Knight and Knight (1974), who deduced from a photographic study of frozen
drops preserved as hailstone embryos, that drop break-up during freezing is a fairly
common occurrence.

A third promising mechanism to provide ice particle enhancement involves the
riming of ice particles. Experiments by Latham and Mason (1961a) suggested that
copious splintering accompanies the impaction of supercooled drops on an ice sur-
face. However, Hobbs and Burrows (1966), Aufdermauer and Johnson (1972), and
Brownscombe and Goldsmith (1972) failed to substantiate these findings. Later
studies by Hallett and Mossop (1974), Mossop and Hallett (1974), and Mossop
(1976) appear to have resolved this quandary by demonstrating that the process
depends rather sensitively on several factors, such as the drop size distribution, the
liquid water content, the velocity of the drops impacting on a riming ice particle,
the air temperature, and the surface temperature of the riming ice particle. They
made observations on a cloud characterized by a liquid water content of approxi-
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mately with drop diameters from 5 to and total drop concentration
of roughly and found that ice splinter formation during riming was sig-
nificant only for air temperatures between –3 and –8°C, drop diameters larger
than and drop impact velocities between 1.4 and A pronounced
maximum for splinter formation was found at a cloud air temperature of –5°C
and a drop impact velocity of For these conditions, the secondary
ice particles appear as small columnar crystals. One may argue that after some
growth by vapor deposition, these small crystals would then be scavenged by large
cloud drops, which in turn would freeze and subsequently act as riming centers to
produce new ice splinters, and so on.

To further define the conditions for secondary ice particle production, Mossop
(1978) showed that the production rate of ice splinters is also dependent on the
presence of drops of diameter less than which cover a riming ice particle.
Additional information regarding the Hallet-Mossop mechanism came from Mossop
(1985a,b,c) and Heymsfield and Mossop (1984), who demonstrated that what mat-
ters for the splinter formation mechanism is the surface temperature of the riming
ice particle, rather than the air temperature. For a maximum ice production rate,
the surface temperature of the riming ice particle needs to be near – 5°C. Of course,
this temperature, in turn, is controlled by combined effects of the temperature of
the air, the liquid water content of the cloud and the relative velocity of the cloud
drops with respect to the riming ice particle, since the latter two parameters de-
termine the rate of release of latent heat at the surface of the riming ice particle.
Under optimal conditions, 1 secondary ice splinter is produced per 100 to 250
drops of diameter larger than impacting on the riming ice surface (Mossop,
1985a,b,c, 1976; Hallett and Mossop, 1974; Mossop and Hallett, 1974). Additional
discussion on the ice multiplication mechanism is given in Section 16.1.6.

The sequence of events during ice splinter production by a riming ice particle
has been recorded on motion picture film by Choularton et al. (1980) and Griggs
and Choularton (1983, 1986). These films show that if a supercooled drop lands
on an already frozen drop located on the surface of the riming ice particle (cov-
ered by drops of diameter less than at a temperature of –6°C, it freezes
symmetrically as the ice front initiated at the small point of contact grows rapidly
around the drop. When subsequently the supercooled water in the drop’s interior
also freezes, the ice shell breaks and an ice spike is produced which easily fractures.
Although at –8°C two growth fronts are initiated at the point of contact, ice shell
formation followed by fracturing of the newly formed spikes still prevails. However,
at –10°C, ice growth inward dominates ice growth around the drops so that ice
shell formation and subsequent production of fragile spikes is prevented. On the
other hand, at a temperature of –3°C, the impinging drop does not immediately
freeze on contact with the riming ice particle, but rather spreads over the surface
before it freezes. Also under these conditions, no ice shell formation is possible.

In order to interpret enhanced ice particle formation in clouds in terms of the
Hallett-Mossop mechanism, it is necessary to check whether the specific conditions
for this mechanism are met in these clouds. This was indeed the case for the
convective clouds in Australia studied by Mossop (1970, 1972) and Mossop et al.
(1968, 1970, 1972), for clouds in Japan studied by Ono (1971), clouds in Missouri
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studied by Koenig (1963) and Braham (1964), clouds in Florida studied by Hallett
et al. (1978) and Lamb et al. (1981), clouds associated with Atlantic hurricanes
studied by Black and Hallett (1986), clouds in Texas studied by Jurica and Frey
(1989), and for clouds in Oklahoma studied by Heymsfield and Hiemfelt (1984). On
the other hand, no correlation between the ice particle content of the cloud and the
Hallett-Mossop mechanism was found for the clouds studied by Paluch and Breed
(1984), Vali (1992), and Rauber (1987a,b), while Hobbs and Rangno (1985) found
that in the clouds they studied, the conditions for the Hallett-Mossop mechanism
was only fulfilled in 75% of the cases. Gagin (1971) and Le Compte and Grant
(1976) observed no ice enhancement in the clouds they studied, indicating that the
ice particle concentration corresponded to the concentration of ice nuclei observed.
Similarly, little or no ice multiplication was found in mid-level or low-level layer
clouds in Australia (Mossop, 1972; Mossop et al., 1972), nor in stratus clouds
over Alaska (Jayaweera, 1972a). Negligible ice multiplication was also reported by
Gagin (1971) in winter cumuli over Israel, the maximum enhancement ratio varying
at most between 1 and 10.

We note from our discussion that none of the three ice enhancement mechanisms
mentioned provides a unique explanation for the ice particle concentration found
in clouds. In fact, it appears that all three mechanisms may contribute to the final
ice particle concentration in clouds. In order to show this, we may follow Rangno
and Hobbs (1988, 1991), and Hobbs and Rangno (1985,1990) who provided an
inventory of the most significant stages during the evolution of cloud glaciation
(valid at least for maritime type clouds). Accordingly, ice formation begins near the
cloud top where even at an early stage, drizzle drops of diameter larger than
appear at concentrations of a few per liter as a result of collision and coalescence.
In the next stage, the drizzle drops freeze and begin to rime by collecting cloud
drops of diameters larger than This stage is followed by the appearance
of small largely vapor grown ice crystals, in concentrations of 10 to
These crystals, in turn, nucleate the still unfrozen drizzle drops, turning them into
rimers followed by more small crystals, and so on. Observations show that this
ice enhancement may proceed extremely fast, such that within 10 minutes or so,
the ice particle concentration at cloud top temperatures as warm as –8°C may
increase from a few per liter to several hundred per liter. Rather than correlating
with the cloud top temperature, the maximum ice particle concentration appears
generally to be linked to the size of the drops in the clouds, following the relation

with and for cumuliform clouds, and
for stratiform clouds, and where is a threshold diameter defined such that
drops of appear in a total concentration of Superimposed on
this general trend for the maximum ice particle concentration is a temperature
dependent component at temperatures between –12 to –16°C, the region of the
fragile dendrites. Thus, we see that the observed characteristics for cloud glaciation
contain some of the features of all three ice enhancement mechanisms mentioned:
large drops must appear and freeze, the frozen drops must rime by colliding with
drops of a certain minimum size, and fragile dendritic snow crystals must appear.
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One explanation for the observed discrepancy between IN and ice particles in
clouds may certainly hinge on some deficiencies in counting the number of ice
forming nuclei. In most previous IN measurements, the strong dependence of
on ice supersaturation has not been considered sufficiently, and neither has the time
lag for ice germs to grow to ice crystals. Also, the fact that aerosol particles may
act as ice forming nuclei via the contact freezing mode has not yet been considered
sufficiently in routine IN measurements. Given adequate instrumentation, it may
be that the discrepancy between the IN and ice particle concentrations can be
considerably reduced or even eliminated, and along with it the need for finding an
adequate ice multiplication mechanism.

We shall conclude this section by saying a word on ice nucleation at the cir-
rus cloud level. We have already pointed out in Section 9.2.1 that only conflicting
evidence is available in the literature regarding the vertical variation of IN in the at-
mosphere. On the other hand, field observations show that the concentration of ice
crystals and therefore ice nuclei is rather low in the upper troposphere (Heymsfield,
1967; Rangno and Hobbs, 1986), and that liquid, supercooled drops are encoun-
tered at temperatures even as low as – 40.7°C (see Section 2.2). This prompted
Heymsfield and Miloshewich (1993), Heymsfield and Sabin (1989) and Sassen and
Dodd (1988) to conclude that homogeneous ice nucleation of supercooled drops
are responsible for the occurrence of cirrus ice, a result consistent with the the-
ory for homogeneous ice formation in drops formulated by Pruppacher (1995) and
Eadie (1971). In contrast, Rogers (1994) and deMott et al. (1994) argue that even
small numbers of heterogeneously nucleated ice crystals would lower the maximum
ice crystals concentration as well as the maximum humidity reached. For such
conditions, homogeneous ice nucleation would become irrelevant for the formation
of cirrus clouds where the vertical motions are typically less than
Clearly then, more information on the quality and number of ice forming nuclei at
the cirrus level is needed.
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HYDRODYNAMICS OF SINGLE CLOUD AND PRECIPITATION
PARTICLES

Once formed, cloud particles immediately begin to move under the action of gravity
and frictional forces, the latter arising from their motion relative to the air. Some
fraction of these particles will undergo complex hydrodynamic interactions causing
some to collide. The particles will experience growth if the collision results in a
permanent union. Generally in clouds, the time during which two colliding particles
interact to form a single particle is much shorter than the time during which they
fall in isolation. We therefore will address ourselves in this chapter to the basic
mode of isolated motion of cloud particles. The collison process will be discussed in
Chapter 14. For simplicity, we also will defer to Chapter 18 the effects of electrical
forces.

As we will see, the smallest of the cloud drops and ice crystals fall slowly, with
speeds typically less than so that very gentle updrafts suffice to keep
them suspended. On the other hand, large raindrops and hailstones have fall
speeds of and more, and generally cannot be supported by the prevailing
updrafts.

In applying hydrodynamic theory to the motion of isolated cloud and precipita-
tivn particles, we will first restrict our attention to droplets small enough to be re-
garded as rigid impermeable spheres. Later, we will consider the phenomena of drop
deformation, internal circulation, vibration, and breakup. The complicated shapes
of ice particles makes a quantitative description of their hydrodynamic behavior
extremely difficult. However, it turns out that the motions of simple plate-like ice
crystals may be understood reasonably well through the expedience of studying
flows past disks and thin oblate spheroids. Similarly, one may use circular cylin-
ders and prolate spheroids as idealizations of simple columnar snow crystals. A
discussion of the motion of more complex ice particles will follow at the end of this
chapter.

10.1 Basic Governing Equations

The principle of mass conservation for a fluid in motion is shown in Appendix A-
10.1 to lead to the continuity equation:

where    and    are the fluid density, and velocity, respectively. It is well-known that
flow past an object may be regarded as incompressible                 whenever the

361
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following conditions are met (see, for example, Chapter 1 of Rosenhead (1963)): (1)
the characteristic flow speed U satisfies where is the speed of sound in the
fluid in air at 15°C and 1 atm.); (2) the dominant flow oscillation
frequency satisfies where L is the characteristic length scale for changes
in (in our context, L is the order of the size of the falling object); (3)
where is the magnitude of the gravitational acceleration (this is equivalent to the
condition that the static pressure difference between two points separated in the
vertical by length L must be very small compared to the absolute pressure; i.e., L
is a small fraction of the atmospheric scale height (4) the fractional
temperature difference between obstacle and stream is small, i.e.,
where T and are the characteristic temperature of the obstacle and streaming
fluid, respectively. As these inequalities hold for all cloud particle motions, we will
henceforth assume the flows under consideration are incompressible so that from
(10-1).

For ordinary (Newtonian) fluids, of which air and water are examples, the mo-
mentum equation for incompessible flow in the presence of gravity acquires the
form of (A.10-13):

where is the local gravitational acceleration, is the fluid pressure, and is
the local kinematic viscosity, which like is assumed constant over distances large
compared to L. Equation (10-3) is known as the Navier-Stokes equation.

This system of equations must be supplemented with suitable boundary con-
ditions. The most important of these recognizes that real fluids adhere to any
material surface; this is known as the ‘non-slip’ boundary conditions. Thus, at any
solid boundary surface (S), the fluid velocity must satisfy the condition

where is the local surface velocity. If the boundary is a surface of separation
between two immiscible fluids, then in addition to (10-4), we must require that the
stresses the fluids exert on each other at the boundary are equal and opposite; at
a free surface, for example, the stress must be zero.

If the fluid is at rest, (10-3) reduces to the equation for the static pressure,

assuming constant and and letting denote the height above the Earth’s
surface. The total static pressure force on a particle of volume V and surface S
may therefore be expressed as
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where is the unit outward normal to dS and is the unit vector in the
This result is just Archimedes’ principle, which states that an object immersed in
a fluid experiences a buoyancy force equal to the weight of the fluid it displaces.

Hence, we have an opportunity for another small simplification: We may here-
after ignore the gravity term in (10-3), as its only effect on the motion of the
particle in the flow is to provide the simple buoyancy force given by (10-6). This
may more conveniently be introduced separately later when considering the equa-
tion of motion of the falling cloud particle. (In any case, for practical purposes, the
buoyancy force is negligible in comparison to the gravitational force on the particle,
since where is the density of air and is the bulk density of the
particle.) Formally, this simplification amounts to rewriting                   in (10-3)
as where The pressure profile obtained in this manner is
called the dynamic pressure, since the static distribution due to gravity has been
subtracted out. Dropping the prime for brevity (10-3) becomes

Another simplification is possible for most of the applications considered in the
present chapter. Suppose a particle of simple shape is released from rest in the
atmosphere. If it is sufficiently small and therefore falls slowly enough, the fluid
forces resisting its motion will eventually equilibrate with gravity, and a steady fall
at some terminal velocity will result. During its acceleration to terminal velocity,
the flow field past the particle will continuously change with time in accord with
(10-7). At terminal velocity, the flow past such a particle will be steady so that
the term in (10-7) may be dropped, if we analyze the motion from the point
of view of the particle past which the flow streams. As a result, the flow field is
described by the steady state Navier-Stokes equation of motion:

The situation is quite different for larger particles of considerable fall speed and
often quite irregular shape. Even at terminal velocity, such particles exhibit an
intrinsically unsteady flow field which has no symmetry. To describe such flow
fields, (10-7) has to be solved in three dimensions. In response to such unsteady
flow, particles carry out a variety of secondary motions in addition to their main
vertical fall mode. The oscillatory nature of these secondary motions also induces
some unsteadiness into the vertical component of their fall velocity. Fortunately,
the frequency of such oscillatory motions remains nearly constant in time, and
is sufficiently high so that, if released from rest, they will eventually approach
a constant, time-mean, terminal velocity. Since cloud and precipitation particles
grow slowly compared to the relaxation time to achieve terminal velocity at a
given size, they may generally be assumed to remain falling at terminal velocity
throughout their life cycle.

We must emphasize at this point that the foregoing discussion applies to parti-
cles falling in calm air. In a turbulent atmosphere, the updraft speeds may vary
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rapidly in time and space. Particles falling in such an evironment will experience
fluctuating forces that may noticeably affect their fall behavior as well as their
shape. The effects of such motions will be briefly touched upon in Sections 10.3.3
and 10.3.4 and in Chapters 14 and 15.

10.2 Flow Past a Rigid Sphere

10.2.1 CLASSIFICATION OF FLOWS ACCORDING TO REYNOLDS NUMBER

A glance at (10-8) warns of great difficulties, as the convective acceleration term
(also called the inertia term) is nonlinear. As a matter of fact, complete

solutions to (10-2) and (10-8) have been found for only a very few special situations,
among which the case of flow past a sphere, of great importance to cloud physics,
is unfortunately not included. Nevertheless, useful approximate analytical and
numerical solutions are available for a wide range of conditions.

For the problem of a falling sphere, the relative importance of           and the linear
viscous acceleration term may be assessed by simple dimensional arguments.
Physically, the flow is characterized by the size of the sphere, for which we may
take either the radius or diameter as a natural measure, and by the streaming
velocity (or terminal velocity) Therefore, we might expect to be of the
order and to be of the order This leads to the estimate

where R is the Reynolds number. (An alternative definition,

also often appears in the literature and in this book.) Equation (10-9) implies that
may be omitted from (10-8) if

A more precise way to come to almost the same conclusion is to introduce the
dimensionless variables and Then, we have

where is the dimensionless gradient operator. The factor multiplying R
in (10-11) is a function only of and must be of order unity if (10-9) is to be
consistent with (10-11). As we shall see below in Section 10.2.2.3, this is in fact
not always the case. Nevertheless, it is generally correct to say that the inertia
term becomes less important with decreasing R.

Many cloud particles indeed have Reynolds numbers much smaller than unity.
For example, a cloud drop of has a fall velocity of about at
T = 20° C and                       Since under these conditions the kinematic viscosity
for air is                                   we find                  Similarly, for a drop of
we have             To a good approximation the flow field, drag, and terminal
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velocities for such drops are described by (10-7) without the term. The
resulting equation governs what is known as Stokes flow.

For larger drops, things are not as simple. Thus, a drop of has
while for For a raindrop of a few millimeter in radius,

As increases, the flow becomes more complicated, reflecting the greater
contribution of the nonlinear term. An additional complication is the change of
shape with size for the larger drops, which by itself influences the flow pattern.
Also, the larger the drop, the greater the tendency for development of a complex
internal circulation, which contributes to its overall behavior.

In order not to unduly complicate matters at the outset, we shall restrict our-
selves in this section to a discussion of the flows past drops small enough to be
regarded as rigid spheres. As we shall see in Section 10.3.2, this is a good assump-
tion for radii less than about corresponding to

Before presenting any detailed results for the flow past a sphere, it is worthwhile
to consider briefly the qualitative features to be expected at various Reynolds
numbers. If we use a coordinate system in which the sphere is at rest, the no-slip
boundary condition requires that the fluid velocity must decrease to zero at the
surface. This causes the surface to act effectively as a source of fluid shearing
motion and angular momentum. The latter may be measured by the vorticity

(it is easy to show that where is the local fluid angular
velocity). When and fluid inertia is negligible, the flow is characterized by
the diffusion of vorticity away from the sphere. This is easily seen by taking the
curl of (10-8) without the term, and recalling that the result
is which is the steady state diffusion equation for vorticity. Such
flow is relatively simple and has ‘fore-aft’ symmetry, i.e., symmetry with respect
to the plane separating the sphere into upstream and downstream hemispheres.

As R increases to order unity (corresponding to increasing for a given
sphere), there is a tendency for part of the vorticity generated at the sphere surface
to be convected downstream. This leads to an asymmetry in the flow, with most
of the vorticity confined to the rear of the sphere in a roughly paraboidal region,
known as the wake, with its vertex in the sphere and with symmetry about the axis
of motion. If increases to O(10), the wake becomes narrower and the vorticity
within it more intense. At about                                , a region of circulating fluid
forms behind the sphere. This ‘standing eddy’ grows in size and strength with
further increase in Incipient wake instability occurs near
for larger the flow thus becomes intrinsically unsteady. For
the eddy oscillates while lumps of circulating fluid are torn away from it and travel
downstream. This unsteadiness intensifies rapidly as the shedding frequency of
eddies from the rear of the sphere increases with a further increase in Reynolds
number (see Section 10.2.2.5).

Outside the wake there is little vorticity caused by the sphere, and since we
assumed none upstream to begin with (the flow is assumed unbounded and undis-
turbed except for the sphere), the flow outside the wake tends to be irrotational

and increasingly so with increasing Viscosity has no effect where the
flow is irrotational and nondivergent, since then
Therefore, such flow behaves like frictionless or inviscid irrotational flow, which
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is called potential flow. This type of flow is especially simple since, as the name
implies, its velocity field may be expressed in terms of the gradient of a potential:

implies where since
Potential flow prevails almost everywhere when and reflects the domi-

nance of the fluid inertia. It cannot exist close to the sphere however, since there
the no-slip condition creates large shears and viscous forces of the same magnitude
or larger than the inertia forces. Neither can it exist in the vorticity-carrying wake.
The thickness of the fluid layer adjacent to the sphere over which the transition
from viscosity-dominated to inertia-dominated flow takes place, called the boundary
layer, can be shown to vary as           (see Section 10.2.2.3). Outside the boundary
layer and wake, the essentially potential flow possesses streamlines very much like
those of low Reynolds number flow.

With this qualitative picture of the flow regimes as a background, we shall now
look in more detail at the problem of flow past a sphere.

10.2.2 STEADY, AXISYMMETRIC FLOW

The problem of a sphere falling in the direction is the same as that of flow
streaming in the direction past a fixed sphere. The obvious advantage of the
latter point of view, which we shall adopt here, is that the flow is steady relative
to the sphere for Reynolds numbers small enough to preclude eddy shedding. In
this case, the flow will also possess axial symmetry about the meaning there
is no azimuthal component of velocity, and that the motion is the same in every
meridian plane (i.e., every plane containing the and defined by
where is the azimuthal angle).

10.2.2.1 The Stream Function

As shown in Appendix A-10.2.2, the constraint of incompressibility on the two
components of the velocity field makes it possible to describe the flow in terms of
the derivatives of a single scalar function, called the stream function.

In spherical coordinates, with the polar angle measured from the direction,
the velocity field                        is given in terms of     by (A.10-17):

Similarly, according to (A.10-22) and (A.10-26), the vorticity may be expressed as

where and
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Finally, the steady state Navier-Stokes equation (10-8), is given in terms of the
stream function by (A.10-25)

where The boundary condition that the velocity must vanish on
the sphere surface leads from (10-12) to If we choose to
label the center streamline in the flow by the surface boundary conditions
are thus

Far from the sphere there is a uniform flow given by hence, for we
have

Since we want for an equivalent form for the boundary condition ‘at
infinity’ is

10.2.2.2 The Drag Problem

The components of the hydrodynamic force on the sphere are given by

where the quantities denote the components of the stress tensor (see Ap-
pendix A-10.1), and is the component of the unit outward normal vector to
the surface element dS. By symmetry, there is only a which is
generally referred to as the drag D.

For the calculation of D , it is appropriate to express in spherical coordinates.
By the symmetry of the problem only and are involved, as follows:

Unfortunately, the development of the components of in various coordinate sys-
tems is quite tedious, and so we will merely list the needed expressions for and

In these expressions, is the dynamic viscosity. (For the interested reader, we
mention what is probably the most elementary, though somewhat impractical, way
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to obtain such results, which is to make direct use of the fact that the system
is locally orthogonal. Consequently, we use the fundamental rule for transforming

between two orthogonal systems S and S', i.e., where is
the direction cosine between the axis of S' and the axis of S, and we
have used the convention of summation over a double index. Thus, for example,

which may be reduced directly to (10-21) on substituting the
Cartesian form (A.10-10) for A good source for more elegant and powerful
methods is Aris (1962).)

On substituting (10-21) into (10-20), and simplifying through the use of the
conditions and we obtain

where denoting the first term on the right side of (10-22), is called the form or
pressure drag, and the second term, is called the skin-friction drag.

The dependence of D on and may be elucidated by writing the
equations of motion in dimensionless form. Thus, on introducing

and into (10-2) and (10-8), we obtain

The corresponding boundary conditions in dimensionless form are

It is apparent that the solution to (10-24) and (10-25) must be functions only of
and  The same is therefore true of the dimensionless stress

given by

In consequence, we see the drag must be of the form

where is a function of the Reynolds number only.
This characteristic dependence of the drag on the Reynolds number is tradition-

ally expressed in terms of the drag coefficient defined as

where   is the cross-sectional area exhibited by the body normal to the flow.
Thus, is a function of only, and the drag problem for any          and is
solved once      is determined.



HYDRODYNAMICS OF SINGLE CLOUD AND PRECIPITATION PARTICLES 369

For a sphere we may combine (10-22) and (10-23) with (10-28)
to obtain expressions for the form drag coefficient, and the skin friction
drag coefficient, For this purpose, it is convenient to introduce another
dimensionless pressure parameter, namely,

and also the dimensionless vorticity magnitude

The constant in (10-29) is the pressure far from the sphere. In terms of these
quantities, we find                             where

and

Equations (10-28), (10-31), and (10-32) demonstrate that the drag on a sphere
can be found from a knowledge of the pressure and vorticity distributions on its
surface. Furthermore, the surface pressure may be expressed in terms of the vor-
ticity through the straightforward but lengthy process of integrating in (10-8)
along the center streamline, recognizing that The result is

where

In this manner, the drag coefficients can be determined solely from the surface
vorticity distributions.

10.2.2.3 Analytical Solutions

1. Stokes flow. As we have said, Stokes flow is governed by (10-2) and (10-8)
without the inertia term. In the stream function formulation, this term appears on
the left side of (10-15) (note it is nonlinear in and so the governing form of the
Stokes stream function is
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The boundary condition (10-18) motivates a trial solution of the form
This proves to be successful, and reduces (10-35) to an ordinary lin-

ear differential equation in (for a detailed treatment of this and many other low
Reynolds number problems, see Happel and Brenner, 1965). This can be integrated
easily, and the constants of integration can be determined from (10-16) and (10-18).
The result is

which, upon substitution into (10-13), yields

for the vorticity. Similarly, the pressure may be recovered from (A.10-27):

Therefore, from (10-31) and (10-32), the drag coefficients are

Hence, from (10-28), the drag on a sphere in Stokes flow is (Stokes, 1851)

2. Oseen Flow. The Stokes approximation assumes is negligible every-
where. One way to test this assumption is to form the ratio given in (10-11), using
the Stokes velocity field for The result is

This states that at sufficiently large distances the assumption of negli-
gible inertia breaks down, no matter how small is. Therefore, the Stokes flow field
is inaccurate at large distances. This ensures the failure of iteration attempts to
improve upon Stokes flow past objects by using the Stokes solution to approximate
previously neglected inertia terms in the equation of motion. (This predicament
was puzzling to Whitehead (1889) and others who first tried such a procedure, and
so became referred to as ‘Whitehead’s Paradox’.)

A way around this difficulty was proposed by Oseen (1910, 1927), who pointed
out that a good approximation to at large distances is where
is the free stream velocity. He therefore suggested the following linear governing
equations for the far field velocity distribution:
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Oseen solved (10-42) for flow past a sphere subject to the conditions
and He expressed his solution in terms of potential functions
for and and obtained from it a new expression for the drag including a
term contributed by the fluid inertia:

The corresponding drag coefficient is

It is not obvious whether these results constitute any real improvement over
(10-39), and (10-40), since misrepresents the convective acceleration close
to the sphere. However, it has been proved that in fact the Oseen equations, (10-
42a,b), do give the correct drag on bodies of arbitrary shape, to first order in
(Brenner and Cox, 1962). The reason is that the first order contribution of fluid
inertia to the drag depends on the inertia forces far from the body, where the Oseen
equations provide a valid representation.

A more complete solution of the Oseen equations was obtained by Goldstein
(1929) in terms of a series expansion. The drag coefficient obtained by him is

The last term is that corrected by Shanks (1955). Unfortunately, there are no
theoretical reasons for regarding the extra terms supplied by Goldstein as providing
an improved physical description. As we shall see in Section 10.2.2.5, however,
comparison with experiment indicates (10-45) is slightly better than (10-44).

The stream function for Oseen flow past a sphere, valid to is

It can be seen that as A plot of streamlines,
from (10-46) reveals the presence of a wake for This is to be expected,
since Oseen flow is characterized by both diffusive and convective transport of
vorticity, as is evident from (10-42).

A simple argument shows that the wake has a paraboidal shape, i.e., its width
varies as where is the distance downstream of the sphere (the argument

holds for any finite obstacle shape). Thus, an element of fluid containing vorticity
generated at the sphere surface is convected downstream in the wake a distance

in time If we imagine moving along with the element at the speed
its vorticity will be seen to undergo a local transverse spreading by vis-

cous diffusion; from our point of view, this will be characterized by the equation
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The boundary of this ‘diffusive wave’ must correspond approxi-
mately to the local boundary of the wake. Therefore, also in time the vorticity
will change significantly over the distance where Hence, we find

It is interesting to note also from (10-46) that on the sphere, along the
center streamline where and along the curve

which may be interpreted as describing the boundary of a standing eddy. According
to (10-47), the eddy first appears at the rear of the sphere for

which correlates somewhat with observations giving Even
this limited success appears rather fortuitous, since one would expect (10-46) to be
capable of meaningful predictions only for Reynolds numbers less than unity.

More recent research has confirmed the existence of Oseen flow eddies behind
spheres. Thus, a numerical solution of the Oseen equations by Bourot (1969) for

has shown that a standing eddy develops at and grows
steadily with increasing      (This is in contrast to an earlier and less accurate
numerical solution by Pearcey and McHugh (1955), who found no evidence of an
eddy for

3. Carrier’s Modification. Carrier (1953) proposed a simple semi-empirical
modification of Oseen flow past obstacles. He argued that since the Stokes theory
neglects inertia altogether, while the Oseen theory overestimates it, at least close
to the body, perhaps a better representation might be found by some sort of com-
promise between the two approaches. Carrier suggested the inertial term in the
Navier-Stokes equation be replaced by where is a number between 0
and 1. Thus, the Stokes and Oseen approximations are given by and
respectively. According to the idea that either of the classical approximations may
be interpreted as replacing the factor in by a weighted average, Carrier con-
jectured a better weighting might be found. From an analytical study of flow past
a flat plate, he proposed (According to Murray (1967b), this value may
be understood as a consequence of forcing the integral of the difference between
the exact and approximate forms of the convective terms to vanish over the whole
field of flow; i.e., for a plate in the plane           parallel to oncoming flow        it
happens that where
Carrier then found that this same value, if used to describe the drag on spheres
and cylinders, produced fair agreement with experimental data for This
he took to imply that the theory describes general properties of the flow and is not
strongly dependent on the geometry of the obstacles.

It is a simple matter to show that for a sphere the Carrier drag coefficient is
related to Oseen’s drag by

4. Matched Asymptotic Expansions. As we have seen, the problem of obtaining
an expansion of the flow at small is complicated by the existence of two flow
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regimes: an inner regime where viscosity dominates; and an outer one where iner-
tia forces are comparable to or larger than viscous forces. This difficulty has been
surmounted, at least in principle, by the development of the method of matched
asymptotic expansions (see, for example, Proudman and Pearson, 1957, and Van
Dyke, 1964). The method employs two expansions in one suitable for each
regime. The no-slip boundary condition is used with the inner ‘Stokes-type’ ex-
pansion, and the uniform stream condition with the outer ‘Oseen-type’ expansion.
Since the two expansions represent different forms of the same solution function,
it is possible to complete the solution by matching the inner and outer expansions,
term by term, in an intermediate region of common validity.

The first two terms of the inner expansion produce the following stream function
in the vicinity of the sphere, valid to (Proudman and Pearson, 1957):

Like this stream function predicts a standing eddy for sufficiently large
In the present case, the boundary of the eddy is described by

so that an eddy is predicted to form when in remarkably good agreement
with the observed value of

The next approximation to the stream function includes a term proportional to

Unlike (10-49), this more accurate stream function (at least for does
not predict a standing eddy. It thus remains unclear why the prediction made by
(10-49) should agree so well with experiment. It may simply be a fortuitous result,
or the result of an effective cancellation of higher-order terms in for

The stream function reproduces the first-order Oseen drag, while from
Proudman and Pearson obtained the new result

Finally, a further extension of the Proudman and Pearson analysis by Chester and
Breach (1969) led to the inclusion of two more terms:
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where                         is Euler’s constant. The fourth term in (10-53) has been veri-
fied by Ockendon and Evans (1972), who used the method of matched asymptotic
expansions in conjunction with Fourier transforms of the solution expansions.

5. Potential Flow and Boundary Layer Theory. There are no known analytical
solutions capable of an accurate overall description of the flow past a sphere for
intermediate or large Reynolds numbers, i.e., for However, as we have
pointed out already in Section 10.2 .1, for the flow is such that viscous
effects and vorticity are noticeable only within a thin boundary layer near the sur-
face and in a downstream wake, and that elsewhere the flow is essentially potential.
Fortunately, it turns out the flow in the boundary layer is amenable to analysis, and
so it is possible to obtain an approximate, though somewhat incomplete, account
of high Reynolds number flow by piecing together the properties of potential and
boundary layer flow.

Let us first consider potential flow. This is described either in terms of a potential

or in terms of a streamfunction by

from (A.10-18) and (A.10-22). To solve for potential flow past a sphere, we must
also take into account its frictionless character and, hence, abandon the no-slip
boundary condition (10-4), replacing it instead by the weaker condition that at the
surface, (S) the flow must not penetrate the surface:

As in the case of Stokes flow, the condition (10-18) of streaming flow at infinity
suggests a trial solution of the form Along with (10-55) and
(10-56), this leads directly to the solution

and

Since the convective acceleration term for potential flow can be expressed as
the Navier-Stokes equation

(10-8) reduces to or

viz.,
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which is one version of Bernoulli’s law. From (10-58) and (10-59), we find that the
pressure distribution around a sphere in potential flow may be expressed, in terms
of the dimensionless form of (10-29), as

Now let us turn to an elementary discussion of the properties of boundary layer
flow, of which the basic theory is due to Prandtl (1904). Consider a small region of
the flow near the sphere surface where the boundary layer thickness is assumed to
be well defined and much smaller than the sphere radius Let denote distance
along the drop surface in the direction of the local flow, and denote distance
normal to the surface. Then, using simple scaling arguments as in Section 10.2.1,
we expect that in the region considered, will experience changes of order over
a length in the direction, and over a length in the direction. Hence, from
the condition , we immediately conclude that, in the boundary layer,

By the same logic, it is also obvious that and
in the boundary layer. Moreover, since in this region the viscous and inertial forces
are of comparable magnitude, we may set these two estimates equal to obtain

or

i.e., the boundary layer thickness decreases with increasing Reynolds number as
From (10-61) and (10-62), we also find

Comparison of the and components of the equations of motion in the bound-
ary layer shows that the respective terms involving and, hence, generally the
pressure terms as well, differ by a factor of order so that

Basically, this says that the pressure gradient normal to the boundary layer may be
neglected because of its relativel small width, and that therefore the pressure in the
layer is well approximated by the potential pressure profile just outside the layer.
Then, from (10-59), we may also write i.e., the pressure
gradient in the layer may be approximated directly in terms of the potential velocity
profile just outside the layer.

We are now in a position to write down the equations of motion for the assumed
steady and laminar (i.e., non-turbulent) boundary layer flow. In view of our scale
analysis, we see that we need be concerned only with the of (10-
8), and that in this equation only the term in the Laplacian may be
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neglected. Hence, if we assume for the moment that our and coordinates are
strictly Cartesian, we obtain the following governing equations:

and

These equations are strictly valid only for rectilinear two-dimensional flow,but they
turn out also to be very accurate for describing transverse flow past an infinite
cylinder, so long as the boundary layer thickness is very small compared to the
cylinder radius. However, it happens that the geometry of axisymmetric flow,
of interest to us here, is a little more complicated: By taking into account the
curvature of our choice of coordinates for the sphere, we can show (e.g., Pai,
1956) that (10-65) is unaltered but that the continuity equation takes on the new
form

where is the distance from the flow symmetry axis to the sphere surface.
Let us now introduce the dimensionless variables

and Then, the boundary layer
equations for a sphere acquire the form

and

Since neither these equations nor the boundary conditions which must be used with
them at as involve the Reynolds number, we
see that flows for different are related by a simple similarity transformation; i.e.,
when changes, the flow pattern changes only by having distances and velocities
in the direction normal to the surface vary as

From our previous discussion of the standing eddies and wakes which exist be-
hind spheres for even moderate Reynolds numbers, the question arises whether or
not a well-defined boundary layer can exist over the entire sphere surface. In fact,
it cannot; rather, at some location from the front of the sphere, the boundary layer
detaches itself from the surface and flows into the main stream, carrying its load
of vorticity with it. The occurrence of this phenomenon of separation can be un-
derstood qualitatively in terms of the potential pressure profile which is impressed
on the boundary layer. From (10-60), we see that the potential pressure achieves
a maximum at the front and rear of the sphere, and a minimum at the equator.
Hence, over the back hemisphere there is a pressure force which acts to retard the
flow. Of course, this adverse pressure gradient cannot reverse the free stream, but
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it is sufficient to reverse the relatively weak flow in the boundary layer and, thus,
cause separation.

When separation occurs, is evidently no longer small compared to as is
assumed in the equations for the boundary layer. Nevertheless, one can use these
equations to estimate the location of separation, which will be at the first angle
(or ring) from the front of the sphere at which the flow parallel to the surface stops
even for i.e., separation occurs where or where the shear stress
falls to zero. According to (10-68) and (10-69), the separation position should also
be independent of the Reynolds number, since there are no scale changes in the

with changing
As might be expected, the flow and pressure profiles near the surface downstream

of the ring of separation are relatively complicated, and the model of potential plus
boundary layer flow breaks down. Even where their use is justified, the boundary
layer equations, though vastly simpler than the original governing set, are still
non-linear and, hence, quite formidable.

Nevertheless, some useful approximate analytical solutions for boundary layer
flow past a sphere have been obtained. The better results take into account the
fact that experimental observations show a marked difference between the actual
pressure distribution at the surface and the theoretical potential distribution (Fig-
ure 10.1). Thus, an improvement in the description is possible by adopting the
measured pressure profile as that which is impressed on the boundary layer. In one
such study by Tomotika (1935), the pressure measurements of Flachsbart (1927)
were used to obtain an approximate series solution for the velocity distribution
in the boundary layer. Tomotika predicted the ring of separation should occur at

which is in good agreement with Fage’s (1934, 1937a,b) measured value of
83°. For the boundary layer thickness at the ring of separation, Tomotika obtained
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where denotes the tangential velocity just outside the boundary layer at the
separation ring. Measurements show also that for the surface
pressure achieves a minimum near (see Figure 10.1); for this point Tomotika
found

These last two expressions illustrate the fact that the boundary layer thickness
increases with increasing Qualitatively, this trend can be understood by the same
kind of argument we used earlier to explain the parabolic shape of the downstream
wake.

Several numerical solutions to (10-68) and (10-69) have also been obtained (e.g.,
Smith and Clutter, 1963; Wang, 1970; and Blottner and Ellis, 1973).

10.2.2.4 Numerical Approach to the Navier-Stokes Equation

The preceding discussions should serve to underscore the fact that the non-linear
Navier-Stokes equation is tractable by analytical methods only for very special
circumstances, and that often a great deal of effort is required for rather meagre
results. Fortunately, however, the development of digital computers with increas-
ingly large memories and fast execution times has provided an alternative approach
of direct numerical solution, which has become progressively more attractive and
fruitful.

The basic idea of the numerical approach is to represent the continuous flow
field at only a finite number of points by means of a grid or lattice, and to ap-
proximate the solution of the governing differential equation by satisfying a finite
difference version of it which relates function values at neighboring points. Since fi-
nite difference representations of second-order derivatives are simpler than those for
fourth-order derivatives, it turns out to be advantageous, to write the fourth-order
governing equation (10-15) as two coupled second-order equations. This is easily
accomplished by using the vorticity as the second dependent variable. Thus, on
substituting (10-13) into (10-15), and introducing for convenience the dimension-
less variables and the two coupled equations
suitable for numerical treatment may be expressed as

and

where The boundary conditions to be used in conjunction with (10-
72) include: (1) at the sphere surface

(2) along the axis of symmetry (3)
far from the sphere surface To avoid wall
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effects, Le Clair et al. (1970) showed from a numerical solution of the Navier-Stokes
equation of motion for flow past a sphere of radius and Fidleris and Whitmore
(1961) demonstrated experimentally, that must at least be for spheres
with and as much as for spheres with

After the stream function and vorticity fields have been determined for a given
Reynolds number, the surface pressure distribution can be found from (10-33) and
(10-34) and, hence, the form and skin friction drag coefficients from (10-31) and
(10-32). Numerical solutions following this formulation have been provided by
Jenson (1959), Hamielec et al. (1967), Le Clair (1970), Le Clair et al. (1970), and
Pruppacher et al. (1970).

10.2.2.5  Comparison of Analytical and Numerical Solutions of the Navier-
Stokes Equation with Experimental Results

Let us now make a comparison between the characteristics of viscous, axisymmet-
ric, steady state, incompressible flow past a sphere as determined by analytical
and numerical solutions of the Navier-Stokes equation, and the flow characteristics
determined experimentally. First consider the stream function and vorticity dis-
tribution determined numerically by Le Clair (1970), Le Clair et al. (1970), and
Lin and Lee (1973, 1975). Le Clair found that the streamlines at show
fore-aft symmetry, while the vorticity contours clearly reveal that asymmetry in the
flow exists even at this low Reynolds number, which is in pronounced disagreement
with Stokes flow. At (Figure 10.2a), the flow is already strongly asym-
metric, as shown by both the streamlines and the vorticity contours. At
(Figure 10.2b) a standing eddy is present at the downstream end of the sphere
and the flow asymmetry has increased further. At , the standing eddy
extends over more than a sphere diameter downstream (Figure 10.2c).

In Figure 10.3, comparison is made between the theoretically predicted and ex-
perimentally measured eddy lengths. It is seen that the length increases almost
linearly with if Extrapolation suggests that the eddy begins to
develop at Note that the experimental results are in good agreement
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with the numerical predictions except at low Reynolds numbers where flow visu-
alization, which suffers from the finite fall velocity of the tracer particles, slightly
underestimates the eddy length. The simple analytical result (10-50) of Proudman
and Pearson is again surprisingly successful, and only slightly overestimates the
eddy length. The numerical solution of the Oseen equation by Bourot (1969), not
shown in the figure, considerably overestimates the eddy length. Of course, the
Stokes equations predict no eddy at all.

The pressure distribution computed by Le Clair et al. for the sphere surface
is exhibited in Figure 10.4. Note the large discrepancy between these results and
the predictions of Stokes flow. Note, too, that on the front half of the sphere,
the potential flow solution becomes acceptable for Comparison between
the numerical results of Le Clair et al. (Figure 10.4) and the experimental mea-
surements of Flachsbart (1927) and Fage (1937a,b) (Figure 10.1) shows that, for

, the normalized pressure distribution around a sphere remains
essentially constant for

Values for the drag force coefficients computed by Le Clair et al. are reproduced
in Table 10.1. A best fit of vs. for rigid spheres for
is given by Clift et al. (p. 112, 1978). It is evident that there is a crossover
in dominance from the skin friction to the pressure or form drag coefficient for
Reynolds numbers between 100 and 300. The numerical solutions for are in
excellent agreement with experiment, as shown in Figure 10.5. On the other hand,
the analytical solutions of Stokes (Equation (10-39)) and Oseen (Equation (10-
44)) are seen to significantly underestimate and overestimate respectively, for

Curve 3 of Figure 10.5 indicates that more complete solutions of the Oseen
equation are somewhat more realistic than the solution to found by Oseen;
this was not anticipated theoretically.

Further comparisons are given in Figure 10.6, where the fractional deviation
from the Stokes drag is plotted against the Reynolds number. The experimental
data in this plot confirm the proof, mentioned earlier, that the Oseen drag is correct
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to O(R); i.e., the experimental curves approach zero for via the Oseen
theory, rather than the Stokes theory.

It is interesting to note also that for small , the solution of Chester and
Breach (1969) is inferior to that of Proudman and Pearson (1957), even though in
principle the former is correct to a higher order in than the latter. Proudman
1969) attempted to remedy this problem of apparent poor convergence of successive
solutions obtained through the method of matched asymptotic expansions. He
suggested the poor convergence is due, at least in part, to the inappropriateness
of the choice of the function D for expansion in terms of Through semi-
empirical arguments he recast the results of Chester and Breach in a new form
involving a free parameter In Figure 10.6, his results are plotted as curve 6
for the choice of which gives the best fit. The outcome is a fit to the
experimental and numerical results which is roughly as good as that provided by
Carrier (1953) (curve 5) (however, the Carrier theory has the advantage of being
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relatively simple). The other analytical results shown are not as good.
To summarize, we can say that the numerical solutions to (10-8) agree excellently

with the experimental drag determinations for (An exception
to this observation is provided by the results of Jenson (1959), whose flow fields
suffer from step size and wall effect errors for The analytical solutions
do not fare as well, and are generally limited in their applicability to low Reynolds
numbers. Probably the best, and one of the simplest, of these for is
(10-48) with due to Carrier. For the indicated range, this expression
overestimates the drag on a sphere by a maximum of 13% (at Finally,
we should not lose sight of the fact that the simplest and most familiar analytical
result, the Stokes drag given by (10-39) or (10-40), is quite adequate for many
applications of interest in cloud physics. For example, it is accurate to within
about 10% for which, as we shall see below in Section 10.3.6, corresponds
to drop radii

Close inspection of Figure 10.6 reveals another interesting feature, namely that
there are three drag regimes. These are characterized by an almost constant
slope over the Reynolds number intervals and

It is interesting to note that the change of drag regime at
coincides with the Reynolds number at which a standing eddy begins to

form at the downstream end of the sphere, while the change of regime at
coincides with the Reynolds number at which vortex shedding begins (see below).
This suggests that flow regimes make themselves felt as drag regimes, which is
certainly a physically plausible relationship.

As we indicated earlier in our discussion of the classification of flowspast spheres
according to the Reynolds number, intrinsic unsteadiness sets in for
Close to this Reynolds number, the experiments of Möller (1938), Taneda (1956a),
Goldburg and Florsheim (1966), Toulcova and Podzimek (1968), and Zikmunda
(1970) have indicated the onset of faint, periodic, pulsative motions downstream
of the standing eddy. These pulsations become increasingly pronounced as
increases until finally, for some in the range the standing
eddies begin periodically to shed lumps of rotating fluid. This behavior implies that
numerical solutions for axially symmetric, steady state flow will have decreasing
relevance for increasing beyond some maximum value. The comparisons given
in Figure 10.6 imply that the observed instability which sets in near
causes a negligible departure from the strictly steady state drag. However, the
observed change of the drag regime at suggests this might be a resonable
cut-off point for the steady state axisymmetric numerical approach.

The frequency of vortex shedding from the downstream end of a sphere has
been measured by Möller (1938) and Achenbach (1974). Their results are shown
in Figure 10.7 as a plot of the Strouhal number, versus One
finds, for example, that for water drops (considered to be rigid spheres) falling in
air with the shedding frequencies are for

for and
for



384 CHAPTER 10

10.2.3 THE FALL BEHAVIOR OF RIGID SPHERES

From our discussion in the previous section, we expect a freely falling rigid sphere
to exhibit secondary motions in response to the unsteady flow past it for
(Section 10.2.1). The experiments of Schmiedel (1928), Schiller (1932), Achenbach
(1974), and Stringham et al. (1969) have verified the presence of such secondary
motions. They observed faint deviations from a straight vertical fall mode at
130 and a pronounced helical fall mode for According to Achenbach
(1974), this fall pattern results from a helical configuration of the sphere’s wake in
which the point of release of the vortices rotates around the sphere. Unfortunately,
no data on the oscillation frequency and amplitude of smooth and rigid falling
spheres have been recorded.

10.2.4 NON-STEADY THREE-DIMENSIONAL FLOW

In Section 10.2.2 we assumed the flow past a sphere to be steady and axially sym-
metric, so that it can be described by the solutions to (10-15). Of course, the
advantage of this treatment is that it reduces the number of dependent variables
from two (the velocity components to one (the stream function Unfortu-
nately, no such simplification exists for the case of unsteady, incompressible, three-
dimensional flow past a sphere with (Plate 11a,b). Although is is still
possible to define a stream function (because of the incompressibility constraint),
the function will no longer be a scalar as before but rather a vector consisting of
three components. Thus, it would be necessary to solve for all three components
of in order to determine the corresponding three components of There is no
obvious advantage in following this route (Anderson et al. 1984). In fact, it turns
out to be advantageous to consider the primitive Navier-Stokes equation of mo-
tion (10-7), and to solve it directly by numerical methods. Since the Navier-Stokes
equations of motion cannot spontaneously generate asymmetric features in the flow
field, the asymmetric flow has to be started by adding a strong shear flow to the
steady state solution, which then, at the expected Reynolds numbers, produces a
sustained shedding of vortices. Such an approach has been followed by Ji and Wang
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(1990, 1991) and Ji (1991) who simulated the three-dimensional, non-steady flow
past finite cylinders (see Section 10.4.2) and past planar snow crystals (see Sec-
tion 10.5.1). Unfortunately, to date, no solutions using this method are available
for the flow past spheres.

10.3 Hydrodynamic Behavior of Water Drops in Air

We must now consider the extent to which cloud and raindrops depart from the
idealization of rigid spheres. Considerable information on this point is provided by
the comparison shown in Figure 10.8 of the dimensionless drag on rigid spheres and



386 CHAPTER 10

on water drops falling in air. It is seen that good agreement exists for Reynolds
numbers corresponding to drop radii less than about At larger sizes, the
drag on drops progressively increases above that for rigid spheres. In order to
explain this behavior, we must consider three observed characteristics of falling
drops: their internal circulation, their distortion from a spherical shape, and their
oscillation.

10.3.1 INTERNAL CIRCULATION IN DROPS

The existence of an internal circulation inside drops falling through another im-
miscible liquid, or inside gas bubbles rising through a liquid, has been established
by many experimenters (e.g., Spells, 1952; Savic, 1953; Garner et al., 1954; Trinh
and Wang (1982)). For water drops falling at terminal velocity in air, qualitative
evidence for the presence of an internal circulation has been given by Blanchard
(1949) and Garner and Lane (1959), and quantitatively by Pruppacher and Beard
(1970) and Le Clair et al. (1972). Pruppacher and Beard, Le Clair et al., and Diehl
(1989) used a wind tunnel to determine the flow pattern and the average speed of
the circulating water inside drops of to 3 mm radius. Over the whole size
range, the maximum internal velocity near the drop surface was found to be close
to where is the terminal velocity of the drop. A schematic
representation of the observed flow pattern inside and outside a water sphere at

and is given in Figure 10.9. For the case the
reverse circulation in the standing eddy at the downstream side of the drop is seen
to cause a neighboring region of fluid within the drop to be stagnant, or to exhibit
a weak reverse circulation.
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This observed behavior may be confirmed theoretically through a straightfor-
ward extension of our previous formulation of flow past a rigid sphere to the case
of flow past and within a fluid sphere. Thus, if we use the vorticity-stream function
approach, the exterior flow will be governed by (10-72), as before, while the
interior flow will obey the same equation set, with the understanding that
the relevant Reynolds number now depends on the kinematic viscosity of the
interior fluid. The boundary conditions which must supplement these equations
are as follows: (1) the normal velocity components must vanish at the interface, so
that and at (2) the tangen-
tial velocities must be equal at the interface, so that at
(3) the shear stress must be continuous at the interface, so that at

(4) along the symmetry axis (5) far from
the sphere surface the flow streams freely, so that
and

After the stream function and vorticity fields have been determined, the pressure
distribution at the surface of the fluid sphere can be found, as before, from (10-33)
and (10-34), except that now the centrifugal term must be added to the right
side of (10-33). Finally, given the surface pressure and vorticity distributions, the
drag force coefficients can be computed from (10-31) and, (10-32).

Numerical solutions to this problem have been obtained by Le Clair (1970) and
Le Clair et al. (1972) for exterior flow Reynolds numbers for water
drops in air, with and a viscosity ratio of
(assuming poise and poise at 20°C). In a later
attempt, Oliver and Chung (1987) solved the Navier-Stokes equations forflowinside
and outside of fluid spheres using a coupled finite element and series truncation
method. Although this method appears to be very appealing, no comparison with
the results of Le Clair et al. for water drops in air can be made since solutions were
provided onlyfor and 3.0. The stream function distribution inside and



388 CHAPTER 10

outside the circulating water sphere in air, as computed by Le Clair et al. (1972),
is given in Figure 10.10. We see from the figures that, in its main features, the flow
of air around a circulating water sphere strongly resembles the flow past a rigid
sphere, a result which we might have expected from the fact that the viscosity of
water is about 55 times larger than that of air. We further note that, as in the
case of a rigid sphere, a standing eddy develops at the downstream end of the
sphere at However, while the length of this standing eddy differs little
from that for a rigid sphere, its angular extent is significantly less. In particular,
close to the fluid surface the eddy stream line is shifted towards the rear
stagnation point due to the effect of internal circulation. The general similarity
between the gross hydrodynamic behavior of a liquid circulating sphere and that
of a rigid sphere is further documented by the very small difference in values for
the drag force coefficient. Comparison of the values listed in Table 10.1 shows that
for differs from by less than ~ 1%.

Le Clair’s numerical solution for the flow within the liquid sphere is in good
qualitative agreement with the flow patterns observed in wind tunnel experiments.
The computations show that a water sphere falling in air has a vigorous internal
circulation with a stagnation ring slightly upstream of the equator. Also, a reverse
circulation toward the rear of the sphere develops for in agree-
ment with observations. Le Clair et al. (1972) computed tangential velocities at
the drop surface as a function of the polar angle for a variety of Reynolds num-
bers up to Extrapolating to Le Clair et al. showed that,
at each angle approaches a constant value. In other words, the dimensional
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circulating velocity becomes proportional to the drop terminal velocity, with a pro-
portionality that depends on Using the tabulated values of Le Clair et al. and
extrapolating them to larger Reynolds numbers, Diehl (1989) estimated the time
needed by a fluid element at the drop surface to pass from the forward stagnation
point of the drop to the point of flow separation by adding the average times re-
quired for the fluid element to move over angular distances of 5° under the effect
of the local velocity. In this process actual drop terminal velocities were used, so
that the effects of drop deformations on fall speed were included. This procedure
allowed direct comparison of the computed velocities (Figure 10.11, curve 1) with
those experimentally observed. We notice excellent agreement between theory and
experiment for drop radii up to which is the size range where drop de-
formation is negligibly small and the drops do not oscillate. For drops which are
deformed and oscillate the theory, which is based on a spherical geometry, provides
an upper bound to the observations, which strongly scatter due to the oscillations.
Diehl (1989) also noticed that in contrast to the doughnut shaped flow pattern for
drops at radius smaller than the flow regime inside drops of radius larger
than alternates rapidly between a 4-looped flow pattern and completely
turbulent flow.

Analytical models for drop internal circulations exist for very small and very
large Reynolds numbers. For the case a simple analytical solution is
available through the assumption of Stokes flow. The same form of trial solution
as was invoked in Section 10.2.2.3 for the case of Stokes flow past a rigid sphere is
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successful also for both the interior and exterior flows for a fluid sphere, and the
following solutions may be obtained without difficulty:

and

where is the ratio of the outside and inside dynamic viscosities (Hada-
mard, 1911; Rybczinski, 1911). From (10-74), one finds a stagnation ring (where

at and The pattern of streamlines is shown in
Figure 10.10b.

The Stokes tangential surface velocity for a falling water drop is

using the previously quoted values for and This expression predicts that the
internal circulation of a small falling drop is only a small fraction of its terminal
velocity, and is largest at

Applying to the Stokes surface velocities the same averaging procedure as was
used to estimate surface velocities according to Le Clair et al. (given in Figure 10.12
as curve 1 with the open squares), Diehl (1989) obtained curve (2) marked with
X’s in Figure 10.12. We notice that in comparison to the experimental values
in Figure 10.11, the Stokes surface velocities seriously underestimate the internal
circulation in water drops falling in air.

The drag according to the Hadamard-Rybczinski (HR) theory is

For a falling drop in air at 20°C, thus, and the
drop behaves like a rigid sphere as far as the drag is concerned. For a gas bubble
in a liquid, Note there is no dependence of on surface tension.
This is reasonable since surface tension only serves to alter the internal pressure
by a constant amount and, thus, should have no dynamic effect. These results for
the drag may become invalid if certain surface active impurities are adsorbed onto
the drop interface (Levich, 1962).

It is interesting to note from (10-72b) that the vorticity corresponding to (10-
74) has the form where A is constant. Therefore, from (10-72a), it
can be seen that this same vorticity would enable the equation of motion to be
satisfied also for the case of negligible viscosity In fact, the stream
function (10-74) is an exact solution of the Navier-Stokes equation, and provides
a description of a flow pattern which is possible for both the Stokes and inviscid
limits. In the latter application, it is known as ‘Hill’s spherical vortex’ (Hill, 1894).
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In terms of the constant A, the stream function for Hill’s spherical vortex is
If this is to describe inviscid flow, it is natural to

fix A by assuming potential flow past the vortex. Therefore, for the exterior flow,
we let as given by (10-57). If we now impose the condition of velocity
continuity at (in this application conditions on shear stress do not apply),
we obtain

The corresponding interior tangential velocity is

At the surface, this is which matches the outer potential flow.
It is tempting to regard (10-77) and (10-78) as a model for the internal circula-

tion at high Reynolds numbers. However, the predicted surface velocities are too
large; e.g., which lie far above the experimental values in
Figure 10.11. Of course, the failure of the model is due to the complete omission
of viscous effects. As for the case of flow past a rigid object, one expects that for

there will be a viscous bondary larger near the drop surface which will
play a dominant role in the adjustment of the internal circulation to the exterior
flow.

McDonald (1954) and Le Clair et al. (1972) have used boundary layer theory to
estimate the shear stress which drives the internal circulation in a falling spherical
drop. The results of Le Clair et al. are shown as curve 3 in Figure 10.12. The curve
includes the effects of averaging the circulating velocity over a polar arc of 25° to
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80°, although, as shown below, this has only a minor effect on the outcome. It can
be seen that their boundary layer method, which is a refinement of McDonald’s,
drastically overestimates the true strength of the internal circulation for large drops.

The failure of the standard boundary layer model is due to the fact that it is
based on the theory of flow past a rigid sphere, so that the boundary layer thickness
varies as Consequently, the shear stress at the drop surface and, hence, the
internal circulation within it, are predicted to increase steadily with increasing
For example, the Le Clair et al. boundary layer model predicts that

Therefore, even if becomes independent of size for large drops due to shape
changes, as discussed below in Section 10.3.6, and, hence, will still
increase with as This is in sharp contrast to the experimental trend evident
in Figure 10.11.

The overestimation of drop circulating velocities according to the conventional
boundary layer model can be corrected by noting that the drop surface can relieve
stress by moving; hence the usual assumption of a fixed surface should be dropped.
The surface motion will, in turn, tend to limit the thinning of the boundary layer.
The neglect of this mechanism for stress reduction can therefore explain the failure
of the standard boundary layer model. From the observation, referred to earlier,
that the strength of the internal circulation becomes proportional to for
400, an alternative boundary layer model suggests itself in which the boundary
layer thickness approaches an asymptotic limit at (Klett, 1977). This
results in a direct linear coupling of the interior and exterior flows for all larger

which is consistent with the numerical trends found by Le Clair et al.. The
results of the theory of Tomotika (1935) for a rigid sphere can be used to estimate
the limiting thickness. Thus, from (10-71), we find assuming the
value from the numerical solution of Le Clair et al., and letting

Assuming further that the internal circulation has approximately the
pattern of Hill’s spherical vortex, the internal tangential velocity has the form

The constant B may be determined through the condition of continuity of shear
stress at the interface. Thus, from (10-21b), the shear stress on the interior side of
the interface is

If this is equated, at to the exterior shear stress, which on insertion of
Tomotika’s boundary layer profile corrected for the drop surface motion is

the constant B is found to be B = 0.044. Support for this model comes from the
fact that the resulting predicted surface velocities for agree closely
with the computed values tabulated by Le Clair et al. for
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The fact that the internal tangential velocity varies essentially as sin simpli-
fies the comparison of theory with observed average circulating velocities. The
observations concern the angular arc traversed over a given time interval

Therefore, the average circulating velocity is

using (10-80). For example, substituting and to conform to
the observations of Diehl (1989), (10-84) gives Since
0.97, we find So the effect of averaging over the angular
interval amounts only to about a 16% reduction from the values obtained by simply
evaulating the circulating velocity at as was done earlier by Le Clair et
al. in their comparisons of theoretical and observed circulating velocities. Finally,
we note that according to the asymptotic boundary layer model. If
one uses actual deformed drop terminal velocities for then for the
results of this model lie essentially on curve 1 in Figure 10.12.

10.3.2 DROP SHAPE

Our discussion in the previous section suggests that internal circulation, although
a marked characteristic of a water drop falling in air, contributes only neglibily to
the drag on the drop. In the present section, we shall show that the observed drag
increase exhibited by drops of is primarily the result of a progressive
change of their shape. Drops which have a steady flow field past them assume an
equilibrium shape. Non-steady state flow fields induce drop oscillations which, in
turn, cause periodic shape changes. We shall begin our discussion of drop shape by
assuming that drops of all sizes relevant for atmospheric clouds have a steady flow
field past them for which we compute their equilibrium shape. Subsequently we
shall compare these equilibrium shapes with the observed shapes of falling drops
and determine the effect of oscillation.

The equilibrium shape of a falling drop can be determined in principle from the
condition that local interface forces must be in balance. Early accounts of this force
balance were somewhat incomplete. For example, Lenard (1887, 1904) assumed the
drop shape was controlled by an equilibrium between surface tension and the cen-
trifugal force resulting from internal circulation. Somewhat later, Spilhaus (1948)
attributed the flattening of large drops to the combined action of surface tension
and aerodynamic pressure and, thus, ignored the effects of internal circulation and
the hydrostatic pressure gradient within the drop.

To date, most purely analytical treatments of the drop shape problem have
required a considerable sacrifice of physical realism, or a restricted scope in appli-
cations, for the sake of mathematical tractability. Thus, Imai (1950) assumed an
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unrealistic unseparated potential flow past the drop, while the analysis of Taylor
and Acrivos (1964) is restricted to very low Reynolds numbers and very small drop
deformations. On the other hand, the analytical model of Green (1975), which
ignores flow effects altogether, appears to yield results of surprising accuracy with
respect to the observed maximum and minimum dimensions of a deformed drop,
as we shall see below. However, Green’s model is not capable of describing the
complete drop shape.

We will now briefly outline the semi-empirical approach to the drop shape prob-
lem employed by Pruppacher and Pitter (1971), who based their work on the
perturbation model proposed by Savic (1953). Their model, recently extended by
Beard et al. (1989a), agrees well with observation for drops of equivalent diameters

less than 5 mm.
First of all, we must obtain a generalization of the mechanical equilibrium condi-

tion (5-7) for a non-spherical drop shape. Consider a point on the surface where the
principal radii of curvature are and Let the local area element
undergo an outward displacement (away from the drop center) by a small distance

where and are the surface arc length elements associated with and
Then, if the interior and exterior pressures are and the pressure work

done on dS by the displacement is neglecting the change in dS
which the displacement brings about. On the other hand, this area change results
in a change of surface energy in the amount Therefore, for a situation of
static equilibrium in which the net energy change should be zero for an arbitrary
small displacement, we find

Now the first-order change in the area element is
and the corresponding change in the arc length elements is

Consequently, (10-85) implies

which is the desired result (Laplace, 1806). Note that (10-86) reduces to (5-7) for
a spherical surface with

The further generalization of (10-86) to the case of non-zero exterior and interior
flows is achieved simply through the replacement of the static pressures by the
full stress tensor components. Thus, the dynamic boundary condition of stress
continuity at the drop interface, including the effect of surface tension stresses,
becomes

(cf. (10-19)).
In their drop shape study, Pruppacher and Pitter used (10-87) to describe the

normal stresses acting on the surface, and ignored the viscous stress contribution.
In terms of the notation in Figure 10.13, their final force balance equation reads as
follows:
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The first term on the right side represents the stress contribution due to hydrostatic
pressure within the drop is the density of water, and the buoyancy of the air
has been neglected). The second term, in which denotes the pressure due to
internal circulation, Pruppacher and Pitter approximated by
and then used the pressure measurements of Fage (1937a,b) and Le Clair et al.
(1972) for this quantity.

The equation of the deformed drop surface of revolution may be expressed as
follows:

where the are coefficients representing the deformation. If the deformation is
small, i.e., with we may express the curvature terms in (10-88)
in terms of the by means of (A.10-33), and obtain

Finally, in order to exploit the orthogonality properties of the expansions (10-89)
and (10-90), the (known) pressure field is also expressed as a cosine series, viz.,

where is the density of air.
By substituting (10-89) to (10-91) into (10-88), the may be determined in

terms of the and the physical parameters of the problem. To avoid exces-
sive computation, Pruppacher and Pitter truncated the infinite series at
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They also bypassed the need to evaluate the constant terms in (10-88) by invok-
ing the constraint of constant drop volume, which determines in terms of the
other That is, on substituting (10-89) into the integral for the drop volume,

and assuming small deformations, the condition of volume
conservation becomes which leads to

Pruppacher and Pitter also chose stating that it does not contribute to the
drop distortions, but rather only causes bodily vertical displacement. However,
Beard et al. (1989a) showed that for a distorted drop the fixed center of mass
constraint, for is needed to prevent translation.
Some meridional outlines of the drop shapes computed by Beard et al. (1989a) are
presented in Figure 10.14.

Since the predictions of the perturbation model cannot be trusted for large drop
deformations, Beard and Chuang (1987) carried out a drop shape analysis that
omits the assumption of small departures from sphericity. Their model follows
the approach of Bashford and Adams (1883), who used the static Laplace equation
(10-86) to determine the equilibrium shape of sessile (base-supported) and pendant
(hanging) drops due to the balance of hydrostatic and surface tension stresses. This
can be accomplished by expressing the drop principal radii of curvature in terms
of the differential relationships between the arc length along and at right angles to
a distorted drop meridian, and some suitably chosen angle variable describing the
local slope of the meridional curve. The result is a non-linear differential equation
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for drop shape that can be integrated numerically to give the equilibrium form, for
arbitrary deformation magnitudes.

Beard and Chuang (1987) extended this classical analysis to the dynamic case
of (10-87) by including an aerodynamic supporting pressure. This was modeled by
using Fage’s (1937a,b) measurements of the pressure distribution around a sphere,
just as was done in the perturbation models described above. However, in order
to account approximately for the change in the pressure distribution due to de-
partures from a spherical shape, Beard and Chuang assumed the required pressure
adjustments were just those that would be appropriate for potential flow past cor-
responding oblate spheroids. Other, less critical, modeling assumptions included
omitting any account of internal circulation, and scaling the magnitude of the pres-
sure distribution to account for the fact that, since skin friction drag is ignored in
the model, the form or pressure drag contribution must be boosted in order to
compensate for this neglect (cf. (10-23)). For this purpose, they used an empirical
formula relating form drag to total drag for a sphere in high Reynolds number flow,
based on the measurements of Achenbach (1974, 1972).

The drop shapes computed by this method are shown in Figure 10.15. We notice
that the meridional drop outlines do not exhibit a drop base as flattened as does
the perturbation model, nor is the previously predicted concave depression present
in the base of the largest drops. Beard and Chuang attribute such base depressions
to a failure of the perturbation approach for large amplitude distortions. This
plausible conjecture is supported further by the fact that Beard and Chuang clearly
get better results for the axis ratio as a function ofdrop size for than
do Pruppacher and Pitter (1971), as shown in Figure 10.16. On the other hand, the
perturbation method does agree with observations (Plate 12) in predicting drops
with a flat base if and a concave base depression if

In fact, this depression is thought to be responsible for
the eventual hydrodynamic break-up of single drops in quiet air (Section 10.3.5).
A resolution of these conflicting pieces of evidence may be brought about if we
assume that the observed base depressions are in part a consequence of unsteady
flow conditions, in contrast to the equilibrium conditions assumed in the theoretical
models.

Unfortunately, it is not possible to derive the equilibrium shape of drops with
equivalent diameters of several millimeters from wind tunnel data, since drops of
such size oscillate vigorously. Therefore, observed shapes and axis ratios are either
time-mean values, or the result of instantaneous snap shots of drops caught in
a particular phase of their oscillatory motion. Generally, however, wind tunnel
studies confirm that drops of resemble
oblate spheroids with curvature on the lower side less than that on the upper
side. This curvature asymmetry decreases progressively with decreasing drop size
so that drops of are almost perfect
oblate spheroids. With further decrease in size, the drops become more and more
spherical, and for they may, for all practical purposes, be
considered perfect spheres. An empirical fit (accurate to to the values for

computed by Beard and Chuang (1987) has been given by Chuang and Beard
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(1990) for

with in cm.
Before leaving this section it is worthwhile to set forth the drop shape model of

Green (1975) since, as noted previously, it has the appeal of both great simplicity
and accuracy as regards the drop axis ratios. The model assumes the drop shape
is oblate spheroidal for all deformations, and that hydrostatic and surface tension
stresses alone are sufficient to determine the equilibrium shape. By applying (10-
86) at the equator of the spheroid, Green’s model yields

where and are the semi-major and semi-minor axes, respectively, and
is the equivalent radius. Equation (10-94) may be solved for in terms

of the axis ratio to obtain

This result is plotted in Figure 10.16, where it can be seen to be about as accurate
overall as the other, more elaborate theoretical models. For small drops, (10-95)
tends to underestimate the equilibrium axis ratio slightly, while for very large drops
of it provides the best agreement with observations.
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10.3.3 DROP OSCILLATION

It was noted, during early and subsequent experimental studies of falling drops,
that oscillations set in once a critical size is exceeded (Lenard (1887, 1904), Flower
(1928), Laws (1941), Best (1947), Blanchard (1948, 1950, 1955), Kumai and Itagaki
(1954), Magono (1954a), Garner and Lane (1959), Cotton and Gokhale (1967)).
Wind tunnel and fall chamber studies of single drops showed that such oscillation
begins to be noticeable for drops of in response to
the unsteadiness of the flow past the drop. Although at this size the frequency of
oscillation is quite high and the corresponding oscillation amplitudes almost unno-
ticeably small, the amplitudes grow rapidly with increasing drop size. Thus, it was
noticed that the large raindrops which fall from vigorous cloud systems often exhib-
ited large amplitude oscillations (Lenard, 1887, 1904; Schmidt, 1913; Jones, 1959).
More recent field observations on the shape of oscillating raindrops were made by
Jameson and Beard (1982), Jameson (1983), Beard (1984a), Chandrasekar et al.
(1988), Sterlyadkin (1988), Beard et al. (1989b), Beard and Tokay (1991) and
Tokay and Beard (1994). These field studies revealed that oscillating drops exhibit
average axis ratios (the average over a large number of drops was taken as the time-
mean axis ratio of a single drop) which are significantly larger than the equilibrium
axis ratio. This effect was first noted by Jameson and Beard (1982), who analyzed
the field observation of Jones (1959). Based on their finding, they pointed out that
using equilibrium shapes would introduce significant errors in current models for
computing rainfall rates from radar data. More recent field observations (see Fig-
ure 10.17, 10.18a) and laboratory studies (Figures 10.17, and 10.18b) have verified
the earlier conclusions.
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Three questions need to be answered with regard to the laboratory and field
observations mentioned: (1) what is the frequency at which the drops oscillate,
(2) how does their oscillation affect their shape, and (3) what is the cause of their
oscillation? We shall discuss these questions in sequence.

A simple estimate of the characteristic vibration frequency is available through
the use of dimensional analysis. If we ignore viscous effects and the weak coupling to
the exterior medium (air), the only relevant characteristic physical parameters are
the drop’s surface tension density and equivalent, radius Consequently,
the necessity for dimensional consistency immediately tells us that

A complete analysis of the problem, based on the assumption of potential flow
and small amplitudes of vibration (Appendix A-10.3.3), shows that there is a dis-
crete spectrum of allowed frequencies. From (A.10-38), these are

This result was first derived by Rayleigh (1879). Each oscillation frequency allows
degenerate modes having unique spatial orientations, i.e. for each

frequency, there is one axisymmetric mode and physically distinct
asymmetric modes. The choice corresponds to radial oscillations, which are
prohibited by the condition of incompressibility. The value corresponds to
the translatory motion of the drop as a whole. Therefore, the fundamental mode
of drop oscillation occurs for with the frequency
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The first harmonic has the frequency

Thus, we see from (10-98) that the simple estimate (10-97) for the gravest mode is
too large only by a factor of

From (A.10-37), we see that drop oscillations occur in modes composed of spher-
ical harmonic perturbations with the surface defined by

where is the undistorted drop radius, A is an arbitrary amplitude and are
the associated Legendre functions. For axisymmetric oscillation

Equation (10-101) has been used in drop oscillation studies by Foote (1971), and
(10-100) by Beard (1984b), by Beard and Kubesh (1991), and by Kubesh and
Beard (1993). The drop shapes for and 3 and and 2 are illustrated
in Plate 13 and Figure 10.19.

Beard and Kubesh (1991), Beard et al. (1991), and Kubesh and Beard (1993)
argued that the strong one-sided scatter of the axis ratio of drops with
1.3 and (see Figure 10.17) is due to oscillations in the transverse
modes and (3,1). The two-sided scatter of the axis ratios of drops
with on the other hand, is thought to be due to the drops
oscillating in the axisymmetric mode (2,0).
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According to Beard and Kubesh (1991), verification of these arguments follows
directly from an analysis of (10-100) and (10-101). For a positive perturbation

the axisymmetric mode (2,0) has an extension at the poles
of and an indentation of at the equator

for all views around the The axis ratio of a drop is found from
the maximum vertical and horizontal chord for a particular horizontal view
from

where the perturbation chords and are obtained for and
from the appropriate vertical and horizontal components of

in (10-100). Thus, we find for the axis ratio

from which

This axis ratio varies symmetrically above and below unity. The time average turns
out also to be of order unity with a small secondary effect which shifts the axis
ratio above unity by Thus, the oscillation of drops in the mode (2,0) is
expected to produce a two-sided scatter in the axis ratio with approximately equal
amplitudes above and below the equilibrium value, in agreement with observations.

In contrast, in the transverse mode (2,1) the perturbation, when viewed from
any angle around the produces a vertical extension which varies in time as a
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constant plus a rectified sine wave, with maxima in the
plane at and 325° (Fig. 10-19). In one principal view (along the
axis perpendicular to the plane), the horizontal chord perturbation at
is the same as the vertical chord perturbation, i.e. Thus, from (10-
104) the axis ratio does not vary. Viewed along the the perturbations are
displaced ±90° from the meridian. The maximum horizontal chord remains fixed
at , whereas the maximum vertical chord is the same as in the orthogonal view.
Therefore, from (10-104) Averaging the
maximum horizontal chord over all views around the Beard and Kubesh
(1991) find for the axis ratio

This implies that the axis ratio of drops oscillating in the transverse mode (2,1) will
exhibit a one-sided scatter above unity because with a time-mean that
is larger than unity to first order by in agreement with observations.

Measurements of the oscillation frequency of various sized water drops in air
have been carried out by numerous investigators in the laboratory and during field
experiments. A selected number of the available experimental data are plotted in
Figure 10.20, where they are compared with the Rayleigh frequency (10-98) and the
theoretical computations of Feng and Beard (1991a,b), who used a multiparameter
perturbation theory to derive a correction term to the Rayleigh frequency for
and and 2. We see from Figure 10.20 that the frequency of drop oscillation
decreases by about one order of magnitude, from near to near
if the drop diameter decreases from about 1 mm to about 5 mm. Considering the
oscillation mode and one may approximate the oscillation frequency
by the empirical relation

with in cm, in and varied between 0.5 and 2 (Nelson and
Gokhale, 1972).

The shedding of eddies from the rear of a falling drop can initiate drop oscil-
lation. This mechanism was first pointed out by Gunn (1949), who noticed that
the Rayleigh oscillation frequency for a drop of falling at terminal
velocity is close to the frequency of eddy shedding from the rear of a
rigid sphere of the same Reynolds number (Möller, 1938). He concluded that the
periodic detachment of eddies in the drop’s wake excites drop vibration through
induced pressure changes at the drop surface, resulting in resonance between the
eddy shedding frequency and the natural oscillation frequency of the drop. From
Figure 10.21, we notice that the shedding frequencies from rigid spheres and drops
vary over quite a broad range, allowing resonance coupling to the fundamental
frequency mode of drops in the range For drops
of a match between the shedding frequency and the natural
oscillation frequency exits for and The oscillation of larger drops is
difficult to explain, since most drops of are found to oscillate in the
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fundamental mode (Tokay and Beard, 1994), for which a large mismatch
exists between shedding and natural oscillation frequency (see Figure 10.21).

Beard (1984b), Beard and Kubesh (1991), Beard et al. (1991a,b), Feng and
Beard (1991), and Kubesh and Beard (1993) have suggested two mechanisms which
cause the excitation of drop oscillation despite frequency mismatch: (1) Subhar-
monic resonance may occur if the eddy shedding frequency is equal to some in-
teger multiple of or (2) Shape changes of the oscillating drop may induce
a frequency feedback which shifts the shedding frequency towards the oscillation
frequency such that they come into phase with each other.

Jones (1959) observed that raindrop oscillation was particularly pronounced
if the drops fell through a strongly turbulent boundary layer. This observation
suggests that in addition to eddy shedding from the rear of a drop, oscillations
are also induced by wind shear and turbulence. To test the significance of this
mechanism, we shall follow Tokay and Beard (1994) who used for their analysis
the earlier finding of Beard et al. (1989a) that the equilibrium raindrop distortion
is a known function of the Weber number and is given
approximately by

with B = 0.11. (The physical significance of the Weber number is discussed in
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Section 10.3.5.) The change in the Weber number due to a turbulent air
velocity fluctuation in the direction of is therefore

The corresponding change in axis ratio is then of the form

where represents the change in axis ratio with Weber number
from (10-108), and where For homogeneous, isotropic turbulence in
the initial subrange, we have

where is the turbulence energy dissipation rate per unit mass (see Section 11.6.2),
is the dominant eddy length scale, and (Tennekes and Lumley, 1972;

Hinze, 1959). For turbulence generated in the atmospheric boundary layer, may
be estimated as

where (Businger, 1973), and where the friction velocity is



HYDRODYNAMICS OF SINGLE CLOUD AND PRECIPITATION PARTICLES 407

In (10-113), U is the wind speed measured typically at a height the
roughness parameter for a grass surface. In (10-112), Tokay and Beard
set where 0.9 m was the height of their point of observation.
The length is the fall distance of the drop during one period of oscillation.
The eddy scale length in (10-111) can therefore be estimated from (10-99) as

The change in axis ratio may then be determined from (10-110) together with
(10-111) to (10-114).

A similar approach may be used to determine the effect of a horizontal shear on
the axis ratio of a rain drop. Following Tokay and Beard, we shall assume that the
shear is given by

A vertically falling raindrop will then experience a change in air velocity of
and, therefore, a corresponding Weber number change of in

analogy to (10-109). The associated change in axis ratio is therefore

A numerical evaluation of (10-110) and (10-116) was carried out by Tokay and
Beard (1994) for which occurred at their level of observation.
The computed change in axis ratio was less than 0.02 for From this
result, Tokay and Beard concluded that turbulence and wind shear contributed
negligibly to the large drop oscillation amplitudes observed under the conditions
they encountered during their field experiment.

Let us now look at the significance of a third cause for drop oscillation. The large
oscillation amplitudes of drops falling in intense rain suggests that drop collision
may also excite oscillations. Laboratory studies in fall shafts and wind tunnels
confirm that drop collisions cause large amplitude oscillations in newly coalesced
drops, as well as in the drop fragments resulting from drop breakup. Collision
induced oscillation has been modeled by Beard et al. (1983) and Johnson and
Beard (1984), assuming that the raindrop agitiation may be computed from a
balance between the kinetic energy imput resulting from drop collision, and viscous
dissipation within the drops.

Following Beard et al. (1983) and Johnson and Beard (1984), the rate of imput
of kinetic energy due to collision of a drop of diameter and mass M and velocity

with smaller drops of diameter mass velocity and concentration
is given by

where the collision rate C is



408 CHAPTER 10

assuming a geometric collision cross-section (see Section 11.6.3). The excess kinetic
energy after collision of a with a small is by virtue of the
conservation of momentum,

According to Lamb (1932), the damping of a viscous sphere undergoing a small
amplitude oscillation is given by

where is the oscillation energy of the drop, and the decay time
being the kinematic viscosity of water. A balance between the rate of collisional
energy imput and dissipation of oscillation energy requires

Then, from (10-117) to (10-121), one finds the oscillation energy of a after
collision with is given by

Beard et al. (1983), Beard and Johnson (1984) and Johnson and Beard (1984)
evaluated (10-122) subject to the limitation (Low and List, 1982a,b) that

where is the surface energy of a drop. This limitation implies that there
is a 50% or larger probability of drop breakup when exceeds half of the drop’s
surface energy. Assuming typical rainfall rates and the drop size distribution of
Sekhorn and Srivastava (1971), the analysis of (10-122) led to three conclusions:
(1) the oscillation energy is a maximum for collisions which take place between
drops of and drops of for rainfall rates of

(2) The fraction of drops having oscillation energies larger
than 50% of their surface energy is less than 15% for and

However, for large drops and large rainfall rates, this fraction increases
rapidly, reaching 100% for and (3) All drops
having values of experience axis ratio changes due to
collisional forcing. In order to check whether collisional forcing of drop oscillation is
significant under atmospheric conditions, Tokay and Beard (1994) compared their
computations with the observations during a field experiment. They found that the
number of drops predicted to oscillate at a point of observation due to a collision
in or above the air volume of observation was only a small fraction of the number
of drops actually observed to oscillate. Thus, it appears that although collisional
forcing may contribute to drop oscillation, it is not the main cause.
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10.3.4 FALL BEHAVIOR OF DROPS

Early studies on the fall behavior of water drops were carried out in immiscible
liquids by Magarvey and Geldart (1962), Magarvey and Bishop (1961a,b) and
Magarvey and McLatchey (1965). More recently, Pruppacher et al. (unpubl.)
and Vohl (1989) studied the fall behavior of water drops in air by suspending the
drops in a vertical wind tunnel or allowing them to fall in a 33 m high fall shaft. As
expected from the fall behavior of rigid spheres, drops of follow a helical
fall path. Water drops in air with execute large sideways
excursions of 10 to 50 drop diameters, thus preventing their stable suspension in
narrow observation sections of vertical wind tunnels. Note that this is also the size
range in which drops may oscillate in a transverse mode (Section 10.3.3). With
further increase in drop size, the sideways excursions decrease rapidly so that for
drops of the excursion is only a few diameters, allowing these drops
to be ‘stably’ suspended in the air stream of vertical wind tunnels. However,
such suspension requires a rapid adjustment of the tunnel’s vertical velocity to
compensate for the drop’s rapid fall velocity fluctuations caused by the oscillation-
induced drag changes.

Wind tunnel observations as well as field experiments show further that drops,
for which the flat lower side is parallel to the ground during fall in quiet air, tilt in
the presence of shear (Saunders, 1971). This behavior, called ‘canting’, is thought
to significantly affect microwave transmission (Thomas, 1971; Watson and Arabi,
1973; Chu, 1974). From a large number of measurements in thunderstorm rains,
McCormick and Hendry (1974) found that the canting angles are distributed about
an average of 0.48°, with a standard deviation of 1.77°. Over 82% of the measured
angles were within ±2.25°. This result agrees with the theoretical expectation of
Beard and Jameson (1983), who suggested, on the basis of drag considerations,

where is the acceleration of gravity, is the time required for a drop to
adjust to an imposed air velocity (see Section 10.3.5), and with
and being simultaneous velocities separated by the length scale and

For simple homogeneous, isotropic turbulence in the inertial subrange,
we find for the shear, using (10-111),

where here we have (e.g. Pasquill, 1962; Panchev, 1971). Numerical
analysis of (10-123) together with (10-124) shows that within the range
((10-114)) to the canting angle increases with the strength of the velocity
fluctuations, and reaches a maximum for For larger values of ,
the drop increasingly tends to follow the fluctuations. At the maximum varies
between 1.6° and 3.5° for a drop of and between 1.4° and 3.1° for

that the quasi-steady response to constant vertical shear is a canting angle
given by
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a drop of for and
respectively.

If a drop freezes, its fall behavior changes abruptly (Pitter and Pruppacher,
1973). During freezing, drops of exhibit an erratic sailing motion.
Once frozen, they may fall stably while spinning around a vertical axis, or they
may tumble forward or backward. Knobs or spikes stabilize the motion about the
knob or spike. Drops which are large enough to exhibit a flat base quickly turn
over on freezing, and fall with their flat side up (Spengler and Gokhale, 1972).

10.3.5 DROP INSTABILITY AND BREAKUP

Drop breakup may be the result of hydrodynamic instability of large single drops,
or a result of the collision between two drops which results in only a temporary
coalescence. In this section, we will consider the former mechanism, while the
latter mechanism will be discussed in Chapter 14. Experiments carried out by
Fournier d’Albe and Hidayetulla (1955), Blanchard and Spencer (1972), Alusa and
Blanchard (1973), and Alusa (1975) with drops falling through a long column of
air at rest, and by Blanchard (1948, 1950) and Beard and Pruppacher (1969) with
drops suspended in low turbulence wind tunnels, have demonstrated that, in quiet
air, drops may be as large as 4.5 mm in equivalent radius before breaking up.
The mechanism of breakup of such drops is closely tied to the development of
the previously mentioned concave depression in the base of the falling drop. At a
critical drop size, this depression almost explosively deepens and develops rapidly
into an expanding bag supported by an annular ring which contains the bulk of the
water. As this bag-like drop bursts, the bag portion breaks into a large number of
small drops while the annular ring breaks into a smaller number of larger drops.
The different stages of breakup are schematically drawn in Figure 10.22. This bag
breakup mechanism has been studied by Blanchard (1948, 1949, 1950), Magarvey
and Taylor (1956), Mathews and Mason (1964), and Koenig (1965a).

While a complete theoretical description of the growth of large amplitude drop
distortions remains out of reach, the superficial aspects of the breakup process are
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well-known. Probably the simplest order of magnitude estimate for the maximum
stable drop diameter is obtained through the statement that incipient insta-
bility occurs when the drag stress on the drop exceeds the surface tension stress.
Thus, may be estimated from the relation or

An equivalent dimensionless statement of this is

where is the Weber number. The Weber number can be seen to be a measure
of the relative strengths of the Bernoulli pressure (which is effective because of flow
separation) and the stress due to surface tension. It is clear that if
the surface tension stress, which tends to maintain a spherical shape, is negligible
in comparison to the pressure, so that the latter can therefore strongly distort or
disrupt the drop.

The value of in (10-125) and (10-126) is unknown, but should lie between the
values for a sphere and a disk at high Reynolds numbers. If we
choose (10-125) and (10-126) agree well with the experiments of Lane
(1951), who found (c.g.s. units). Thus, the critical Weber
number for breakup is approximately 10. Estimates equivalent to
(10-125) and (10-126) have been obtained, for example, by Dodd (1960), Levich
(1962) and Mathews and Mason (1964).

Komabayasi et al. (1964) adopted a somewhat different approach to arrive at
a similar estimate of the maximum stable drop size. They assumed that at the
surface of a freely falling drop capillary and gravity waves are induced which,
under certain conditions, become unstable and amplify. Thus, they consider drop
breakup as a manifestation of the Rayleigh- Taylor instability of two superposed
fluids of different density in a gravitational field. (An exhaustive treatment of this
subject is available in Chapter 10 of Chandrasekhar (1961). A brief description,
adequate for our purposes here, is given in Appendix A-10.3.5.)

Komabayasi et al. assumed the surface waves are plane parallel. From (A.10-48)
we see that the critical wave number for instability is

assuming The corresponding minimum stable wave length is
The critical maximum stable base width may there-

fore be estimated as i.e., the base width is just sufficient to
accommodate the fundamental standing wave corresponding to

When expressed in terms of a dependence on the relevant physical parameters,
the estimate of Kombayasi et al. is
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This can be compared with the previous estimate (10-125) by noting that, at ter-
minal velocity, the drag force balances the net gravitational force so that

Assuming an oblate spheroidal shape of axial
ratio where we have or
Consequently, we may write

Substitution of (10-129) into (10-128) gives

which is the same as (10-125) except for a numerical factor. We may estimate
by extrapolation of the measurements of Pruppacher and Pitter (1971) to

the case (see below); this gives Given the approximate
and disparate nature of the estimates, we conclude that (10-125) and (10-130) agree
surprisingly well.

The above comparisons provide additional physical support for the use of the
Rayleigh-Taylor instability mechanism as a means for estimating the maximum
stable drop size. A further refinement of this technique is available by employing
a model more compatible with the geometry of the drop (Klett, 1971a). The
symmetry of a falling drop about a vertical axis through its center suggests it
is appropriate to consider the stability of two-dimensional circular waves rather
than one-dimensional plane parallel waves. Also, the curvature of the drop surface
near the edge of its base will have a constraining effect on the wave motion. This
influence may be modeled in an approximate manner by regarding the effect of the
drop’s walls on its stability as lying between two extreme cases: (1) There are no
walls; i.e., the bottom surface of the drop behaves as if it were part of an infinite
interface between two otherwise unbounded fluids. (2) There are rigid vertical
walls such that the stability of the drop is the same as that of two superposed
fluids contained in a vertical circular tube

As shown in Appendix A-10.3.5, if we assume inviscid flow, the velocity poten-
tials in both cases have a radial dependence of the form where is the
Bessel function of the order and is the wave number. Also, in both cases,
the instability condition (10-127) holds. Following the standing wave criterion de-
scribed just before in (10-128), we see that for case 1 the radial distance from the

to the lowest point on the drop bottom (half of what we call the base width
must be the smallest of those distances such that is the root

of The smallest such root is so that
The most unstable mode in case 1 is axisymmetric. In case 2, the velocity poten-
tial satisfies (A.10-39), so that the base width is twice the smallest of those
distances such that is the root of In this case, the
smallest root is from which The most unstable mode
in case 2 is seen to be asymmetric.
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The preceding analysis thus suggests that the largest stable base width of a
water drop falling in quiet air should lie between 1.00 and 1.31 cm, i.e., a value
somewhat larger than that predicted by Komabayasi. Wind tunnel measurements
by Pruppacher and Pitter (1971) have shown that the largest drops which are
stable in quiet air have and base widths ranging between 1.00
and 1.05 cm. This agreement with the refined but still very approximate Rayleigh-
Taylor analysis is perhaps better than could be expected, since flow within and past
the drop was ignored, and the effect of drop curvature was neglected except insofar
as it determined boundary conditions at the ‘edge’ of the drop. A final comment
in defense of the Rayleigh-Taylor instability model seems worth mentioning. By
its nature, the model predicts that instability will occur on the bottom surface of
the drop. This is in accord with wind tunnel observations.

Before leaving this section, let us briefly consider the question of whether or not
atmospheric turbulence might have the capacity to disrupt drops. This is another
nearly intractable problem, but again some estimates can be made on the basis of
elementary arguments.

Let us assume the drop is immersed in homogeneous, isotropic turbulence in the
inertial subrange and that its size is larger than the turbulent microscale length
(see Section 11.6.2). Kolmogorov (1949) obtained an estimate of the maximum
stable drop size under the further assumption that the dynamic pressure difference
across the drop surface is due solely to turbulent fluctuations. When this is true,
one may proceed as in the argument leading to (10-125), except that now is
to be replaced by the characteristic velocity fluctuation over the length
from (11-67) this is of order where is the turbulent energy dissipation
rate. On making the appropriate replacement in (10-125), it immediately follows
that

Unfortunately, however, the assumption that the dynamic pressure difference is
caused solely by turbulent fluctuations does not hold for drops falling in air. It
would be true only if the drop were essentially completely entrained by the turbu-
lent eddies; i.e., (10-131) is applicable only for cases where drop and medium have
comparable densities. Levich (1962) has obtained another estimate for the case
where the density difference is large. However, his expression is also inapplicable
in the context of interest to us, since he disregarded the effect of gravity on the
drop motion.

For the case of water drops falling in air, it would seem reasonable to assess
the influence of turbulence by comparing the pressure increment due to turbulent
fluctuations with the Bernoulli pressure. The strength of the pressure fluctuations
increases with eddy size, and the maximum relevant size should be of the order of
the distance through which the drop falls during its relaxation time for velocity
fluctuations. Larger eddies are not felt as strongly, since the drop is able, to some
extent, to move with them.

Since for the drag varies as the square of the velocity, the fall speed of
the drop may be estimated from the equation where
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Letting where the fluctuation             we thus have
so that the relaxation time is

Hence, the maximum effective eddy size is corresponding to the tur-
bulent velocity fluctuation                                             Therefore, the ratio of the
turbulent and Bernoulli pressures is

For large drops, turbulent disruption should be significant only if this ratio is not
much smaller than unity. A relatively large value of is assuming
this value and the magnitude of (10-103) is Hence,
it appears that turbulence, if it is of the type assumed here, cannot be effective
in breaking up drops that are not already close to the critical breakup size in
absence of turbulence. This result is consistent with the conclusions of Tokay and
Beard (1994), namely that turbulence and wind shear of the type encountered in
the atmospheric boundary layer, with wind velocities up to do not
noticeably alter the oscillation amplitude of raindrops (Section 10.3.3).

Experiments to determine the breakup probability of isolated water drops and
the resulting size distribution of the drop fragments were carried out by Blanchard
and Spencer (1970) in a large fall shaft, and by Komabayasi et al. (1964) and
Kamra et al. (1991) in vertical wind tunnels. The simplicity with which the
breakup of single drops can be incorporated in a stochastic drop growth model (see
Chapter 15) motivates the inclusion of experimental data in current cloud models.
Thus, Hall (1980), Flossmann et al. (1985, 1987), Flossmann and Pruppacher
(1988) and Flossmann (1991, 1993, 1994) have assumed that all drops which have
grown to a radius of will break up by hydrodynamic instability
and produce the fragment distribution given by Hall who followed Danielsen et al.
(1972), in using the observations of Blanchard and Spencer (1972) (see Table 10.2).
In an earlier cloud model, Srivastava (1971) based his description of drop breakup
on the wind tunnel data of Kombayasi et al. (1964), who found that the breakup
probability for a parent drop of radius is a function of the drop size and increases
according to the relation

where is the probability for the to break up in time From the
same wind tunnel data, Srivastava (1971) deduced for the distribution of the drop
fragments the relation

where is the number of drops of radii between and formed
during the breakup of one parent drop of radius A = 623, and B = 7. More
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recently, Kamra et al. (1991) derived from their wind tunnel data the alternative
expressions

and

In cloud physics studies, there is often a need to know the terminal velocities
of water drops at various levels in the troposphere. Of course, is determined
simply through the condition of balance between the buoyancy-corrected gravita-
tion force and the drag force acting on the drop. Unfortunately, however, some
complications arise in the attempt to describe the drag forces accurately. Some of
these problems we have encountered already, while others we have avoided until
now.

Consider first the case of small drops in air falling in the Stokes regime of neg-
ligible Reynolds numbers. Here matters seem especially simple: from (10-40) we
write so that

for Both results agree reasonably well within the expected experi-
mental error and for common drop sizes.

Finally, from Section 2.1.6, we realize that raindrops rarely reach sizes required
for isolated drop breakup. It therefore appears that isolated drop breakup is not
the predominant breakup mode in the atmosphere. Rather, evidence suggests that
breakup is generally a consequence of collision and temporary coalescence between
pairs of drops. As we mentioned in the beginning of this section, we shall discuss
this breakup mode in Chapter 14.

10.3.6 TERMINAL VELOCITY OF WATER DROPS IN AIR
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where is the Stokes terminal velocity. However, the Stokes drag description
assumes continuum flow, and this assumption begins to break down for just those
drops which are small enough to have negligible Reynolds numbers. Thus, for
great accuracy, it is necessary to correct (10-138) for the effects of slip-flow (see
also Section 14.4.3). The correction becomes more important with increasing height
in the atmosphere, since the molecular mean free path increases with decreasing
air density.

As we have seen, there is a second range of intermediate Reynolds numbers for
which drops may be assumed to fall as rigid spheres in a continuum flow for which
both inertial and viscous forces are significant. For this range, we may invoke
the experimental and theoretical drag information which has been presented in
Section 10.2.2.4. Finally, for larger sizes, the problem of drop shape, and possibly
also the intrinsic flow unsteadiness, must be taken into account.

It is convenient and natural, therefore, to resolve the terminal velocity problem
into three drag regimes. Of course, there is some latitude in the proper choice of the
regime boundaries. In the sequel, we shall follow the classification and description
of Beard (1976).

In regime the terminal velocity is

where is given by (10-138). The slip flow ‘Cunningham’ correction factor (see
(11-15)) multiplying in (10-139) increases the terminal velocity above the Stokes
value by about 1% for and 17% for at standard conditions

For other levels in the
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atmosphere, the mean free path may be obtained from the expression

Similarly, the dynamic viscosity for other than standard conditions is given with
an accuracy of poise by

These expressions are based on data given by the Smithsonian Meteorological Ta-
bles. (Pressure does not affect and atmospheric water vapor affects negligibly;
see Kestin and Whitelaw, 1965.)

In regime 2: we may equate the drag and
gravitational forces to obtain When
multiplied by this yields for spherical drops

which is sometimes referred to as either the Davies or Best number. On the other
hand, from (10-28) and (10-40), we also have

where is the Stokes drag. Hence,

since is known as a function of from the data displayed in Figure 10.8.
In fact, Beard has suggested the following empirical fit for the curves shown in
Figure 10.8:

where

and where and Thus, for given
and atmospheric conditions and is specified through (10-142), after

which may be found from (10-145). Once is known, the terminal velocity
may be determined from

Some results for versus under different atmospheric conditions are shown
in Figure 10.23. Notice that increases almost linearly with radius for 100 < a <
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Note also that progressively overestimates the actual fall velocity; for
the deviation is about 6%, while for

it is 13%.
In regime 3: the drops can no

longer be considered spherical (see Section 10.3.2). Foote and du Toit (1969)
pointed out that the procedure outlined above for computing is only justified for
spherical drops, for only then are and a function of alone. If a drop is
deformed, the drag and, thus, the terminal velocity are functions also of the amount
of the drop’s deformation. We have seen that the deformation is a function of
which varies with height in the atmosphere, and also a function of and which
vary with temperature and, therefore, also with height. Furthermore, the methods
presented in Section 10.3.2 permit a determination of a drop’s deformation only if
its terminal velocity is known a priori.  Therefore, the procedures of that section
are inadequate to determine at arbitrary heights, since the only measurements
of for drops have been carried out at pressures prevailing at the Earth’s surface
(Gunn and Kinzer, 1949; Beard and Pruppacher, 1969).

Methods to get around this problem have been proposed by Wobus et al. (1971),
Dingle and Lee (1972), and Berry and Pranger (1974). Unfortunately, these at-
tempts are based on the Gunn and Kinzer observations, which pertain to the
Earth’s surface and, thus, cannot be used to extrapolate and, hence,

to other pressures and temperatures. Therefore, these methods do not cor-
rectly account for drop shape. Foote and du Toit (1969) recognized the need for
including a pressure dependence, and used the data of Davies (as reported by Best,
1950b) and Sutton (1942), derived from measurements of at reduced air densi-
ties. Unfortunately, however, a careful scrutiny of the data reveals that under the
conditions used by Davies, the water drops did not reach terminal velocity and,
thus, could not develop their equilibrium shape.

In order to remedy this situation Beard (1976) suggested following an approach
originally proposed by Garner and Lihou (1965). These authors found from studies
of drops of various liquids freely suspended in the air stream of a wind tunnel, that

depends on three independent dimensionless parameters: the Reynolds number
the Bond number and the ‘physical

property’ number The Bond number can be seen
to measure the relative strength of gravitational and surface tension force, i.e.,
the relative strength of the drag and surface tension forces for a drop at terminal
velocity. The parameter is formed by eliminating the radius between the Davies
and Bond numbers. From their observations, Garner and Lihou established that

Beard specified this functional relationship from a fit to the experimental results
of Gunn and Kinzer (1949) for water drops in air. He found for drops of

that

with
and where X =
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and If we now specify the temperature
and pressure of the atmosphere, and are determined and, thus, for
a given drop size and are specified. Since these determine X, Y can
be found via (10-148). From Y , the Reynolds number and, hence, may be
determined.

Some results of this computational scheme are shown in Figures 10.24 and 10.25,
in which the respective plots of are shown. As
would be expected, in the latter figure the curve for 1013 mb and 20°C agrees with
the experimental data of Gunn and Kinzer. It can be seen that the velocity of large
drops increases noticeably with height in the atmosphere from about at
sea level to a value in excess of at 500 mb.

It is interesting to note from Figure 10.25 that becomes independent of size
for This indicates that the larger the drop, the more it is flattened
and, thus, the larger is the cross-section presented to the flow. The consequent
increased drag resistance compensates for the increase in gravitational force.

A prediction of a limiting, size-independent terminal velocity follows directly
Rayleigh-Taylor instability analysis of the previous section. Thus, from (10-128)
and (10-130), we immediately find that for drops of the maximums stable size,

which is independent of size, except possibly for a weak dependence in the first
factor. An equivalent expression was obtained in an entirely different manner by
Levich (1962). Equation (10-149) predicts limiting velocity ratios for different levels
which agree to within 10% with those displayed in Figure 10.25.

Because of drop vibrations which are excited by the shedding of vortices for
one might also expect corresponding fluctuations in drop drag and,



420 CHAPTER 10

hence, terminal velocity. Indeed, as mentioned earlier, such variations in the ter-
minal fall velocity have been observed by Vohl (1989), who studied the fall behavior
of drops with freely suspended in the air of a vertical wind tunnel.
As we have seen in the previous section, the velocity response is limited by the
relaxation time given by (10-132). In view of Figure 10.24, we see that for
a drop of with a corresponding terminal fall velocity of
and an oscillation frequency of about agreeing well with
the relaxation time determined from wind tunnel observations by Vohl (unpubl.).
For smaller drops, the vibration frequency rapidly becomes too large to result in a
significant fluctuation of

Finally, let us estimate the distances and times which are necessary for water
drops of various sizes to reach terminal velocity after their release from rest. A
completely rigorous treatment of this problem of accelerating motion is complicated
by the need to include the term in the equation of motion for the fluid (recall
(10-3)). However, arguments presented in Section 14.4.1 demonstrate that the effect
of local fluid acceleration is negligible, since Hence, it is sufficient to use
the steady state drag formulas to describe the hydrodynamic resistance expecienced
by the drops.

In view of the above remarks and (10-143), the equation of motion for a spherical
drop of mass and velocity is

In general, this equation must be solved numerically, since both and are
functions of However, an approximate analytical solution may be obtained for
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very small drops falling in the Stokes regime. Then, and the
resulting linear equation may be integrated immediately to obtain

Thus, the viscous relaxation time for a spherical drop falling in Stokes flow is

for T = 0°C, in cm and in sec. Similarly, the time required for the drop to
reach a fraction of its terminal velocity is seen to be e.g.,

Integration of (10-151) gives for the distance the drop
must fall to reach a fraction of its terminal velocity, the result

For example, Thus, for a radius drop falling in air
at 20°C, we find and drop radii.

Numerical solutions of (10-150) have been given by Wang and Pruppacher
(1977a) for conditions under which the assumption of Stokes flow is not valid.
The drag was represented by (10-145) or (10-148), depending on the drop size
regime, and the atmospheric conditions assumed were T = 10°C. For

1.0 mm, and 2.0 mm, they found
0.90, 2.1, 3.6, 5.4, 12.6, and 19.8, respectively. Experimental confirmation of the
numerical results has been provided by Sartor and Abbott (1975) and Wang and
Pruppacher (1977a). It is clear from these results that in experiments on drop
behavior in which drops are released from rest, some care must be taken to ensure
a sufficient fall distance for terminal velocities to be achieved at the observation
location.

10.4 Hydrodynamic Behavior of Disks, Oblate Spheroids, and
Cylinders

We have devoted considerable attention to the hydrodynamic behavior of water
drops, partly because they are the most abundant cloud particles and also because
their approximately spherical geometry is relatively easy to deal with. We shall now
turn to a discussion of the hydrodynamics of ice crystals, based largely on idealize
metric models which approximate their shape. As might be expected, we shall find
much behavior which is analogous to that of spherical particles. In such cases,
therefore, where the differences in the descriptions are due mainly to mathematical
details arising from differences in geometry, we shall provide only brief summaries
of the essential results and refer the reader to the references for details.

We remarked in Chapter 2 that, to the casual observer, ice crystals appear in
a variety of different shapes. Actually, however, these only represent variations of
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two fundamental shapes: that of a columnar hexagonal prism and that of a plate-
like hexagonal prism. One is tempted, therefore, to approximate the hydrodynamic
behavior of ice crystals by that of finite circular cylinders, and of thin circular disks
or oblate spheroids. Indeed, Jayaweera and Cottis (1969) have shown by model
experiments that for simple columnar and plate-like ice crystals this analogy does
hold (Figure 10.26). We shall therefore briefly discuss the relevant hydrodynamics
of circular disks, oblate spheroids, and cylinders.

10.4.1 CIRCULAR DISKS AND OBLATE SPHEROIDS

An analytical solution to the Navier-Stokes equation for the (Stokes) flow past an
oblate spheroid at negligible Reynolds numbers, parallel to its axis of revolution,
was obtained by Oberbeck (1876) (see also Happel and Brenner, 1965). He found
the drag to be given by the expression

where and where and are the minor and major axes,
respectively, of the plate-like crystals. Since the cross-sectional area perpendicular
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to the flow is the corresponding drag coefficient is, from (10-28),

where the Reynolds number is based on the major axis If the oblate spheroid
is infinitely thin, i.e.; we obtain the drag expression for a
disk:

An extension of these results to include first-order inertial effects was accom-
plished by Aoi (1955). From a study of Oseen flow past an oblate spheroid, he
obtained the result

where For the case of a disk, this reduces to an
expression first obtained by Oseen (1915):

A further extension to include higher-order terms in was carried out by
Breach (1961), who used the method of matched asymptotic expansions to obtain
the result

where and
For a thin disk with eccentricity (10-159) becomes

All of these results are quite analogous to those which hold for spheres, and so
it should come as no surprise to learn they are accurate only for small values of

For moderate to large one must again resort to numerical solutions
of the Navier-Stokes equation. This can be done following procedures like those
we discussed earlier for the case of steady state flow past a sphere (10-8), the only
additional complication being the need to use oblate spheroidal coordinates (e.g.,
Rimon and Lugt (1969); Masliyah and Epstein (1970), and Pitter et al. (1973)).

As an example of the behavior of viscous flow past an oblate spheroid, the stream
function and vorticity fields (as determined by Pitter et al., 1973) are plotted in
Figure 10.27 for the case of axial ratio and for and 20.
Figure 10.27 shows that flow asymmetry is noticeable even at A standing
eddy develops at and grows in length with increasing reaching a
length of at The larger the axis ratio of the spheroid, the smaller
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the extent of the eddy and the higher the Reynolds number at which it begins
form. This is in good agreement with the experimental observations of Masliyal
(1972). In Figure 10.28, the length of the standing eddy at the downstream end or
the oblate spheroid is given as a function of In Figure 10.29, comparison is
made between the pressure distributions at the surfaces of a sphere and of oblate
spheroids of various It is seen that with decreasing the variation of the
pressure with polar angle becomes increasingly pronounced.

The variation of with for an oblate spheroid of is plotted in
Figure 10.30. Note that Oberbeck’s low Reynolds number solution underestimates

on a disk progressively with increasing while Oseen’s solution progressively
overestimates it. In Figure 10.31, the dimensionless drag is
shown as a function of This figure shows clearly that the analytical solutions
are very accurate only for while the numerical solutions agree excellently
with experiments for Also note from Figure 10.28 that, in analogy to
flow past a sphere, the variation of reveals ‘drag regimes’ within which

varies roughly linearly with and with rather pronounced
changes in drag near and The experiments of Masliyah
(1972) and the numerical results of Pitter et al. (1973) demonstrate that a stand-
ing eddy develops behind a thin oblate spheroid or disk at while the
experiments of Willmarth et al. ( 1964) show that at the shedding
of eddies begins from the downstream end of the disk. Thus, in further analogy
to flow past a sphere, its drag regimes are a close manifestation of its flow field
regimes.

Assuming that the variation of with for oblate spheroids is only
negligibly dependent on for and is given essentially by the ratio
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found for (this is justifiable from the experiments of Jayaweera and
Cottis 1969), we may express the functional relationship between and
as

where and The
corresponding expression for an oblate spheroid of is

where and

These relations may be used to approximate the terminal fall velocity of planar
ice crystals. For this purpose, we may follow a procedure similar to that outlined in
Section 10.3.6, and express as a function of the relevant basic atmospheric
parameters. Then, from (10-161) and (10-162), we have and, hence,
for given atmospheric conditions. The desired expression for is found by
equating the drag and gravitational forces; from (10-28) this leads to

where and are the volume and density of the ice crystal, and is its equator-
ial area oriented normal to the flow direction. Thus, for a circular disk of thickness
h and radius it follows from (10-163) that

where is the mass of the crystal (the small buoyancy force has been ignored in
the last form of this equation). Similarly, for an oblate spheroid, we have

In view of the close similarity between the motion of circular disks and plate-like
hexagonal prisms (recall Figure 10.26), we may also include the case of a hexagonal
plate of maximum (circumscribed) radius and thickness h, for which

Depending on the geometry of interest, any of the relations (10-164) to (10-166)
may be used in conjunction with either (10-161) or (10-162) to estimate the terminal
velocity of planar ice crystals.

This method is only applicable for since only for these Reynolds
numbers do such objects as thin disks fall stably with their broadest dimension
normal to the direction of fall. For oscillations occur which increase
in amplitude with increasing until eventually a glide-tumbling motion ensues.
Finally, at still higher the objects simply tumble (Willmarth et
al., 1964; Stringham et al., 1969; Schiller, 1932; Schmiedel, 1928).
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10.4.2 CIRCULAR CYLINDERS

It is obvious from Figure 10.26b that the flow past certain columnar snow crystals
may be idealized by that past a long, thin circular cylinder falling relatively slowly
with

Unfortunately, however, even this idealized geometry has proven overwhelmingly
complicated, and there are no known solutions for the flow past such objects.
Obviously, the difficulties are associated with the ‘end’ geometry. On the other
hand, there is some empirical evidence which indicates that end effects areoften not
of great importance. For example, a glance at Plates 4 and 5 shows that while plate-
like ice crystals rime preferentially at the edges, indicating a significant flow edge
effect, columnar ice crystals rime rather uniformly over their entire length. This
indicates that as far as the trajectories of drops past such crystals are concerned,
end effects imposed on the streamlines are significant for plate-like crystals but less
important for columns. Thus, for our idealization, we shall take one further step
and assume the cylinder has infinite length.

At this point, the reader might well anticipate a description of the drag per unit
length on a solid cylinder immersed in an otherwise unbounded Stokes flow moving
at right angles to the cylinder axis. Curiously enough, such an analogy with our
previous discussions cannot be provided, for there is no solution to this problem.
A simple demonstration of this fact is possible using elementary dimensional ar-
guments. Thus, if the free stream velocity is and the cylinder radius is the
force per unit length, can only depend on and However, since the
only dimensionless group that can be formed from these variables is we
conclude that where A is a dimensionless constant. This is dearly
impossible, since the force per unit length must also depend on the radius e.g.,
we should have if

The resolution of this so-called ‘Stokes paradox’ requires recognition of the fact
that the assumption of negligible fluid inertia everywhere cannot hold at infinity
(see Section 10.2.2.3). Thus, one must turn to the Oseen equations for the sim-
plest analytical estimate of the drag per unit length on an infinite cylinder in low
Reynolds number flow. This was achieved by Lamb (1911) (also in Lamb, 1945,
§343), who found the drag coefficient per unit length to be given by

where is Euler’s constant, and where  is the diameter of the
cylinder. This expression progressively overestimates the drag for

Numerical solutions to the problem of flow past an infinite cylinder can be
constructed, for example, by following a vorticity-stream function approach similar
to that we discussed earlier for the case of a sphere. Numerical solutions have been
obtained by Thom (1933), Kawaguti (1953), Hamielec and Raal (1969), Takami
and Keller (1989), Griffin (1972), and Schlamp et al. (1975) and Schlamp and
Pruppaeher (1977). Some representative results are displayed in Figure 10.32,
which shows the streamline and vorticity fields for   and 20. Note that, as
was the case for disks and thin spheroids, the flow has fore-aft asymmetry even at
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At a standing eddy of considerable length has developed at
the downstream end of the cylinder. In Figure 10.33, a comparison shows excellent
agreement between the theoretical and experimental eddy lengths. Note that the
eddy begins to develop at and subsequently grows linearly with increasing

Comparison with the case of flow past a sphere shows that, at a given
the standing eddy on a cylinder is considerably larger than that on a sphere. This
result implies a longer range wake influence on cloud particles in the vicinity of
a columnar ice crystal than would be the case for a spherical drop of comparable
radius.
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A comparison of drag coefficients as determined by theory and experiment is
given Figure 10.34. The agreement for the case of ‘infinite’ cylinders is seen to be
excellent. The figure also shows that for a finite cylinder depends relatively
strongly on the shape factor where L is the length and the diameter of the
cylinder. This is in contrast to the dependence of on the axis ratio for
thin oblate spheroids and disks. It is obvious from these results that the numerical
determinations of for an infinite cylinder cannot provide an accurate description
of the behavior of most columnar ice crystals.

The experimental values of Jayaweera and Cottis for shown in Figure 10.34
may be represented adequately by the following empirical expressions:

where For
For

For
For

As we have done previously for spheres,
spheroids, and disks, we may use (10-168) as a basis for estimating the terminal
velocity of columnar ice crystals. Thus, from an elementary and by now familiar
calculation, the Best or Davies number for a circular ice cylinder of length L, radius

and mass is
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Similarly, for a hexagonal cylinder of length L and radius of the base circumscribed
circle, we find

Therefore, for a given columnar crystal geometry and atmospheric conditions,
and, hence, may be found by substituting (10-169) or

(10-170) into (10-168).

Experiments of Jayaweera and Mason (1965) show (Plate 14) that the ends of
cylinders with finite length and with strongly affects the shape of the
flow behind the falling cylinder. Prom Plate 14, we notice that the downstream
flow is not uniform across the length of the cylinder, but instead has a pyramidal
shape. Experiments of Homann (1936), Roshko (1954), Taneda (1956b), Tritton
(1971) and Chillukuri (1987) have shown that the standing eddy at the downstream
end of an infinite cylinder begins to ‘shed’ at Measurements by Relf
and Simmons (1924) and Jayaweera and Mason (1965) have demonstrated that
the shedding frequency for a given is somewhat larger than that for a sphere
(Figure 10.35). The three-dimensional, non-steady state flow past falling cylinders
of finite length and has been photographed by Jayaweera and Mason
(1965) (see Plate 15).

In order to describe the flow past finite length cylinders, Ji and Wang (1991)
solved the non-steady state Navier-Stokes equation of motion (10-7) in three di-
mensions using numerical methods analogous to those used to describe the three-
dimensional, non-steady state flow past a sphere (Section 10.2.4). Notice from
comparing Plates 14 and 15 with Figures 10.36 and 10.37 that excellent agreement
with observed flows is obtained at and

As in the case for falling spheres and plate-like bodies, Jayaweera and Mason
(1965) found experimentally that falling cylinders exhibit secondary motions in
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respond to the shedding of eddies from their rear. They showed that at
cylinders of all axis ratios fall stably with their broadest extension oriented
horizontally. For the cylinders fluttered in a way that depended critically
on the value of          Thus, for                    fluttering was observed only if
For            fluttering required            With further decrease in
the Reynold number required for fluttering to occur increased rapidly, so that
for i.e. for very long cylinder, no fluttering was observed even at

10.5 Hydrodynamic Behavior of Snow Crystals, Snow Flakes,
Graupel and Hailstones

10.5.1 FLOW FIELD AND DRAG

The complicated shapes of snow crystals make a theoretical determination of the
flow field past them a very difficult task indeed. Recently, however, Ji and Wang
(1990) and Ji (1991) succeeded in solving the non-steady state Navier-Stokes equa-
tion of motion (10-7) in three dimensions by numerical techniques (see Section 10.2.4)
to determine the flow past two of the more simple crystal shapes, the simple hexag-
onal plate (type P1a), and the broad branched crystal (type P1c). The steady state
velocity field of flow past a broad branched crystal at is illustrated in
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Figure 10.38a. In Figure 10.38b, the non-steady flow field past a simple hexagonal
plate is illustrated for We notice the symmetric eddies in the rear of
the crystal at and the asymmetric turbulent features in the rear of the
crystal for The length of the stationary eddy in the rear of the two
crystal types is given in Figure 10.39 as a function of We note that the eddy
behind the hexagonal plate is larger than that behind a broad branched crystal and
approximates well the length of the eddy behind an oblate spheroid of the same
axis ratio (see Figure 10.28). The drag force coefficients computed by Ji (1991)
are plotted in Figure 10.40 where they are compared with values for crystal
models of the same and other shapes. We note from this figure that the more
pronounced the dendritic shape features are, the larger is the drag force coefficient
of planar crystal models at the same Reynolds number. This, of course, is a result
of the larger surface area which dendritic crystals expose to a surrounding medium
during their fall.

Values for the drag force coefficients of graupel models are also included in
Figure 10.40. We note that for of a smooth conical graupel models
is larger than that for a sphere at the same Reynolds number, while for
100 , the values for are approximately the same. Zikmunda and Vali (1972)
determined for natural graupel particles, and found that was larger than for
the smooth conical models, in particular at This result was attributed
to surface roughness of the natural graupel.

List et al. (1973) measured for smooth oblate spheroidal hailstone models of
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various axis ratios and for Depending on the angle of attack
of the flow past the spheroid, was found to vary between 0.2 and

0.85. The variation of with for is illustrated in Figure 10.41, where
comparison is made with for a sphere. Note the sharp drop in which  occurs
for large Qualitatively, this ‘drag crisis’ corresponds to a transition from a
laminar to a turbulent boundary layer. Turbulence in the boundary layer brings
more fluid momentum closer to the boundary surface. This counteracts the effect
of the adverse pressure gradient acting on the downstream side of the surface, so
that the flow separation phenomenon is suppressed and, hence, the pressure drag
is reduced (recall the discussion of separation in Section 10.2.2.3). Figure 10.41
shows that the drag crisis transition point is affected by the axis ratio of the oblate
spheroid.

Young and Browning (1967) and List et al. (1969) used spherical hailstone mod-
els with close packed hemispherical roughness elements on their surfaces to study
the effect of surface roughness on of hailstones. Their observations showed
that, except for uncommonly high surface roughness, the drag force coefficient var-
ied unsystematically in value and sign, and differed by less than ±10% from that
of a smooth sphere at the same Reynolds number. Both studies agreed, however,
that with increasing surface roughness the transition to a turbulent boundary layer
occurred at progressively lower Reynolds numbers.

List (1959), Macklin and Ludlam (1961), Bailey and Macklin (1968a), and
Landry and Hardy (1970) measured of natural and artificially grown hailstones.
Depending on the angle of attack of the air flow, was found to vary between
about 0.3 and 0.8 for between and Knight and Heymsfield (1983)
determined for natural hailstones freshly fallen during a hailstorm in Colorado.
These results may be summarized by and For
soaked hailstones, they found and with the
equivalent spherical diameter in cm.

to
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10.5.2 FALL VELOCITY

The fall velocity of plate-like and columnar crystals may be estimated from drag
data by idealizing their shape in terms of thin oblate spheroids or disks and hexag-
onal cylinders (see Figure 10.26). For example, from the thickness h, maximum
radius and density of a planar crystal, a value for may be deter-
mined for given atmospheric conditions from (10-166). Then, from (10-161) or
(10-162), one may compute for the equivalent circular disk, which is the disk
with the same mass and thickness as the crystal. Since the radius of this disk
is the terminal velocity may now be estimated from the
relation

This approach has been followed by Jayaweera and Cottis (1969), Jayaweera
(1972b), Jayaweera and Ryan (1972), Kajikawa (1971, 1972, 1973), and Heyms-
field (1972). Some selected results are summarized in Figure 10.42. We notice that
the theoretical predictions are in satisfactory agreement with actually observed fall
velocities. Figure 10.42 also indicates that the more pronounced are the dendritic
shape features, the lower the fall velocity for a plate-type ice crystal of given max-
imum radius. For a given crystal size, this follows from the decrease of its mass
and the increase of its drag with an increase in dendritic features.

A similar approach may be used for computing the terminal velocity of columnar
crystals idealized as hexagonal cylinders. Thus, from the crystal dimensions and
atmospheric conditions may be determined from (10-170). Then, from
(10-168) , may be computed. Once is known, may be found from the
definition of the Reynolds number, with

Similarly, studies of ice particles in cirrus clouds by Heymsfield (1972) have
demonstrated that for a bullet-shaped ice crystal may be determined from
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its equivalent cylinder if one sets
where is the width of the bullet crystal.

By idealizing graupel particles and hailstones as spherical particles of diameter
Rasmussen and Heymsfield (1987a) derived relations for from a

large number of drag force coefficients determined experimentally for natural
hailstones and hailstone models. Their expirical relationships may be expressed as
follows:

with
and where

and For a spherical hailstone or graupel particles of mass

For an ice particle of a given mass and for given atmospheric conditions, may
thus be evaluated. can then be calculated from (10-171). Once is known,
the terminal velocity follows from the definition of

Despite the availability of values for (and therefore vs. there
is little justification for computing the terminal velocity of graupel particles and
hailstones of a shape which deviates significantly from that of a sphere by using

values, since neither the volume of these particles nor their cross-sectional
area perpendicular to the flow are well-defined in (10-163). The same conclusion
applies also to snow crystal aggregates (or snow flakes). Additional complications
arise further from the oscillatory spinning and tumbling motions of these ice parti-
cles. It is therefore necessary to resort to observations on natural particles to find

Such observations are also needed to verify the accuracy of computing by
means of the drag method.

Unfortunately, observations of for natural ice particles apply only to the
temperature and pressure level at which the observations were made. Since
is strongly dependent on both of these parameters, corrections are necessary to
obtain at other levels. A velocity adjustment for a particle of fixed shape
has been suggested by Beard (1980) based on drag force coefficients obtained from
experiments with models which simulate the shape of various ice particles. His
studies suggest the velocity adjustment factor, may be computed
from the relations
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Here the subscript represents the reference level at which the velocity was ob-
served. In a later study, Beard and Heymsfield (1988) verified this velocity adjust-
ment model by a slightly different technique.

Field studies of the terminal velocity of various types of ice particles have
been carried out by Nakaya and Tereda (1935), Magono (1951, 1954b), Langleben
(1954), Litvinov (1956), Bashkirova and Pershina (1964a,b), Magono and Naka-
mura (1965), Fukuta (1969), Brown (1970), Jiusto and Bothworth (1971), and
Jawaweera and Ryan (1972). The most reliable values for the fall velocity of nat-
ural ice particles have been obtained by Kajikawa on Mt. Teine (1024 m MSL)
on Hokkaido Isld. His velocities for unrimed, planar snow crystals are reported in
Kajikawa (1972, 1975b). Best fit curves to some of these velocities are given in
Figure 10.42. Fall velocites for unrimed columnar crystals are given in Kajikawa
(1976), for various rimed snow crystals in Kajikawa (1975a,b), and for ‘early’ snow
flakes consisting of 2 to 6 component crystals in Kajikawa (1989). Additional ex-
tensive sets of fall velocity measurements were provided by Locatelli and Hobbs
(1974), whose observations were made in the Cascade Mts. (750-1500 m MSL,
Washington), and by Zikmunda (1972) and Zikmunda and Vali (1972) on Elk Mt.
(3350 m MSL, Wyoming). Best fit curves to the fall velocity of aggregates and
graupel observed by Locatelli and Hobbs are given in Figures 10.43 and 10.44. We
notice from these curves that the fall velocity increases with the maximum dimen-
sion of the ice particles in a manner which depends significantly on the degree of
riming of the graupels, as well as on the type and number of component crystals
in the aggregates.

Observations show that the size-mass relation for a given ice particle type varies
significantly from one storm to another, and even during the life cycle of one par-
ticular cloud. It is therefore not surprising that one finds corresponding variations
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also in the fall velocity of these particles. For these reasons, the empirical rela-
tions given in the literature for apply strictly only to the particular
storm or cloud system for which the relation was obtained, and do not have general
applicability. Nevertheless, to meet the need for such relations in contemporary
cloud models, we have given some selected relations in Tables 10.3a,b, 10.4, 10.5,
and 10.6, chosen such that they correspond to the mass-size relations in Chapter 2.

Terminal fall velocities of large graupel and hailstones have been determined
by Bilham and Relf (1937), List (1959), Macklin and Ludlam (1961), Williamson
and McCready (1968), Auer (1972b), and Roos (1972) from direct observations as
well as from observed drag force coefficients. From (10-28), we find for a roughly
spherical hailstone falling at terminal velocity,

where and are the densities of the hailstone and the air, respectively,
is the average diameter of the hailstone, and we have assumed
Using appropriate values for and terminal velocities for hailstones
can be computed from (10-174) which are in fair agreement with those directly
observed. A summary of observed terminal velocities of hailstones and large graupel
has been given by Auer (1972b). At the 800 mb level and 0°C, these values can be
fitted to the relation

for the range with

or
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Lozowski and Beattle (1979) found for hailstones which fell in Alberta, Canada
the relation

with Knight and Heymsfield (1983), who studied hailstones in Colorado
storms distinguished between fresh hailstones for which

with and soaked hailstones for which

for Note from (10-176) that giant hailstones may have terminal
fall velocities of up to These large terminal velocities imply that
comparable updraft velocities must exist inside clouds to permit the growth of
such particles.

10.5.3 FALL PATTERN

The fall pattern of unrimed, planar snow crystals has been studied in the field by
Kajikawa (1992), and in the laboratory using planar crystal models, by Podzimek
(1965, 1968, 1984) and by List and Schemenauer (1971). In response to the shed-
ding of eddies from the rear of the falling crystals, secondary motions began to be
noticeable at for simple hexagonal plates. Stellar and narrow branched
crystal models fell stably up to due to their lower inertia, in agreement
with the experiments of Willmarth et al. (1964), who also found increasing sta-
bility for circular disks with decreasing inertia. In contrast to the very symmetric
crystal models, Kajikawa (1992) found that most natural planar crystals begin to
exhibit secondary motions if due to differences between their center of
gravity and their geometrical center. Essentially, three types of secondary motions
were observed: a helical or spiral motion, an axial rotation, and a glide-pitch or
swinging motion. For each of these motions empirical relations were obtained by
Kajikawa (1992) to describe the non-dimensionalized frequency and
the non-dimensionalized amplitude of a crystal as a function of its mass.

Wind tunnel studies of Pflaum et al. (1978) showed that the glide-pitch ampli-
tude of a riming planar crystal increased with the amount of rime deposited on the
plate’s lower side, until at some critical loading, the plate was observed to flip-over
and begin riming on the plate’s original upper side. Depending on the mass loading
during riming, flip-over was observed to occur repeatedly, eventually resulting in
the formation of a lump-type graupel. However, if growth continued only on the
crystal’s lower side, a conical graupel developed.

The fall attitude of conical models has been studied by Jayaweera and Mason
(1965), Goldburg and Florsheim (1966) and List and Schemenauer (1971). The
fall mode of these models depended on their mode of release and on the shape of
the base of the cone. Natural graupel were observed by Zikmunda and Vali (1972)
and Pflaum et al. (1978). Depending on the graupel’s shape and mass-loading
instability began at Cones fell with apex up most frequently.
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Three types of secondary motions could be identified: helical or spiral fall, axial
rotation, and bell-swing motion about the apex of conical graupel (Pflaum et al.,
1978).

The fall attitude of columnar snow crystals was studied by Kajikawa (1976)
and Zikmunda and Vali (1972). Typically, the crystals fell with their long axis
horizontal. Three secondary motions were also observed: a helical fall motion, a
rotational motion about one of the crystal’s minor axes, and an oscillation of the
major axis in the vertical plane. This behavior is consistent with the experiments of
Jayaweera and Mason (1966) and of Podzimek (1968, 1969) with loaded cylinders.

The fall attitude of aggregates of various planar snow crystals was studied by
Sasyo (1977), Kajikawa (1982, 1989), and Zikmunda (1972). Analogously to single
planar snow crystals, three types of secondary motions were observed for aggre-
gates, and their non-dimensional frequency and amplitude recored: a helical or
spiral motion, an axial rotation, and a glide-pitch oscillation. Onset of secondary
motions depended on the distance between the centers of the component crystals
and on their size. For some of the most asymmetric configurations observed, insta-
bility set in at while flakes with symmetric configurations fell stably for

Using a wind tunnel, Mitra et al. (1990c) showed that the fall attitude
of snow flakes abruptly changes as soon as they begin to melt. Generally, large
helical fall amplitudes resulted, since flakes melt asymmetrically. The fall velocity
was found to change rather slowly until about 50% of the ice mass in the flake had
melted. Subsequently, the fall velocity approached exponentially the fall velocity
of a drop of the same mass as the flake.

Many observational difficulties have so far prevented direct quantitative studies
of the fall mode of hailstones falling from hail-bearing clouds, although a number
of field experiments have been carried out to simulate such fall. For example,
Macklin and Ludlam (1961) and Landry and Hardy (1970) dropped spheres and
model hailstone in the free atmosphere, and tracked them with radar. Although
these experiments yielded drag force coefficients, they could not resolve the detailed
motion of the falling models. Knight and Knight (1970c) employed a skydiver to
photograph freely falling oblate spheroids. It was found that these objects rotate
preferentially around the major axis, which generally remains oriented horizontally.
Unfortunately, little additional quantitative knowledge was gained.

Since large wind tunnels which are capable of freely supporting hailstones in an
air stream are not yet available, laboratory studies have been confined to indirect
determinations of the fall mode of hailstones, or to model experiments. For ex-
ample, from water tank experiments, List (1959) determined that large, smooth
oblate spheroids prefer to fall with the minor axis vertical. Browning (1966),
Browning and Beimers (1967), and Knight and Knight (1970c) interpreted the
observed structure of hailstones in terms of a constant fall attitude at some times
and a random tumbling at others. List et al. (1973) used experimentally deter-
mined values for the drag force, lift force, and torque acting on a smooth oblate
spheroid of to solve numerically for its motion. From
their computations, they predicted that subsequent to a small perturbation on a
spheroid’s steady state fall attitude (major axis horizontal), damping may either
restore the initial state, or coupling between rotational and horizontal translational



446 CHAPTER 10

components of the spheroid’s motion may give rise to amplification of the initial
perturbation. Depending on the axis ratio and size of the spheroid, and on the
magnitude of damping, such amplification was found to lead to either a constant
amplitude oscillation or continuous tumbling around the horizontal major axis.

More recent theoretical and experimental studies (Kry and List, 1974a,b; Stew-
art and List, 1983; Lesins and List, 1986; List, 1990) have established that hail-
stones gyrate while freely falling. A gyrating hailstone spins about the hailstone’s
minor axis which remains approximately horizontal but wobbles to cause a pre-
cession and nutation so that the spin axis moves on the surface of a circular or
elliptical cone. The free fall theory of Kry and List (1974a,b) and Stewart and List
(1983) predict a spin frequency of 9.5 Hz and a nutation/precession frequency of
14 Hz in agreement with experiments which showed that lower or higher frequencies
produce hailstone shapes which are not observed in nature.

While falling from cloud base to the ground, the terminal fall velocity of hail-
stones may change dramatically if they melt. A scheme which parameterizes this
change has been provided by Rasmussen and Heymsfield (1987a).



CHAPTER 11

MECHANICS OF THE ATMOSPHERIC AEROSOL

The main purpose of this chapter is to outline the basic dynamic behavior of
aerosols. We shall therefore discuss the phenomena of Brownian motion, diffusion,
sedimentation, and coagulation of aerosol particles, including some effects of turbu-
lence. (Possible electrical influences will be discussed in Chapter 18.) We shall also
extend and/or apply the various formulations to the problems of explaining some
observed features of the size distributions of atmospheric aerosol particles. This,
in turn, will provide much of the mathematical framework which we shall subse-
quently use in our study of the individual or collective growth of cloud particles by
diffusion (Chapter 13), by collision and coalescence (Chapters 15 and 16), and in
our study of the mechanisms which remove aerosol particles from the atmosphere
(Chapter 17).

Some useful references for this chapter include Rasool (1973), Hidy and Brock
(1970, 1971, 1972), Davies (1966), Fuchs (1964), Greene and Lane (1964), Junge
(1963a), Levich (1962), Bird et al. (1960), Friedlander (1977), Twomey (1977),
Hidy (1984), and Seinfeld (1986).

11.1 Brownian Motion of Aerosol Particles

Let us first review briefly the classical theory of Brownian motion as it applies to the
atmospheric aerosol. Brownian motion is the name given to the irregular motion
(‘random walk’) of particles due to thermal bombardment with gas molecules. A
satisfactory account of it may be deduced from a simple model which ignores the
detailed structure of the participating particles and, more importantly, assumes
that successive particle displacements are statistically independent. This latter
assumption is often described by saying Brownian motion may be idealized as a
Markoff process, which means a stochastic process in which what happens at a
given instant of time depends only on the state of the system at time

A direct consequence of the randomness of Brownian motion is that the mean
square distance traversed by a Brownian particle is proportional to the length of
time it has experienced such motion. One simple way to prove this and evaluate
the constant of proportionality is by means of the form of Newton’s second law
known as Langevin’s equation (see, for example, Chandrasekhar (1943), p. 20),
which reads as follows:

where denotes the velocity of the particle. The first term on the right describes
the continuous frictional resistance of the air to the motion of the particle, and the

447
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second term denotes the fluctuating acceleration which is characteristic of Brown-
ian motion. That the equation of motion can be broken up into continuous and
discontinuous pieces like this is an ad hoc assumption which is justifiable in part
because it is intuitively appealing, but more importantly because it is successful in
predicting behavior.

The frictional term represents the loss of organized energy which contributes to
the thermal energy responsible for the fluctuations. If we apply ordinary macro-
scopic hydrodynamic arguments, then, since the Reynolds number for an aerosol
particle is quite small, we may assume the frictional retarding force is described
adequately by Stokes’ law (see Section 10.2.2.3). Obviously, for a particle with
characteristic dimension comparable to the mean free path of the air mole-
cules, there will also be a dependence of the frictional force on the Knudsen number

but for now we will ignore this refinement. Then, for a spherical par-
ticle of radius and mass we have

If we now take the dot product of (11-1) with the position vector and average
the result over many trials or ‘realizations’ of the motion (denoting the averaging
process by angular brackets), we find

Assuming the law of equipartition of energy holds, so that and
considering that the complete directional isotropy of collisions implies
we find

which upon integration yields

where c is an arbitrary constant. The parameter is just the viscous relaxation
time given by (10-152). Generally, is quite small for atmospheric aerosols;
e.g., for a particle of and density in air of 1 atm and 20°C,

For times any initial velocity disturbance will have decayed
so that the stationary mean of characteristic of Brownian motion, is

Since one further integration immediately yields
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or

This basic result was derived originally by Einstein (1905) in a somewhat differ-
ent manner. It has been confirmed experimentally in numerous ways, and has
been used, for example, to determine the Boltzmann constant, k, and Avogadro’s
number, where is the universal gas constant.

11.2 Particle Diffusion

The dependence of (11-8) is characteristic of a diffusion process, and in
fact, we may describe the motion of a large number of particles undergoing random
walks without mutual interference as a process of diffusion. We now turn to a brief
discussion of the connection between these two points of view. According to the
well-known macroscopic theory of diffusion, if denotes the concentration of
the diffusing aerosol particles at and at time then the current density in a
stationary medium is given by ‘Fick’s first law’, namely

where D is the diffusion coefficient or diffusivity. Application of the equation of
continuity for the diffusing substance

immediately results in the diffusion equation (‘Fick’s second law’):

where we have assumed D is a constant.
Let us now determine the mean square displacement (second moment) of a distri-

bution of diffusing particles, according to the foregoing equation. Let N identical
aerosol particles per unit area be introduced at time in an infinitesimally
thick slab near (we assume no dependence on or The resulting diffusion
corresponds to many simultaneous realizations of a single particle’s random walk
from the origin. Multiplying the diffusion equation by and integrating over
we obtain

where the right side of the equation has been integrated by parts twice, and where
on the left hand side we have used the definition
Consequently, the mean square displacement is
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which agrees with (11-8) if

For particles in the submicron range, the Knudsen number correction referred to
earlier becomes important. It has been found expreimentally (Cunningham, 1910)
that a suitable form of the diffusion coefficient for small particles is

where is termed the Cunningham slip-flow correction. For the parameter
Knudsen and Weber (1911) proposed a relation of the form

Unfortunately, there is some confusion in the literature on the values to be inserted
for the ‘constants’ A, B and C. Thus, Flanagen and Taylor (1967) pointed out
that A, B and C are not universal constants, but rather depend on the nature
of the gas and the surface characteristics of the particles which move through the
gas. Millikan (1924) found for oil drops in air A = 0.864, B = 0.29, C = 1.25.
After correcting some systematic errors in the Millikan data, Flanagan and Taylor
(1967) found A = 0.866, B = 0.29, and C = 1.25. In contrast, Knudsen and
Weber (1911) found for glass beads in air A = 0.772, B = 0.400 and C = 1.63, and
Matauch (1925) for oil drops in nitrogen A = 0.898, B = 0.312, C = 2.37. From
an analysis of all the former experiments and using the definition for the mean free
path due to Chapman and Enskog (see Kennard, 1938, p. 147), Davies (1945) found
A = 1.257, B = 0.400, C = 1.10. These latter values have also been recommended
by Junge (1963a), Friedlander (1977), Hidy (1984) and Seinfeld (1986). Table 11.1
lists a few representative values for D, computed from (11-15) and (11-16), and the
corresponding values of (from 11-7) multiplied by after one minute
of diffusion time. On the basis of the small and rapidly decreasing values of D and

with increasing particle size, one can reasonably anticipate that Brownian
diffusion of aerosol particles in the troposphere becomes of secondary importance
to other transport processes for It is also interesting to note that even
for AP as small as D is still three orders of magnitude smaller than the
diffusivity of foreign gases in air, which typically is of the order of

11.3 Mobility and Drift Velocity

Let us now generalize the Langevin equation (11-1) by letting an external force,
act on the diffusing particle:

On taking mean values and assuming a steady state (which requires only that the
characteristic time for a change in be large compared to this yields
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This average response to an impressed force is called the drift velocity. It is cus-
tomary to define the particle mobility, , by the equation

Therefore,

for a spherical particle obeying Stokes’ law corrected for slip. Further, on combining
(11-15) and (11-20), we obtain an intimate connection between the mobility and
the diffusion coefficients, namely

which is known as the Einstein relation.

11.4 Sedimentation and the Vertical Distribution of Aerosol
Particles

The drift velocity of small particles falling under gravity is obviously just the ter-
minal velocity in slip-corrected Stokes flow, Thus, for spherical particles of
density and we have

(cf. Section 10.3.6). This result is plotted in Figure 11.1 for which
shows that the fall velocity of a particle increases rapidly with height, particularly
above 10 km. Also, the velocities are seen to be quite small for in fact, a
time of the order of years is required for particles of to fall through a
layer 1 km thick at altitudes less than 25 km.

In (11-22), we have assumed that the falling particles are spherical. However,
dry atmospheric aerosol particles often have shapes other than that of a sphere.
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For example, dry NaCl particles are cubic, dry clay particles may be plate-shaped
(kaolinite) or rod-shaped (halloysite), and soot particles may be present as chains
of spheres. Many additional forms, including irregular shapes may be found. Obvi-
ously, the shape of a particle affects its mobility and, thus, its fall velocity. Effects
of particle shape on fall velocity have been studied by Horvath (1974, 1979), Davis
et al. (1987), Cheng et al. (1988a b), and Lee and Leith (1989). A variety of form
factors have been denned in the literature. Some of these factors are based on the
ratio of the actual aerodynamic drag to the Stokes drag; on the ratio of the actual
fall velocity to the Stokes fall velocity; on the aerodynamic radius, which is the
radius of a particle of arbitrary shape and density whose terminal velocity would
be equivalent to that of a sphere of unit density; or on the radius of a spherical
particle such that its terminal velocity (or its drag) is the same as that measured
for the arbitrarily shaped particle. For these shape factors, the reader is directed to
the appropriate original articles. As expected, the measured form factor becomes
larger the more elongated the particle is, and the more sharp edges and corners it
exhibits. Nevertheless, it is surprising to note from the observations that, except
for extreme forms such as needles, very thin plates, or long chain aggregates, the
shape effect is relatively small for typical atmospheric particles. In addition, we
must remember that most of the atmospheric AP are mixed particles consisting of
water insoluble and soluble compounds. From Table 4.3, we must therefore assume
that at typical relative humidities in the atmosphere, the water soluble portion will
have adsorbed significant amounts of water vapor, or even have gone partly into
solution. Both processes tend to increase the particle’s sphericity.

Let us now consider the problem of determining the distribution of particles
undergoing simultaneous Brownian diffusion and sedimentation. In this case, we
write the total particle current density as the sum of the contributions from
diffusion and drift in the gravity field:
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Application of the continuity equation for the particles, yields the
governing (‘Smoluchowski’) equation for the concentration

where we have assumed gravity acts in the direction and that
If we suppose the plane forms the bottom absorbing boundary of a semi-
infinite homogeneous aerosol which was initially of uniform concentration for

then the solution for the vertical distribution is

where erf denotes the error function (see Appendix A-11.4 for details). The depo-
sition rate of particles on the surface is therefore given by

According to (11-26), the diffusion current is infinite at This happens
because of the artificial specification of an infinite concentration gradient at

For (11-26) becomes
which is equal to the diffusion deposition rate which would occur in the absence of
sedimentation, plus half of the pure sedimentation rate. For particles of radius 0.1
and in air at and is about 40 sec and
respectively, assuming a particle density of For the deposition
rate is so that Brownian motion no longer has any effect.

In reality, of course, the atmosphere is not motionless, nor is the surface of the
Earth merely an aerosol sink. Generally, there will be an upward flux of material,
usually by turbulent diffusion, which will tend to equilibrate with sedimentation
and other processes over various time scales. If we assume a steady state balance
of vertical turbulent diffusion and sedimentation, a crude account of the resulting
vertical distribution of aerosol may be obtained by the following plausible modifi-
cation of the particle current density in (11-23): let D be replaced by where

is an effective eddy diffusivity of aerosol particles describing the transport ca-
pability of turbulence within the framework of classical diffusion theory, and let

where W is the average updraft velocity of the air. Further, that
part of the concentration gradient of particles which is due to the decrease in air
density with height will not be effective in the turbulent transport. Therefore, in
order to obtain results for heights comparable to the scale height of the atmosphere,
we should replace in (11-23) by where is the number con-
centration of air molecules at height Assuming the net particle flux is zero at
all levels, the equation governing the mixing ratio becomes
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so that, with the ground at , the distribution is

where

assuming constant If desired, the particle concentration may be recovered by
noting that (11-28) may also be expressed in the form

where the first terra in the product on the right side of (11-29) is given by

using the ideal gas law and assuming hydrostatic equilibrium.
As we have discussed in Chapter 8, an exponential decrease of aerosol particle

concentration with height, in qualitative conformity with (11-28), is often observed
in the lower troposphere (recall Figures 8.31 and 8.32). However, the model used
above leaves much to be desired. For example, we have neglected the effects of
local sources and sinks, meteorological conditions of wind and stability, dilution
by mixing with air of different properties, ‘washout’ or ‘scavenging’ by cloud and
precipitation particles, and various coagulation processes operating in a hetero-
geneous aerosol. More complete models to describe the vertical distribution of
aerosols have been formulated by Junge (1957b), Erickson (1959), Junge et al.
(1961a), and Toba (1965a). Models for explaining the horizontal distribution of
the atmospheric aerosol have been formulated by Toba (1965a), Tanaka (1966),
Toba and Tanaka (1968), and Rossknecht et al. (1973).

11.5 Brownian Coagulation of Aerosol Particles

Particles undergoing relative Brownian diffusion have a finite probability of collid-
ing and sticking to one another; i.e., they may experience thermal or spontaneous
coagulation. The sticking probability or sticking efficiency of aerosol particles is
a complicated function of their shape and surface conditions (roughness, absorbed
vapors, etc.), the relative humidity of the air, the presence of foreign vapors in the
air, and other factors. Although little is known quantitatively about the sticking
efficiency of aerosol particles, the fact that the kinetic energy of the colliding par-
ticles is very small makes bounce-off unlikely. We shall therefore assume a sticking
efficiency of unity in the sequel. (For a review of the topic of sticking efficiency, see
Corn (1966).)

To formulate the coagulation process, we first need to find the diffusion coeffi-
cient which characterizes the diffusion of particles of radius relative to those
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of radius Suppose the particles experience displacements and in time
respectively. Then, their mean square relative displacement is

since the motions are independent. Now from the meaning of D12 and the results
(11-8) and (11-13), we have on the other hand, we also
have and Therefore, we obtain the simple result

By the preceding argument, we may regard the particle as stationary and suppose
the particles are diffusing toward it with diffusion coefficient Using the
center of the particle as the origin of coordinates, we have by the isotropy of
the process that the concentration of the is a function only of the
distance from the origin, and time Further, the boundary condition of adhesion
on contact may be expressed as

So we must solve

subject to (11-32) and the initial condition

where is the ambient concentration of at the beginning of the
coagulation process.

The solution to (11-32) to (11-34) is easily obtained, since (11-33) is just a one-
dimensional diffusion equation in the dependent variable It may be solved, for
example, by application of the method presented in A-11.4, using the independent
variable By this or other means, the solution is found to be

The coagulation rate (loss rate) of the colliding with the is
just the flux of the ‘through’ the surface given by
in a direction opposite to the

We may generally ignore the time factor in this expression since (i.e., the
characterisitic time for diffusion over distances comparable to aerosol radii) is less
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than for and less than for For a steady
state, (11-36) becomes

This result could have been obtained more readily from the steady state version of
(11-33) (Laplace’s equation):

subject to the boundary conditions (11-32) and (11-34). The result is

which is the large time limit of (11-35). Substitution of (11-39) into the second
term on the right of (11-36) and evaluating the integral recovers (11-37).

Let us now take into consideration the fact that the ambient particle concentra-
tions will in fact be functions of time owing to coagulation in a volume of acrosol.
Until now we have denoted the ambient concentration of the particles as
henceforth in this section we will simply use the notation or if the explicit
time dependence needs to be stressed; similarly for other aerosol particle concen-
trations. Suppose now that the concentration of particles of radius is Then,
the total loss rate of particles per unit volume of aerosol is just (11-37) scaled
up by the factor

Introducing (11-15) into this expression, we obtain

According to this equation, the rate of particle loss increases with increasing tem-
perature, particle concentration, and mean free path with increasing altitude; it also
increases with decreasing and with increasing polydispersity. This last effect
is illustrated by letting from which
This function has a single minimum at or

Let us now assume an aerosol initially of uniform particle size, i.e.,
and Then, the loss rate of particles present in concentration is, from
(11-40),

where is the Brownian collection kernel (without the
slip correction) which, as will be described in more detail below, characterizes the
process of aerosol coagulation. It is clear that this equation can only hold for a
time interval which is small compared to that required for a significant buildup of
coagulated multiple particles. We shall demonstrate below that when such particles
are present, the decay of the single particles follows a different time dependence.
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However, we can extend the validity of (11-42) through a minor adjustment and
reinterpretation. This is based on the observation that for every pair of primary
particles that coalesce, one double particle is produced. Therefore, if higher multi-
ple particles are ignored, we can say that the net loss rate of the total concentration
N is just one half of the rate specified in (11-42):

On integration of (11-43), we find

or

where is the particle concentration at (Smoluchowski, 1916, 1917). The
total particle concentration is therefore reduced by a factor of one-half in a time

given by

including the slip correction. As expected, the coagulation time decreases
with decreasing size, increasing concentration, and increasing temperature of the
aerosol. One may use to estimate the size range of tropospheric aerosols for
which Brownian coagulation is important. As an example, we may assume aerosol
particles of the size and concentration given in Table 11.2. We note that for Aitken
particles, Brownian coagulation is the dominant loss mechanism.

In the early literature, (11-44a) was the basis for testing coagulation theory
against observation by using the fact that, for a constant Brownian collection kernel

, a plot of 1/N against time should be linear with a slope Experimental
studies of aerosol coagulation, reviewed over a period of many years by Fuchs
(1964), Green and Lane (1964), Whytlaw-Gray and Patterson (1932), Patterson
and Cawood (1932), Whytlaw-Gray (1935), Artemov (1946), and Devir (1963),
have shown that for many aerosol systems presumed to be coagulating by Brownian
motion, 1/N does vary linearly with time, an observation which has been widely
been used to evaluate and to learn more about the ranges of applicability, of
Smoluchowski’s theory for Brownian motion. However, comparison between theory
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and experiment is complicated by the fact that the particles studied often have non-
spherical shapes. This alters the collision distance which, for mass equivalent non-
spherical particles, becomes larger than (Lee and Leith, 1989). Additional
factors which make a comparison of experiments with (11-44a) difficult are the
polydispersity of the observed aerosol, electrical charges on the particles, wall effects
and spurious air currents (Hidy and Brock, 1970).

We shall now generalize our coagulation model to account for the fact that
coagulation changes the aerosol size distribution. Suppose initially we have a homo-
geneous aerosol of particles of volume in concentration Coagulation
sets in and soon there appear particles of volume in concentration

in concentration etc. Then, to an excellent approximation, the rate of
coagulation of and particles per unit volume of aerosol to form particles of
volume is given by with and

where and are the ambient concentrations
of the and particles at time t.

We can now write down the governing equation for coagulation. From our
generalization above, the overall rate of formation of particles per unit volume
of aerosol is evidently given by where the factor of 1/2
is included to avoid counting the same interaction event twice
Similarly, the loss rate of the particles per unit volume of aerosol is given by

Therefore, the equation which determines the discrete particle
size distribution for binary collisions is

This is the discrete form of the kinetic coagulation equation for Brownian coagu-
lation.

According to (11-14), the diffusion coefficient is inversely proportional to the
radius, so that we may write

where D and are the diffusion coefficient and radius of the primary particles. Since
the Cunningham slip correction has been ignored, this expression applies only for

For (11-47) may be approximated by to
within a maximum error of 12.5%. Since this approximation assumes it is
said to ignore the aerosol polydispersity.

Smoluchowski (1916, 1917) obtained an approximate solution to (11-46) for the
case of an initial homogeneous aerosol, assuming If we introduce

and (11-46) becomes
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Summing over we obtain

which upon integration yields

With this result, the solutions for may be obtained successively. Thus, the
equation for is

which leads to By induction, one may easily show that for arbitrary

which is Smoluchowski’s solution.
It is interesting to note that since the solution for the total concen-

tration, given by (11-50), is entirely equivalent to (11-44b). This is a bit surprising,
in view of the relatively weak arguments used to justify the latter equation. We
also see that, according to (11-51), the decay law of the primary particles is of
the form whereas from (11-42) we may obtain the approximate
solution (indicated by a prime) However, as expected, the two
solutions merge for and we obtain the first-order result
for Furthermore, for small , the solution for the total concentration be-
comes This shows that the early decay rate of the primary
particles is in fact just twice the total concentration, as we anticipated earlier.

The most serious limitation of Smoluchowski’s solution is that it assumes an
initially homogeneous aerosol. In order to investigate the effect of Brownian co-
agulation on realistic aerosol spectra, Junge (1955, 1957b) and Junge and Abel
(1965) have carried out numerical solutions of the kinetic coagulation equation,
using measured tropospheric aerosol spectra for initial conditions and allowing for
the dependence of the coagulation rate on particle size. For this purpose, they
used a continuous form of the coagulation equation, involving the continuous size
distribution function where is the number of particles at time
with radius between and per unit aerosol volume.

In order to derive the coagulation equation for          first note that (11-46)
may be written in the form

wherewhere
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The quantity is called the collection kernel for Brownian coagulation. An
obvious continuous counterpart of this equation is obtained by making the changes

where is the number of at time with volume between and
per unit aerosol volume, and is the coagulation rate of

u-particles with a . The continuous form of involving the distribution
function is then

We may transform this directly into an equation for by noting that

which merely reflects the fact that more than one measure may be used to count the
same particles. Therefore, if and are the radii corresponding,
respectively, to v, u, and v – u, we have

so that (11-56) becomes

The collection kernel             for Brownian coagulation is, from (11-41),

where we have again included the slip correction.
Equations (11-58) and (11-59) (with were solved numerically by Junge

(1957b, 1963a) and Junge and Abel (1965) for the case of an initial spectrum
representative of average tropospheric conditions, and assuming that the aerosol
particles colliding by Brownian motion have a sticking efficiency of unity and behave
as droplets. The result of this computation is shown in Figure 11.2 in terms of the
concentration of particles with It is seen that the modification
of the size distribution due to Brownian coagulation is confined mainly to particles
with radii less than i.e., the Aitken particle size range. With increasing
time, particles of radii less than rapidly disappear, while the maximum of the
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original size distribution shifts to larger sizes, shifting less and less and centering
over after a few days. From the computed corresponding particle
volume changes, Junge and Junge and Abel also concluded that coagulation causes
a steady flux of aerosol material from the Aitken size range into the ‘large’ particle
size range, causing the formation of ‘mixed’ particles in the size range of ‘large’
particles.

Current atmospheric observations support the view (see Chapter 8) that tro-
pospheric aerosols, particularly urban aerosols, show multimodal distributions due
to mixing of primary sources and dissimilar formation processes. Assuming a spa-
tially well-mixed aerosol, Suck and Brock (1979) showed that the effect of Brownian
coagulation on an atmospheric bimodal aerosol size distribution is such that it will
maintain its bimodal identity for long time periods (at least hours) unless meteo-
rological changes, washout by rain or gravitational settling, occurs. This behavior
is exemplified in Figure 11.3.

We mentioned in Section 8.2.9 that observations suggest that the aerosol particle
concentration does not decrease to zero for particles of radii below but,
after a minimum for increases again to a second maximum
for particles with We indicated that it is reasonable to attribute
this second maximum to a continuous production of primary particles by gas-
to-particle conversion. In order to take this behavior into count, Walter (1973)
solved the coagulation equation (Equations (11-58) and (11-59)) with a source-
term included. Walter assumed an initially narrow normal distribution of primary
aerosol particle sizes whose mean radius was and whose production
rate GPC was particles Figure 11.4 shows that after only a
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short time, coagulation produces a secondary maximum of the size distribution.
With increasing time, this maximum becomes more distinct and shifts to larger
sizes until, after about sec, the size distribution for between and

cm reaches a quasi-steady state, which means that in any size interval, as
many particles are formed as are lost by coagulation.

The existence of a deep gap such as that appearing in Figure 11.4 contrasts with
our knowledge of natural aersols (see Figure 8.20a). The curves in this latter figure
display a shallow minimum in the number density for particles between 0.01 and

radius, but no cleft as in Figure 11.4. Jaenicke (1978a,b) suggested that the
problem may be explained by considering simultaneous production of particles of
different sizes. However, Seinfeld (1993, pers. comm.) does not expect that the size
effect due to nucleation is significant, since the critical nucleus sizes would be too
small. On the other hand, he suggests that the ‘smearing’ out of the sharp minimum
in the observed AP size distribution is a result of the growth of AP by condensation
following GPC. Such growth proceeds in the atmosphere under a wide variety of
conditions and leads, therefore, to a wide variety of sizes within a given time.
Seinfeld further points out that the time scales over which Brownian coagulation
does affect the AP size distribution is long compared to the characteristic times for
nucleation and condensational growth, so that one must assume that the role played
by Brownian coagulation in shaping the AP size distributions is small relative to
that from nucleation and condensational growth. The effect of nucleation and
condensation on the evolution of an AP size distribution is illustrated in Figure 11.5.
The curves in this figure are based on actual data from an outdoor smog chamber in
which methylcyclohexane has reacted in the presence of sunlight, oxides of nitrogen,
and primary seed particles which grow from condensation of oxidation
products. Note that at min a new burst of particles from nucleation produces
two modes, a nucleation mode at about and a condensation mode
at about diameter. Note also that the gap appearing at min
closes progressively as time progresses. The evolution of a particle size distribution



MECHANICS OF THE ATMOSPHERIC AEROSOL 463

due to homomolecular and heteromolecular nucleation, as well as condensational
growth taking place simultaneously, have been studied theoretically by Seigneur et
al. (1986) and Warren and Seinfeld (1985a,b).

11.6 Laminar Shear, Turbulence, and Gravitational
Coagulation

In (11-53), (11-56), and (11-58), we have a framework for evaluating the effects on
aerosol spectra of other processes besides Brownian coagulation, since any process
which gives rise to a non-zero probability of particle interaction can be represented
by some appropriate form of the collection kernel or K. In this section, we
consider some possible influences of shear flows, turbulence, and relative motion
under gravity.

11.6.1 COAGULATION IN LAMINAR SHEAR FLOW

Velocity gradients in the air cause relative motion and may, as a result, induce
collisions between aerosol particles. The simplest model for this collection process
was worked out by Smoluchowski (1916). His model assumes a uniform shear field,
no fluid dynamic interaction between the particles, and no Brownian motion. In
order to determine the rate at which are collected by one
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we assume flow relative to the origin of in the with the shear in
the The velocity field is then given by

where is the constant velocity gradient or shear rate. If we again use the general
notation of the previous section, we can express the particle flux or current density
vector relative to the as

and the collection rate is given by the positive flux of into a sphere of radius
concentric with the origin:

The collection kernel for laminar shear flow may therefore be expressed as
or

One would expect that (11-63) might overestimate the actual shear collection
rate, since viscous effects should tend to make the particles move around each
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other, thus lowering the collision cross-section below the geometric value. However,
at least one experimental study (Manley and Mason, 1952) showed that (11-63) is
essentially correct for the case of large glass spheres (60 to diameter) in a
quite viscous fluid with to

The relative strength of laminar shear to Brownian coagulation for a homoge-
neous aerosol is given by the ratio

From the values of D given in Table 11.1, we find the shear rates required for
the two processes to be comparable are rather high for particles smaller than a
few microns: for for

for Accordingly, one would expect shear collection to
become important only for particles larger than a few microns in radius. However,
since in the atmosphere velocity gradients are generally associated with turbulent
motions, one should hesitate to draw definite conclusions from a model based on
laminar flow. Therefore, we now turn to a consideration of the collection rates in
turbulent flow. However, in support of (11-63), it will be seen that the length and
time scales over which particles interact are small enough so that the assumption
of constant shear during the interaction does not lead to large errors.

11.6.2 COAGULATION IN TURBULENT FLOW

Since a comprehensive treatment of turbulent flow would go far beyond the scope
of this book, we shall base our discussion in this section on a rather simple de-
scription using dimensional analysis. For more detailed information on the theory
of turbulence, the reader is referred to such texts as Tennekes and Lumley (1972),
Monin and Yaglom (1971), and Landau and Lifshitz (1959).

Turbulence is characterized in large part as a disordered vorticity field, which
may be pictured qualitatively as a distribution of eddies of various sizes. The largest
eddies have a size and characteristic fluctuating velocity of the same order
as the length and velocity characterizing the flow as a whole. The corresponding
Reynolds number is very large, indicating viscosity as a small effect
on the dynamics of the large eddies.

The largest eddies contain most of the kinetic energy of the flow, which is passed
on with little dissipative loss to eddies of smaller scale by some as yet poorly un-
derstood non-linear break-up process (the ‘energy cascade’), until finally it is dis-
sipated into heat by viscosity on the smallest scales of motion (see Figure 14.7).
With a little dimensional analysis, this picture of turbulence leads to some inter-
esting and useful predictions, which are considered to be correct to within an order
of magnitude.

According to the above description, the rate of dissipation of kinetic energy per
unit mass, is controlled by the rate of break-up of the largest eddies, for which
viscosity plays a negligible role. Thus, it is reasonable to assume that is not a
direct function of but instead can only be a function of the physical parameters
characterizing the large scale flow, namely and possibly the density of the
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fluid. Then, dimensional consistency demands that

There is some evidence that is in fact a weak function of and, hence, A
discussion of this point appears in Saffman (1968).

Note that (11-65) says the characteristic time for kinetic energy loss by the large
eddies is i.e., the eddies lose a significant fraction of their energy by break-up
in one revolution. On the other hand, the characteristic time for decay of the large
eddies by diffusion is Therefore, the ratio of the diffusion dissipation time
scale to the turnover time scale is which is consistent with
the assumption that viscous dissipation of the large eddies is unimportant.

Let us now introduce the concept of an eddy Reynolds number,

where is the size and the fluctuating velocity which characterizes the eddy.
Consider eddies with but with Since , it is natural to
assume that the flow on this scale must also be independent of However, since

, the additional assumption may be made that the flow does not depend
on or (which means that the turbulence on scale is isotropic), except
insofar as and determine . Then, the fluctuating velocity can depend
only on and . By dimensional reasoning, we then conclude that

(Kolmogorov, 1941). Combining (11-66) and (11-67), we may also write

Suppose now that denotes the eddy size for which viscosity becomes impor-
tant. A natural statement of this condition is so that may be
estimated from (11-68) as

where is called the Kolmogorov microscale length. It may be found a little more
directly from dimensional considerations on the assumption that the parameters
governing the small scale motion include , and In the same way, one may
also write down the Kolmogorov microscales of time and velocity:

The relative sizes of the large and small scales of length, time, and velocity are now
easily determined as a function of the Reynolds number of the mean flow;
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Qualitatively, these relations indicate what is borne out experimentally, namely
that the small scale structure of turbulence becomes finer with increasing Reynolds
number. They also indicate the assumption of isotropic turbulence for eddies in
the inertial subrange, becomes better with increasing

Measurements of Ackermann (1967, 1968) under various conditions in cloudy
air produced values of in the range Isaac et al. (1978)
observed in well-developed cumuli a median value for of 207 , with a
maximum value of . Aleksandrov et al. (1969) and Rhyne and Steiner
(1964) observed in strong cumulonimbi, values for as high as .
Values in clear air generally are close to the low end of the range of values cited
for clouds (Kitchen and Caughey, 1981; Merceret, 1976a,b). Therefore, from (11-
69), we expect to vary typically between and in the
troposphere, which means that almost all aerosol particles are smaller than the
microscale length.

11.6.2.1 Turbulent Shear Coagulation

Velocity gradients in turbulent air should cause relative particle motion and pos-
sibly collisions in a manner analogous to the laminar shear process treated in the
previous section. Since aerosol particles are much smaller than , it is the shear-
ing motion on length scales which is relevant. Since such motion must
be strongly affected by viscosity, it is clear that turbulent shear coagulation may
be represented by an expression similar to (11-63). To find such an expression,
we must obtain an estimate for the velocity gradients for . On this scale,
velocity causes the flow to vary relatively smoothly, so that we may expand the
velocity fluctuation in powers of and retain just the first term. Thus,
where c is a constant. Such treatment should be applicable for so that
we may also write which is the
relevant characteristic shear rate. By analogy to (11-63), we may then estimate
the collection kernel for turbulent shear as

Note this result also follows from dimensional considerations and the assumption
that the only characteristic length of the process is the geometric collision length,

The dimensions of are , and since is the charac-
teristic time scale of the flow for (11-73) then follows. An elaborate model
calculation by Saffmann and Turner (1956) provides a numerical coeffcient:

Earlier, less detailed (but not necessarily less rigorous) calculations by Tunitskii
(1946) and Levich (1954a,b) gave coefficients of 0.5 and 3.1, respectively. Acker-
mann’s (1967, 1968) measured values of referred to earlier, correspond to turbu-
lent shear rates which vary between 4 and . This means the crossover
in dominance from Brownian to turbulent shear coagulation usually occurs at a
particle size of a few microns.

or
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11.6.2.2 Turbulent Inertial Coagulation

A second mode of coagulation in turbulent flow is due to local turbulent accelera-
tions, which produce relative particle velocities for particles of unequal mass. The
characteristic acceleration, of eddies of size is

from (11-2). Similarly then, the induced relative velocity of a pair of particles of
radii and in close proximity (separation less than so that both
particles experience the same acceleration) is Therefore, if we
assume a geometric collision cross-section, the collection kernel for this process of
turbulent ‘inertial’ coagulation is

(Levich, 1954b). Essentially, the same result has been also obtained by Saffman
and Turner (1956), with the slight difference that in their expression is replaced
by the numerical factor 5.7.

The relative strength of the two turbulent coagulation processes is given by the
ratio

The appearance of the factor emphasizes that, according to the models
presented, collisions between equal sized particles may occur as a result of turbulent
shear, but not as a result of turbulent accelerations. For a small particle size ratio,
we find the two processes are comparable when e.g., for

and for . For larger particles the
inertial coagulation process becomes dominant.

According to the model of Saffman and Turner, the proper way to describe the
overall rate of turbulent coagulation due to the simultaneous action of turbulent
accelerations and shearing motions is by taking the square root of the sum of the
squares of the separate rates.

In deriving (11-73) and (11-77) for turbulent coagulation and (11-63) for laminar
shear coagulation, we assumed that the viscous hydrodynamic interaction between

For we find from the relation that the acceleration is
Also, from (11-67), the eddy accelerations are found

to decay with size as when Therefore, (11-75) provides a reasonable
estimate of the maximum turbulent acceleration experienced by particles smaller
than

For particle radii less than the viscous relaxation time is generally
at least two orders of magnitude smaller than Accordingly, we may estimate
the magnitude of the velocity response of a particle of radius and mass to
local turbulent accelerations by assuming to be constant in time, so that by
Stokes’ law
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particles undergoing relative motion in close proximity is negligible. We now turn
to a brief discussion of a coagulation mechanism, relative sedimentation under
gravity, where it is known that such effects are quite important, and in fact reduce
the effective collision cross-section below the geometric value by factors smaller
than for particle radii less than The implication of these results for
the other models of coagulation is considered briefly in turn.

11.6.3 GRAVITATIONAL COAGULATION

To date, the most accurate estimates of the effective collision cross-section of small
particles settling under gravity have been obtained by use of a slip-corrected Stokes
flow model in which the mutual interference of the particles and fluid (air) are
fully accounted for. This rather complicated approach is discussed in Chapter 14,
especially in Section 14.4.3, in the context of drop collisions. In this section, we
shall describe a much simpler and less accurate model for the process, but one
which nevertheless is adequate for the purpose of illustrating the effects of the
viscous interaction between small particles.

The model is due to Fuchs (1951) and Friedlander (1957). It involves the basic
assumptions that (i) the flow is in the Stokes regime; (ii) the small particles near
a large one move as if in a stream caused by the air flow around the large one
in isolation (‘superposition scheme’ – see also Section 14.3). More precisely, the
velocity of a small particle of radius relative to a larger one of radius is taken as

where is the terminal velocity of the small particle in isolation,
and is the Stokes velocity field which would be induced at the location of
the center of the small particle if the large one was falling at its terminal velocity
in isolation. The center of the large particle is taken as the origin for

Therefore, in the notation of Section 11.5, the current density relative
to the is

and, with the flow streaming past the in the positive , the
rate of collection by the is given by the positive flux    of into the
lower hemisphere of radius concentric with the origin:

where denotes the lower hemisphere. The last term on the right side of (11-80)
is simply The first term on the right side is due to motion following
the lines, and is found most easily by using the Stokes stream function (10-35),
which we write in the form

where is the terminal velocity of the and is the polar angle between
and the positive The streamline which approaches to within a distance
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from the origin when is at a distance from the far upstream of the
origin, where from (11-81) we must have . By the
same kind of reasoning, the incompressibility of the flow requires that

, so that the first term in is . This
represents the attachment rate by the effect known as direct interception. If we now
combine the two contributions to and note that the corresponding gravitational
collision kernel is we finally obtain

where (11-22), and we have introduced the
‘p-ratio’ defined by

It is clear from the assumptions underlying the superposition scheme, that (11-
82) is strictly valid only for ; in that limit (11-82) reduces to

which says the collection rate vanishes with the radius of the smaller particle. Of
course, this is not a rigorous result since we have neglected Brownian motion,
which becomes increasingly significant for the motion of the smaller particle as

The function should also vanish as approaches , since in that limit
the Stokes terminal velocities are equal. In order to obtain an approximate form
for which exhibits the correct behavior for near zero and unity, Friedlander
(1965) generalized (11-83) to read as follows:

It is apparent that if there were no hydrodynamic deflection of approaching
particles, the collection rate would be controlled simply by the relative velocity
of approach and the geometric collision cross-section. It is customary to describe
the effect of the hydrodynamic interaction on the collection rate by use of the
concept of collision efficiency, defined to be the ratio of the actual
cross-section to the geometric cross-section for a pair of interacting particles (see
also Section 14.2). Then, we can also express as follows:

On comparing this with (11-84), we obtain

for the collision efficiency according to the model of Fuchs (1951) and Friedlander
(1957). Table 11.3 shows that this simple result agrees surprisingly well with the
more elaborate computations referred to earlier. (Although in principle E depends
on the absolute size of the particles as well as the  – see Section 14.2) – in
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practice, the size dependence becomes insignificant for This is physically
reasonable since, for sufficiently small particles, the motion is controlled by viscous
forces, the role of particle inertia being negligible.)

Since Table 11.3 shows that for the effective collision cross-section
for gravitational coagulation is generally less than three percent of the geometric
value, it is appropriate to reconsider briefly the assumption that E = 1 for laminar
shear, turbulent shear, and turbulent inertial coagulation. Particularly for this
last process, the model used is close to the gravitational collision model, the only
obvious difference being that the relative velocity of approach in the turbulent
case is due to the terminal velocity difference of particles ‘falling’ in the constant
acceleration field    instead of However, in the derivation leading to (11-77),

was regarded as constant only in the sense that Besides
another relevant time scale is the characteristic time of hydrodynamic interaction.
If this were much smaller than also, the analogy between the gravitational and
turbulent models would be complete and we should then use values of E such as
those in Table 11.3 for the case of turbulent coagulation also.

An estimate of the hydrodynamic interaction time is given by dividing some
representative interaction length by the relative velocity of approach, i.e.,

where is a number of order 1 to which increases
with increasing (the mutual interference of particles and fluid becomes of longer
effective range as the radii become comparable). Therefore, for small we have

where is the microscale of velocity, typically of
order 1 cm . Since and 1 cm for
and respectively, we see that generally the particle relative velocities and
accelerations will not remain constant in direction over the time of hydrodynamic
interaction. This means the turbulent inertial coagulation process is similar to
one of ‘gravitational’ coagulation in which gravity is allowed to vary randomly in
strength and direction during interaction, at least over a limited range of values,
with a characteristic frequency of order . The consequences of such a model
have not been worked out. (Sedunov (1960, 1963, 1964) has made a detailed study
of the relative motion of small particles in turbulent flow, but this has not resolved
the question of what is the effective collision cross-section.)

In Figure 11.6, a comparison is made of the collection kernels for Brownian, tur-
bulent shear, turbulent inertial, and gravitational coagulation according to (11-59)
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(with (11-74) (11-77), and (11-84), respectively. The dotted portions of the
curves for turbulent shear and turbulent inertial coagulation indicate regions where
the assumption of a geometric collision cross-section is not likely to be accurate.
According to the figure, Brownian coagulaton is most important for particles of
about one micron radius or smaller, while turbulence and especially gravity control
the coagulation of particles larger than a few microns, assuming a modest energy
dissipation rate of

11.7 Explanation for the Observed Size Distributions of the
Atmospheric Aerosol

From our studies of the mechanics of aerosol particles, we are now in a position to
consider some models which have been put forth to explain the observed regularities
in the size distributions of tropospheric aerosols (recall Section 8.2.9).

11.7.1 QUASI-STATIONARY DISTRIBUTIONS (QSD)

A physically appealing way of dealing with the problem of the steady state aerosol
particle distribution was introduced by Friedlander (1960a,b), who proposed
the theory of quasi-stationary distributions (QSD). This theory is based on the as-
sumption that, for the aerosol has attained a state of dynamic equilib-
rium between Brownian coagulation and gravitational sedimentation. The theory
further assumes that the form of is completely determined by the two para-
meters characterizing the process rates for coagulation and sedimentation, and by
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the rate at which matter enters the upper end of the spectrum by coagulation
of smaller particles. The QSD theory is somewhat analogous to the theory of tur-
bulence in the inertial subrange, discussed in Section 11.6.2. There the assumption
was made that where measures the energy flow rate down the eddy
size spectrum. Similarly, according to QSD, an aerosol in dynamic equilibrium is
characterized principally by the flow rate of matter passing up the aerosol size
spectrum.

Friedlander delineates two subranges for At the lower end of the equilibrium
range, the ‘coagulation subrange’ forwhich he assumes sedimen-
tation to be negligible. Since the concentration of particles in this subrange is much
larger than in the range practically all the matter being transferred up
the spectrum over the coagulation subrange will do so by Brownian coagulation
rather than by inertial impaction with the larger sedimentation particles. There-
fore, for the coagulation subrange it is reasonable to assume that
where is the characteristic coagulation parameter (cf. (11-59). If
denotes a characteristic air volume and denotes a characteristic spectral length
(particle radius), then on dimensional grounds, one finds for the units of C,
and ,where represents
time. It therefore follows from the constraint of dimensional consistency that

where is a dimensionless constant.
The second subrange is considered to be confined to the upper end of the spec-

trum, where it may be assumed that Brownian coagulation is negligible.
Thus, matter entering this subrange is lost by sedimentation without significant
further transfer within the range by coagulation. Therefore, for this subrange
is assumed to be a function of , and the characteristic sedimentation parame-
ter (cf. (11-22). Since , by dimensional
analysis, we find

where is another dimensionless constant.
The physical basis of this second spectral form appears not be as sound as

that for the coagulation subrange. Particle loss by sedimentation from an aerosol
volume element requires a vertical gradient of particle concentration, and the char-
acteristic length for this gradient will depend in part on some additional transport
mechanism such as turbulent diffusion. The model leading to (11-88) misrepre-
sents the physics of this situation by ignoring the possibility of such an additional
independent characteristic length.

Although the power laws obtained for the two particle subranges agree quali-
tatively with aerosol spectra, it should be recalled from Section 8.2.9 that, in the
lower troposphere, observed particle size spectra are usually better represented by

over a range as large as (see Section 8.2.9).
In another attempt to check the QSD, Friedlander used the sedimentation sub-

range to obtain an estimate for Assuming which is consistent with a
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principle of dimensional analysis given by Bridgeman (1931), (11-88) gives

On substituting data given by Junge (1953) for and Friedlander obtained
. Since represents approximately the rate at which

matter enters the upper end of the spectrum by Brownian coagulation of Aitken
particles, the time scale for ‘processing’ Aitken particles by coagulation
residence time of matter in the Aitken range) may be estimated by dividing the
volumetic concentration of Aitken particles by From the data of Junge (1953),
the volumetic concentration is of the order of corresponding
to a characteristic residence time of the order of This is a very short
time (for example, the half life for Aitken particles of coagulating
by Brownian motion is one order of magnitude larger (recall Section 11.5)) and
indicates that the estimate for is somewhat high. This result is not surprising
considering the simplicity of the QSD theory. A numerical study by Storebo (1972)
on steady state aerosol distributions indicates that the residence time may easily
vary from several minutes to hr for realizable conditions, depending primarily
on the characteristics of the source of particles at the small size end of the spectrum.

Quasi-stationary distributions arising from a dynamic balance between two or
more processes (such as Brownian and turbulent coagulation, gravitational sedi-
mentation, gas to particle conversion, and interactions between aerosol particles
and clouds) cannot occur in the atmosphere unless the aerosol source and sink
processes operate with time scales which are short compared to meteorological time
scales. Model calculations of Junge and Abel (1965) show that the time needed for
establishing a steady state among the various aerosol source, modification, and re-
moval processes on a large scale may be as much as 50 days. This is slow compared
to the pace of changes induced by varying meteorological conditions, which may
easily occur with a time scale of the order of 1 day. On this basis, Junge (1969b)
concluded that the QSD theory cannot explain the observed dependency of
aerosol concentration on size in the lower troposphere for

However, under special conditions, it is presumably possible for QSD to exist.
For example, aerosols in very clean air masses above the planetary boundary layer
seem to show a tendency for concentrations to vary like with This
is close (11-88), which may thus approximately describe a global background QSD
(see also Section 11.7.5). Also, the upper end of the sea salt particle spectrum
within the planetary boundary layer over the ocean may be a QSD between salt
particle production and vertical transport by sedimentation and turbulent diffusion
(Toba, 1965a,b).

11.7.2 SELF-PRESERVING DISTRIBUTIONS (SPD)

Another plausible approach for explaining the observed regularities of size distrib-
utions for tropospheric aerosols involves the notion that they represent asymptotic
solutions to the coagulation equation, rather than equilibrium solutions as in the
QSD theory. It seems reasonable to expect that as time progresses, a coagulating
aerosol might lose its ‘birth marks’ and acquire a size distribution independent of
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its initial form. It is also reasonable to anticipate that such asymptotic solutions
should have relatively simple forms, which might be investigated by the use of
similarity transformations, i.e., a transformation of variables which will reduce the
coagulation equation to an equation in only one independent variable. The sin-
gle variable would then suffice to describe the form of the asymptotic distribution.
Following the example of the self-preserving hypothesis used in the theory of turbu-
lence (see, for example, Townsend,1956), Friedlander (1961) introduced a similarity
transformation which forms the basis of his theory of self-preserving distributions
(SPD). Further development and testing of the theory has been reported in a series
of subsequent articles (Swift and Friedlander, 1964; Hidy, 1965; Friedlander and
Wang, 1966; Wang and Friedlander, 1967, Friedlander and Hidy, 1969), Pick et al.
(1970).

The similarity transformation for in the SPD theory is as follows:

where and are functions of time, and it is assumed that the dimensionless
‘shape’ of the distribution does not change with time. The functions and can
be evaluated to within a constant from any two integral functions of such as
the zeroth and first moments of the distribution (i.e., the total number of par-
ticles per unit volume of air, N, and the volumetric concentration or volume
fraction of dispersed phase, ). Thus, we have and

, where , and are constants, since is assumed
to be independent of time. On substituting the resulting expressions for and
into (11-90), we obtain

where

and is another suitable dimensionless distribution function. This representation
also makes sense on dimensional grounds, since is a characteristic spectral
volume, namely the average particle volume.

The conjecture that (11-92) or (11-91) constitutes a solution can only be tested
for a specific kernel K by substitution into the coagulation equation. The SPD the-
ory was developed to apply to situations in which there is no addition or removal of
aerosol mass in any elementary volume element (as for example, by sedimentation),
so that a basic condition for the validity of (11-91) is that be constant in time.

Physically, it is obvious that (11-56) must satisfy the condition It
can also be easily demonstrated by integrating (11-56) multiplied by v:
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If the order of integration is interchanged in the first integral on the right (i.e.,
and this is followed by the substitu-

tion , the two integrals on the right will cancel, so that as
expected.

We would now like to show that (11-91) represents a solution to (11-56) for
the case that K is a homogeneous function of its arguments, i.e., K(au, av) =

. This includes the important cases of Brownian coagulation without the
slip correction and laminar shear coagulation In order to facilitate
our discussion here and again in Chapter 15 where more elaborate solutions and
solution methods are presented, let us first introduce a dimensionless form of the
coagulation equation. Following Scott (1968) and Drake (1972a,b), we write

where N(0) is the initial total number density, the initial mean particle volume
, a normalizing factor with dimensions of volume per unit time,

the dimensionless time, the dimensionless concentration,
the dimensionless collection kernel, and and are dimensionless particle volumes.
Substituting (11-92) into (11-56) gives, for the dimensionless coagulation equation,

If we denote the moments of by i.e.,

we find from the condition of aerosol mass conservation that
. Therefore, a similarity transformation for which is completely

equivalent to (11-91), is as follows:

Now let us proceed to show that this transformation is indeed a solution to the
coagulation equation for homogeneous kernels. From (11-95a), we have
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Evidently, an expression for is needed. An ordinary integro-differential
equation for any of the moments is easily obtained by integration of the coagulation
equation in the manner discussed above for the first moment. The result is

Therefore, we have

in view of the homogeneity of Similarly, the right side of (11-93) in similarity
variables is

On combining these expressions, we see that the similarity transformation does
work (i.e., it is successful in eliminating reference to ), and reduces the coagulation
equation to the following ordinary integro-differential equation:

(Friedlander and Wang, 1966). Two accompanying integral constraints, corre-
sponding to , are as follows:

In order to gain some idea of the spectral shapes predicted by the SPD theory, let
us now solve (11-99) for the simplest case of Brownian coagulation with a constant
collision kernel. For (11-99) reduces to
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The convolution form suggests the use of Laplace transforms by which the following
solution is readily obtained:

This also satisfies (11-100). The corresponding spectrum function is

To proceed further, we must choose an explicit representation for  or, in other
words, (see (11-92). From (11-59) the kernel is In order
to obtain the best correspondence with the notation for Smoluchowski’s discrete
solution, (11-52), we choose , and . Then, from (11-97), we have

or so that the spectrum function is

This result represents a particular asymptotic solution to the coagulation equa-
tion. It corresponds to the initial spectrum but it is expected
that any initial distribution would approach (11-104) for large . See Wang (1966)
for a proof of this assertion for the case of constant

Actually, the solution (11-104) was obtained in a similar way some time ago
by Schumann (1940), who also conjectured it would be approached asymptotically
after a long time, no matter what the initial distribution might be. In support
of his conjecture, he showed how an initially monodisperse distribution would,
by a discrete growth process, adopt a form like (11-104) for small steps and large
times. We can easily carry through a similar procedure here, and show that Smolu-
chowski’s discrete solution (11-52) approaches the self-similar form of (11-104) for
large times. It suffices for this purpose to find the limit of as
for fixed  (recall (11-95) and note that . Proceeding in
this manner, we find for fixed  (recall (11-51)) that

in agreement with (11-102).
An interesting feature of (11-104) is the indication that SPD due to Brownian

coagulation decline faster at large sizes than observed tropospheric spectra. The
inclusion of size dependence and a slip correction for the Brownian kernel does
not alter this conclusion, as shown by Hidy (1965). He carried out numerical
calculations of using (11-59) for where is the Knudsen
number for initially uniform distributions, and for a variety of initial distributions
without slip . In all cases, the solutions converged toward SPD with
the exact shape depending on . In general, however, the self-similar shape
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for size-dependent continuum Brownian coagulation was found to approach for

Evidently then, the shape of Brownian coagulation SPD does not conform well
with tropospheric aerosol distributions. This point has been emphasized by Junge
(1969b), who plotted Hidy’s SPD for , corresponding to particle radii
near on a graph with coordinates versus , for var-
ious values of time. The quantity is the number of particles per unit
volume with radii less than , i.e., . Therefore, we have

Then, since , where is the
total particle concentration at time (note also that
where is given by (8-33), the desired form for plotting is

, where represents Hidy’s numerical solution for the SPD. The
result of this computation is shown in Figure 11.7, where it is assumed that at

and , is maximal; this concen-
tration is in accordance with observations under moderately polluted conditions.
It is seen that the SPD is approached by days and, subsequently, changes
with time as indicated in the figure. It is interesting to note that the slope of the
envelope curve for the SPD follows an law (which we recall from Chapter 8 is
similar to the observed spectral shapes in the lower troposphere). This is a conse-
quence of aerosol volume conservation , which causes radii for different
times to vary as i.e., for a time shift of the ordinate in Figure 11.7 shifts
by whereas since for constant the abscissa shifts by

. From the figure, it is clear that the shape of the Brownian
coagulation SPD differs from observed distributions, especially with respect to the
steep slope beyond the maximum. Also, just as for QSD, the time for establishing
Brownian SPD is long compared to meteorological time scales. Therefore, although
there remains a need for research into the possibilities of SPD for other mechanisms,
we may conclude that the occurrence of SPD for Brownian coagulation is unlikely
in the tropospheric aerosol.

A similar conclusion was implicit in the earlier studies of in-cloud scavenging
by Junge and Abel (1965). The results of their computations are displayed in Fig-
ure 11.8 in terms of the concentration of particles with radii (cf. (8-33)
and (8-35)). These results are based on the assumptions (1) that the troposphere
has a height of 8 km, is uniformly mixed, and is filled initially with an aerosol of
size distribution specified by curve in Figure 11.8; (2) that a uniform fraction
0.2 of the troposphere is filled with clouds which are composed of uniformly sized
drops of radius present in a number concentration of (3) that the
clouds have an average base height of 1.5 km and an average depth of 4 km ; (4)
that all clouds evaporate after a time period of 1.5 hr, after which they reform;
(5) that the troposphere undergoes 10 such evaporation-condensation cycles for
each precipitation event; (6) that the mean annual global rainfall rate is 1000 mm,
and (7) that rain is composed of raindrops of 0.8 mm in diameter. From their
computations, Junge and Abel concluded that neither Brownian coagulation, nor
condensation, nor interaction of aerosol particles with cloud and raindrops signif-
icantly affects the size distribution of aerosol particles of radii larger than

or
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at least during time periods up to a week.

11.7.3 QUASI-STATIONARY SELF-PRESERVING DISTRIBUTIONS

Let us suppose the coagulation equation is extended to include possible sources and
sinks of particles, so that in general is no longer constant. Liu and Whitby (1968)
investigated the spectral form which could result in this situation if the following
restrictions were to apply: (1) dynamic equilibrium exists within some subrange,
so that in that subrange a self-similar form for exists, so that

is constant or nearly so over the time interval of interest.
These strong constraints suffice to specify and to within a constant. Thus,

the governing equation for is simply

as can be seen from (11-96). The solution is where is a dimensionless
constant. The corcesponding solution for is, from (11-91), or
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where is another dimensionless constant (Liu and Whitby, 1968).
Of course, this simple result is in good agreement with observations, and it is

tempting to regard this as a demonstration that the tropospheric aerosol is a quasi-
stationary self-preserving distribution. However, it must be remembered that the

law is not rigorous experimentally, and that there is no proof of the existence of
SPD for general coagulating mechanisms. The simple expression (11-107) is just the
envelope curve of the assumed SPD (both time independent and self-preserving),
and is a result of an almost over-determined formulation.

11.7.4 STATISTICAL DISTRIBUTIONS

Over portions of the spectrum where the volume distribution

is constant. Thus, one may say there is a tendency for atmospheric aerosols to
form quasi-constant log volume distributions, which in turn may be approximated
by broad log normal volume distributions. Noting that mechanical processes such
as grinding form log-normal volume distributions, Junge (1969a,b) has suggested
it is not unreasonable to expect that a large number of independent aerosol sources
could produce log-normal distributions also, and that this could provide an expla-
nation for the observations (1) that the distribution is only an approximation
for average conditions with irregular deviations in individual cases, (2) that the

distribution is usually best realized in polluted areas where the statistics are
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better due to a large number of sources, and (3) that the deviations become more
pronounced if one or only a few sources dominate, as in the case, for instance,
of aerosols within the lowest 2 to 3 km over the ocean where sea salt particles
dominate. These ideas are schematically illustrated in Figure 11.9. Although the
statistical explanation for the form seems quite plausible, it remains to be
demonstrated quantitatively under what conditions log-normal distributions will
result.

11.7.5 POWER LAW SOLUTIONS FOR A SOURCE-ENHANCED AEROSOL

Distributions somewhat like measured ones of the form
stant) have been obtained by numerical integration of the coagulation equation
with sources (e.g., Walter (1973), Storebo (1972), Takahashi and Kasahara (1968),
Mockros et al. (1967), Quon and Mockros (1965)), and by analytical solution of
simple models based on a related growth equation (Brock, 1971). In addition,
there is an analytical solution for the steady state case with a kernel of the form

where is a constant between 0 and 1 (Klett, 1975). Because it
includes some cases considered by others and provides an illustrative exact solution,
we will now turn to a brief discussion of this last theoretical model.

Let us modify the coagulation equation (11-56) by including a contribution to
from a local particle source term, due to unspecified processes. For

example, may describe gas-to-particle conversion; alternatively, if we are
interested in describing over some size interval where a particular coagulation
mechanism is known to be dominant, can be regarded as describing the
entry of particles into the lower end of this range, caused by other coagulation
processes which are controlling for still smaller particle sizes. We shall assume a
class of particle sources which can be represented by steady gamma distributions,
i.e., where is a constant, is the average source particle volume,
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and

where is the gamma function (given by A.15-18) and is a positive real
number. This represents a fairly wide range of reasonable unimodal distribu-
tions. In particular, we may note the limiting forms and

the Dirac delta function (corresponding to a constant
feed rate of single particles of volume

In terms of the normalization of (11-92), the source-enhanced, dimensionless
coagulation equation for the steady state and with may be expressed
as

(cf. (11-93) and (11-94). The convolution form suggests the use of Laplace trans-
forms. Denoting the Laplace transforms of and by and

, respectively, we find

The last step is possible since as can be seen by setting
and in the source-enhanced moment equation, which is obtained
by adding the term to the right side of (11-97). Since

the radical in (11-110) may be expanded in a
binominal series, which leads to the solution

where

and where A plot of this solution is given in
Figure 11.10, where it can be seen that the influence of the source on the spectral
shape soon becomes secondary to that of the collection kernel. The asymptotic
form of        for finite

is thus achieved for even for the rather sharply peaked source distribution
shown in the figure.
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From (11-113) and (11-92), we see that for and the solu-
tion is this is equivalent to the numerical solu-
tion of Quon and Mockros (1965) for the case of a constant input rate of sin-
gle particles. Since and the rate of aerosol parti-
cle volume input to the system the solution may also be expressed in the form

which is just Friedlander’s QSD in the
Brownian coagulation regime (cf. (11-87)). For , the kernel coincides
with (11-83), so that the resulting solution, , provides an approximate
description of the effects of gravitational coagulation. The solution for this case
is plotted in Figure 8.39b, and can be seen to conform reasonably well with the
background aerosol spectrum in the upper troposphere, where such coagulation
would be expected to dominate for



CHAPTER 12

COOLING OF MOIST AIR

As mentioned in the historical review of Chapter 1, it has been known for over
150 years that only cooling by expansion of humid air during its ascent can pro-
vide clouds with sufficient condensed water to account for the observed amounts
of precipitation. It is our main purpose in this chapter to describe the essentials
of this thermodynamic cooling process. We shall also touch briefly upon isobaric
processes. These formulations provide us with the necessary mathematical frame-
work for describing in Chapter 13 the conditions of temperature, pressure, and
humidity which control the rate of activation and subsequent diffusional growth of
a representative population of cloud particles. Effects of radiative cooling, which
are of significance to fog and stratus formation, will also be considered briefly in
Chapter 13.

Some useful references for this chapter include the texts of Iribarne and Godson
(1973), Turner (1973), Hess (1959), van Mieghem and Dufour (1948), Cotton and
Anthes (1989), Wallace and Hobbs (1977), the survey articles of Simpson (1976),
Cotton (1975), Turner (1969), and Simpson et al. (1965), and the reports of Dufour
(1965a,b).

12.1 Water in the Atmosphere

As a prelude to our discussion of the basic thermodynamics of moist air, we shall
touch here briefly on some of the more relevant characteristics of the atmospheric
water cycle. Hopefully, this will set some of the later material in better perspective.

The amount of water vapor present in the atmosphere is a complicated function
of (1) the amount which enters the atmosphere through evaporation and sublima-
tion, (2) its transport by motions of various scales throughout the troposphere and
lower stratosphere, and (3) the amount which leaves the atmosphere intermittently
and almost exclusively as a flux of rain, hail, and snow. The fact that all three
phases of water contribute to this cycle at the prevailing terrestrial temperatures
and pressures is most fundamentally a consequence of the molecular structure of
water, which permits the strong association of water molecules through hydrogen
bonding (see Chapter 3). This is also the principal determinant for the relatively
small amount of atmospheric water – only about or about of the
total surface store – in spite of the presence of extensive water surfaces for evap-
oration and sublimation. More specifically, the small store of atmospheric water
is a consequence of the comparatively low water vapor pressure under saturated
conditions at terrestial temperatures which, in turn, is a result of the unusually
high latent heat of evaporation, which, in turn, is due to the molecular structure of
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water controlled by the strong association of water molecules by hydrogen bonding
(see Chapter 3).

At 55°C, which is close to the highest temperature ever recorded at a meteorolog-
ical station, air could hold about 117 g of water vapor per kg of dry air at 1000 mb
atmospheric pressure. This is equivalent to a mixing ratio of
In actuality, much lower values for the atmospheric water vapor mixing ratio are
observed. Although mixing ratios of up to have been observed
over the Indian Ocean, at the mid-latitudes of the Northern Hemisphere, air is
characterized by mixing ratios of only in winter and
in summer. In polar regions, the typical water vapor content is of the order of

Since the Earth’s surface is the primary source of water vapor, we expect a de-
crease in the water vapor mixing ratio with height. From a slightly different
point of view, one may also attribute this expectation to the observed decrease in
temperature with height in the troposphere: Since the maximum possible (satura-
tion) mixing ratio decreases with decreasing temperature (see Section 4.8),
water is squeezed out of air parcels during their ascent. Thus, is not a conser-
vative quantity in the troposphere but, in fact decreases with height. An example
of the observed vertical distribution of the mixing ratio of water vapor in the lower
troposphere is shown in Figure 12.1a,b and can be seen to be approximately expo-
nential.

Many measurements have been made of the distribution of water vapor above
the tropopause. Some earlier observations of Mastenbrook (1961, 1968, 1974),
McKinnon and Morewood (1970) and others have been reviewed by Harries (1976).
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These observations showed that the stratosphere is generally very dry, exhibiting
a fairly constant mixing ratio of about between 13
and 30 km altitude. This value is to be compared with a saturation mixing ratio
of at 5 mb and –60°C. More recent observations of Kley et al.
(1979, 1982) and Kelly et al. (1993) with more sophisticated measuring techniques
agreed in essence with the earlier measurements, showed, however, that the water
vapor mixing ratio is not constant with altitude but reaches a minimum (termed
the hygropause) 3 to 4 km above the local tropopause. Thus, a minimum of

was observed over tropical Brazil, over tropical Panama
(see Figure 12.2), over Laramie (Wyoming), and
over Darwin (Australia).

In accordance with its arid state, the stratosphere is generally cloudless. How-
ever, during the northern and southern polar winter, the temperature may decrease
to values near and sometimes even below – 80°C at a level of 50 mb. At these low
temperatures, the mixing ratio reaches or even surpasses saturation with re-
spect to ice (e.g. at 50 mb and –83°C). Such conditions
prevail, for example, due to diabatic cooling in the Antarctic stratosphere during
the south polar winter in association with its circumpolar vortex. A similar de-
crease in temperature is observed in the Arctic stratosphere during the northern
polar winter, this time due to adiabatic cooling induced by orographic lifting of air
during flows over mountain ranges in Scandinavia. As mentioned in Section 8.2.10,
during such cooling, polar stratospheric clouds (PSC) form.
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12.2 Isobaric Cooling

Although most cooling of moist air to saturation occurs via the expansion which
accompanies lifting, there are also a variety of cooling mechanisms which can occur
isobarically (at constant pressure). As these often lead to the formation of ground
fogs and stratus clouds, isobaric cooling processes are of sufficient importance to
be mentioned here in passing.

Consider a volume of moist air which is cooled isobarically. Assuming that we
may neglect any exchange of air between the parcel and its environment, its mixing
ratio must remain constant during cooling. Therefore, after sufficient cooling

and the parcel will be vapor-saturated. Assuming that the proper
condensation or ice forming nuclei are present, a phase change will thus commence.
This occurs at the dew point temperature, , if the condensate is in the form of
water drops; if ice crystals appear, it is called the frost point temperature,

Dew or frost are often formed by the night-time radiational cooling of calm moist
air in ground contact. The same cooling process may also produce ground fogs.
Isobaric cooling leading to fog or stratus cloud formation may also occur when a
mass of moist air moves horizontally over a colder land or water surface, or over a
colder air mass.

An expression giving as a function of the prevailing T and or relative hu-
midity may be obtained by recognizing that the vapor pressure

when Then, from the Clausius-Clapeyron equation, (4-80),
and noting that (Equation 4-40), we find, for

12.3 Adiabatic Cooling of Unsaturated Air

We shall now consider the expansion cooling of a rising parcel of dry air. Although
heat  may be added to the parcel through the effects of radiation, frictional
dissipation, and mixing with the environment, in many situations the resulting
temperature changes are of secondary importance to that arising from the ex-
pansion process. Hence, it is a reasonable and useful idealization to assume the
expansion is strictly adiabatic, with no heat exchanges. We shall further assume
it is reversible, so that i.e., the process will be assumed isentropic
(S = constant).

We shall also assume the dry air is an ideal gas. Now a property of an ideal
gas, which we have not made use of previously, is that its internal energy U is

Integration between and yields

An evaluation of (12-2) for T = 20° C shows that a dew point temperature of
10°C corresponds to a relative humidity Similarly, if
then and if



example, the lapse rate of the parcel becomes where is the specific
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a function of temperature only. (This is true because ideal gases have no inter-
molecular potential, so that U is just the total molecular kinetic energy, which is a
function only of T.) Therefore, its enthalpy is also just a function of
T, owing to the form of the ideal gas law. Consequently, from (4-12) the specific
enthalpy per unit mass of dry air satisfies the relation

where is the specific heat of dry air at constant pressure
Alternatively, from (4-6), applied to a reversible adiabatic expansion of a closed
parcel, we find from which with (12-3)

where A is a constant and Logarithmic differentiation of this
equation with respect to height  yields the temperature lapse rate of the parcel:

Assuming the environmental pressure at level and that the latter is
in hydrostatic equilibrium, so that (12-6) can be
written in the form

where is the dry adiabatic lapse rate, and where is the magnitude of the
gravitational acceleration. Thus, a parcel of dry air cools by about 1°C for every
100 m of lift.

For moist unsaturated air, the only modification required in the above devel-
opment is a recognition that the composition of the ideal gas under consideration
is now slightly different, which must be reflected in the parameters and For

heat of the moist air and is termed the moist adiabatic lapse rate. Since air of
mixing ratio contains grams of vapor for every gram of dry air, is deter-
mined from the balance condition for arbitrary
dT and where is the specific heat of water vapor; i.e., is a mass weighted
average of the component specific heats. Since generally we find
and the small differences being negligible for all practical purposes. In a
similar fashion, we can show that

where is the specific volume of the dry air. Introducing the gas law
(4-25) into (12-4) and integrating, we obtain for the dry adiabat
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12.4 The Thermodynamic Wetbulb Temperature

A water drop exposed to unsaturated air cools by evaporation, with heat being
supplied by the environment. At a steady state, the drop assumes a surface tem-
perature whichis below the temperature of the environment by an amount which
depends on the relative humidity. An exact computation of this temperature will
be given in Chapter 13. An approximate value for to within ±0.5°C is obtained
in terms of the wetbulb temperature.

At the meeting of the Aerological Commission of the World Meterological Soci-
ety in 1953 in Toronto, the wetbulb temperature of moist air consisting of mass
m of dry air and mass of water vapor, initially at temperature T and pressure
p, and of mass of liquid water at temperature was defined as the temper-
ature which the moist air assumes if liquid water at constant is evaporated
isobarically and adiabatically into it until the moist air is saturated.

In order to find a mathematical formulation for , we follow Dufour (1965a,b)
and assume that the system considered is closed and the process is reversible; since
it is also isobaric, the enthalpy of the system must be conserved. Therefore,

Dufour (1965a,b). In (12-9) and are the specific heats of dry air and water
vapor, respectively, and is the specific latent heat of evaporation. Comparing

with obtained from (13-63), we find that for all relative humidities (RH),
is within about 0.5°C of Thus, for RH= 50%, and
for and and for

12.5 Lifting to Saturation and Beyond

Let us now consider the height to which a parcel of unsaturated air would have
to be lifted adiabatically to become saturated. This height is called the lifting
condensation level (LCL). During the ascent, remains constant, so that
from (12-5) we may write  Hence, the temperature at the LCL is given in
terms of and the initial T and by

This implicit relation for may be solved iteratively, since is
known as a function of and T from the integral of (4-83). Once is

Since mass is also conserved, i.e., we obtain

Introducing (4-12) and (4-72) into (12-9), we find, after arranging terms,
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determined, the LCL itself can be found from the lift distance, which is (T –

In order to avoid tedious computations, one may use the following approximate,
explicit, semi-empirical relations for the LCL (Inman, 1969), and for the ‘lifting
sublimation level’ (LSL) (Chappel et al., 1974) at which

with T and in °C. The use of as a moisture variable follows standard practice.
Finally, graphical solutions for the LCL are readily obtained by use of various
thermodynamic diagrams (e.g., see Chapter 5 of Hess, 1959).

If the parcel at the LCL is warmer than the environment, it will continue its
ascent, due to positive buoyancy, under conditions that are both adiabatic and
saturated. This is described by saying the parcel follows a ‘saturation’ – or ‘wet
adiabat’. If the parcel is colder than the environment at the LCL, but is forced
higher in spite of its negative buoyancy by frontal or orographic lifting, for example,
it may eventually reach a level called the level of free convection (LFC), at which
point it will again rise spontaneously. Under certain conditions, it is possible for
the LCL and LFC to coincide at a height called the convective condensation level
(CCL).

In the real atmosphere, a parcel lifted beyond the LCL will experience con-
densation (or deposition) of water vapor, as will be described in the next section.
However, it is instructive to consider the hypothetical case in which no condensa-
tion occurs, owing to a complete lack of condensation nuclei. From the definition
of saturation ratio given by (4-36), and the fact that for a parcel
lifted adiabatically from level 1 to level 2 we have it follows that if
the parcel is just saturated at level 1, then at level 2 the saturation ratio is

may be computed from (12-5) and from (4-83). For
and we find i.e., after about

a 100 m excursion, the adiabatically lifted parcel is 6% supersaturated. Lifting
the parcel adiabatically from 500 mb and 5°C to 435 mb and –5°C , we find

so that vapor in the parcel is 80% supersaturated after an excursion
of about 1000 m. Let us recall now from Chapter 7 that for homogeneous nucle-
ation of water drops, a supersaturation between 400 and 500% is needed. Such
supersaturations would evidently require adiabatic excursions of air parcels over
unrealistic distances of several thousands of meters. It is also quite obvious that
over such long distances, the concept of a closed identifiable air parcel is untenable;
mixing with environmental air would destroy its identity. Hence, supersaturations
sufficient for homogeneous nucleation are ruled out.
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12.6 Adiabatic Cooling of Saturated Air

If we lift a parcel of moist air beyond the LCL, latent heat of condensation will
be released. (For simplicity, we shall consider here only the onset of the liquid
phase.) Thus, the parcel will cool at less than the dry adiabatic rate, the exact
rate depending on whether part or all of the water remains inside the parcel. If it
all remains, we continue to have a closed system, and the process can be carried out
reversibly. This is called a reversible saturated adiabatic process. If all the water
is assumed to fall out immediately upon formation, the process can be neither
strictly adiabatic nor reversible; this extreme is called a saturated pseudo-adiabatic
process. Fortunately, the heat capacity of the water is negligible relative to that of
the parcel air, so that there is no significant difference between the two resulting
cooling rates. Since the pseudo-adiabatic process requires less book-keeping, we
shall use it exclusively in the sequel.

Let us calculate the cooling rate of a saturated parcel containing 1 gram of dry
air and grams of vapor. For a temperature change dT , the enthalpy change
is dh = while the incremental heat of condensation

 for the corresponding change is just Substituting the gas
law for V , we thus obtain

which describes the saturation pseudo-adiabatic process. Equation (12-15) is called
the saturation pseudo-adiabat or wet adiabat. (Obviously, had we considered the
reversible adiabatic process instead, the additional heat change of the
condensate water would have been added to (12-15), where are the
mixing ratio and specific heat capacity of the water, respectively. In this case,
the resulting equation would be referred to as the reversible saturation adiabat or
cloud adiabat. Since typically the difference between the
approaches is of no practical significance.) Usually, so
that (12-15) may be simplified further to

Division by results in the expression for the saturation adiabatic lapse rate

where we have assumed the parcel is in hydrostatic equilibrium with the environ-
ment. This may be reduced further to an explicit function of T and by
substitution of (4-40) and (4-83) into the denominator. For 1000 mb and 0°C,
(12-17) gives or about 60% of the dry adiabatic lapse rate.

12.7 Cooling with Entrainment

Let us now abandon the fiction that a rising air parcel is a closed system. We have
already discussed in Section 2.1.1 how the entrainment of relatively dry environ-
mental air into convective clouds lowers their liquid water contents substantially

and
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below that expected on the basis of a closed saturated ascent (recall Figure 2.22).
Observations also show that updrafts in most cumulus clouds are warmer than
the environment by only 1°C or less, rather than the 2 to 3°C temperature excess
which is typical for computations of rising closed air parcels. In addition, obser-
vations demonstrate that the temperature gradient in clouds is larger, and the
height reached by clouds is substantially less than that computed for adiabatically
ascending air.

The description of the previous section may be easily extended to the case of an
entraining parcel by following a procedure originated by Austin and Fleisher (1948).
According to their scheme, we must add the following additional heat terms to (12-
15) multiplied by the mass  of the saturated parcel under consideration: (1) a
term expressing the heat needed to evaporate sufficient water to
increase the mixing ratio of mass entrained during the parcel displacement

to the saturation value in the parcel, and (2) a term expressing
the heat required to warm the entrained air from its original temperature to the
temperature T of the parcel. With these additions, the generalization of (12-16)
to include the effects of entrainment is

Similarly, in place of (12-17) we obtain the cloud lapse rate

Since we see that As an example (from Hess, 1959, p.108),
if we suppose that T = 0°C, and

we find compared to
Note that in (12-19) the entrainment rate, has the simple dimensional form

where is a length scale characterizing the mixing process. There is an extensive
literature on buoyant convective processes, involving a variety of physical models
of varying complexity, which yield estimates for We turn now to a brief summary
of these models in the next section.

12.8 The Concept of Entrainment

Stommel (1947) was the first to note that cumulus clouds had to be significantly
diluted by air from above the cloud base in order to explain their internal temper-
ature and liquid water content. His lateral entrainment model, in which air was
thought to mix homogeneously across the width of the updraft, was followed by
other models of similar type, such as the jet or plume model of Morton (1957),
Squires and Turner (1962) and Scorer (1957). Stommel’s model was supported by
Byers and Hull (1949), Byers and Braham (1949) and Malkus (1954) (Figure 12.3a).
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The theory of similarity jets or plumes, pioneered by Priestly and Ball (1955), Mor-
ton et al. (1956) and Morton (1957), differed from Stommel’s treatment of jets,
although both featured lateral entrainment. A further modification of the jet or
plume model was introduced by Turner (1962) who formulated the starting plume
model (Figure 12.3c). The idea here was to provide a model which, along with the
feature of a steady updraft and lateral entrainment of the jet model, also allows
entrainment to occur through the front interface of the plume. Such a plume has
a rounded cap with an internal circulation represented by a Hills spherical vortex
(see Section 10.3.1). Below the cap is the supporting jet. Such a system was mod-
eled by Levine (1959), Malkus (1960), and in a modified version by Simpson et al.
(1965).

In an alternative attempt to describe the entrainment, Scorer and Ludlam (1953)
proposed the ‘bubble’ theory of convection, which describes the growth of a cumulus
cloud in terms of a buoyant bubble (Figure 12.3b) which steadily erodes as it rises.
In its early form, the model assumed that the mixed air was completely shed into
the bubble’s wake. However, laboratory studies of Scorer and Ronne (1956), Scorer
(1957) and Woodward (1959) revealed that part of the entrained fluid was caught
up in the internal motion of the bubble. Support for the bubble model came from
the field observations of Saunders (1961), Malkus and Scorer (1955), Scorer (1957)
and Glass and Carlson (1963) who observed that, analogously to jets or plumes,
bubbles also broaden as they rise.

A corollary of the lateral entrainment models (jet or bubble) is that the fractional
rate of entrained air into the updraft would vary inversely with the cloud radius.
Some support for the inverse radius dependence of lateral mixing has come from
the observations of McCarthy (1974) in clouds over the Gulf coast. Similarly,
the inverse radius dependence of the entrainment rate in the model of Simpson
and Wiggert (1969) correctly predicted the internal features of clouds observed by
them over the Caribbean and over Florida.

The entrainment rate in all three models discussed above is represented by an
empirical law which takes into account the inverse radius dependence in the
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form

where C depends on the ratio of the length scale (12-20) to Such a form is
easily verified for a spherical bubble of radius and mass from
which The entrainment rate for a bubble is therefore

where the broadening angle Similarly, for a plume or jet with
radius and vertical velocity U, the mass flux                          from which

The entrainment rate for a jet is therefore

where is the broadening angle of the jet. From laboratory studies, Morton (1959)
and Squires and Turner (1962) found that the broadening angle was so
that and On the other hand, laboratory studies of Turner
(1962, 1963) and Scorer (1957), and field studies of Simpson et al. (1965) and
McCarthy (1974) showed that so that and
Generally, the thermal cap of a starting plume is regarded as only a small fraction
of the ‘cloud’, so that the entrainment rate is taken to be the same as that for a
steady state jet.

Warner (1972, 1975a,b) criticized the above entrainment parametrizations and
their use in one-dimensional models on three grounds: (1) such models assume
that entrainment occurs laterally, whereas in fact cumulus entrainment largely
takes place at cloud tops; (2) such models are based on an inverse-radius law which
implies that the entrainment decreases with height, in contradiction to observa-
tions (see Figure 2.22), which show that cloud dilution increases with height as
exemplified by a decrease of liquid water content; (3) such models cannot simul-
taneously predict cloud top height and liquid water content. In fact, by adjusting
the entrainment rate to obtain the proper cloud top height, one obtains a liquid
water content which is far too large, while tuning the model to yield the correct
liquid water content generates a cloud with too low a top.

Even before Warner’s criticism, Squires (1958b) hypothesized that the observed
structure of cumulus clouds can be described by the entrainment of dry air into the
cloud top. He visualized this mechanism in terms of ‘tongues’ of dry air which be-
come engulfed into the top and, by evaporative cooling, penetrate downwards into
the interior of the cloud due to their negative buoyancy. Telford (1975) developed
a vertical mixing model consistent with the suggestions of Squires (1958b). He
assumed that mixing occurs at the cloud top and that parcels of air subsequently
move vertically down to their level of neutral buoyancy. Support for this model
came from Paluch (1979), Boatman and Auer (1983), Jensen et al. (1985), Pon-
tikis et al. (1987), Blyth and Latham (1985), Blyth et al. (1988), Deardorff (1980),
Randall (1980), and Emanuel (1981). In further support, Paluch (1979), and later
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Betts (1985), used conservative variables (the total mixing ratio of water substance
and the wet equivalent potential temperature) to diagnose the origin of air sampled
at various levels in the cloud. Paluch (1979) concluded that air at a given observed
level in an updraft could not have originated as a mixture of environmental air at
that level or below. Instead, most of the air must have been entrained into the up-
draft several kilometers above the observational level near the cloud top. A cloud
top entrainment process was also visualized by Rogers et al. (1985), Telford and
Chai (1980), and Telford et al. (1984) who formulated an entity-type entrainment
model in which various different but individually well-mixed entities or ‘blobs’ move
to their respective levels of neutral buoyancy. Raymund and Blyth (1986) extended
this approach to allow for a variety of mixing proportions between cloud top and
cloud base air. Nevertheless, Betts (1982a,b) had already argued earlier that cloud
top entrainment could not describe all the features of small cumuli.

Another attempt to describe entrainment followed a suggestion by Ludlam (1958),
who proposed that cumulus clouds are composed of a succession of thermals. This
suggestion was followed by Jonas and Mason (1974), Mason and Jonas (1974),
and Rösner et al. (1990). Although Warner (1975a,b) showed that these models
also would not solve the discrepancy regarding the liquid water content and cloud
top height, they were able to compute realistic cloud drop size distributions (see
Chapter 13).

Little further progress was made by abandoning the Lagrangian one-dimensional
cloud models and formulating instead various one-dimensional time dependent
models in an Eulerian frame. In these models, the lateral entrainment is expressed
in terms of lateral eddy fluxes (Weinstein, 1971; Wisner et al., 1972; Asai and Kasa-
hara, 1967; Holton, 1973;, Cotton, 1972). The fact that these models still could
not simultaneously predict correct liquid water contents and cloud top heights,
prompted Cotton (1975) and Cotton and Tripoli (1978) to recall the suggestion of
Simpson and Wiggert (1969) that shear in cloud environment may be important.
This has been explored in numerical simulations by Cotton (1975) and Cotton
and Tripoli (1978), in which eddy fluxes are made to depend on convective scale
wind deformations. As a result, they were able to show that, as expected, sheared
clouds entrain more than unsheared clouds. Since this type of dilution is a result
of organized cumulus scale entrainment, it is commonly called ‘dynamic entrain-
ment’. However, the most significant result of the study of Cotton and Tripoli was
that simulations applied to a stagnant environment predicted too large a liquid
water content near the cloud top, exceeding the observed value by as much as a
factor of three. In contrast, their three-dimensional simulation for an environment
with the observed shear flow predicted liquid water contents in good agreement
with observations, and not at the expense of accuracy in predicting the cloud top
height. From their computations, Cotton and Tripoli (1978) drew the conclusion
that cumulus cloud internal properties are controlled in part by the interaction of
the cloud with an environment which exhibits vertical shear of the horizontal wind.

Recent work has provided some further insight into the small scale turbulent
entrainment mechanism. This work was pioneered by Latham and Reed (1977),
Baker and Latham (1979), and Baker et al. (1980), who introduced the concept
of inhomogeneous mixing. Support for their results came subsequently from Blyth



COOLING OF MOIST AIR 497

et al. (1980), Broadwell and Breidenthal (1982), Baker et al. (1982), Baker and
Latham (1982), Paluch and Knight (1984), Baker et al. (1984), Blyth and Latham
(1985), Austin et al. (1985), Paluch (1979, 1986), Choularton et al. (1986), Bower
and Choularton (1988), and Blyth and Latham (1990). In this mechanism, sub-
saturated air is entrained from outside the cloud as a series of discrete events each
of which results in the total evaporation of some drops of all sizes. Subsequently,
turbulent motions mix the droplet free air with cloud air on scales of 10 to 100 m.
This causes a reduction of the total number of drops without affecting the drop size
distribution and causes the supersaturation in the surroundings of the remaining
drops to rise as the ascent of air continues, allowing these drops to be favored for
further growth by diffusion. At the same time, entrained nuclei may become acti-
vated to drops. Both processes lead to an overall broadening of the drop spectrum
in the cloud. Hill and Choularton (1985) and Blyth and Latham (1984) have shown
that, despite their dilutions, the affected cloud portions are capable of rising due
to the large updraft momentum in rapidly ascending cloud turrets.

According to Baker (1992), the initial mixing of clear and cloudy air, transport
of the mixing regions from the cloud edges to the cloud interior, and the homoge-
nization of the interior regions, all occur on similar time scales. Thus, Baker (1992)
argues that for the largest scale motions, one may compute the time scale by divid-
ing the characteristic cloud turret size of 100 to 1000 m by its characteristic velocity
of several meters per second, giving a time scale of the order of several minutes.
Mixing between cloud and air occurs initially at the cloud edges, in regions smaller
in scale than the large eddy size, and therefore it proceeds on time scales shorter,
but not very much shorter, than those for the large scale transport. Likewise, the
time scale for homogenization of regions 10 to 100 m in size is again shorter, but not
very much shorter, than that for cloud scale eddies; otherwise, larger homogeneous
cloud regions should have been observed. For inhomogeneous mixing to proceed,
the characteristic evaporation time of drops must be considerably smaller than the
mixing time scales of a few minutes. However, computations of evaporation times
for drops in cloud air environments show that this condition does not generally
hold. For example, if one uses (13-64) to make such estimates, it is found that the
evaporation time (i.e., the time to reach radius) of drops of 20, 50, and
radius is, respectively, 0.8, 5, and 13 min. in air of 10°C and 90% humidity; for
80% relative humidity the times are 0.5, 2, and 7 min.

It would lead us too far afield to consider further the complex and rather unset-
tled state of entrainment modeling. Accordingly, in most of the sequel we shall use
the homogeneously entraining air parcel model; inhomogeneous mixing will only be
touched upon briefly in Section 13.2.2.1. The homogeneous model is adequate for
our purpose of demonstrating microphysical behavior, and has the virtue of being
relatively simple.

12.9 The Air Parcel Model for a Convective Cloud

In this section, we shall formulate the differential equations describing the proper-
ties of a vertically rising, entraining parcel of moist air in which cloud drops are
allowed to form. In doing this, we must account for the presence of condensed
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water, even though we have shown it has a negligible effect on the parcel cooling
rate.

Suppose the parcel has mass and density (exclusive of liquid water), vertical
velocity W, and liquid water mixing ratio Then, if we include body forces
arising from buoyancy and the weight of the liquid water, the momentum equation
for the parcel beecomes

where is the environmental mass of air displaced by the parcel. We have not in-
cluded a drag force due to turbulent entrainment of momentum, on the assumption
that the environmental momentum is small. However, the air outside the parcel
must be accelerated to some extent by the parcel’s motion. In order to account for
the resulting reaction force on the parcel, we shall follow a suggestion of Turner
(1963) and include an ‘induced mass‘ acceleration term, on the left
side of (12-24). With this addition, the parcel acceleration may be expressed as

The time rate of change of temperature in the parcel may be written down
immediately from (12-19), noting that For our applications in the
next chapter, we must take into account the slight supersaturations which develop
from the lifting of air. Therefore, it is no longer sufficient to regard the parcel as
just saturated, and so we must replace in (12-19) by The result is

An equation relating the time rates of change of wv and the parcel supersatura-
tion is also needed. From (4-37) and (4-40), we have
On differentiating this expression with respect to time, and assuming the environ-
ment is in hydrostatic equilibrium, i.e., it follows (with
(4-25) and that

Therefore, we find approximately

where we have used (4-83).
‡Note that       here has units of while in Chapter 2 the units assigned for
were                      air.

where
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The condensed water is related to through an obvious statement of water
conservation, viz.,
Neglecting products of differentials, this leads to
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We shall assume constant environmental profiles of T' and Therefore, from
the point of view of the parcel, the time variations in T' and are given by

and

where and are the observed height variations of the
environmental and respectively.

Entrainment will cause the parcel volume to increase with time. If we assume
the convective element is a sphere or thermal bubble of radius then, since

, we can relate the growth of the radius to the entrainment rate
according to

For a jet or plume of radius and vertical velocity entrainment is
described in terms of a change in mass flux along the vertical plume
axis. Thus, the change in mass flux over is and by continuity
this must equal the radial mass influx over where is
the inward radial velocity. Therefore, for a jet the entrainment rate is

where is the entrainment parameter; as we have indicated earlier,
laboratory studies show that Finally, the equation for the jet radius which
is analogous to (12-32) is

where from the ideal gas law

We must now establish a connecting link between the parcel properties and the
microphysical drop growth processes. In order to do that we must initialize the
model by an assumed or observed number distribution function of dry
aerosol particles of mass and known chemical composition. Unfortunately,
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the growth of dry aerosol particles in a supersaturated environment would involve
formulating an initial growth phase due to vapor adsorption on the surface of
the particles (see Chapter 5). For practical purposes, one avoids this difficulty
by computing from via (6-33) the number distribution of
unactivated drops which are in equilibrium with an environmental relative humidity
between 90 and 99% in order to insure the deliquescence of all soluble components in
the AP in a time period which is short compared to the time over which significant
changes occur in the atmosphere. Following Flossmann et al. (1985), we initially
have is the number distribution
of inactivated drops inside the air parcel at a time t. As the parcel rises and
the relative humidity increases, changes (1) due to entrainment of
additional inactivated particles from the enviromental air, (2) the activation of some
of the inactivated particles to drops, and (3) due to drops which by evaporation
become inactivated particles again. These changes are expressed by the relation

In the beginning of a parcel’s ascent, the change in is only due to the
second term on the right of (12-36). As the parcel ascends decreases, so that
for the entrainment term of (12-36) also contributes to the change
in Initially, the number distribution function of drops of mass  is
zero in the parcel. As aerosol particles become activated to drops and these grow
further by vapor diffusion, the number concentration of drops in the parcel changes
according to

The change in drop concentration due to the activation of aerosol particles or
deactivation of drops is given by

and the change in drop concentration due to their diffusional growth or evaporation
is

where the mass growth or loss rate from vapor diffusion in (12-39) will
be given in Chapter 13 by (13-28). If drops evaporate to sizes which are smaller
than those at which the particles are considered to be activated, then they will
contribute to the third term on the right of (12-36). The second term on the right
of (12-36) is computed with the help of (6-42), so that the left-hand side of (12-38)
becomes known and may be used in evaluating (12-37).

where
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Finally, the change in the liquid water content of the parcel during the growth
of drops by vapor diffusion is given by

We have now a complete set of governing equations to describe the changes
taking place inside an entraining air parcel. For a specified size distribution of
aerosol particles and their chemical characterisitics, for a given vertical
variation of temperature and humidity and entrainment parameter C, and
using (12-39), (12-37), (6-42), and (13-26) we can determine the 13 quantities

and from the 13 equations, (12-25)
to (12-31), (12-32) or (12-34), (12-33), (12-35), (12-36), (12-38) and (12-40). To
model a closed (non-entraining) parcel, the only change required is to set
everywhere. We shall use the entraining parcel model in Chapter 13 to study the
growth of a population of AP into cloud drops, and in Chapter 17 to study the
rate at which aerosol particles and gases are scavenged by a population of growing
cloud drops.



CHAPTER 13

DIFFUSION GROWTH AND EVAPORATION OF WATER DROPS
AND SNOW CRYSTALS

Immediately following their formation through heterogeneous nucleation‚ cloud
particles proceed to grow by the process of vapor diffusion. Later on they may
also experience growth by the mechanisms of collision and subsequent coalescence
or sticking. In the present chapter‚ we shall describe the individual and collective
growth (and evaporation) of cloud particles by vapor diffusion; collisional growth
(and breakup) are considered in Chapters 15 and 16.

13.1 Laws for Diffusion of Water Vapor and Heat

13.1.1 DIFFUSION OF WATER VAPOR

In Section 11.2‚ we have applied Fick’s first and second laws to the diffusion of
aerosol particles. An adequate treatment of water vapor diffusion to drops or snow
crystals can be based on a strictly analogous formulation. Thus‚ if we let
denote the flux density vector of water vapor mass‚ then for moist air moving with
velocity relative to the drop or crystal under study‚ may be represented as the
sum of contributions due to diffusion and convection:

where is the diffusion coefficient or diffusivity for water vapor‚ and is the
water vapor density. Then‚ from the continuity equation (see A.10-3)‚

and considering that we obtain the convective
diffusion equation for water vapor:

To obtain (13-2) we have made the usual assumption that (recall the
discussion just before (10-2) and that is constant over the region of interest (in
applications‚ this means must not vary over distances of the order of the size of
the growing or evaporating drop or snow crystal). We have also made the implicit
assumption that the total air density is constant in the vicinity of the drop or
crystal; otherwise we would have had to express the diffusive transport of vapor in
terms of the concentration gradient of the mixing ratio or in terms of

The diffusivity of water vapor in air has been experimentally determined
only for temperatures warmer than 0°C‚ and in this range the experimental results

502
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scatter quite strongly. The unreliability of past experimental values for has also
been stressed by Ranz and Marshall (1952), Reid and Sherwood (1966), Thorpe
and Mason (1966), and Beard and Pruppacher (1971a), all of whom pointed out
that the conventionally used values for tabulated in the Smithsonian Meteoro-
logical Tables (1968) may be too high by as much as 10%. In a survey, Marreno
and Mason (1972) pointed out that probably the best experimental values for
at temperatures above 0°C are those of O’Connell et al. (1969). Following an ex-
trapolation procedure suggested by E. A. Mason (1975, private comm.), Hall and
Pruppacher (1976) arrived at the following best estimate relation for the diffusivity
of water vapor in air for temperatures between –40 and 40°C:

with and
For a fixed cloud particle surface (ignoring any tangential motion of the surface,

and ignoring the rate of change of particle size due to evaporation or condensation),
the usual flow boundary condition at the surface (S) taken to accompany (13-2)
is However, when we recognize that is the mass-average velocity

of the velocities of vapor and dry air we can appreciate
that does not vanish at the surface, and that the proper boundary condition
is This latter boundary condition leads, from (13-1), to the surface
flux relation this differs by a factor of

from the more familiar statement which arises from
the former boundary condition On the other hand, since usually

we are justified in ignoring this refinement and the complications it entails.
Therefore, we shall henceforth employ the simpler formulation expressed by (13-
1), (13-2), and the condition that the total air velocity (or its radial component for
a drop with internal circulation) must vanish at the particle surface. Additional
complications may arise if there are gradients in temperature or pressure. Then, the
phenomena of thermal and pressure diffusion of vapor will also occur. Discussions
of these effects may be found, for example, in Bird et al. (1960) and Hidy and Brock
(1970). Fortunately, these effects are of negligible importance for circumstances of
interest in cloud microphysics.

We shall now explore the possibility of simplifying (13-2) by dropping the
term. For this purpose, let us consider the initial-value problem of radially symmet-
ric diffusion from a motionless drop of radius subject to the boundary
condition and the initial condition
constant for This problem is mathematically equivalent to the one of par-
ticle diffusion to a sphere discussed in Section 11.5; in fact, the solution is given
by (11-35) with the replacements and

in
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From this expression, the vapor flux at the drop surface is found to be

Thus, it can be seen that the steady state description will be valid for times
for               and atm., for drops smaller

than radius. Since in the atmosphere significant changes in vapor density
fields occur over times much larger than this, we may justifiably ignore the non-
steady state contribution to the diffusional growth or evaporation of cloud particles
under natural conditions. (We have ignored the intrinsic unsteadiness due to the
rate of contraction or expansion of an evaporating or growing drop. This effect
may also be shown to be generally negligible for            (e.g., see Section 4.2 of
Hidy and Brock (1970)).) For steady state (13-4) and (13-5) become, respectively,

and

Of course, we could have obtained this result directly by simply solving Laplace’s
equation for conditions of radial symmetry:

subject to the boundary conditions and for If we
now identify the rate of change of the drop mass for a motionless drop
with the flux of vapor through the drop’s surface, we obtain

where denotes the drop surface area (Maxwell, 1890). An alternative
expression in terms of vapor pressure e and temperature T may be obtained by
substituting the equation of state (4-24) into (13-9):

The description of diffusional growth or evaporation provided by (13-9) and (13-
10) must break down for very small drops. This happens because the assumption
that the vapor density in moist air is continuous right up to the drop surface,
which is implicit in the formulation presented so far, becomes quite unrealistic for
drops with radii comparable to the mean free path of air molecules. An intuitive,
semi-empirical extension of the continuous description to account for this effect has
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been carried out by Schäfer (1932) and later in much more detail by Fuchs (1959);
both of these treatments follow Langmuir (1918)‚ who pointed out the existence of
a rapid change in vapor concentration at the surface of an evaporating drop. (An
analogous discontinuity in temperature had been known to exist earlier (Lazarev‚
1912).) Since Fuchs’s method is often used and produces results of reasonable
accuracy (see‚ e.g.‚ Fuchs‚ 1959; Fukuta and Walter‚ 1970)‚ we shall now present a
version of it following Fitzgerald (1972). A discussion of more rigorous treatments
of the discrete field problem may be found in Hidy and Brock (1970).

Fuchs assumed the diffusion equation and its solution are valid only for distances
greater than the ‘vapor jump’ length from the drop surface. Within
the layer vapor transport is assumed to occur according to an
elementary gas kinetic mechanism. The condition of continuity of vapor flux across
the surface may be invoked to complete the description. Proceeding in
this manner for the region ‚ we must again solve Laplace’s equation
for the case of radial symmetry‚ subject first to the boundary condition
for The appropriate solution is simply

where A is a constant to be determined.
For the region we assume the vapor flux may be described

according to the gas kinetic expressions presented in Section 5.11. If we assume
the vapor density at measures the concentration of molecules which
strike the surface (which is reasonable since on the average these molecules will have
suffered their last collision about one mean free path above the surface)‚ then from
(5-48) and (5-52)‚ we estimate the condensation flux of vapor mass per unit area
of the surface to be where is the mass
of the water molecule‚ is the average thermal velocity of vapor molecules‚
is the concentration of vapor molecules at and is the condensation
coefficient. Similarly‚ we estimate the evaporation flux per unit area of surface
to be where is the evaporation coefficient (we have ignored
any effects due to temperature gradients or incomplete thermal accommodation).
On setting which is justified by the absence of contrary experimental
evidence‚ we may therefore express the net evaporation flux of water mass
from the drop surface as follows:

which is another form of the Hertz-Knudsen equation (5-54). In (13-12a)
is the equilibrium vapor density over the drop at the drop surface temperature
and is the vapor density at

For a steady state, we must require that in (13-12a) is equal to
at To determine the latter, we recall (13-7) and (13-9) to

get
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with from (13-11). Equating now (13-12a) and
(13-12b)‚ and consider that from (13-11)‚
we find for the constant A

We may also express our result in the form of (13-9) or (13-10)‚ where now is
replaced by a modified diffusivity given by

(Okuyama and Zung‚ 1967; Fitzgerald‚ 1972). To obtain this result‚ we have used
(5-49) for Equation (13-14) coincides with an expression derived by Fukuta
and Walter (1970) on setting also‚ for the case that and
where is the ‘Cunningham constant’‚ (13-14) reduces to a result obtained
by Langmuir (1944).

Using (13-13)‚ we obtain from (13-11)

Equations (13-9) and (13-10) become then

The magnitude of the correction to the diffusivity in (13-14) (and the corre-
sponding correction to the thermal conductivity, which we shall discuss in the next
section) can be seen from Table 13.1. The table indicates that the usual continuum
theory of Maxwell strongly overestimates the growth rate for submicron particles.
The difference in growth rates is illustrated further in Figure 13.1, which presents
the results of a computation by Fukuta and Walter (1970) for the case of a single
drop growing by diffusion at 10°C, 1000 mb, a supersaturation of 1%, and a ther-
mal accommodation coefficient of unity. The figure shows that the ratio of droplet
masses, computed from the Maxwell theory and the modified
theory using of (13-14) (with reduces to within the first 20 sec
after the start of growth. For longer times, decreases until finally the difference
between the predictions of the two models becomes negligible . Since,
as we shall see below, growth times much longer than 20 sec are generally needed
to establish the spectral characteristics of a drop population growing by diifusion,
the results shown in Figure 13.1 suggest that the correction of the continuum dif-
fusion model for gas kinetic effects is not likely to make a significant quantitative
difference in the predictions of growth models for natural conditions. (Also, the
practical advantages of the corrected model are further narrowed by the present
uncertainties in the known values of and
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13.1.2 DIFFUSION OF HEAT

Water vapor transport by diffusion to or from a cloud particle necessarily involves
a substantial flow of heat as well‚ owing to the release or absorption of heat of
phase change. The resulting temperature difference between the particle and its
local environment causes a flow of sensible heat by the familiar process of thermal
diffusion or heat conduction. The flux density vector for heat transport by this
process in given by Fourier’s law:

where is the thermal conductivity of humid air through which heat is transported.
From (13-16)‚ and for the physical conditions of relevance in cloud microphysics‚

we may easily derive an equation for the diffusion of heat which is analogous to (13-
2). From the meaning of the conductive heat change experienced by a moving
volume element of air in time is just . Since the heated or cooled
air in the vicinity of a cloud particle is free to expand or contract‚ the heat exchange
may be assumed to occur at constant pressure. Then‚ from (4-6)‚ the corresponding
enthalpy change of the considered volume element is just
where is the enthalpy of air per unit mass of air. Also‚ since from
(4-12)‚ and considering that by conservation of mass‚ we arrive at the
desired result:

where is called the thermal diffusivity‚ with and being the density
and specific heat of humid air‚ and where (13-16) has been inserted for To
obtain (13-17)‚ we have assumed to be a constant over the region of interest
(within a few radii of the given cloud particle). We have also ignored heat changes
arising from radiation‚ and from frictional dissipation of air motion (or drop inter-
nal motion). Heating by frictional dissipation is always of negligible importance
for individual cloud microphysical processes (see‚ for example‚ of Landau and
Lifschitz‚ 1959). Radiative heat exchange is also negligible in the context of inter-
est in this chapter‚ since temperature differences between particles and the local
environment are always quite small.

A survey of the best experimentally and theoretically determined values for the
thermal conductivity of dry air‚ ‚ and water vapor‚ ‚ has been given by Beard
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and Pruppacher (1971a). They suggested that the temperature variation for
and can be expressed adequately by the relations

with T in °C and in cal . One may then use the Mason-Sexena
formula (Bird et al.‚ 1960) to find the thermal conductivity of moist air‚ viz.‚

where is the mole fraction for water vapor in moist air and
Since for typical atmospheric conditions ‚ we see that            .

From the identical forms of (13-2) and (13-17)‚ we can borrow the argument of
the previous section concerning the validity of assummg a steady state; this will
be permissible for times Since then and so
we can generally ignore the non-steady state contribution to the conductive heat
flow to or from evaporating or growing cloud particles. Therefore‚ from the same
mathematical arguments as used in the previous section‚ we conclude the rate of
conductive heat transfer to a motionless drop may be expressed as

(cf. (13-9)).
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We may also correct for gas kinetic effects in exactly the same manner as for
the previous case ofvapor diffusion. The only difference is in the replacement of the
vapor mass flux per unit area‚ by the heat flux per unit area‚
where is the thermal accommodation coefficient (see Section 5.11)‚ and is
the specific heat of air. The modified form for the thermal conductivity is then
given by

(Fitzgerald‚ 1972) (cf. (13-15). The ‘thermal jump’ distance is analogous to
in (13-14). If and is replaced by (13-20) coincides with

an expression obtained by Fukuta and Walter (1970). It can also be made to agree
with a result derived by Carstens (1972) and Carstens et al. (1974) by making
the replacements and . These differences
arise from slightly different modeling approaches‚ and are of little consequence.
An evaluation of (13-20) is given in Table 13.1. The previous discussion of the
significance of the differencesbetween and also applies to the present case
of versus .

13.2 Growth of Aqueous Solution Drops by Diffusion of
Water Vapor

13.2.1 GROWTH OF AN INDIVIDUAL STATIONARY DROP

We shall now formulate a governing equation for the diffusional growth (or evapo-
ration) of a single stationary drop in a motionless atmosphere. From (13-10)‚ the
rate at which such a drop changes its radius may be expressed as

where we have replaced by to include the correction for gas kinetic effects.
An expression for the temperature at the drop surface can be obtained by
considering the coupling of the rates of change of heat and mass through latent
heat release:

where is the specific latent heat of evaporation. Then‚ on substituting (13-19)
(with into this equation‚ we find

where is the density of the aqueous solution drop. As expected‚ we see that an
evaporating drop is predicted to be cooler than its environment‚ and
vice versa.
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To integrate (13-21)‚ we also need an equation for the vapor pressure at the
surface of the solution drop. An adequate expression for this purpose‚ including
both the drop curvature and solution effects‚ is given by (6-33):

To close the system of equations‚ we must also invoke the Clausius-Clapeyron
equation (4-83)‚ in order to relate to which is a function only
of the environmental temperature On integrating (4-83)‚ we obtain

where is the temperature in the drop’s environment (note: is to be identified
with the temperature T used in Chapter 12 for the temperature inside a rising air
parcel). We see that the system consists of the four unknowns
and related by the four equations (13-21)‚ (13-23)‚ (13-24)‚ and (13-25).
In cloud models‚ this set of equations is solved numerically in order to determine
the growth rate of a drop by diffusion of water vapor. The equations can also be
combined into the single expression

in which we have set and For usual
conditions of drop growth‚ (Neiburger and Chien‚ 1960)‚ which means
that the heat released by condensation is very efficiently dissipated by conduction.
One might therefore expect that the heating of the drop by release of latent heat
could be ignored‚ as was assumed in an early study by Houghton (1933). However‚
this turns out not to be the case; Neiburger and Chien showed that the neglect of
temperature differences between the drop and its environment leads to large errors
for all sizes of drops and condensation nuclei.

The result (13-26) is rather cumbersome and‚ worse yet‚ is an implicit equa-
tion due to the dependence of on Fortunately‚ several simplifications are
possible. Thus‚ since ‚ we may expand (13-26) to ‚ and write

we may write since both the curvature and solute contributions to
the equilibrium vapor pressure over a solution drop are generally small for

also, on defining
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(see Figure 6.2). With these approximations and on setting and
(13-26) reduces to

where the supersaturation Equation (13-28) with the
replacements and is equivalent to one used by Howell (1949).
For realistic conditions of growth‚ it agrees with (13-26) to within a few percent.
(For the same diffusivities‚ Langmuir (1944) derived a similar equation‚ except for
the omission of the solute effect‚ which is the second term in

The growth histories of individual solution drops calculated from an equation
almost identical to (13-28) are shown in Figure 13.2. It can be seen that there
is a tendency for more dilute solution drops‚ of smaller initial radii‚ since they
contain less salt‚ to catch up to the size of the more concentrated drops. This
happens because both the curvature and solute effects rapidly become negligible
with increasing so that approximately and‚ hence‚ or

where C is a constant. The prediction of a parabolic growth law
for relatively large and pure water drops has been verified by the experiments of
Houghton (1933).

Using an equation like (13-26)‚ Woodcock (1978) and Woodcock et al. (1981)
computed the growth of NaCl particles observed in a marine atmosphere and com-
pared the size of drops formed after a growth time of 1 to 5 hours with those found
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in marine advection fogs. The study showed that the drop sizes computed agreed
well with those observed in fogs‚ and that they were roughly proportional to the
salt particle sizes on which they grew.

13.2.2 DIFFUSIONAL GROWTH OF A POPULATION OF SOLUTION DROPS

OF NEGLIBLE FALL VELOCITY

The growth equations derived in the previous section may be used to describe
the evolution in size of a given population of initially highly concentrated aqueous
solution drops. For this purpose‚ we must make a distinction between drop growth
in cumuliform clouds where vertical velocities are appreciable and where the rate of
cooling can be described by a saturation adiabatic ascent corrected for entrainment
(see Chapter 12)‚ and stratiform clouds where the vertical velocities are small and
cooling may be considered isobaric. We shall first consider diffusional drop growth
in cumuliform clouds‚ since such a growth has been treated quite extensively in the
literature. Subsequently‚ we shall briefly summarize the few studies that have been
carried out on diffusional drop growth in stratiform clouds and fogs.

13.2.2.1 Condensation Growth in Cumuliform Clouds

As we shall show below in Section 13.3‚ the diffusional growth or evaporation of
drops with falling at terminal velocity is essentially unaffected by the air
flow around them. Hence‚ the characteristic shapes of drop spectra which evolve
through diffusion growth can be established without considering ventilation effects.
It is also reasonable to omit consideration of vapor field interactions between pairs
of growing drops. This is justified mainly by the fact that the average distance
between nearest neighbor drops is commonly where is the average drop
radius‚ even for clouds which have already experienced substantial diffusion growth
subsequent to nucleation (see Section 2.1.5). An experimental verification of this
argument has been given by Szymanski and Wagner (1983).

Although a complete description of the evolution of a drop spectrum by diffu-
sion growth in a cloud updraft is fairly complicated and requires the simultaneous
numerical solution of several differential equations‚ some important features of the
process are easy to understand‚ and are even amenable to a simple approximate
analysis. As a parcel of air rises and cools by expansion‚ its humidity will increase
rapidly (nearly in proportion to its upward velocity‚ as shown below). Eventually‚
the largest and most hygroscopic of the suspended condensation nuclei will deli-
quesce to solution drops‚ which will proceed to grow toward their critical radius
for activation and subsequent rapid growth (see Section 6.5). The parcel supersat-
uration will continue to increase for a while longer as more nuclei are activated‚
until‚ finally‚ the growing drop population is able to absorb excess vapor as fast as
it can be released by expansion. Beyond this point‚ the supersaturation will fall‚
the activated drops will tend to approach a fairly uniform size (since
and the unactivated solution drops will tend to evaporate.

From this physical picture we would expect to find a strong correlation between
the concentration of drops produced by diffusion growth and the maximum super-
saturation achieved in the expanding parcel. Approximate theoretical correlations
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of this nature have been established by Squires (1958a) and Twomey (1959c). We
shall now turn to a derivation of Twomey’s equation‚ since this model serves as a
good example to illustrate some of the physics of condensation growth. Further-
more‚ the results are widely used‚ owing to their simplicity and surprising accuracy
(e.g. Johnson‚ 1981).

We first require a description of the rate of change of supersaturation with height.
This is readily obtained by substituting (12-26) and (12-29) into (12-28) for the
case (entrainment effects are ignored in Twomey’s model). The result is

where we have made the approximation on the right side of (12-28)
(from Figure 2.1‚ we see that usually in clouds). Equation (13-28) shows
how the supersaturation increases nearly in proportion to W‚ in the absence of
condensation‚ and how it is decreased by the production of liquid water. Although
we could proceed directly with (13-29)‚ a slightly modified form which replaces
(g water/g air) (see Chapter 12) by the density of condensed
water is more convenient. Since where is the density
of moist air‚ we have with this
result and the ideal gas law‚ we obtain the desired result:

where

We next make use of (13-28)‚ ignoring the relatively small curvature and solute
terms for activated drops by‚ setting

where is the denominator in (13-28)‚ and we have omitted the subscripts on
for brevity. Noting that the characteristic time for substantial drop growth is

short compared to the time for significant changes in (13-32) may be formally
integrated to yield

where is the activation time for the considered drop. From (13-32) and (13-33)‚
the rate of mass increase for the drop may be expressed as
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Now let denote the concentration of nuclei activated on the interval
assuming (9-1)‚ we thus have so that

With (13-34) and we can now express as follows:

If (13-36) is substituted into (13-30)‚ an approximate governing equation for
results which‚ unfortunately‚ cannot be solved analytically. However‚ from our pre-
vious description of the condensation process‚ we can expect to obtain a reasonable
estimate of the final drop concentration by determining just the maximum super-
saturation And from (13-30) and (13-36) it is clear that an analytical lower
bound approximation to will yield an analytical upper bound for (by
the setting in (13-30) for Reasoning thus‚ Twomey obtained
the following lower bound estimate:

The basis for this choice can be seen from Figure 13.3‚ which illustrates schemat-
ically the curve of In the absence of condensation‚ the supersaturation
would follow the straight line shown in the figure. The triangle ABC‚
with its hypotenuse parallel to has an area and this is clearly
less than hence (13-37) follows.
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On substituting (13-35) and (13-37) into (13-36)‚ we see that we must calculate
the integral I:

Letting I becomes

where is the beta function. Finally‚ on substituting
(13-39) and (13-36) into (13-30) and setting we obtain the desired
estimate of

where the numerical evaluation has been carried out for T = 10°C and
W is in cm C is in and is expressed as a percent. The
corresponding estimate of the cloud drop population is

The success of this model is illustrated in Figure 13.4‚ which exhibits a cor-
relation coefficient in excess of 90% between the observed and computed values
(from 13-41) for the drop concentration in the bases of small to moderate‚ non-
participating cumulus clouds.

Although the above simple model is apparently capable of predicting quite well
the total droplet population soon after the onset of diffusion growth‚ it tells us
nothing about the variation of drop spectral shape with time. Such detailed be-
havior can be studied only through numerical solution of the full set of governing
equations for a given cloud model. Several such studies using different models have
been carried out.

A first step in calculations of this type is to specify the chemical composition and
size distribution of the dry aerosol particles on which the drops condense. In this
regard‚ it is important to recall from Chapter 6 that (13-28) does not describe the
deliquescence of an aerosol particle‚ i.e.‚ its transformation from a dry particle into a
saturated solution drop of equilibrium size. In order to get around this problem‚ one
generally assumes‚ as we have pointed out before at the end of the previous chapter‚
that each aerosol particle of the considered population of dry particles acquires its
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equilibrium size at the specified initial ambient relative humidity (assumed to lie
between 90 and 99% to insure deliquescence of all water-soluble components in
the aerosol particle) in a time period which is short compared to the time over
which significant changes occur in the atmospheric environment. This assumption
has experimentally been verified by Zebel (1956)‚ Orr et al. (1958b)‚ and Winkler
(1967)‚ who also demonstrated that the rate determining (slower) step in this
transformation is the growth of the saturated solution drop to its new equilibrium
size‚ rather than the deliquescence of the dry aerosol particle. The time required
for a saturated solution drop to grow to a new equilibrium size can readily be
computed from (13-28). For NaCl dissolved in the drop‚ Lee and Pruppacher
(1977) found that a solution drop in equilibrium with an environment‚ initially of
75% relative humidity‚ grows to within 10% of the equilibrium size corresponding
to a suddenly imposed 99% humidity in about 3 and 13 sec for
drops containing a salt mass equivalent to a NaCl particle of 0.01‚ 0.1‚ 1.0 and
radius‚ respectively‚ in good agreement with the experimental results of the authors
mentioned above. Similar computations were made earlier by Zebel (1956). Such
computations show that particles of sizes typically involved in the condensation
process are transformed into solution drops of equilibrium size in times
which are usually short even compared to the turbulence microscale time [from
the discussion immediately following (11-74)‚ we see that typically lies in the
interval Since provides a lower bound estimate of
the quickest fluctuation the CCN can be subjected to by the environment‚ we see
that the assumption of a negligible adjustment time for the conversion from a dry
particle to an equilibrium drop is well-founded for AP with radii less than
but not for larger paricles.

Let us now consider a vertically rising and‚ thus‚ cooling‚ air parcel in which a
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population of aerosol particles of given composition and size distribution is con-
tained. From the previous paragraph‚ we may assume that all water-soluble compo-
nents go into solution when the relative humidity in the parcel reaches the critical
value for deliquescence of the particular salts and that when the relative humidity
has reached 99% ‚ all solution drops will have reached their corresponding equi-
librium size. If we divide the original spectrum of dry particles into small size
intervals‚ we may readily compute the corresponding equilibrium size distribution
of solution drops by using (6-26) if the aerosol particles consist of water-soluble
material only‚ or by using (6-33) if the aerosol is mixed. The evolution in time
of this drop size distribution may now be determined from (13-28) if the parcel’s
temperature‚ humidity‚ and vertical velocity are known as functions of time. Rela-
tions which describe the variation with time (and thus with height) of these parcel
parameters have been given in Chapter 12 for both entraining as well as closed
rising air parcels.

Studies of the diffusional growth of drops in closed‚ adiabatic parcels have been
carried out by Howell (1949)‚ Squires (1952)‚ Mordy (1959)‚ Neiburger and Chien
(1960)‚ Warner (1969b‚ 1970a)‚ Bartlett and Jonas (1972)‚ and Fitzgerald (1974).
Of these‚ only Bartlett and Jonas included some effects of turbulence. Chen (1971)
employed a parcel model which considered entrainment of air devoid of aerosol
particles‚ while Mason and Chien (1962) and Warner (1973) allowed for the en-
trainment of air containing active CCN.

Following these early studies‚ the effects of entraining AP were studied more
quantitatively by Lee and Pruppacher (1977)‚ Lee et al. (1980)‚ Flossmann et al.
(1985)‚ Ahr et al. (1989a‚b)‚ and Baumgarten (1990). In these studies‚ the three
most often used versions of the parcel model were investigated: (1) a closed parcel
in which the vertical velocity is one of the computed variables‚ (2) a closed parcel
in which the vertical velocity is prescribed‚ and (3) an open parcel in which the
vertical velocity is computed and cloud environmental air with aerosol particles is
allowed to entrain. In addition‚ the effects of various initial size distributions and
compositions of the aerosol particles on the development of the drop size distrib-
ution were studied. Before we give some results obtained with these models‚ we
must emphasize that in atmospheric clouds the process of condensation cannot be
separated rigorously from the process of collision and coalescence (see Chapter 14)‚
since collision does not begin as a ‘step function’ after the drops have reached a
critical size due to growth by diffusion of water vapor. Rather‚ collision sets in
gradually as the collision efficiency (see Chapter 14) between the drops increases
from very low but still finite values for drops below radius‚ to values near
unity for drops larger than radius (see Figure 14.5). This is the reason why
drop spectra calculated by cloud models cannot be compared with observed drop
spectra unless the effects of collision and coalescence as well as condensation are
included in the model.

If the collision-coalescence process is to be included in the parcel model‚ it is
necessary to add the term to (12-37). This term represents the
change of the drop size distribution function due to the collision and subsequent
coalescence of drops. We find an expression for this term by rewriting (11-56) as a
function of mass instead of the volume of the colliding particles
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where the collection kernel for the for colliding drops of mass and is
given by (11-85). The first term in (13-42) expresses the production of by
collision and coalescence of drops of mass with drops mass while the
second term describes the removal of by collision of drops of mass with
any other drop (a fuller discussion of this equation is given in Chapter 15). Once
the drop size distribution function has been obtained the corresponding
mass distribution function can be determined.

From the parcel model studies‚ the following main conclusions may be drawn:
(1) As anticipated from our discussion in Chapter 6‚ the largest hygroscopic par-
ticles become readily activated to drops and grow quickly to visible-sized drops‚
while the smallest particles grow little and produce inactivated drops which even
undergo partial evaporation after the peak in supersaturation has been reached.
This behavior is illustrated in Figure 13.5. (2) Adiabatic condensation models
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in which an air parcel remains closed to heat‚ water vapor‚ and aerosol particles
predict updraft velocities U‚ liquid water contents supersaturations and
numbers of AP activated to drops which are unrealistically large‚ while the pre-
dicted drop size distribution is unrealistically narrow and has only a single mode
(e.g. Lee and Pruppacher‚ 1977). (3) Parcel models in which the ascent is adiabatic
but its updraft velocity is prescribed predict more reasonable values for U‚ and

Also‚ the number of AP activated to drops is lower; however‚ the drop size
distributions are still unrealistically narrow and singly peaked. This is illustrated
in Figure 13.6 for a rural aerosol (Jaenicke‚ 1988)‚ and for the temperature and
humidity distribution given by Lee and Pruppacher (1977). (4) If entrainment is
included in the condensation model‚ U‚ and assume more realistic values‚
while the drop size distribution broadens and often develops a secondary mode (or
even multimodes). This is illustrated in Figure 13.7 for the same conditions as in
Figure 13.6. (5) Collision and coalescence between drops broaden the drop size dis-
tribution further even at an early stage in the cloud development‚ generally when
the drops have reached radii larger than This is illustrated in Figure 13.8
for the same conditions as in Figures 13.6 and 13.7. We notice that‚ after 1600 sec
model time‚ the concentration of drops smaller than radius is much lower
than when collision and coalescence is not present‚ multimodes have developed‚
and most of the water mass had shifted into precipitation-sized drops. (6) The
composition and the total number concentration of the aerosol particles
present in air play an important role in shaping the drop size distribution. This is
illustrated in Figures 13.9 to 13.11 for a given gamma distribution of AP consist-
ing of which grow by condensation with entrainment and collision and
coalescence. We note from Figure 13.9 that‚ for and
‚ no precipitation sized drops develop. On the other hand‚ for
but (Figure 13.10)‚ drops larger than in concentrations of 1 per
liter have formed after 1400 seconds. Drops of such concentration have already
formed after 1000 seconds for the case that and
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In our discussion of the evolution of a drop size spectrum‚ we have assumed
that the chemical composition of the aerosol is uniform across the size spectrum.
From Section 8.2.9 we know‚ however‚ that the size distribution of atmospheric
aerosol particles is represented best by the superposition of at least three lognormal
distributions‚ each of which may consist of AP of a different chemical composition.
The effect of such an ‘external’ mixture of AP is illustrated in Figure 13.12 for a
remote continental spectrum (Jaenicke‚ 1988) with consisting
of with in the first mode‚ 50% and 50%
with in the second mode‚ and with in the third mode‚
and in Figure 13.13 for a maritime spectrum afterFigure 8.28a (curve 4) with

consisting of with in the first and second
modes‚ and of 90% NaCl and 10% with in the third mode. We
notice from these figures that the size spectrum of drops formed in a maritime
aerosol broadens much more rapidly than does the spectrum of drops formed in a
remote continental aerosol.

At this point‚ one pervasive and artificial feature of all the condensation compu-
tations discussed so far comes to mind‚ namely the fact that they basically involve
the lifting of just a single mass of air. It is well-known from observations‚ especially
those made with the aid of time lapse photography‚ that real convective clouds do
not grow in this manner. Rather‚ their development is characterized‚ at least in the
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early stages‚ by a succession of lifting and sinking motions. It is reasonable to ex-
pect a strong cumulative effect of such percolating motion‚ with its cycles of mixing‚
evaporation‚ and further condensation‚ on the evolving cloud drop spectra. This
expectation is borne out by the condensation model of Mason and Jonas (1974)‚
which includes at least a simplified simulation of the observed percolating motion.
(Unfortunately‚ the collision and coalescence process was not included.) Thus‚ in
their model‚ a single spherical ‘thermal’ is allowed to rise and then sink back again
under the influence of evaporative cooling resulting from the entrainment of drier
environmental air. Following this‚ a second thermal is released to rise through the
residue of the first. In consequence‚ though most of the droplets in the subsiding
first thermal evaporate‚ a few of the largest survive to be caught up and experience
further growth in the second thermal. In this way‚ it was possible to produce a few
large drops without invoking the presence of large hygroscopic particles. Also‚ the
subsidence of the first thermal boosts the relative concentration of small droplets

DIFFUSION GROWTH & EVAPORATION OF WATER DROPS & SNOW CRYSTALS 523



524

to more realistic values.
The variations with height and time ofU‚ and (the ratio of

the actual liquid water content to that which would be produced by the adiabatic
lifting of a closed parcel) computed by Mason and Jonas (1974) are shown in
Figure 13.14 for the case of a maritime cumulus cloud of the type observed by
Warner (1969a‚b) in Australia‚ assuming a maritime spectrum of NaCl particles.
The computed drop spectra resulting after the ascent of the second thermal are
given in Figure 13.15 for heights of 150 and 1400 m above cloud base. Also included
in this figure are representative observed maritime spectra (Warner‚ 1969a‚b) for
clouds with total drop concentrations similar to those in the model cloud.

A comparison between Figures 13.15 and 2.23 shows that‚ according to the
model‚ is significantly larger than the observed values. This discrepancy
has been emphasized by Warner (1972‚ 1975a‚b)‚ who also pointed out that the
model results would only deteriorate in this respect if the number of successive
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thermals were allowed to increase‚ since each of these would deposit additional
moisture in the air to be traversed by the next in the series (for example‚ note from
Figure 13.14b that in the lowest 400 m of the cloud‚ which can be
seen from Figure 13.14a to be the height achieved by the first thermal). Against this
criticism‚ Mason (1975) has argued that the observed values of represent
averages over cloud regions which are probably composed largely of the residues of
earlier thermals‚ and that therefore one would expect to be significantly
larger in active growing thermals such as are simulated by the Mason-Jonas model.

In spite of the likelihood that the Mason-Jonas cloud is unrealistically wet‚ its
microphysical properties seem to agree better with observations than do those of
the other condensation models. Thus‚ we see from Figure 13.15 that the pre-
dicted droplet spectra agree quite well with observations. The model drop spec-
trum for the maritime cloud was found to broaden rapidly‚ and produced drops
with in concentrations of about and drops with in
concentrations of about within 30 min; as we shall see in Chapter 15‚
this is sufficient to continue growth by collision and coalescence. It is particularly
noteworthy that the production of these relatively large drops was accomplished
without assuming as large a population of large and giant nuclei as has been found
necessary in the other condensation models.

Similar model computations by Mason and Jonas for the case of a continental
type cloud produced total drop concentrations of about an order of magnitude
larger than for the maritime cloud‚ but with very few drops of even radius.
A more realistic broadening of the drop spectrum was only achieved by including
growth by collision and coalescence (Jonas and Mason‚ 1974).

A similar outcome was obtained by Rösner et al. (1990) who constructed a
parcel model in which three successive air parcels were allowed to rise in succession.
Inside each parcel‚ the AP were allowed to grow by condensation and collision.
Each of the three air parcels was assumed to start from just below the cloud
base‚ having the same initial radius of 350 m‚ an updraught velocity of
and containing aerosol particles of the same composition and size distribution.
The temperature excess of the first parcel over the undisturbed environment was
assumed to be 0.3°C. The second and third parcels were assumed to have the
same temperature excess‚ but now with respect to the environment left behind
by the previous parcel. While rising‚ the air parcels were assumed to entrain air
of zero vertical velocity. However‚ heat‚ water vapor‚ aerosol particles‚ and drops
were assumed to be exchanged between the parcel and its environment. In the
model‚ each parcel was followed to its level of neutral buoyancy at which‚ through
mixing‚ it came to rest. The times of release of the second and third parcels were
chosen such that a thermal would reach the previous one only at the time when
the previous one had stopped ascending. The behavior of the first parcel was
assumed to be determined by the given temperature and moisture distribution of
the undisturbed ambient air; and as the parcel was rising‚ its thermodynamic and
microphysical parameters varied with height. At each height‚ these values were
taken to represent the environment for the second parcel. Since this rose higher
than the first parcel‚ the original environmental conditions were applied as soon as
the second parcel emerged from the environment of the first – and so on.
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The variation with height (i.e. with time) of the vertical velocity U‚ the liquid
water content and the supersaturation of the three successive parcels are
displayed in Figures 13.16a‚b‚c. We note that the first parcel comes to rest after just
a few hundred meters‚ and that each successive air parcel rises with a higher vertical
velocity‚ and reaches a higher altitude than the previous one. The discontinuities
in Figures 13.16b‚c are the result of the different environmental conditions which
a parcel experiences when it emerges from the environment of the air left by the
previous parcel. The associated variation of the drop-size distribution function
is given in Figures 13.17a‚b‚c. As expected‚ the first parcel produces only a narrow
drop size distribution. Similarly‚ the second and third parcels do not develop a
secondary maximum in the drop size distribution as long as the parcels are inside
the air left behind by the previous parcel. However‚ as soon as the parcel emerges
from the remnants of the previous parcel‚ thus allowing aerosol particles to be
entrained from the undisturbed environment‚ a secondary maximum develops in
the drop size distribution.

The variation of the mass distribution function which describes the loca-
tion of the main water mass in the drop size spectrum‚ is also displayed in Fig-
ures 13.17a‚b‚c. The collision and coalescence of drops eventually form a second
maximum in representing the precipitation-sized drops. We notice that these
drops do not develop until the third parcel ascends (Figure 13.17c). In Table 13.2a‚
the number of drops per larger than 30‚ 50‚ and radius is given for var-
ious times during the ascent of the third parcel. Note that in the third parcel‚
precipitation drops develop by condensation and collision and coalescence after
only about 600 seconds‚ or after an ascent of about 1700 m above cloud base.
On the other hand‚ Table 13.2b shows that if the collision-coalescence mechanism
is omitted‚ the broadening of the drop size distribution is insufficient to produce
precipitation-sized drops‚ even in times as long as 800 seconds.

We have noted that simulations of the condensation growth alone‚ and especially
those which involve the lifting of a single air mass‚ produce drop spectra which are
still unrealistically narrow. It has been argued that this shortcoming may be due
to their neglect of the existence of turbulence-induced fluctuations in the local
supersaturation in updrafts‚ Warner (1970b). The notion that turbulence may
significantly increase the dispersion in drop sizes has been pursued especially by
Russian and Chinese workers (e.g.‚ Belyayev‚ 1961; Mazin‚ 1965; Sedunov‚ 1965;
Levin and Sedunov‚ 1966; Jaw Jeou-Jang‚ 1966; Wen Ching-Sung‚ 1966; Stepanov‚
1975‚ 1976). As one representative result of these efforts‚ we note that Mazin
(1965) predicted turbulence can produce in 5 min a standard deviation of in
the radius of drops initially centered about radius.

On the other hand‚ quite different results have been obtained by Bartlett (1968)‚
Warner (1969b)‚ and Bartlett and Jonas (1972). They have found that the turbu-
lence-induced spread in the radii of drops grown by vapor diffusion at any given
level is quite small‚ in fact generally less than According to these au-
thors‚ the key argument for understanding this result is based on the fact that the
supersaturations and updrafts which a growing drop encounters are closely cor-
related to each other. Thus‚ a droplet which experiences a high supersaturation
– and therefore grows rapidly – is at the same time likely to be in a strong up-
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draft which restricts the drop’s growth between any two given levels to a relatively
short time. Conversely‚ low supersaturations are associated with small updrafts
and longer growth times. It appears that the resulting significant distinction to be
drawn between calculations of drop-size dispersions after a given time and those
at a given level have generally been overlooked in the studies which have predicted
large dispersions. For example‚ Sedunov (1965) obtained an estimate of the drop-
size distribution at a given time‚ but refers to it as the distribution at a given level.
Another fault of much of the Russian and Chinese work is that it generally involves
linearized versions of the full governing equations‚ this being done to permit the ex-
traction of analytical solutions. Unfortunately‚ some of the physics is unavoidably
lost by such simplifications.

These results suggest that the observed growth of a population of drops by
condensation cannot be explained by the effects of turbulent mixing within clouds
but rather must be explained on the basis of turbulent entrainment of air from the
environment into the clouds.

Although there are still doubts as to the detailed mechanism of entrainment
(see Section 12.7)‚ we shall briefly sketch the procedure necessary to obtain some
numerical results from the model of inhomogeneous mixing of Baker et al. (1980)
described in Section 12.7. For this purpose‚ we shall follow the authors and assume
that unsaturated blobs of constant volume of 1/10 to 1/100 of the original
ascending cloud volume are drawn into the cloud either at random intervals or
regularly at a rate The entrainment of such discrete air blobs is assumed to
occur instantaneously at time The entrainment rate can then be written as

where is the Dirac delta function. Each
entrained blob is assumed to completely evaporate a fraction F of droplets of all
sizes until the relative humidity has risen to 100%. Along with the blob of drier
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air‚ aerosol particles of a given chemical type and constant number concentration
are also assumed to be entrained from the cloud environment and activated during
the subsequent ascent. The rate of entrainment is adjusted such that the total
number of drops‚ remains constant during the parcel’s ascent. Incorporating
the above entrainment rate into the thermodynamic relations of Section 12.9‚ and
using an equation like (13-28) for the rate of growth of a drop of radius the rate
of change of the drop spectrum can be computed as a function of time due to the
combined effects of: (1) entrainment‚ from

(2) subsequent drop evaporation‚ from

(3) and subsequent dilution of cloud air‚ from

In (13-42) and (13-43) F is given by

where is the relative humidity of the air in the cloud’s environment‚ and is
the constant number density of the entrained aerosol particles of dry radius in the
environement. In order to compare the results of inhomogeneous mixing with the
parameter for homogeneous mixing‚ the frequency of ingestion
of blobs is adjusted such that during the ascent of the parcel‚ the total mass
of entrained air is the same in both models. In Figure 13.18‚ such a comparison
is shown after the parcel had ascended for 1000 seconds. The drop spectrum
calculated with the inhomogeneous model agrees well with the spectrum observed
by Warner (1969a)‚ whereas no agreement is found between Warner’s observations
and the predictions of the model for homogeneous entrainment. Baker et al. (1980)
concluded from this exercise that‚ by inhomogeneous mixing‚ the growth of a small
portion of droplets is several times faster than that predicted by the classical model
with homogeneous mixing. Unfortunately‚ Baker et al. (1980) did not include the
collision and coalescence process in their calculations.

Although air parcel models with homogeneous entrainment are very useful for
studying detailed cloud microphysics‚ such models have three basic deficiencies
(1) they cannot simultaneously predict liquid water content and cloud top height‚
as discussed earlier in Section 12.8; (2) they underestimate the entrainment pro-
gressively with increasing cloud top height due to the dependence of the ho-
mogeneous entrainment parameter (3) they retain the drops grown in the air
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parcel because the model does not provide for drop settling; and (4) they overesti-
mate the time necessary to produce drops large enough for growth by collision and
coalescence.

In order to remedy the above deficiencies‚ dynamic frameworks are required
which are more realistic than that provided by a Lagrangian cloud parcel. To meet
this need‚ numerous one-dimensional time dependent‚ and two- and three-dimen-
sional models have been formulated. Due to the vast literature on this matter‚
we cannot discuss these models in this context as it would lead us much too far
afield. We shall simply refer the reader to the cloud dynamic texts of Agee and Asai
(1982)‚ Matveev (1984)‚ Lilly and Gal Chen (1982)‚ Cotton and Anthes (1989)‚ and
Houze (1992). However‚ we must emphasize that in many models a more realistic
dynamic framework often is achieved only at the expence of an accurate description
of the microphysical nature of the cloud. This is usually done by parameterizing
the microphysical processes.

13.2.2.2 Condensation Growth in Stratiform Clouds and Fogs

A somewhat different overall theoretical approach from the previous section is
needed if we attempt to describe the drop spectral evolution in stratiform clouds‚
since they generally have longer lifetimes and much weaker updrafts (and‚ hence‚
have smaller vertical extent) than cumuliform clouds. These characteristic features
should especially enhance the role played by turbulent exchange of air between the
cloud and its environment. Hence‚ it is perhaps not surprising that the closed parcel
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model of Neiburger and Chien (1960)‚ for which an equation similar to (13-26) was
used‚ combined with an isobaric cooling law and the assumption of a Junge-type size
distribution of NaCl particles‚ produced size distributions considerably narrower
than those observed in stratiform clouds.

The first attempt to describe the drop spectra in stratus clouds in terms of a
balance between condensation growth and turbulent transport of drops to the cloud
boundaries‚ where they evaporate‚ was made by Best (1951b‚ 1952). In his first
paper‚ Best obtained an order of magnitude estimate of the mean lifetime of cloud
drops subjected to turbulent diffusion. To accomplish this‚ he applied a formula of
Sutton (1932) for the standard deviation of airborne smoke particles from their
mean path‚ namely where is the wind velocity‚ denotes time‚
has a value of about 0.08‚ and is 1.75 (cgs units). By assuming can be taken
to represent half the cloud thickness‚ and adopting the value Best
found that the resulting values of interpreted as the mean lifetime of the drops‚
were consistent with their mean size as computed from an equation similar to (13-
28) and assuming a constant supersaturation of 0.05%. In his second paper‚ Best
claims to have accounted as well for the observed drop spectral shapes‚ but the
mathematical development presented in the paper appears to be flawed by several
errors.

A more detailed treatment of this diffusional transport model has been pro-
vided by Mason (1952b)‚ 1960b). Mason assumed an idealized layer cloud with
boundaries at and with turbulent eddying motions on a scale so that
classical diffusion theory could be applied. Then‚ in terms of the diffusion problem
described in Section 11.2‚ the probability density for finding
drops at distance from the origin at time assuming they were introduced
at and is governed by the equation

where is the effective eddy diffusion coefficient. Drops which arrive at the
boundaries are assumed lost‚ so that the boundary conditions for (13-46) are

Also‚ according to the above description the initial condition may
be expressed as where is the delta function.

The solution to this problem may be obtained most easily by means of the pro-
cedure described in Appendix A-11.4‚ i.e.‚ by simulating the boundary conditions
with an extended initial distribution‚ so that the formal solution form of (A.11-7)
may be applied. In this manner‚ Mason computed the probability that drops may
be found somewhere in the cloud at time From that‚ he computed the fraction of
drops which are removed from the cloud in a given time interval‚ assuming that the
lost drops are replaced by an equal number of inactivated nuclei in order to main-
tain a constant total concentration. Thus‚ the drops present at the beginning of a
time step will include those surviving previous time intervals plus those activated
during the last time step. Corresponding to this time history of the drop popu-
lation‚ a cumulative size distribution was computed by integrating an equation of
the type given by (13-28) over the lifetimes belonging to each fraction of the total
population. This was done under the assumptions of a constant supersaturation‚
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an initial NaCl particle size distribution‚ a half-life time of the drops based on the
above-mentioned smoke dispersion formula of Sutton (1932)‚ and a certain cloud
thickness. The cumulative drop size distribution obtained in this manner agreed
well with the drop spectrum observed by Neiburger (1949) near the middle of a
California stratus cloud with similar total drop concentration.

Following these early attempts to describe the evolution of the cloud drop spec-
trum in fogs and stratus clouds‚ numerous improved models followed. In particular‚
it was realized that in a realistic condensation model for fog and stratiform clouds‚
the effects of radiation must also be included. This was not necessary for treating
drop growth in convective clouds‚ because in such clouds the drops grow rapidly
initially by condensation due to the much higher updraft velocities and supersatu-
rations‚ and subsequently by collision and coalescence.

A correct description of the effects of radiation on the development of a fog or
stratus would require a detailed description of the radiative interaction with all
microphysical processes. However‚ the fog models formulated by Zdunkowski and
Nielsen (1969)‚ Zdunkowski and Barr (1972)‚ Brown and Roach (1976)‚ Oliver et al.
(1978)‚ Welch et al. (1986)‚ and Forkel et al. (1987) as well as the stratus models
of Duynkerke and Driedonks (1988)‚ and Finger and Wendling (1990) in fact lack
detailed microphysics. On the other hand‚ the stratus model of Nicholls (1987)
contains some microphysics‚ but lacks the inclusion of detailed dynamics. Roach
(1976) may have been the first to explicitly compute the effects of radiation on the
growth of a drop by condensation‚ although he did not formulate a complete fog
model. He showed that if a drop is cooled by radiation‚ it may even grow in a water
subsaturated environment‚ while a radiatively warmed drop may evaporate even
into supersaturated air. Assuming for the radiative heat imput per unit surface
area of a drop a value of he computed the growth rate of a drop at a
supersaturation of 0.05%. The result of this calculation is shown in Figure 13.19. It
can be seen from this figure that during radiative cooling‚ drop growth is enhanced‚
while it is retarded by radiative warming.
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The effects of radiative cooling on the growth of a whole drop population in a
fog was studied by Brown (1980). We notice from his results that radiative cooling
increased the mean drop radius by about 30% if the nucleus concentration was
low (Figure 13.20a). At the same time‚ the total drop concentration and liquid
water content has decreased. In contrast‚ evaporative cooling had only a small
effect on drop growth if the nucleus concentration is high‚ as seen in Figure 13.20b.
The reason for this lies in the fact that with increasing nucleus concentration the
drop concentration also increases‚ and with it the optical depth of the fog. At the
same time‚ the size of the drop decreases. Both factors reduce the radiative loss.
Unfortunately‚ Brown (1980) did not take into account droplet settling‚ which
significantly affects the liquid water content of a fog and thereby the radiative
cooling; and neither does it contain detailed dynamics.

More recently‚ Bott (1991) and Bott et al. (1990) developed a one-dimensional
fog model which includes a detailed description of the microphysical and dynamic
processes‚ the transfer of radiation through the fog‚ and the effects of radiation on
the microphysical structure of the fog. For calculating the radiative fluxes and the
heating and cooling rates‚ a modified version of the stream approximation of
Zdunkowski et al. (1982) was utilized in which the radiation parameters were cal-
culated as time dependent functions of the actual aerosol/droplet size distribution.
Following Forkel et al. (1987)‚ the dynamic model consisted of a set of prognos-
tic equations for the horizontal wind field‚ for the potential temperature and the
specific humidity‚ including a description of the turbulent exchange coefficients for
heat and momentum‚ as well as droplet settling.
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Computations were made for the rural AP spectrum of Jaenicke (1988)‚ of com-
position given by Shettle and Fenn (1979)‚ and for the temperature‚ humidity‚ and
wind conditions prescribed in Bott et al. (1990). The results of these computa-
tions are given in Figure 13.21a‚b. The figures show that the particle spectrum
is divided into two portions separated by a pronounced minimum. To the left of
the minimum‚ the curve describes the size distribution of the slightly grown but
inactivated aerosol particles. To the right of the minimum‚ the curve depicts the
size distribution of the formed droplets. Comparison of Figure 13.21a with 13.21b
shows that the total number concentration of activated AP is higher‚ the minimum
between the inactivated and activated particles much lower‚ and the liquid water
content higher‚ when one omits the radiative effects than when these effects are
included. This is a result of the fact that the radiative effects favor the growth of
the larger drops so that less water vapor is available for the activation of new small
drops. Also‚ larger drops have a higher settling rate‚ thus reducing the liquid water
content.

In order to compare the effects of the initial aerosol particle spectrum and chem-
ical composition‚ computations were made by Bott (1991) for an urban‚ a rural‚
and a maritime AP spectrum. The rural aerosol particles were assumed to be
composed of with varying linearly from 0.9 for to 0.5
for The urban aerosol particles were assumed to consist of 80% rural
aerosol and 20% soot-like material. The maritime aerosol particles were assumed to
consist of for and NaCl for both with
The temperature and humidity profile and the initial wind conditions were those
prescribed by Bott (1991). We notice from Figure 13.22 that the particle distribu-
tions are again strongly bimodal‚ separating the cloud drops from the inactivated
aerosol particles at a particle radius of 4 to and with a maximum value of the
drop concentration located near a drop radius of independent of the initial
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aerosol type. The location of the maxima‚ and minima‚ and the values for the
drop concentration of the spectra in Figure 13.22 agree quite well with the spectra
observed by Meyer et al. (1980)‚ Jiusto and Lala (1982)‚ and Kunkel (1982) (see
Figure 2.4a in Chapter 2).

Before leaving the subject of condensation‚ we hasten to emphasize that it is not
always necessary to treat the condensation process by an ab-initio calculation‚ i.e.
by beginning the computation with a distribution of dry aerosol particles. Rather‚
one may as well start the computation with a specification of the number of cloud
condensation nuclei (CCN) as a function of supersaturation‚ usually given in terms
of a power law in the form (9-1). However‚ Ahr et al. (1989a) have shown that for
a correct description of drop spectra‚ the constants in the CCN-power law must
pertain exactly to the air mass in which the cloud or fog grows. This can best be
done by actually measuring the CCN spectrum of the air mass. Alternatively‚ if the
CCN spectrum is not available‚ it can indirectly be obtained from the measured
size distribution of the AP and their chemical characteristics using the method
outlined in Section 9.1.2.
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13.2.3 STEADY STATE EVAPORATION OF WATER DROPS FALLING IN

SUBSATURATED AIR

In this section we shall consider the ventilating effect of a drop’s motion on its rate
of diffusional growth or evaporation. The results presented here will justify our
previous neglect of the ventilation effect for the small sizes which are involved in
the early stages of evolution of cloud drop spectra.

From the discussions of Section 13.1.1‚ it is clear that our problem here is to
solve the steady state convective diffusion equation

for a spherical drop of radius past which moist air containing water vapor of
density flows with velocity There are several conventional ways of describ-
ing the resulting convective enhancement of the diffusional growth or evaporation
rates. Thus‚ in the cloud physics literature‚ one generally uses the mean ventilation
coefficient‚ defined as the ratio of the water mass fluxes to or from the drop for
the cases of a moving and a motionless drop‚ viz.‚

where denotes the mass flux for the motionless case of pure diffusion‚
and is given by (13-9) for a growing drop (the same expression but with opposite
sign applies to the case of an evaporating drop). A closely related quantity used
in the chemical engineering literature (Bird et al.‚ 1960) is the mean mass transfer
coefficient‚ defined by

On combining (13-9)‚ (13-49) and (13-50)‚ we also see that

Finally‚ another useful dimensionless measure found in the chemical engineering
literature (Bird et al.‚ 1960) is the mean Sherwood number‚ defined in terms
of as

From this last result and (13-48)‚ we see that and for a motionless
drop. Substituting (13-51) or (13-52) into (13-50)‚ we find for a moving drop

We see that for computing the growth rate of a moving drop‚ we must deter-
mine or To do this‚ we recall from (13-7) and (13-9) that
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so that we obtain from (13-53)

assuming to be constant over the diffusion path.
Considering that where is the azimutal angle‚ we find‚

after partial integration for an axisymmetric flow past the drop‚

where is the angle from the forward stagnation point of the flow. By defining
the local enhancement of the vapor flux by what is known as the local Sherwood
number‚ as follows

we may express the overall enhancement of the vapor transport by

In order to compute we must find the vapor density distribution
around the moving drop from (13-48). This in turn allows us to determine the
vapor density gradient at the drop surface and thus from (13-56).

Of course‚ to solve (13-48) for requires specifying and generally this can be
accomplished only through a numerical solution of the Navier-Stokes equation for
hence‚ for nearly all cases of interest‚ (13-48) must be solved by numerical methods.
To do this‚ one generally first renders (13-48) dimensionless by introducing the
variables and in terms of
these (13-48) becomes

where is the Péclet number for vapor
transport‚ is the Schmidt number for vapor in air‚ and is the
kinematic viscosity of air. An axially symmetric numerical solution of (13-58) may
be carried out in spherical coordinate in conjunction with (10-72) by writing

(cf. (A.10-18)))‚ and by imposing the following boundary
conditions: (1) On the sphere surface and
(2) along the symmetry axis (3) far from
the sphere surface and

Numerical solutions as outlined above have been obtained by Woo (1971) and
Woo and Hamielec (1971) for an evaporating drop in air with a Schmidt number
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Some resulting plots of versus are shown in Figure 13.23
for various It is seen that the effect of ventilation varies strongly with
the angle from the forward stagnation point‚ and is smallest near the location of
flow separation from the drop. Also‚ the ventilation effect and‚ hence‚ the rate of
evaporation‚ is greatest on the upstream side of the drop‚ as would be expected.

We shall show in Chapter 17 that boundary layer theory leads to the predic-
tion that the convective enhancement of the mass or particle flux to a sphere is
proportional to for It has therefore been custormary to plot
the values of or as a function of this quantity. The rate at which this
asymptotic behavior is approached is indicated in Figures 13.24a‚b. We note from
Figure 13.24a‚b that‚ for the expected linear dependence of the ven-
tilation coefficient begins near A linear dependence on with
was found experimentally by Ranz and Mashall (1952)‚ Frössling (1938)‚ Beard and
Pruppacher (1971a)‚ Wedding et al. (1986)‚ Pruppacher and Rasmussen (1979)‚
and from a numerical solution of the convective diffusion equation (13-58) by Woo
and Hamielec (1971). The experimental values of Kinzer and Gunn (1951) deviate
significantly from the expected behavior due to various experimental inaccuracies.
For we notice from Figure 13.24a that no longer varies lin-
early with but approaches asymptotically as This is‚
of course‚ what we would expect‚ since boundary layer theory becomes inapplicable
for However‚ for such decreasing the flow becomes increasingly
linear and simple so that various analytical approximations to become possi-
ble. For example‚ (13-58) has been solved by the method of matched asymptotic
expansions (see case 4 of Section 10.2.4) for small and by Acrivos and
Taylor (1962)‚ Rimmer (1969)‚ Gupalo and Ryazantsev (1972)‚ and Sano (1972).
The differences in these studies are due to the assumed form for Thus‚ Acrivos
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and Taylor assumed Stokes flow; Rimmer‚ and Gupalo and Ryazantsev assumed
‘Proudman-Pearson flow’; and Sano assumed potential flow. As one representative
example‚ we shall quote the series expression obtained by Acrivos and Taylor:

This result and some others are plotted in Figure 13.24a. Note that the experimen-
tal‚ numerical‚ and analytical results merge as with Note also
that the analytical results begin to diverge noticeably from the experimental and
numerical results as The values of obtained by Beard and Pruppacher
(1971a) and Pruppacher and Rasmussen (1979) are closely approximated by the
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following empirical expressions:

for with and

for i.e. for with
The whole range of values for is plotted in Figure 13.25. The experimentally
found behavior implies that the evaporation enhancement expected due to vortex
shedding from the rear of large drops‚ and the evaporation reduction expected
due to drop defomation (reducing the drop surface area effectively ventilated)‚
approximately cancel each other.

To determine the rate of evaporation of a falling drop‚ we must also take into ac-
count the convective-diffusional transfer of heat to the drop from the environment.
Because of the complete mathematical analogy between problems of convective
heat and mass transfer (cf. (13-2) and (13-17))‚ we may express the ventilation
effect on heat transfer in terms of a mean ventilation coefficient for heat‚ which
is obtained from merely by replacing with i.e.‚ Simi-
larly‚ corresponding to the mean Sherwood number for mass transfer‚ there is the
mean Nusselt number‚ for heat transfer‚ given by

Because the ventilation effect shows a strong local variation over the drop surface
(Figure 13.23)‚ there must be a non-zero temperature gradient at the surface.
This gradient will be degraded to some extent by the drop internal circulation‚
but unfortunately there are no computations available with which to estimate the
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resultant steady state gradient. For lack of any information on this point‚ it is
customary to assume the local cooling effect is negligible‚ so that the drop has
an isothermal surface at temperature Simple order of magnitude estimates
indicate this is probably a very good assumption‚ because of the large thermal
conductivity of water and the expected small differences in the heat flux around
the drop surface.

In order to determine for an evaporating drop‚ we first write‚ in analogy to
(13-22)‚

for the coupling of the rates of heat and mass exchange for the ventilated drop.
Then‚ on substituting (13-10) and (13-19) into this equation‚ we find that

where is given by (13-24) and (13-25).
With available‚ the drop evaporation rate may be determined from (13-53)‚

which we now express in the form

Obviously‚ (13-64) may also be used to determine experimentally from observed
drop evaporation rates. If is known‚ (13-64) allows the calculation of the varia-
tion in the radius of a water drop falling from the cloud base to the ground in sub-
saturated air. The results of such a calculation are illustrated in Figures 13.26a‚b.
As expected‚ we see that below the cloud base the future fate of a drop depends
strongly on the humidity structure of the air below the cloud‚ on the original size
of the drop‚ and on the height of the cloud base. Thus‚ in order for a
radius drop to arrive at the ground with a radius of the cloud base from
which it falls may only be 1100 m above the ground if the air below the cloud base
has a relative humidity of 60%; but it may be 2800 m above the ground if the
relative humidity is as high as 80% (Figure 13.26a). Considering a fixed cloud base
of 3000 m‚ the same figure tells us that the original radius of a drop falling from
this cloud base must be as large as in order to arrive at the ground with
a radius of if it falls through air of 60% relative humidity‚ while the drop
can be as small as if it falls from the cloud base through air of 90% relative
humidity.

Supposing now that a drop makes a simple isothermal excursion of 300 m‚ Fig-
ure 13.27 shows that the probability of such a drop surviving the excursion‚ at 90%
relative humidity and at T = 0°C and is a sensitive function of its
initial size. Thus‚ a drop of experiences a negligible change in size‚
while drops of do not survive the excursion.

Another related quantity of interest is the time required for a falling drop to
achieve its quasi-steady state temperature difference between itself and the envi-
ronment. Let us consider this adaptation time for the case of a drop of initial
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temperature placed abruptly in an environment at and
with a relative humidity Then‚ because of evaporative cooling‚ the instan-
taneous drop temperature satisfies so that there is a conductive
heat flux from the air to the drop given by (cf. (13-19)). At the
same time‚ the rate at which heat is lost from the drop due to its evaporation is

(> 0 since Thus‚ we find that the total rate at which the
drop gains heat is given by

This total heat flux to the drop must cause the temperature difference between
the drop and its environment to change at a rate determined by the obvious heat
balance relation where is the specific heat
capacity of water and is the mass of the drop. From this relation‚ (13-65)‚ and
(13-53) for we obtain the governing equation for temperature adaptation:

Let us now assume that the water drop is sufficiently large that the curvature
effects are negligible; then‚ we may set If we make the fur-
ther approximation that which
represents the mean slope of the saturation vapor density curve over the interval

then (13-66) may be expressed in the form

where

and

where An approximate solution of (13-67) to (13-69) is

where is the drop’s initial temperature‚ and is
the relaxation time given by

(Kinzer and Gunn‚ 1951). The bars over A‚ B‚ and denote averages
over the integration interval.
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For a relative humidity of 100%‚ i.e‚ B = 0 and‚ thus‚ the
temperature adaption of the drop is then given by

Equation (13-72) implies that for In contrast‚ for an evaporating
drop‚ (13-70) implies that for This means that an
evaporating drop never reaches but approaches the steady state temperature
difference given by

From (13-70)‚ the e-folding time for is just A plot of
is given in Figure 13.28 for three different drop temperatures. To obtain these
curves‚ it has been assumed that also‚ has been evaluated
for It can be seen that‚ as expected‚ larger drops have larger adaptation
times. The only experimental results which are available for comparison with the
theoretical values are those of Kinzer and Gunn (1951). They studied drops of

radius cooling from 22.4 to 14.9°C while falling in subsaturated air.
The observed adaptation time was 4.4 sec‚ at which time the drop temperature
was about 17.6°C. For these data‚ (13-71) predicts which is in surpris-
ingly good agreement with the experimental value‚ considering the approximations
involved in (13-68) and the uncertainties in Kinzer and Gunn’s experiments. This
good agreement suggests that the neglect of local unsteadiness (terms involving

in the derivation of (13-71) is of little consequence. This indication has been
verified quantitatively by Watts and Farhi (1975)‚ who solved for including the
effect of local time dependence. Kuhns and Mason (1968) also found good agree-
ment between the relaxation times calculated by (13-71)‚ and their observed values
for drops of radii between 30 and for which ranged between
and

Before leaving this section on the diffusional growth and evaporation of water
drops‚ we hasten to add that surface active chemical compounds may significantly
reduce the rate of evaporation of drops (Mihara‚ 1966; Ofani and Wang‚ 1984;
La Mer‚ 1962; Derjaguin et al.‚ 1966; Eisner et al.‚ 1960; Snead and Zung‚ 1968;
Garrett‚ 1971; Hoffer and Mallen‚ 1970; Hoffer and Bowen‚ 1972; Chang and Hill‚
1980). Surface active agents also reduce the rate of drop growth by condensation
(Thareau et al.‚ 1987; Ueno and Sano‚ 1971; Derjaguin et al.‚ 1971; Pilie‚ 1966;
Kocmond et al.‚ 1972). Other effects caused by such agents include a reduction
of the surface tension (Gal-Or and Waslo‚ 1968)‚ an increase in drop deformation
(Marty and Aliot‚ 1979)‚ a dampening of drop oscillation (Huang and Kintner‚
1969)‚ and an enhancement of drop breakup (Ryan‚ 1976).

However‚ most of the experiments which led to these results were carried out
with artificial surfactants (e.g. hexadecanol)‚ with linear molecular configurations
so that closed monolayers would form at the surface of drops. Studies were there-
fore needed to check whether atmospheric surfactants have similar characteristics.
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A search showed that film-forming chemical compounds do exist at the ocean sur-
face‚ from where they are transported into the atmosphere by the bubble burst
mechanism (Garrett‚ 1967; Blanchard‚ 1964; Blanchard and Syzdek‚ 1974; Barger
and Garrett‚ 1970‚ 1976; Duce‚ 1972; Hardy‚ 1982)‚ and to the surface of aerosol
particles (Ketseridis et al.‚ 1976b; Ketseridis and Eichmann‚ 1978; Barger and Gar-
rett‚ 1970; Neumann et al.‚ 1959). A review of surfactants in the atmosphere has
been also given by Gill et al. (1983). However‚ these surfactants have mostly a
non-linear molecular configuration‚ or are only weakly surface active‚ so that com-
plete monolayers on drop surfaces are unlikely to be formed under atmospheric
conditions.

13.3 Growth of Snow Crystals by Diffusion of Water Vapor

13.3.1 GROWTH OF A STATIONARY SNOW CRYSTAL

The diffusional growth of simple snow crystals can be treated in the same manner
as for drops‚ by making use of an analogy between the governing equation and
boundary conditions for electrostatic and diffusion problems (Stefan‚ 1873; Jeffreys‚
1918). To understand this approach‚ recall that the electrostatic potential function

outside a charged conducting body (assumed to be the only source for satisfies
Laplace’s equation‚ i.e.‚ and that the boundary conditions on are

on the conductor and at infinity. Similarly‚ ifwe
now consider a stationary growing or sublimating ice particle of the same geometry
as the conducting body‚ then in the steady state‚ the vapor density field also
satisfies Laplace’s equation and‚ if the particle surface is at uniform temperature
the boundary conditions are similarly given by
on the particle (ignoring the dependence of on local curvature) and
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at infinity. Therefore‚ with this complete analogy‚ we can borrow
known solutions for electrostatic problems and use them to describe the diffusional
growth of ice articles of corresponding geometry.

In particular‚ the growth rate of the particle can be written down immediately if
the capacitance C of the corresponding conductor is known. Thus‚ by integrating
Gauss’s law over the surface S of the conductor‚ we have‚ with the electric field

where is the total charge on the conductor‚ and where the last form on the
right side of (13-74) follows from the definition of capacitance. Then‚ from the
analogy between the and fields and the physical meaning of as
the vapor mass flux vector at the ice particle surface‚ we immediately conclude
that the growth rate of a stationary particle is given by

A comparison of (13-75) and (13-74) shows that they are formally equivalent‚
with the capacitance of the particle or crystal replacing the radius of the sphere.
Therefore‚ we may immediately write down a growth rate equation for the crystal in
a form analogous to (13-28)‚ but expressed in terms of and with C replacing

for negligible curvature and solute effects the result is

where now the subscript refers to the ice phase‚ and is the specific latent heat
of sublimation.

In order to apply (13-76) to a particular crystal form‚ we must specify C‚ which
is a function only of the crystal geometry. For example‚ in the simplest case of a
spherical particle of radius (in electrostatic units)‚ and we recover the
previous description for drops. As we recall from Section 10.4‚ the hydrodynamic
behavior of many simple crystals can be described adequately in terms of the
behavior of very simple geometric forms‚ such as finite circular cylinders‚ thin
circular disks‚ and prolate or oblate spheroids. Similar idealizations work well in
the present context also‚ and so we shall now quote the capacitances for some
simple geometries (in e.s.u.). To model the shape of a simple thin hexagonal ice
plate‚ we use the idealization of a circular disk of radius forwhich

The shape of simple ice plates of various thicknesses may be modeled by an oblate
spheroid of semi-major and semi-minor axes lengths and for which‚ after Mc-
Donald (1963c)‚
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The shape of a columnar crystal may be modeled by a prolate spheroid of semi-
major and minor axes and for which‚ after McDonald (1963b)‚

Finally‚ for (13-74) transforms into

which is applicable to a long‚ thin needle.
Measurements by McDonald (1963b) and Podzimek (1966) of the capacitances

of metal models of snow crystals agree surprisingly well with the above theoretical
values for the idealized forms. Thus‚ the capacitance of a simple hexagonal plate
(snow crystal shape P1a in the nomenclature of Figure 2.39) is within 4% of the
value for a circular disk of the same area. Similarly‚ Podzimek compared the
capacitance of a prolate spheroid and that (C) of a hexagonal prism of the same
maximum dimensions‚ and found that for a solid short prism‚ and

for a short prism with hourglass-like hollow ends. The capacitances
C of various dendritic models were found to be only a little less than that of
a hexagonal plate having the same maximum dimensions. For example‚ referring
again to the crystal forms shown in Figure 2.39‚ McDonald found that: (1) for
crystal shape P1c‚ (2) for shape P2a‚ decreasing to 0.91
with decreasing end plate size; (3) for shape P2g‚ decreasing to 0.80
with increasing openness of the dendrite; (4) for shape P1d‚ Similar
values were also obtained by Podzimek. The observed insensitivity of C to such
large variations in crystal surface area for crystals of the same maximum dimensions
is apparently due to the increasing edge length with decreasing area; such edges of
high curvature can store relatively large amounts of charge and‚ hence‚ compensate
for the loss of surface. For typical cirrus cloud particles‚ Heymsfield (1975a‚b‚c)
suggested C = L for bullet rosettes‚ where L is the length of an individual bullet.

We shall now apply (13-76) to the growth of an snow crystal in an environment
of supercooled cloud drops. In Section 4.8‚ we have already shown that at any
temperature below 0°C‚ the vapor pressure over a supercooled water surface is
larger than over an ice surface. Hence‚ if in a supercooled cloud snow crystals are
present among drops‚ one would expect that the crystals will grow at the expense
of the drops due to the flux of water vapor from the drops to the crystals. Such a
situation would lead to a colloidally unstable cloud‚ as the snow crystals would grow
until all water drops have disappeared or the crystals have fallen out of the cloud.
As mentioned in Chapter 1‚ such a precipitation mechanism was first described
by Wegener‚ Bergeron and Findeisen‚ and is therefore named accordingly. This
process is illustrated by Plate 16 which shows a snow crystal of about in
diameter at rest and surrounded by micron-sized supercooled water drops. Note
the absence of drops in the vicinity of the crystal‚ due their evaporation onto the
crystal.

Newer cloud model calculations show‚ however‚ that in convective clouds with
water-supersaturated updrafts‚ the snow crystals grow by virtue of the available
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water vapor‚ rather than at the expense of the drops present in the cloud. The
Wegener-Bergeron-Findeisen mechanism therefore does not contribute significantly
to the growth of the snow crystals in such clouds. The mechanism may‚ however‚
proceed in stratus clouds with very low updrafts and associated low supersat-
urations. We proceed now to use (13-76) to determine the growth rate of an
snow crystal in a water saturated environment‚ and thereby model the Wegener-
Bergeron-Findeisen mechanism. The condition of water saturation specifies the
supersaturation with respect to ice as a function of temperature according to the
relation The resulting mass growth rate‚ cal-
culated from (13-76) with is displayed as a function of temperature in
Figure 13.29 for two pressure levels. Note that the growth curves each have a single
maximum‚ near –14°C for the 1000 mb curve and –17°C for the 500 mb curve.
From our discussions in Section 4.8‚ we might have expected the maxima to occur
near –12°C‚ since at that temperature the difference is a maximum
(see Figure 4.5) The reason the actual maxima are shifted to lower temperatures
is that local heating from latent heat release causes the vapor pressure difference
between the crystal surface and its environment to be reduced slightly. The system
must therefore cool below –12°C before the vapor flux and‚ hence‚ the growth rate‚
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can achieve its maximum value.
Finally‚ it should be recalled from Section 2.2 that the growth habit of snow

crystals is strongly dependent on both temperature and vapor pressure. This im-
plies that C is also indirectly a function of these variables‚ through its dependence
on crystal geometry. Hence‚ (13-76) can provide a complete description of crystal
growth only if is known (see also Section 13.3.3).

13.3.2 GROWTH OF A VENTILATED SNOW CRYSTAL

If a snow crystal has grown by vapor diffusion to a size at which it has an appre-
ciable fall velocity‚ it is necessary to take into account the effect of ventilation on
the diffusion of water vapor and heat. This may be done through methods which
are entirely analogous to those we have discussed in Section 13.2.3 for the case of
spherical water drops‚ the only additional complication in the present application
being the more complex geometry of ice particles. Fortunately‚ however‚ experi-
ments on heat and mass transfer from bodies of various shape (e.g.‚ Pasternak and
Gauvin‚ 1960; Brenner‚ 1963; Skelland and Cornish‚ 1963) have shown that most
of the complications arising from the snow crystal geometry may be effectively cir-
cumvented if the ventilation effect is described in terms of a Sherwood number or
ventilation coefficient which depends on a particular characteristic length‚

The appropriate definition for follows from a recognition of the physical fact
that the degree of ventilation is controlled by that portion of the particle’s area
which is most directly exposed to the oncoming flow. Thus‚ we define as the
ratio of the total surface area of the body to the perimeter P of its area projected
normal to the flow direction:

As a trivial example‚ we see that for a sphere‚ The corresponding mean
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Sherwood number is (cf. (13-52)

where‚ in analogy with (13-50)‚ the mean mass transfer coefficient is defined by

(Note that for particle growth or evaporation.)
From (13-81) to (13-83)‚ the mass rate of change may be expressed in terms of

the mean Sherwood number as

On comparing (13-84) with the corresponding expression for a stationary crystal‚
(13-75)‚ we see that the ventilation coefficient‚ defined as in (13-48)‚ is

From this equation‚ we see that for a stationary particle‚

In order to make use of (13-84), given we need expressions for the
perimeter P. For a sphere, this is also the appropriate expression
for a disk or oblate spheroid falling with its maximum dimension normal to the
flow direction. For a prolate spheroid in the falling mode of a columnar ice crys-
tal (with its longest extension, perpendicular to the direction of all),

with
where is the eccentricity of the spheroid. For an oblate spheroid

where and are the minor and major
axes of the spheroid, respectively, and The surface areas and
perimeter of planar and columnar crystals may be computed from Table 2.2a. For
bullet rosettes in cirrus clouds, Heymsfield (1975a,b,c) suggests P = 2(L + w) and

where L is the length of an individual bullet and w is its
width.

It appears to be quite difficult to determine experimentally and under controlled
conditions, the rate of evaporation of individual snow crystals of a given shape and
freely suspended in an air stream. Theoretical studies, on the other hand, have
the difficulty of finding an appropriate idealization for the actual shape of the
crystal. Pitter et al. (1974) and Masliyah and Epstein (1971) idealized the shape
of a planar crystal by a thin oblate spheroid and solved the convective diffusion
equation (13-47) using another spheroidal coordinate system for Reynolds numbers
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which were sufficiently small to justify axially symmetric flow. From an evaluation
of around the ventilated crystal‚ was determined from

(see Eq. 13-54). A few results from these studies are plotted in Figure 13.30.
We notice fair agreement between the numerical results of Masliyah and Epstein
(1974) and Pitter et al. (1971) with the experiments of Thorpe and Mason (1966)
for hexagonal plates. The numerical results are also seen to conform‚ for
near unity‚ with the analytical results of Brenner (1963)‚ who solved the convective
diffusion equation by the method of matched asymptotic expansions.

Hall and Pruppacher (1976) suggested that the ventilation coefficient for such
idealized snow crystals may adequately be described by

where Subsequently‚ however‚ Wang et al. (1985) pointed
out that the vapor density and temperature fields around falling snow crystals are
not adequately described by idealizing their shape in terms of prolate and oblate
spheroids‚ but that rather one has to consider their true shape for getting accurate
ventilation coefficients.

Solving (13-2) with flow fields from a numerical simulation of the three-dimen-
sional unsteady viscous flow (see Chapter 10) around two snow crystal types‚ Ji
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(1991) and Wang and Ji (1992) determined the ventilation coefficient from (13-
87)‚ to find for columnar crystals of

for simple hexagonal plates Pla of

and for broad branched crystals Plc

In these expressions‚ we have and These results
are plotted in Figure 13.31.

For a falling snow crystal‚ we may now include the ventilation coefficient in
(13-75)‚ and determine its growth rate from

where and where the surface temperature of a ventilated crystal
is given by

Hall and Pruppacher (1977) used (13-90) and (13-91) together with (13-88) and (13-
89) to determine the growth rate of various snow crystals falling at terminal velocity‚
on the assumption that the crystals obey the dimensional relationships specified by
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Auer and Veal (1970) (see Section 2.2.1) for an environment at water saturation.
The results‚ given in Figure 13.32‚ show that the differences in growth rates for
the various crystal types are small for early growth times‚ but become increasingly
significant with increasing growth time. This is in marked contrast to the case of
water drop diffusional growth (recall Figure 13.2)‚ and reflects the fact that the
crystal geometry can increasingly ‘assert itself’ as the crystal size increases.

Numerous additional studies on the growth of snow crystals have been reported
in the literature (Koenig‚ 1971; Jayaweera‚ 1971; Middleton‚ 1971; Houghton‚ 1950‚
1972; Miller and Young‚ 1979; Redder and Fuktua‚ 1989; and Mason‚ 1994). Un-
fortunately‚ a close comparison of these studies is complicated by the different
expressions used for the ventilation coefficients‚ the capacitances‚ and the different
assumed dimensional relationships for the crystals. The growth rates determined
theoretically by Middleton are given in Figures 13.33 and 13.34.

The experimental studies of Ryan et al. (1974‚ 1976)‚ Takahashi and Fukuta
(1988a‚b)‚ Takahashi et al. (1991)‚ and the studies reported by Redder and Fukuta
(1989) show generally reasonable agreement with the theory regarding both the
mass growth as well as the growth of the major dimensions of crystals. However‚
some discrepancies appear near –6°C‚ a temperature at which needle crystals grow.
In this temperature range‚ the theoretical predictions over-estimate the crystals’
mass growth rate as well as the growth rate along crystal axes‚ perhaps by a
factor of as much as three‚ due to uncertainties in the capacity‚ the ventilation
coefficient‚ and the dimensional relationship for such crystals. This is particularly
evident from a comparison of the experimental values of Takahashi et al. (1991)
(Figures 13.35 and 13.36) with the theoretical predictions of Middleton (1971)
(see Figures 13.33 and 13.34)‚ who used Frössling’s (1938) ventilation coefficient
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for a sphere and Auer and Veal’s (1970) formulae for the crystal dimensions‚ and
with the predictions of Miller and Young (1979)‚ who used (13-88) and (13-89)
for computing the ventilation factor and a combination of various formulae for the
crystal dimensions.

Generally‚ we notice from Figures 13.33 to 13.36 that the growth rate is highest
at temperatures where needles and dendrites form‚ while the slowest growth oc-
curs at temperatures favoring the development of solid columns and plates (refer
to Figure 2.27 for a translation of the symbols designating crystal type). These
differences increase with time‚ since increases with crystal size. Thus‚ after
10 minutes‚ a snow crystal growing dendritically at –15°C has acquired a mass
which is almost 10 times that of a crystal growing as a solid column near –8°C.
Also‚ if we recall from Table 14.3 that planar and columnar snow crystals must
grow‚ respectively‚ by diffusion to diameters of about and widths of about

before they can commence riming‚ we see from Figure 13.35 that this im-
plies a hexagonal plate of type P1a must grow by diffusion at water saturation
and –12°C for about 6 minutes before riming is possible. Similarly‚ a columar
crystal must grow for about 3 minutes at water saturation and –8°C before it may
commence riming. The significiance of riming to the growth of ice particles has
already been pointed out by Jiusto (1971) who showed that after a few minutes
growth time by vapor diffusion‚ riming becomes the dominant growth process if
the number of ice forming nuclei is less than a few tens per liter.
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For the sake of convenience‚ we have included empirical relationships in Ta-
ble 13.3 for the time dependence of the crystal mass and dimensions along the
and axes‚ as a crystal grows at a particular temperature level between –3 and
–22°C.

It is quite instructive to compute the mass gained by an ice crystal while falling
from a level of – 20°C to the 0°C level in a water saturated environment with
a temperature lapse rate of Such a computation was carried out by
Mason (1994)‚ who assumed that the crystal retains its shape during the entire fall.
Using various empirical relationships for and for the fall velocity of the ice
particles‚ he arrived at the values given in Table 13.4. He deduced from his results
that the more complex shapes achieve a greater mass while falling between the
considered temperature levels‚ partly because they fall more slowly and therefore
grow for a longer time. Consequently‚ when they melt below the 0°C level‚ they
produce larger raindrops which‚ in turn‚ may grow even larger by accretion of cloud
droplets‚ and will suffer less evaporation as they fall through unsaturated air below
the cloud base. The more complex shapes are therefore more efficient in releasing
precipitation‚ provided the cloud lasts long enough. From Table 13.4‚ Mason (1994)
further concluded that no single crystal‚ even if it were able to retain its original
shape during growth‚ could produce a raindrop of sufficient size to account for the
drop sizes observed to fall from layer clouds‚ where for moderate rainfall rates of

the median volume drop diameter is 1.2 mm (Mason‚ 1972).
From our discussion on fogs and stratus (see Section 13.2.2.2)‚ we infer that the

growth and evaporation of cirrus cloud layers also will be affected by radiation. Ice
is more absorbing of solar radiation than is water (Hobbs‚ 1974)‚ so that the growth
and evaporation of ice crystals in cirrus clouds is more sensitive to the influence
of radiation than is the case for water drops. In addition‚ high-level cirrus clouds
generally have an ice content which is much lower than that of lower-level clouds.
The low water content and the consequent reduction in optical path‚ imply that
the radiative effects in cirrus will be spread through a greater depth of cloud than
is the case in water clouds.

The effects of radiative processes on the development and structure of cirrus
clouds have been studied by various authors using numerical models which incor-
porate both microphysical and radiative processes. Thus‚ Starr and Cox (1985a‚b)
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and Starr (1987) concentrated largely on the effect of radiation on cloud structure‚
while Ramaswami and Detwiler (1986) were concerned more with the interaction
between radiation and microphysical properties. In Figure 13.37‚ the overall ra-
diative effects computed by Starr and Cox (1985b) on the ice content of modeled
cirrus clouds for midday and night-time conditions are given. We notice that long
wave cooling enhances the ice content of cirrus clouds.

According to Jonas (1989), radiative effects on the growth and evaporation of
cirrus cloud crystals depend crucially on the presence of upper and lower cloud
decks. For the case of a thin layer of cirrus with a clear sky above and a thick
layer of cloud below, Jonas (1989) estimated a maximum cooling of 50 Watt per
square meter of ice crystal surface. Using this cooling rate, he estimated that the
supersaturation separating evaporation and growth of a crystal would be reduced
by 5% for needle-shaped crystals of an equivalent radius of and by about
10% for plate-like snow crystals. This result verified the earlier calculations of
Braham (1967) and Braham and Spyers-Duran (1967), which implied that cirrus
cloud crystals survive over considerable fall distances.

Computations of the survival distance of cirrus crystals have been made by Hall
and Pruppacher (1977) using (13-91), crystal fall velocities according to Heymsfield
(1972), and the dimensional relations for the crystal shapes given by Heymsfield and
Knollenberg (1972) and Auer and Veal (1970). By using maximum and minimum
limits for the upward and downward radiation fluxes at cirrus cloud levels, and
by considering the emission and absorption properties of ice, they concluded that
radiative heat transfer affects the survival distance of columnar snow crystals falling
from cirrus clouds by less than 10% if the relative humidity of the environmental air
is less than 70%. From a consideration of these radiative effects and a wide range of
values for the initial size and bulk density of the ice particle, they showed that snow
crystals falling from cirrus clouds can survive fall distances of up to 2 km when the
relative humidity is below 70% in a typical midlatitude atmosphere. Larger survival
distances are possible only if the ambient air has a relative humidity larger than
70%. A comparison of their theoretical results with a field study by Heymsfield
(1973) of the survival distance of cirrus ice particles is shown in Figure 13.38. Note
that the theoretical predictions for and agree
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satisfactorily with the lowest level (sample base) at which cirrus ice particles were
detected.

Hall and Pruppacher also determined the final length of columnar crystals‚ of
given length and width‚ which make an isobaric and isothermal excursion of 200 m
out of a cirrus cloud into air of –32.7°C and 400 mb‚ for various relative humidities.
As would be expected‚ the results given in Figure 13.39 are qualitatively similar
to those shown in Figure 13.27 for the case of isobaric and isothermal excursions
of water drops. Thus‚ for the stated conditions‚ the initial crystal lengths must be
greater than 210‚ 320‚ 410‚ and in order to survive the 200 m distance if
the relative humidities are 90‚ 70‚ 50‚ and 30%‚ respectively.

Considering how fragile snow crystals are‚ one might wonder whether evaporat-
ing snow crystals would not break up into smaller fragments. Oralty and Hallett
(1989) studied this problem in a wind tunnel and found that evaporating crystal
plates and columns would not break up while evaporating. Also‚ dendritic snow
crystals did not break up as long as the relative humidity was above 70%. However‚
at relative humidities below 70% ‚ ice dendrites would break up‚ producing up to
50 ice splinters per crystal of 5 mm diameter.
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13.3.3 GROWTH RATE OF SNOW CRYSTAL FACES - SNOW CRYSTAL HABIT

CHANGE

The fact that the theoretical framework for crystal growth given by (13-91) and‚ for
example‚ (13-88)‚ is incomplete without a specification of indicates
clearly that a consideration of vapor and heat exchange between the crystal and
its environment cannot provide by itself a complete description of crystal growth
mechanisms. The reason for this is that‚ in addition to the driving forces of vapor
and heat gradients‚ there are also crystal surface forces which control the incorpo-
ration of water molecules into the ice lattice. From the observed changes in crystal
growth habit with temperature‚ these latter forces are evidently sensitive functions
of temperature‚ and are different for different crystal faces.

The extent to which the surface forces alone control the growth habit of ice crys-
tals has been studied experimentally by Lamb and Hobbs (1971). They measured
the ‘linear’ growth rates of the basal and the prism faces of ice crystals under con-
ditions which ensured that the growth of the crystals was controlled by molecular
events taking place at the crystal surface‚ and not by the rate of supply of water
molecules from the vapor phase or by the rate at which latent heat of deposition
was removed. For this purpose‚ the measurements were carried out in pure water
vapor at a constant excess vapor pressure of such low pressures
reduce the vapor and heat gradients to negligible levels. The results of this study
are shown in Figure 13.40‚ where it can be seen that the growth rates of the prism
and basal faces vary strongly with temperature‚ decreasing rapidly at first with de-
creasing temperature‚ and subsequently increasing sharply to a maximum followed
by a monotonic decrease with a further decrease in temperature. Note also that
the growth rate curves are shifted with respect to each other‚ crossing at –5.3 and
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–9.5°C. At temperatures from 0 to –5.3°C and at temperatures from –9.5 to near
–22°C‚ the linear growth rate of the prism face is larger than that of the basal face‚
implying growth and thus the development of plate-like ice crystals. On the
other hand‚ at temperatures between –5.3 and –9.5°C and at temperatures below
about –22°C‚ the basal face has a linear growth rate which is larger than that of
the prism face‚ implying growth and thus the development of columnar ice
crystals. These results are in reasonable agreement with the observed growth habit
behavior of snow crystals in air under natural conditions‚ which demonstrates the
dominance of surface kinetic effects in controlling the basic growth habit.

Given the linear growth rates and of the basal and prism faces‚ the mass
growth rate of the crystal can evidently be determined from the relation

where is the density of the crystal and and are the total respective
areas of the basal and prism faces. From Figure 5.10‚ we easily find
and where H is the height of the hexagonal prismatic snow crystal‚
and is the radius of the circle inscribed in the hexagonal base of the ice prism.
Since‚ in an environment of pure water vapor‚ the linear growth rates are constant
with time at any one temperature‚ and On combining
these relations with (13-93)‚ we obtain

The growth rate described by (13-94) was referred to by Lamb and Hobbs (1971)
as ‘inherent’‚ since it is governed by kinetic processes on the surface of ice and not
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by diffusion of water vapor or heat through air. With their experimental values of
and Lamb and Hobbs evaluated (13-94) and obtained the results shown

in Figure 13.41. We see that the ‘inherent’ growth rate attains peak values near
–6 and –12°C‚ which are separated by a minimum near –8°C. Since these results
are quite similar to those for a crystal growing at water saturation in air‚ we again
conclude that surface kinetic effects must largely control the growth habit of snow
crystals.

As for the modifications expected from the effects of finite vapor and heat gra-
dients‚ we may first note that the second maximum near –12°C in Figure 13.41
should be enhanced relative to the first by virtue of the fact that
attains a maximum value for (see Figure 4.5). Also‚ once the crystal
habit has been decided by surface kinetic effects at an early stage of crystal devel-
opment‚ the vapor flux to the crystal will not significantly alter its geometry‚ at
least for low to moderate vapor density excess‚ since the excess water mass arriving
at the corners and edges of the crystal can be effectively redistributed by surface
diffusion. However‚ at a sufficiently high vapor density excess‚ surface diffusion
will no longer suffice to compensate for the large non-uniform vapor deposition.
Growth will then occur preferentially at the corners (where the liberated latent
heat is also most effectively dissipated)‚ and this will result in the formation of
sector plates‚ dendrites‚ stellars‚ etc.

In attributing the characteristics of the mass growth of an ice crystal to the
characteristics of the linear growth rate of its crystallographic faces‚ we of course
have really done nothing more than exchanged one problem for another. Thus‚ for
a further understanding of the mass growth rate behavior of ice crystals‚ we must
attempt to gain further insight into the linear growth rate mechanism. For this
purpose‚ we may note the experimental results of Hallett (1961) and Kobayashi
(1967)‚ who determined the rate of propagation of steps at the surface of snow
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crystals. They found that steps of heights between 200 to 1000 Å have propagation
velocities which are inversely proportional to the step height. Furthermore‚ the
propagation velocities increase with increasing excess vapor density‚ and exhibit at
constant excess vapor density a characteristic variation with temperature. If the
results of Kobayashi are corrected for the effect of heating of the crystal surface
by latent heat release (according to Ryan and Macklin (1969))‚ the measurements
of Hallett and of Kobayashi agree with each other in suggesting that‚ at constant
excess vapor pressure‚ the step propagation velocity on the basal face of a snow
crystal decreases with increasing temperature in the interval 0 to –4°C to reach a
minimum near – 4°C‚ then sharply increases in the interval –4 to – 6°C to reach a
maximum near –6°C‚ and subsequently decreases monotonically towards –20°C.
This behavior is indicated in Figure 13.42. Note‚ from a comparison of this figure
with Figure 13.40‚ that the temperature variation of the step propagation velocity
on the basal face of ice is practically identical to that of the linear growth rate of
the basal face. Unfortunately‚ no similar experimental study is available for the
step propagation velocity on the prism face of ice.

It is reasonable to find that the linear growth rate G of a crystallographic face
of ice is proportional to the step propagation velocity on that face‚ since the
rate at which the face grows depends directly on how fast the successive molecular
layers can be formed. On the other hand‚ this argument implicitly assumes that
there is no time lag in the initiation of each new successive layer. Since rapid step
regeneration by nucleation is improbable at the low supersaturations prevailing
under natural conditions‚ another mechanism must be responsible. Perhaps the
most likely candidate is that of Frank (1949)‚ who proposed the emergence of
screw dislocations at the crystal surface (recall Figure 5.11). If we assume now
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that a step is part of a screw dislocation‚ and that the latter can be represented
by an Archimedes spiral‚ i.e.‚ where K is a constant and is
the radius vector from the dislocation center to any point on the spiral‚ then for
each full rotation of the spiral‚ another step will be released without delay from
the spiral center and allowed to propagate across the crystal face. Furthermore‚ in
this case‚ the frequency of step regeneration will be where

hence‚ the linear growth rate of the crystals face will be

where h is the step height. Thus‚ we find for a screw dislocation growth
process‚ and also that the spacing between the steps is given by

Hallett (1961) interpreted his finding that as an indication that steps
grow largely by surface diffusion‚ using arguments similar to those presented in
Section 5.7.3 for estimating the bunching time of monolayers on an ice surface.
Thus‚ if is the average migration distance which adsorbed water molecules travel
by surface diffusion before re-evaporating‚ then it is reasonable to assume that a
step of height h and unit length will receive material by surface diffusion at the
rate and by direct deposition from the vapor at the rate where

given by (5-55)‚ is the net flux to the surface (assumed to be uniform over
the surface). Hence‚ if is the density of ice‚ the velocity of the step is

Hence‚ if the step will grow by surface diffusion such that which
is consistent with Hallett’s measurements. Also‚ given this result‚ we find from
(13-95) that the growth rate has the form i.e.‚ it is independent
of the step height and velocity‚ and the migration distance emerges as the key
surface parameter.

Mason et al. (1963) estimated as one half of the critical separation for which
the velocity of approach of two neighboring growth layers slows down (see Sec-
tion 5.7.3). If their measured values are corrected for crystal surface heating from
latent heat release (Ryan and Macklin‚ 1969)‚ excellent agreement among the tem-
perature variations of and for the basal plane is found.

Unfortunately‚ no experiments have yet been carried out to determine on
the prism plane of ice. Physical reasoning suggests‚ however‚ a similar agreement
among the temperature variations of and for this plane. If verified‚
plate-like crystals would then be expected to form preferentially in those temper-
ature intervals in which the inequalities and
hold. Similarly‚ columnar crystals would form preferentially in the temperature

In order to estimate the imigration distance on the prism face of ice‚ Mason
(1994) considered a hexagonal prism whose height is and whose edge length of
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the basal face is The growth rates of the crystal faces can then be written as

where V is the crystal volume‚ and are the vapor fluxes to the basal and
prism faces‚ respectively‚ and are the migration distances on the basal
and prism faces‚ respectively‚ and is the density of ice. The second term in each
equation represents the net fluxes of molecular migration from the neighboring
faces within a distance and respectively‚ to their edges of total length
12a. For with and

(with Mason finds

Combining (13-99) and (13-100)‚ Mason (1993) obtained

with so that for and In order to
evaluate from (13-101)‚ Mason (1994) made use of his earlier empirical results
(Mason‚ 1953) and those of Shaw and Mason (1955) and Kobayashi (1961)‚ which
showed that the aspect ratio of a small growing snow crystal whose shape
is largely determined by the values of and tends to approach a limiting
value for a given temperature when the long dimension of the crystal exceeds about

(see Figure 13.43a). Assuming that a crystal grows from a small isometric
nucleus (e.g. a frozen drop) with Mason numerically integrated
(13-101) to determine the values of which allow the crystals to reach the
limiting values of shown in Figure 13.43a. As constraints for this integration‚
Mason assumed at –3°C‚ –8°C‚ and –25°C (where the observed habit
changes occur). The values for thus obtained are plotted in Figure 13.43b.
We notice that Mason’s curve has the expected shape and is supported in the
temperature range –12 to –20°C by solutions to (13-101) using the experimental
values of Kobayashi (pers. comm. to Mason) for and

Of course‚ Mason’s (1994) results have not brought us any closer to the problem
we need to solve. By explaining the temperature dependence of the ice crystal habit
on the basis of a temperature variation of the migration distance of water molecules
on both ice crystal surfaces‚ we have merely again only exchanged one problem for
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another‚ as no physical explanation is available for the reason why the migration
distance of water molecules should have the indicated temperature variation. In
earlier research‚ Mason et al. (1963)‚ Hobbs and Scott (1965)‚ and Lamb and
Scott (1974) attempted to relate to the energy of adsorption and desorption of
water molecules on ice. However‚ this did not lead to a better understanding of
the problem either‚ since even now no knowledge is available on the reason for the
temperature dependence of these energies.

Similarly‚ the detailed studies of Kuroda (1982‚ 1984)‚ Kuroda and Gonda
(1984)‚ and Yokoyama and Kuroda (1988) on the growth ofkinetics ofsnow crystals
in terms of two-dimensional nucleation after Hillig (1966)‚ or in terms of the spiral
growth steps after Burton et al. (1951)‚ or in terms of adsorbed layers of water
molecules after Cabrera and Levine (1956)‚ or and in terms of the pseudo-liquid
layer on the ice surface‚ could not pinpoint the reason for the temperature variation
of the snow crystal shape. This is so‚ since no exact temperature variation of any
of these mechanisms could be found. Thus‚ it appears that at present the basic
mechanism which controls the characteristic temperature variation of the shape of
snow crystals still needs to be resolved.
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CHAPTER 14

CLOUD PARTICLE INTERACTIONS

In Chapter 10, we discussed the behavior of isolated cloud particles in some detail.
Now we shall consider their hydrodynamic interactions, with a view to providing a
quantitative assessment of the processes of particle growth by collision and coales-
cence, and of collisional breakup. We shall first treat the collision problem for drops
of radii less than about which, in accordance with our previous description
of drop distortion in Section 10.3.2, may be regarded as rigid spheres (at least when
falling in isolation). This will be followed by a discussion of the phenomena of drop
coalescence and breakup. Finally, we shall consider water drop-ice crystal and ice
crystal-ice crystal interactions, which lead to the formation of graupel, hail, and
snow flakes.

14.1 The Basic Model for Drop Collisions

In any cloud, the effectiveness of the drop interaction process will be determined
in part by such factors as uplift speed and entrainment, droplet charge and ex-
ternal electric field, and turbulence. For simplicity, we shall consider first the
basic problem of determining the interaction of droplets falling through otherwise
calm air under the influence of gravity and the hydrodynamic forces associated
with their motion. Turbulence-enhanced gravitational collision is briefly discussed
in Sections 14.5.2 and 17.4.2.4, while the effects of electric fields and charges are
discussed in Chapter 18.

Although in principle the collision problem is a many-body problem, droplet
concentrations in natural clouds are low enough so that only the interactions of
pairs of droplets need be considered. This is supported by arguments presented
in Section 2.1.5 and Appendix 2.1.5. It is clear that such interactions must occur
extensively if rain is to form. From Chapter 13, we know that the initial stage
of droplet growth by vapor diffusion produces a fairly uniform distribution, with
droplets generally of 1 to radius, thus possessing only or so of the mass
of a typical 1 mm diameter raindrop. Further broadening of the spectrum toward
precipitation-sized droplets (conveniently defined as those with radii is
possible only when conditions in the cloud are such that droplets can collide and
coalesce.

In order to avoid excessive mathematical complications, we shall also assume
that interacting drops which are spherical in shape when falling in isolation, remain
so for all separations of their surfaces. As we shall see, the reasonableness of this
assumption is borne out by the general good agreement between the resulting
predicted and observed effective collision cross sections. The shape-distortions
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which may occur when the drops are in close proximity may thus be considered of
secondary importance in most cases of interest.

In consequence of these simplifying assumptions, the basic physical model for the
collision problem reduces to one of two rigid spheres, initially with a large vertical
separation, falling under gravity in an otherwise undisturbed and unbounded fluid.

14.2 Definition of Collision Efficiency

The essential piece of information to be extracted from a study of the collision
model described above is the effective cross-section for the collision of the two
spheres. Thus, the goal is to find the initial horizontal offset of the center of
the lower (smaller) sphere of radius from the vertical line through the center
of the upper (larger) sphere of radius such that a grazing trajectory will result
(see Figure 14.1). Then, , called the linear collision efficiency, is a simple
dimensionless measure of the tendency for collision. Another measure is the colli-
sion efficiency, E, defined here to be the ratio of the actual collision cross-section

to the geometric cross-section

Thus, on introducing the size ratio we have the simple relationship

Equation (14-2) assumes rotational symmetry, which means that it strictly ap-
plies only to flow past a sphere for Also, (14-2) cannot be used for
comparing the collision efficiency of differently shaped collectors, since columnar
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or plate-like, crystals, for example, are not uniquely characterized by their radii.
Wang (1983) has therefore suggested a more general definition in terms of the
gravitational collision kernels (see Equation 11-85):

where K and are the effective and geometric volumes, respectively, swept out
by the collector per unit time. Thus, two collectors of the same sweep out equal
volumes of air in unit time, even if their shapes are different. In this sense, they
have also the same opportunity to collide with smaller bodies in their path. For
rotational symmetry involving the collision of two spheres

and which leads back to give (14-1).
Let us now consider the dependence of E on the physical parameters character-

izing the problem. The initial vertical separation for unequal droplets is taken
to be large enough so that they fall independently in the beginning; thus E will
not depend on For equal droplets, this condition must be altered slightly, and
we start with a vertical separation such that interaction is at a threshold. We can
repeat trials with varying separation, and look for the limiting value of E as the
separation increases. In practice, it has been found that E is generally insensitive
to if for any size ratio In fact, most of the collision efficiency
calculations, to be subsequently discussed, have been carried out for fol-
lowing the conclusions of Hocking (1959) and Lin and Lee (1975) that no significiant
differences in collision efficiency were found by setting or

Therefore, assuming we start with a large enough the only independent
parameters which could possibly play a role in the interaction process are
the kinematic viscosity and density of the fluid (air), the density of the
spheres (water), the acceleration of gravity, and the initial horizontal offset.
A collision may therefore be described by some relation of the form

By applying the of dimensional analysis
(which states that in an equivalent dimensionless formulation of a physical prob-
lem, the number of independent dimensionless parameters equals the number of
independent dimensional parameters occurring in the original problem, less the
number of dimensions involved - see, for example, Kline (1965)), this relationship
may be expressed equivalently in terms of four dimensionless combinations of the
seven parameters. For example, we may write or,
explicitly in terms of E,

Since and are fixed in the case of water droplets falling in air, we have in
this case

In other words, the collision process for cloud droplets in air can be described by
a one-parameter set of curves. The usual display is of E versus with as
the curve label. (Of course, and will vary with height and this will also affect
the value of E. For example, de Almeida (1977) calculated a 22% increase in E for
a change in ambient conditions from 995 mb, 14°C to 800 mb, 25°C.)
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One may anticipate the qualitative shape of the curves described by (14-5).
The tendency for the small sphere to move with the flow around the large sphere
is depicted schematically in Figure 14.1. As a consequence of this tendency for
deflection by viscous forces from a collision trajectory, one can anticipate that
generally E < 1 (except possibly for see below). Since the forces of
deflection must become less effective as the inertia of the spheres increases, E should
be a monotonic increasing function of For the same reason, E also should be
a monotonic increasing function of at least for However, the
situation for approaching unity is not obvious. For example, as
the relative velocity of approach decreases so that small forces of deflection have
a relatively long time to operate and, hence, prevent a collision. This effect tends
to reduce E. On the other hand, there is the possibility of ‘wake capture’ as the
trailing sphere falls into the wake of the leading sphere, and thus encounters less
resistance to motion than the latter. This effect tends to increase E. (Another form
of ‘wake capture’ for the case of is discussed in Chapter 17.) The overall
result can be determined only by elaborate calculations, and as we shall see below,
there is not yet complete agreement, even as to the qualitative outcome. However,
since the strength and size of the wake increases with the Reynolds number, one
at least may expect the wake capture effect to increase strongly with increasing

In summary then, we may expect to find for sufficiently small and
for with arbitrary Also, E should increase with for fixed
and there is a possibility of a greater than geometric cross-section (E > 1) by wake
capture as for sufficiently large

Note that if one hopes to simulate the collision process in the laboratory (which
is desirable since it is difficult to observe the collision of small droplets in air), it is
sufficient that and have the same values in the laboratory as in
the natural cloud. Unfortunately, it has not been possible to model this way. To be
a useful operation, the simulation should employ easily observable (large) spheres,
and high viscosities in order to achieve low velocities. But then the density ratio

cannot be preserved; whereas in clouds this ratio is about in model
experiments it is generally larger than about However, we shall see
later there is some evidence that practical similitude may be achieved so long as

in the laboratory, and this less severe modeling constraint can be met.
From (10-142) and (10-144), it can be seen that the parameter is a

function only of and the terminal velocity Reynolds number of sphere
in isolation. Therefore, an expression equivalent to (14-5) for E is

This is the more usual way of describing the dependence of E.

14.3 The Superposition Method

An account of the two sphere problem which directly incorporates results from the
theory of flow past a single sphere obviously would be desirable. Such a scheme is
known as the method of superposition, according to which each sphere is assumed
to move in a flow field generated by the other sphere falling in isolation. More
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explicitly, if spheres 1 and 2 move with the instantaneous velocities and
respectively, the force on sphere 1 is assumed to have the form (cf. (10-40)
and (10-143))

where is the velocity field, due to the motion of sphere 2, which would exist
at the location of the center of sphere 1 if it were absent. The corresponding
expression for the force on sphere 2 is obtained by interchanging 1 and 2 in (14-7).
The quantity a function only of the Reynolds number for sphere 1,
evidently should be based on the relative velocity although sometimes it
is based instead on the terminal velocity of sphere 1 in isolation.

As would be expected, and as is demonstrated in the example presented in
Appendix A-14.3 on the use of the superposition method in the Stokes regime,
superposition does not give a very accurate account of the interaction for close
separations. However, if the relative velocity of the spheres is sufficiently large,
they may pass through the region of close proximity so rapidly that the inaccurate
description of the forces acting there is of little consequence. In general, the method
of superposition becomes increasingly accurate with decreasing

Langmuir (1948) was one of the first to adopt the superposition scheme to the
collision problem. He restricted his investigation to small values of so that
sphere 2 could be regarded as a mass point moving in the flow around sphere 1.
Two extreme cases for the flow past sphere 1 were considered, namely potential
flow for large and Stokes flow for small A recent
calculation of a similar nature is that of Beard and Grover (1974), who used the
method to determine E for small raindrops colliding with micron-sized particles.
They employed the numerical solution of Le Clair et al. (1970) for the flow field
past an isolated sphere.

The method also has been used to investigate the interaction of spheres of com-
parable size by Pearcey and Hill (1956), Shafrir and Neiburger (1963), Plumlee
and Semonin (1965), Neiburger (1967), Shafrir and Gal-Chen (1971), Lin and Lee
(1975), and Schlamp et al. (1976). For the single sphere flow field, Pearcey and Hill
chose Goldstein’s (1929) complete solution for Oseen flow. Shafrir and Neiburger,
like Langmuir, employed two different Reynolds number regimes: (a) Stokes flow
for and (b) a modified form of Jenson’s (1959) numerical
solution for Plumlee and Semonin used the second approximation to
the inner expansion of the flow field obtained by Proudman and Pearson (1957).
Shafrir and Gal-Chen used a numerical solution by Rimon and Cheng (1969), Lin
and Lee used their own numerical solution (Lin and Lee, 1973), and Schlamp et al.
(1976) used Le Clair’s (1970) solution.

Let us consider briefly the form of the equations of motion for the droplets.
Assuming the method of superposition correctly describes the hydrodynamic forces,
Newton’s second law for sphere 2 of mass becomes
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where is the gravitational acceleration corrected for buoyancy,
and is given by (14-7) (with subscripts 1 and 2 interchanged). It is convenient
to render these equations dimensionless by using for the unit of length, and the
terminal velocity of sphere 1, as the unit of velocity; i.e., we introduce the
following dimensionless quantities:

Then, in place of (14-8), we have

where is the Froude number for sphere 1, is a unit vector in
the direction of gravity, and

The quantity often is called the inertia parameter or Stokes number. It
provides a measure of the ability of sphere 2 to persist in its state of motion in
a viscous fluid. For example, in the limit of zero Reynolds number it is directly
proportional to the ‘range’ or penetration distance of sphere 2 injected with its
Stokes terminal velocity, into a fluid at rest (the law governing the deceleration
of sphere 2 is assumed to be the obvious one involving the steady state Stokes drag):

so that the ‘range’ is

Then, since where we have the relationship

Other related parameters which often are employed in the collision problem are
(Shafrir and Neiburger, 1963), (Klett and Davis, 1973), and

I (Hocking, 1959; Hocking and Jonas, 1970), where

From the definition of , we may expect increasing viscous deflection of sphere
2 from a collision trajectory with sphere 1 (and thus decreasing values for E) for
decreasing or increasing
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Also, by rewriting as

and assuming that is calculated according to the terminal velocity
of sphere 2, we see that

since there is a unique relation between sphere size and Reynolds number for a
given viscosity and density ratio. Similary for the Froude number, we have

Consequently, from (14-10) we infer the dimensionless sphere trajectories depend
on the values of and This is consistent with (14-6) for the dependence
of E.

14.4 The Boundary Value Problem Approach

14.4.1 THE QUASI-STATIONARY ASSUMPTION

Since two interacting spherical cloud drops generally fall with unequal velocities,
the flow must be intrinsically unsteady. The method of superposition simply ignores
this difficulty by employing steady state flow fields for a single sphere. Even more
rigorous formulations of the two sphere problem, which attempt to take into con-
sideration the no slip boundary conditions on both spheres, must likewise ignore
the fluid unsteadiness in order to avoid overwhelming mathematical difficulties.
The general boundary value formulation deals with the unsteadiness of the flow as
follows: The conditions of fall are assumed to be such that the motion is ‘quasi-
stationary’, meaning the instantaneous velocities of the spheres at any moment
define boundary values for the velocity field generated by the steady state equation
of motion.

This quasi-stationary assumption would be unrealistic if the spheres experienced
very large accelerations, for then the past history of the flow field would become
important. As an extreme example, if the spheres were suddenly stopped in their
motion, the assumption would immediately predict zero velocity everywhere in the
fluid, which obviously would be incorrect. Since one would expect the acceleration
of a falling sphere to vary inversely with its inertia relative to a similar volume of
fluid, the quasi-stationary assumption should be applicable when

Hocking (1959) has given a somewhat different argument leading to the same
conclusion by considering the order of magnitude of terms in the Stokes equation
for the case of an accelerating spherical particle in a fluid otherwise at rest. Suppose
the particle has radius velocity U, and density Then, as we have seen, the
viscous force on the particle will be of order for of the order of unity or
smaller. Therefore, by Newton’s second law, the acceleration of the particle will
be of order or smaller. The local acceleration of the fluid, will
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therefore be of this order or smaller. But the fluid viscous acceleration, is
of order Consequently, we find so that the time
derivative term in the equation of motion may be neglected if A similar
argument may be made for the case Then, the force on the particle will
be of order and the local acceleration of the fluid of order
or less. Hence, we find in this case and again the
term becomes relatively unimportant if

We conclude the quasi-stationary assumption may be used to calculate theoret-
ical collision efficiences for water droplets in air, since in that case.
Also, on the basis of the fairly good agreement obtained between theoretical and
experimental trajectories of pairs of equal spheres falling along their line of center
for (see Section 14.4.4), it appears that the quasi-stationary assump-
tion should remain valid for the relatively large density ratios one encounters in
model simulations of cloud droplet interactions.

14.4.2 TWO SPHERES IN STEADY STOKES FLOW

From the preceding discussion, it appears reasonable to apply time-independent
Stokes flow theory to the collision problem for Reynolds numbers which are small
compared to unity. Traditionally, such treatment has been assumed valid for
droplet radii less than 30 microns, corresponding to Strictly speak-
ing, of course, the Stokes theory applies rigorously only for and becomes
progressively more inaccurate with increasing

Assuming steady Stokes flow, the equations to be solved are

The velocity must vanish at infinity and match that of the spheres on their surfaces.
In general, the spheres will have velocity components along and perpendicular to
their line of centers. The latter components will create shears causing the spheres
to rotate with angular velocity vectors perpendicular to the plane containing the
direction of gravity and the line of centers. The flow will maintain symmetry with
respect to that plane.

As the governing equations are linear, the complete solution may be built up
out of special cases which are easier to treat. For example, the problem of general
motion for two spheres may be considered solved when solutions to the following
three special problems are available: problem-1 when one sphere is stationary, while
the other moves toward or away from it along the line of centers; problem-2 when
neither sphere translates, but one rotates about a diameter perpendicular to the
line of centers; problem-3 when one sphere is stationary while the other moves
perpendicular to the line of centers. Of course, this decomposition of the general
problem is not unique. Historically, the first 2-sphere problem to be solved was that
for equal parallel velocities along the line of centers by Stimson and Jeffery (1926).
Later, the case of antiparallel motion along the line of centers was treated by Maude
(1961) and Brenner (1961). These two axisymmetric problems are equivalent to
case-1 above.
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The solution to problem-1 leads to the results plotted in Figures 14.2a and 14.2b,
which show the drag forces on identical spheres moving with equal parallel and
antiparallel velocities along their line of centers. The forces are normalized with
respect to the single sphere Stokes drag, so that they approach unity for large
separations. For equal parallel motion, the forces on the spheres are identical,
which is indicative of the absence of any wake in Stokes flow. For equal antiparallel
motion, the forces are equal and opposite, and become singular like as the
separation s between their surfaces approaches zero. This is generally true for any
size ratio, and means that rigid spheres cannot be brought into contact according
to the continuum theory of viscous flow. Physically, of course, the continuum
theory will break down as the separation approaches the mean free path of air
molecules. The effect of this breakdown on the collision problem is discussed in the
next section.

The solutions for problems 2 and 3 lead to the results plotted in Figures 14.2c
and 14.2d. Figure 14.2c shows the drag forces experienced by equal spheres falling
with equal parallel velocities perpendicular to their line of centers with and with-
out rotation. The angular velocities of the spheres for the case of rotation are
determined by the condition that the spheres experience no torque. Similarly, Fig-
ure 14.2d shows the drag forces for equal antiparallel motion perpendicular to the
line of centers, with and without rotation. Note, the forces for antiparallel motion
appear to become singular with vanishing separation, as in the case of axisymmet-
ric motion. In fact, O’Neil (1964) has shown that they do become singular, like
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log s, for

14.4.3 THE SLIP-FLOW CORRECTION IN STOKES FLOW

As we mentioned above, droplet collisions are theoretically impossible in Stokes
flow, since the resistance to the approach of the spheres varies inversely with the
gap between them, for separations small compared to their radii. Therefore, in the
collision efficiency calculations which are based on rigorous Stokes flow (Davis and
Sartor, 1967; Hocking and Jonas, 1970), it is assumed that a collision has occurred
if the computed gaps become less than a given small fraction, of the
radius of the larger droplet. Of course, such an approach can be useful only if the
computed collision efficiencies are relatively insensitive to the choice of This
turns out to be the case for However, for smaller sizes, the choice of

noticeably affects the results.
This uncertainty brought about by the arbitrary choice of a collision criterion

has been removed by Davis (1972), Jonas (1972), and Hocking (1973), through
application of the theory of slip-flow. The assumption that the air gap between the
droplets is a continuum will break down progressively as the separation becomes
of the order of ten times the mean free path of air molecules or less. The relevant
manifestation of the onset of non-continuum flow will be that the effective viscosity
will tend to decrease as the Knudsen number based on the separation of the droplets
becomes larger than about 0.1. (This effect applies only to the component of
antiparallel motion, which causes the air to be squeezed out from between the
droplets.) The theory of slip-flow enables one to determine approximately the
form of the effective viscosity.

According to slip-flow theory, the tangential component of the fluid velocity at
a body surface is less than the surface velocity, with the velocity difference being
proportional to the local tangential stress in the fluid. The factor of proportionality
between the velocity slip and the local stress, the ‘coefficient of external friction’,
then can be related to the mean free path. This leads directly to a new boundary
condition, which must replace the continuum boundary condition of no slip.

The analysis of Davis (1972) yields forces which are functions of the dimen-
sionless parameter where is the length scale factor appearing in the
transformation from cylindrical to bispherical coordinates. It is necessary to pro-
vide representative values of C to complete the force description. It is also of
interest to determine the dependence of C on the mean free path For the case of
low pressure gas flow through glass capillaries, Davis found that good agreement
between experimental data and the slip-flow analysis could be obtained by setting

where A is a number in the range 1.3 to 1.5. Therefore, by analogy, he
conjectured the dependence Then, for purposes of presenting results,
a new quantity was defined as The advantage of
over C is that the former is fixed for a given pair of spheres; while the latter varies
with separation. Since the cross-over in dominance from Brownian to gravitational
coagulation occurs for radii of a few microns, we see it is sufficient to evaluate the
forces for
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Over a wide range of separations and size ratios, the calculations produce the
following results: 1) the effect of slip on forces for equal parallel motion along
the line of centers is, as expected, insignificant for (see Table 14.1; is
Stokesian value); 2) forces on two spheres in equal antiparallel motion along the
line of centers are reduced significantly at close separations for finite

Further, if denotes the Stokesian value for sphere then an approximate
representation of the forces is as follows:

where

and Table 14.2 shows this representation (which of course has the famil-
iar form of the Cunningham slip-correction factor; cf. Section 10.3.6 is reasonably
good over a wide range of parameter values).

It can be seen that the form of is such that the behavior of the Stoke-
sian force coefficients for approaching spheres at close separations is eliminated.
Therefore, if the force components that refer to antiparallel motion along the line
of centers, are each multiplied by the factor to allow for gas kinetic effects in the
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region between the droplets, the need for imposing an arbitrary minimum gap in
collision efficiency calculations is eliminated.

A related problem which has not yet been solved is the determination of the
slip-flow modification of forces experienced by two spheres moving with antiparallel
velocities perpendicular to their line of centers at close separations. However, Davis
(1972) conjectured that the resulting corrections would have little effect on droplet
trajectories. We agree because, as we discussed in the previous section, the forces
in question become singular at a slower rate with vanishing s (like log s) than those
for antiparallel line of centers motion.

14.4.4 TWO SPHERES IN MODIFIED OSEEN FLOW

We have seen that great mathematical complications attend the basic collision
model in the theory of accretion growth of cloud droplets. This is true primarily
because of the non-linearity of the convective acceleration terms in the governing
Navier-Stokes equations, and because of the problem of satisfying the flowboundary
conditions on two separate surfaces. The superposition method provides a means of
estimating the effects of non-linear inertial accelerations in the fluid even for quite
large Reynolds numbers, but only at the cost of completely avoiding the boundary
value problem. On the other hand, as we have seen, the Stokes equations are just
simple enough to permit a complete boundary analysis of the problem, but their
use implies the complete omission of all fluid inertial effects.

Unfortunately, there is evidence that the applicable range of the Stokes flow
model may be less than is often assumed. We have said that traditionally the model
has been assumed valid for corresponding to But while it
is true that for single spheres of such radii the Stokes drag closely approximates
the actual drag, for two spheres the effect of inertial accelerations in the fluid can
cause a significant differential rate of fall even for considerably smaller sizes. This
is especially true for spheres of comparable size. For example, Steinberger et al.
(1968) observed the motion of pairs of equal spheres falling along their line of
centers (for which case any relative motion is due entirely to non-Stokes behavior
of the fluid), and found a significant acceleration effect, even for Reynolds numbers
as small as 0.05, corresponding to droplet radii of Similar behavior has
been observed in the model experiments of Pshenai-Severin (1957,1958), Schotland
(1957), Telford and Cottis (1964), and Horguani (1965).

From the foregoing, it would appear useful to obtain an analysis of the collision
problem which does not assume that either the superposition scheme or the Stokes
approximation is adequate to describe the flow. We now outline such a treatment,
due to Klett and Davis (1973). It is an approximate boundary value analysis, based
on the Oseen equations of motion as modified by Carrier (see Section 10.2.4).

For the two-sphere problem, Carrier’s method must be generalized somewhat,
since four variable Reynolds numbers are involved: with sphere there
are associated two characteristic Reynolds numbers, one based on its velocity

and radius and the other on and the center-to-center distance to
the other sphere. The latter Reynolds number is the one involved in the inertial
correction to the force on a given sphere due to the presence of the other sphere.
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Typically, it will vary over an order of magnitude for those separations which give
rise to a significant hydrodynamic interaction.

The analysis proceeds by first selecting for each sphere a primitive solution to an
Oseen governing equation. For each such equation, the constant velocity appearing
in the acceleration term is taken to be the velocity of the respective sphere through
the fluid. Next, the sum of the two fields is made to satisfy the no-slip condition
on the average over the surface of the spheres. The expressions for the forces are
then obtained from this approximate solution, and these are modified further by
making the replacements and where

The ‘Carrier constants’ ensure agreement to within 1% between the numerically
determined drag values of Le Clair et al. (1970) and the Carrier-Oseen drag on
sphere falling in isolation for The constants have the value
suggested originally by Carrier.

Some results of the computations are plotted in Figure 14.3, where the velocity
difference between two equal spheres falling along their line of centers is given as a
function of the distance between the sphere centers. Also, a comparison is made
with the theoretical predictions of Oseen (1927) and Stimson and Jeffery (1926),
and with the experimental results of Steinberger et al. (1968), which covered the
Reynolds number interval corresponding
roughly to cloud droplets from in radius. In all cases observed by Stein-
berger et al., both spheres continually accelerated as they fell, and the upper sphere
fell faster and accelerated more rapidly than the lower one. Because the velocities
changed as each experimental run proceeded, a range of values of was gen-
erated. They grouped their results according to the ranges

and
We note from Figure 14.3 that the model of Stimson and Jeffery is obviously the

most deficient, predicting zero velocity difference independently of separation and
Reynolds number. Of course, this unrealistic result is due to the symmetry of the
Stokes flow field (there is no wake), which yields equal forces on the spheres. The
Klett-Davis formulation is seen to be the most successful of the three in predicting
the magnitude of the velocity difference and its trend toward higher values with
both increasing Reynolds number and decreasing separation. Oseen’s model (es-
sentially equivalent to the superposition method applied with single sphere Oseen
flow fields) seriously overestimates these trends.

Another noteworthy feature of the motion observed by Steinberger et al., but not
revealed in Figure 14.3, is that the drag force for each sphere has a Reynolds number
dependence. This is in agreement with the Klett-Davis formulation, but is at odds
with Oseen’s model, which predicts no such dependence for the upper sphere. Of
course, in the Stimson-Jeffery model, all Reynolds numbers are effectively equal to
zero.

The experiments of Steinberger et al. were conducted with both steel and tung-
sten carbide spheres in oil, for which the density ratios were and 0.06,
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respectively. They found that for a given Reynolds number range, the results were
independent of the kind of spheres used. Therefore, one can conclude that the
density ratio was small enough not to play a noticeable role in the evolution of
trajectories. This means the results shown are relevant to the case of water drops
in air.

Additional comparisons between theory and experiment are made in the follow-
ing section, where we discuss collision efficiencies.

14.5 Collision of Water Drops with Water Drops

14.5.1 THE CASE OF CALM AIR

Let us consider first the non-turbulent collision efficiencies E of small droplets
with radii of or less. As we discussed in the previous sections, it is this
realm which has been treated most rigorously through application of the model of
slip-corrected Stokes flow (Davis, 1972; Jonas, 1972; Hocking, 1973). Hence, the
resultant values of E should be the best available, subject to the proviso that the
radius ratio so that fluid inertial effects, and especially the wake
capture phenomenon, will be of negligible importance. Slip-flow corrected values
of E computed by Jonas (1972) are shown in Figure 14.4, where they are compared
with a representative example of computations (Hocking and Jonas, 1970) based
on continuum Stokes flow and the assumption that a collision occurs whenever the
separation of the sphere surfaces becomes less than The effect of slip is
seen to be considerable for but to have little effect on drops as large as

Figure 14.4 also includes the corresponding values of E obtained by setting all
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Reynolds numbers equal to zero in the modified Oseen flow model of Klett and
Davis (1973). This provides a measure of the accuracy of the purely viscous forces
according to their formulation. It can be seen that the Klett-Davis values agree
better with the slip-corrected E’s than do those that follow from the continuum
Stokes flow model.

Computations for a given zero-Reynolds number model show that for E
is independent of the size of the spheres. This behavior can be seen in Figure 14.4
by the tendency of each set of curves to converge to a single point near
This (unphysical) behavior may be explained by noting that in the limit
the sphere accelerations become vanishingly small, since no fluid inertial effects
are permitted. Hence, dynamical effects vanish and so geometric similarity implies
dynamic similarity as well, no matter what the absolute size of the equal spheres
may be.

An indication of the importance of wake capture and other fluid inertial effects
is provided by Figure 14.5, where the collision efficiencies derived from the Stokes
flow model of Jonas (1972) are compared with those computed from the Klett-
Davis model with non-zero Reynolds numbers, and with those following from the
superposition models of Lin and Lee (1975) and Schlamp et al. (1976). It can
be seen that the effect of fluid inertia on drop collisions is most pronounced for

near unity, where there is a marked tendency for an increase in E due to
wake capture.

The trends of the collision efficiency curves in Figure 14.5 for all three of the most
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recent models which include inertial effects are in accord with what was anticipated
qualitatively in Section 14.2. Quantitatively, however, the agreement among the
values of E computed by these models is only fair. In particular, the E values
deriving from the superposition approach are somewhat larger than those computed
from the approximate boundary value analysis of Klett and Davis, for
and all The differences, which are especially large for near unity, are
most likely due to the following inherent deficiencies of the superposition model
(cf., Klett, 1976): Since, under superposition, the individual flow fields do not
interact, the strength of wake formation behind the leading sphere of two spheres
falling in close proximity will be overestimated. This effect will be enhanced also by
the underestimation of the strength of the viscous interaction between the spheres.
This leads to spuriously low drag, hence higher velocities, and hence stronger wakes.
In short, the deficiencies of superposition lead one to expect overestimated wake
capture, and underestimated deflection by viscous forces from collision trajectories.

Finally, Figure 14.6 depicts some representative results in another fashion with E
plotted as a function of the collected drop radius for various collector drop radii

This manner of presentation shows clearly that E is near unity for



584 CHAPTER 14

and unless in which case E> 1.

14.5.2 THE CASE OF TURBULENT AIR

Since some degree of turbulence is always present in clouds, it is important to
consider its effect on the collision process. A major problem of this class is to
determine how the intensity of turbulence in young clouds affects the early stages
of the evolution of droplet spectra through the enhancement (or suppression) of
gravitational collection.

As briefly mentioned in Section 11.6.2, the intensity of turbulence in clouds
varies widely, depending on the type of cloud and their age. Thus, Mazin et
al. (1984, 1989) observed in stratus clouds as compared to

in small cumuli. Ackermann (1967, 1968) found
under various conditions in cloudy air, a median value of

in well-developed cumuli. MacPherson and Isaac (1976) found, at various locations
in 17 cumuli, In deep cumuli, Panchev (1971) quotes a
typical value of Weil et al. (1989), Aleksandrov et al. (1969)



COLLISION, COALESCENCE, AND BREAKUP 585

and Rhyne and Steiner (1964) observed in heavy cumulonimbi, values for up to
A plot of observed values for the turbulent spectral energy

density inside and outside atmospheric clouds is given in Figure 14.7.

Arenberg (1939, 1941) was perhaps the first to point out that turbulence in
clouds may possibly affect the collision of drops. However, he confined himself
in his theoretical studies to simple sinusoidal motions, a model also used later
by Gabilly (1949). East and Marshall (1954) and East (1957b) extended Gabilly’s
work by incorporating in their treatment the random character of turbulent motion,
neglecting, however, the spatial variability of the flow. Saffmann and Turner (1956)
accounted for a local flow relative to that of drops, and also improved on the
characterization of the turbulence field; their model best applies to the behavior of
nearly equal size drops. A subsequent effort along the same lines can be found in
the work of Levin and Sedunov (1966).

In the more recent literature, four main mechanisms have been identified by
which atmospheric turbulence may contribute to the collisional growth of cloud
drops. Unfortunately, none of these mechanisms is sufficiently complete and cannot
successfully withstand criticism. Nevertheless, we shall briefly sketch them since
they may provide a basis for more complete models.
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A first mechanism considers the fact that drops of different sizes respond dif-
ferently to fluctuations in a turbulent velocity field. This problem was treated by
Grover and Pruppacher (1985). Using a one-dimensional model, they studied the
effects of vertical velocity fluctuations on the efficiency with which spherical par-
ticles of radii between 0.5 and and density moving with the air,
are collected by water drops of radii between 42 and In this model, it was
assumed that collector drops, while falling through turbulent air, would encounter
eddies of various size scales. In some critical-sized eddies, the drops were assumed
to reach terminal velocity after they had entered the new eddy with a velocity
given by the intrinsic velocity difference between the eddy they entered and the
eddy they left. These velocity differences were assumed to be Gaussian distributed
with a standard deviation given by the integral over the turbulent energy spectrum
of these eddies. From their entry velocity into the new eddy and their velocity vari-
ation within the new eddy, the drop velocity distribution with respect to the critical
size eddy was computed. Eddies smaller than the critical size were assumed to have
no effect on the drop’s motion but only on the variation of the drop-air relative
velocity. These velocity differences were also assumed to be given by a Gaussian
distribution of mean value zero and standard deviation given by the integral over
the turbulent energy spectrum of these eddies. Assuming that the drop velocity
distribution with respect to the critical size eddies and the intrinsic velocity dis-
tribution of the smaller eddies were statistically independent, the drop velocity
distribution with respect to the turbulent air was computed by superimposing the
two distributions. Since the model considered only vertical turbulent velocity vari-
ations which affect the collision process with interaction distances of less than a
few centimeters, the turbulent air characteristics were assumed to be described by
the empirical, one-dimensional, longitudinal energy spectrum of Townsend (1976)
for the viscous subrange (see Figure 14.7), continuous line). For computing the
efficiency with which a drop collides with a smaller particle, Gover and Pruppacher
assumed that the air flow in the immediate vicinity of the drop is laminar, although
its pattern changes in time as the drop accelerates and decelerates relative to the
turbulent air. In addition, these changes were considered to be sufficiently slow so
that, during the trajectory of any given particle relative to the drop, the laminar
flow could be assumed to be steady with its pattern and strength given by the aver-
age velocity of the drop during the particles’ trajectory. The collision efficiency was
then computed from the trajectory method of Beard and Gover (1974) for colliding
particles of small using for the local air flow velocity the value derived from
a solution of the Navier-Stokes equation of motion for steady, axisymmetric flow
around the sphere of a Reynolds number which corresponded to the actual drop-air
relative velocity. The results of these computations showed negligible effects of air
turbulence on the collision efficiency for drop radii larger than even if the
turbulent energy dissipation was as large as For drop radii smaller
than however, a significant enhancement of the collision efficiency was found
for Although Grover and Pruppacher considered the turbulent energy spec-
trum in the range which is appropriate for the scales involved in a drop-particle
collision (of the order of centimeter or less), their assumption of laminar steady
flow around a drop at each instant of the particles’ trajectory, and their neglect of
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the randomness imparted by turbulence to the trajectory itself, make their results
unconvincing and certainly not complete.

A second mechanism is related to the eddy structure of a turbulent velocity
field. At any given time, cloud drops may be contained in two spatially separated
turbulent eddies. It then might happen that, at a later stage, these two eddies
will overlap. By random displacement fluctuations, the positions of the drops may
be altered such that some of the drops in the combined eddy will be in a collision
position. This problem was studied by Reuter et al. (1988), who formulated a
model for computing the collection kernel of cloud drops of radii 50 to
colliding with smaller drops of radii 10 to in turbulent air of

as a result of overlapping eddies, assuming and the terminal
velocities of the drops as given by Gunn and Kinzer (1949). Their model is based on
stochastic diffusion equations with ‘white noise’ terms which describe the random
turbulent displacements. The size of the random displacements was assumed to
be characterized by a constant turbulent diffusion coefficient which was computed
from the Richardson (1926)-Obukov (1954) relation to be The
associated initial boundary value problem for the partial differential equation of
the Fokker-Planck type was solved numerically by a finite difference method. From
their results, Reuter et al. deduced that, for drops of radii larger than the
enhancement of the collision kernel due to overlapping turbulent eddies is negligible,
even for an energy dissipation rate of as large as However, for drops
of the collision kernel was found to be enhanced by a factor of 2.5.

The model of Reuter et al. (1988,1984) was criticized by Cooper and Baumgard-
ner (1989), who argued that it overestimates the turbulence effects on the collision
kernel due to a number of shortcomings in the model: (1) The calculations do not
consider the turbulence effects on the collision efficiency and the fall velocity of the
drops. (2) The assumption of a constant diffusion coefficient neglects correlations
between the motions of droplets which result from their proximity. (3) In using the
Richardson-Obukov formula, which applies to the inertial subrange of the turbu-
lent energy distribution, the model becomes based on an inertial subrange scaling
applying to interactions which actually take place in the viscous subrange. (4) The
model assumption that the drops instantaneously react to the fluctuations in the
ambient flow is not consistent with observations which indicate that drops need
time to adjust to the flow.

A third mechanism (de Almeida, 1975, 1977, 1979a,b) is based on the fact that
a turbulent, unsteady flow imparts a degree of randomness to the drop trajectories
as the drops interact hydrodynamically. Thus, whereas in the non-turbulent case,
a collison is assured if the initial horizontal offset distance satisfies and
is impossible for (recall Figure 14.1), in the present case there is a finite
probability for a collision at any This distinction between the previous
deterministic and present probabilistic problem is illustrated in Figure 14.8.

Evidently, can be determined only by the laborious procedure of carrying
out repeated trials for a given set of initial conditions. Thus, de Almeida obtained

as follows:
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Here, denotes the number of successes (collisions) out of T trials for a pair of
spheres starting their motion with a given off-center horizontal separation After
experimenting with various values of T, de Almeida decided on the choice T = 200
for his entire set of computations.

A somewhat analogous procedure is involved, even in the non-turbulent case,
since a sequence of trials is required to produce a converging sequence of estimates
of In this case, the error in the collision efficiency E is, from (14-2),

where is the error in the trial and error solution for the critical horizontal sepa-
ration (As we have discussed in Section 14.2, and as we shall see further below,
the inequality in (14-25) may break down for due to the wake effect.)

Given the total effective cross-section for collisions is just
Therefore, the appropriate generalization of E to include the case of turbulence is

Based on the work of Basset (1910) and Tchen (1947), de Almeida formulated the
equations of motion for a pair of spherical droplets interacting hydrodynamically
while falling under gravity in turbulent air. The drag on a drop was assumed to be
given by the Klett and Davis (1973) forces for relative motion To simulate
the random vector , a Monte Carlo method was employed and a numerical
differential operator was used to obtain As constraints on the components
of the random vector de Almeida formulated a velocity correlation applicable
to the inertial subrange. With this model, he determined the probability
for a collision to take place at a given offset after T trials, considering drops of

which were assumed to collide with smaller drops of
in air of 1 and The results of his computations indicate that at
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turbulence energy dissipation rates as small as the collision efficiency
becomes significantly enhanced.

Some erroneous features of de Almeida’s model were pointed out by us earlier
(see Pruppacher and Klett, 1978), and by Grover and Pruppacher (1985). One is
that the Klett-Davis forces used in the model should have led to collision efficiencies
for which agreed over the whole size range with the efficiencies given by Klett
and Davis in Figure 14.4. Instead, for the efficiencies of de Almeida
were significantly smaller. Another feature which is likely to be more serious is
that the basic governing form used for the equation of motion of the drops is not
valid in principle for situations like the one of interest, in which the particles in
the turbulent medium have a density large compared to that of the medium. The
violation of this condition probably implies that the effect of turbulence on drop
collisions is overestimated, since the drop’s resistance to turbulent entrainment is
apparently underestimated. Thirdly, it is necessary to note that the scale size
of cloud droplets is generally smaller by at least one order of magnitude than
the Kolmogorov microscale of the small eddies (see Section 11.6.2). This implies
that the effect of turbulence on the interaction of neighboring droplets should
be governed primarily by motions on a scale less than In violation of this
consideration, de Almeida applied an inertial subrange scaling to turbulent velocity
correlations and, hence, drop interactions, which actually take place in the viscous
subrange.

A fourth and most recent mechanism was formulated by Khain and Pinsky
(1995a,b) and Pinsky and Khain (1995a,b) who considered the relative velocities
between the drops and the surrounding air which arise due to a drop’s inertia in
a turbulent atmosphere. In this study, approximate equations of the motion for
drops falling in turbulent air were formulated and used as a basis for estimating
the statistical characteristics of drop motions in terms of the statistical properties
of the turbulence. In a first attempt, only turbulent fluctuations of strictly hor-
izontal flow were considered, and the fluctuations were assumed to be a function
of height only. The model led to the conclusion that, due to drop inertia, large
drop velocities relative to the ambient air can arise. The effect on the drop col-
lection rate was estimated by forming a collision kernel wherein the conventional
factor of the difference in fallspeeds of a pair of interacting drops was replaced
by the root-mean-square drop velocity difference. This approach led to a stronger
turbulence-included drop spectral broadening than had been found by previous
investigators.

In a second attempt, three-dimensional turbulence was considered, which was
assumed to be stationary, homogeneous, and isotropic. The turbulence provided
a stochastic forcing function for the drop motions, and no feedback effect of the
drop motions on the local turbulence structure was allowed. Both the inertial and
viscous subranges of the turbulence were accounted for by choosing a plausible
interpolation form for the structure function, as suggested by Batchelor (1951).
The theoretical machinery of linear spectral transformation of stationary random
processes (e.g., Monin and Yaglom, 1971) was then invoked to find once again
the relationships between the stochastic behavior of the drops in terms of the
stochastics to the turbulence. To complete this process, a closure hypothesis was
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used, namely that the second and fourth moments of the air velocity distribution
are related as in the case of a normal distribution; the validity of this hypothesis
is supported by observations (e.g., Monin and Yaglom, 1971).

In a third attempt, the same methods of analysis, as described above, were
applied but this time to determine the stochastics of the relative velocities of pairs
of drops falling in three-dimensional turbulence. As in the first attempt, the results
were used to calculate drop spectral evolution, as before the collison kernels were
formulated by replacing the factor containing the difference of terminal velocities
with the root-mean-square difference of drop relative velocities. Also, as in the first
attempt, it was found that cloud turbulence significantly increases the generation
rate of large drops. For example, the formation of rain drops with radii of about

starting from an inertial narrow droplet spectrum centered at about
was found to take only 12 min for and about 24 min for

In contrast, for the case of zero turbulence, essentially no large
drops were formed during this same time period.

Although these results are encouraging in the sense that they are consistent with
observations that rapid drop spectral broadening often takes place within cloudy
regions of enhanced turbulence, they do not by themselves confirm the validity
of the analysis of drop velocity fluctuations in response to turbulence forcing. In
fact, as with the other turbulence collection efficiency models discussed already,
there are a number of questionable features of the Khain and Pinsky analysis.
First of all, as acknowledged by the authors themselves, there is no attempt to
take into account how the hydrodynamic interaction of the drops is affected by
the turbulence; in particular, collision efficiencies are taken to be the same as they
would be in still air. Also, the replacement in the collection kernel of the drop
terminal velocity difference by the root-mean-square drop velocity difference for
non-interacting drops doesn’t have a strong physical basis. A somewhat more
realistic approach was taken by de Almeida (1975), who replaced the usual relative
terminal velocity difference factor by the average velocity difference determined
over the collision trajectory.

More seriously, the basic analysis of the turbulence appears questionable in some
respects. For example, the authors find that velocity structures smaller than about
1 cm do not seem to contribute to the shear spectrum; this is at odds with the
heuristic reasoning presented in Section 11.6.2, where it was shown, on the basis of
dimensional arguments, that the shear strength in the inertial subrange increases
with decreasing eddy size down to a microscale length, and that it remains roughly
constant near its maximal value for smaller eddy sizes in the viscous subrange.
They further find that relative drop velocities are established at separation dis-
tances of 1-2 cm, and not by turbulent fluctuations lying within the viscous sub-
range. This again conflicts with the heuristic analysis of the effects of turbulence
fluctuations. Also, their estimate of turbulent inertial accelerations appears too
large. For example, they estimate the inertial accelerations as where

is the characteristic velocity of ambient air. On the other hand, from (11-75)
the acceleration is estimated to be where is the microscale velocity.
The authors assume whereas typically
Accordingly, their estimate of inertial acceleration in the turbulent flow appears
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to be as much as two orders of magnitude too large. The inferred enhancement
of drop collection rates by turbulence appears therefore to be overestimated. Un-
fortunately, at present, no laboratory studies are available to confirm or reject the
results of the four theoretical studies described above.

Before closing these two sections on theoretical determinations of E, we should
comment on the problem of extending the calculations to larger drop sizes. In
general, for large falling drops with , the strong non-linearity of their
hydrodynamic interaction makes the superposition method the only mathemati-
cally feasible approach known for estimating E. However, even this method has its
limitations in implementation. We recall from Chapter 10 that for suffciently large
drops, such complications as wake oscillations, eddy shedding, and shape defor-
mations occur. Since there are no numerical solutions in existence for flows past
single drops which reproduce these features, one must resort instead to the use
of steady state numerical flows past rigid spheres or oblate spheroids. Since such
flows become increasingly artificial for one must expect
the same for the corresponding estimates of E.

14.5.3 EXPERIMENTAL VERIFICATION

The many uncertainties inherent in the theoretical models for determining colli-
sion efficiencies make it especially important to check the computations against
measurements. Unfortunately, however, the experimental approach is also beset
with great difficulties. One major obstacle lies in the fact that in reality there is
no clean conceptual division between the processes of ‘collision’ and ‘coalescence’.
When a pair of drops is allowed to interact, generally what is observed is either a
coalescence or a non-coalescence event; in the latter case, it is usually not possible
to say whether the drops actually collided but did not coalesce, or whether they
simply experienced a ‘near miss’. Thus, the experimentally accessible quantity is
the collection efficiency, which is the ratio of the actual cross-section for drop
coalescence to the geometric cross-section. This may be regarded as equivalent to
the collision efficiency, as we have defined it, only if coalescence necessarily follows
whenever the center-to-center separation of the two interacting drops becomes less
than the sum of their (undistorted) radii (see Plate 17).

To determine , one may either observe (usually photographically) the tra-
jectories of interacting drops or measure the rate at which a drop grows as it falls
through a cloud of smaller drops. Suppose, for example, that a drop of radius

and fall speed grows by collecting drops each of radius and fall speed
then, we have where

is the mass growth rate of the drop, and is the liquid water content of the
cloud of Unfortunately, it is experimentally quite difficult to determine
accurately drop sizes, trajectories, growth rates, and fall speeds, and to produce a
homogeneous cloud of known liquid water content. Hence, experimental values of

are commonly subject to errors of 10 to 20%.
Telford et al. (1955), Telford and Thorndike (1961), Woods and Mason (1965,

1966), Beard and Pruppacher (1968), and Abbott (1974) have experimentally de-
termined the collection efficiency of pairs of water drops in air with close
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to unity, while Kinzer and Cobb (1958), Picknet (1960), Woods and Mason (1964),
and Beard and Pruppacher (1971b) determined for drop pairs oflow A
few experimental results are also available for pairs of small drops with intermediate

(Jonas and Goldsmith, 1972).
A comparison between theoretical collision efficiencies and the experimental col-

lection efficiencies of Abbot (1974), Telford et al. (1955), Woods and Mason (1965)
and Beard and Pruppacher (1968) for allows no clear conclusions, most prob-
ably because, for nearly equal drops, coalescence following a collision turns out to
be a strong function of the size of the two interacting drops. On the other hand,
for a clearer picture arises. Thus, comparison between the critical colli-
sion efficiencies and experimental collection efficiencies for small is made
in Figure 14.9. The computed values of Klett and Davis (1973) appear to be in
good agreement with experiment. Considering the relatively large experimental
errors, we may apply the same conclusion to the computed values of Schlamp et
al. (1976). The agreement between theory and experiment implies that, at least
for small each collision is followed by a coalesence event.

While no direct measurements of collection efficiencies in turbulent clouds have
been made, some related experiments which bear on the problem have been carried
out (Woods et al., 1972; Jonas and Goldsmith, 1972). Both groups measured
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for drops in an approximately steady, laminar shear flow. As we discussed in
Section 11.6.2, small aerosol particles interact on such small length and time scales
that the effects of any turbulence which may be present can be modeled roughly
through replacement of the turbulent velocity field by a much simpler linear shear
field. This same basic modeling approach, including the selection of a representative
shear strength near the Kolmogorov microscale value, is thought to be reasonable
also for the problem of small droplet collisions in a turbulent cloud (see, for example,
Tennekes and Woods, 1973).

Woods et al. and Jonas and Goldsmith measured the effect of shear on
for drops of colliding with drops of and for linear
shears in the horizontal wind varying up to . Since the results for the case
of no shear appear somewhat low, we shall only discuss the qualitative trends which
were observed. It was found that values for drops of radius are much
larger in shear flows than in still air, while for larger drops, the effects of shear were
much weaker. The effects were most pronounced for drops of comparable size. The
experiments also indicated that due to shear increases approximately linearly,
once a threshold value of shear has been exceeded.

A theoretical treatment by Jonas and Goldsmith of the effect of shear flow on
small droplet collisions failed to reveal any significant enhancement in for shears
of the magnitude of those employed in the experiments. This failure of the theory
may be due to the fact that Stokes flow was assumed. An effect of shear is to
induce a flux of droplets past one another. As suggested by Manton (1974), this
indicates the possibility that some droplets might therefore be expected to intersect
the wakes of neighboring ones and, hence, experience wake capture. Of course, such
a possible mechanism for the enhancement of is precluded by the assumption
of Stokes flow, wherein no wakes can occur.
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The plausibility of shear-induced wake capture is supported by measurements of
the distance of the wake interaction region behind falling drops of comparable
size. For example, in the model experiments of Steinberger et al. (1968), discussed
in Section 14.4.4, it was found that even for a Reynolds number as
low as 0.06 (equivalent to a drop of Not surprisingly, is observed to
increase strongly with Thus, Eaton (1970) found for roughly equal-
sized drops of to falling in air. Cataneo et al. (1971) observed
much larger values of and for equal water drops of
and respectively. Finally, List and Hand (1971) found a maximum value
of for drops of

Manton (1974) has provided a theoretical description of shear-induced wake cap-
ture which agrees with the qualitative features found in the experiments. However,
his model is rather artificial, and greatly oversimplifies the hydrodynamics of the
problem. For example, the wake interaction region is assumed to be undisturbed
by the shear, and the interaction of the drops in close proximity is assumed inde-
pendent of the shear.

14.5.4 COALESCENCE OF WATER DROPS IN AIR

It is well-known that not all drop collisions result in a permanent union by co-
alescence. Rather, there are two additional possibilities with which we must be
concerned: (1) The drops may bounce apart before surface contact is made, owing
to the presence of an air film trapped between their surfaces. (2) The drops may
disrupt following temporary coalescence; as we shall see, this latter behavior may
be explained satisfactorily in terms of the relative magnitudes of the surface energy
and the rotational kinetic energy of the coalesced drop pair.

Unfortunately. the drop coalescence problem is in general quite complex, and not
nearly so well in hand as the collision problem. For example, there are no theoretical
treatments which incorporate accurately the large amplitude surface distortions
which may occur, and thereupon inhibit the rate of air film drainage between the
drops. Similarly, it has proven very difficult to conduct experiments which can
faithfully reflect natural conditions, and at the same time provide sufficient control
and resolution for the parameters of interest.

A wide variety of experimental arrangements have been employed in the co-
alescence problem. For example, Lindblad (1964) and Semonin (1966) studied
the coalescence between 2 mm-size water drops, artificially held quasi-fixed at the
end of capillaries which could be moved at a variable relative velocity; Magono
and Nakamura (1959), Schotland (1960), and Jayaratne and Mason (1964) stud-
ied the conditions for coalescence between drops of and a
very large stationary, plane or hemispherical water surface; Whelpdale and List
(1971), Whelpdale (1970), List and Whelpdale (1969), and Levin and Machness
(1977) observed coalescences between a moving radius drop and stationary
larger drops of 500 to radius; Prokhorov (1951, 1954), Nakamura (1964),
Adam et al. (1968), and Park (1970) studied the coalescence of freely moving
drops of 3.1 mm to radius colliding with each other at various imparted
relative velocities; Montgomery (1971), Nelson and Gokhale (1973), and Spengler

radii,
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and Gokhale (1973a,b) studied the coalescence of mm-size drops in a wind tunnel
where the drops could be freely suspended in the vertical air stream of the tunnel,
while Neiburger et al. (1972) and Levin et al. (1973) used a wind tunnel to infer
the coalescence efficiency of water drops with radii between 45 and from
their growth rates. Brazier-Smith et al. (1973) studied the coalescence of nearly
equal sized drops at impact speeds considerably in excess of those occurring in
atmospheric clouds.

Unfortunately, most of these experiments were not carried out under natural
conditions. For a proper simulation, both interacting drops should fall freely at
the relative velocities following from their size difference, or from wake capture
effects. Only in this way can the flows controlling drop deformations and relative
trajectories for close separations be represented accurately. For this reason, exper-
iments with fixed large drops should best be regarded as primarily exploratory and
qualitative in nature. The use of stationary flat water targets is even less realistic,
except possibly for the case of very small radius ratios, as film drainage rates and
the forces resisting deformation can be expected to depend strongly on drop cur-
vature. Serious shortcomings are also inherent in those studies which involve the
measurement of drop growth rates, since it is difficult to ensure that no mass gain
or loss occurs by diffusional growth or evaporation.

These experimental difficulties are exacerbated by the sensitivity of the coa-
lescence phenomenon to such influences as turbulence, surface contaminants, and
electric fields and charges. Because of these problems, our discussions in this sec-
tion are limited primarily to just the qualitative trends which can be gleaned from
the studies which appear to be the most comprehensive, and which yield the most
mutually consistent results. The effects of turbulence and contaminants are not
considered. Some discussion of the effects of electric fields and charges is presented
in Chapter 18.

14.5.4.1 The Rebound Problem

It is now widely recognized that coalescence, if only temporary, will proceed once
the drop surfaces make contact, since surface energy is lowered by the destruction of
surface area (some apparent exceptions to this consensus include Gunn (1965) and
Cotton and Gokhale (1967)). Therefore, the drop rebound problem is primarily
the problem of air film drainage. Many experiments have confirmed that this
drainage is hindered particularly when the two approaching drops are large enough
to deform easily. Then, local flattening of their surfaces can strongly impede the
expulsion of the intervening air. In addition to a dependence on drop size, the
rate of air film drainage is also controlled by the relative velocity of the drop
pair, and by the impact angle between and their line of centers at impact.
Finally, many experiments have shown that the probability of coalescence rises
sharply once the air film has thinned locally to a thickness At such
distances, attractive van der Waal’s forces vary like (e.g., Adamson, 1960), and
will likely be of sufficient strength to induce coalescence, especially with the help of
small, random surface perturbations. While the early experimental studies of the
coalescence efficiency were plagued by a variety of problems, most of all by both
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incorrectly modeling the relative velocity of the two impacting drops as well as by
not sufficiently controlling electrical effects, the more recent measurements of Beard
and Ochs (1984), and of Ochs and Beard (1984) for drops of
colliding with drops of give a relatively consistent picture. The
results show that, for agiven decreases with increasing while, forgiven

decreases with increasing In agreement with our conclusions drawn
from Figure 14.9, the coalescence studies of Beard and Ochs (1984) and Ochs and
Beard (1984) show that for and
The following parameterization of the experimental results was suggested by Beard
(1994, pers. comm.) for and

with and
with and in

The coalescence of drops of and was studied
by Ochs et al. (1986, 1991), Czys (1987), and by Schaufelberger (1990). Their
experimental results can be parameterized by the relation

with and Equation (14-28) shows
that for these drops the coalescence efficiency is controlled by the Weber number

which characterizes the deformation tendency of a
drop pair. It simply compares the specific surface energy with the specific kinetic
energy due to impaction of the small drop. We notice from (14-28) that
decreases as increases, which is a result of coalescence being impeded by
increased drop deformation. A plot of (14-28) is provided in Figure 14.10a.

The most comprehensive investigation of drop coalescence involving larger drops
has been carried out by Low and List (1982a). The five drop pairs studied involved
drops of sizes and Using their
own data as well as those obtained by McTaggart-Cowan and List (1975), Low and
List proposed the following parameterization of their experimental results:

for drop diameters and for joule;
otherwise, In (14-29) A = 0.778,

and where CKE is the
collision kinetic energy. The variation of with diameters and is
given in Figure 14.10b. We notice from this figure that for given

increases with increasing while, for a given decreases with
increasing For for all values of For

the coalescence behavior is complicated, but generally decreases with
increasing for a given



COLLISION, COALESCENCE, AND BREAKUP 597



598 CHAPTER 14

14.5.4.2 Disruption Following Collision

Drop breakup following the collision of two drops has been studied experimentally
in vertical wind tunnels (Blanchard, 1948, 1949, 1950, 1962; Cotton and Gokhale,
1967; Spengler and Gokhale, 1973a,b; Montgomery, 1971), by directing droplet
jets at each other (Magono and Nakamura, 1959; Gunn, 1965; Schneider et al.,
1965; Adam et al., 1968; Brazier-Smith et al., 1972, Whelpdale and List, 1971;
Park 1970), and in long fall shafts (Nakamura, 1964; McTaggart-Cowan and List,
1975; Bradley and Stow, 1974, 1977, 1978, 1979; Low and List, 1982a,b). These
experiments have demonstrated that during the early stages of coalescence, the
coalescing drop-drop system is often highly unstable and may break up. Mainly
four breakup modes were identified: neck or filament-type, sheet-type, disc-type
and bag-type. Neck or filament breakup results from a glancing contact during
which a water neck forms joining the two drops. As the drops separate, the neck
breaks typically into two main drops and about five satellite drops. Sheet breakup
occurs when a small drop hits the larger drop in such a position that it tears off one
side of the large drop. This is followed by the bulk of the large drop rotating about
the point of impact, while a film or sheet of water forms from the impact area. By
disintegration of the sheet, about eight satellite drops of the size of the original
small drop form. Disc breakup occurs when the small drop hits the large drop near
the center. During their temporary coalescence, a disc forms, extending from the
point of impact where the small drop becomes incorporated. Subsequently, the
outer portion of the disc sheds drops. Eventually, the whole disc disintegrates into
a large number of drops. Bag breakup occurs in a similar fashion as disc breakup
except that now a toroid forms with a thin film of water at its center. Subsequently,
the film blows up into a bag which eventually shatters into a large number of drops.

The most detailed study of drop breakup resulting from the collision of two drops
has been carried out by Low and List (1982a,b). In their work, they defined
as the fraction of colliding drops which coalesce completely into one single drop. A
breakup due to collision is said to occur when either the drops bounced or when,
immediately after collision, a temporarily combined pair of drops break into two or
more fragment drops giving a fragment distribution where and

are the original masses of the colliding drops producing fragment drops of mass
Values for were determined by Low and List using a fall shaft

experiment. The results were parameterized in terms of a sum of the contributions
from three major breakup types: filament-, sheet-, and disc-breakup given by

where is the fragment number distribution for a particular breakup
type per size interval and per collision of a with a drop, and is the
ratio of the number of breakups of type to the total number of colliding drops
which break up. The breakup probability is assumed to be given by
the fraction A detailed parametrization for describing the drop
fragment distribution is found in Low and List (1982b), with corrections given in
List et al. (1987a).
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14.6 Collision of Snow Crystals with Water Drops

14.6.1 COLLISION OF LARGE SNOW CRYSTALS WITH SMALL DROPS

In clouds with temperatures lower than 0°C, supercooled water drops as well as
snow crystals may be present. In this case, two different types of hydrodynamic
interaction may occur, depending on whether the flow past the snow crystal or past
the drop dominates. We shall discuss both in sequence. Let us begin by considering
the collision of large snow crystals with small cloud drops.

Due to the complicated shapes of snow crystals, the simple approach of the
superposition method has proven to be the only feasible means for describing the
interactions between drops and ice crystals. For example, Pitter and Pruppacher
(1974), and Martin et al. (1981) have used the method to study the collisions of
small supercooled drops with simple hexagonal ice plates. A numerical solution for
the flow past a thin oblate spheroid was used as an approximation to the actual flow
past the crystal. Similarly, Schlamp et al. (1975) used numerical flows past infinite
cylinders in conjunction with superposition to estimate collision efficiencies of drops
colliding with hexagonal columnar ice crystals. In both studies, the flow past the
drop was assumed to be given by the numerical solution of Le Clair et al. (1970) for
the flow past a liquid sphere, including the effects of internal circulation. For the
drop-planar crystal problem, the form of (14-7) remains valid, it being understood
that the radius now refers to the semi-major axis of the oblate spheroid. For the
drop-columnar crystal problem, we see from (10-28) that the required modification
of (14-8) is where L and

are the crystal length and radius, respectively.
Earlier, less accurate computations by Wilkins and Auer (1970) and Ono (1969)

were based on the computations of Ranz and Wong (1952) for inviscid flow past
disks, and on the results of Davies and Peetz (1956), who studied the interaction
between small droplets and an infinite cylinder in Oseen flow for and in
flow numerically determined by Thorn (1933) for Unfortunately, the use
of inviscid flow is not well justified since, as we know from Chapter 10, ice crystals
typically have Also, the early numerical computations of Thom cannot
be considered reliable.

Pitter and Pruppacher (1974) and Pitter (1977) computed collision efficiencies
for drops of colliding with oblate spheroidal ice plates of axis ratio

and of corresponding to for air of
–10°C and 700 mb. These computations were extended by Martin et al. (1981),
who used an improved collision criterion to cover the size range
corresponding to More accurate computations have recently been
carried out by Ji (1991) and Wang and Ji (1992), who used a three-dimensional
solution to the Navier-Stokes equation of motion (see Section 10.5.1) for flow past a
simple hexagonal plate and a broad-branched crystal in conjunction with a collision
criterion which includes the effects of the double rim of a crystal of finite thickness.
The results of these computations are given in Figures 14.11 and 14.12. We notice
from these figures that the collision efficiency increases with increasing crystal size
and at first with increasing drop size, reaching a maximum which becomes increas-
ingly broad as the size of the collecting crystal becomes larger. The reason for
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the maximum and the subsequent decrease of the collision efficiency with further
increase in drop size is due to the fact that, with increasing size, the drop’s fall
velocity rapidly approaches the fall velocity of a given crystal, thus inhibiting col-
lision. We further notice that a broad-branched crystal of given Reynolds number
has a considerably lower collision efficiency than a simple hexagonal plate of the
same Reynolds number. This is most likely due to the smaller effective sweepout
area of the broad-branched crystal. The collision efficiency decreases to zero as the
collector crystal decreases to a critical size. This implies that a crystal has to grow
by vapor diffusion to the critical size before riming may commence. This cut-off
diameter for a type Pla crystal was found to be about while
for a Plc type crystal The former critical size is in good agreement
with the value inferred from the computations of Martin et al. (1981). However, in
contrast to Martin et al., Ji’s collision efficiencies are somewhat larger, particularly
those for small crystal plates.

Let us now turn to the case of supercooled drops colliding with columnar ice
crystals. In the theoretical study referred to earlier, Schlamp et al. (1975) com-
puted collision efficiencies for drops of colliding with circular
cylindrical ice crystals of length L and radius where and

As we have said, the flow past the crystal
was taken to be that past an infinite cylinder. This assumption is justified (at
least for the lower half of the falling cylinder) by the observations of Ono (1969),
Zikmunda and Vali (1972), and by Iwai (1973) who showed that, in contrast to
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plate-like ice crystals, columnar crystals rime quite uniformly over their surface
(see Plate 5). However, in an effort to minimize the errors from neglecting ‘end
effects’, Schlamp et al. employed drag coefficients determined experimentally for
finite cylinders (Jayaweera and Cottis, 1969; Kajikawa, 1971), rather than theoret-
ical ones based on infinite cylinder calculations.

In a recent study, Ji (1991) and Wang and Ji (1992) computed more realistic
collision efficiencies by applying their three-dimensional solutions of the Navier-
Stokes equation of motion (see Section 10.4.2) to the flow past columnar crystals
of finite length. The results of these computations are illustrated in Figure 14.13.
We notice from this figure that, in analogy to the planar crystals, the collision
efficiency of columnar crystals increases with increasing Reynolds number and a
corresponding increase in the columnar crystal’s length and width. For a given
crystal Reynolds number, the efficiency also first increases with increasing drop size,
and then reaches a maximum beyond which the efficiency decreases with further
increasing drop size. The efficiency decreases to zero for drops whose fall velocity
approaches the fall velocity of the crystal. Extrapolation of the results of Ji (1991)
to lower Reynolds numbers shows that columns need to grow by vapor diffusion
to a critical width of about before riming may commence. In reasonable
agreement with this value, Schlamp et al. (1975) computed a critical width of

Only a few laboratory studies are available on the efficiency with which planar
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ice crystals collect supercooled water drops. Sasyo (1971) and Sasyo and Tokune
(1973) made model experiments to determine the trajectory of water drops carried
by an air stream past a rigidly fixed hexagonal bluff body, and to determine the
efficiency with which such a body collects water drops. Unfortunately, the target
sizes did not correspond to the air stream velocities chosen to represent the air
flow past an ice crystal of a given size at terminal velocity. Also, the Reynolds
numbers at which the study was carried out were larger than 100, implying that
the model had an unsteady wake due to shedding of the eddy at the downstream
side of the target. The same shortcomings characterize the model experiments of
Kajikawa (1974), although he more realistically allowed his models to fall freely.
Fortunately, Kajikawa also carried out experiments with natural plate like snow
crystals which settled with at their terminal velocity through a cloud
of supercooled water drops of radius 2.5 to The results of this study
confirm the theoretical efficiencies of Ji (1991) for crystals with
and drops of For smaller drop sizes, the experimental errors
were too large to give a clear trend of the variation of the collision efficiency with
changing crystal size. Nevertheless, the experimental results of Kajikawa indicate
that for the collision efficiency does not decrease to zero but remains finite,
even for drops as small as in excellent agreement with the theoretical
predictions of Ji (1991) (see Figure 14.11 and 14.12). This result contrasts with the
earlier computations of Pitter and Pruppacher (1974), Pitter (1977), and Martin
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et al. (1981), whose model predicted a collision efficiency cut-off at
This prediction was erroneously thought to be substantiated by the observations of
Harimaya (1975) (see Figure 2.54), Wilkins and Auer (1970), Kikuchi and Uyeda
(1979), and d’Enrico and Auer (1978), who observed that the number of drops
frozen on planar crystals becomes very small if On the other hand,
theoretical as well as experimental results, to be discussed in Chapter 17, indicate
that aerosol particles as small as radius have been observed to deposit on
planar snow crystals by inertial impaction. This suggests that the riming cut-off
observed in clouds is a result of the microstructure of clouds rather than a result
of an actual decrease to zero of the collision efficiency.

Another noteworthy feature of the riming process of snow crystals is the evidence
that there is a minimum crystal size below which drops, whatever their size, cannot
be collected. The earlier computations of Pitter and Pruppacher (1974) and Pitter
(1977) underestimated the collision efficiency of planar snow crystals and predicted
a cut-off crystal diameter of about which apperared to be in agreement with
the observations of Harimaya (1975), Wilkins and Auer (1970), and Ono (1969),
see Figure 2.53. However, as mentioned earlier, the more realistic computations of
Martin et al. (1981), of Ji (1991), and of Wang and Ji (1992) predict for crystals
of Pla type and Plc type a cut-off diameter of 110 and and for columnar
crystals, a cut-off width of These values are in excellent agreement with
the more recent field studies listed in Table 14.3.

The pattern of rime deposited on a planar snow crystal was studied by Pitter
and Pruppacher (1974). The study shows that there is often a circular region
concentric with the crystal center where no drop collisions can occur. The portion
of the crystal on which collisions may occur was thus predicted to have an annular
shape. This result is in excellent agreement with the field observation of Wilkins
and Auer (1970), Zikmunda and Vali (1972), Hobbs et al. (1972), and Knight and
Knight (1973a,b), who observed that lightly rimed, natural planar snow crystals
preferentially rime near the crystal edges (see Plate 4). This behavior was explained
by Pitter and Pruppacher in terms of an ‘air pillow’ beneath the central portion of
the falling ice crystal plate, inside of which drops may accelerate to the terminal
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fall velocity of the ice plate before they collide with it, giving the viscous forces an
opportunity to move the drop around the falling crystal.

Snow flakes may be considered essentially as falling plates with holes (see Plate 3).
It is obvious that such objects may exhibit collision efficiencies which are consider-
ably different from those of solid crystal plates, since the flow of air containing small
cloud drops is directed through as well as around the porous flake. Using a vertical
wind tunnel, Lew et al. (1986a,b) studied the efficiency with which supercooled
cloud drops are collected by snow flake models which consisted of circular discs of
given porosity. The results of this study were compared with the riming behavior
of solid discs and of laboratory grown and natural snow flakes. The supercooled
cloud studied had a liquid water content of 0.5 to and consisted of drops
of radius between 3 and The porous discs and snow flakes had diameters
ranging between 0.6 and 1.1 cm. The results, summarized in Figure 14.14, show
that the collection efficiency of snow flakes and of discs of known porosity is larger
by one to two orders of magnitude than the efficiency of solid discs. A photographic
study showed that the enhanced collection was due to the collection of drops on
the rim of the various holes. The results of Lew et al. (1986a,b) were subsequently
confirmed by experiments of Matsuo (1987).

It should be stressed at this point that the collision efficiencies discussed above
only apply to ice crystals in their initial stages of riming, i.e., as long as their shape
is still that assumed for the computations. During later stages, the shape changes
from that of a planar or columnar hexagonal crystal into that of a spherical, conical,
or irregular graupel particle and eventually, if riming proceeds further, into that of
a hailstone. As might be expected, there are no theoretical values of E available
for such irregular shapes, not only because of the complicated surface geometry,
but also because such particles often fall with spinning and tumbling motions.

Some representative experiments have been carried out by Pflaum et al. (1978),
and Pflaum and Pruppacher (1979), who studied the growth of graupel particles
freely suspended in the vertical air stream of a wind tunnel. Their results indicated
that under ‘dry-growth’ conditions (see Section 16.1), rimed spherical ice parti-
cles, which generally have a rough surface texture and exhibit various oscillatory-,
spinning-, and helical motions (Section 10.5.3), have a collision efficiency which is
considerably lower than that of a smooth sphere falling straight.

Using the wind tunnel results of Pflaum et al. (1978) and of Pflaum and Prup-
pacher (1979), Rasmussen and Heymsfield (1985) and Heymsfield and Pflaum
(1985) established that the efficiency with which graupel collides with small su-
percooled drops may be computed from the trajectory model of Beard and Grover
(1974) after replacing the Stokes number in (14-10) by the mixed Froude num-
ber. This method, originally suggested by Hall (1980), involves a slightly different
non-dimensionalization than that used in Section 14.3 to obtain (14-10). Assuming
that the flow field past a small cloud drop does not affect its trajectory around the
graupel, (14-8) may be written for the small drop, after dividing through by

Considering the force balance and making (14-



COLLISION, COALESCENCE, AND BREAKUP 605

31) dimensionless by setting and
the equation for the trajectory of the small drop becomes, in

agreement with Hall (1980),

In this equation, and
constitute the ‘mixed’ Froude numbers. The collision efficiency may then be com-
puted, using the model of Beard and Grover (1974), from

where with

and where
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Unfortunately, the largest graupel particles which Pflaum and Pruppacher (1979)
and Pflaum et al. (1978) were able to grow in their wind tunnel were about 1 mm
in diameter, corresponding to maximum Reynolds numbers between 100 and 200.
With the foregoing parametrization, one may therefore only compute the collision
efficiency of graupel in their initial stages of growth. Recently, Cober and List
(1993) determined from their wind tunnel experiments the collection efficiency of
rigidly suspended conical graupel of diameters between 1.5 and 6 mm. The graupel
were growing in the dry growth regime (see Section 16.1) at air temperatures be-
tween –4 and –21°C, and in a cloud of 0.5 to liquid water content with a
cloud droplet median volume radius of 12 to The cloud drops were moving
with a velocity of 1.1 to Cober and List (1993) found that the average
bulk collection efficiency could be parameterized by the relation

where These results were found to be in good agreement
with the earlier laboratory studies of Mossop (1976) and showed that the collision
efficiency of graupel is up to 25% lower than the theoretical collision efficiencies
of droplets colliding with a smooth sphere (Langmuir and Blodgett, 1946). Cober
and List, as well as Mossop (1976) and Pflaum and Pruppacher (1979), attributed
this reduction to changes in the air flow pattern caused by the roughness of the
graupel surface.

In closing this section, we must briefly touch upon the retention efficiency of
drops which collide with ice crystals. Since cloud drops which come into contact
with an ice particle are supercooled, they immediately begin their transformation
to ice. In the dry-growth regime (see Section 16.1), in which an ice particle ac-
quires drops sufficiently slowly for all the acquired water to freeze, the collected
drops tend to be retained by the ice particle. Earlier wind tunnel studies by List
(1959, 1960a,b) indicated that also in the spongy or wet-growth regime (see Sec-
tion 16.1), in which an ice particle acquires drops too fast for all of the water to
freeze immediately, up to 70% of the unfrozen water is accommodated and retained
in the dendritic ice mesh of the spongy ice deposit, implying that little, if any, of
the water collected by the ice particle will be lost through shedding. However,
experiments of Bailey and Macklin (1968a), of Carras and Macklin (1973), Joe
(1975), and of List et al. (1976) appear to give some evidence that, at sufficiently
high impact velocities of drops on riming cylinders and artificial hailstones, water
retention is limited and water may be shed by drop bouncing, detachment of water
sheets, or by splashing of impacting drops.

14.6.2 COLLISION OF LARGE DROPS WITH SMALL SNOW CRYSTALS

Having discussed so far the collision between relatively large snow crystals and
small cloud drops, we shall now turn to the reverse case and discuss the capture
of relatively small snow crystals by large cloud drops and small raindrops. This
problem has been studied by Lew and Pruppacher (1983), who computed the effi-
ciencies with which columnar snow crystals of are captured in
three orientations by drops of in air of 500 and 900 mb and



COLLISION, COALESCENCE, AND BREAKUP 607

–6 and –10°C. The results of this study are summarized in Figure 14.15a,b for
columnar crystals colliding in orientation (1). We notice that E decreases: with
increasing for given length and density with decreasing for given

and and with decreasing for given and For all and
if Somewhat unexpectedly, the dependence of E on drop

size and orientation of the columnar crystals was found to be negligible.

The capture of small planar crystals by large cloud drops and small raindrops
was studied by Lew et al. (1985) for crystalsof
and AR = 0.05, allowed to be captured by drops of in air of
400 mb and –12°C at various impact angles. The result of these computations
are summarized in Figures 14.16a,b. We notice that, for given E decreases
with decreasing values of tilt angle due to increasing drag on the crystal. For a
given value of E increases with increasing and decreasing We also note
that the collision efficiency for a planar crystal is lower than that for a sphere of
corresponding mass, as a result of the smaller drag on the sphere.

14.7 Collision of Snow Crystals with Snow Crystals

The crystal aggregation mechanism which forms snow flakes is known to be a
strong function of air temperature. For example, Dobrowolski (1903) observed 283



608 CHAPTER 14

aggregation snowfall episodes, of which 83% occurred between +1 and –5°C, 9%
between –5 and –10°C, and only 8% at temperatures less than –10°C. Similarly,
Magono (1953, 1960) found that snow flakes had their largest dimensions at tem-
peratures near –1°C, and that aggregation was mostly confined to temperatures
warmer than –8 to –10°C. These observations were confirmed by Hobbs et al.
(1974b) and Rogers (1974a,b), who also found a second snow flake diameter maxi-
mum at temperatures between –12 and –17° C, in addition to the main maximum
near 0°C (see Figure 14.17). The field observations of Hobbs et al. and of Jiusto
and Weickmann (1973) demonstrate that most snow flakes are aggregates of planar
snow crystals with dendritic habit features. However, aggregates (bundles) of nee-
dles are also observed. Aggregates of simple, thick ice-plates and short columnar
ice crystals are rare.

Observations show that, on contact, ice crystals ‘stick’ to each other by forming
an ice bond across the surface of contact if the air temperature is relatively close
to 0°C, or interlock with each other if the crystals have dendritic features. The ‘in-
terlocking mechanism’ is expected to occur preferentially at temperatures between
–12 and –17°C and at relatively high ice supersaturations (Ohtake, 1970b,c), since
under these conditions, dendritic features are most favored (recall Section 2.2). The
‘stickingmechanism’is most efficient at temperatures near 0°C where a quasi-liquid
film is present to promote the formation of an ice neck between the particles (recall
Section 5.7.3). Hobbs (1965) concluded, from a study of the sintering of ice spheres,
that the rate of ice-neck formation is sufficiently fast for ice crystal aggregation to
occur in clouds at temperatures as low as –20°C.

At present, no theoretically derived efficiencies are available for the collision
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of snow crystals with other crystals. Although flow fields around Pla and Plc
type crystals are now available, serious difficulties arise in defining an appropriate
collision criterion.

Unfortunately, there are also only a very few experimental studies of the effi-
ciency with which snow crystals are collected by other snow crystals, and most
of these considered only the interactions between small crystals and fixed, large
ice targets (Hallgren and Hosler, 1960; Hosler and Hallgren, 1960; Latham and
Saunders, 1970; Keith and Saunders, 1989). Only Rogers (1974b) considered the
collection efficiency of freely falling snow crystals. These efficiencies were inferred
from a comparison of the observed number of component crystals in a flake and the
number of component crystals computed with a continuous growth model, assum-
ing The results of these and other studies are plotted in Figure 14.18. We
notice the large scatter in the data, suggesting perhaps only a general increase of
the collection efficiency with increasing temperature. All data suffer mostly from
the undetermined dependence of the collection efficiency on the size and shape of
the colliding crystals. Keith and Saunders (1989) attempted to shed some light
on this problem by considering the collision of a fixed cylindrical ice target with
planar snow crystals as a function of their size. They found that the efficiency with
which planar snow crystals are collected by a cylindrical target at –11°C varied as
a function of a Stokes-type parameter defined by where in

is the impact speed of the crystals given by the fall velocity of the larger
crystal, in is the size of the smaller snow crystal, and in is the size of
collector crystal. This function has been plotted by Keith and Saunders (1989) in
their Fig. 10. Assuming that the relationshipfor also applies to planar crystals of

colliding with smaller planar crystals of
30 and one finds from their graph 0.53, 0.31, respectively, apply-
ing to –11°C. These efficiencies are larger than those shown in Figure 14.18, but
are consistent with computations of Mitchell (1988) and Rauber (1987), who found
that agreement between field observations and the results of their stochastic crystal
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aggregation model required in the temperature range –10 to –20°C.

14.8 Orientation Model for Particles in Turbulence

As we have discussed in Chapter 10, for some hydrodynamic conditions non-
spherical particles may adopt a preferred orientation of fall in quiet air. However,
under virtually all atmospheric conditions there will be background turbulence as
well, and this might be of sufficient intensity to significantly disrupt whatever orien-
tational order the particles would otherwise possess. It is obvious, for example, that
sufficiently small particles will be completely entrained by turbulent eddies and,
hence, will experience a tumbling motion with no preferred orientation. Larger
particles may tend to remain in a stable fall mode, but will nevertheless be buf-
feted by the turbulence so that a wobbling motion will be superimposed on their
quasi-steady fall.

This problem is highly intractable, as are most turbulence problems. Partly
for this reason, even relatively recent studies of the effects of ice crystals on cloud
radiative properties continue to assume either i) random orientations (e.g., Takano
et al., 1992), or ii) some ad hoc ordered state (e.g., crystals with their long axis ran-
domly oriented in the horizontal plane (Stephens, 1980), or parameterized Gaussian
orientation distributions (Matrosov, 1991)).

In an analysis of the problem, Cho et al. (1981) concluded that ”.. . turbulence is
unable to destroy the preferred orientation of falling ice crystals.” This qualitative
outcome was obtained by a comparison of characteristic length and velocity scales
of ice crystals and turbulent eddies. The essence of the argument was that eddies
of sizes comparable to the reorientation length scale of a perturbed crystal have
associated velocities that are much smaller than the crystal fall velocities, so that
the crystals should remain relatively undisturbed as they fall through the eddies.
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These arguments and conclusions are essentially qualitative, and are based pri-
marily on kinematical considerations. We shall now describe a more recent model
(Klett, 1995) that provides a quantitative estimate of the effects of turbulence.

14.8.1 TURBULENCE MODEL

As was done by Cho et al., the turbulence is modeled by assuming a spectrum
of eddies within or below the inertial subrange. Below the subrange, the velocity
fluctuations are linearly related to the corresponding eddy sizes, as described in Sec-
tion 11.6.2.1. If the maximum particle dimension, is less than the microscale
length a condition we have found likely to be satisfied in the atmosphere (see
Section 11.6.2.), then the velocity fluctuations affecting the particle will vary lin-
early with eddy size Hence, the velocity fluctuation over the full extent of the
particle, which is expected to be most effective for inducing rotational perturba-
tions, will be of order since is the relevant characteristic shear rate
in this linear regime.

The form of the most effective fluctuating turbulent velocities can therefore be
consolidated as follows, where a normalization by microscale quantities has been
carried out, and an interpolation has been used to smooth out the transition from
one flow regime to the other:

where In this equation S is the sigmoid function,
i.e., and The choice of provides
smoothing measured by a deviation from the limit values of 1/3 and
1 for or 0.9, respectively. Smaller values of give more smoothing of
the step function, and vice versa for larger values.

14.8.2 ORIENTATION OF SPHEROIDS IN TURBULENT AIR

For a spheroid of small eccentricity, and for flow characterized by a small
Reynolds number, Cox (1965) solved for the magnitude of the torque
acting on the spheroid, assumed to be translating without rotation through the
fluid with terminal velocity to first order in and The result may be
expressed as follows:

In this equation, is the angle between the direction of fall and the symmetry axis
of the rotationally symmetric spheroid. Cox defines the eccentricity in such a way
that to the diameter of the spheroid is and the length of a prolate
spheroid or the thickness of an oblate spheroid is Here

is a characteristic length scale for the spheroid, in terms of which its volume is
The Reynolds number is based on this length also, i.e.,
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Next, we consider the dependence of some measure of tilting, such as the root-
mean-square tilt angle, on the physical parameters characterizing the problem
for the case that turbulence dominates thermal fluctuations. Then, for a particle
size and shape defined by two lengths and we expect a functional relationship
of the form where is the particle density. Using
arguments applied in Section 14.2, an equivalent dimensionless relationship is

For , the equation of motion for the vertical tilting of the spheroid is
given by:

where and where represents the random torque caused
by turbulence and thermal fluctuations, I is the moment of inertia for vertical
tilting, and the dots represent time derivatives. The third term on the left-hand
side is the viscous relaxation torque that attenuates

Next, we perform a Langevin average similar to that described previously in
Section 11.1: multiply (14-38) by and note that and

Then, if we take an ensemble average (denoted by angular brackets) and
assume a state of dynamic equilibrium so that we conclude that

and If we further assume there is no correlation on average
between the tilt angle and random torques, then also As a result, the
ensemble average of times (14-38) reduces to:

Finally, the instantaneous angular velocity is separated into components due to
Brownian motion and turbulence, i.e., There should be negligible
correlation between the two random processes so that Therefore,
we obtain But by the law of equipartition, we also have
the relation On substituting this into (14-39), the result is:

Equation (14-40) expresses the variance, of the probability distribution
for small tilt angles in terms of the variance of the turbulence-induced angular
velocity fluctuations. Although the exact form of the distribution for remains
unknown, it is likely very close to Gaussian, given the random nature of the torques
that drive it. Also, a study by Sassen (1987) on light pillars (vertical columns of
light seen at night above bright localized light sources during light snowfall or ice
fog) supports a normal distribution of tilt angles of falling disk-like snow crystals.
Hence, it is here to be Gaussian, and the information accumulated so far is used
to complete the specification of its variance. (On a historical note, a somewhat
analogous procedure was adopted, in a classic paper on drop collisions in turbulent
flow, by Saffman and Turner (1955).)
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If we allow both positive and negative tilt angles, the Gaussian distribution will
have the form:

with The parameter is related
to the variance by For the error function factor is
essentially unity, so that From this and (14-40), we have

With this expression for , it can be seen that the orientation distribution
given by (14-41) is consistent with a Boltzmann distribution for and for
the case of no turbulence; such a distribution was first described by Fraser (1979).
Furthermore, (14-38) suggests that a reasonable evaluation of the turbulent kinetic
term in (14-42) is:

where and in terms ofwhich With this form, we
now obtain

and for the case that turbulence is dominant, this satisfies (14-37), the lack of any
explicit dependence on notwithstanding.

14.8.3 GENERALIZED ORIENTATION DISTRIBUTION

Heuristic generalizations can now be used to eliminate restrictions on tilt angles,
aspect ratios, and Reynolds numbers. To extend (14-41) to all tilt angles, we let

which leads to the new orientation distribution The
rationale for this change is simply that it ensures agreement with the Fraser (1979)
distribution for all for the limiting case of

It is also necessary to modify the orientation weighting function description to
properly account for the fact that, in applications, averages will be taken over solid
angles. If we consider a spherical polar coordinate system with the direction of
gravity taken along the negative direction, then for falling disk-like objects, the
tilt angle, or angle of deviation from the stable mode, will be just the polar angle,

while for cylinder-like objects, it will be Therefore, on introducing the
differential element of solid angle where is the azimuthal
angle, the probability distribution will be of the form:
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where is Dawson’s integral:

and is the error function. (A concise algorithm for evaluating is given
in Press et al. (1992).)

For an oblate spheroid or a disk of thickness H and diameter D, the aspect
ratio is The same definition would apply for plate-like ice crystals as
well, with D representing the maximum (circumscribed) diameter. Similarly, for a
prolate spheroid, finite cylinder, or columnar crystal of length L and diameter D,
the aspect ratio is With these definitions, is replaced as follows:

By using this equation for arbitrary aspect ratios, one in effect assumes that the
first-order dependence of restoring torque on aspect ratio remains a good approx-
imation for all aspect ratios. Similarly, the dependence of on aspect ratio can
be summarized as:

The extension of the model to moderate Reynolds numbers is based on the
plausible notion that the hydrodynamic torque on the particle may be expressed
approximately as where is the Best number. The resulting
composite orientation distribution is then given by (14-45) with

In this expression, is the Reynolds number of turbulent eddies of scale size
equal to the maximum particle dimension, and and are coefficients in an
empirical fit of Best number to Reynolds number, as described in Section 10.4.

For particles large enough to satisfy and for which buffeting by tur-
bulence dominates Brownian impulses, the limiting form of is:

From this equation we see, for example, that for the case of weak tilting, corre-
sponding to the particle terminal velocity being much larger than the turbulence
velocity fluctuations effective for particle tilting, the rms tilt angle is proportional
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to the factor Since typically the rms tilt angle
thus varies approximately as , A naive argument for the case

would be to state that the tilt angle should be proportional to the ratio
of main flow stress to turbulent stress, which from Bernoulli’s law should result in
an rms tilt angle of The reason the former estimate differs from
this is that in the Reynolds number regime for which stable fall modes are found
to exist falls short of the Bernoulli limit; i.e., the drag coefficient is not constant,
because the Reynolds number is not large enough.

An application to the problem of ice pillar formation is shown in Figure 14.19a,b.
Sassen (1980) related the width of ice pillars to characteristic ice crystal tilt angles.
In this case, the inferred tilt angles are very small, being just a few degrees or
less. For one of the snow flake types investigated, namely plates of the order of a
millimeter in diameter, some independent empirical information from Section 10.5
on the fall speed and aspect ratios as a function of size can be used to obtain a
somewhat more accurate description, namely and
with D in cm. This information can be substituted directly into (14-49) to improve
the description. (In the absence of such an equation for fall speed, one can make
use of the previously described empirical relationships between and for
various particle geometries, and from them construct a simple algorithm for
It can be seen from Figure 14.19b that tilt angles reasonably consistent with the
measurements can be predicted by the present model using plausibly weak levels of
turbulence. In this case, the angles plotted are maximal in the sense that only 1%
of tilt angles are larger than those shown; they correspond roughly to two standard
deviations from the equilibrium orientation.

Figure 14.19a describes the tilting behavior of branched plates for a somewhat
broader range of conditions than were encountered in the ice pillar study of Sassen
(1980). We see the small crystal regime of random orientations due to Brownian
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motion gives way rapidly to ordered fall with increasing crystal size, and the in-
creasing interference with this transition caused by increasing levels of turbulence.
It is also seen that there is a range of sizes such that, for moderate to strong tur-
bulence, the tilt angles actually increase again with size, achieve a maximum, and
then begin to fall off with further size increases. The increase in tilt angle with
size occurs in the submicroscale turbulence regime of linear velocity fluctuations,
which cause the velocity fluctuations over the size scale of the particles to increase
faster than the particle terminal velocities. The tilt angle maximum and subse-
quent dropoff with increasing size comes about as the particles begin to exceed the
Kolmogorov microscale length, since beyond that size scale, the velocity functions
increase more weakly with size than do the terminal velocities. The fact that the
Kolmogorov length increases with decreasing turbulence intensity accounts also for
the fact that the maximum tilt angle location shifts to larger sizes with decreasing
turbulence.



CHAPTER 15

GROWTH OF CLOUD DROPS BY COLLISION, COALESCENCE
AND BREAKUP

As we have already learned from our brief historical review in Chapter 1, it has long
been established that the presence of ice is not always necessary for precipitation
formation in clouds. In more recent times, radar observations have confirmed this
early conclusion. In such cases, the flow of water up the spectrum from small
droplets to rain must occur by the process of collision and coalescence of drops.
This is often referred to as the collection process, and sometimes erroneously as
the ‘warm rain’ process. The latter designation is somewhat inappropriate, since
collection growth also occurs in clouds colder than 0°C (Braham, 1964).

In this chapter, we shall discuss quantitatively the evolution of drop spectra by
collection growth. We shall first consider the continuous growth model, according
to which all large drops of the same size grow at the same continuous rate. This
relatively simple model was the first to be applied to the problem of precipita-
tion development and is capable of reasonable accuracy in describing some aspects
of collection growth. It also is still used to describe the growth of graupel and
hailstones at the expense of much smaller drops. However, the model generally
overestimates the time required to form rain as a result of drops colliding with
drops, since it does not account for the fact that a small fraction of larger drops
will experience by chance a greater than average frequency of collection events, and
will thus grow faster than the continuous model predicts. We shall therefore devote
most of our attention to the stochastic growth model, which takes this probabilistic
aspect of collection growth into account. We shall also show in Chapter 17 that it
is only through the stochastic growth process that the observed redistribution of
chemical compounds inside the cloud water may be explained.

15.1  Continuous Model for Collection Growth

We have already briefly introduced the continuous growth model in Section 14.5.3,
where we discussed its application to the experimental problem of determining the
collection efficiency by measurement of drop growth rates. Thus, if a drop
of radius fall speed and mass falls through a cloud of liquid water
content containing uniform drops of radius and fall speed then
according to the continuous growth model, the growth rate of the large drop is

where

617
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is the collection kernel for hydrodynamic capture (cf. (11-85)). Equation (15-1)
follows from the assumption that the water associated with the small drops is
distributed continuously and uniformly. Furthermore, if more than one
falls through the homogeneous cloud, each one is assumed to grow at the rate
specified by (15-1).

In Section 15.2, it is shown that K varies approximately as for
and as for On comparison with the weaker size dependence

found for the diffusion growth of a small drop (Section 13.2), we
conclude that the relative importance of collection growth increases sharply with
drop size. In fact, a crossover in dominance from diffusion to collection growth
generally occurs for

We may easily generalize (15-1) to apply to a situation in which an falls
through a polydisperse cloud of smaller drops, distributed in size according to the
spectrum Then, in place of (15-1), we have

Since and assuming (Equa-
tion (14-1)), then from (15-2) and (15-3) an alternative description in terms of the
radius growth rate is

Several computations using (15-4) are in the literature (e.g., Mason, 1952b;
Telford, 1955; Twomey, 1964; Braham, 1968; and Chien and Neiburger, 1972).
Chien and Neiburger computed the drop growth rates in a cloud with a Khrgian-
Mazin spectrum (Equation (2-3)), and in a monodisperse cloud with the same
and mean volume radius. The results, shown in Figure 15.1, demonstrate that the
growth rate is significantly smaller in the monodisperse cloud, even though it is
comprised of drops which are larger than three-quarters of those in the polydisperse
cloud. This example shows that the growth rate is a sensitive function of the drop
size distribution as well as the liquid water content. Braham (1968) also demon-
strated this sensitivity by comparing the growth rate of drops in a typical maritime
and continental cumuli. The result of Braham’s computations is summarized in
Figure 15.2 which shows that, in agreement with observations, precipitation sized
drops develop much faster in maritime than in continental clouds due to the broader
drop size distributions and larger liquid water contents of maritime clouds.

The continuous growth model also permits a simple assessment of the effect of
an updraft on the development of precipitation. For example, assuming
(15-1) may be written in the form

Now suppose there is an updraft of strength so that the upward velocity
of the relative to the ground is where measures
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the height of the drop. Then, (15-5) may also be expressed as follows:

For a constant updraft, the formal solution is

where This equation has been the basis of several studies (e.g., Lang-
muir, 1948; Bowen, 1950; Ludlam, 1951; Mason, 1952b, 1959; and East, 1957). Fig-
ure 15.3 shows as an example some results obtained by Bowen. In this calculation,
a drop, originating by the chance coalescence of two radius cloud droplets
near the cloud base, is assumed to grow further by collection of radius drops
in accordance with the collision efficiency, as given by Langmuir (1948). The figure
demonstrates that strong updrafts reduce the growth time of drops considerably,
and produce larger drops than weak updrafts.

15.2 Polynomial Approximations to the Gravitational
Collection Kernel

It is obvious from (15-3) that the continuous growth equation, discussed in the
previous section, as well as the stochastic growth equation to be discussed in the
following section, can only be solved analytically for simple collection kernels (see
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Section 15.3.2). The hydrodynamic collection kernel does not belong to this group
of kernels, nor do the polynomial approximations to the collection kernel provided
by Long (1974). Nevertheless, we shall briefly discuss Long’s approximations, as
they have proved to be useful in the numerical integration of the collection growth
equations (Tzivion et al., 1987).

The first step in obtaining the polynomial approximations is to evaluate the
actual gravitational collection kernel K as accurately as possible. In the expres-
sion (15-2), for K we recall the collection efficiency is the product of the collision
efficiency E and the coalescence efficiency Long (1974) assumes
because evidence to the contrary (Woods and Mason, 1964; Whelpdale and List,
1971; Brazier-Smith et al., 1972) covers only a limited range of drop sizes (see
Section 14.5.4.1). For Long uses the E values of Shafrir and
Gal-Chen (1971) and Klett and Davis (1973). The terminal velocities are evalu-
ated from the approximate formula developed by Long and Manton (1974), which
is based on the data of Gunn and Kinzer (1949) and Beard and Pruppacher (1969)
obtained at 1013 mb and 20°C. An altitude correction to the formula is made be-
cause the collision efficiencies were calculated for 900 mb and 0°C. For droplets
of radii this correction is derivable from the Stokes terminal velocity
formula, and is due to the change in viscosity of air with temperature. For radii

Long uses the correction of Foote and du Toit (1969). For intermediate
sizes, a linear interpolation with respect to the logarithm of the droplet radius is
used.

In this manner, the curves of K vs. for various ratios are obtained as
shown in Figure 15.4. The curves indicate a relatively weak dependence of K on

The figure also shows that K varies roughly as for and as v for
where v is the drop volume. This is explained by the dependence of E

and on size: For small and intermediate sized-drops, the terminal velocity varies
as and respectively. Similarly, for small drops and size ratios,

in cm),while constant for intermediate drop sizes.
These results provide the rationale for simple polynomial estimates for K of the

form v or (or (v + u) and where u and v are volumes of the interacting
drops. The numerical coefficients selected by Long are those which give a minimum
rms deviation between the logarithm of the approximating polynomial P(v,u) and
the logarithm of K(v,u). The deviation between the logarithms of P(v,u) and
K(v,u) rather than between the functions themselves, was chosen because of the
large variation in K, and because of the presumed importance of representing K
well in all size intervals. In this fashion, Long obtained the following polynomial
estimates for K

and

The merit of the approximations (15-8) has been tested by comparing numerical
solutions based on them and the actual K; generally, the agreement is quite good.
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With this evidence of their accuracy, Long has suggested that an attempt should
be made to find analytical solutions to the SCE based on either of them. Such
solutions could then facilitate the simulation of droplet collection in, for example,
multidimensional cloud models. Even if this proves impossible, (15-8) provides
simple and concise, and therefore convenient, descriptions of the collection process
(for the case of no turbulence) which may be of use in other applications. In passing,

collection growth. Since raindrop concentrations are typically times
smaller than cloud drop concentrations, one would expect that the fate of the
‘favored’ small fraction of drops which happen by chance to grow much faster than
the average rate, should be quite important in the overall process of precipitation
development. Many calculations have borne out this expectation.

To study this behavior, the kinetic coagulation equation, (11-53) or (11-56), is
generally taken as the basic governing form for stochastic collection growth. (In
the more recent literature on the subject, the coagulation equation is also variously
referred to as the scalar transport equation, the kinetic equation, the collection
equation, the stochastic coagulation equation, and the stochastic collection equation
(SCE); henceforth, we shall employ this last abbreviated designation.) Telford
(1955) was the first to introduce this approach to the drop collection problem,

we note the restriction may be dropped without incurring significant
errors (this was in fact done by Long in his computations).

15.3 Stochastic Model for Collisional Growth

One feature common to all the examples discussed in Section 15.1 is the prediction
of growth times for precipitation-sized drops which are much longer (by a factor
of two or more) than the times which are often observed to be necessary. As
we indicated earlier, this fault arises from the neglect of the stochastic aspect of
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using a version of the SCE which applies to an idealized cloud consisting initially
of just two drop sizes, and for which the collision kernel is a constant. He showed
that a small fraction of the large drops grows about 50 times faster than the rate
predicted by the continuous model. This difference in growth rate between the
stochastic and continuous model is exemplified in Figure 15.5 by computations
carried out by Twomey (1964). For drop concentrations at the level of
the growth rate in the stochastic mode is seen to be almost ten times faster than in
the continuous mode. Similar conclusions were subsequently reached by Twomey
(1966, 1976), Ryan (1974), Scott and Levine (1975a,b), Bartlett (1966, 1970) and
Leighton and Rogers (1974). It is for this reason that, in the remainder of this
chapter, we shall concern ourselves exclusively with the stochastic description of
the collision-coalescence process.

A systematic application of the SCE to the collection problem has occurred only
relatively recently. In part, this reflects the rise of computer technology, which was
requisite for coping with realistic collection growth problems. In the sequel, we
shall consider in Section 15.3.1 the suitability of the SCE for the problem at hand.
Having established the conditions under which its use is appropriate, we shall then
develop and discuss in Section 15.3.2 some of the few known exact solutions. For the
most part, these solutions do not correspond to very physical collection processes.
Even so, they provide useful clues to the behavior in more realistic situations, and
also serve as standards against which to judge the accuracy of various numerical
integration schemes. We shall conclude Section 15.3 on stochastic collisional growth
by a discussion of some of the most widely used approximation techniques for the
SCE. In Section 15.4, we shall consider stochastic collisional breakup and formulate
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the stochastic breakup equation (SBE). In the final Section 15.5, the SCE and the
SBE are combined to describe the evolution of raindrop spectra.

15.3.1 COMPLETENESS OF THE SCE

Let us imagine an idealized cloud which is spatially homogeneous or ‘well-mixed’ at
all times, and which contains drops whose masses are multiples of some unit mass.
Let be the number of drops per unit volume containing units of mass, and
let denote the collection kernel which describes the collection rate of and
drops. Then, the discrete SCE for this situation has exactly the form of (11-53). If
the cloud volume is V, then is the total number of drops of size and

is the probability per unit time of coalescences between, any pair of
and drops (by the ‘well-mixed’ assumption). By introducing V into (11-53), we

thus arrive at the SCE for

We would now like to determine whether (15-9) is suitable for studying the spectral
evolution in our ideal cloud. As it happens, only a little reflection suffices to raise
some doubts. For example, if we imagine several successive ‘runs’ or realization of
the collection process for a given set of probabilities for binary interactions and a
given initial distribution, we would expect to see at least slightly different outcomes
for the spectrum from one to the next. However, (15-9) can only produce a unique
spectrum once and are specified. Thus, it is natural to suspect that
(15-9) is not stochastically complete (i.e., does not describe the probabilities of all
possible histories of drop growth), and that the solution to (15-9) must represent
only some sort of average spectrum. Such stochastic incompleteness might well
be expected to cause trouble, since for most applications in cloud physics we are
primarily interested in the long tail of the spectrum where fluctuations are relatively
strong, there being relatively few large particles in the system.

This problem of stochastic completeness has been debated extensively by Scott
(1967, 1968), Berry (1967, 1968), Warshaw (1967, 1968), Slinn and Gibbs (1971),
Long (1971); Chien and Neiburger (1972), Drake (1972b), Gillespie (1972, 1975a),
Bayewitz et al. (1974), Pearson et al. (1984) and Valioulis and List (1984). We
recommend Gillespie’s (1972) paper as the most thorough and clear discussion of
the general problem. Bayewitz et al. (1974) present what is apparently the only
known rigorous solution to the full stochastic model which allows for spectrum
fluctuations, accomplished under the assumption of a constant collection kernel.
Their work provides an interesting concrete example of the extent of the incom-
pleteness of the SCE, and is presented below in Section 15.3.2. Valioulis and List
(1984) employ Gillespie’s (1975b) Monte Carlo algorithm for stochastic collection
in a numerical study that verifies Gillespie’s predictions regarding stochastic com-
pleteness. Their work is summarized briefly in Section 15.3.1.3. But first we shall
outline Gillespie’s (1975b) analysis of the problem, which appears to us to delineate
very well the salient features with a minimum of effort.
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15.3.1.1 Three Models for Collection Growth

Let us further simplify our well-mixed cloud so that at time it consists entirely
of N ‘drops’ each having mass and ‘droplets’ each of mass We further
assume the conditions and and that coalescences are possible
only between drops and droplets. Thus, the masses of the drops are increasing, but
the number N of drops remains constant. Because of the condition we
assume the number of droplets also remains constant. (This is the cloud model
used by Telford (1955).)

Our goal is to describe the growth of the N drops. For this purpose we need the
collection kernel, which in the present case can be a function only of the drop mass

Gillespie (1975a) shows that three growth models are possible,
depending upon the physical interpretation given the quantity where

is an infinitesimal time interval. These models are:
(1) the continuous model, in which

(2) the quasi-stochastic model, in which

(3) the pure stochastic model, in which

We shall now proceed to explore the consequences of each of these models under
the assumption a constant.

Since in the continuous model all drops start with the same mass and grow at
the same rate, the state of the drops may be specified very simply by the function

of any drop at time From (15-10), we have so that

According to the quasi-stochastic model, only a certain fraction of the
will collect a droplet in Thus, the do not grow in unison, and the de-
finition of given above no longer applies. Instead, for the quasi-stochastic
model, we define the function number of at time where

Simple bookkeeping enables us to write down the governing
equation for From (15-10), in time exactly drops
of mass will each collect a droplet and so become drops of mass while
exactly will each collect a droplet and so become drops of
mass Therefore, or
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This is just the SCE as it appears for our simple drop-droplet cloud; it is also the
equation considered by Telford (1955).

The solution to (15-14) may be obtained by noting it comprises a set of coupled,
linear, first-order differential equations. These may be solved sequentially, subject
to the initial condition if and 0 if The result,
which may be verified by direct substitution, is

Thus, the quasi-stochastic model yields a discrete mass spectrum. The average
drop mass at time is, letting

This is what we would expect: The average drop mass coincides with the mass of
every drop in the continuous model. Another quantity of interest is the width
of the distribution, as measured by the root-mean-square (rms) deviation:

where denotes the second moment of the distribution. A
simple calculation yields , which contrasts with the zero width
in the continuous model.

The continuous model requires each to collect a definite number of
droplets in a given time interval. As we have seen, the quasi-stochastic model
requires only that all together collect droplets at a definite rate. But this
is still too restrictive: by the probabilistic nature of the collection process, there
should be fluctuations in the number of droplets collected by any group of drops
as well as by any individual drop. Such fluctuations are permitted in the pure
stochastic model. In consequence, we cannot predict exactly how many drops of
a particular size there will be at any time so that the definition of the spec-
trum given above for no longer applies. However, from (15-12), we have a
means of predicting the probability of finding a given number of at time

Therefore, an appropriate state function in the pure stochastic model is

where and
In order to calculate consider first the probability that any

given drop will collect exactly droplets in time this is just the familiar Poisson
distribution (see Gillespie (1975a) or Feller (1967) for details):

Then, since each drop collects droplets independently of the other drops, the prob-
ability that a particular selection of drops will each collect exactly droplets
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in time while the remaining drops will not is
And, since the number of distinct ways of selecting two groups of drops and

drops from a set of N drops is the probabil-
ity that exactly of the N drops will collect exactly droplets in time is just

Therefore, we obtain

where and Equations (15-18) and (15-19) constitute
the solution for for the simple drop-droplet cloud.

The first moment of with respect to has the physical meaning of
being the average number of in the cloud at time

So, for our simple cloud, the average spectrum as defined above coincides with
the solution to the SCE. Also of interest is the expected uncertainty associated with

i.e., we would like to know to what extent the actual number of in
a particular realization can be expected to deviate from In analogy with our
previous choice of as the width of the SCE spectrum, we now choose the rms
deviation of with respect to where

is the second moment of with respect to A straightforward
calculation gives the result As the
second factor on the right side approaches unity for we conclude we may
reasonably expect to find roughly between

drops of mass in the cloud at time Thus, in the present simple case, the solution to
the SCE provides not only the mean spectrum but also a measure of the fluctuations
about the mean.

The result (15-21) shows that for the simple ‘drop-droplet’ cloud, the SCE is
more ‘stochastically complete’ than its usual derivation via the quasi-stochastic
interpretation would suggest. The important question arises as to whether or not
the same holds true in the more realistic case in which the collection kernel is
size dependent and drops of all sizes are present. A partial answer is provided in
Gillespie’s (1972) study of the general problem, in which it is shown that if (1)
certain correlations can be neglected, and (2) coalescences between drops of the
same size are prohibited, then the SCE does indeed determine the mean spectrum

Also,the function then tends to the Poisson form
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and, in particular, so that the result (15-21) still holds.
Gillespie’s analysis also provides a simple estimate of the time interval after
which the result (15-21) may be assumed applicable. This is given by the implicit
relation

The same general conclusion that (15-21) is a valid estimate of the spectrum fluc-
tuations was arrived at earlier by Scott (1967); however, his analysis erroneously
implies the equivalent of assuming

However, without assumptions (1) and (2) the situation is unclear. This is so
primarily because, in general, the state of a cloud in the pure stochastic model
cannot be determined completely by just the function The existence of
particle correlations means that various conditional probabilities must be specified
also, such as the probability that drops of mass are present, given that there
are also drops of mass etc. Such correlations are bound to occur in real
clouds, partly because they are not well-mixed, as we have assumed for the ‘drop-
droplet’ cloud: as droplets in a given region coalesce, there will be a corresponding
decrease in the number available in that region for further coalescence. In addition,
measurements show strong spatial, inhomogeneities in cloud liquid water content.

Some indication of the effect of particle correlations is included in the study of
Bayewitz et al. (1974), to which we now turn.

15.3.1.2  Correlations in a Stochastic Coalescence Process

Bayewitz et al. consider a well-mixed cloud containing drops of size The
probability per unit time of coalescences between any pair of drops is taken as a
constant, as in the previous section. The authors proceed to set up and
solve the governing equation which describes all possible histories of drop growth
over the full range of drop sizes (an outline of the analysis is given in Appendix A-
15.3.1.2). The results show the SCE produces total particle counts in excellent
agreement with the true stochastic averages, even for very small initial populations,
at least for collection kernels which are not strongly size dependent.

As we have noted, real clouds are not well-mixed. Bayewitz et al. go on to
consider the consequences of poor mixing by adopting the following approach: A
hypothetical large cloud is imagined to be partitioned into many small compart-
ments of volume with the understanding that drops can coalesce only if they
occupy the same compartment. By making sufficiently small, correlations are
introduced which are perhaps similar to those occurring in a real cloud. The effects
of poor mixing as simulated by this partitioning model are as follows: (1) If we are
interested only in the total number of drops, and not their size distribution, then
we find that for initial populations of as few as ten drops, the results of the SCE
match the true stochastic averages. (2) If we focus instead on the size distribution
of the coalescing drops, we find that either for small populations or for systems
partitioned into small isolated compartments, the results of the SCE may differ
significantly from the true stochastic averages, especially in the large-particle tail
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of the distribution. Additionally, Bayewitz et al. make the plausible conjecture
that the correlation effects which produce these differences would be enhanced by
a more realistic size-dependent collection kernel.

15.3.1.3 Monte Carlo Study of Stochastic Correlation

The most comprehensive numerical treatment of the problem of stochastic com-
pleteness has been given by Valioulis and List (1984), who based their numerical
study on the work of Gillespie (1975b). Gillespie outlined a rigorous Monte Carlo
simulation of the stochastic coalescence process which avoids all of the assumptions
included in the kinetic coagulation equation (15-9). A description of Gillespie’s al-
gorithm is given in Appendix A-15.3.1.3. However, nine years had to pass until
Gillespie’s technique was applied by Valioulis and List (1984) to actual collision
functions. These authors compared the predictions of Gillespie’s (1975b) Monte
Carlo algorithms with numerical solutions to the kinetic coagulation equation (15-
9) which they numerically integrated using Gear’s (1971) modification of Adam’s
multistep variable-order predictor-corrector method.

The comparison was carried out for a Brownian diffusion-, a fluid shear-, and
a differential sedimentation collision kernel. The results of this simulation showed
that for isolated volumes of fluid, (15-9) produced an average size-spectrum of the
coagulating population of particles that matched well the true stochastic average
spectrum, provided that the total number of particles per unit volume was large.
In agreement with Gillespie’s conclusions, they found that with decreasing concen-
tration of the total number of particles, the distributions predicted by the kinetic
model increasingly differed from the true stochastic average spectrum, due to in-
creasing particle property correlation. In contrast, (15-9) overestimates particle
concentrations at the large end of a drop spectrum with a low total drop con-
centration, relative to the Monte Carlo technique. Valioulis and List also noted
that for small total number concentrations of particles, the difference between the
models was larger for Brownian-induced coagulation than for shear coagulation,
since for Brownian coagulation, the coalescence between particles of equal size is
relatively more important in determining the shape of the particle size distribution.
This observation is in agreement with Gillespie’s (1972) conclusion that the solu-
tion from the kinetic equation will approach the true stochastic average provided
the coalescence of particles of equal size is prohibited.

Since precipitation formation is an example of a collection process in an aerosol
which is not well-mixed, and in which particles in the tail of the distribution gen-
erally appear to play a major, if not the dominant role, it is tempting to infer that
the standard SCE probably does not simulate the production of rain with a high
degree of accuracy, and that it may be better in some instances to turn to other
simulation techniques, particularly the Monte Carlo method. On the other hand,
it also seems plausible that in some cases the flow rate of water up the spectrum
toward rain is controlled predominantly by the self-collection of cloud droplets in
the mid-range of the spectrum, in which case the SCE may be used with confidence.
Some light has been shed on this problem by Berry and Reinhardt (1974a,b,c), who
showed, based on solutions to the SCE, that the self-collection of cloud droplets
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(‘auto-conversion’) is less important than the self-collection of large drops (‘large
hydrometeor self-collection’) and the collection of small droplets by large drops (‘ac-
cretion’). This tends to support the notion that the SCE is not suitable for very
accurate simulations of rain formation. Obviously, this is an area where further
research is needed.

15.3.2 EXACT SOLUTIONS TO THE SCE

In this section we shall be concerned with the continuous and dimensionless version
of the SCE given by (11-95)

The only known exact solution to the discrete SCE which has any practical value,
in the sense of simulating real coagulation processes, is just that of Smoluchowski
(1916), (11-52), for the case of a constant collection kernel. (Another solution
(McLeod, 1962) has been found for the case but this choice of kernels
appears quite unrealistic (see the discussion below on the kernel).) Also, in
the steady state, there is an exact solution (Klett, 1975) to the continuous SCE
enhanced by a particle source term, for This solution has already
been discussed in Section 11.7.5.

All the known solutions to (15-24) correspond to special cases of the following
kernel:

In our development and/or discussion of these solutions, we shall follow the work
of Drake (1972a) and Drake and Wright (1972). In the latter paper, families of
exact solutions are constructed for the following sub-classes of (15-25). (1) C = 0
and B = aA for arbitrary a on the interval (2) A = 0 and C = 2aB
for (3) A = 1, B = a, and for . Here we shall
consider only the first sub-class, because of the unphysical behavior associated with
the presence of the term.

Before going ahead with the construction of solutions, let us consider briefly
the essential difficulty with the choice it is that solutions based on the

kernel can exist only for a finite time interval (McLeod, 1964). This behavior
is easily demonstrated by use of the moment equation (11-97). For example, for

, the equation for the zeroth moment is so that
Thus, collision apparently stops at least by

Similarly, the equation for the second moment is so
that Therefore, the second moment becomes
infinite when a time which depends on the initial spectrum,

Let us assume, for example, that then and
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The singularity occurs sooner if the initial spectrum is more
spread out; thus, if then and
These examples should suffice to illustrate how the kernel leads to unreasonable
behavior in a finite time, such as the occurrence of an infinite radar reflectivity

followed by the apparent collapse of the spectrum.
The solution of (15-24) and (15-25) with C = 0 is facilitated by introducing

another time variable (Martynov and Bakonov, 1961):

As coagulation proceeds, slowly decreases from unity to zero. Thus, corre-
sponding to , we have which makes T a natural measure of
the progress of coagulation. Let us define also

so that

Then, from (15-24) and the moment eqation for the governing equation for
is found to be

where

On substitution of (15-25) with C = 0 into (15-29) and (15-30), we obtain

where

and The appearance of the convolution from
in (15-31) indicates the feasibility of a solution via Laplace transforms. Therefore,
let us introduce the Laplace transform of
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The inverse transform is

where is any number such that as Then, on taking
the Laplace transform of (15-31) and using the well-known properties

and we obtain the transformed equation for

Finally, in terms of a new dependent variable, defined as follows:

(15-35) simplifies to

We shall now construct the solutions for in terms of the Laplace transform
of the initial spectrum, for the two special cases A = 1, B = 0, and A = 0,

B = 1.
(1) A = 1, The equation for is

Therefore,

Since and (15-39) may be expanded
in a geometric series to yield

Finally, since we have (Scott, 1968):

(2) A = 0, The equation for is
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The equation is a ‘quasi-linear’ first-order partial differential equation, and can
be solved in the following manner (e.g., Ames, 1965, p. 50): If the form of the
differential equation is

where and are functions of T, and the general solutions is
where F is an arbitrary, sufficiently differentiable function and and

form independent solutions of the Lagrange system

In the present application, this leads to the implicit solution
From the initial condition we find F = G:

Now, on substitution of (15-34) and (15-36) into this last result, we have

or, on letting

The last term may be integrated by parts, so that finally we have (Scott, 1968):

In Appendix A-15.3.2, the general solutions (15-41) and (15-48) are evaluated
for two particular choices of the initial spectrum. For the choice
(a monodisperse cloud), the results are as follows:
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(Melzak, 1953), and

(Golovin, 1963).
The solution (15-49) must be completely equivalent to Smoluchowski’s (11-52),

since it is based on a constant collection kernel and the initial condition of a homo-
geneous aerosol. It is not difficult to demonstrate this equivalence. Thus, the
discrete spectrum which counts the number of particles composed of

unit-sized particles per unit aerosol volume, normalized by N(0), the initial
particle density (recall the normalization in (11-92)), is
for integral and so that

The dimensionless time may be recovered from T through the relationship
or

In the present instance with this gives Therefore
we find

which is the Smoluchowski solution (11-52), allowance being made for the fact that
as defined in (11-94) is just twice the value which appears in (11-52).
For our second choice of the initial spectrum, we take the family of gamma

distributions: where is given by (11-108). In passing,
we note that the observations of Levin (1954) led him to conclude that (11-108)
with gives a satisfactory description of many fog droplet spectra. Also, as
Scott (1968) has pointed out, if the initial droplet distribution is nearly Gaussian
in radius, then, as a distribution in volume, it may be approximated very well by
some function of the form of (11-108). Given the distribution (11-108), we find
that the mean value of (or the first moment) is the most probable
value is and the relative rms dispersion (the square root of the relative
variance, var is Finally, we note again that (11-
108) contains the limiting forms of a monodisperse distribution and an
exponential distribution

The solutions for this choice of initial distribution are as follows:
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(Martynov and Bakanov, 1961), and

(Scott, 1968). This last solution is probably the most realistic for the drop collection
problem, since the collection kernel for drop radii is similar to the sum-
of-volumes form (see Section 15.2). A plot of (15-55) for various T and 10is
given in Figure 15.6. The ‘wiggles’ in the curves for and near unity reflect
the narrowness of the initial spectrum. Similar behavior occurs in the steady state
case of a reinforeed aerosol (see Figure 11.10). The curves indicate that for
the form of the evolving spectrum is strongly influenced by the initial spectra, and
that the influence is lost for Also, it turns out that the influence of the
initial spectra is retained for larger for the sum-of-volumes kernel than for the
constant kernel.

Some corresponding curves for the dimensionless liquid water content
are shown in Figure 15.7. The curves, taken from Scott (1968), are labeled with
values of dimensional time (in seconds). From (11-92), we see that this implies a
particular choice of and N(0). Scott assumed the collection kernel has the value

when the drop volumes are (radius
of and (radius of This was done to ensure
agreement with the collection kernel value found by using the Shafrir and Neiburger
(1963) collision efficiency for a 30 and           radius droplet pair. The liquid water
content was taken as                 and the initial mean particle volume was assumed

For the constant collection kernel case, and so
to be therefore, droplets per
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For the sum-of-volumes kernel,
so that in Figure 15.7.

As we have mentioned before, the SCE applies in the conservative situation in
which there are no mechanisms available to transport particles in or out of volumes
of aerosol. Consequently, we have the constraint so
that the area under the curves of versus is constant in time. This desirable
property of equal areas, which clearly shows how the water content is distributed
along the range of droplet sizes, may be preserved in a semi-logarithmic plot by
noting that thus, in Figure 15.7, the ordinate is linear in the
quantity

15.3.3 NUMERICAL AND APPROXIMATION TECHNIQUES FOR THE SCE

Considering the limitations under which exact solutions to the SCE can be ob-
tained, we shall now turn to some numerical and approximation techniques. Numer-
ous such techniques have been devised: the interpolation methods of Berry (1967),
Reinhardt (1972), Berry and Reinhardt (1974a), and Kovetz and Okund (1969);
the Markovian analysis of Valdez and Young (1985); the finite element method of
Gelbard and Seinfeld (1978) and of Gelbard et al. (1980); and the method of mo-
ments formulated in various ways, by Golovin (1963b, 1965), Enukashvili (1964a,b,
1980), Wang (1966), Pick et al. (1970), Bleck (1970), Cohen and Vaughan (1971),
Danielsen et al. (1972), Drake (1972a), Soong (1974), List and Gillespie (1976),
Gillespie and List (1978), Srivastava (1978), Ochs and Yao (1978), Brown (1986,
1987, 1988, 1989, 1991), Tzivion et al. (1987, 1989), Feingold et al. (1988), and
of Hu and Srivastava (1992). Considering the wealth of attempts to find solution
algorithms for the SCE, it is of course impossible to summarize each one. Here we
shall merely discuss the two currently most used methods.
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15.3.3.1 The Method of Berry (1967) and Reinhardt (1972)

Numerical integration of the SCE generally requires replacing the integrals in the
continuous version by finite sums, or truncating the infinite summation in the dis-
crete version. In either case, the time derivatives are replaced by some suitable
finite difference form so that the resulting finite system of non-linear algebraic
equations may be numerically ‘stepped along’ in time. The drop size distribution
function is solved at the grid points which separate the drop size classes. Berry
(1967) and Reinhardt (1972) interpolate the distribution function between grid
points using a six point Lagrange interpolation formula (see, e.g., Collatz, 1960).
Although this method ensures exact solutions at the grid points, it does not ensure
conservation of the physical moments of the drop size distribution; i.e., it nei-
ther conserves the number concentration (the zeroth moment) nor the liquid water
content (the first moment) of the distribution, since moments are integral char-
acteristics of a continuous spectrum and are not defined for a discrete spectrum.
Nevertheless, Berry and Reinhardt’s detailed interpolation scheme, together with
a sufficiently fine resolution of the size distribution using a large (> 40) number
of size categories (Silverman and Glass, 1973), allows one to compute a realistic
evolution of a drop spectrum without numerically-induced artificial spreading. A
three-dimensional display of the evolution of two initial drop size distributions com-
puted by the scheme of Berry and Reinhardt is given in Figures 15.8a,b. The figures
demonstrate that the evolution of the drop spectrum by collision and coalescence
depends sensitively on the initial drop spectrum.

For the continuous version of the SCE, the basic procedure is as follows: one
discretizes the continuous mass (or volume) axis into ‘bins’ of width
1,2,..., and each bin is characterized by some resentative mass
...). One then calculates at by numerical evaluation of the
integrals on the right side of the SCE, wherein the initial spectrum is
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inserted. The corresponding spectrum at time is then written as

The process can be repeated to obtain the spectrum for every
A key practical problem which arises is how to subdivide the volume axis into a

manageable (small) number of bins, while maintaining adequate resolution over the
broad size range of interest (from a few microns to a few millimeters). An effective
solution is that of Berry (1965, 1967), who employed an exponential subdivision in
which the drop radius is written as a function of the integer J as follows:

J = 1,2, . . . , unspecified number. The corresponding mass is given by

Here is the smallest mass considered and replaces the lower limit
zero in the SCE.

To facilitate the discussion slightly, let us now rewrite the SCE given by (15-9)
in the following form:

where The symmetry of K permits a change in form of the first
(gain) integral. Also, for brevity, we have suppressed the dependence of on time.
In terms of the transformation (15-58), the upper limit in the gain integral is
specified by the integer where or Since
by construction is an integer, so too must be This reduces (15-
58) to a geometric progression of sizes, with each drop mass being times the
preceding one:

For example, if the mass doubles every second category. The transfor-
mation results in a new distribution function which is related to by

Also, from and (15-61), we find the number (generally not an
integer) which corresponds to is
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With these changes, the form of (15-59) for the function is

15.3.3.2 The Method of Moments

This method is a widely used technique for solving the SCE. In our discussion,
we shall first consider the one-moment approximation introduced by Bleck (1970)

where now replaces the upper limit of infinity for the loss integral.
For the physical and graphical reasons we have already discussed, there is some

advantage in working directly with the distribution of liquid water content per
unit In a interval, which is related to by
or Then, on defining we have

From (15-63) and (15-64), the governing equation for G(J) follows immediately
(Reinhardt, 1972; Berry and Reinhardt, 1974a):

In Reinhardt’s computations, a value of G below per unit In is
defined as zero.

Two types of numerical operations must be carried out in order to evaluate
from (15-65). First, since is generally not an integer, the value of

must be interpolated. Second, the indicated integrations must be carried out by
some suitable process of numerical quadrature. The numerical schemes devised by
Reinhardt (1972) are able to accomplish these tasks with considerable accuracy
and speed.

A comparison of the Berry-Reinhardt scheme with the Monte Carlo simulation
algorithm of Gillespie (1975b) for the stochastic growth of drops by collision using a
hydrodynamic kernel, has been provided by Seeszelberg (1996). The results of this
comparison are given in Figure 15.9, where M(J) dJ is the mass of water per unit
volume at time involving drops with masses between and Note
the excellent agreement between the integration scheme of Berry and Reinhardt and
Gillespie’s stochastic simulation algorithm. Unfortunately, the Berry-Reinhardt
scheme is limited to the description of the collisional drop growth, and is not
suitable to handle the empirical collisional drop breakup functions which were
derived by Low and List (1982a,b) (see Section 14.5.4.2).
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and Danielsen et al. (1972). Subsequently, we shall look at the more complete
two-moment approximation formulated by Tzivion et al. (1987).

In both approximations, the drop spectrum is subdivided as in (15-60) into
separate mass categories according to

with being the number of the category, and being the lower and upper
mass boundary of the category, and a parameter designating the category width.
Normally takes on the values of

For applying the one-moment approximation to the SCE, Bleck (1970) and
Danielsen et al. (1972) suggested solving (15-59) in sub-categories of the spec-
trum by assuming a mass weighted mean value for the drop number density in
each mass category, expressed by
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Considering (15-67), an equation for can be obtained by multiplying
both sides of (15-59) with and integrating the result between and
to get

On introducing the definition we also have:

On the right-hand side of (15-68), Bleck introduced the approximation
where ischosen such that By this step, he replaced the

continuous size distribution on the right-hand side of (15-68) by a piecewise con-
stant function with discontinuities at By means of a graphical
method, Bleck (1970) showed that the term between the square brackets of (15-69)
may be approximated by

so that

where I is the total number of categories. Expressions for the collection coefficients
and have been given by Danielsen et al. (1972) and Brown (1983, 1985).

The one moment approximation has been applied to the SCE by Bleck (1970),
Danielsen et al. (1972), Soong (1974), Gillespie (1977), List and Gillespie (1976),
Gillespie and List (1978), Srivastava (1978), Brown (1985, 1986, 1987, 1988, 1989,
1991), and Hu and Srivastava (1992). Despite its wide useage, the one moment
approximation has received severe criticism. Bleck (1970) was also aware of some of
the limitations of this method. Although the method conserves the first moment,

i.e., the liquid water content, since the equations are
normalized by the mass density distribution function, the method does not conserve
any additional physical moments.
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A comparison of the one-moment technique with the analytical solution of the
SCE involving Golovin’s sum of masses kernel has been worked out by Enukashvili
(1980) and Tzivion et al. (1987). The comparison shows that the one-moment
solution deviates significantly from the analytical solution due to an anomalous ac-
celeration of the collisional drop growth toward the large end of the drop spectrum.
According to Tzivion et al. (1987), this artifice is inherent in any one-moment ap-
proximation, since it prescribes that the average mass of the drops in each category
be independent of time. In reality, however, the average mass in each drop size
category changes with time, particularly in the large drop categories which broaden
because of the logarithmically increasing mass scale. In addition, the one moment
approximation assumes that the actual average mass of the drops in each category is
given by the mass of the category center. In consequence, during collisional growth,
the actual average mass of the drops which had entered a category, progressively
lags behind the assumed average mass at the category center, thereby leading to
anomalous growth acceleration. Although by using a constant kernel or a Golovin’s
kernel, it could be shown that the deviation from the analytical solution became
less by increasing the number of mass categories, the spreading problem could not
be alleviated satisfactorily. Such considerations led Bleck (1970) and Soong (1974)
to introduce special weighting functions of the type where the
constant was determined from the requirement of conservation of liquid water
content. Such functions were able to shift the position of the average mass; however,
its position is still constant in time. Despite the deficiencies of the one moment
approximation in its application to the SCE, we shall find in the following section
that it gives useful results when applied to the stochastic breakup process, and, if
the growth process is described, e.g., by the Berry-Reinhardt method, also to the
complete rain formation process.

Fortunately, the problems which arise in conjunction with the one-moment ap-
proximation to the SCE are circumvented by using a two-moment approximation
method. In this method, the average mass of the drops in each size category is not
constrained to be constant in time. We will therefore briefly outline this method.
Following Tzivion et al. (1978), the moment of the distribution function

in category can be expressed as

Applying the operator to both sides of (15-59), we obtain a system
of equations with respect to the moments in each category
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where I is again the total number of categories and is the mass in the lowest class
considered. Following Bleck (1970), Danielsen et al. (1972), and Soong (1974), the
first double integral in (15-73) is now transformed by dividing the area of integration
into separate sub-areas in which the functions in the integrand belong to a
certain category Tzivion et al. (1987) showed that this leads to the following set
of equations for the special case of doubling the mass in each subsequent category,
i.e.,

where K is the collection kernel. Two problems must be overcome before this set
of equations can be solved: First, the set of equations is not closed even for the
special case of since moments of order larger than appear in (15-
74). Second, the first and second terms in (15-74) cannot be expressed in terms
of moments because the domain of integration does not span the whole category.
Consequently, an approximation is required.

In order to overcome the first problem, Tzivion et al. expressed the collec-
tion kernel in terms of Long’s (1974) polynomial approximation (see Sec-
tion 15.2). Closure of the equations was then achieved by expressing moments of
order larger than in terms of moments of order not exceeding To accomplish
this, a non-dimensional parameter was introduced:

with Using the mean value of , the relationship
between three neighboring moments of the distribution function could be expressed
in the form
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with In order to remove the second problem, integrals over in-
complete category intervals of the form       , were represented
by approximating the integral by a linear distribution function.

Formulating (15-74) in terms of the first moment and the second
moment Tzivion et al. (1987) found
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where K is again the collection kernel. In (15-77a), the first two terms represent
auto-conversion of particles to interval as a result of the coagulation between
particles in category with one another (term 1), and with those in categories
less than (term 2). Terms 3 and 4 describe the auto-conversion from class

to class as a result of coagulation between particles in category with
one another (term 3), and with those in categories less than (term 4). The last
two terms represent the decrease in the number of particles in category with one
another (term 5), and with those in categories larger than (term 6). The terms
in (15-77b) are analogous to those in (15-77a) except that they represent mass
transfer rather than number transfer.

In order to test the accuracy of the two-moment approximation, Tzivion et
al. (1987) solved the SCE analytically by using Golovin’s kernel

and compared the result with that obtained from the
two-moment method using the same kernel. Excellent agreement was obtained.

A comparison between the one-moment method with the two-moment method
is given in Figure 15.10. We notice that the one-moment method exhibits the
anomalous acceleration mentioned at the beginning of this section, making the
method of one-moment unsuitable for computing the stochastic collisional growth
of drops.

15.4 Stochastic Model for Drop Breakup

An unrealistic feature of solutions to the SCE is that they predict a continual flow
of water mass to larger and larger drop sizes. This is not a serious flaw when we
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wish only to estimate the time required for the first few precipitation-sized drops
to form. However, we cannot expect to obtain realistic theoretical descriptions of
quasi-steady state rain spectra, such as exponential distributions of the Marshall-
Palmer type (Equation (2-15)), unless we take into account the spectral shaping due
to drop breakup as well as coalescence. Such considerations prompted Langmuir,
as early as 1948, to suggest that ‘warm’ rain develops by means of a chain-reaction
involving drops which grow by collision and, subsequently, break up into fragments.
These, in turn, would have the opportunity also to grow and eventually break up
too, and so on.

Fragmentation of large drops may be induced by the collision of drops with each
other (‘collisional breakup’, see Section 14.5.4.2), or by hydrodynamic instabili-
ties of drops (‘spontaneous breakup’, see Section 10.3.5). Cloud models in which
spontaneous drop breakup is considered, have been developed and evaluated by
Srivastava (1971), Young (1975), Danielsen et al. (1972), Hall (1980), Flossmann
et al. (1985, 1987), Flossmann and Pruppacher (1988), Flossmann (1991, 1994),
and Kogan (1991).

For the condition of hydrodynamic breakup of single drops, the stochastic breakup
equation (SBE) can be expressed by the relation

where is the probability for a drop of mass to spontaneously breakup, and
represents the number density function for the drop fragments formed

by the breakup of a parent drop of mass Recalling Section 10.3.5, one may
set (after Hall, 1980; and Danielsen et al., 1972) for

and for The fragment distribution,
is then given in Table 10.2. Alternatively, one may follow Srivastava (1971) and
describe by (10-134) and by (10-135). The first term on the right
of (15-78) represents the gain term and describes the generation of as a
result of the spontaneous breakup of drops with mass The second term
on the right of (15-78) represents the loss-term and describes the decrease in the
number of as a result of their spontaneous breakup.

One advantage of considering spontaneous drop breakup lies in the fact that
one may solve (15-78) simultaneously with the SCE (15-72) by applying Berry
and Reinhardt’s (1974a,b,c) method of solution (Section 15.3.3.1). Observations
show, however, that in atmospheric clouds, drops large enough to enter the realm
of spontaneous breakup are very rare. Indeed, model calcula-
tions by Young (1975), in which both breakup modes were included, showed that
spontaneous breakup is negligible. Furthermore, the spectral shape produced by
a balance between spontaneous breakup and coalescence is unrealistically flat, i.e.,
there is too great a bias toward the larger drop sizes (Srivastava, 1971; Tsias, 1996).

As we have reported in Section 14.5.4.2, laboratory studies have shown that
drops do break up in collision. Computations of the collisional, stochastic breakup
of drops have been carried out by List and Gillespie (1976), Gillespie and List
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(1978), and Srivastava (1978). They used the experimental results of McTaggart-
Cowan and List (1975) for specifying the breakup probability and the size distrib-
ution of the fragment drops. Subsequently, Brown (1983, 1985, 1986, 1987, 1988),
Tzivion et al. (1987, 1989), Feingold et al. (1988), and Hu and Srivastava (1992)
employed the more accurate experimental results of Low and List (1982a,b).

Collisional breakup is described by the following form of the SBE:

An equivalent form is (see, e.g., List and Gillespie, 1976):

where is the collision kernel for the collision of an with an
and is the coalescence efficiency for an that col-

lides with an The term represents the
breakup probability for an that collides with an The term

specifies the mean number of fragments of mass per collision and
subsequent breakup of masses and The first term on the right side of (15-
79) describes the gain of created by the collisional breakup of all masses

and whereby the factor 1/2 prevents counting the same pair
twice. The second term represents the loss of resulting from collision
and subsequent breakup of drops of mass and Mass conservation requires

In order to apply Bleck’s (1970) one-moment approximation to the SBE, we may
proceed, as pointed out by List and Gillespie (1976), in a manner analogous to that
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used for solving the SCE. Thus, the mass coordinate is discretized by subdividing
it into separate mass bins according to (15-66). Equation (15-80) is then solved in
sub-categories of the spectrum by assuming a mass weighted mean value for the
drop number density in each mass category as expressed by (15-67). Applying the
operator to both sides of (15-80), we obtain, analogously to (15-69),
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Applying Bleck’s method to (15-81) as it was applied before to (15-69), List and
Gillespie (1976) approximated the term in the square bracket of (15-81) by

therefore, in analogy to (15-71), we obtain:

Expressions for the breakupcoefficients have been given by List and Gille-
spie (1976) and Brown (1983).

Feingold et al. (1988) have generalized this approach by taking multiple mo-
ments of the SBE. As in the treatment of the SCE, the operator was
applied to both sides of (15-79) to obtain a set of moment equations:

A Bleck-type transformation of this equation yields
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which again may be separated into the first and second moments.
We note from (15-85) that, in contrast to the SCE, all integrals cover complete
categories so that the method of moments can be implemented without approxi-
mating To close the moment equations, the kernels are again approximated by
polynomials, so that higher order moments can be related to lower ones using (15-
76).

In order to test the accuracy of the one- and two-moment approximations for
breakup only, Feingold et al. chose a fragment distribution of the form

This permits an analytic solution of (15-79), with
where is a positive integer that characterizes the fragment con-

centration, and where and are the drop number concentration and liquid
water content of the initial spectrum. The breakup kernel was set to be constant.
Excellent agreement between the analytical solution and the solution obtained with
the method of two-moments was found (see Figure 15.11). Somewhat surprising at
first sight was the fact that application of the one-moment method to the SBE pro-
duced a result which agreed well with the analytical as well as with the two-moment

for for
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solution (see Figure 15.11). In order to explain this finding, we must consider that,
in contrast to collisional growth where the drop mass is ‘forward’ distributed into
progressively broader drop size classes with the effect of increasingly larger devia-
tion between the actual average drop mass and the mass of the category center, in
drop breakup the drop fragment mass is distributed ‘backward’ into progressively
narrower size classes with the effect of rapidly decreasing differences between the
actual average mass and the mass of the category center. It appears, therefore,
that the one-moment method is useful in handling stochastic collisional breakup.

15.5 Stochastic Drop Growth in Combination with Stochastic
Drop Breakup

Telford’s (1955) early calculation of drop growth by stochastic collection in an ideal-
ized warm cloud was followed by numerous studies which considered more realistic
initial drop size distributions, mass dependent collection kernels, and breakup fol-
lowing collision. In current models, the evolution in time of a drop spectrum due
to collisional growth and breakup is determined from the relation

where and are the collection and breakup rates given by (15-59)
and (15-80), respectively. Solutions to (15-86) show that a given initial drop size
distribution, evolving by collisional growth and breakup, approaches a steady state
size distribution given sufficient time (in a box model), or sufficient height of fall (in
a shaft model). This behavior is illustrated in Figures 15.12 and 15.13. These sum-
marize computations of Tsias (1996) who combined the Berry-Reinhardt scheme
for collisional drop growth with the method of one-moment for collisional drop
breakup. We notice from Figure 15.12 that an originally MP-type drop distribu-
tion narrows in time due to fragmentation of large drops. In contrast, an assumed
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initial gamma drop size distribution (Figure 15.13) broadens with time due to the
formation of large drops resulting from the collection of drop fragments caused by
drop breakup. Comparison of the final drop size distributions shows that, after 20
minutes, both spectra exhibit the same slope of This result sub-
stantiates the earlier theoretical finding of List et al. (1987a) that, at steady state,
equilibrium rain drop distributions are independent of the distribution the drops
had initially, and can be described by multiples of each other (see (15-91)).

A detailed look at the raindrop spectra, computed from (15-86) by using the frag-
ment distribution and collisional breakup kernel of Low and List (1982a,b), reveals
that, on approaching steady state, one primary and two secondary maxima develop.
The primary maximum of such a three-peaked equilibrium distribution (3 PED)
appears at drop diameters between 0.22 and 0.27 mm. The two secondary maxima
appear at drop diameters 0.7 to 0.9 mm and 2.0 to 2.5 mm, respectively. These
peaks are noticeable in Figures 15.12 and 15.13. According to Brown (1988) and
List and McFarquhar (1990a), the maxima are caused by the three main breakup
modes observed by Low and List (1982a,b). An analysis of the contributions of
the individual breakup mechanism to the overall drop size distribution is given in
Figure 15.14 (see also Brown, 1988). The computations of List and McFarquhar
(1990a) and of Brown (1988) show that filament breakup (see Chapter 14) is mainly
responsible for the primary maximum in the drop size distribution. The sheet and
disk breakup mechanism are chiefly responsible for the middle of the three modes,
while all three breakup modes contribute to the third maximum.

List and McFarquhar (1990b) and McFarquhar and List (1991a) found that
maxima in the computed raindrop spectra also appear in non-steady raindrop dis-
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tributions, modeled by a pulsed input of raindrop packages at the top of a rain
shaft. They showed that the three peak distributions (3 PD’s) resemble 3 PED’s
the more frequent and the shorter the pulses.

We mentioned in Chapter 2 that considerable debate has arisen in the liter-
ature as to whether 3 PED’s are found in natural raindrop spectra. It appears
from current field observations that data, taken with carefully calibrated raindrop
spectrometers, do not exhibit distinct secondary maxima except at high rainfall
rates. This fact does not imply that the theoretical results are incorrect, since
the existence of collisional breakup modes acting in definite drop size intervals
has experimentally been well established. However, it may well be that turbulent
motions, raindrop sorting, and condensation and evaporation processes at small
rainfall rates may completely or partly mask the breakup maxima.

Raindrop spectra computed from (15-86) also show that steady state distrib-
utions take time to develop. This fact has already been pointed out earlier by
Srivastava (1971), List et al. (1980, 1987a), and Valdez and Young (1985), who
stressed that the time to reach steady state increases with decreasing rainfall rate.
This is illustrated by Figures 15.15a,b derived from computations of Tsias (1996).
In these computations, a rainshaft model was used in which it was assumed that
the top of the computational grid coincided with the cloud base where the drop
size distribution remained constant in time. We notice from Figure 15.15a that
the largest drops reach the ground first, followed in time by progressively smaller
drops which are, in part, resulting from broken up large drops. We also notice
that, with increasing time, collision and breakup lead to increasingly narrower
drop size spectra with increasingly steeper slopes at the large drop size end of the
spectrum, as less and less large drops survive their fall, and that, with increasing
time, the secondary maxima become increasingly distinct. Figure 15.15b shows
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that 40 minutes are needed for a steady state raindrop size distribution to develop
at the ground, assumed to be 4 km below cloud base. Of course, within this time
span the drop size distribution has also become steady state at 3, 2, 1 and 0.4 km
below cloud base. Since natural clouds often do not provide these times or fall
distances, natural raindrop spectra often have slopes considerably flatter and with
less distinct secondary maxima than those of equilibrium distributions pertaining
to the same rainfall rate. This is verified by consulting Figure 2.31, which shows
that, for , typically varies between 15 and in con-
trast to for the steady state drop distribution given in Figures 15.12
and 15.13, and and 63 cm for curves 1 to 5, respectively, in
Figure 15.15b.

It is obvious from the preceding paragraphs that the fundamental quantity which
underlies the evolution of raindrop spectra is the rate at which drops collide with
one another. Unless this rate is sufficiently high, an equilibrium spectrum cannot
be established in a realistic time period. Although solutions to the stochastic
collection equation embody the collision rate, this quantity is usually not explicitly



654 CHAPTER 15



GROWTH OF CLOUD DROPS 655

solved for. In view of this, we shall now follow the analytical approach of List et al.
(1970), Beard et al. (1986), Rogers (1989), and McFarquhar and List (1991b) to
estimate the collision rate from the mean time between collisions for some simple
model drop spectra. This estimate will show that, in contrast to expectations,
the collision rate, and therefore the opportunity for collisional breakup, is quite
low, except in very heavy rain. This result implies that equilibrium drop size
distributions will indeed be slow in emerging.

Consider drops of diameter in concentration falling in a rain shaft
through a region containing smaller drops of diameter in concentration
By elementary arguments, if the move a distance  relative to
drops, the change in their concentration will be given approximately by

where E is the collision efficiency. For a small
time interval, we have assuming the relative velocity of
approach is given by the difference in terminal velocities. Hence, the mean free
time between collisions is

and the mean free distance between collisions is

For the case that the smaller drops do not have uniform size but rather are sizes
distributed according to the time between collision and the mean free
distance become, respectively,

and

for and where is the terminal velocity of raindrops of
diameter

For equilibrium distributions, List et al. (1987a) and List (1988) showed that

where is the rainfall rate and is the shape function for the number con-
centration, which is uniquely determined for an equilibrium distribution evolving
from the coalescence and breakup of raindrops. Hence, the denominator in (15-
90) has only a linear dependence on since all other factors in this equation
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depend only on the diameter of the colliding drops. Therefore, for an equilibrium
distribution, and may be expressed approximately by

for and where depends only on those raindrops
in the size interval which are geometrically swept out by the drop of
size

Equations (15-89) and (15-90) were evaluated by List et al. (1970), List and
Gillespie (1976), Rogers (1989) and McFarquhar and List (1991b). The results of
the computations of McFarquhar and List (1991b) for a MP distribution and for
a three-peak equilibrium distribution (3 PED) are summarized in Figure 15.16 for
various rainfall rates, E = 1, and two values for In these figures, the mean
free path length and mean free time between collisions of a raindrop of size
with smaller drops having diameters larger than is given as a function of

We note that and increase with decreasing rainfall rate R, as expected
from (15-92). On the other hand, and decrease with decreasing i.e., with
an increasing range of drops with which the large drop collides and, hence, with
an increasing value for the integral in the denominator of (15-90). The rate C at
which the drop collides with all drops larger than is given from (15-89)
by
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(see Equation 10-118). A few representative values derived from Figure 15.16 are
listed in Table 15.1. We notice from this table that a 3.43 mm diameter drop with
a fall velocity of in rain of would experience only one colli-
sion during the fall from a cloud whose base is 2000 m above ground, and only ten
collisions in a rain of For a raindrop of 1.53 cm diameter the collision
rate is even lower. Since only a fraction of all the collisions experienced by a drop
results in breakup by any of the four major modes, the improbability of achiev-
ing breakup-controlled equilibrium distributions in realistic times is underscored,
except perhaps in very intense rain.

Another conclusion may also be drawn from Table 15.1 and Figure 15.16. Due
to the low collision rates at small rain rates, it may become possible for drops
larger than 3 mm in diameter to survive their fall from cloud to ground without
experiencing a collision if the concentration of smaller raindrops is low. This has
been verified by Beard et al. (1986) for a drop size spectrum observed during a rain
with in Hilo, Hawaii (Figure 2.28). The observed concentration
of drops with diameter between 1 and 2 mm was Considering (15-93),
a 5 mm diameter drop would experience under these conditions and for E = 1 a
collision rate of only or one collision every 4.6 minutes. Since
a 5 mm diameter drop falls with a velocity of a 2.5 km fall distance
would be required for such a drop to experience one collision with drops in the
size range of 1 to 2 mm in diameter. It is therefore not surprising that Beard et
al. (1986) collected drops larger than 3 mm in clouds near Hilo, Hawaii, since the
distance of fall available in this case was less than 2 km.

Another instructive result is obtained if the total collision rate involving colli-
sions between drops of all sizes occurring in a unit volume of rainshaft is considered.
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Instead of (15-93), we then have

where the integration is performed over all possible pairs of drop collisions. Con-
sidering (15-91), we may rewrite (15-94) as

which shows that, for an equilibrium rain drop size distribution, the total collision
rate increases with the square of the rainrate. Equation (15-95) has been numeri-
cally analyzed for E = 1 by McFarquhar and List (1991b) for a 3 PED and a MP
size distribution. The breakup rate was determined from (15-94) after multiplying
the right-hand side with The results of this analysis are
summarized in Figure 15.17. This figure shows that, on taking into account all
interactions between drops of 0.05 to 5.4 mm diameter, about 50% of the collisions
result in breakup.



CHAPTER 16

GROWTH OF ICE PARTICLES BY ACCRETION AND ICE
PARTICLE MELTING

In Chapter 13, we discussed the growth of snow crystals by vapor diffusion, and in
Chapter 14, we described the manner with which snow crystals interact with other
snow crystals and with drops. In this chapter, we shall look closer at the growth
of ice particles by the accretion of supercooled drops, at the formation of snow
flakes by the collision of snow crystals, and also consider the physics of melting of
individual ice particles.

16.1 Growth of Ice Particles by Accretion of Supercooled
Drops

16.1.1 GROWTH MODE AND STRUCTURE OF RIMED ICE PARTICLES,

GRAUPEL, AND HAILSTONES

Ice particles which grow by collisions with supercooled drops have a surface tem-
perature which is higher than that of the air surrounding them, owing to the release
of latent heat during the freezing process. This heating-up of the ice particle is
counteracted and, at steady state, just balanced by the transfer of heat to the
environmental air by conduction, and by evaporation if the air is water vapor sub-
saturated. As long as the latent heat of freezing is dissipated from the growing ice
particle in such a way that its temperature remains below 0°C, all accreted cloud
water must freeze on the ice particle. The particle is then considered to grow in the
so-called dry growth regime (Ludlam, 1958). With increasing liquid water content
of the cloud, increasing drop size, and increasing frequency of collision between
drops and the ice particle, the temperature of the growing particle gradually rises.
This rise in temperature generally comes to an end when the surface temperature
of the ice particle approaches 0°C. Under such growth conditions, not all accreted
water is converted to ice, the amount of ice formed being determined by the rate
at which heat is dissipated from the particle. The ice particle is now considered to
grow in the wet growth regime (Ludlam, 1958). The critical conditions for which
all the accreted water freezes on the ice particle and acquires a temperature of 0°C
in the solid phase, is known as the Schumann-Ludlam Limit (SLL); the SLL thus
marks the boundary between the two growth regimes.

Schumann (1938) and Ludlam (1958) studied the thermodynamics of the wet
growth regime under the assumptions that the growing ice particle would remain
solid and shed all excess water acquired as a liquid film over its surface. However,
the wind tunnel studies of List (1959, 1960a,b) and Macklin (1961) demonstrated
that often little or no shedding occurs in the wet growth regime. Furthermore, the
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assumption of impervious ice particles was found to be incorrect; rather, they were
found to consist of a dense ice framework whose capillaries are filled with water and
air bubbles, termed spongy ice by List (1965). Such spongy ice may either form
directly if the heat exchange between the growing ice deposit and the surroundings
is insufficient to freeze all accreted water (the latter being retained in a mesh of ice
dendrites), or by intake of unfrozen water into porous ice (termed soaking) formed
beforehand during growth of the ice particle in the dry growth regime.

Spongy ice has been subject to numerous investigations. The sponginess of
some natural hailstones was measured by Gitlin et al. (1968) and Browning et
al. (1968). Knight and Knight (1968a,b, 1973b) looked for evidence of sponginess
in natural hailstones which had become completely frozen. The sponginess of
laboratory grown icing accretions was examined by List (1959), Macklin (1961),
Bailey and Macklin (1968a,b), Goyer et al. (1966), Roos and Pum (1974), and
Ashworth and Knight (1978). Water shedding has been investigated by Carras
and Macklin (1973), Joe et al. (1976) and List (1977). Lesins (1980), Lesins et al.
(1980), Joe (1982), and Lesins and List (1986) determined shedding rates and shed
drop size distributions from wind tunnel experiments with rotating ice cylinders
and spheroidal hailstone models. They found that both shedding and sponginess
depended critically on the icing conditions, on the rotation rate of the ice cylinder,
and on the nutation precession rate of the ice spheroid (see Chapter 10).

Microphotographs of rimed ice cylinders (Macklin and Payne, 1968), and of
rimed ice crystals and graupel freely floating in a wind tunnel (Pflaum et al.,
1978), show that at low temperatures of the ice deposit and for relatively small drop
impact velocities and sizes, supercooled drops tend to freeze rapidly as individual
ice spheres, forming loosely woven chains with densities as low as 0.1 to
At higher deposit temperatures and for larger drop impact velocities and sizes, the
drops become increasingly distorted on impact and tend to pack more closely.

The spreading of supercooled water drops impacting on ice surfaces has been
studied by Brownscombe and Hallett (1967) and Macklin and Payne (1969). Mack-
lin and Payne considered air temperatures between –11 and –22°C, surface tem-
peratures of the ice deposit between –3 and – 20°C, cloud drops of radii between
17 and and impact speeds between 5 and They found that
the spreading factor, defined as the final maximum drop radius to the initial ra-
dius, varied between 1.3 and 6, depending primarily on impact speed and deposit
temperature. Only at the lowest impact speeds and lowest deposit temperatures
studied did the drops freeze as hemispheres or truncated spheres. With an increase
in either of these parameters, the drops became increasingly flattened. They con-
cluded that the final drop shape is a function of several compensating factors.
Three of these are: (1) the kinetic energy which the drop possesses at impact and
which acts to distort it, (2) the surface tension of the drop which acts to retain
its spherical shape, and (3) the rate at which the drop freezes and thus terminates
deformation.

The density of rime deposits has been studied by Macklin (1962) and Macklin
and Payne (1968). Their observations showed that is related to the surface
temperature of the ice substrate, and to the radius and impact velocity
of the cloud drops. For deposit temperatures ranging between –5 and –20°C,
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impact speeds between 2 and drop radii between 11 and and
for cloud liquid water contents between 1 and Macklin (1962) found the
relation

with and, Macklin (1962) and Bain
and Gayet (1983) found A = 0.11 and B = 0.76; other results include: Pflaum
and Pruppacher (1979), A = 0.26, B = 0.38; Prodi et al. (1986), A = 0.33,
B = 0.6; Prodi et al. (1991), A = 0.23, B = 0.44; and Levi et al. (1991), A = 0.28
and B = 0.6. Equation (16-1) predicts, for example, that for

and similarly for
and (For comparison, we may note

that the density of a structure composed of regularly packed spheres of individual
density is while the corresponding figure for randomly
packed spheres is If such low density rime becomes soaked with
water, its density obviously increases and assumes values between the bulk density
of ice and that of water.

From a detailed study, Heymsfield and Pflaum (1985) suggested the following
parameterization of the density of rime deposited at the surface of a graupel of
radius

with and with A = 0.30 and

Rasmussen and Heymsfield (1985) argued that the impact velocity averaged over
the entire rime deposit would be seriously overestimated if one would set
where is the impact velocity at the stagnation point of the falling graupel. They
instead suggested computing according to the following parameterization:

where is the Stokes number (see (14-12)),
is the terminal fall velocity of the riming graupel, is the radius of the

impacting drops, and is the diameter of the riming graupel for an oblate spher-
oidal ice particle. For and

and for
for For and

For and

For and
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In Section 2.2.2, we described in some detail the characteristic layer structure of
rimed ice crystals, graupel, and hailstones, due to a varying concentration and size
of trapped air bubbles. From their studies of hailstones produced in a wind tunnel,
List and Agnew (1973) concluded that it is the cloud liquid water content which
controls both the air bubble concentration and size. On the other hand, Carras and
Macklin (1975) inferred from their experiments that a more fundamental determi-
nant is the rate at which the collected water freezes. They found that in both the
dry and wet growth regimes, the bubble concentration increases with increasing
freezing rate which is governed in the dry growth regime by the temperature of
the ice deposit and by the size and impact speed of the accreted droplets and, in
wet growth regime, by the rate of heat transfer by forced convection away from the
riming ice particle. This finding is understandable if we consider that for smaller
freezing rates more dissolved air can escape by diffusion and more bubbles can
migrate to the surface of the accreting ice particle. Therefore, small freezing rates
lead to relatively clear ice, and large freezing rates to relatively opaque ice. Thus,
Carras and Macklin typically found bubble concentrations of to in
the wet growth regime with small freezing rates, and to in the dry
growth regime with relatively large freezing rates.

In a similar way, the freezing rate controls the size of the bubble, by limiting its
growth; thus, the smaller the freezing rate, the larger the bubble size. In the dry
growth regime, this trend is counteracted somewhat in that, at increasingly warm
deposit temperatures, given the relatively slow growth rate and the considerable
spreading of the drops on the accreting ice surface, an increasingly larger amount
of air is allowed to diffuse away and so to become unavailable for bubble growth.
Typically, Carras and Macklin found bubble sizes of 10 to radius in the wet
growth regime and of 1 to radius in the dry growth regime.

Thin sections of rimed ice crystals, graupel, and hailstones viewed in polarized
light reveal alternating layers of large concentrations of small ice crystallites and
of smaller concentrations of larger ice crystallites. Wind tunnel studies of Aufder-
mauer et al. (1963), Levi and Aufdermauer (1970), Levi et al. (1970a,b), Macklin
and Rye (1974), and Rye and Macklin (1975) showed that in the dry growth regime
the mean length of ice crystallites generally decreases from ~ 8000 to
and the mean width from ~ 1000 to as the air temperature (i.e., the
temperature of the accreted drops) decreases from –5 to –30°C. At air temper-
atures colder than –15°C, the crystallite size also depends on the temperature
of the ice deposit such that, for each air temperature, a critical deposit tempera-
ture exists at which the crystallite size rather abruptly decreases to below
More recently, Levi and Prodi (1978) and Prodi et al. (1982) found that, in the
dry growth regime, the areal size of ice crystallites decreases exponentially for a
given air temperature with decreasing temperature of the ice deposit. The
areal size also decreases for a given with decreasing air temperature Thus,
for and for and

and for and
Levi and Lubart (1991), Levi and Prodi (1983), Levi et al. (1970a,b), and Levi
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and Aufdermauer (1970) showed that ice crystallites exhibit preferred orientations
with respect to their and the radial growth direction of the accreting ice
particle. Thus, they found that, in the dry growth regime, the crystallographic
axis of individual crystallites tends to be oriented normal to the growing ice surface,
i.e., parallel to the radial growth direction of the hailstone, while in the wet growth
regime, the tends to be parallel to the growing ice surface, i.e., normal to
the radial growth direction of the accreting ice particle. In terms of the frequency
distribution of orientation angles (see Figure 16.1), a distinct maximum in the
dry growth regime was thus found near for air temperatures warmer than
–18°C, shifting to ~ 45°C as the air temperature decreased below –20°C.

The orientation and size of the crystallites in the spongy or wet growth regime
has been studied by Macklin and Rye (1974) and Prodi et al. (1982). For

most of the of the crystallites were oriented at angles which
ranged between 60 and 90°C. An analysis of the areal size of the crystallites in
the wet growth regime showed that is considerably smaller than in the dry growth
regime for the same and (which is about 0°C in the wet growth regime). Thus,
for (as compared to in the dry growth
regime), and for (as compared to
in the dry growth regime). The maximum length of the crystallites at
was found to be 1 mm, and at The maximum width of
the crystallite was 2.0 to independent of temperature.

It is obvious that information concerning the structural features of ice particles,
such as discussed above, is very useful for purposes of interpreting the growth his-
tory of natural graupel and hailstones. Attempts to determine the growth history
of fallen hailstones in this manner have been made by Knight and Knight (1968a,b),
Levi et al. (1970a,b), Macklin et al. (1970), and by Macklin et al. (1976). Some
physical concepts needed for a better understanding of the preferred orientation of
ice crystallites in ice deposits of riming ice particles are provided at the end of the
following section.

16.1.2 STRUCTURE AND GROWTH MODE OF ICE IN SUPERCOOLED WATER

The structure and growth mode of ice in supercooled water has been studied exper-
imentally by Kumai and Itagaki (1953), Lindenmeyer (1959), Hallett (1960,1964),
Macklin and Ryan (1965, 1966), Knight (1966), and Pruppacher (1967a,b). Most
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experiments were carried out with relatively large supercooled water bodies nucle-
ated by single ice crystals which had a temperature close to 0°C. It was found that,
at supercoolings less than 0.9°C, ice crystals, nucleated with their normal
to the surface of the water, develop as thin, almost circular disks. On the other
hand, crystals with their parallel to the water surface grow as long surface
needles. Each of these consists of a dendritic portion which is co-planar with the
seed crystal and grows into the water, and of a rib-like portion which grows along
the water surface boundary. At supercoolings between about 0.9 and 2.5°C, ice
crystals grow as plane stellar dendrites or dendritic sheets co-planar with the seed
crystal, i.e., parallel to the seed crystal’s basal plane. At supercoolings larger than
about 2.5°C, ice crystals no longer grow co-planar with the seed crystal, but rather
split into two symmetrical, hollow, hexagonal pyramidal segments joined together
at their apices (Figure 16.2 and Plate 18). With increasing supercooling, the angle
between these segments increases. According to Macklin and Ryan (1966), the
angle between a primary growth segment and the basal plane of ice (which is one
half of the angle between the two primary growth segments) increases from
at to at At supercoolings larger than about 5.5°C,
secondary and higher order splitting takes place on the major growth planes, caus-
ing the formation of complex, three-dimensional structures favored by the presence
of salts dissolved in water (Pruppacher, 1967b). Primary, secondary, and higher
order splitting leads to non-rational growth, i.e., growth in directions which cannot
be described by rational crystallographic indices (see Chapter 3). Lindenmeyer
(1959), Hallett (1964), and Macklin and Ryan (1965, 1966) suggested that this
non-rational growth of ice in supercooled water can be explained, as illustrated in
Figure 16.3, on the basis of a step growth mechanism analogous to the explanation
of the hopper structure of ice crystals grown from the vapor (see Section 5.7.3).
Here two growth components, and are involved. The component is the
growth velocity of ice parallel to the crystallographic of ice (i.e., the growth
velocity of the crystallographic prism plane of ice), while is the growth velocity
of ice parallel to the crystallographic of ice (i.e., the growth velocity of the
basal plane of ice). Observations discussed in Section 16.1.3 show at all
water supercoolings. Note from Figure 16.3 that the angle of splitting is deter-
mined by the ratio of the height of the growth step to the distance between the
steps, i.e., by the ratio of the growth velocities parallel and perpendicular to the

Since observations show that increases more rapidly with supercooling
than the angle between a primary growth segment and the basal plane must
increase with increasing supercooling as has been observed. Another implication
of such a mechanism is that one would expect the non-rational ice structures to be
single crystals. This expectation was confirmed by Lindenmeyer (1959), who used
X-rays to analyze ice structures grown in water, and by Macklin and Ryan (1965,
1966) who noted that all the secondary growth features are aligned parallel to the
primary growth features.

Additional support for this conclusion was given by Hallett (1963, 1964), who
found that when millimeter size water drops were frozen by contact with an ice
single crystal of a temperature near 0°C, they developed into single crystals with
the crystal orientation of the substrate, irrespective of the temperature of the drop.
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This occurred also when the temperatures of both the drop and ice surface were
warmer than –5°C (Figure 16.4). If the temperatures of the drop and the surface
were below –5°C, the drop froze into polycrystalline ice, the polycrystallinity ap-
parently being due to the existence of more than one point of nucleation. Additional
studies of the conditions required for drops to freeze polycrystalline when brought
into contact with an ice single crystal were carried out by Magono and Aburukawa
(1968), Aufdermauer and Mayes (1965), Brownscombe and Hallett (1967), Rye
and Macklin (1975), Takahashi (1979), Mizuno and Wakashima (1983), Levi et al.
(1980) and Nasello et al. (1980). The results of these studies all agree well with
line (2) of Figure 16.4 if drop freezing occurs on the basal face of ice. For freezing
on a prism face, the transition to polycrystallinity was found to take place at tem-
peratures several degrees below the critical temperature for freezing on the basal
face. The critical conditions for polycrystallinity of water drops freely falling in
air was studied by Parungo and Weickmann (1973) and by Pitter and Pruppacher
(1973). In contrast to nucleation of drops on an ice surface, the freezing mode of
a drop of given size surrounded by air is not determined by a unique temperature,
but varies depending on the nuclei which initiated the ice phase. Thus, Pitter and
Pruppacher (1973) used distilled and deionized water to obtain curve (1) in Fig-
ure 16.4, while Parungo and Weickmann (1973) used AgI particles to nucleate the
drops giving curve (3), and singly distilled water to produce curve (4). However, all
investigators found that whether or not a drop became a polycrystalline ice particle
depended critically on the size and supercooling of the drop before freezing and
on the thermal conductivity of the medium into which the latent heat of freezing
dissipated (see Figure 16.4). The critical drop radius was found to be related to
the drop’s supercooling by a relation of the form
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where for curves (1) and (2) A = 23, B = –1/8, and C = 3,
is the heat conductivity of the medium in contact with the drop, and is in

If we now recall Figure 2.33, which shows that most atmospheric clouds have
glaciated before they have cooled to –20°C, and Figures 2.8a,b,c, which show that
most cloud drops are found in the size range less than we conclude from
Figure 16.4, curves 1 and 3, that most cloud drops freeze as single crystals. Each
of these can then grow by vapor diffusion into a hexagonal shaped ice single crystal
after sufficient time for growth. Hexagonal ice crystals in atmospheric clouds may
therefore be the result either of nucleation in the depositon mode or in the freezing
mode.

Experiments show that the polycrystallinity of ice grown in supercooled water
is a result of reorientation during the epitaxial overgrowth of ice on ice in
an environment of supercooled water. According to Hallett (1964) and Rye and
Macklin (1975), a most common reorientation is one in which the of the
nucleated ice makes an angle of 90° with the of the substrate ice. Other
common reorientations of small misfits to the basal plane of ice have been deter-
mined by Higuchi and Yoshida (1967), Magono and Suzuki (1967), Aburakawa and
Magono (1972) and Lee (1972).

Following Levi (1970), Levi and Aufdermauer (1970), Rye and Macklin (1973),
and Macklin and Rye (1974), we finally may suggest some reasons for the preferred
orientation of ice crystallites in ice deposits grown by riming. We recall that the

of these crystallites is preferentially oriented at an angle of 0° and 90°
to the radial growth direction of the riming ice deposit in the dry growth and
wet growth regimes, respectively. This can be understood if we consider that,
in the dry growth regime in which the cloud drops collide with a relatively cold
substrate, the latent heat of freezing is preferentially lost to the substrate. Since
heat is more efficiently conducted along the crystallographic of ice than along
other directions (Hobbs, 1974; the effect arises from the greater lineal density of
molecules along the making this the preferred direction for the propagation
of thermal fluctuations; see Section 5.7.1 and Figure 3.3), growth of those ice
dendrites which nucleate by chance with their a-axis parallel to the surface of the
accreting ice deposit, is facilitated as compared to dendrites which nucleate in other
orientations. Thus, in this growth regime, ice crystallites assume preferentially an
orientation in which the of the ice crystallites is oriented perpendicular to the
accreting ice surface, i.e., parallel to the radial growth direction of the surface. On
the other hand, in the wet growth regime, the ice substrate is relatively warm and
latent heat of freezing is dissipated mainly by conduction and convection into the
surrounding air. Consequently, the growth of those ice dendrites which nucleate
by chance with their perpendicular to the accreting ice surface is facilitated
as compared to growth of ice dendrites nucleated in other directions. Thus, in this
growth regime, the ice crystallites preferentially assumed an orientation in which
their is oriented parallel to the acccreting ice surface, i.e., perpendicular to
the radial growth direction of the surface.
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The temperature dependence of the angular orientation of the ice crystallites
is a result of the non-rational growth of ice dendrites in supercooled water, as
illustrated in Figure 16.1. Thus, since the non-rational growth angle increases
with increasing supercooling (see Section 16.1), while in the dry growth regime
tends to be oriented parallel to the growing ice surface, the orientation angle also
will increase with increasing supercooling. An analogous argument holds for the
wet growth regime in which tends to be oriented perpendicular to the growing
ice surface.

16.1.3 GROWTH RATE OF ICE IN SUPERCOOLED WATER

Most studies of the growth rate of ice crystals in supercooled water have dealt
with ice growth in narrow tubes and capillaries (for a review of some of the earlier
work, see Pruppacher, 1967c). It is obvious that such measurements have very
limited application to the growth rate of ice in supercooled water drops, since
these are not affected by the proximity of heat conducting walls. The so-called
free growth rate of ice crystals in supercooled bulk water and in supercooled
drops has been studied by Lindenmeyer (1959), Hallett (1964), Pruppacher (1967d),
Macklin and Ryan (1968), Ryan and Macklin (1968), Ryan (1969), and Gokhale
and Lewinter (1971). Their results are summarized in Table 16.1 and Figure 16.5.
Note from this figure and table that the growth rate of ice in supercooled
water varies nearly as the square of the bath supercooling for

where and where is the temperature far
away from the growing ice crystal surface. Note also that the component growth
rate of ice parallel to its crystallographic (see Figure 16.3),
shows a similar dependence on supercooling because of the smallness of angle On
the other hand, the component growth rate of ice parallel to the crystallographic

is considerably smaller than and varies approximately
as the third power of At a discontinuity in G is observed
which is characterized by little change in growth rate with decrease in From
Figure 16.5, this discontinuity is evidently a manifestation of a transition from a
higher to a lower power growth law as, at the growth rate appears
to vary nearly linearly with

The effect of water soluble salts on the growth rate of ice has been studied by
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Pruppacher (1967d), Ryan and Macklin (1968), Macklin and Ryan (1968), and
Ryan (1969). These studies show that the growth rate of ice in supercooled aque-
ous solutions remains unaffected until the salt concentration becomes greater than
about At larger concentrations, the growth rate is progressively re-
tarded by the salt. Fluorides, however, behave exceptionally in that they invariably
enhance the growth rate at concentrations between and Such
growth rate enhancement was also noted by Michaels et al. (1966) and Pruppacher
(1967c). The effects of dissolved salts on the growth rate of ice were attributed
by the above authors: (1) to a change of the thermal conductivity of water by
the presence of salt ions, thus affecting the rate at which latent heat is dissipated
by conduction from the ice water interface; (2) to a concentration buildup of salt
rejected at the ice-water interface, thus lowering the local equilibrium freezing
temperature; (3) to adsorption of salt ions at growth steps on the ice surface, thus
inhibiting the incorporation of water molecules at these locations; (4) to a change
of the mobility and therefore also the diffusivity of water molecules through water
by the presence of salt ions, thus affecting the rate at which water molecules can
reach the ice-water interface and the rate at which the salt ions can diffuse away
from the surface into the solution under the effect of the concentration gradient at
the ice-water interface; (5) to a formation of additional dislocations in the growing
ice crystal lattice by ions incorporated into the ice lattice, thus causing additional
strain and stresses in the lattice; and (6) to the development of relatively large,
local electric fields at the ice-water interface due to differential incorporation of
ions into the ice crystal lattice (see Section 5.10), thus affecting the local structure
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of water.
It is obvious that mechanisms (2) and (3) will impede the rate of ice crystal

propagation, since the experiments of Eigen (1952) and Kauptinskii and Razanin
(1955) show that most salts decrease the heat conductivity of water, and since the
experiments of Wang and Miller (1952), Wang (1954), and McCall and Douglas
(1965) show that most salts reduce the self-diffusion coefficient of water, increas-
ingly so with increasing salt concentration. Little is known about the effects of
mechanisms (5) and (6). However, from our discussions of the effect of surface
dislocations on ice nucleation (see Section 9.2.3.5), and on the growth rate of ice
from the vapor (see Section 13.3), one would expect that an increase in the num-
ber density of dislocations and, consequently, an increase in the number density of
surface steps on a growing ice crystal would facilitate the incorporation of water
molecules into the ice crystal lattice. Also, Ryan (1969) has argued that the elec-
tric fields which tend to build up at the ice-aqueous solution interface would also
facilitate the incorporation of water molecules into the ice crystal lattice. Thus,
while mechanisms (1) to (4) appear to explain the generally observed growth rate
retardation of ice crystals in salt solutions, mechanisms (5) and (6) may conceiv-
ably be responsible for the growth rate enhancement of ice crystals in the aqueous
solutions of fluoride salts.

In order to interpret the experimentally found variation of the growth rate of
ice in supercooled water as a function of supercooling, we shall consider first the
simple case of a planar ice face propagating into supercooled water. We shall assume
that the face contains no steps due to emerging dislocations, but nevertheless is
molecularly rough. The latter assumption implies that any site at the surface is
a potential site for attachment of water molecules. Such a case has been studied
by Wilson (1900) and Frenkel (1932) through use of the simple theory of reaction
rates. If is the chemical potential of ice and is that of water one mean
molecular jump distance away from the ice-water interface, the thermodynamic
driving force responsible for the advance of the crystal face is The
rate of advance of the ice crystal face is then given by the product of this driving
force and the mobility of the water molecules, where is the temperature
of the ice-water interface (Glasstone et al., 1941). Thus,

where is the diffusivity of water molecules in water, given in Chapter 3. Since
where S is the entropy and F the Helmholtz free energy of the

system where From (7-18)
we have, on the other hand, We therefore find that

where is the molar latent heat of fusion taken at the mean temperature
On combining (16-5) with (16-6), we find that the rate of advance of
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the molecularly rough ice crystal face is given by

where we have now assumed to be of the order of the molecular spacing in ice,
and Note that this model predicts a growth rate which is linear in
Crystals exhibiting such a growth law are said to grow in the ‘continuous growth
regime’, as their faces advance continuously without involving a lateral spreading
of surface steps.

Frank (1949) and Burton et al. (1951) pointed out that many crystal surfaces
are not perfect on a microscopic scale (i.e., molecularly rough), but contain steps
due to emerging lattice dislocations. By assuming an abrupt step which advances
laterally by addition of single molecules from the liquid through a diffusion jump
mechanism, Hillig and Turnbull (1956) derived an expression for the growth rate of
such a crystal in its supercooled melt. The starting point for their development is a
modified form of the simple Wilson-Frenkel growth law. Instead of assuming that
every site on the ice surface is available for molecular attachment, they assumed
that only sites on the growth spirals of emerging screw dislocations can be used
for molecular attachment. An approximate equation for such a growth spiral,
considered nearly Archimedean, was given by Burton et al. (1951). Applied to a
growth spiral on an ice surface in supercooled water, the equation can be expressed
as

where and are polar coordinates describing the spiral and is the radius of
a two-dimensional ice germ on an ice surface in supercooled water at temperature

To determine an expression for we rewrite (9-10) for the energy of
formation of a cylindrical ice embryo of molecular height on an ice substrate,
including a contribution from line tension, interpreted here as the step energy per
unit length, as

The change in as advances by one revolution, i.e., by is thus

From (7-18) and (7-19), where is the mole volume of ice.
Considering that the ice embryo forms on an ice substrate, the second term on the
right side of (16-9) is zero. Instead of (9-15), we then obtain for (by setting

where is the step energy per unit length. With (16-10), one finds from (16-8)
and (16-6) that
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The fraction of surface sites available for molecular attachment is therefore

if attachment of molecules to the step occurs only within a distance of the step.
The growth rate of a surface advancing by lateral spreading of steps is therefore

in place of (16-7), assuming that three molecules are available for attachment at
a given step site. (Note that this number is somewhat smaller than the number
of nearest-neighbors (namely 4.4) to a given water molecule in bulk water (see
Section 3.4.1). Assuming further that may be estimated from (e.g.,
Cahn et al., 1964), Hillig and Turnbull (1956) found

Note that (16-15) predicts a parabolic growth law (‘classical growth regime’).
In deriving (16-15), Hillig and Turnbull assumed that the ice-water interface is

sharp, i.e., that ordering of the water molecules at the growth front occurs within
a distance of a step by a monomolecular transport process characterized by
a diffusion constant with three molecules available for attachment at a given
step. Cahn (1960) and Cahn et al. (1964) criticized this assumption by pointing
out that the interface is not sharp but diffuse, the transition from the liquid to the
solid phase occurring over several molecular layers. To correct for this feature, they
introduced a parameter g which is a measure of the diffuseness of the interface, and
which depends on the number of molecular layers comprising the transition zone.
From a theoretical study of surface energy, they found
For a sharp interface g decreases rapidly toward zero with increasing interface
diffuseness for Instead of the traditionally assumed estimate for
the step energy per unit length, namely that Cahn et al. argued that

They also conjectured that the number of molecules in position
to jump into a growth site is given by which reduces to 3 (the value
assumed by Hillig and Turnbull), when g approaches 1. For the number
of molecules in position to jump into a growth site is ~ 10. In addition, Cahn et al.
proposed that an accommodation coefficient should be introduced as a measure
for the difficulty molecules have in moving to a step and in assuming an orientation
suitable for incorporation into the ice lattice. With these corrections introduced
into (16-14), Cahn et al. estimated the rate at which a crystal grows by a screw
dislocation mechanism to be
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Obviously, the growth rate of ice in supercooled water is not exclusively con-
trolled by kinetic processes at the ice-water interface, as was assumed above, but
by heat transport processes as well. Two distinct points of view commonly exist re-
garding the relative effect of these two mechanisms which influence crystal growth.
The first point of view assumes that the growth rate is an interface-controlled,
material-transport process determined mainly by the molecular mobility at the in-
terface and by the temperature, crystallographic perfection, and crystallographic
orientation of the interface. The second point of view assumes that there is no
effective transport barrier at the interface between the crystal and its melt, and
that the growth rate of the crystal is therefore predominantly controlled by the
rate at which latent heat of solidification is removed from the growing interface.

In actuality, of course, these two points of view are only limiting cases since
the temperature of the interface is not exactly the bath temperature or
the heat of solidification could obviously not be extracted; nor is it exactly the
equilibrium temperature or (the latter being the equilibrium temperature
of a curved ice-water interface), or there would be no driving force for freezing.
Rather, in steady state growth adjusts itself such that the rate of liberation of
heat corresponding to the rate of molecular incorporation just balances the rate of
heat dissipation from the interface. Thus, the supercooling of the curved ice
interface controls the rate of deposition of water molecules, while the supercooling

controls the rate of heat dissipation from the ice-water interface (note
that Experiments show that
for ice growing in supercooling water is only a small fraction of This
implies that the growth rate of ice in supercooled water is heat dissipation limited
(as is the growth rate of ice in supersaturated vapor (Section 13.3)). This result
was confirmed by Lindenmeyer et al. (1957), who found that the larger the heat
conductivity of the walls encasing a sample of supercooled water, the larger the
growth rate of ice in the water sample.

The rate of heat dissipation from an ice dendrite tip growing in supercooled
water has been studied theoretically by Bolling and Tiller (1961), Horvay and
Cahn (1961), and Holzman (1970), all of whom idealized the growing dendrite tip
by an isothermal prolate spheroid and assumed Values for the growth rate
determined by Bolling and Tiller are plotted in Figure 16.5. The plotted curve fits
the equation (for On the other hand, Horvay and Cahn
found where is the curvature of the dendrite tip. According to
Fisher and Hillig (1959), and Bolling and Tiller (1961), however, is proportional
to Therefore, the result of Horvay and Cahn implies in
good agreement with the result derived by Bolling and Tiller.

On comparing the observed values of G in Figure 16.5 with those computed for
the case that we notice that G is not completely thermally determined;
i.e., for each value of G some value must be added to bring the theoretical pre-

and that the corresponding rate at which a crystal grows in the continuous growth
regime is
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diction into agreement with experiment. Such comparison yields i.e.,
the growth rate of ice is a function of interface supercooling. From the maximum ob-
served values for G , one finds approximately for that
while for From a comparison of the experimentally ob-
served growth laws with (16-16) and (16-17), one finds that with
we have and which implies a diffuseness of about 3 molecular
layers (Cahn et al., 1964). Comparison of the experimental growth laws with (16-
16) and (16-17) further suggests that growth of ice in supercooled water proceeds
via the lateral spreading of steps at and via the continuous growth
mechanism at i.e.,when (Pruppacher, 1967e; Mack-
lin and Ryan, 1969). There is no obvious reason for the observed large scatter of
data for

In addition to the classical and continuous growth regimes, Cahn (1960) and
Cahn et al. (1964) considered the existence of a transitional growth regime in
which growth continues to proceed by lateral spreading of steps but which also
progressively deviates from the simple parabolic growth law which characterizes
the classical regime. Through theoretical arguments involving the free energy per
unit volume which acts as the driving force for crystal growth in a melt,
they found that for the transitional regime where is
the interface energy between the crystal and its melt. Thus, char-
acterizes the classical regime, while characterizes the continuous
growth regime. If we recall from Section 7.11.3 that is proportional to the
supercooling of the melt, we see that will mark the supercooling onset of
the continuous growth regime if marks the supercooling limit of the classical
regime. From their experimental growth studies on ice, Pruppacher (1967e) and
Macklin and Ryan (1969) suggested that to 10°C, from which it follows
from Bolling and Tiller’s theory (Figure 16.5) that and therefore

giving This latter supercooling has some physical sig-
nificance in that it closely agrees with the supercooling required for the onset of
non-rational growth of ice in supercooled water, discussed in Section 16.1.2.

16.1.4 FREEZING TIME OF WATER DROPS

Observations show that following the collision of an ice particle with a supercooled
drop, solidification of the supercooled water proceeds in two major stages. The
first stage, controlled by the intrinsic rate of ice propagation in water, is completed
within a relatively short time span. During this stage, only a very small portion of
the liberated latent heat of freezing is transferred to the drop environment, most
of the heat being absorbed instead by the water of the liquid portion of the drop,
and warming the latter quickly towards 0°C. In fact, one may readily show that for
a drop supercooling of only a fraction of about of the drop becomes
converted to ice in stage one. Thus, if and respectively, denote the masses
of ice and water in the drop at the end of stage one, the heat balance for the drop
is, assuming no heat loss to the environment,
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where and are the specific heats of water and ice, and is the latent
heat of melting. First, we may note that for no realizable supercooling will the
drop freeze entirely during this adiabatic stage; in fact, we see from (16-18) with

that the supercooling which would be required for this to occur is
with and Hence,we

have and so from (16-2),

The initial stage of freezing is followed by a second stage during which the remainder
of the water is frozen. The freezing rate during this stage is one to several orders of
magnitude smaller than during the first stage and is controlled partly by the rate
at which heat is conducted into the underlying ice surface, and partly by the rate
at which heat is dissipated by forced convection into the environment. Although
it is clear that the two freezing stages overlap, the total time it takes to freeze a
drop may be regarded approximately as the sum of the initial freezing time and
the subsequent freezing time

Macklin and Payne (1967, 1968) estimated and by assuming that the ice
substrate surrounded by air is a sphere of radius and has an initial temperature

In their model, every impinging drop is assumed to spread uniformly over the
ice substrate into a thin layer of water of thickness The latent heat of freezing is
considered to flow in a radial direction only. A crude estimate of the initial freezing
time can then be made from

where G is the growth rate of ice dendrites in supercooled water. (Note we have
not used even a fraction of the total thickness in this estimate; this
is because the layer does not become solid ice in time but only a mixture
of ice crystals and water.) Using observed values for G for growth parallel to the
basal plane of ice, and assuming that growth proceeds perpendicular to the water
layer, Macklin and Payne determined that for

for respectively.
To determine Macklin and Payne (1967, 1968) considered first the heat flow

into the spherical ice substrate of radius Assuming that during the initial
temperature of the ice substrate is raised instantaneously to
and using expressions derived by Carslaw and Jaeger (1959), Macklin and Payne
found the amount of heat conducted into the sphere as a function of
time to be given by

where is the thermal diffusivity of ice, which was assumed constant in order
to obtain (16-21). (For the purpose of the calculation, this is a valid assump-
tion, though it should be noted that actually depends on temperature
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through the temperature dependence of and (recall Chapter 3), and also of the
thermal conductivity which for the range obeys the empirical
relation

Ratcliff (1962) to an accuracy of The amount of
heat conducted per unit area into the sphere during the freezing time is then

Secondly, Macklin and Payne considered the amount of heat transferred by
forced convection and evaporation to the environmental air. For a smooth spherical
ice substrate of surface temperature the average amount of heat transferred
per unit area during time by these two mechanisms is (from (13-67))

where and are the mean ventilation coefficients for heat and vapor transport
in air, is the diffusivity of water vapor in air, is the heat conductivity of air,

are the temperature and water vapor density in air far away from the ice
sphere, and are the temperature and water vapor density of air at
the surface of the water layer. Considering that the amount of heat to be removed
per unit area is where is the density of water, is
found as the solution of the equation

where and are given by (16-23) and (16-24). For small values of i.e.,
at relatively low deposit temperature, and so that
approximately

From (16-26), Macklin and Payne determined that for and
for respectively.

Similarly, for and and for and
–10°C, respectively. These results demonstrate that is strongly dependent on
the thickness of the water layer and on the deposit temperature and that it
is considerably longer than except for very thin water layers.

Observations show that the model used above is highly idealized, since drops
colliding with the ice surface do not spread such as to form a liquid layer over
the entire underlying ice particle, except perhaps at large accretion rates when
the surface temperature of the ice surface is raised to near 0°C. At other deposit
temperatures, the observations described in Section 16.1.1 show that drops freeze
onto the ice deposit in a more or less ‘chain-like’ manner. In order to estimate the
freezing time of stage two for more realistic conditions, Macklin and Payne assumed

with in cal This expression for fits the experimental data of
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that the drop and substrate could be considered as a half hemisphere attached to
the end of an ice rod. For this model, the total amount of heat conducted from
the ventilated hemisphere of area and temperature to air of is then
approximately

and the total amount of heat conducted into the rod is (from Carslaw and Jaeger,
1959)

Considering that the heat to be removed is is
found as the solution of the equation

where and are given by (16-27) and (16-28). For and
Macklin and Payne found and for

and –2°C, respectively. These results suggest again that the subsequent freezing
time is considerably longer than the initial freezing time Macklin and Payne
also showed that, for the same values of and the ratio of computed
by assuming no loss of heat to the ice surface, to computed by assuming no loss
of heat to the air, is 8.2 and 1.4, respectively. This indicates that the rate of heat
conduction into the ice substrate plays a much more important role in the drop
freezing process than does heat flow into the air, substantiating the suggestions of
Brownscombe and Hallett (1967), and of Macklin and Payne (1967).

It is instructive to compare the freezing times computed above for drops in
contact with an ice surface with those for drops freely falling in air (Section 13.2.3).
Due to the relative ineffectiveness of air in removing the latent heat released during
freezing, we expect that these latter freezing times will be considerably longer.
This expectation has been verified by Dye and Hobbs (1968), Johnson and Hallett
(1968), and Murray and List (1972) in independent treatments. The essentials of
these are summarized below.

Consider a water drop supercooled to the temperature of the environment.
When the drop is nucleated at time ice crystals grow rapidly through the
drop, completing the initial growth in a relatively short time, to be neglected here,
while heating the drop to a temperature close to 0°C. At this stage the drop consists
of a mixture of water and ice, with a fraction of the drop volume yet
to freeze. Subsequent freezing occurs at a much slower rate through the transfer of
heat by conduction and evaporation to the environment. Assuming that the heat
transfer is spherically symmetric, a spherical shell of ice will form with internal
radius at time According to Hallett (1964), the ice shell thickens at the small
rate of and the local supercooling at the ice-water interface is
about 0.2°C. For the present computations, we shall neglect this supercooling and
assume that the ice-water interface is at Then, for a quasi-
steady state, the rate of release of latent heat of freezing is equal to the rate of
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heat conduction through the ice shell, which in turn is equal to the rate of heat loss
by evaporation and conduction to the environmental air. These balance conditions
are expressed by the relations

where from Section 13.2.3, we have

and where is the surface temperature of the freezing drop, is the latent heat
of sublimation, is the fractional relative humidity of the air, and
is the mean slope of the ice saturation vapor density curve over the interval from

to From (16-30), we find the freezing time may be expressed as

air has a relative humidity of 100%, i.e., and that (see
Section 13.2.3); then, (16-31) reduces to

Eliminating between (16-34) and (16-30), we find,

where and

where is given by (16-31).
We may obtain an approximate solution by assuming for simplicity that the
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Integrating (16-35) together with (16-36) and (16-37) from to
we find

Since, for water drops in air,

with given by (16-36). For
and

we find for a drop of radius
a freezing time of Similarly, for a drop of 2 mm equivalent radius

we obtain a freezing time of Both of these estimates are in
good agreement with values determined by Murray and List (1972) from laboratory
observations.

16.1.5 GROWTH RATE OF GRAUPEL AND HAILSTONES

Graupel and hailstones are very sparely populated in atmospheric clouds. Their
growth at the expense of supercooled cloud drops can be therefore adequately com-
puted from the continuous growth equation, discussed in Section 15.1. Computa-
tions involving this equation have been carried out by List and Dessault (1967),
List et al. (1968), Musil (1970), Charlton and List (1972a,b), Dennis and Musil
(1973), Harrimaya (1981), Heymsfield (1982) and Johnson (1987). In the present
context, we shall follow the more recent experimental and theoretical studies of
Lesins and List (1986) and of Cober and List (1993), who based their formulations
on experiments with gyrating hailstones.

Assuming that the size and fall velocity of cloud drops can be neglected in
comparison to the size and fall velocity of a graupel or hailstone we may write the
continuous growth equation of a graupel or hailstone as

where, for an oblate spheroidal hailstone falling with its major axis in a fixed
orientation perpendicular to the fall direction, with

and (AR) being the axis ratio of the oblate spheroid. For
a gyrating hailstone , where is the gyration
factor for a spheroid obtained after intergrating over one gyration period
(considering a nutation/precession amplitude of 30°, an inclination angle of 90°,
and an aspect ratio of 0.67), and where and are the major and minor diameters
of the hailstone. In (16-40), is the terminal fall velocity of the hailstone, is
the liquid water content of the supercooled water cloud, is the collection
efficiency of the hailstone, and is the hailstone’s retention efficiency, i.e. the
fraction of the cloud drops which, after collision, is retained by the hailstone. The
collection efficiency is a priori not known due to both the hailstone’s complicated
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shape as well as to the unknown fraction of liquid which is shed from the still
unfrozen accreted cloud water.

For non-shedding hailstone growth, Cober and List (1993) determined ex-
perimentally for a variety of conditions. Their parameterization for is given
in (14-35). With known, may be determined for the dry growth
regime from (16-40). For computing the total growth rate of the hailstone, we must
also include its growth by vapor deposition:

For the dry growth regime this rate is given by

where is the surface area of a gyrating spheroidal hailstone of aspect
ratio 0.67, is the Sherwood number (Section 13.2.3), and are the vapor
pressure and temperature, respectively, in the environment, and
being the temperature at the surface of the growing stone. Cober and List (1993)
used an infrared radiometer to determine by remote sensing while the hailstone
was growing in an icing tunnel. Depending on the growth condition, was found
to be 0.3 to 2.0°C warmer than the ambient air.

In order to evaluate (16-42), it is further necessary to estimate For this
purpose, one generally assumes (Section 13.2.3). Relevant heat transfer
studies have been carried out by List (1960b), Macklin (1963, 1964a,b), List et
al. (1965), Bailey and Macklin (1968b), Schüepp and List (1969a,b), Joss and
Aufdermauer (1970), and Schüepp (1971), who expressed their findings in terms
of the relation As increased from to
B typically increased for spherical hailstones from 0.74 to 2.5. The reason for
the increase of B with lies in the fact that two physically distinct processes
determine the heat transfer from a spherical particle, namely, transfer through the
laminar boundary layer on the upstream side of the sphere, and transfer through
the turbulent wake on the downstream side; B increases because the latter becomes
increasingly important as the Reynolds number increases. The coefficient B is also
a function of the roughness of the hailstone. Thus, for a spherical body with a
roughness (ratio of height to diameter of the roughness elements) of 8%, Joss and
Aufdermauer found B = 0.88 at and B = 1.9 at
With increasing turbulence of the air stream, B was found to increase, reaching a
value of at for a smooth sphere, and for a sphere
of 8% roughness. In a more realistic experiment, Cober and List (1993) found for
a gyrating hailstone

Once and i.e. are known, the total growth rate of the stone in the dry
growth regime may be determined from (16-41).
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If cannot be measured, it may be obtained indirectly from the heat balance
for the hailstone and a known rate of growth by accretion and diffusion:

Considering the dry growth regime, the first term on the left represents the heating
rate due to release of latent heat during the freezing of the accreted water:

where is the latent heat of freezing. The second term on the left represents the
heating rate due to vapor deposition:

The third term on the left represents the rate at which heat is extracted from the
hailstone in order to warm the accreted cloud water from to

The term on the right of (16-44) represents the rate at which heat is dissipated
through the air:

Inserting (16-45) to (16-48) into (16-44), we thus obtain an equation implicit in

where and are given by (16-42) and (16-40), respectively.
Equation (16-49) reduces to (13-63) for the surface temperature of an evaporating
drop if we set and

If a hailstone grows in the wet or spongy growth regime and sheds all excess
liquid water, its growth rate is given by the rate at which the collected cloud water
can be frozen, i.e., by the rate at which the released latent heat is dissipated. Thus,
from the heat balance equation (16-44), we find together with (16-45) to (16-48),
with instead of and with instead of due to the wet hailstone surface:

However, under most conditions, not all the excess water collected by the hailstone
in the wet growth regime is shed, but rather a fraction is retained unfrozen on
the growing hailstone. Instead of (16-45), we then have
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If, after collision with the hailstone, a fraction of the drops is shed (termed
shedding efficiency), we must include in (16-47) the heat which is extracted from
the hailstone by the shed water:

where is the temperature of the water shed, and where from
which is the fraction of the drop mass in the geometrically swept
out path of the hailstone which is shed.

By applying the experimental conditions obtained in an icing tunnel to (16-
44), (16-51), (16-46), (16-52), and (16-48), Lesins and List (1986) identified five
distinct growth regimes for a hailstone experiencing a nutation/precession and spin
frequency of 5 Hz. These are identified in Figure 16.6a in terms of a diagram for

as a function of At high rotation rates (> 20 Hz), all unfrozen accreted
water becomes shed from the hailstone surface by centrifugal forces, producing a
dry, non-spongy deposit of solid ice. At these frequencies, a sixth growth regime
was identified, which is described in Figure 16.6b.

In the spongy regime without shedding, the heat transfer is insufficient to freeze
all the accreted water. Some of this becomes trapped in the deposit while another
portion remains as a mobile water skin on the surface of the hailstone. The water
film in this growth regime was studied by List (1990) and List et al. (1987b, 1989).
Unexpectedly, they found large temperature gradients of up to 6°C across the water
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skin, a film thickness of up to 1 mm, and a film surface temperature which was
below 0°C. In the spongy regime with shedding, water is shed as millimeter-sized
drops from a torus-shaped water bulge near the line of flow separation. About
90% of the shed water is carried into the wake of the stone, while about 10% is
recaptured by rear collision (Joe et al., 1980). Shedding and recapture depends in
general on the nutation/precession rate, the air temperature, and the liquid water
content. In the soaked regime with shedding, all water beyond a minimum fraction
of was shed.

Using the continuous growth equation, Johnson (1987) made an instructive com-
parison between the growth of a frozen drop by riming in the dry regime, and the
growth by collision and coalescence of a liquid water drop of originally the same
mass. The results of this comparison are shown in Figure 16.7. We note that the
graupel follows a trajectory which is higher than that of the drop. Consequently,
the graupel requires a longer time to fall out. Details of this computation showed
that after 10 minutes growth time the water drop had, in fact, become 8% heavier
than the graupel, limiting its growth time in the atmosphere to 30 minutes. On
the other hand, at the time of falling through the melting level (after 47 minutes
of growth), the graupel had reached a mass which was about 13 times larger than
that of the water drop.

Based on the different growth regimes mentioned, Pflaum et al. (1978) and
Pflaum (1980, 1984) suggested that hailstone growth may be a result of ‘micro-
physical recycling’ by which hailstones grow alternately in the dry and wet growth
regimes. In the dry growth regime, in which low density rime is deposited, the
hailstone exhibits a relatively large hydrodynamic drag to the air flow, and there-
fore requires a relatively small vertical air velocity to be carried upward. If, during
subsequent growth, the hailstone enters a high liquid water content zone so that it
grows in the wet growth regime, in which the collected water soaks into the pre-
viously acquired porous rime, freezing will produce a dense ice particle which may
fall with respect to the updraft until it enters anew into a dry growth zone. Pflaum
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(1980) suggests that such a two-stage process lessens the dynamic requirement on
a cloud to produce large hailstones.

While it is justifiable to use the continuous growth equation to determine the
growth of ice particles which are relatively large compared to the cloud drops, the
growth problem must be treated as a stochastic process (see Chapter 15) if the
ice particles and drops have similar sizes. The evolution of a size distribution of
spherical ice particles growing by a stochastic riming process has been considered
by Ryan (1973), and by Beheng (1978, 1980). Ryan used a simple stochastic model
in which changes in the ice particle spectrum were studied without considering
simultaneous changes in the drop size distribution, and without considering the
feedback of these changes on ice particle riming. In addition, Ryan assumed rel-
atively unrealistic collision efficiencies for the supercooled drops and ice crystals,
and he further imposed the artificial condition that all the ice crystals appear in
the cloud at one given time. In Beheng’s more comprehensive study, the evolution
of an ice particle size spectrum of originally plate like and columnar crystals was
computed for the case of stochastic growth of drops colliding with other drops,
and drops colliding with snow crystals. Unfortunately, Beheng’s model was not
embedded in a dynamic framework, and required the assumption of initial drop
and crystal size distributions. Also, the diffusional growth of drops and crystals
was not considered. Diffusional growth has been included in the more recent com-
putations of Alheit et al. (1990), who used a parcel model to make an ab initio
computation of the growth of drops, snow crystals, and graupel in an environment
of stochastically growing cloud drops. The growth of snow crystals by collision
with other crystals was neglected.

Following Alheit et al. (1990), we may consider the simple parcel model of
Chapter 12, but extend (12-38) now to include the growth of crystals by diffusion
of water vapor and by collision with supercooled drops, assuming that ice particles
appear by drop freezing only. The time rate of change of the drop number density
distribution function is then given by:

Analogously, the time rate of change of the snow crystal number distribution func-
tion may be written as

and for the graupel
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The corresponding mass density distribution functions are
and The second, third, and fourth terms on

the right of (16-53) are given by (12-37), (12-38), (12-40), and (13-42), respectively.
The fifth, sixth, and seventh terms on the right of (16-53) are given in

where is the collection kernel for the collision of drops with snow crystals (Sec-
tion 14.6.1) with now being the collection kernel for the collision of drops with
graupel, and for the following (16-58), a Bigg drop freezing mechanism (Equa-
tion (9-50)) is assumed:

Before expressing the individual terms in (16-54) and (16-55), we first must
make some assumptions concerning the division between rimed snow crystals and
graupel. As a working hypothesis, Altheit et al. assumed that frozen drops of radii
larger than can be assigned to the category of graupel, while smaller frozen
drops were considered planar snow crystals which could grow further only by vapor
deposition. Rimed snow crystals whose axis ratio were considered
graupel, while those of smaller axis ratio were assumed to remain in the category of
‘snow crystals’. Of course, these conditions require transforming the mass growth
rate equations into equations which follow the change in radius of the ice particles.
However, in the present context, we shall keep the mass scale, and write for the
individual terms in (16-54):

where is the number of ice forming nuclei given as a function of temperature
(see Chapter 9), and is the numerical time step;
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where is the mass of the aerosol particle set free when a snow crystal has
completely evaporated;

where is given by (13-91);

with

and where is the maximum drop size which contributes to the riming of a
snow crystal (see Section 14.6.1).

The individual terms in (16-55) are given by

where is again given by (13-91);

where

and finally the conversion of snow crystals to graupel given by

The above set of equations was solved by Alheit et al. (1990) who started
their computations on a rural background aerosol (see Chapter 8) and assumed
that the vertical temperature and humidity distribution is given by that of 17
April 1986, 00 UTC over Essen (FRG), when graupel showers were observed on
the ground. One of their results is illustrated in Figures 16.8a,b,c for aerosol
particles with a water soluble fraction of We notice from Figure 16.8c
that graupel had developed by 1200 sec model time, reaching millimeter size by
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1600 sec. Snow crystals appeared after 800 sec model time, reaching a size of
several hundred microns by 1600 seconds. We also note that the drop spectrum
is strongly affected by the appearance of snow crystals and graupel. The drop
spectrum begins broadening by collision and coalescence after 800 seconds model
time, and exhibits the typical double maximum by 1600 seconds. However, after
that it suddenly collapses due to the removing of drops by riming. These model
results were found to agree well with observations.

16.1.6 SNOW CRYSTAL MULTIPLICATION BY RIMING

In Section 9.2.6 and in Figures 2.42 and 2.43, we have pointed out that, in at-
mospheric clouds, the ice particle concentration may be up to several orders of
magnitude larger than the concentration of ice forming nuclei. Several mechanisms
were discussed which may be responsible for this observation. Among these, the
Hallett-Mossop mechanism has received most attention in the literature and has
been widely used in current cloud models.

Koenig (1977), Beheng (1982, 1987), Cotton et al. (1986), Harris-Hobbs and
Cooper (1987), and Aleksic et al. (1989) have included the rate of ice crystal pro-
duction due to the Hallett-Mossop splinter mechanism by means of the following
relation:

where is the riming rate of an ice crystal or graupel, is the
surface temperature of the riming particle, and the function is given by

Equation (16-70) accounts for the observed fact that approximately 350 ice splinters
are produced for every of rime accreted by a graupel at –5°C. Alternatively,
one may use the relation

where is the efficiency for collision between a graupel of radius and
cloud drops of and is the number concentration of cloud drops
larger than in radius. Equation (16-72) includes the observed fact that
approximately one ice splinter is produced per 250 drops larger than radius

diameter) accreted onto a graupel at –5°C.
Beheng (1982, 1987) studied the implication of the Hallett-Mossop splinter mech-

anism on the glaciation behavior of a cloud whose drops grow by collision and co-
alescence, and by collision with ice crystals, choosing a modified gamma function
for the initial drop size distribution, and a Gaussian distribution function for the
columnar snow crystals. Drops larger than radius were allowed to collide
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ter rate of to splinters per drop was assumed, as suggested by
Mossop (1976), and if drops of diameters larger than were present in the
cloud. Beheng (1987) also found that the time interval required for increasing
the number of ice particles by a factor of in a cloud was related to the
initial number of the crystals per liter, by where A = 11.7, and
B = 0.313. For Beheng found minutes, a reasonable
value considering the observations of Mossop et al. (1970, 1972).

16.2 Growth of Snow Crystals by Collision with other Snow
Crystals

Many continental snow storms contain little supercooled water so that changes in
the ice mass concentration are primarily the result of the diffusional growth of snow
crystals from ice-supersaturated vapor, followed by aggregation resulting from the
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with the columnar crystals with an efficiency given by Lew and Pruppacher (1983)
(see Section 14.6.2). Riming of the ice columns proceeded with efficiencies given by
Schlamp et al. (1975), and frozen drops were assumed to turn into lump graupel
growing by collision with drops at a rate given by the scheme of Heymsfield and
Pflaum (1985). At model times between 450 and 1750 seconds, the results agreed
well with the observations of Mossop (1985a,b) in small winter cumuli, if a splin-
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collision of snow crystals with other snow crystals. The variation of the number
density distribution functions for snow crystals growing by vapor deposition, ag-
gregation and breakup has been studied by Passarelli (1978a,b, 1987), Passarelli
and Srivastawa (1979), Lo and Passarelli (1982), and by Mitchell (1988), assuming
drops to be absent and assuming that the initial ice crystal spectrum is given. The
change in the number density distribution function may then be expressed by the
relation

where the first term on the right of (16-73) is due to the diffusional growth of
snow crystals given by (16-62). The second term on the right is given by the
stochastic collision rate of snow crystals which can be expressed by the relation
(see Chapter 15).

where the first term on the right of (16-74) represents the production of ice aggre-
gates of mass due to aggregation of crystals having mass and and
the second term on the right of (16-74) represents the depletion of aggregates of
mass due to aggregation with particles of mass The function represents
a weighing factor for the collision efficiency to correct for the temperature varia-
tion of the crystal shape. The factor represents the sticking efficiency
of the colliding crystals. is the collision kernel for snow crystals colliding with
other crystals (Section 14.7). Finally, the third term on the right of (16-73) may
be expressed by the relation (see Chapter 15)

The first term on the right of (16-75) is due to the production of particles of mass
due to collisions between particles of and is the number

of fragments with masses between and when particles with mass
and collide and break up, and is the breakup efficiency of the colliding



GROWTH OF ICE PARTICLES BY ACCRETION AND ICE PARTICLE MELTING 691

fragments and The second term on the right of (16-75) represents the
depletion of particles of mass due to collisional breakup with particles of mass

Unfortunately, at present a quantitative description of the breakup mechanism of
aggregating snow crystals is not available, so that the last term in (16-73) must be
ignored. On further setting the sticking efficiency  and assuming that the
aggregation efficiency is given by the temperature corrected collision efficiency

Mitchell (1988) computed the change of a size spectrum of snow crystals as
a function of time, with the size distribution constrained to be exponential. The
theoretically predicted values for the size distribution parameters and was
compared to values observed by Lo and Passarelli (1982) in cyclonic storms for
aggregating particles of diameter 300 to The temperature and humidity
profiles, as well as the snowfall rate at some reference level near the cloud top,
were taken from observation. In addition, the snowfall rate was assumed to follow
an exponential distribution with height, E was assumed to be unity, and was
arbitrarily set to the values

and Results of these computations are given
in Figures 16.9a,b. We note the computed values of and agree well with
those observed. We also note from these figures that the size spectrum of particles
which grow by diffusion, only evolves in a significantly different manner from a
spectrum which is controlled at the same time by snow crystal aggregation.

16.3 Melting of Ice Particles

When ice particles fall through the 0°C level in the atmosphere, they commence
melting. Obviously, such melting is not instantaneous due to the finite rate at which
heat can be supplied to provide for the necessary latent heat of melting. Due to their
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smaller mass-to-area ratio, smaller sized ice particles melt quicker than do larger
ones. Because of this and the difference in fall speeds, generally only very large
particles of the size of hailstones can survive the fall from a cloud base above 0°C
to ground. In this section, we shall briefly discuss the quantitative details of such
behavior, following the work of Mason (1956), Macklin (1963, 1964a,b), Drake and
Mason (1966), and Bailey and Macklin (1968), Rasmussen and Pruppacher (1982),
Rasmussen et al. (1982, 1984a,b), Rasmussen and Heymsfield (1987a,b,c), Matsuo
and Sasyo (1981a,b), and Mitra et al. (1990c).

16.3.1 MELTING OF GRAUPEL AND HAILSTONES

The simplest model for describing the melting process of a graupel or hailstone
obviously involves a spherical ice particle of radius falling at terminal velocity
in air of constant humidity and constant temperature where
Since the ice particle melts and therefore consists at time of a spherical
ice core of radius surrounded by a layer of water of thickness assumed to
be uniform and concentric with the ice core (Figure 16.10). We also shall assume
that there is no internal circulation in the meltwater and that The
latter assumption implies that no meltwater is lost by shedding or evaporation,
although we will consider the effect of evaporative cooling on the melting process.
Assuming a steady state and no internal circulation in the meltwater, the rate of
release of latent heat of melting must then be balanced by the rate at which heat
is transferred through the water layer, so that

where is the thermal conductivity of water (Mason, 1956). In (16-76), is
the temperature at the surface of the liquid layer and is the temperature at the
ice-water interface.

From (16-76), we thus find the time for complete melting of the ice sphere
to be given by

with T in K. This equation was first evaluated by Drake and Mason (1966). Since,
for a steady state, the rate of heat transfer through the water layer to the ice core
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must be balanced by the rate at which heat is transferred through the air to the
surface of the melting particle by forced convection of heat and by evaporation
(condensation), we must also require that

where is the diffusivity of water vapor in air, is the heat conductivity of air,
is the universal gas constant, is the

fractional relative humidity of air, and and are the ventilation coefficients
for mass and heat transfer. For given and one may determine
from (16-78), which then permits the determination of in (16-77) and
from (16-76).

Evaporative cooling of the surface of a melting ice sphere falling through sub-
saturated air reduces the rate of melting and therefore the time and distance for
complete melting. In addition, the onset of melting may be considerably delayed.
The critical air temperature at which melting begins is found by setting

Assuming further that we have, from (16-78),

Equation (16-79) was experimentally verified by Rasmussen and Pruppacher (1982),
showing that, with decreasing relative humidity, the onset of melting shifts to tem-
peratures above 0°C. Thus, at a relative humidity of 50%, e.g., melting begins at
+4°C.

Equations (16-76) and (16-77) were experimentally verified by Rasmussen et al.
(1984b) for the case of ice particles of diameter between 5 and 9 mm

(see Figure 16.11d). For these ice particles, the meltwater exhib-
ited no internal circulation. The rate of melting of the ice core can therefore be
determined from (16-76) and (16-77), which assume heat transport by conduction
only. These equations also assume a concentrically located ice core which contra-
dicts observation (see Figure 16.11d). However, Rasmussen et al. (1982, 1984)
showed that by solving the heat transfer equation in a bispherical coordinates, the
corrections to the concentric location of the ice core can be neglected.

Melting ice particles of sizes smaller than 5 mm exhibit a vigorous internal circu-
lation in the meltwater, as shown schematically in Figures 16.11e,f. Unfortunately,
a complete solution to the heat transfer equation, including the effects of circula-
tion in the meltwater, is not available for the appropriate geometry. However, a
solution was provided by Rasmussen et al. (1982) under assumption of creeping
flow in the meltwater, and with an eccentrically located ice core. Unfortunately,
the melting rates thus determined were much too small compared to those ob-
served. This suggests that the internal circulation in the meltwater is not laminar
but turbulent. For the agreement of theory with experiment, it is in fact necessary
to set so that now for particles of this size
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where Wind tunnel experiments of Rasmussen et al. (1984a,b)
and Rasmussen and Pruppacher (1982) have verified that (16-80) for ice particles
of and ice particles of

Thus far, we have considered that the meltwater remains attached to the melting
ice sphere and does not shed. However, wind tunnel studies of Rasmussen et al.
(1984b) showed that melting ice spheres of

exhibited intermittent shedding of large drops from a stable torus near the
equator, while melting ice spheres of
exhibited intermittent shedding of large drops from a highly unstable torus which
moves downstream as melting proceeds. In contrast, ice spheres of

exhibited continuous shedding of small drops from the torus and
turbulent boundary layer (Figures 16.11a,b,c). To describe the melting rate of
spherical hailstones of Rasmussen and
Heymsfield (1987a) suggested using an equation due to Macklin (1963, 1964) based
on his experiments with ice spheroids. For the case that most of the meltwater is
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shed, Macklin found

where and where the effect of ventilation on melting is given by
and being the heat (mass) transfer

coefficient, and A being the surface area of the ice spheroid. For
Macklin gave For Bailey and Macklin (1968b)

suggested
In order to estimate the mass of meltwater shed by melting hailstones of

9 mm, Rasmussen and Heymsfield (1987a) analyzed the wind tunnel data of Ras-
mussen et al. (1984b) to find that the critical water mass on the ice core of the
melting hailstone just before shedding is related to the mass of the ice core by

This equation implies that for non-tumbling hailstones there is a maximum amount
of water which can be retained on the surface of a given ice core before shedding
occurs. If the amount of water exceeds this maximum amount, shedding of all the
excess water occurs.

Rasmussen and Heymsfield (1987b) applied the melting and shedding rate equa-
tions to an atmospheric case in which it was assumed that a hailstone was falling
through cloud free air of various relative humidity, with a linear temperature profile
given by 24°C at the ground (0.8 km MSL, 920 mb) and 0°C at 5.2 km (525 mb).
From their model, they determined the variation with height of the hailstones size,
the terminal velocity, the density, and the shedding behavior. The results of this
study are given in Figures 16.12a,b,c,d. We notice from Figure 16.12a that a hail-
stone of and 1 cm diameter survives the 5.2 km fall to the
ground, reaching it as a 0.2 cm diameter ice particle, while a same-sized hailstone
with is completely melted at 1.3 km above the ground. In Fig-
ure 16.12d, the variation with height of the hailstone’s mean density is given. We
notice that the density of a hailstone of initial density increases with
decreasing altitude due to the soaking of meltwater. During soaking, the particles
terminal velocity increases (16-12b). A particle of initial density does
not soak meltwater but rather accumulates it on its surface, causing a water torus
to build up around its equator. This results in a decrease of the particle’s terminal

at about 2.3 km below the 0°C level (Figure 16.12c). Soaking of the
particle delays shedding which begins 0.9 km below shedding from the
particle. As expected, the study of Rasmussen and Heymsfield (1987b) also showed
that melting and shedding are both very sensitive functions at the relative humid-
ity of the air. Thus, their computations showed that a 2 cm diameter hailstone of
density melts during its fall due to evaporative cooling to a 1.2 cm
stone in an environment of 50% relative humidity, but melts completely at 100%
relative humidity.

velocity (Figure 16.12b). Shedding of meltwater for the particle begins



typical size distribution of hailstones consists of about 20 stones per air for
1 cm diameter stones, and about 2 stones per air for 2 cm diameter stones.
Thus, the number of 1 cm stones is about 10 times as large as the number of 2 cm
stones. However, the mass of a 1 cm stone is about 1/8 of the mass of a hailstone of
2 cm in diameter, which implies that the mass of ice in each size interval is nearly
the same. (2) By melting, the terminal fall velocity of a hailstone is lowered due
to the meltwater torus which increases the cross-sectional area and therefore the
drag on the falling particle. Shedding lessens the fall velocity further by reducing
the particle mass. A reduction in terminal fall velocity, in turn, implies that the
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Before concluding this section, a few consequences with practical implications
should be pointed out: (1) The melting rate equations show that the amount of
water mass melted per unit time in a population of small ice spheres is larger than
the water mass melted per unit time in a population of large ice spheres, given
the same total initial ice mass in each population. This implies that the smaller
stones will be more effective in extracting heat from the environment, and therefore
be more effective in cooling the environmental air. Also, smaller hailstones spend
more time in the air due to their smaller fall velocity. The assumption, made above,
of equal ice mass in a given size interval, may be justified by considering that a
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particle spends a longer time in the cloud. Shedding also significantly affects the
distribution of liquid water in a cloud, and the raindrop size distribution below the
cloud.

16.3.2 MELTING OF SNOW FLAKES

The basic concepts developed in the previous section may also be applied to describe
the melting behavior of snow flakes. However, before we formulate the necessary
equations, we shall first point out some of the differences between melting hailstones
and melting flakes, considering the field observations made by Knight (1979) and
Fujiyoshi (1986), the laboratory observations with stationary snow flakes made
by Matsuo and Sasyo (1981a), and the wind tunnel observations of Mitra et al.
(1990c) with freely falling flakes. These show that, during melting of snow flakes,
the meltwater does not form a coat around the flake as in the case of melting
graupel and hailstones, but rather flows from the flake periphery to the linkages of
the snow flake branches where it accumulates, leaving the ice skeleton of the flake
essentially uncovered with water. Thus, the melting rate may be computed without
considering an intermediate water film through which heat has to be conducted to
melt the ice. In agreement with each other, all observations suggest the following
four stages of melting:

During Stage-1, small drops of meltwater appear at the tips of the crystal
branches. During Stage-2, the meltwater flows from the periphery to the link-
ages of the crystal branches as a result of capillary forces or surface tension effects
which attempt to minimize the total surface energy of the system. As a result,
the ice skeleton surface is essentially uncovered by meltwater. Although some-
what reduced in diameter, the main ice skeleton remains intact. During Stage-3,
ice branches in the flake’s interior begin to melt. This results in a structural re-
arrangement during which some branches bulge out and some flip inward. The
crystal mesh changes from one with many small openings to one with only a few
large ones. During Stage-4, the main ice frame suddenly collapses. The remaining
unmelted ice portions become embedded inside the meltwater which pulls itself
together to form a drop.

In agreement with Fukuta et al. (1986), Mitra et al. (1990c) showed that, during
melting, freely falling snow flakes exhibit breakup and meltwater shedding only if
the flakes have a very asymmetric structure and the relative humidity remains below
about 70%. These results are in agreement with those of Matsuo and Sasyo (1981a),
who found no breakup during the melting of flakes in air of relative humidity of 94%,
and with those of Oralty and Hallett (1989), who found that melting dendrites did
not breakup as long as the relative humidity was above 70%. However, breakup and
drop shedding did occur at relative humidities below 70%. Snow crystals of plate-
shape showed no shedding or breakup under any of the investigated conditions.

Assuming no shedding or breakup and considering that the snow flake remains
at 0°C once melting had begun, Mitra et al. (1990c) suggest expressing the rate of
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melting by a relation analogous to (16-80):

spheroid of axis vario with
and

where is the capacitance of the flake. The density of the flake
was assumed to vary linearily with where is the mass of meltwater in
the flake and is the mass of the flake, with for
and for The axis ratio was assumed to vary
linearly with between for and for

The relative capacitance was assumed to vary linearly with
between for and for

The variation of the fall velocity of a melting snow flake was empirically determined.

Some results of the computations of Mitra et al. (1990c) are given in Figure 16.13
in terms of snow crystal trajectories. We notice from this figure that, inside clouds
of 100% relative humidity and a lapse rate of 0.6°C/100 m, 99% of the ice mass
of a snow flake of 10 mm in diameter melts within a fall distance of 450 m. This
fall distance is about 100 m longer if the relative humidity is only 90%. These
results are consistent with radar observations, which show that typically the bright

where we assumed given by (13-88) and (13-89), and
((13-81)). Mitra et al. (1990c) assumed the flake to have the shape of a thin oblate
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band extends between 0 and 5°C and encompasses several hundred meters (see
Figure 2.50). The results of Mitra et al. (1990c) are also consistent with the
conclusions of Matsuo and Sasyo (1981b) derived from experiments with stationary
snow flakes.



CHAPTER 17

CLOUD CHEMISTRY

In Chapter 8, we have shown that air contains a great variety of solid and liquid
particles other than water drops and ice particles. We also know from our dis-
cussions in Chapters 6 and 9 that a considerable fraction of those serve as cloud
condensation and ice forming nuclei, whereby they become incorporated into the
cloud drops, raindrops and snow crystals. This removal process is usually referred
to as nucleation scavenging. From our discussion in Chapters 10 and 14, we fur-
ther expect that, in addition to nucleation scavenging, aerosol particles will be
removed from the atmosphere by collision with cloud drops, raindrops and ice par-
ticles. This mechanism is referred to as impaction scavenging. We also have shown
in Chapter 8 that, in addition to particles, air contains a great variety of gases
other than water vapor and the permanent gases listed in Table 8.1. Since most
of these have a finite solubility in water, they are expected to contribute further
to the load of chemical species in cloud and precipitation water. The uptake of
gases by cloud and precipitation particles is referred to as gas scavenging. Gases
which particularly contribute to gas scavenging are the chemically reactive species
such as organic gaseous acids such
as HCOOH (formic acid), (acetic acid), and aldehydes such as HCHO
(formaldehyde), as well as radicals such as OH,            NO, Cl. Gases are
not only scavenged by cloud and raindrops but also by snow crystals which adsorb
them on their surface.

A detailed description of the physical and chemical processes which take place
in the gas phase, inside water drops, and on the surface of ice particles, would
go far beyound the scope of the present book. In the present chapter, we shall
instead concentrate only on three major topics of cloud chemistry: (1) the chem-
ical constituents found in cloud and rain water, and in the meltwater of snow,
(2) the mechanisms by which these constituents enter the cloud and precipitation
particles, both inside and below a cloud, referred to as in-cloud and below-cloud
scavenging, and (3) the mechanisms by which these constituents are deposited on
the ground. For a more indepth treatment of cloud and clear air chemistry, the
reader is referred to the excellent texts of Junge (1963), Finlayson and Pitts (1986),
Seinfeld (1986), and Warneck (1988) on atmospheric chemistry, and to the texts
of Stumm and Morgan (1961), and Snoeyink and Jenkins (1980) on water chem-
istry. Also, in the present chapter, we have to refrain from discussing the numerous
cloud-dynamic models in which chemical processes are considered. For information
on these models, the reader is referred to the current literature, since no summary
texts are available.

700
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17.1 Concentrations of Water Soluble Compounds in Bulk
Cloud and Rain Water, and in Bulk Water of Melted

Snow

Most salts which are contained in atmospheric aerosol particles dissociate in water
into ions. Ion formation also occurs if certain reactive gases such as

and HCl are dissolved in water. Chemical analysis of cloud and
rain water, and of water of melted snow substantiates the presence of such ions.
Ions typically found are:

and Over the past several years, a
large number of observations has been made on the chemical composition of bulk
cloud and rain water, and bulk water of melted snow. It would be an impossi-
ble task to list all these observations and give credit to the respective observers.
Therefore, we are forced to select from a wealth of information only a small set
of what appears to us as a meaningful sample of observations across the world.
Thus, in Table 17.1, ion concentrations are given for rain water collected in urban
areas (a), maritime areas (b), and rural and remote areas (c). Table 17.2 lists
the acidity of rain water collected in urban areas. In Table 17.3, selected values
for the ion concentration in meltwater of fresh snow are listed. A comparison be-
tween ion concentrations in the meltwater of fresh snow and meltwater of rimed
particles collected at the same location is made in Table 17.4. Selected values for
the ion concentration in cloud and fog water are given in Table 17.5. Acidities
of cloud and fog water are listed in Table 17.6, and a comparison between the
composition of cloud water in different types of clouds and between cloud water
and rain water is made in Tables 17.7 and 17.8. We shall see in a later section
that hydrogen peroxide plays a significant role in cloud chemistry. We
have therefore listed in Table 17.9 selected values for the concentration of in
cloud and rain water. For all undissociated species, the concentration is given in

         while for all dissociated species the concentra-
tion is given in micro equivalent where

is the valency of the ion in the water.
The following general trends can be deduced from Tables 17.1 to 17.8: (1) Over

land, the ion content, generally, is highest in rain which had fallen over urban areas
and lowest in rain sampled on mountains. (2) Over land, the most prominent ions in
rain water are and with and contributing in proportion
to a station’s exposure to air trajectories from the ocean. (3) Over the ocean, the
total ion content in rain water is higher than that over land. (4) Close to the
ocean’s surface, the prominent ions in rain water are with

and playing a lesser role. This finding is expected considering that sea
salt particles in air are most prominent in the lower 2 to 3 km over the ocean, while
sulfate particles dominate higher up. (5) Cloud water in nonprecipitating clouds
whose drops are relatively small has a higher ion concentration than cloud water in
precipitating clouds whose drops are relatively large. (6) Cloud water, particularly
from stratus clouds, and fog water have ion concentrations which are larger than
the ion concentration in precipitation water. (7) Most rain appears to be acidic.
An exception to this are rains in certain parts of China and India where scavenged
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clay particles dissolve ions into the cloud and rainwater. The lowest pH values
are found in nonprecipitating clouds over cities and in city fogs. (8) The same ions
which are found in cloud and rain water are also found in the meltwater of snow,
graupel and hail with ion concentrations not significantly different from those in
cloud and rain water. (9) Among the various snow crystal shapes, the highest salt
concentrations are found in the meltwater of dendritic snow crystals as a result of
their high collection efficiency for aerosol particles by impaction scavenging. (10)
Rimed ice particles have generally higher salt contents than snow flakes or single
snow crystals, due to the salt contributed by the cloud drops frozen on them. This
finding has been confirmed by Borys et al. (1988), Colette et al. (1990), and by
MacGregor et al. (1991). (11) Comparison between salt concentrations in rain
water and in the meltwater of fresh snow made by Raynor and Hayes (1983), Dash
(1987), Cadle et al. (1990), Reynolds (1983), Nagamoto et al. (1983), and Topol
(1986) show that at a given location and time the concentration of in the
meltwater of fresh snow often is found to be larger by a factor 1.5 to 2.5 than its
concentration in rain; the reverse behavior was found for

17.2 Concentration of Water Insoluble Particles in Bulk
Cloud and Rain Water and Bulk Water of Melted Snow

Rosinski (1966, 1967a), Rosinski and Kerrigan (1969), and Rosinski et al. (1970)
studied the number concentration and size of water-insoluble particles in rain wa-
ter, in individual raindrops, and in ice particles. Most frequently, the particles had
diameters much less than but rain water collected from severe storms con-
tained appreciable numbers of particles with even larger diameters. The particle
concentration in rain water depended strongly on the collection time during the life
cycle of the storm. Highest particle concentrations were always found at the onset
of precipitation. Typical values are given in Table 17.10. Unfortunately, no counts
were taken of particles with diameters less than Using a power law of the type

Vali (1968a) estimated by extrapolation that particles with diameters of
may be present in rain water in concentrations of to Also,

Rosinski et al. (1970) observed that even at the cirrus cloud level, the number of
water-insoluble particles in water from melted crystals is appreciable, ranging in
their samples from to for particles with diameters
larger than Particles designated as magnetic spherules were also present
in water from melted cirrus ice crystals, and appeared in concentrations of 5 to

Ishizaka (1972, 1973) has made a detailed study of the amount and type of
solid, water-insoluble material contained in rain and snow water collected in Japan.
Water from melted snow which fell during the NW monsoon contained 4.6 mg of
solid material per liter of snow water. Of this material, 70% by weight consisted of

feldspar, illite, chlorite, kaolinite, halloysite, montmorillonite, and talc.
Rain water from a storm which originated in central China, contained of
solid material, of which about 20% consisted of feldspar, illite, chlorite,
kaolinite, and vermiculite. Rain water collected during Typhoon 7002 was relatively
clean and contained small amounts of and pyroxene, while
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rain water from a storm which had a relatively long trajectory over Japan contained
large amounts of amorphous carbon and other oreanic material. Measurements
of the particulate carbon content of rain water, made at various locations, are
summarized in Table 17.11.

Measurements of the size distribution of water insoluble aerosol particles in
rain water have been reported by Schütz and Krämer (1987), and Brinkmann
(1994), who analyzed the water insoluble content of rain water collected at Mainz
(Germany). They found that the aerosol particles in the size range 0.1 to
followed a Junge power law, as illustrated in Figure 17.1.
Consistent with these observations, Malyschew et al. (1994) found that in rains
over Darmstadt (Germany), was the most frequent radius of water
insoluble particles consisting mainly of calcium-silicate.

As expected from their capacity for nucleating snow crystals (see Section 9.2),
water insoluble aerosol particles are found also in the meltwater of snow crystals.
Those responsible for ice nucleation are usually found at or near the center of the
snow crystal. Inspection of the surface of snow crystals by microscopy shows, how-
ever, that snow crystals scavenge during their life time a large number of additional
particles by impacting them on their surface. Such studies have been carried out
by Magono et al. (1974, 1975a,b, 1979). An example for the size distribution of
such particles is given in Figure 17.2.
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17.3 Concentration of Water Soluble Compounds in
Individual Cloud and Raindrops

Until recently, not much has been known about the chemical constitution of indi-
vidual cloud and raindrops. This is understandable considering the smallness of
drops in atmospheric clouds, and the fact that chemical analysis typically requires a
minimum sample volume much larger than a single drop. Fortunately, however, re-
cent technology such as capillary zone electrophoresis (see Bächmann et al., 1991,
1993a, 1992a; Bächmann and Steigerwald, 1993) has provided new methods by
which chemical analysis of raindrops can be carried out with considerable accuracy
on drop volumes down to a few nanoliters (a            radius drop has a volume of

Early attempts to study the chemical compositions of cloud and fog drops dealt
with the residue of evaporated drops. These studies suggested a direct corre-
lation between drop size and the size of the aerosol particles upon which they
grew (Kuroiwa, 1951, 1956; Ogiwara and Okita, 1952; Isono, 1957; Naruse and
Maruyama, 1971). The observations imply that large cloud drops develop by con-
densation from large salt particles, while small drops grow from small salt particles,
thus supporting the results from the Köhler theory for equilibrium growth (see Ta-
ble 6.2).

Chemical analysis of drop residues is exemplified in Table 17.12. We notice from
this table that salt particles and particles derived from combustion together account
for more than 50% of the residue left by evaporated cloud and fog drops. Again,
sea salt is found to be more abundant near or over the ocean, while combustion
products are more abundant inland. Similar results have been obtained by Ogiwara
and Okita (1952). In addition, Naruse and Maryama (1971) have found that about
95% of all cloud and fog drops with diameters between 5 and contain residue
masses between and The largest residue observed had a
mass of More quantitative results on the composition of cloud drops
have become available through the field experiments of Gieray et al. (1993), Ogren
et al. (1989, 1992), Heintzenberg et al. (1989), and Noone et al. (1988, 1989).
Based on their field studies, the latter authors formulated a schematic which con-
ceptually relates the salt concentration in cloud drops to their size. This schematic
is illustrated in Figure 17.3. Cloud model studies of Flossmann et al. (1985, 1987),
Flossmann and Pruppacher (1988), Flossmann (1991, 1994), Baumgarten (1990),
Ahr (1988), and Roeloffs (1992) confirm this conceptual model (see Figure 17.4).

We notice from Figure 17.3 that the variation of salt concentrations in drops as
a function of drop size can be subdivided characteristically into four size intervals:

In size interval I, the drop growth process involves drops typically between 1
and radius. In this size range, the salt concentration decreases sharply with
increasing size. This size interval involves drops which just have been activated.
Therefore, the salt concentration in these drops reflects the salt concentration in
the drops near the critical saturation ratio given in Table 6.2. This table shows
that, at , the salt concentration varies inversely with drop size. Since new
aerosol particles continuously enter the cloud by entrainment, this variation of the
salt concentration with drop size will be maintained across this drop size interval
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at all the levels inside a cloud at which entrainment plays a role.
In size interval II, the drop growth process involves drops typically between 10

and radius. In this size range, the salt concentration rises with increasing
drop size. This size interval involves drops which, after their activation, continue
to grow by vapor diffusion. For a given supersaturation and temperature, and for
a given mass of salt in the drop, we may rewrite (13-28) as

where is the drop volume, is given by (13-27), and A and B are constants
as given in (13-28). If the salt mass in the drop is the variation of the salt
concentration is readily found to be

Since we find that This shows that the larger
the drop size, the less rapid is its dilution. Since, generally, larger drops also have
started off on larger salt particle masses (Kuroiwa, 1951, 1956; Ogiwara and Okita,
1952; Isono, 1957; Naruse and Maruyama, 1971) their salt concentration will be
larger during diffusional growth than the salt concentration in smaller drops.

In size interval III, the drop growth process involves drops typically between
about 50 and radius. In this size range, drop growth is dominated by the
collision and coalescence process which causes the higher concentrated drops to
become diluted by collision with lower concentrated drops. Since large drops have
a higher collision efficiency than small drops, their rate of dilution is larger so that
during this growth stage the solute concentration in drops decreases with increasing
drop size.

Size interval IV involves precipitation sized drops of a few hundred microns
and larger inside clouds. Across this size interval, the salt concentration is rather
uniform. This is due to the numerous collision and coalescence events which are
necessary to form precipitation sized drops, yielding a rather well-mixed cloud
water. This behavior has been confirmed by the observations of Bächmann et al.
(1995) who studied the variation of the salt ion content with drop size at cloud
base and at the ground, and by the cloud model studies of Flossmann (1993) (see
Figure 17.4 for

In addition to the four size intervals which pertain to drops inside a cloud, we
must distinguish a ‘fifth’ interval (see Figure 17.5) pertaining to drops which have
sizes as those in interval IV but whose salt concentration is additionally deter-
mined by mechanisms which take place below the cloud. During their fall from
cloud base to ground, drops experience an increase in solute concentration due to
evaporation and below cloud scavenging of particle and gases. We shall show in
Sections 17.4.2 and 17.5 that, in this size range, the efficiency with which particles
and gases are scavenged by drops decreases with increasing drop size. In addition,
evaporations of falling rain mainly effects the smallest drops. Thus, one expects
that the solute concentration in raindrops which reach the ground decreases with
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increasing drop size. This general trend has been verified by the field studies of
Georgii and Wötzel (1970), Adams et al. (1986), Turner (1955), and by the cloud
model studies of Flossmann (1994), and of Tsias (1996) (see Figure 17.6, curve a,
assuming spontaneous drop breakup).

In contrast to these, the field studies of Bächmann et al. (1992b, 1993b) showed
that, during a precipitation event, the salt concentration across the raindrop spec-
trum evolves in time, and often develops a concentration maximum in drops of
200 to radius (see Figure 17.7). Cloud model studies of Tsias (1996) show
that this maximum is a indirect result of collisional breakup of large raindrops.
During such a breakup, small fragment drops are formed which have the same
low concentration as their larger parent drops. Since many of these fragment
drops evade further capture, they produce a concentration minimum in the range

(see Figure 17.6, curve b, where collisional breakup was in-
cluded in the stochastic drop growth process). The relative concentration maxi-
mum thus occurs for slightly larger drops, which are not affected by this ‘dilution’
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mechanism. An additional effect causing a maximum in the variation of soluble
concentration with rain drop size will be discussed at the end of Section 17.4.2.5.

Cloud model studies and field observations show that not only the salt concen-
tration but also the chemical composition of cloud water is a function of drop size.
Thus, Naruse and Maruyama (1971) showed that larger droplets contained sea salt
particles, while the smaller drops contained More recently, Munger et
al. (1989), who analyzed two drop size fractions of California stratus clouds, found
that the fraction consisting of the larger drop mostly contained and

while the fraction with the smaller drops contained and
The concentration of was nearly equal in both size fractions. A similar result
was predicted by the cloud model of Flossmann (1991), who demonstrated that an
aerosol size distribution consisting of                   in the small particle size range
and NaCl in the large size range produced small drops which contained mainly

and larger drops which contained mostly NaCl.

17.4 Scavenging of Aerosol Particles by Cloud Drops,
Raindrops and Ice Particles

As noted earlier, aerosol particles become incorporated into cloud drops by the
mechanisms of nucleation and impaction scavenging. Cloud modeling demonstrates
that, together, both mechanisms remove a substantial fraction of the aerosol par-
ticle population and incorporate it into the cloud water. This is illustrated by
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Figure 17.8 for a maritime aerosol subjected to nucleation and impaction scav-
enging inside a rising, entraining air parcel. We note from this figure that after
27 minutes of model time, about 94% of the total original aerosol particle number
concentration has become scavenged. The aerosol particles remaining unscavenged,
called the cloud-interstitial aerosol, are those with radii typically less than

Once incorporated in cloud water, the scavenged aerosol mass becomes redis-
tributed inside the cloud water due to collision and coalescence between drops.
This process is illustrated in Figure 17.9 for the same maritime aerosol for which
Figure 17.8 was obtained. We note from this figure that the distribution function

for the aerosol mass inside the drops per air follows closely the distrib-
ution function (see Section 13.2.2) for the cloud water. This implies that the
scavenged aerosol mass becomes redistributed inside the cloud water in such a fash-
ion that the main scavenged aerosol mass remains associated with the main water
mass. Since the latter encompasses the precipitation sized drops, the precipitation
efficiency of a cloud (given by the fraction of cloud water which formed by conden-
sation eventually arrives as rain on the ground) will eventually control the fraction
of the scavenged aerosol mass which will become returned to the ground.

In the following sections, we shall attempt to describe the mechanisms which are
responsible for aerosol particle scavenging. Our discussion of the first mechanism,
nucleation scavenging, will be relatively brief, since we have already considered
heterogeneous drop and ice crystal formation in Chapters 6, 9, and 13. The sec-
tion on nucleation scavenging will then be followed by a longer discussion on the
mechanisms which are responsible for impaction scavenging.

17.4.1 NUCLEATION SCAVENGING

Field experiments (Georgii et al., 1971; Schumann et al., 1986; Hudson, 1993, a.o.)
have demonstrated that the concentration of aerosol particles in the atmosphere
become drastically reduced at the levels where clouds form. This indirectly verified
the involvement of aerosol particles in the process of cloud drop nucleation. As
mentioned in the introduction to this chapter, this mode of aerosol removal is
therefore termed nucleation scavenging.

The contribution of nucleation scavenging to the total uptake of aerosol par-
ticles by a cloud can be conveniently computed by a detailed formulation of the
condensation process which tracks the evolution of the aerosol size spectrum in the
air and the aerosol particle mass in the cloud drops. This procedure has been fol-
lowed in numerous cloud model studies (Flossmann et al. 1985, 1987; Flossmann,
Pruppacher, 1988; Flossmann, 1991, 1994; Baumgarten, 1990; Ahr, 1988). A more
recent computation (Wurzler et al., 1994) is illustrated in Figure 17.8. Since nu-
cleation scavenging completely dominates impaction scavenging at the beginning
of cloud formation, we notice that after 200 seconds (Figure 17.8b), nucleation
scavenging had removed about 75% of the aerosol particle population present in
the air. Subsequent rise in supersaturation affected by further cooling as well as by
collision and coalescence between drops, had removed another 20% of the aerosol
particle population within 1400 seconds. In this manner, the ‘cut-off’ in the aerosol
particle spectrum is shifted from about radius to about radius. Ahr



CLOUD CHEMISTRY 717

et al. (1989) showed that the cut-off of ‘wet’ aerosol particles (i.e., aerosol particles
at the critical supersaturation) is independent of the chemical composition of the
particles and depends only on the prevailing supersaturation in the cloud. However,
with respect to the original spectrum of ‘dry’ aerosol particles, the cut-off becomes
diffuse and depends on the prevailing supersaturation as well as on the chemical
composition of the particles. This is so because aerosol particles of different chem-
ical composition may have the same activation radius (see Figure 17.10). Thus,
increasing chemical heterogeneity of the condensing aerosol will cause the cut-off
to become less distinct. This effect has been verified by the field observations of
Noone et al. (1992b) in fogs formed in heavily polluted air. Their observations are
illustrated in Figure 17.11, which shows that particles with radii less than
were essentially not affected by nucleation scavenging. With increasing size, the
scavenged fraction increased gradually to about 50% for particles of radius less
than to 100% for particles less than

Additional field studies of nucleation scavenging and the cloud interstitial aerosol
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have been carried out by Scott and Laulinen (1979), Knollenberg (1981), Radke
(1983), Sievering et al. (1984), Hudson (1984, 1993), Hegg et al. (1984), Leaitch et
al. (1986), Brink et al. (1987), Daum (1988), Hallberg et al. (1992), and Martin-
sohn et al. (1992). These studies confirm the existence of a ‘cut-off’ in the aerosol
particle spectrum inside a cloud and an associated cloud interstitial aerosol. Such a
cut-off was found to be particularly distinct in clouds with relatively large updraft,
and associated large supersaturations, and a relatively small number concentra-
tion of aerosol particles of rather uniform chemical composition. In such clouds,
75 to 90% of the original AP number concentration were found to be depleted by
nucleation scavenging.

The effects of nucleation scavenging by snow crystals has not been studied in
the field. On the other hand, some cloud model results of Alheit et al. (1990) show
convincingly that, in mixed clouds, scavenging by ice nucleation can be neglected
in comparison to drop nucleation scavenging.
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17.4.2 IMPACTION SCAVENGING

We shall now turn our attention to the various wet-removal processes by which
aerosol particles become attached to drops and ice particles due to collision. In
our discussion, we shall consider the attachment mechanisms of (1) convective
Brownian diffusion, (2) thermophoresis and diffusiophoresis, (3) turbulent shear
and turbulent inertial capture, and (4) gravitational or ‘inertial’ capture.

From (11-58), we see that the loss rate of aerosol particles of radius per unit
volume of air by virtue of impaction scavenging by cloud drops is given by

where    denotes drop radius, and                  is the number of drops per unit volume
of air at time in the size interval to The fractional depletion rate of the
aerosol concentration by scavenging is called the scavenging coefficient, From
(17-3), we thus have

The scavenging problem is therefore basically one of determining the collection ker-
nel for the various attachment processes of interest. If the drop distribution
does not vary with time, then, becomes constant in time, and we have the simple
result that

17.4.2.1 Scavenging by Convective Brownian Diffusion

Stationary drops capture particles by simple Brownian diffusion. The discussion
of Section 11.5 is therefore directly applicable to this process. From (11-37), we
then find that the loss rate of aerosol particles due to Brownian collision with a
stationary drop is given by the flux of particles to the drop, i.e., opposite to the
radial coordinate

where is the concentration of particles far from the drop. Often, however, the
fall velocity of a drop is large enough so that there is a significant enhancement of
the diffusion rate caused by the convection of particles relative to the drop. We
shall therefore briefly discuss the mechanism of scavenging by forced convective
diffusion.

Suppose particles in concentration are transported by Brownian motion and
by virtue of being suspended in a medium moving with velocity The particle
current density is
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so that, for the case of a steady state and constant diffusivity, the condition of
particle continuity yields the following governing equation for

This is the steady state convective diffusion equation. To obtain (17-8), we have
assumed the flow to be incompressible.

Let us now discuss the use of this equation in estimating the rate of attachment
of small aerosol particles to a spherical drop of radius falling with velocity
If we adopt the usual point of view of a reference frame moving with the drop
(regarded as a rigid sphere), the boundary conditions for the problem are

and where is the concentration of particles
far from the drop. On using the same simple scaling arguments which demonstrated
the significance of the Reynolds number in Section 10.2.1, we find the relative
strengths of the particle diffusion and convective transport processes are measured
by the dimensionless Péclet number,

where is the drop diameter. (Although the radius would be a more natural
choice for the characteristic length in (17-9), we use in order to conform with
the conventional definition of without having to keep track of factors of two.)
Also, the Péclet number may be expressed in terms of the Reynolds number and
the particle Schmidt number,

As can be seen from Table 11.1, the Schmidt number for aerosols is generally
quite large. Therefore, the Péclet number for convective diffusion of aerosols will
be large for essentially all cloud droplets, even though they may have very small
Reynolds numbers. We recall from Section 10.2.2.3 that, for , there is
a momentum boundary layer of characteristic thickness From the
analogous definitions of and (from (17-9) and (17-10) we see is the
Reynolds number for particle diffusion) and the fact that we can an-
ticipate finding a diffusion boundary layer, whose characteristic thickness is a
monotonic decreasing function of At distances from the drop surface smaller
than diffusion dominates, while beyond convection controls the particle
concentration.

Let us now use scaling arguments to find the form of for the case of small
drops, with The procedure consists simply of exploring the consequences
of the fact that both sides of (17-8) have comparable magnitudes at a distance
from the drop surface. Consider a small region of the flow where is assumed to
be well-defined, letting denote distance along the drop surface in the direction of
the local flow, and denote distance normal to the surface. Then, we may write

Both terms on the right side are of comparable
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magnitude, by the condition So it suffices to estimate the term
at For small flow, will scale up to the free stream value in a
characteristic distance so that, if , we expect

i.e., the velocity shear is linear for small On the other hand, the
characteristic length for the gradient in is just So we estimate

at For the right side of (17-8), we have the obvious estimate
at               On equating these estimates, we

find or

According to (17-11), the concentration gradient in the neighborhood of the
droplet and, hence, the particle flux to it, will be enhanced by a factor propor-
tional to over the magnitude due to pure diffusion, for Therefore,
an interpolation formula which gives a fairly good approximation to the total con-
vective Brownian diffusion flux     for arbitrary and
is

where is the pure steady state diffusive flux given by (17-4) assuming
and A is a dimensionless positive constant. The analyses of convective diffusion to
a sphere in Stokes flow by Friedlander (1957), Baird and Hamielec (1962), Levich
(1962), and Ruckenstein (1964) have resulted in the estimates A = 0.45, 0.50, 0.50,
and 0.52, respectively.

For larger droplets with , the results are modified somewhat. For this
case there exists a momentum boundary layer as well as the diffusion boundary
layer. The relevant inequalities are and the latter one arising
from Therefore, in estimating the convective term we note
that scales up to in a distance rather than as before, so
that at The diffusion term in (17-8) is still
characterized by which, on being set equal to the convective
term, leads to or

It is thus seen that for aerosol particle diffusion, is typically less than one-tenth
the thickness of the momentum boundary layer. The corresponding interpolation
formula for the total convective particle flux to a falling drop has the form

Unfortunately, no experiments are available to verify the low Reynolds num-
ber result (17-12) and the constants of proportionality determined by Friedlander,
Baird and Hamielec, Levich, and Ruckenstein. On the other hand, experiments
carried out at high Reynolds numbers by Steinberger and Treybal (1960), Rowe et
al. (1965) and Gilbert et al. (1972) showed that, over limited Reynolds number



CLOUD CHEMISTRY 723

ranges, one indeed may express the convection effect in accordance with (17-14)
for the value of B ranging between 0.25 and 0.50 due
to experimental scatter. Slinn and Hales (1971) and Young (1974) have used the
value B = 0.30, which derives from the correlation of data presented by Ranz and
Marshall (1952) (also in Bird et al., 1960). In Young’s study, aerosol collection
rates for droplets are presented. This corresponds to the case
so that, in principle, it would have been better to use an expression of the form
of (17-12) rather than (17-14). However, the quantitative differences are probably
not significant.

Numerical computations of convective diffusion to a sphere have been carried
out bv Woo (1971) for and Woo found a flux
enhancement factor of where

and Unfortunately, Woo did
not extend his calculations to higher values of

We have mentioned in Chapter 13 that it is customary in cloud physics literature
to describe the enhancement of the water vapor flux due to the motion of the air
around a falling drop in terms of the mean ventilation coefficient given by (13-
60) and (13-61). In the present context, the mean ventilation coefficient for
the particle flux is simply the ratio Due to the lack of reliable values
for for the particle size range of atmospheric interest i.e.,

(see Table 11.1), it has become customary to assume
without further proof that We nevertheless shall continue to use in all
the forthcoming equations. Supposing that the drops follow the size distribution

the scavenging coefficient and collection kernel for convective Brownian
diffusion may thus be written as

and

As a simple example, we shall obtain an approximate expression for assum-
ing negligible convective enhancement of Brownian diffusion, and assuming
the Khrgian-Mazin drop spectrum (see Section 2.1.4). The result is

where is the liquid water content of the cloud in and is average
drop radius in cm (Sax and Goldsmith, 1972). Considering (17-5), we see that the
corresponding half-life of the aerosol particles (the time such that

is

For example, for and
(corresponding to and we get min;
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for 15°C and 1000 mb, and Thus,
if we assume that the total concentration of Aitken particles is typically about

a number of this magnitude is predicted to be scavenged by the cloud
per of cloud air, corresponding to particles absorbed per of cloud
water, within the span of one hour. These estimates are consistent with the field
observations of Rosinski (1966, 1967a) as extrapolated to small particles by Vali
(1968a).

17.4.2.2 Scavening by Thermophoresis and Diffusiophoresis

The phenomena of thermo- and diffusiophoresis were predicted by Stefan (1873)
and subsequently observed by Facy (1955, 1958, 1960). Quantitative studies using
various experimental techniques have been carried out by Goldsmith et al. (1963),
Goldsmith and May (1966), Waldmann and Schmitt (1966), and Vittori and Prodi
(1967). The theoretical aspects of these mechanisms have been discussed in detail
by Waldmann and Schmitt (1966), Slinn and Shen (1970), Slinn and Hales (1971),
and Derjaguin and Yamalov (1972).

Thermophoresis is the name given to the motion of particles caused by a kind of
thermally induced (radiometric) force, which arises from the non-uniform heating
of particles due to temperature gradients in the suspending gas. This phenomenon
naturally depends strongly on the Knudsen number of the particles. For
the mechanism of thermophoresis is relatively simple: The temperature gradients
cause the gas molecules to deliver a greater net impulse on the ‘warm’ side of
the particle than on the ‘cold’ side, thus driving it in the direction of colder gas
temperatures. For , the organization of this mechanism is somewhat more
involved. In this limit, we consider a portion of the aerosol particle surface layer,
large compared to over which a temperature gradient is established. The layer
of gas closest to this surface will acquire a temperature gradient which conforms
approximately to that of the surface, which means that gas molecules from the
hotter direction will impart a greater impulse to the surface locally than those
from the colder direction. Thus, the entire particle can experience a force along
the temperature gradient in the gas.

The mechanism of thermophoresis involves gas motion relative to the particle
surface, which means theoretical models for the case must abandon the
usual hydrodynamic boundary condition of no slip. What is often done for this
case is to assume the flow is described by continuum hydrodynamics with slip-flow
boundary conditions. An analysis of this type, which appears to yield results of
widest application, is due to Brock (1962), who obtained the following approximate
expression for the thermophoretic force on a particle of radius in air:

where and denote gas pressure and temperature gradient, and are the
air and particle thermal conductivities, is the dynamic viscosity of air, and
and     are phenomenological coefficients known as the ‘isothermal slip’ coefficient
and the ‘temperature jump’ coefficient. These coefficients depend on T as well
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as air and surface properties. Comparison with other theories and experiments
indicates that (17-19), which includes friction slip, is fairly accurate through the
entire inter except for a high conductivity aerosol. Further details
may be found in Waldmann and Schmitt (1966) and Hidy and Brock (1970).

For a quasi-steady state, the thermophoretic velocity is easily obtained by setting
equal to the slip-flow corrected Stokes drag, acting on

the particle. Therefore, the thermophoretic velocity of a particle in air may be
written as

where

and where is given by (11-16). In (17-20b), the values and
have been adopted, following Brock (1962). Note that is proportional to and
in the direction of the heat flux vector, (see Section 13.1.2).

With these results, we may write down the thermophoretic flux of particles in
concentration to a stationary evaporation drop of radius Since the ther-
mophoretic particle flux vector is the total particle flux to a
stationary, evaporating or growing drop, becomes, considering the radial symmetry
of the problem,

From (13-16), so that

The loss rate of particles by thermophoresis is then

where N is the total number of particles. Applying this result to ventilated drops
of size distribution , we obtain the following scavenging coefficient and
collection kernel for thermophoresis:

and

for an evaporating drop Since and cannot be negative,
and for
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Diffusiophoresis refers to aerosol particle motion induced by concentration gra-
dients in a gaseous mixture. Unlike the case of thermophoresis, both continuum
and non-continuum effects contribute to this phenomenon. The continuum contri-
bution is due to Stephan flow, which can be regarded as a hydrodynamic flow of
the medium which compensates for a diffusive flow of some constituent (s) (such
as water vapor). The non-continuum contribution arises from gas slippage along a
particle surface due to concentration gradients in some constituent(s); this mecha-
nism is thus analogous to the processes responsible for thermophoresis.

For detailed discussions of diffusiophoresis, see Waldmann and Schmitt (1966)
and Hidy and Brock (1971). For our purposes here, we merely quote from Wald-
mann and Schmitt (p. 151) the following approximate result for the diffusiophoretic
velocity      of a particle in stagnant air through which water vapor is diffusing:

for and

for The experiments of Schmitt and Waldmann (1960), Schmitt
(1961), and Goldsmith and May (1966) showed that the values for       computed
from (17-26) agree well with observed values for particles of          . For particles
of          the experiments suggested that     has to be computed from (17-26b)
with , i.e., for This value of

is supported by the earlier studies of Kramers and Kistenmacher (1943) who
proposed on theoretical grounds that, for large articles in air through which water
vapor diffuses, from which

for            Thus, we may tentatively conclude that one may use
(17-26b) with to –0.2.

The diffusiophoretic force exerted on an aerosol particle by water vapor
diffusing through stagnant air may be obtained by inserting (17-26b) for the diffu-
siophoretic velocity into the slip flow corrected Stokes drag,
and setting this drag equal to One then finds the diffusiophoretic force on an
aerosol particle may be expressed approximately as

Since and therefore
we obtain from (17-26b) with and and for

where                    is the water vapor mass flux vector. Note that the direction
of motion induced by diffusiophoresis is the same as that of the vapor flux. Since
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the diffusiophoretic particle flux vector is the total particle flux to a
stationary drop becomes, after using (17-28),

Then, with (cf. (13-7)), we obtain

The loss rate of particles by diffusiophoresis is then

Assuming ventilated drops of size distribution we find for the scavenging
coefficient and collection kernel for diffusiophoresis:

and

for a condensing drop Since and cannot be negative,
, K = 0 for We see from (17-33) and (17-25) that thermophoresis

and diffusiophoresis have opposing effects on the scavenging behavior of drops.
Young (1974) has carried out a numerical evaluation of expressions similar to

(17-16), (17-25), and (17-33) for various atmospheric conditions. His results for the
case of a water drop of radius evaporating at 98% relative humidity, 600 mb,
and –5°C, and for a drop growing at a supersaturation of 0.3%, 600 mb, and
–5°C, are displayed in Figure 17.12. Note that in both cases the effects of thermo-
phoresis overpower those of diffusiophoresis if This agrees also with the
predictions of Slinn and Hales (1971). Note also that both phoretic scavenging
processes depend only slightly on the particle size, if and that
above a certain particle size, the phoretic effects dominate Brownian motion. The
net effect of all three processes on the scavenging rate of aerosol particles has been
computed by Young on the assumption that the individual collection kernels may
simply be added together. It is questionable whether this assumption is justifiable
in the light of the coupling which exists between Brownian diffusion of particles
and particle motion due to phoretic forces. On the other hand, the experiments of
Goldsmith and May (1966) and the theoretical considerations of Annis and Mason
(1975) show that, for water vapor diffusing in air under atmospheric conditions, for
which the thermo- and diffusiophoretic forces are additive, i.e., thermo-
and diffusiophoretic effects are not coupled.
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The results of Young, displayed in Figure 17.13, show that by considering convec-
tive Brownian diffusion and phoretic effects only, the collection kernel and, hence,
the scavenging efficiency of a cloud drop of given size, decreases with increasing
particle size; also, for an aerosol particle of given size, the scavenging efficiency
increases with increasing drop size. The values shown in Figure 17.13 indicate
that, for particles of in concentrations of and in air of 600 mb,
–5°C, and 98% relative humidity, to aerosol particles are scavenged by
water drops of 10 to radius within 10 min, in fair agreement with the
field observations of Rosinski. However, these estimates do not include the effects
of inertial impaction and, thus, most likely underestimate the number of aerosol
particles scavenged.

The discussion on the phoretic and Brownian capture of aerosol particles by
drops once more takes us back to our earlier treatment of contact nucleation (Sec-
tion 9.2.3.5). Such nucleation depends on the contact rate between supercooled
cloud drops and aerosol particles. Phoretic forces are certainly candidates for caus-
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ing such collisions near the periphery of clouds where, through evaporative cooling,
the drops are somewhat colder than the ambient air. This has been verified by field
experiments already some time ago. For example, from wet bulb temperatures ob-
served on days when relatively warm cloud glaciation was observed in clouds over
Missouri, Koenig (1965b) determined that drops at the periphery of clouds could
have cooled by as much as 6°C below the ambient temperature. Similarly, Mossop
et al. (1968) determined a maximum wet bulb depression of 4°C for drops at the
periphery of a cumulus cloud, located off the southern coast of Australia, which
glaciated at –4°C. Evidence for the effectiveness of ice formation by contact nucle-
ation has been given by the wind tunnel studies of Gokhale and Spengler (1972)
and Pitter and Pruppacher (1973), who showed that clay and soil particles of di-
ameters between 0.1 and nucleate supercooled water drops at temperatures
as warm as –3 to –4°C.

The number of ice crystals produced by contact nucleation may be estimated
from the study of Young (1974), who determined the relative collection rate, i.e.,
the number of collection events per cubic centimeter per second, for evaporating
drops capturing aerosol particles by Brownian diffusion, diffusiophoresis, and ther-
mophoresis. On the basis of Young’s computations (see Figure 17.13), one finds
that, in a cloud at 600 mb where the temperature is assumed to be –5°C and
where the relative humidity is 98%, an ice crystal concentration of 30 to
will be produced within 5 min if radius drops are present in a concentration
of                  assuming that the drops are nucleated by contact nuclei with a radius
of            and that the concentration of contact nuclei at –5°C ranges between 1
and Considering that at temperatures between –5 and –10°C, the ob-
served concentration of snow crystals is of the order of several hundred per liter, we
must conclude that contact nucleation cannot be responsible for the observed snow
crystal concentration. Although one could argue with Gokhale and Goold (1968)
that the ability of an aerosol particle to act as a contact ice nucleus increases with
increasing aerosol particle size, a computation similar to the one carried out above
but for contact nuclei of radius and a concentration of captured
within 5 minutes by drops of radius and with a concentration of
leads from Figure 17.13 to an ice crystal concentration of only Thus,
in order to explain the observed number of snow crystal in clouds by contact ice
nucleation, the number of contact nuclei would have to be of the order of a few
tens per This requirement is not met under atmospheric conditions, consid-
ering the observations given in Figure 9.19, the observations of Blanchard (1957)
who estimated the concentration of contact nuclei to be  at –4°C and

at –8°C, and the observations of Vali (1974), who estimated a concen-
tration of 2         at –16°C, and of Cooper (1980) who found on the order of
1           at –10°C (see Figure 19.19). In addition, computations of the type made
above assume that drops which capture contact nuclei by Brownian and phoretic
forces do not change their size during the capture, whereas, in fact, they become
smaller due to evaporation. This fact has recently been considered by Baker (1991)
to show that the assumption of a drop size spectrum which is constant in time leads
to a considerable overestimate of the role of contact nucleation in the ice crystal
budget of a cloud.
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17.4.2.3 Scavenging by Gravitational or Inertial Impaction

Thus far, we have considered the scavenging of aerosol particles which are relatively
small, so that there was no need to take their inertia into account. We shall now
drop this assumption and consider particles which are large enough so that neither
Brownian motion nor phoretic forces affect their collection. We also shall assume
that all particles which collide with a collector drop or crystal will stick to it.
For collector drops, this is consistent with the experiments of Weber (1968, 1969),
who found that the collection efficiency problem reduces to that of determining
the collision efficiency (Whether a captured insoluble particle remains on
the surface of a drop or becomes completely immersed, depends on the contact
angle, defined in Section 5.5 (see McDonald (1963b) for a theoretical study of this
effect). Since, generally, we have may be determined by using the
superposition scheme of hydrodynamic interaction (see Sections 11.6.3 and 14.3).
Of course, once is known, the corresponding collection kernel may be
obtained from (11-87).

The first theoretical estimates of were made by Langmuir and Blodgett
(1946) and Langmuir (1948). Their computations were later extended and im-
proved by Mason (1957) and Fonda and Herne (in Herne, 1960). The method used
by these authors is based on a scheme which allows interpolating between poten-
tial flow, assumed to characterize the flow past a large collector drop, and Stokes
flow, assumed to characterize the flow past a small collector drop. The flow past
aerosol particles was considered to have negligible effect. Beard and Grover (1974)
have computed improved values of by using the numerically determined
flow fields of Le Clair et al. (1970) (see Section 10.2.2.5) for spherical drops of

corresponding to Their formulation involves the
standard superposition scheme, described in detail in Section 14.3, and they also
include the refinement of invoking the slip-flow correction (11-15) for the drag on
the aerosol particle. Thus, their equation of motion for a particle of mass and
velocity is

where is the buoyancy-corrected acceleration of gravity, and
is the flow field past the drop, evaluated at the location of the particle. Beard

and Grover worked with a dimensionless form of this equation, given by (14-10).
In the latter equation, the ‘inertia parameter’ or Stokes number acquires the
form where

The values of found by Beard and Grover for particle radii
subject to are intermediate to previously calculated values for the poten-
tial and Stokes flow limits, but do not follow the Langmuir interpolation formula
mentioned above. For the particle sizes considered, was found to increase
monotonically with increasing for However, a later extension of
these computations down to by Beard (1974b) revealed a minimum in
the curve of versus near for and
Beard’s computations for rigid spheres were extended by Grover (1978) to spher-
ical water drops with internal circulation and to particles with
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The results of Grover, shown in Figure 17.14, agree with Beard’s
computations in revealing a minimum in for and for drops
with and 200. Although the decrease in E with decreasing is readily
understandable on considering the effects of particle inertia, the increase in E for
decreasing less than may seem strange at first sight. Beard sug-
gested that, for drops with , the latter finding may be explained on the
basis of small particle capture by the standing eddy on the downstream side of the
drop, which is aided by gravity pulling the particle towards the rear of the drop
(wake capture). (Note this form of wake capture is quite distinct from another type
which involves falling drops of comparable size. In the latter situation, the trailing
drop becomes drawn into the wake of the leading one and eventually collides with
it). The effectiveness of the rear-capture process should obviously increase with
decreasing particle inertia and with increasing eddy size, thus explaining the shape
of the collision efficiency curves in Figure 17.14 for Grover’s (1978)
more refined computations generally support the notion of the existence of a rear-
capture process; however, his results indicate that its onset occurs for since
for the strength of the eddy in the rear of a drop is still too weak
to affect particle collection. Note that the curves (4) and (5) cross over curves (1),
(2), and (3), indicating that in a narrow particle size range, drops with
and 10 exhibit a slightly larger collision efficiency than drops of 100,
and 200. This result is a reflection of the ‘interception effect’ discussed in Sec-
tion 11.6.3, where we showed that, for interacting particles of suffciently small size,
the collision efficiency is controlled by the and increases with
increasing (i.e., with decreasing drop size for given

Theoretical values of E for have not been computed since numerical
solutions for flow fields past drops exclude the phenomena of eddy shedding and
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drop oscillations which are known to occur for such sizes.

17.4.2.4 Scavenging by Turbulence

The approximate descriptios of turbulent shear and turbulent inertial coagulation
given in Section 11.6.2 and the comparison of these effects with Brownian and
gravitational coagulation in Figure 11.6 for spherical particles of
should apply also to the problem of turbulent scavenging of aerosol particles by
small drops of radii For larger drops with significant fall speeds, one
must account also for the possible convective enhancement of the particle flux.
Although no rigorous treatment of this problem exists, several simple and plausi-
ble approaches suggest themselves. For example, we may attribute the turbulent
shear collection kernel (11-73) to a process of diffusion characterized by the con-
stant diffusion coefficient By comparing the forms of the collection kernels for
Brownian diffusion, (11-56), and turbulent shear, we find
for the case Then, by assuming the independence of Brownian and turbu-
lent diffusion, we may represent the net effect of both by the diffusion coefficient

From (17-16), the corresponding collection kernel for convection-
enhanced turbulent-shear and Brownian diffusion scavenging is estimated to be

An approach of this kind has been followed by Williams
(1974) and Greenfield (1957).

In this procedure, it is tacitly assumed that the collection kernel for the various
scavenging processes is given by the sum of the collector kernels for the individual
processes in isolation. A variation on this scheme has been provided by Saffmann
and Turner (1956), whose model results suggest that the resultant kernel is best
represented by taking the square root of the sum of the squares of the individual
kernels. In principle, a more rigorous approach, which has been followed to some
degree by various researchers, is to superpose the various forces acting simultane-
ously on a particle. Unfortunately though, in this more recent work, the effects of
turbulence have not been considered. It further turns out that the modeled forces
could not be included in one single scavenging model. Instead, two complementary
models have been employed, each of which covers a specific aerosol particle size
range. The results of both models are then joined in the size range in which both
are approximately valid.

17.4.2.5 Combined Force Effects: the Trajectory and Flux Models

The trajectory model. For particles with the trajectory method of Beard
and Grover (1974) was extended by Grover et al. (1977) to include the thermo-
and diffusiophoretic forces. In doing so, the effects of Brownian diffusion were
neglected. For particles with the concept of the convective Brownian
particle flux was extended by Wang and Pruppacher (1980a) and Wang et al.
(1978) to include the effects of the thermo-and diffusiophoretic forces. Due to the
smallness of the particles considered in this latter model, the effects of inertial
impaction were neglected. Martin et al. (1980a,b), Wang and Pruppacher (1980b),
and Miller and Wang (1989) applied the same concepts to particle scavenging by
snow crystals, modeled as oblate spheroids and cylinders.
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To formulate the trajectory model, we shall follow Grover et al. (1977), and
consider a simple extension of (17-34) which leads to the equation for a particle’s
trajectory past a falling, evaporating or condensing drop:

where and are given by (17-19) and (17-27), respectively, and where is
the flow field around a drop or snow crystal. The values for and are
found from the trajectory at which the particle just makes grazing contact with the
drop (see Figure 14.1). Examples of such trajectories around a drop are given in
Figures 17.15a,b,c, and around a planar snow crystal in Figure 17.16. We note from
Figures 17.15a,b,c that relatively large particles may be captured on the upstream
(lower) side of a falling drop, while relatively small particles are captured on the
drop’s rear side. From Figure 17.16, we note that, analogously to the deposition
of rime (Plate 4), aerosol particles become scavenged preferentially at the rim of
plate-like snow crystals (Plate 19). This is chiefly due to the strong, local horizontal
flow component just underneath a falling snow crystal plate.

The flux model. To formulate the flux model, we shall follow Wang et al. (1978),
Wang and Pruppacher (1980a,b), Martin et al. (1980a), and Wang (1985. 1989),
and recall (11-19), which we extend to include the thermo- and diffusiophoretic
force:

The particle flux is therefore
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where    is the concentration of the particles, and the particle mobility is given
by (11-20). In the flux model, we assume that for particles with the
term may be neglected in comparison to the other terms in the parentheses of
(17-37). With this assumption, the flux density of particles to a falling ventilated
drop may be expressed as

To simplify (17-38), we shall assume that the ventilated heat and vapor density
fields around the drop are spherically symmetric inverse square fields; i.e.,

and where is the radial distance from the drop
center, is the unit vector in the radial direction, and where from (17-19) and
(17-27) we have

and

For the above-defined fields we have Assuming a steady
state, the condition of particle continuity leads to

Equation (17-40) was solved by Wang et al. (1978), subject to the boundary
conditions for and for They found for spherical
drops:

with The total particle flux is then

from which follows the collection kernel or

and the collection efficiency

For snow crystals whose shape can be expressed in terms of a capacitance C (see
Section 13.3), we may simply replace by C in (17-43), and in (17-39a,b), while
replacing in (17-43b) by the cross-sectional area of the crystal.
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An interesting result is obtained when the effects of various scavenging mech-
anisms are combined. For scavenging processes in the atmosphere, this was first
done by Greenfield (1957), who considered Brownian diffusion, turbulent shear dif-
fusion, and inertial impaction. He found that the overall scavenging coefficient
exhibited a strong broad minimum for aerosol particles between about 0.1 and

radius. In the literature, this minimum is therefore often referred to as the
‘Greenfield gap’. It is the result of Brownian diffusion dominating particle capture
for and of inertial impaction dominating capture for Later
investigators (e.g., Slinn and Hales, 1971; Dingle and Lee 1973; Crandall et al.
1973; Pilat and Prem, 1976; Wang et al., 1978; Martin et al., 1980a) who included
also the phoretic effects, obtained similar results. The results of Wang et al. (1978)
for the overall efficiency with which aerosol particles are collected by water drops
are exhibited in Figure 17.17. Similar computations were carried out by Martin
et al. (1980a) for planar snow crystals modeled as thin oblate spheroids, and by
Miller and Wang (1989) for columnar crystals modeled as cylinders. These latter
results are given in Figure 17.18 and 17.19, respectively. Note the pronounced min-
imum in the collection efficiency for as expected from Greenfield’s earlier
results. We also notice that, for drops and crystals, the phoretic forces tend to ‘fill
the gap’, particularly at low relative humidities, but it remains distinct nonetheless
(see Figure 17.18a). For crystals of , the collision efficiency assumes
a maximum near to decrease sharply to zero with a further increase in
particle radius. This is a result of the rapidly decreasing relative velocity between
crystal and aerosol particle so that the horizontal forces in the flow field past the
crystal have sufficient time to carry the particle around the crystal, and thus pre-
vent collision (see Figure 17.18b). For crystals of , an additional abrupt
change in collision behavior takes place in that at these low Reynolds numbers,
the ice crystals regain their capability to capture aerosol particles of radius larger
than        The reason for this behavior lies in the rapid decrease of the velocity
field around the crystal and the associated rapid decrease of the horizontal deflec-
tion force such that, despite the small relative velocity, the particle cannot escape
collision. The effect of electric charges will be discussed in Chapter 18.

Until recently, flow fields around drops and snow crystals were available only for
Reynolds numbers which apply to axisymmetric flow. Because of this restriction,
computations of the scavenging efficiency of aerosol particles by drops, planar snow
crystals, and columnar snow crystals were restricted to flow fields with

and respectively. For columnar crystals, the additional unre-
alistic assumption had to be made that the collision was not affected by the finite
length of the crystal. Recently, however, three-dimensional flow fields around falling
hydrometeors have become available through numerical solutions of the primitive
Navier-Stokes equation of motion (see Chapter 10). With these flow fields, it is
now possible to extend the presently available collision efficiencies to larger collector
bodies.

Unfortunately, experimental verfication of the scavenging behavior of drops and
snow crystals have proven to be quitedifficult, so that only few data are available for
comparison with theory. Four main experimental requirements have caused these
difficulties: (1) uniform particle size, (2) high and uniform particle concentration
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over the collector’s fall distance, (3) controlled electric charge on collector and
particles, and (4) collectors freely falling at their terminal fall velocity in air of
well-defined temperature and humidity.

Despite these difficulties, the presently available experimental results have given
considerable support to the predictions of theoretical models. The experiments of
Oaks (1960) with oil droplets, paraffin particles, and ammonium chloride particles
of 0.5 to diameter, of Starr and Mason (1966) and Starr (1967) with pollen
of 4 to diameter, of Adam and Semonin (1970) with rod-shaped spores of

diameter and length, of Dana (1970) with dye particles of 0.4 to
diameter, and of Hampl et al. (1971), Kerker and Hampl (1974), and of

Lai et al. (1978) with silver chloride particles of 0.15 to diameter, indicate
qualitatively that the efficiency with which these particles are collected by water
drops larger than about equivalent radius decreases with increasing drop
size. Toulcova and Podzimek (1968) and Beard (1974b) conjectured that this may
indicate the existence of a maximum for E. The existence of such a maximum has
been verified by Starr and Mason (1966) and by Wang and Pruppacher (1977b).
The former experimentally studied the efficiency with which particles of 2.25, 2.6
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and radius are captured by drops of radius, the latter
determined the efficiency with which aerosol particles of radius were cap-
tured by drops of falling through an aerosol chamber in which
the relative humidity was 23% and the temperature was 22°C. The attainment of
terminal velocity by the drops was assured by allowing the largest of them to fall
through an enclosed 33 m long shaft. A maximum near was found in
Starr and Mason’s and Wang and Pruppacher’s experiment.

The results of Wang and Pruppacher’s experiments are plotted in Figure 17.20a.
Note from this figure (curve 1 to 3) that E exhibits a minimum not only in a plot
of E vs. for a given but also in a plot of E vs. for a given The good
agreement between the experimental results of Wang and Pruppacher (1977b) and
the theoretical predictions of Grover et al. (1977) allows one to conclude that
the increase of E with decreasing drop size for is a result of the
increasingly pronounced phoretic effects as the flow field past the drop becomes
weaker, while the increase of E with increasing drop size for is a
result of the increasingly pronounced hydrodynamic effects which allow particles
to be captured by the growing, standing eddy in the rear of the drop. Note also
that E rapidly decreases for drops of radii larger than about Toulcova
and Podzimek (1968) and Beard (1974) conjecture that this decrease is a result of
eddy shedding which sets-in for drops with Indeed, one would expect
that with increasing unsteady flow in the wake of a falling drop, rear capture of
aerosol particles would become less likely. A more convincing suggestion, however,
has been made by Mitra et al. (1990) on the basis of the dimensionless equation
of motion (14-10) for a particle past a falling drop. Recall that the controlling
parameter for the particle trajectory around a drop is the Stokes number
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As decreases, the effective inertia of the particle and, hence, its likelyhood of
collision with the drop, decreases as well. A careful inspection of Figure 10.25
shows that the terminal velocity of drops with radii larger than varies as

with This causes and, hence, E to decrease with increasing
as is observed for drops of

The observed dependence of the particle collection efficiency on drop size pro-
vides us with an alternative explanation for the observed salt concentration found
in rain drops of different size (see Figure 17.7 and text in Section 17.3). Thus, for

, the salt concentration due to capture of salt particles is expected to
increase with decreasing drop size due to increasing collection efficiency and due
to the decreasing drop volume. In the range however, two op-
posing effects are present, since the collection efficiency as well as the drop volume
are decreasing with decreasing drop size. Thus, if the collection efficiency for salt
particles of given size decreases less with decreasing drop size than does the drop
volume, one would expect that the salt concentration in a drop would continue
to increase with a future decrease in size. If, on the other hand, the collection
efficiency decreases more with decreasing drop size than does the drop volume, the
collection effect would rapidly overpower the volume effect so that at a specific
drop size the salt concentration in a drop becomes maximum. The former scenario
is precisely that expected from the variation of E with drop radius observed by
Starr and Mason (1966) for particles with radii of a few microns, while the latter
scenario is that expected from the observation of Wang and Pruppacher (1977b)
for particles with radii of a few tenths of microns. A very recent field verification
of both scenarios has been provided by Bächmann et al. (1996), who observed
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by artificially dispersing water soluble aerosol particles of different radii that the
solute concentration inside raindrops continuously increased with decreasing drop
size when micron particles were captured, while exhibiting a maximum in drops of
about radius when submicron particles were captured.

Some verification of the flux model of Wang et al. (1978) came through the
experiments of Deshler (1985), who found that the scavenging efficiency of small
aerosol particles with by drops of at relative
humidities between 60 and 95% agreed with the theoretical values within a factor
of two. Some verification of the trajectory model of Grover (1978) and Grover et al.
(1977) was provided by the experiments of Leong et al. (1982), who studied drops
of radius near             colliding with aerosol particles of  Comparison
of their experimental values with theory is made in Figure 17.21.

A considerable number of experimental observations are available to demon-
strate the capacity of snow crystals to capture AP. The first observations were
due to Facy (1955, 1958, 1960), who observed that evaporating crystals or drops
develop a particle-free space adjacent to their surface. This effect, later confirmed
by Goldsmith et al. (1963), Vittori and Prodi (1967), and Vittori (1973), was ex-
plained in terms of phoretic effects. However, it is obvious from our discussions in
Section 17.4.2.2 that thermo- and diffusiophoresis have opposite effects on particle
capture by a hydrometeor. This had previously been pointed out by Slinn and Hales
(1971), and was demonstrated quantitatively by Martin et al. (1980) for planar
snow crystals in Figure 17.22. We notice that the magnitude of the two phoretic
forces become equal for AP with This result implies, e.g., that in
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the case of a crystal growing by vapor diffusion, thermophoresis keeps the crystal
free of particles and diffusiophoresis contributes to scavenging only if
This prediction has been verified experimentally by Prodi (1983), who showed that
crystals, growing by vapor diffusion in an environment containing carnauba wax
particles of remained free of particles.

Experimental studies to determine the scavenging efficiency of aerosol particles
by millimeter-sized snow crystals and snow flakes were carried out by Sood and
Jackson (1969, 1970), Knutson et al. (1967), Prodi (1976, 1983), Murakami et
al. (1981, 1983, 1985a,b,c), Sauter and Wang (1989), Mitra et al. (1990), and
Bell and Saunders (1991). Snow crystal models rather than actual crystals were
used by Stavitskaya (1972), Starr and Mason (1966), and Prodi et al. (1981). All
these studies show that the scavenging efficiency of crystals larger than 1 mm in
diameter decreases rapidly with increasing crystal size (see Figure 17.23). In fact,
a combination of the computations of Martin et al. (1980) with the observations of
Knutson et al. (1967), results in an efficiency maximum near a crystal diameter of
1 mm (see Figure 17.23), in analogy to the maximum exhibited in Figure 17.20 for
drops. The decrease in E with increasing crystal size was explained by Mitra et al.
(1990) in the same way as was done for drops; i.e., the fall velocity of most snow
crystals increases with increasing size at less than a proportional rate, so that
and, hence, E decrease with increasing crystal size, as is observed.

A rather interesting deviation from this behavior, noted originally by Sood and
Jackson (1969, 1970), has recently been confirmed by Mitra et al. (1990). They
showed that snow crystal aggregates (flakes) of diameter 6 to 30 mm exhibit a
scavenging efficiency which is larger than that of single crystals, and which does
not decrease with increase size (Figure 17.24). Mitra et al. suggest that this effect
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is due to particle-filtering by the ‘holes’ in the crystal mesh of the snow flakes. Such
a mechanism depends on the flow through the aggregates rather than around the
crystal. To substantiate their arguments, Mitra et al. cited the theoretical work of
Redkin (1973), who studied the scavenging behavior of a porous sphere exposed to
Stokes flow, and found that its scavenging efficiency for particles of
was 5 to 8 times larger than the efficiency of an impervious sphere.

The scavenging efficiency of snow crystals of 1 to 5 mm in diameter was experi-
mentally studied by Murakami et al. (1981,1985a,b,c). Their results are plotted in
Figures 17.25a,b. Although their observations could not resolve the actual location
of the Greenfield gap, the decrease of E with decreasing particle radius is clearly
noticeable. We also note from the data of Murakami that the surface roughness
induced by the riming of snow crystals causes a significant increase in the efficiency
with which aerosol particles are collected. Unfortunately, neither Murakami’s nor
Knutson’s field studies can be used for comparison with the theoretical results of
Martin et al. (1980), since the crystals studied in the field were considerably larger
than those used in the theoretical model and since neither temperature nor the
relative humidity which control the phoretic forces was measured. Also, the recent
laboratory studies of Bell and Saunders (1991) are not suitable for comparison
with theory, due to various experimental uncertainties. Thus, the authors gave no
information regarding possible electric charges on the crystals and aerosol particles
produced, and on the relative humidity at the scavenging site of their chamber.
Also, no test was made on the possible growth of the sodium chloride particles in
the vapor field of the evaporating ice crystals. These effects could have been respon-
sible for the relatively large collision efficiencies found. Finally, surface roughness
of the crystals and an uneven fall pattern due to an uneven mass loading make it
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very difficult to compare experimentally derived collection efficiencies with those
derived from theory for idealized bodies of smooth surface and even fall attitude.

In closing this section, we shall recall that it has been pointed out by McDonald
(1964) that the atmosphere does provide a mechanism to ‘bridge the Greenfield
gap’, in that the aerosol particles of radii between 0.1 and are precisely those
which most readily serve as cloud condensation and ice nuclei. As such, they may
be removed from the atmosphere if cloud formation is followed by precipitation.
It also seems likely that turbulence and electrical effects will tend to fill in the
gap. Thus, Grover et al. (1977) and Wang et al. (1978) demonstrated this filling-
in effect for the case of scavenging by Brownian diffusion, inertial- and phoretic
forces, and because of the presence of electric charges and external electric fields.
These results will be dicussed in Chatper 18. However, at the present time no
definitive assessment of the overall problem including turbulence exists.

17.5 Scavenging of Gases by Cloud Drops, Raindrops and Ice
Particles

Most gases and vapors present in the atmosphere exhibit a finite solubility in water,
ranging from very low solubility for CO and to very high solubility for

and HCl. The uptake of a gas by a water drop or ice crystal proceeds
essentially in two stages. These will now be summarized briefly.
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During the first stage, the gas diffuses through the air to the surface of the hy-
drometeor. This stage is described by the laws of molecular or convective diffusion
discussed for water vapor in Chapter 13. These laws can be applied to any gas if
the appropriate molecular diffusivity is used. Diffusivities for selected gases in
air are listed in Table 17.13. Models which describe the diffusion of a gas species
to a water drop will be discussed in Section 17.5.1.2.

During the second stage, the gas enters the hydrometeor. If the hydrometeor is
a drop, the gas molecules become dissolved in the water while surrounding them-
selves with water molecules. Gases such as He, Ne, Ar, Kr, Xe, and

molecularly disolve in water, while gases, such as and dissociate into
ions, after having been dissolved in water. Once inside the drop, the dissolved gas
molecules and ions spread through the drop by molecular diffusion. Such diffusion
is significantly enhanced by the laminar or turbulent flow present in internally cir-
culating drops (see Section 10.3.1). Molecular diffusivities for various species in
water range typically between to (Himmelblau, 1964;
Broeker and Peng, 1974; Barrie, 1978; Carmichael and Peters, 1979; Worsnop et
al., 1989). We shall see in Section 17.5.1.2 that molecular diffusivities may be used
to describe the diffusion process if the motion inside the drop can be completely
modeled. Unfortunately, this is not possible anymore for drops of millimeter-size.
In Section 10.3.1, we have already pointed out that drops of such size exhibit an
internal flow which alternates rapidly between a laminar circulation and a com-
pletely turbulent flow. In fact, laboratory experiments of Diehl (1989) showed that
in millimeter-size drops, the laminar circulation remains for about 0.75 seconds,
after which a completely turbulent interior takes over, lasting for about 0.25 sec-
onds. Thus, for a correct description of the gas uptake by such drops, a model
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which assumes that the drop is well-mixed during its turbulent stage must be al-
ternated with a laminar convective diffusion model. Such a procedure is quite
computer intensive. Fortunately, wind tunnel studies of Walcek et al. (1984), Wal-
trop et al. (1991), Mitra et al. (1993), and Hannemann et al. (1995) suggest that
such an alternating application of two diffusion models to drops of millimeter-size
may be parameterized by introducing a modified diffusivity where

, for
If the hydrometeor is an ice particle, the gas becomes adsorbed on the surface

of the ice particle if the temperature is sufficiently low. At temperatures close
to 0°C, the gas becomes dissolved in the quasi-liquid layer. Unfortunately, the
solubility of gases in such a layer is not known. Following its uptake on the ice
surface, the gas may diffuse into the ice particles along grain boundaries if the ice
particle is polycrystalline, or along dislocations if the particle is a single crystal.
Unfortunately, no theoretical framework is available at present to describe the
diffusional uptake of gases by ice particles. We shall, therefore, return to our
discussion of the gas uptake by a liquid body.

Experiments show that, after a sufficiently long time, a solubility equilibrium
becomes established between the gas in the gas phase and the gas dissolved in water.
For small water drops, this equilibrium is very rapidly established and involves the
whole drop. With increasing drop size, the time to reach equilibrium lengthens until
eventually it is longer than the times over which significant changes in the gas phase
concentration take place in the drop’s evironment. Drops of these sizes will not
come into complete solution equilibrium with the environment. Also, no solution
equilibrium will be established if the gas entering a drop becomes converted into
solute species which do not participate in the solution equilibrium. Nevertheless,
it turns out that in many cases the concept of solution equilibrium may at least be
applied to the surface layer of the drop in terms of a ‘local equilibrium’ between the
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gas in the gas phase and the gas dissolved in the surface layer (see Section 17.5.3).
The equilibrium between a gas in the gas phase and the gas dissolved in water is

described by Henry’s law. In order to illustrate this law, we consider a gas species
A to be in complete solution equilibrium, i.e.,

where denotes the hydrated gas species. Henry’s law expresses the experi-
mental observation that the concentration of a gas in water is proportional to the
partial pressure of this gas in the gas phase. This may be expressed by the relation

or

where the square brackets indicate concentration, is Henry’s law coefficient
in M with M in mole and is the dimensionless Henry’s law
coefficient, so that We must note that (17-45a,b) are only applicable
to gases which do not dissociate in water into ions. For gases which dissociate in
water, a modified Henry’s law coefficient, given by the symbol has to be
introduced which involves the dissociation constants. Also, (17-45a,b) are only
applicable if the uptake of the gas leads to a low or moderate concentration of
the gas in water. For computing the uptake of gases by highly concentrated thin
water films, present, e.g., at the surface of aerosol particles, one must replace the
concentration of the gas in water by the activity of the gas in water (see Chapter 4).

Many of the gases, relevant to cloud chemistry, dissociate in one or more stages
into ions, thereby establishing equilibrium between the dissociated and undissoci-
ated species. These dissociation equilibria follow the mass action law of Guldberg
and Waage (see current text books in physical chemistry). To illustrate this law,
we consider the gas species A and B which dissociate into ion species C and D
according to the equilibrium

The constant for dissociation equilibrium may then be found from

where and indicate the number of molecules involved in the dissociation
reaction.

Henry’s law coefficient and the dissociation constants K are temperature de-
pendent. This dependency may be expressed by van’t Hoff’s relation d In K/dT =

where is the increase in enthalpy when the reaction takes place
from left to right in (17-46), is the universal gas constant, T is temperature, and
K is the equilibrium constant. Over a small temperature range, one may assume
that         is approximately independent of temperature. Integrating the van’t Hoff
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relation with this assumption from T = 298 K to another arbitrary temperature T
one finds

Values for and the respective values for are listed for some
pertinent gases in Tables 17.14 and 17.15a,b, with K in mole and
in K. Applying (17-48) to and considering the values in Table 17.14, one finds
that for the gases listed, increases as T decreases, reflecting a greater solubility
of the gas at lower temperatures. Solution and dissociation equilibria for some
pertinent gases will be discussed in Section 17.5.1.1. Note that these equilibria
pertain to bulk water only. No knowledge is available on effects of drop volume on
the dissociation mechanism. Also, values for the given constants are only available
for temperatures above 0°C. Any extrapolation to below 0°C has to be carried out
with great caution.

While diffusing, some of the dissociated species may undergo chemical reactions
with other species present. The rate at which such reactions proceed are described
by empirically derived rate equations. Examples for such reactions and their rates
are listed in Table 17.16, again only for temperatures above 0°C
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17.5.1 SCAVENGING OF GASES BY WATER DROPS

17.5.1.1 Solution and Dissociation Equilibria

In the present section, we shall describe the solution and dissociation equilibria for
a few of the gases and vapors relevant to cloud chemistry.

1. Water,

Water is perhaps the most simple example for which to demonstrate a dissociation
equilibrium. In pure water, a water molecule is slightly dissociated into hydrogen
ions and hydroxyl ions according to the equilibrium relation

According to the mass action law, this equilibrium can be expressed by the relation
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Since in pure water it follows from Table 17.15 that

terms of the concentration of the hydrogen ions in solution‚ and to introduce
as a measure for the acidity the so-called pH‚ defined by the relation

Thus, we find from Table 17.15 that, for pure water, pH= 7. Solutions whose
pH< 7 are called acidic, solutions with pH> 7 are called basic or alkaline.

2. Hydrogen Peroxide‚

The solution and dissociation equilibria for this gas can be described by the rela-
tions

The constants which characterize these equilibria are

3. Carbon dioxide‚

The solution and dissociation equilibria for can be expressed by the relations:

The constants which characterize these equilibria are

(25°C). It is common to express the acidity of a solution in
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From a combination of these equations‚ we find for the equilibrium concentration
of each species in water:

The total concentration of all carbon species‚ dissociated and undissociated‚ is

It has become customary to define a modified Henry’s law coefficient by in-
cluding the effects of dissociation.

The ions in solution obey the condition of electroneutrality. This implies

Considering that one finds that the equilibrium concentration
of hydrogen ions can be computed from

The pH of a solution can then be evaluated from (17-53). For typical atmospheric
conditions, we may assume ppm, which implies from (17-60) that
in the absence of other pollutant gases cloud and rain water in equilibrium with
atmospheric has a

4. Sulfur dioxide‚

The solution and dissociation equilibrium for this gas can be expressed by the
relations

The constants which characterize these equilibria are
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From a combination of these equations‚ we find for the concentration of each species
in water

The total concentration of the S(IV) species is then

where is the modified Henry’s law coefficient as defined by (17-58) for a two-
stage dissociation. The ions in solution follow the law of electroneutrality‚ which
is

Substituting (17-50) for and using (17-63b) and (17-63c)‚ we may compute
the equilibrium hydrogen ion concentration from

which determines the pH of the solution. Often it is more convenient to determine
from the total concentration of S(IV)‚ the 4-valenced sulfur in solution. For

this purpose‚ we replace in (17-66) by from (17-64) and disregard
in comparison to to obtain

Considering (17-63a) to (17-63c) together with (17-64)‚ we obtain for the mole
fractions of the various S(IV) species:

The variation of the mole fraction of these species is plotted as a function of pH

with in (17-65), the condition for electroneutrality becomes

in Figure 17.26. We note from this figure that, for which is typical for
cloud and rain water in most regions of the Earth, the concentration of can
be considered sufficiently small so that it may be neglected in comparison to the
concentration of and Neglecting             and in comparison



we must consider the presence of and in the solution. Considering
that the S(IV) species is virtually fully dissociated, we have

with the equilibrium constant

The total concentration of S(VI) is then

754 CHAPTER 17

from which we obtain‚ instead of (17-63b)‚ (17-64)‚ (17-66) and (17-67):

If we assume that the water drop contains an oxidizing agent which is able to
convert the 4-valenced sulfur S(IV) to the 6-valenced sulfur S(VI), at a known rate
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so that the concentration of the ion species in (17-76) as a function of S(VI) becomes

For the condition for electroneutrality is

Considering (17-77)‚ (17-78) and (17-63b)‚ we may compute the equilibrium hy-
drogen ion concentration from

If‚ in addition‚ a drop contains dissolved ammonium sulfate‚ we
must consider also in the equation for electroneutrality. Assuming complete
dissociation of the salt‚ the equation for electroneutrality is then

The equilibrium hydrogen ion concentration is found from

5.  Ammonia‚

The solution and dissociation equilibria for can be expressed by the relations

The constants which characterize these equilibria are

From a combination of these equations‚ we find for the concentration of each
species:
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The total concentration of all N(III)-species present in this reaction is

where is the modified Henry’s law coefficient. For the condition
for electroneutrality is

Inserting (17-50b) and (17-86b) into (17-88)‚ we find the equilibrium concentration
of the hydrogen ions from

or‚ in terms of [N(III)] after substituting for in (17-89) using (17-87)‚

6. Nitric acid‚

The solution and dissociation equilibria for can be expressed by the relations

The constants which characterize the equilibria are

From a combination of these equations‚ we find the concentration of each species
in the water from

The total concentration of all N(V) nitrogen species present is

Unfortunately, and are not well-known by themselves. Instead, the overall

has been determined for the overall reaction
Since at 298 K (see Table 17.15), and considering that in cloud water

we may assume and therefore approximate (see
Wurzler et al., 1995)

equilibrium coefficient
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The condition of electroneutrality is

From (17-93b)‚ the equilibrium concentration of the hydrogen ions follows:

or alternatively in terms of [N(V)]‚ after substituting for in (17-97) by in-
serting (17-95):

17.5.1.2 Diffusion Models for Gases

We shall now proceed to formulate a theoretical framework with which to describe
the rate at which a drop absorbs a specific gas present in its environment. For this
purpose‚ we must recall the laws of diffusion discussed in Chapter 13‚ as well as
the equilibrium formulations given in the previous section.

1. The perfect sink model

The simplest model for describing the uptake of a gas by a drop assumes that
the drop is at rest and has an infinite capacity to accommodate the particular gas
species‚ i.e.‚ the drop behaves as a perfect sink. We‚ therefore‚ can completely
disregard the drop’s interior and consider only the diffusion of the species in the
gas phase. The convective diffusion equation for gas diffusing through air can
then be written in analogy to the laws of diffusion of water vapor (see Section 13.1):

drop at rest (i.e., we may assume that the diffusion field is radially
symmetric, so that (17-99) becomes

where is the radial distance from the center of the drop. Since the drop is assumed
to behave as a perfect sink‚ the concentration of the species inside the drop can
be considered to be zero at all times. This does not imply that the concentration

of the species at the drop surface in the gas phase can also be set equal to
zero. In fact‚ at steady state‚ with remaining zero at all times‚ we expect (see
Equation (17-114)) a small but finite gas concentration at the drop’s surface‚ as
required by the Hertz-Knudsen equation. However‚ without sacrificing significant

where is the concentration of the gas in the gas phase. For the case of a spherical
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accuracy in the transient behavior to reach steady state‚ we may set The
boundary conditions for the present case are

With these boundary conditions‚ (17-100) has the solution (see Equation (13-4)
and Seinfeld‚ 1986)

or

where is the integration variable. Evaluating the integral in (17-102b)‚ one finds

where From (17-102a)‚ we find for the radial flux density
at the drop surface

For the overall flux to the drop‚ we have

Equation (17-105) suggests selecting a characteristic time, for the diffusion

with in cm, in and in sec. Following Seinfeld

Values for and are given in Table 17.17.

on terms of the form This implies that the characteristic time
for the concentration profile to relax to steady state increases with increasing
Considering the concentration change at a distance from the drop surface (i.e.,

from (17-103) that the response of the concentration to a change at depends

process in the gas phase such that the flux of the gas to the drop is twice the

at Seinfeld (1986) finds with in sec, and in cm.

flux at steady state, where This characteristic time is

(1986), one may alternatively define a characteristic time in terms of the
time necessary for the gas concentration profile to relax to steady state. We notice
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The rate at which gas is absorbed by a stationary drop is‚ from (17-105)‚

and the total mass of gas taken up by the drop at rest after a time is(Seinfeld‚
1980)

Equation (17-103) has been evaluated for by Beilke and Gravenhorst (1978),
Baboolal et al. (1981), and Seinfeld (1980). Their results are illustrated in Fig-

dicted by (17-103). In addition, we find from (17-103) that for sec

ure 17.27 in terms ofconcentration profiles immediately adjacent to a dropof
We note that the steady state concentration profile in the gas phase just outside

state concentration profile for which at and as pre-
the drop is rapidly established and, after sec, has nearly reached the steady

and for

2. The well-mixed sink model

In order to make the foregoing model more realistic‚ we shall assume that the
drop’s capacity for gas uptake is limited and determined by Henry’s law. Instead
of line 3 in (17-101)‚ we have as the boundary condition which
we consider constant. The solution to (17-100) for a drop at rest now becomes

and for steady state
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In order to determine we follow the arguments in Section 13.1.1‚ applied to
the diffusion of water vapor‚ and assume that the gas diffusion is continuous only
in the region where is the gas jump length. Within the
region on the other hand‚ the gas transport is considered to occur
according to the laws of gas kinetics. Analogous to (13-11)‚ the equation to solve
for steady state diffusion is

To determine B ‚ we proceed as in Section 13.1.1. If we assume that the drop
remains well-mixed all the time‚ i.e.‚ that the net gas flux through the
layer is given by

where is the uniform species concentration in the drop. Equation (17-110) is
another form of the Hertz-Knudsen boundary condition (5-54) discussed in Sec-

To determine , we find, analogously to (13-12b) for total flux

with Equating now (17-110) and (17-111)‚ and
considering from (17-109) that the constant
B is found to be

tion 5.11. At steady state, (17-110) is equal to the flux at
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Inserting (17-112) into (17-109)‚ we obtain for and a steady state

analogously to (13-15). For

leading to

From (17-115)‚ it follows that Henry’s equilibrium across the drop’s interface (‘local
equilibrium’) is only fullfilled if i.e.‚ if the system is in complete
thermodynamic equilibrium or‚ from (17-114)‚ if alternatively
which requires

Considering (17-113)‚ we now find for the gas flux density

For the overall gas flux to the drop at rest follows

The rate of gas uptake then becomes

plied by the term (see (13-5)). Considering this‚ Seinfeld (1986)
obtained for the rate of change of the mass of gas in a drop at rest

where for

With we obtain‚ for the time rate of change of the concentra-
tion inside the drop at steady state and at rest‚

If the drop is not at steady state‚ the right-hand side of (17-120) has to be multi-
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with

Equation (17-121a) has been evaluated by Beilke and Gravenhorst (1978) for

acting as a perfect sink, the sulfur loading for is reached in less than
one second for pH< 6. On the other hand, when the effect of dissolved
accumulation is accounted for in a complete mixing model, we find that the time
to reach total loading at equilibrium is considerably longer than that for a perfect
sink model, and increases with increasing drop radius.

In a final comment on Figure 17.28, we should point out that in Beilke and
Gravenhorst’s analysis, the pH was held constant. In actuality, however, the pH

introduce a mean Sherwood number‚ for the particular gas. Considering
(13-55)‚ this quantity may be calculated from

with to be determined from a numerical solution of (17-99) together
with the appropriate boundary conditions. This was done by Baboolal et al. (1981)

the case of diffusing into a drop of radius and given pH. Their results
are plotted in Figure 17.28 together with an evaluation of (17-107). Both equations
were made dimensionless by (17-121b). We notice from this figure that, for a drop

of the drop varies with time during the uptake of and has to be computed as
a function of time from (17-80), with S(IV) and S(VI) also to be determined as a
function of time.

In our derivation‚ so far we had assumed that the drop remains at rest and has
a spherically symmetric diffusion field around it. However‚ in atmospheric clouds‚
drops are falling and have a diffusion field around them which is strongly affected
by the flow of the air past the drop. In order to determine the effects of air flow
on the diffusion of a gas to a falling drop‚ we may proceed in a manner analogous
to that used for determining the convective diffusion of water vapor to a falling
drop (see Chapter 13). As a measure for this ventilation effect‚ we shall therefore
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the ventilation factor is not a strong function of so that for all
practical purposes‚ may be computed from the theoretically and experimentally
well-established relation (13-60) and (13-61) for water vapor. Therefore‚ (17-120)
for a falling drop must now be written

assuming a steady state diffusion field.
It is customary in the literature to write (17-122) in terms of the mean mass

transfer coefficient (see Equation (13-51)) or the mean mass transfer
rate coefficient In terms of the latter‚ (17-123) becomes

where

In the previous two sections‚ we have assumed that the main resistance to diffusion
of the foreign gas lies in the gas phase‚ and required that the drop is a perfect
sink or well-mixed. Although we shall show later that the well-mixed assumption
is justifiable for a number of gases of typical atmospheric gas concentrations‚ we
cannot assume that this assumption holds in general‚ since a gas may find consid-
erable resistance to diffusion also inside the drop. In order to obtain an expression
for the diffusion of a gas species inside a drop‚ we shall consider a spherical water
drop initially free of solute. At the time the solute concentration at the drop
surface shall be raised to a concentration which is assumed to remain constant
with time. The solute will then be allowed to diffuse into the drop. If the drop is
falling and therefore internally circulating‚ the equation to be solved is

3. Diffusion inside a drop

diffusivity of the diffusing species in water. For a spherical drop at rest‚ and
therefore the equation to be solved is:

for a number of gases in air with Schmidt numbers‚ varying betwen
0.1 to 5.0 and for drops with Reynolds numbers up to 300. Their results showed that

where is the flow field due to the internal circulation and is the molecular
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The boundary conditions for the present case are

The solution to (17-126) is (Carlslaw and Jaeger‚ 1947; Seinfeld‚ 1980‚ 1986)

We note that‚ for which implies that after a sufficiently
long time‚ the concentration inside the drop will reach the surface concentration.
The total flux of solute into the drop is (Seinfeld‚ 1986)

and the total amount of solute which has entered the drop after a time is(Seinfeld‚
1986)

where Therefore‚ Seinfeld (1980‚ 1986) finds:

By considering the dominating term in the exponential of solution (17-128),
Seinfeld (1986) obtained as characteristic time for aqueous phase diffusion

with in in and in sec. Kronig and Brink (1950),
on the other hand, followed Carlslaw and Jaeger (1948) and determined the time

when S(IV) diffuses inside a water drop with a diffusivity of
The results of this analysis are shown in Figure 17.29. We note that drops with
radius become saturated in less than 0.2 seconds.

4. Coupled diffusion inside and outside a drop falling at terminal velocity

We shall proceed now to consider the uptake of a gas from its environment as a
coupled process between diffusion outside and inside the drop. At the same time‚
we shall assume that the drop is falling. Such a study has been carried out by

required for in (17-131) to reach 63% of which is
again with in cm, in and in sec. Values for and for
various drop sizes are also given in Table 17.17.

Equation (17-131) was analyzed by Beilke and Gravenhorst (1978) for the case
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Walcek and Pruppacher (1984a) for the case that the flow fields inside and outside
the drop are axially symmetric. For these conditions‚ (17-99) and (17-125) may be
written in dimensionless form as

where and are the radial and angular coordinates, respectively,

and
where the flow fields and were determined from solutions to the Navier-Stokes
equation of motion (see Chapter 10). The boundary conditions necessary to solve
(17-132) and (17-133) are

In order order to prevent mass accumulation at the phase boundary‚ we must
further require mass conservation‚ which‚ using dimensional units‚ requires
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where mean that the derivative is evaluated approaching from the gas
side and from the liquid side‚ respectively. To simplify the computations‚ Walcek
and Pruppacher further assumed that Henry’s law is fulfilled locally across the
drop/air interface‚ i.e.‚

and Walcek and Pruppacher (1984a) solved (17-132) coupled
to (17-133) subject to (17-134) and determined the rate at which S(IV) enters
drops of various sizes. The results of this computation are given in Figure 17.30.
We notice that even at gas concentrations as high as 10% by volume, saturation is
reached only after several seconds, while tens of seconds are required for the same

further illustrated in Figure 17.31 for drops up to 2 mm radius and
ppbv. We notice that, at typical atmospheric concentrations of a few ppbv,

millimeter-sized drops require up to 150 seconds to come within 63% of saturation.
We further note from this figure that the time to reach saturation decreases with
increasing gas concentration. In Figure 17.32, the distribution of S(IV) inside a

notice that fills the drop from its rear due to the internal circulation which
transports the S(IV) very quickly to the downstream side of the drop. Filling then
proceeds across the streamlines of the internal circulation, keeping the lines of equal
concentration S(IV) concentric with the streamlines.

In a more rigorous approach‚ the boundary condition (17-134c) must be replaced
by a relation which equates the kinetic flux at the phase boundary to the flux in
the continuous diffusional flow regime‚ i.e.‚ equating

drop if The drop size and gas concentration dependence is

falling drop of is given during the initial stages of uptake. We

Assuming that the diffusing species is then and
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from (17-110)‚ to

from 17-111), in order to relate the numerically determined values for and
to
The computation of Walcek and Pruppacher (1984a) shows that solving the

coupled Equations (17-132) and (17-133) is a computer intensive undertaking. In
search of a less laborious but still accurate diffusion model, Walcek and Pruppacher
(1984a) showed that, with satisfactory accuracy, the complete theory for coupled
diffusion outside and inside a falling drop can be simplified according to a sug-
gestion of Kronig and Brink (1950). These authors assumed that the streamlines
inside a drop follow approximately those given by the Hadamard (1951) solution
of flow, an assumption which was verified by Le Clair et al. (1972) who applied
the complete Navier-Stokes equation to the interior of a drop. The Kronik and
Brink model further assumes that along the streamlines the solute concentration
remains constant, so that the transport of solute species takes place only across the
streamlines from ‘layer to layer’ in a direction perpendicular to them. In terms of
a coordinate which is coincident with the Stokes flow streamlines, and a coordi-
nate which is perdendicular to these streamlines, Walcek and Pruppacher (1984a)
obtained for the diffusion inside the drop:

where

where
In order to obtain a complete description for the diffusion of a gas species into

a drop‚ Walcek and Pruppacher (1984a) considered that‚ at the drop interface‚
the Kronig-Brink parameterization for diffusion inside the drop is coupled to the
diffusion of the gas species outside the drop by the condition of local mass flux
continuity:

ing the right-hand side of (17-137) yields Instead of
left-hand side of (17-137) over all angles yields while averag-

with In order to remove the unfortunate angle depen-
dence Walcek and Pruppacher considered an average mass flux. Averaging the
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(17-137) for the condition of mass flux continuity‚ one then obtains

Since

we obtain by comparison with (17-122) for the left-hand side of (17-138)

If and are known‚ may then be obtained by solving (17-135) to (17-
140) by substituting by and using the accommodation factor

centration may subsequently be computed by simply averaging inside
the drop. In Figure 17.33‚ the results of such computations are compared with
the results of a numerical solution to (17-132) to (17-134). We notice that the
Kronig-Brink model satisfactorily approximates the results from the complete cou-
pled convective diffusion model.

Considering its assumptions, the Kronik-Brink model is applicable only if the
time required by a fluid particle to make a complete loop on a given
stream line, is much shorter than the characteristic time for gas diffusion; i.e., the
time during which has reached 63% of for the case of gas uptake, or
the time required for the dissolved gas concentration to decrease to (37%) of its
original value for the case of gas desorption. Kronik and Brink (1950) found from

corrected gas phase diffusivity in place of Values for the mean gas con-
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Of course, for drops of one has to consider that the flow inside a
drop is turbulent. As mentioned earlier, this may be done by applying the Kronig-
Brink model and the well-mixed model alternatingly in succession during 0.25 and
0.75 sec, respectively, or by setting (see the beginning of Section 17.5).

In order to compare the contribution of the diffusion of a species outside a drop
to the overall uptake of this species by the drop, Walcek and Pruppacher (1984a)
solved the Kronig-Brink model for a variety of conditions. The results of this
analysis are given in Figure 17.34 in terms of the resistance to diffusion in the
gas phase as a percentage of the total resistance to diffusion. The quantity was
defined by where are the characteristic times for a drop
to reach saturation assuming that diffusion is controlled completely by diffusion
outside and inside the drop, respectively. Thus, e.g., if then
which implies that 90% of the resistance to diffusion lies in the gas phase outside
the drop. If, on the other hand, , then the gas phase outside the drop and
the drop interior contribute equally to the diffusion of the species.

Thus, we note from Figure 17.34 that, for the uptake

their model with in cm and in sec. Values for
pertaining to selected drop sizes are given in Table 17.17. For comparison, Kronik
and Brink found from their model that the characteristic time for diffusion through
a fluid circulating with a Hadamard-Rybczinski flow (see Section 10.3.1) is given
by with in cm and in sec. Values for are also

is shorter than and as long as
given in Table 17.17. Comparison of with and show that

by a water drop is completely controlled by the diffusion of through the air. At
these gas concentrations, diffusion of through the drop plays only a negligible
role, and one may assume that the drop is well-mixed all the time. However,

and
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from (17-58), for and Equation (17-123)
then becomes

This equation has the solution (Hannemann‚ 1995)

with From (17-142b)‚ it follows that the characteristic time

is Values for per-
taining to selected drop sizes are given in Table 17.17for = 50 ppbv.

with If (17-142a) becomes

at industrial concentrations‚ of 500 ppbv and higher‚ diffusion through the
liquid phase must be considered by applying the Kronig-Brink model. This is also
illustrated by Figures 17.35 and 17.36.

771

The applicability of the well-mixed diffusion model to the uptake of a gas by a
water drop may be demonstrated further by integrating (17-123) for the case that
the gas entering the well-mixed drop is completely dissociated in water, so that

We notice from this table that for drops of 10 and ra-
dius‚ as predicted by the numerical solution of Walcek and Pruppacher (1984a)

required for the transport of the gas species through air to the drop
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which is given in Figure 17.34. This inequality is particularly pronounced for the
case of an intermittently turbulent drop interior so that we may conclude that‚
for more than 90% of the total resistance to diffusion lies in the
gas phase‚ justifying the application of the well-mixed model. Of course‚ (17-142)
depends strongly on the solubility of the gas in water and its concentration in the
gas phase‚ so that the conditions for the applicability of the well-mixed model has
to be tested separately for each gas and its concentration in air.

Thus far‚ we assumed that a water drop absorbs only one single gas. However‚
observations show that the uptake of a gas may significantly be strongly affected
by the presence of other gases (Figure 17.37). Experimental verification for the
applicability of the well-mixed model to the uptake of by water drops in the
presence of has been provided by the wind tunnel results of Mitra et al.
(1992b) and Waltrop et al. (1991). Their results are plotted in Figure 17.38 . We
note that‚ for an unlimited supply of the uptake of is strongly enhanced‚
while the sulfur content in the drop continuously rises with time. The reason for
this lies in the fact that S(VI) formed from the available S(IV) does not contribute
to the gas-liquid equilibrium. A similar experimental verification of the well-mixed
model has been provided by the wind tunnel studies of Hannemann et al. (1995)
for the uptake of in the presence of (Figure 17.39a) and for the uptake

(1991) for the variation with time of the pH inside a drop during the uptake of
in the presence of (Figure 17.40).

of in the presence of and (Figure 17.39b)‚ and by Waltrop et al.
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17.5.2 ASYMMETRY BETWEEN ABSORPTION AND DESORPTION OF GASES

Following our discussion on the uptake of foreign gases by water drops‚ in the
present section we shall now consider the reverse process: gas desorption. For
this purpose‚ we shall assume that a drop‚ which has absorbed some gas‚ is ex-
posed to air which is devoid of that gas‚ or contains it in less than the equilibrium
concentration. Under these conditions‚ the absorbed gas will desorb.

From a detailed study‚ Hannemann (1995) confirmed the earlier conclusions of
Barrie (1978) that a gas which dissociates in water will not desorb at the same rate
at which it had been absorbed. This behavior is in contrast to a gas which does
not dissociate in water. Considering first the latter type of gas‚ we may integrate
(17-123) for to give

for For desorption with and for absorption with

the same time constant
An intirely different situation is found for a gas which dissociates in water. From

(17-142a)‚ we find for desorption with

A comparison of (17-142b) with (17-144) shows that absorption of a strongly disso-
ciating gas proceeds exponentially in time while the desorption of such a gas varies
as and‚ thus‚ considerably slower than absorption. This result is exemplified
in Figure 17.41‚ where‚ using the Kronig-Brink model‚ the uptake and desorption
of are compared for initial conditions which are completely equivalent to each
other.

Comparisons between theoretical prediction and experiment have been provided
by Mitra and Hannemann (1993). These are illustrated in Figures 17.42 and 17.43

we obtain

respectively. We notice from (17-143b‚c) that‚ for a gas which does not dissociate
in water‚ absorption and desorption can be described by symmetric functions with

for drops of and 2.2 mm radius‚ respectively. We notice that‚ for both drops‚
the rate of desorption is significantly overestimated by the well-mixed model‚ while
the Kronig-Brink model shows excellent agreement with observation. A surprising
agreement with the Kronig-Brink model and the well-mixed model was found if
the right-hand side of the well-mixed model (17-120) is multiplied by a correction
factor which depends only on the drop size (see Figures 17.42 and 17.43). The
results in these figures imply that desorption of a gas is significantly affected by
the diffusion process in the drop’s interior.

Garland (1978)‚ Overton et al. (1979)‚ and Walcek and Pruppacher (1984b)
combined the mechanisms of absorption and desorption to obtain the net amount
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of a gas taken up by a drop while falling through a pollution layer. Thus, Wal-
cek and Pruppacher assumed that the pollution layer consisted of a Gaussian
plume centered a few hundred meters above ground. Applying the Kronig-Brink
model and assuming that no oxidation takes place inside the drops, they found (see
Figure 17.44a) that, during a rainfall, the plume becomes ‘washed down’ and is re-
duced in strength as the rain progresses. In contrast, Hannemann (1995) showed
that, in the presence of an polution plume is reduced in strength, but
does not become washed down by falling rain. This is understandable if we con-
sider that through the uptake of the pH of a drop rises drastically which, in
turn, increases the solubility of (see Figure 17.26). From Figure 17.45, we

Of course, also the presence of oxidants significantly affect the desorption of
from a drop. This has been verified by Mitra and Hannemann (1993), who showed

see that drops which have fallen through the assumed plume exhibit sulfur
concentrations at the ground which vary significantly with drop size. Thus, large
drops, which fall relatively fast through the plume, take up little gas and, accord-
ingly, have little to lose by desorption. Small drops which fall relatively slowly
are able to take up much gas but, accordingly, lose also much due to desorption.

that the desorption of becomes significantly reduced if is simultaneously
taken up by a drop from the gas phase.

17.5.3 DEVIATIONS FROM EQUILIBRIUM

In the previous section‚ we have pointed out that the concept of local equilibrium
(117-134c) is unacceptable in a rigorous description of the gas uptake by a drop‚
and that it has to be replaced by a boundary condition which involves flux kinetics
across the drop’s interface (117-134d‚e). A measure of the amount of deviation

Consequently, drops of an intermediate size arrive at the ground with
concentrations higher than both larger and smaller drops.
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from local equilibrium is given by (17-115) for the case that gas is taken up by a
drop from an environment which has a steady state gas profile. It is instructive
now to consider how this deviation changes with time. This problem has been
treated by Danckwerts (1970), Schwartz (1984a,b, 1986, 1987, 1988), Freiberg and
Schwartz (1981) and Seinfeld (1986). Seinfeld (1986) considered the time required
to establish Henry’s law equilibrium on the liquid side of the gas-liquid interface,
after a step change in gas concentration has taken place on the gas side of the
interface. He showed that, for a planar water/air interface, the characteristic time

for a gas species to achieve interfacial phase equilibrium is given by

efficient for a gas molecule at the water surface (see Table 17.18), and
is the average speed of the gas molecules. We note from (17-145a)

solubility of a gas increases. Equation (17-145a) also shows that increases as
the accommodation coefficient decreases.

For deriving (17-145a), Seinfeld (1986) assumed that the gas diffuses with mole-
cular diffusivity into the water body of infinite volume. In actuality, a drop has
a finite volume and, in most situations, the species is exposed to convective diffu-
sion inside the drop. Assuming a fully mixed drop of radius Mitra (1994, pers
comm.) equated the net flux of the gas molecules entering the water drop to the
concentration rise inside the drop. For these conditions, the characteristic time

for interfacial phase equilibrium becomes

where is the diffusivity of the species in water, is the accommodation co-

that depends on the square of This implies that lengthens as the
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for the less soluble gases such as and as well as for at high pH,
is sufficiently short to assume that local phase equilibrium is instantaneously

established. However, instantaneous local phase equilibrium is not justified for
the highly soluble gases and for at low pH. We further notice
from Table 17.19 that, despite the assumption of a finite volume, (17-145b) does
not lead to characteristic times which are smaller than those computed from (17-
145a), simply because the time reduction due to assuming a finite drop volume is
compensated for by assuming a convectively well-mixed drop.

Let us consider next the characteristic time for aqueous ionic equilibrium, using
as an example the dissociation of in water. The rate at which the equilibrium
given by (17-61b) is established has been investigated by Eigen et al. (1964) who
determined the rate constants for the reaction

Eigen et al. found and for
25°. According to Seinfeld (1986), the characteristic time at which (17-61b) is
established, is given by

With the values for given by Eigen et al. (1954), Seinfeld (1986) found
for = 1 ppb and pH= 3, using (17-63b), and
in order that 67 and 99% of the dissociation equilibrium is reached, respectively.

with in and in cm. Due to the well-mixed assumption, is also
the characteristic time for phase equilibrium with the entire drop. A numerical
analysis of and is given in Table 17.19 for some selected conditions.
We notice from this table that the validity of assuming instantaneous local phase
equilibrium depends crucially on the type of gas involved, its Henry’s law coefficient,
and the time scales of the other processes occurring. Thus, Table 17.19 shows that

and
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According to Erickson and Gates (1976) and Erickson et al. (1976)‚ the second
ionization equilibrium

may therefore be assumed to hold at all points inside a water drop. Of course,
for each gas, a separate analysis of the type given above has to be made.

Thus, an entirely different situation is found for According to Stumm and
Morgan (1981),

with and
If reactions (17-149) and (17-150) are combined, we obtain

the overall reaction

for which and According to Stumm and
Morgan,

Using these reaction rates‚ Stumm and Morgan found that‚ for = 330 ppm
and pH= 5.6‚ sec in order to reach 99% of dissociation equilibrium. This
implies that‚ for a correct description of the uptake of by water drops‚ one
must consider the effects of reaction kinetics and must replace the equilibrium
(17-54b) by (17-151).

According to Overton et al. (1979)‚ we must consider further that for pH> 8

is established even quicker, since and
Thus, we may safely assume that the characteristic times for aqueous dissociation
involving  are very short when compared with the characteristic times involving
gas phase and liquid phase diffusion of . Aqueous ionic equilibrium involving

with and at 25°. Considering
(17-151) and (17-154), we have
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where

Assuming that equilibrium (17-54c) is almost instantaneously established‚ we find ,
together with (17-156)‚ (17-55c) and (17-56c)‚ that

which may be substituted in (17-155) to solve for For determining
the pH‚ we find instead of (17-60)

Hannemann (1995) compared the kinetic description of the uptake by a drop
during a simultaneous uptake of with the uptake based on an equilibrium
description for the uptake. This comparison shows that‚ by assuming equilib-
rium‚ the uptake is significantly overestimated‚ a result quantitatively verified
by her wind tunnel results.

Once a chemical species has entered a water drop‚ chemical reactions between
the various species present may take place. Of particular interest in cloud chemistry

of S(IV) to S(VI) is given by

Some characteristic times evaluated from (17-159) for the aqueous oxidation of
S(IV) to S(VI) by and are listed in Tables 17.20a,b. We notice that
the characteristic times for the reactions involving are long in comparison
to the characteristic times for the dissociation equilibrium and interfacial phase
equilibrium.

are the reactions which evolve during the oxidation of S(IV) to S(VI) by and
in the presence of metal ions such as and A

selection of expressions for the rates at which these reactions proceed is given in
Table 17.16. Using first-order kinetics‚ the characteristic time for the conversion

or by
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17.5.4 SCAVENGING OF GASES BY ICE PARTICLES

Until recently, it has been assumed that gas scavenging in the atmosphere is not
significantly affected by falling ice hydrometeors. However, as we have shown in
Section 5.8, Sommerfeld and Lamb (1986), Valdez et al. (1989), Mitra et al. (1990),
Conklin et al. (1993), Diehl et al. (1995), Dominé and Thiebert (1995), among
others, have experimentally shown that ice particles are actively involved in the
gas scavenging process. At temperatures 0 to –40°C, HCl and become
adsorbed on the surface of ice spheres and snow crystals at gas concentrations in
the ppbv range. This uptake was attributed to 3 causes: (1) to monolayer and
multi-layer adsorption, (2) to the solution and subsequent clathrate formation of
the gas in the intrinsic quasi-liquid layer on the ice surface and (3) to the solution
of the gas in the quasi-liquid surface layer enhanced by surface melting of ice.
The mechanisms operating were found to depend strongly on the type of gas, the
concentration of the gas in the gas phase, and on temperature. Diehl et al. (1995)
and Dominé and Thiebert (1995) also demonstrated that portions of adsorbed gas
penetrate the ice via diffusion along grain boundaries in polycrystalline ice and via
diffusion along dislocations in single crystalline ice. Mitra et al. (1990), Valdez
et al. (1989), and Diehl et al. (1995) showed further that an additional uptake
mechanism must be operating during the growth of snow crystals from water vapor.

decreasing temperature. Thus, only about 19% of in the drops was trapped
by a riming ice particle near –30°C, and only 4% near –5°C. Their results could
be expressed in terms of a retention coefficient , where is the original
concentration of the species in the drops and is the concentration of the species
retained in the frozen drops. Lamb and Blumenstein found for S(IV) = 0.012 +

where and The retention coefficient determined
by Iribarne et al. (1983, 1990) for the same species was considerably larger and
followed the relation for drops freezing under gravity and for

They found that during such growth, HCl, and in the presence of
are scavenged in proportion to the mass of water vapor converted to ice.

In addition to the uptake of gas directly from the gas phase, ice particles may
scavenge gases indirectly by collision with drops which contain absorbed gas. The
experiments of Lamb and Blumenstein (1987) showed, however, that during riming
of an ice rod, only a small fraction of the gas contained in the drops become
transferred to the riming ice particle. This fraction was found to increase with
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the riming of an ice target‚ The retention coefficient for HCl and
were found to be near unity (Iribarne and Pyshnov‚ 1990).

Unfortunately‚ no theoretical formulations are presently available to describe the
gas uptake by ice particles.

17.6 The Scavenging Parameters

Field experiments generally do not allow one to directly derive scavenging efficien-
cies of aerosol particles and gases by individual cloud and precipitation particles.
Instead‚ the scavenging characteristics of a particular cloud or precipitation event
are usually described by parameters which are accessible during field experiments.
One such parameter we have already introduced during our discussion of aerosol
particle scavenging‚ the scavenging coefficient is defined for impaction scav-
enging of aerosol particle by (17-4). In analogy to for aerosol particle scav-
enging‚ one may define the scavenging coefficient for gases by

where (17-160) refers to the relative decrease of the gas concentration during the
cloud and precipitation event. Considering the results of numerous authors, McMa-
hon and Denison (1979) have compiled a list of values for determined from
field observations. From these, we notice that generally

These values are consistent with the more recent data of Hue-
bert et al. (1983), Schumann (1989), Schumann et al. (1988), and of Jylhä (1991).
Of course, we notice from (17-2) that depends on the drop size distribution
and, thus in turn, on the rain fall rate. For a given drop size distribution,
is a function of the collection kernel which, in turn, is a function of the efficiency
with which aerosol particles collide with the drops. In Figures 17.17 and 17.18, we
have shown that the collision efficiency of aerosol particles with drops and planar
crystals assumes a minimum near a particle radius of Figure 17.46 shows
that the scavenging coefficients for rain and snow determined during field experi-
ments exhibit the expected trend of with decreasing particle radius, although
the minimum in the scavenging coefficient was not resolved. Note also the typical
shoulder in the curve for snow, as expected from Figure 17.18a.

Scavenging coefficients for have been obtained by Beilke (1970) from
laboratory data and by Makhon’ko (1967), Hales et al. (1970), and Dana et al.
(1975) from field observations. Field measurements of Huebert et al. (1983) and
of Shimshock and de Pena (1989) provided data for and For
one finds while for the more soluble gases
and one obtains

Before leaving the subject of scavenging, we shall briefly address the controversy
which has arisen in the literature on the proper way to determine Thus,
Davenport and Peters (1978), Schumann (1989), and Graedel and Franey (1975)
found that evaluated from field observations by using the left-hand side of (17-
4), was consistently higher by about one order of magnitude than evaluated
from the right hand side of (17-4), using literature values for the collision efficiency
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for dry aerosol particles. This controversy has recently been resolved by Floßmann
(1991), who used the literature values for in a two-dimensional cloud model
with detailed microphysics and a detailed computation of the flow- and moisture
field to obtain values for which agreed well with observed values. This study
indirectly verified the collision efficiencies available in the literature, and showed
that the field-derived values for determined from the left-hand side of (17-4)
can only be compared with the values determined from the right-hand side of (17-4)
if also the changes in the aerosol particle size caused by humidity variations in the
cloud are considered.

The scavenging ratio W (sometimes termed ‘washout ratio’) is a second para-
meter which is used to characterize the efficiency with which pollutants are scav-
enged by clouds and precipitation from the atmosphere. This parameter is defined
as the ratio of the concentration of pollutant X in the rain water to the concentra-
tion of X in the air according to

with in and in A literature survey of earlier mea-
surements of is to be found in McMahon and Danison (1979). From their data, it
appears that typically which is consistent with the newer mea-
surements of Barrie (1985b), Wolff et al. (1987), Jaffrezo and Colin (1988), and
Cadle et al. (1981). Field studies of Gatz (1976), Hicks and Shannon (1979), and
Barrie (1985a) showed that where P is the precipitation amount in
millimeters and

The scavenging factor F is a third parameter used in the literature to describe
scavenging. F is defined as the ratio of the concentration of the scavenged pollutant
X in the rain or cloud water per unit volume of air to the concentration of X in
the air:

785
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with cloud in water, in air, and in air.
Hegg et al. (1984, 1986) and Hegg and Hobbs (1988) have shown that for sulfate
and nitrate particles

17.7 Wet Deposition

Field studies have shown that only a relatively small fraction of the gaseous and
particulate air pollutant mass which has been scavenged at cloud level eventually
arrives in rain on the ground. This fraction depends on the amount of gas and
particles originally scavenged by the cloud‚ the amount of gas lost from the falling
rain by desorption below the cloud‚ and the amount of gas and particles scavenged
by the falling rain below cloud level. However‚ the fraction depends foremost on the
efficiency with which cloud water is converted to rain water reaching the ground.
In fact‚ cloud model studies have shown that the deposition efficiency of a
pollutant type X‚ defined by

is given within a few percent by the precipitation efficiency defined by
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Depending on the convective vigor of a cloud‚ the precipitation efficiency of a
convective cloud has been found to range from a few percent to a few tens of
a percent (Floßmann and Pruppacher‚ 1988; Floßmann‚ 1991; Browning‚ 1977;
Marwitz‚ 1972).

A number of additional parameters have been defined in the literature to char-
acterize the efficiency with which air pollutants are deposited on the ground. The
deposition is used as a measure for the amount of pollutants deposited on
the ground by rain per unit area‚ after a given amount of rain has fallen. This
parameter is defined by

with depending on the type of pollutant in the rain water. The
variation of and with P is illustrated in Figures 17.47a,b. We note that,
generally, at the beginning of a rain event, the pollution concentration in the rain
on the ground decreases sharply with increasing rain amount. The reason for
this is that, at the beginning of a rain event, the concentration of the pollutant
in the air and the evaporation rate of the drops, are still relatively high. As
the rain progresses, the amount of pollutant available for scavenging, as well as

where the concentration of the pollutant in the rain water is given in mg
the precipitation amount P in mm, and the deposition in mg Georgii
and Weber (1960), Junge (1963), Dawson (1978), Kins (1982a,b), Lindberg (1982),
Zimmermann (1986) and Fiedler (1990) found, from field observations, that
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drop evaporation‚ decrease‚ causing the concentration in the rain to level out.
Nevertheless‚ the concentration in the rain often rises again at the very end of a
precipitation event (see Figure 17.48). This may be due to a decrease in relative
humidity and an associated increase in the drop evaporation rate‚ due to advected
pollution‚ or due to rain drops which originated on cloud drops at the periphery of
the cloud where they had a longer life time and‚ consequently‚ also had taken up
more pollutants than the drops at the cloud center.

Of course‚ during any particular rain event‚ the rain intensity varies. Field
observations show that the concentration of a pollutant in the rain water on the
ground is often inversely related to the rain intensity. This correlation is exempli-
fied in Figure 17.49‚ based on observations taken during a rain event over Frankfurt
(Germany)‚ and in Figures 17.50a‚b‚ based on model cloud studies over the South
Atlantic. To explain the inverse correlation between precipitation rate and the con-
centration of the pollutant content in the rain water‚ we must recall from Chapter 2
that a high precipitation rate is associated with large drops‚ which generally have
a much lower solute content than small drops. The deposition rate defined by
the relation

rate for NaCl and coincide with the maximum in the rain rate. We
also note that the deposition rate during a short but intense local shower may be
considerably higher than the annual average deposition rate. Over urban areas,

deposition rates of 0.45 to for to for
and 0.014 to for For marine areas, these values range

to for For Greenland and the Antarctica, the corresponding
values are 0.0024 to for 0.0014 to for

annual average deposition rates range typically between 1 and for
and (Raynor and Hayes, 1982; Shaw, 1982; Georgii et al., 1984;

Fay et al., 1985; Bilonick, 1985; Stohlgras and Parsons 1987; Mosello et al., 1988;
Harrison and Allen, 1991; Yamaguchi et al., 1991). For rains over remote continen-
tal areas (East Africa; Nigeria; San Carlos, Venezuela; Amazon Basin; Catherine,
Australia), Galloway (1985) deduced from numerous observations global average

between 0.09 to  for           0.04 to for and 0.014

and 0.0024 to for
Finally, a comment is in order concerning wet deposition from fogs. Obviously,

we expect that these rates must be very small due to the small drops in a fog,
and their associated small settling rates. Nevertheless, the results of fog models
show that drop deposition must be considered to explain quantitatively the water
and chemical budget of a fog. Observations of Schmitt (1986) demonstrated that
in (17-167)

with  in mg R in mm and in mg                  is, as expected, posi-
tively correlated with the rain rate. This is exemplified in Figures 17.50a,c by the
model cloud study of Flossmann (1991). Note that the maxima in the deposition
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with in or and in water per air, and where is
a constant. This behavior is illustrated in Figure 17.51, where the concentration
of four ions in fog water is plotted as a function of the fog’s liquid water content.
We note that the pollution concentration decreases rapidly as the liquid water
content of the fog increases. Therefore, we expect that the pollution content of the
cloud water and the liquid water content of a fog vary inversely with time. This is
exemplified by Figure 17.52 for a fog on the Kl. Feldberg in Germany.



CHAPTER 18

CLOUD ELECTRICITY

The subject of cloud electricity is quite massive and complex in its own right and has
in addition many controversial aspects. Consequently, we shall make no attempt
here to provide a comprehensive treatment of the entire subject; rather, we shall
restrict ourselves primarily to summaries of some observed electrical properties of
clouds and the particles contained within them, to an outline of the major cloud
charging mechanisms, and to a consideration of electrical effects on cloud micro-
physical processes. The topics of lightning, current budgets, and measurement
techniques are omitted altogether.

Useful general references on atmospheric and cloud electricity include Israel
(1970, 1973), Coroniti and Hughes (1969) Chalmers (1967), and Twomey (1977).
Lightning is treated in detail by Uman (1969) and Golde (1977) and, to some extent,
by Mason (1971). Summaries of the electrical state of clouds and the mechanisms
which lead to cloud charging have been given by Latham (1981), Proctor (1983),
Illingworth (1985), Beard and Ochs (1986), Krehbiel et al. (1986), Levin and Tzur
(1986), Williams (1985, 1989), Saunders (1988), and Mason (1972, 1988).

18.1 Electrical State of the Cloudless Atmosphere

In this section, we shall first briefly summarize the main features of the ‘fair weath-
er’ electrical state in order to establish the background conditions to which an
isolated cloud is exposed, at least in the early stages of development. A list of
characterisitc values which describe the fair weather electric state has recently
been given by Roble and Tzur (1986, Table 15.1). In the sequel, we shall make use
of these data in the appropriate paragraphs.

Under clear sky conditions, flat portions of the conducting Earth carry a negative
surface charge density which is approximately or

(1 e.s.u. of charge (coulombs)
(elementary charges)). Assuming a surface area of the total

fair weather charge on the Earth is therefore about C (Roble and Tzur,
1986).

By Gauss’s law, there is a corresponding, downward-directed surface electric
field of magnitude (m.k.s.) where

(1 e.s.u. of field strength
The surface electric field varies significantly with location, as-

suming a typical value of at the equator, at 60° latitude,
at the South Pole, and 300 to in polluted industrial areas

(Roble and Tzur, 1986).

792
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Given the existence of one might expect the field strength in the atmosphere
to vary with height in accordance with Coulomb’s law (i.e., as where d denotes
distance from the center of the Earth). However, the rate of attenuation is much
greater than this, owing to the existence of positive space charge which rapidly
‘screens out’ the surface field with increasing height. The main cause of this space
charge is cosmic radiation, which provides an essentially continuous source of oppo-
sitely charged small ion pairs. Roughly speaking, the positive ions drift in the field
toward the ground and encounter increasing resistance (decreasing atmospheric
conductivity) as the air and aerosol density increase with decreasing height. This
conductivity gradient leads to a ‘traffic-jam’ effect of space charge buildup with
decreasing height.

An approximate empirical description of the variation of electric field strength
with height is

where is in km (Gish, 1944). The integral of this expression from the surface
to a great height yields a potential difference between Earth and space of about

This is within the range of ionospheric potential estimates of 1.50 to
(Roble and Tzur, 1986). From Gauss’s law

the corresponding positive space charge density (elementary charges is

Thus, at ground level, the charge density is about while the average
over the first kilometer of the atmosphere is about

The conduction current densityor flux vector of charge due to ionic drift in the
electric field is

where and respectively denote the number density, charge, and drift
velocity of ion species The drift velocity due to the electric field is customarily
expressed in the form

where is the ionic mobility. (Note, this definition for mobility differs slightly
from the one introduced in (11-19): Since the force on the ion is (11-
19) becomes so that From (11-21), the corresponding
ionic diffusion coefficient is

for ions of charge and one single elementary charge respectively.
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The small ions produced by cosmic rays and radioactive substances are generally
singly charged molecules. They may become ‘large’ ions by attaching themselves
to much larger aerosol particles. Since the mobilities of the large ions are usually

to times less than those of the small ions, they contribute relatively little
to the total ion current. Measurements show that the representative mobilities
of the small negative ions are greater than the corresponding mobilities of the
positive ions; according to Bricard (1965), negative ions have a mobility which is
about 25 to 40% higher than that of positive ions. He gives as the mean mobilities

and at STP. An extrapolation of
these values to altitudes in the standard atmosphere has been given by
Shreve (1970):

where is in km. Shreve also obtained expressions for the variation with altitude
of the corresponding diffusivities (in

The values for were obtained by substituting the corresponding mobilities
and T = 273 K into (18-6).

On substituting (18-5) into (18-4) for the case of small ions present in concen-
trations and we have

where is the total conductivity and

are the polar conductivities. The conductivities both contribute in the
same way to since oppositely charged ions move in opposite directions in the
electric field. The constant air-to-Earth conduction current density normally varies
between 2 and according to Chalmers (1967), while Gish (1944)
gives a value of . Regional values include
over industrialized areas, over deserts and vegetated ground,
and over the South Pole (Roble and Tzur, 1986). Assuming
a global average value of we obtain from the fair
weather current to the Earth’s surface a value of about 1500 Amp.

From (18-9) and the above global average we can estimate the fair
weather sea level conductivity to be

e.s.u. e.s.u.) The conductivity at other lev-
els may be estimated from the relation where E is given by (18-
1). These estimates are similar to those of Roble and Tzur (1986), who report

at sea level, increasing to at the
tropopause.
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An interesting exercise is to calculate the time which would be required for
to reduce the fair weather surface charge density to zero if no charging

mechanisms existed to maintain The governing equation for this situation is

so that where This short
discharge time implies the existence of a very active Earth-charging mechansim.
Observations indicate that thunderstorms world-wide collectively fulfill this role of
serving as the ‘battery’ which maintains near a constant value.

Williams (1989) suggests that the global lightning flash rate during thunder-
storms is larger than perhaps as much as 20% of which,
i.e., involve cloud to ground discharges. Assuming that per flash ap-
proximately 30 C are transported to the ground (Mason, 1971), we obtain a global
current from thunderstorms of 1500 Amp, capable of compensating the fair weather
current. Assuming a thunderstorm cell lasts for about 25 minutes (i.e., 1500 sec),
we find that each thunderstorm cell generates a current of about 1 Amp. Flights
with U-2 planes above thunderstorms (Blakeslee and Christian, 1989) have verified
this figure by observing currents of 0.09 to 3.7 Amp, with an average of 1.7 Amp
above thunderstorms. Stergis (1957) estimated much earlier a current of 1.3 Amp.
From other literature sources, Roble and Tzur (1986) have similarly suggested that
the current per thunderstorm cell ranges between 0.5 and 1 Amp, and the total
global current between 750 and 2000 Amp, implying that 1500 to 2000 thunder-
storms act at any one time.

Finally, we shall estimate the fair weather small ion concentration from Since
the ions are produced in pairs, it is reasonable to assume
(this is justified a posteriori). Thus, we may write at
and 8 km this gives and respectively, with

Although, in principle, similar estimates may be made by solving
directly for the steady state balance between ion production and loss rates (see also
Section 18.3.3), some of the relevant quantities, and especially the ionization rate,
have not been measured or calculated to a high degree of accuracy (Israel, 1970).

18.2 Electrical State of the Atmospheric Aerosol

Aerosol particles acquire charge through Brownian deposition of ions. In turn, such
charged particles experience Brownian coagulation which is enhanced or suppressed
by electrostatic forces. We may formulate this problem using a slight generalization
of the model of Section 11.5. Consider the relative motion of charged particles of
volume toward a charged particle of volume We write the flux
vector toward the as the sum of contributions due to diffusion and
conduction, ignoring gas kinetic (finite mean free path) effects:

where is the charge, and is the electric field acting on a
due to particle On using (18-6) and writing where is the
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electrostatic interaction potential, (18-12) may also be expressed in the form

If we now make the reasonable assumptions (1) that is a function only of
the center-to-center distance and (2) that there is a steady state, then the
constant       flux into any spherical surface concentric with
the is

On integrating this equation and imposing the conditions and
0, we find

Therefore, the generalization of the Brownian collection kernel of (11-54) which
includes the effects of particle charge is

(Fuchs, 1934).
Let us now use (18-16) to estimate the effect of charging on the coagulation rate.

Under fair weather conditions, aerosol charging is approximately symmetrical, since
small ions are created in pairs and have roughly equal mobilities. Therefore, in equi-
librium, particles of any size have a charge distribution approximately symmetrical
about zero charge, so that for every bearing charge another has

For such particles coagulating with a of charge the
appropriate (Coulomb) interaction potential is

This expression ignores induced (image) charges, which are insignificant in the
present context (e.g., see Fuchs, 1964, p.307). On substituting (18-17) into (18-
16), we find the effect of electrostatic repulsion is a decrease in the coagulation rate
of and measured by the factor

Similarly, electrostatic attraction enhances the coagulation rate by the factor
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Because of the symmetry of the charging process, the overall effect may be
estimated by the arithmetic mean of and viz.,

where is the average value of The coagulation rate of a symmetrically charged
aerosol is thus higher than that of a neutral one. However, the effect turns out
to be quite small: If we regard particle charge as providing an extra degree of
freedom in the particle’s energy budget, then by the equipartition theorem, we
have (e.g., Keefe et al., 1959). Then and
implying the charge carried by natural aerosols should have a negligible influence
on their coagulation rate. This conclusion has been borne out by many experiments
(e.g., see Devir, 1967).

Besides acquiring charge through ionic diffusion, aerosol particles polarize in
the fair weather electric field and thereby receive an additional ionic drift current.
This problem is discussed in Section 18.3.1 for the case of charged drops. It can be
dismissed in the present context in the following way: the energy acquired by an
ion moving in the background field E over the characteristic length (the radius)
of an aerosol particle is small compared to the thermal energy kT. For example,
for and T = 273 K, we have
Consequently, Brownian diffusion of ions completely dominates under ordinary
circumstances. Then, the estimate remains good, which says that aerosol
particles carry few, if any, charges on the average. Therefore, particle mobility
in the field E remains low, so that the relative particle motion (and, hence, the
coagulation rate) is changed only slightly by the presence of the field. For example,
drift velocities of particles of 0.1 and radius carrying one elementary charge
in a field of are roughly and respectively. Such
small ordered velocities are insignificant compared to ambient air motions and
sedimentation velocities.

The argument above which led to also implies a normal (Boltzmann)
charge distribution centered about zero charge. Thus, if denotes the con-
centration of aerosol particles of radius bearing elementary charges, then

and the width (standard deviation) of the dis-
tribution is Also, the average number of charge of either sign is
given by

for 0°C and in cm (see also Section 18.3.2). These predictions are generally
consistent with observations: For example, Whitby and Liu (1966) found that
aerosol particles of diameter carry an average absolute charge of about
Similarly, Israel (1973) quotes measurements which showed that and 14
for particles of radius 5 and respectively; also, the distributions, were found
to broaden with increasing as expected.
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18.3 Electrical Conductivity in Clouds

Cloud charging mechanisms are opposed by field-driven leakage currents. Hence,
the degree of electrification achieved will depend in part on the cloud conductivity,

In this section, we shall explore the dependence of on field strength, ion-
ization rates, and microphysical properties such as cloud particle concentrations,
sizes, and charge states.

18.3.1 DIFFUSION AND CONDUCTION OF IONS TO CLOUD DROPS

The electrical conductivity in clouds is controlled by the local balance of ion sources
and sinks. The dominant sinks are the cloud particles, which efficiently adsorb ions
through diffusion and conduction. The rate of ion attachment by diffusion alone
has been treated in the previous section. Thus, from (18-16) to (18-18), we see that
the positive and negative ion currents to a stationary drop of charge in
a region of negligible electric field and where the ambient concentration of positive
and negative ions are are, respectively,

where with for
0°C and in cm (Fuchs, 1934; Pluvinage, 1946; Bricard, 1949; Gunn, 1954). For
the case that i.e., and therefore wefind for
pure ionic diffusion

If the magnitude of the background electric field is E, the relative strengths of
the conduction and diffusion ion current are measured by the ratio

using (18-6) and applying usual scaling arguments (cf. Section 17.4.2.1). From
the analogy between (17-9) and (18-22), the parameter can be described as an
‘electric’ Péclet number. Conduction is clearly negligible when and it is for
this case that (18-21) applies. Since at 0°C, we see that for
a typical fair weather situation (18-21)
provides a good estimate for the ion attachment rates.

Unfortunately, a general solution for simultaneous diffusion and conduction at
higher field strengths is not available. However, a solution to first order in has
been obtained by the method of matched asymptotic expansions (Klett, 1971b). (A
description of this method is given in example 4 of Section 10.2.2.3). The resulting
modified ion attachment rates are given by
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where are the rates expressed in (18-21).
For highly electrified clouds with the ion loss rate due to conduction,

surpasses that from diffusion. This situation can be modeled by calculating the
conduction currents to the polarized drop, assuming the ambient ion concentrations
prevail right up to the drop surface. Let us proceed with this formulation by
considering a drop of radius and charge in a region where the background
electric field is Then, the electric field in the vicinity of the drop may be
expressed in spherical coordinates (and in e.s.u.) as

where is the polar angle measured from the direction of The last term in (18-
24) is the dipole field induced by the conducting drop. The radial field at the
drop surface is therefore and can be seen to switch
sign as passes through Consequently, negative ions are
conducted to the drop for while positive, ions flow to the surface where

Therefore, the positive and negative ion currents to the drop are

and

For an unchanged drop, these currents reduce to

In equilibrium which results in an expression for the drop charge as a
function of radius, field strength, and polar conductivity ratio:

(Pauthenier and Moreau-Hanot, 1931; Gunn, 1956). We thus find that the max-
imum charge attainable through conduction charging is This
limiting value of charge on a polarized drop has been verified experimentally in a
discharge tube by Panthenier and Guillien (1932).

18.3.2 CONDUCTIVITY IN WEAKLY ELECTRIFIED CLOUDS

For the case we may assume the ion attachment rates per drop are ade-
quately described by (18-21). However, to obtain the overall ion loss rate using
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this formulation, we evidently need to know the distribution of drop charge which
arises from diffusion charging. Fortunately, it turns out that only a small error is
introduced if we assume that every drop carries the average charge of the distri-
bution (assuming equal sized drops). To show this simplification is possible, we
must first determine the stationary drop charge distribution function. Although,
as we have indicated in Section 18.2, this is given to a good approximation by a
Boltzmann distribution, it is of some interest to determine it more exactly. As
emphasized by Fuchs (1964), the actual distribution differs in principle from a
Boltzmann distribution since ions, once captured by a drop, are unable to leave it.

Let the fractional concentration of equal sized drops bearing charge be de-
noted by We can determine by the principle of detailed balancing,
according to which the steady state rate at which drops of charge capture pos-
itive ions is equal to the rate at which drops of charge capture negative
ions. Thus, we have

or

from (18-21). This recursion relation is easily solved by writing in terms
of etc., and noting that the result is

(Pluvinage, 1946; Sal’m, 1971).
In order to explore the implications of (18-29), let us first consider the special

situation for which Then, if the total drop concentration is

the average positive ion flux per drop, may be expressed as

using (18-27) and the symmetry conditions and
On substituting (18-21a) and (18-29) with into (17-30), we obtain

The last form on the right side has been obtained by approximating the sum over
by an integral. Since for at T = 273 K, (18-

29) reduces approximately to so that
Therefore, (17-31) becomes



CLOUD ELECTRICITY 801

which is the desired result, namely that to within an error of a few percent, we may
calculate the total ion flux to the drops by assuming each carries the average (zero)
charge. Furthermore, for this case the charge distribution is close to a Gaussian
(Boltzmann) form, symmetric about zero charge.

Now let us suppose the average drop charge is not zero. From the nature
of diffusion charging, we might well expect the physics to be largely unchanged in
this generalization, the only difference being a new reference level of average charge.
Thus, we would expect to be given approximately by a Gaussian distribution
centered about    viz.,

and that the total ion flux to the drops may be determined with sufficient accuracy
by assuming each carries the average charge.

It is easy to show that these expectations are consistent with the more rigorous
form of given by (18-29). Thus, if we assume the average positive ion flux per
drop is now (cf. (18-32)), and that similarly the average negative ion

flux is then on setting these two rates equal for a steady state, we
find from (18-21) that

(Gunn, 1954, 1955). Now from (18-34), we find which, on
substitution into (18-29), produces a charge distribution of the form

which is equivalent to (18-33).
With an electric field present, the assumption of a Gaussian charge distribution

is still reasonable if the energy acquired by an ion in moving a mean free path
in the field direction is small compared with its thermal energy; i.e., if
or for typical cloud conditions. The corresponding constraint
on for radius drops is Hence, for the expression (18-23)
may be used (with replaced by in conjunction with (17-33) to determine the
first-order effect of  on

Let us now use these results to explore the behavior of conductivity and the
disposition of space charge in weakly electrified clouds. Within the cloud, the
attachment rates of ions to drops are much greater than the loss rates arising
from ionic recombination. Therefore, if the local ionization rate is I(= number per
unit volume of ions of either sign created per unit time), then, for a steady state
balance between the generation and loss rates, we have to a good approximation
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from (18-21) and (18-23):

where we have made the assumption, justified above, that each of the N drops per
unit volume of radius carries the average charge To obtain (18-37), we have
also retained just the first-order term in from (18-21) and (18-23). From the
preceding discussions, we may expect this simplification to yield sufficient accuracy
for under typical conditions (with

We see from (18-6), (18-10), and (18-37) that the total cloud conductivity
has, to and the form

The quantity is the estimate of total conductivity, due to Pluvinage (1946),
for the case of uncharged drops (here B and D may be regarded as the average of
the mobilities and diffusivities of the positive and negative ions). Equation (18-38)
shows that the ambient field lowers the total conductivity, but that drop charge has
no first-order effect. Numerical evaluation with shows that is
typically 1/40 to 1/3 the clear air value at the same level, in good agreement with
observations (e.g., Pluvinage, 1946; Israel and Kasemir, 1952; Allee and Phillips,
1959).

We may also use (18-37) to estimate the net ionic space charge in a region of
charged drops. The ionic space charge density is while the drop charge
density is from (18-37), the ratio of these densities is

For typical conditions with and
we find the drop charge density is about times greater than the ionic space
charge density. Thus, for practical purposes, the charge in a region of cloud may
be assumed to reside on the drops. Equation (18-39) also justifies a posteriori
an assumption we have implicitly made in all of our models for calculating ion
attachment rates to drops, namely that the ionic space charge is too dilute to have
any noticeable screening effect on the Coulomb field of the charged drops. Finally,
we see from (18-34) or (18-37) that the polar conductivity ratio is near unity

in weakly electrified clouds; hence, the inequality
holds, just as for the case of a clear atmosphere.

18.3.3 CONDUCTIVITY IN STRONGLY ELECTRIFIED CLOUDS

The results of the previous section indicate that, for a monodisperse cloud with
average drop charge a good approximation to the equilibrium concentration of
positive ions may be obtained by solving the following equation:
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We have included in the first term on the right side an expression for the loss rate
due to ionic recombination, the quantity being the
recombination coefficient for small ions. Outside the cloud, we thus have

To first-order in and the diffusion and conduction
terms in (17-40) reduce to which is fairly close to (18-
37); for the ion loss rate will be controlled by the last (conduction) term
on the right side of (18-40). Hence, (18-40) is reasonably accurate in both the low
and high field limits.

Phillips (1967) used (18-40), along with its obvious counterpart for the negative
ion concentration, to show that cloud conductivity is reduced sharply with increas-
ing field strength and liquid water content, and more moderately with decreasing
drop size for a given water content. The explanation for this last mentioned trend
is simply that a given quantity of water presents an absorbing surface area which
increases as it achieves a more finely divided state. (Incidentally, it is for this reason
that we may safely ignore the effects of drop motion on ion capture rates. Ventila-
tion effects are significant only for (see Section 13.2.3), and the drops in
that fraction of the spectrum contribute negligibly to the total surface area of the
cloud water, at least in the early stages of cloud development when electrification
is weak. In the later stages, an increase in electrification will generally accompany
any shift in the spectrum to larger drop sizes, so that ion drift velocities will grow
faster than representative drop terminal velocities. Hence, in-cloud drop motions
probably never exert a significant influence on ion capture rates.) For example, for
a cloud with and E = 0, the cloud conductivity is less than the
fair weather value at the same altitude by factors of about 40 and 10 for
and respectively. If E = 300 V/cm (1 e.s.u.) and the other condition re-
mains unchanged, the reduction factors become 500 and 200. Changes in alone
produce proportionate changes in the reduction factor.

Similar calculations were carried out by Griffiths et al. (1974), who considered
an extension of (18-40) to three different cloud types: cumulus congestus, strato-
cumulus, and fog. They also considered the effects of ion emission due to corona
discharge from hydrometeors for the case of high electric fields. The decrease of
the electrical conductivity in these clouds was found to be sensitive to variations in
the liquid water content and the electric field but only slightly affected by changes
in altitude, particle charge, and the manner in which the charge is distributed over
the size spectrum. When a secondary source of ion production, resulting from
corona currents emitted from ice particles under the influence of a strong electric
field, was introduced into the calculations, a large increase in conductivity was pre-
dicted. However, since the critical electric fields for onset of corona
for snow flakes and for hailstones), measured by Griffiths and Latham
(1974), are much larger than the observed values of electric fields in clouds (see
Section 18.4.1), we may expect that cloud conductivities are generally very small,
and that it is probably unnecessary to account for ionic leakage currents in calcu-
lations of electric field growth in clouds. Some workers have argued that effective
cloud conductivities are often quite large, perhaps as much as 20 times the fair
weather value, on the basis of the observed rapid recovery times of sudden elec-
tric field changes associated with thunderstorms (e.g., Freier, 1962; Colgate, 1969).
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However, a more convincing explanation for this behavior is that there is a re-
arrangement of charge over a large region of the atmosphere outside the cloud in
response to the abrupt field change, so that recovery times (generally measured at
the ground) are close to the short clear air relaxation times at higher elevations
(Illingworth, 1971).

The difference between clear air and cloud conductivities causes a layer of space
charge to form at cloud boundary regions, if a component of the electric field is
normal to the boundary. For example, if we consider an idealized layer-type cloud
with a boundary location given by then in the steady state, the vertical
conduction current must be continuous across the boundary, which leads to the
relation at the subscripts 0 and referring to the values
outside and within the cloud, respectively. Then, from Gauss’s law (18-2), we find
the boundary charge density is
where is the characteristic depth over which the charge is distributed. A crude
estimate for for the case of large fields is that it is given by the
conduction mean free path of ions, in a cloud of uncharged drops. From (18-
40) or (18-41), we see that the rate of depletion of ions by conductive attachment
to charged drops is measured by since

we obtain (typically, and so
with The corresponding charge per drop is

This generally large value of drop charge suggests our estimate for is not very
accurate. (Another source of error we have completely ignored is turbulent mixing
at the cloud boundary, which can establish a characteristic cloud conductivity
gradient and, hence, a different characteristic value for Nevertheless, our
simple calculation suffices to illustrate how large drop charge densities can form
from ion currents which enter clouds. (More detailed studies of the formation and
structure of charge screening layers around clouds may be found in Brown et al.
(1971), Hoppel and Phillips (1971, 1972), and Klett (1972).)

18.4 Charge Distribution in Clouds

18.4.1 WEAKLY ELECTRIFIED CLOUDS

Let us consider first the extent to which the preceding descriptions of charging by
ion attachment can provide at least a qualitative basis for understanding the charge
distributions observed in fair weather clouds. Since clouds are poor conductors, we
would expect the fair weather electric field to deposit negative ions in the base of
a newly formed cloud. We would further expect that this charge, essentially all of
which will reside on the cloud particles, to be carried along in any updraft, so that
the cloud should tend to develop a negatively charged core. On the other hand,
the regions of the cloud near the upper surface should be positively charged from
the positive ion current entering the cloud from above.

The above picture is in accord with most observations of fair weather clouds.
For example, the field studies of Reiter (1964, 1969) showed that electrified strato-
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cumulus, altocumulus, and convective cumulus clouds which contain neither ice nor
precipitation-sized particles are electrically bi-polar with a pronounced negatively
charged base and a positively charged upper portion. Also, Takahashi (1972, 1975,
1978a, 1982) observed predominantly negatively charged drops in the bases of warm
clouds in Hawaii. On the other hand, Twomey (1956) found a net positive charge
in the bases of stratus and stratocumulus clouds. Krasnogorskaya (1969) observed
predominantly negative charge in cumuli and stratified cumuli generally less than
1 km thick, but the location of the measurements relative to the cloud boundaries
was not reported.

Although the observed overall pattern of charges in fair weather clouds is usually
in agreement with what we would expect from the action of ion capture processes,
the same cannot be said for the quantitative details of the distribution of charge
among individual cloud particles. In particular, the observed particle charges are
usually much larger than what would follow from diffusion and conduction charg-
ing alone. The best case of agreement with the theory of diffusion charging was
provided by Phillips and Kinzer (1958), who measured the size and charge of drops
in stratocumulus clouds with ‘near normal’ fair weather electric fields. They found
the observed charge distributions were represented moderately well by (18-33) with

For this case, the mean absolute charge is given by (18-20); for example, a
radius drop carried about 10 elementary charges on the average, irrespective

of sign. However, much larger drop charges were reported by Twomey (1956) under
apparently similar conditions (unfortunately, the field strength was not stated). As
noted above, Twomey found mainly positively charged drops; for these, the charge
versus size relation could be expressed as According to
this result, for example, a radius drop usually carried about positive
elementary charges, in striking contrast to the observations of Kinzer and Phillips.
(As we have seen, conduction charging produces a quadratic dependence of charge
on radius also. However, under fair weather conditions, we would generally expect
the magnitude of charge to be somewhat less than that found by Twomey. If,
for example, we were to suppose that he measured drop charges acquired through
conduction charging in the boundary layer, then, from (18-43), we see that the
cloud electric field would have to have been about which implies

charge could be expressed as with the
exact value of c depending on the cloud shape and stage of development. Electric
field values up to were present. Colgate and Romero (1970) mea-
sured charges on small drops in the lower few hundred meters and at
an early stage of a forming thunderstorm. They expressed their results in e.s.u.
as and reported in addition an average negative charge of about

elementary charges at each of several drop sizes. The electric field was not
measured.

It should be emphasized that although Twomey, Krasnogorskaya, and Colgate

But for stratocumulus, it is doubtful that the liquid water content
would be large enough to achieve such a low cloud conductivity.) Krasnogorskaya
(1969) reported two characteristic types of distributions in stratocumuli, a near
Gaussian distribution centered about zero mean charge, and an asymmetrical dis-
tribution displaced toward negative charge values. In general, the mean absolute
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and Romero were all able to fit their data to a quadratic charge versus size rela-
tion, their respective measurements are really quite different, since Twomey found
an average strong positive drop charge, Krasnogorskaya an average weak negative
charge, and Colgate and Romero an average strong negative charge. In the liter-
ature, such differences have often been minimized or overlooked altogether, with
the result that it has often been considered reasonable, for purposes of modeling
cloud electrification processes, to assume that all small cloud drops carry positive
charge in proportion to their surface area (e.g., Colgate, 1972; Pringle et al., 1973).
Further discussion of this point may be found in Illingworth (1973).

18.4.2 STRONGLY ELECTRIFIED CLOUDS

Field studies of the electrical structure of strongly electrified clouds which produce
lightening show that mechansims other than diffusion and conduction charging
must be responsible for the observed electric fields and for the observed charges
carried on cloud and precipitation particles.

A summary of earlier observed values of the charge on cloud drops up through
precipitation size for both strong and weak cloud electrification has been compiled
by Takahashi (1973c) and is shown in Figure 18.1. More recent field studies of
charges on drops in thunderstorm rains support this figure. Thus, Christian et al.
(1980) observed charges up to

elementary charges) on raindrops during New Mexico storms, Chauzy
and Despeau (1980) observed mean charges of ±5 to 100 pC on raindrops during
storms in France, and Holden et al. (1980) and Marshall and Winn (1982) found
charges ranging between 10 and 400 pC on solid and liquid precipitation particles
of 1 to 3 mm in diameter in New Mexico storms. Similarly, Dye et al. (1986) found
charges up to 50 pC on precipitation particles in Montana thunderstorms. These
values are sharply contrasted by the much lower charges ranging between –70 to

observed on raindrops during monsoon rains in India by Kamra
and Sathe (1983).

The maximum charge that it is physically possible for a drop to carry is given by
the Rayleigh limit for disruption (Rayleigh, 1882). This expresses the condition
that mechanical instability occurs when the surface electrostatic stress equals the
surface tension stress, i.e., when with we thus have

This result is plotted as curve 1 in Figure 18.1, and indicates that drops in clouds
are generally far from the Rayleigh limit. On the other hand, the Rayleigh limit
has been reached in the laboratory by the controlled evaporation of charged drops
on the size interval (Doyle et al., 1964; Abbas and Latham, 1967;
Roulleau and Desbois, 1972; and Dawson, 1973). (On reaching the Rayleigh limit,
the drops were observed to undergo explosive mass disjection, the extent of which
varied in the experiments from a mass loss of only a few percent (Roulleau and
Desbois, 1972; Dawson, 1973) to up to 30% (Abbas and Latham, 1969; Doyle et
al., 1964)). It is therefore conceivable that the Rayleigh limit may be reached on
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occasion by evaporating drops at the edges of clouds, assuming that ionic leakage
currents are relatively ineffective.

Various empirical fits have been tried to express the observed variation with size
of the electric charge on cloud and precipitation particles. A fair approximation
for the larger values of charge (in e.s.u.) is given by curve 3 in Figure 18.1, which
is a plot of the relationship

where is the equivalent drop radius. Similarly, an approximate fit of the
data over the full drop spectrum for warm clouds (with no ice phase and of generally
weak electrification) is

which is plotted as curve 4 in Figure 18.1.
We have already mentioned the fact that, for the case of small drops, different

workers have reported different prevailing charge signs. The same variability ex-
tends to larger drops as well. Thus, according to Takahashi (1972) and Takahashi
and Craig (1973), drizzle drops falling from warm clouds appear to carry predom-
inantly negative charge, while from thunderstorm clouds they are predominantly
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positively charged. Also, the charge sign for rain may depend on drop size. For ex-
ample, Takahashi and Fullerton (1972) found that raindrops from warm clouds were
predominantly negatively charged if and mainly positively charged
for larger sizes. Just the opposite charge-sign versus size relationship has been
observed for thunderstorms by Smith (1955) and Takahashi (1972). Their data ap-
pear consistent with a predominance of negatively charged drops for
and positively charged drops for smaller sizes. Other trends have been reported by
Takahashi (1973c), and by Christian et al. (1980) and Chauzy and Despeau (1980).
These results can hardly be attributed to an inconsistency among the observations.
Rather, we must assume that the charge sign observed on a precipitation particle
on the ground is affected not only by the charge it had assumed at its origin in the
cloud, but also by the ions in the air and the charges on the drops with which it
had collided on its trajectory to the ground.

Similarly, ice particles collected on the ground appear to have electric charges
of both signs. Thus, Isono et al. (1966), Magono and Orikasa (1966), Kikuchi
(1973, 1975) found that dendrites, plate, and sector plate snow crystals were pre-
dominantly negative, while columnar crystals, side planes, large snow flakes, and
bullets were predominantly positive. In contrast, Magono and Iwabuchi (1972) ob-
served that columns were predominantly negatively charged. Kikuchi et al. (1979)
and Magono et al. (1983) found graupel to be predominantly positively charged.
Kikuchi et al. (1979), Magono et al. (1982) and Takahashi (1983) attempted to
explain the sign of the charge on the snow crystals on the basis of a mirror image
relation to the external electric field present, whereby a negative precipitation cur-
rent (negatively charged particles are falling) is related to a positive electric field
(positive space charge above the location of observation). Magono et al. (1982),
and Takahashi (1983) found charges up to 0.1 e.s.u. on snow crystals, while the
snow crystals studied by Burrows and Hobbs (1970) carried a charge less than

where e.s.u.
Numerous field observations of electric field charges associated with lightning

discharges (see, for example, Chalmers, 1967; and Mason, 1971) indicate that the
charge distribution in a typical thunderstorm is roughly like that shown in Fig-
ure 18.2. This figure implies field strengths as large as

may occur between the main positive and negative charge centers. Field
strengths required to produce local dielectric breakdown of air and, hence, light-
ning may be perhaps one order of magnitude larger than this representative aver-
age maximum value. Thus, from aircraft, Gunn (1948) measured mean maximum
storm field intensities of On one occasion, a field strength of

was observed just before lightning struck the aircraft. Fitzger-
ald and Byers (1962) observed fields up to while Kasemir and
Holitza (1972) reported fields up to Using instrumented rockets,
Winn et al. (1974) observed a field of on one occasion, while peak
values of were encountered 10% of the time. More recent studies of
the electric field strengths in thunderstorms have not altered the earlier picture.
Thus, Marshall and Rust (1991) observed, in New Mexico storms, maximum field
strengths of with an extreme case of In
other storms, Christian et al. (1980) observed strengths up to In
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Montana storms, Dye et al. (1986) observed field strengths up to
It is interesting to note that none of these values is close to the so-called ‘dielec-

tric strength of air’, which represents the approximate field
strength required to initiate breakdown between plane parallel electrodes in dry air
at STP. In clouds, the large surface curvature of some cloud particles can appar-
ently cause sufficient local field enhancement and ion emission to initiate large-scale
breakdown when the ambient field is only about one percent of

It is of some interest to use the observed maximum values of electric field to
estimate the corresponding maximum drop charge which would occur by conduc-
tion charging. This is approximately given from (18-26) by assuming

in accordance with the conductivity study of Griffiths et al.
(1974). On substituting the value (Winn et al., 1974), we

found that, in an external electric field of the maximum charge
on the drops followed the equation

The tri-polar structure of thunderstorms, suggested early on by Simpson and
Scrase (1937), Simpson and Robinson (1941), and by Malan (1952, 1963), has been
documented also by more recent studies. A negative charge center is found to be
present between –15 to –20°C. This charge center appears to remain near that
temperature level during the entire life time of the storm (Krehbiel et al., 1984,
1979; Brook et al., 1980; Krehbiel, 1981; Proctor, 1983). On the other hand, the
upper positve charge center, located above the –20°C temperature level, moves

thus estimate This result, plotted as curve 2 in Figure 18.1, lies
only slightly higher than many observed drop charge values under thunderstorm
conditions. It therefore seems likely that the average magnitude of charge carried
by particles of a given size in highly electrified clouds is fairly close to the equi-
librium value arising from conduction charging in the ambient electric field. This
estimate is also consistent with the experiments of Barker et al. (1983), who carried
out a laboratory study of the charging of drops in positive corona streamers. He
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upward with time. In an interesting comparison, Krehbiel (1986) showed (see
Figure 18.3) that the negative charge centers for cloud to ground lightning are
at similar temperature levels in the New Mexico and Florida thunderstorms, even
though the latter often had much greater extent of cloud and precipitation both
below and above the 0°C level. The negative charge centers of intra-cloud lightning
are also at these altitudes and temperatures. Winterstorms in Japan show that the
negative charge is at a lower altitude than that of the two summer storms; however
it does reside at a temperature level comparable to the New Mexico and Florida
storms.

The lower positive charge center appears near the 0°C level but is not bound
to be related to the melting level. Although we shall see in the following section
that several charging mechanisms can positively charge melting precipitation par-
ticles, recent studies give evidence of positively charged precipitation particles at
temperature levels between 0 and –10°C due to a sign reversal of the charge on
the graupel particles.

Although the question of precedence concerning the formation of electric charge
centers and associated electric fields and the appearance of precipitation particles
in a cloud was an issue of considerable debate for many years, sufficient evidence
is now available (Dye et al., 1986, 1988, 1989; Breed and Dye, 1989; Williams et
al., 1988) to show that the build up of electric fields lags the first development of
precipitation sized particles by approximately 8 to 15 minutes. Thus, in the New
Mexico and Montana thunderstorms, the electric field does not appear to exceed a
few hundred volts per meter until the radar reflectivity, indicating the presence of
precipitation-sized particles, has exceeded 35 to 45 dBZ, depending on the location
of the storm.
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Since there appears to be no rule without its exceptions, we conclude this sec-
tion by mentioning also the findings of Marshall and Rust (1991), who studied 12
thunderstorms in Oklahoma, Alabama, and New Mexico. None of these storms
appeared to fit the traditional tri-polar structure. Instead, four to ten electric
charge regions were present in the clouds which generally had positive anvils with
a negative screening layer at the upper boundary (Byrne et al., 1989; Marshall et
al., 1989).

18.5 Cloud Charging Mechanisms

18.5.1 REQUIREMENTS FOR A CLOUD CHARGING MECHANISM

Based on the observational evidence given in the previous sections, we may follow
Mason (1971, 1972, 1988), Gardiner et al. (1985), and Latham and Dye (1989) by
listing some of the major requirements a cloud charging mechanism has to fulfill:
(1) A single mechanism has to produce a tri-polar electric cloud structure with a
negative charge center at a temperture level near –20°C, a positive charge center
above that level (i.e., below this temperature), and a positive charge center at a
temperature level between –10 and 0°C. (2) Alternatively, if the mechanism only
produces a di-polar structure involving the two upper charge centers, a separate
mechanism is required to explain the lower charge center. (3) Sufficient electric
charge has to be generated and separated so that a thunderstorm cell maintains
a cloud to ground current of 1 Ampère during 25 minutes, requiring that within
this time about 1500 C are produced and separated. Assuming a cloud volume of

this is eqivalent to a charging rate Since about
30 C are destroyed per lightning flash, a flash rate of has to be maintained
during 25 minutes (this value is consistent with our estimate in Section 18.1 which
suggests a global flash rate of and 1500 storms maintaining the electric
charge on the Earth’s surface over time). (4) Sufficient electric charge has to be
generated and separated to produce a breakdown electric field of 100 to
within about 20 minutes. The electric field is to grow slowly initially but explo-
sively if (5) The regions with strong electric fields have to coincide
with regions of high radar reflectivity and thus with regions of precipitation sized
particles. The development of precipitation particles has to precede any signifi-
cant growth of the electric field by several minutes. (6) The precipitation particles
involved in significant electric activity have to be solid, consisting of ice crystals
and graupel present in regions with significant amounts of supercooled water. (7)
The regions with a high electric field generally should have a charge density of 1 to

(8) The electric charges carried by precipitation particles of 1 to 3 mm
diameter must range between 10 and 100 pC and be present in concentrations of
about Particles inside the upper positive cloud region must consist of
positively charged ice crystals, particles inside the lower negative charge regions
consist of negatively charged graupel, and particles inside the lower positive cloud
regions consist of positively charged graupel or raindrops.
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18.5.2 THE MAJOR CLOUD CHARGING MECHANISMS

We shall now briefly describe the major charging mechanisms of atmospheric clouds.
Most of the mechanisms are illustrated schematically in Figure 18.4.

18.5.2.1 Charging by Diffusion of Ions

We have shown in Section 18.3.2 that generally diffusion charging win weakly elec-
trified clouds leads to a symmetric charge distribution on cloud droplets which
is centered near zero charge with and that the individual charges of ei-
ther sign on the drops is small. Thus, from (18-20) and, therefore,

e.s.u. for and 0°C.
In order to estimate the magnitude attained in diffusion charging, Beard and Ochs
(1986) considered the root-mean-square charge, which for a zero centered distrib-
ution is This result was interpreted by Beard and Ochs
as a balance between the stored electric energy on a droplet and
the thermal motion energy of the ions (kT). For these conditions and

e.s.u. a very small charge considering the
observed charges in strongly electrified clouds.

Initially, the rate of charging of a drop by ion diffusion is given
by (18-21c,d). Soon thereafter, when the charge on the drop must be consid-
ered, the rate of charging is given by (18-21a,b). At equilibrium,
so that from (18-34) we have, for the mean charge of the distribution,

The charge distribution is symmetric about zero charges if
For and 0°C the mean charge of the distrib-

ution at equilibrium is e.s.u. For the case that
is not too different from Gunn (1954) obtained an approximate expression for

from which he determined that the charge on a drop as a function of time
is given by In other words, the characteristic time

after which 63% of has been reached is Thus, for e.s.u.,
at the Earth’s surface, showing that the equilibrium charge is reached

fairly rapidly.
Although the magnitude of diffusion charge on drops is small and can only

account for the charges at the very early stages of cloud development, we have
pointed out in Section 18.4.1 that charging by diffusion of ions does indeed lead to
the usual observed electric polarity of weakly electrified clouds.

18.5.2.2 Convection Charging

Grenet (1974) and, independently, Vonnegut (1955) proposed that a convective
cloud may operate as an electrostatic energy generator according to the following
scenario. Initially, an updraft carries positive space charge from the lowest levels
of the troposphere into the growing cloud; the electrified cloud soon acquires a
negative charge screening layer at its top and edges due to cloud particle capture of
negative ions drifting from the conducting clear air to the cloud under the influence
of the main positive charge; finally, downdrafts are envisioned to carry the negative
charge close to the cloud base, thereby enhancing the (reversed) electric field at the
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Earth sufficiently to initiate positive point discharge which enhances the positive
charge entering the cloud via updraft. The continuance of this positive feedback
cycle can thus provide for the strong buildup of electrostatic energy at the expense
of organized cloud convective motions.

We see that, according to the above picture, the cloud in its early stages is
predicted to have a positively charged base and core, which is in conflict with the
reasoning and the bulk of the the evidence presented in Section 18.4.1. The cause
of the disagreement is evident: In Section 18.4.1, we ignored the expected upward
covection current of positive space charge; on the other hand, the convection model
ignored the net upward conduction current of negative charge. However, a simple
estimate shows that the latter should dominate the former. Thus, if we assume
fair weather conditions, the negative conduction current density is approximately

from Section 18.1. Assuming a cloud base at 1 km
altitude, we have from (18-3) an expected positive charge density of
Therefore, even with a rather strong updraft speed of the ratio
of convection to conduction current densities is Hence, it
appears that the neglect of the field driven deposition of negative ions into the base
of a young cloud constitutes a significant flow in the convection charging model.

This conclusion is supported by numerical simulations of the convective elec-
trification process (Ruhnke, 1970, 1972; Chiu and Klett, 1976). These studies
show that, for usual conditions of cloud formation, a charge distribution in general
qualitative agreement with that discussed in Section 18.4.1 is produced, namely a
negatively charged cloud core capped by a relatively thin positively charged upper
layer. However, Chiu and Klett also found that convective transport of positive
charge may dominate the conductive transport of negative charge, and thus produce
a cloud of polarity opposite to the usual case, if the cloud forms near ground level.
This happens primarily because higher concentrations of positive space charge are
then available to be carried aloft into the cloud. (Incidentally, this last result may
conceivably have some bearing on the fact that drop charge measurements such as
Twomey’s (1956), which were taken on a mountain summit imbedded in the base
of stratocumulus clouds, have often revealed a predominance of positive charge.)

Additional unrealistic features of the convective charging theory under later
stages of cloud development have been pointed out by Latham (1981), Beard and
Ochs (1986), and Williams (1989). Thus, based on recent measurements (Standler
and Winn, 1979), it appears that earlier estimates of the point discharge current
from the Earth’s surface beneath thunderstorms were substantially exaggerated.
According to Standler and Winn (1979), the total current may be less than 100 mA
and is small in comparison with the (time-integrated) lightning current. Further-
more, observations by Standler and Winn (1979), Chauzy and Raisonville (1983),
do not show a deep vertical column of positive space charge from the Earth’s sur-
face, as required for convective transport, but rather a layer confined to the Earth’s
surface with 100 to 200 m thickness. It has not yet been established whether this
finite thickness is the result of the capture of small ions by aerosol particles or
charge relaxation in the finitely conductive atmosphere, or some other cause. Ear-
lier theoretical studies (Moore et al., 1983) had already identified the problem of
the long transport time of the convected positive charge in accounting for the first
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lightning in a developing cloud.
Another flaw in the convective charging mechanism is related to the negative

charge transport downward from the cloud top, invoked by Vonnegut (1953) and
Wagner and Telford (1981). Thus, there are reasons to question whether this
negative charge descends to levels of the cloud where the main negative charge
is consistently observed. According to Wagner and Telford (1981), the negative
charge descends within the central portion of the cloud; this seems unlikely in light
of Doppler radar observations showing upward air and particle motions throughout
the central region of the cloud during the early stage of development and into
the mature stage (Lhermitte and Williams, 1985; Comez and Krehbiel, 1986).
According to Vonnegut (1953), the negative charge is carried down in screening
layers at the cloud boundary. While negative screening layers around the upper
portions of clouds appear to be commonplace (Winn et al., 1978; Byrne et al., 1983),
there is some question as to whether their descent can account for the apparent
‘pancake’ shape of the main negative charge.

In addition, updrafts and downdrafts may disorganize their associated charges
through mixing. In their study, Chiu and Klett (1976) showed that single cell
convection with eddy diffusion diminishes the electric field within a cloud. Thus,
if one pictures cloud turrets as convective cells with interspersed updrafts and
downdrafts, a disorganization by mixing between adjacent charge regions would
appear probable.

18.5.2.3 Inductive Charging Mechanisms

In Section 18.1, we have pointed out that our atmosphere is characterized by a
permanent fair weather electric field (18-1). Under the influence of this field, cloud
particles become polarized such that a positive charge is induced on the lower
hemisphere of a cloud particle and a corresponding negative charge on the particle’s
upper hemisphere. This polarization effect is the basis for several cloud charging
mechanisms.

1. Charging by selective ion capture (Figures 18.4a,b)

Wilson (1929) described how an electrically polarized cloud particle may selectively
capture ions of one sign as it falls. This happens because, while the lower surface
of the particle may attract and capture ions which carry a sign opposite to the
local surface charge, the upper surface is not as effective in this respect, since
ions attracted to it must first catch up with it in order to be captured. The
net effect of this selective process is a large-scale separation of charge, due to the
sedimentation of the charged cloud particles. This reinforces the existing field,
so that its occurrence in clouds would cause a field enhancement in qualitative
agreement with what is expected for thunderstorms (recall Figure 18.3).

A mathematical model for the ‘Wilson process’, based on spherical particles in
Stokes flow (and thus of restricted validity), has been worked out by Whipple and
Chalmers (1944). As might be expected, the equilibrium charge for this process is
proportional to the ambient field strength and particle surface area.
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The fundamental condition for selective ion capture, and thus for cloud charging,
is given by the inequality where is the terminal fall velocity of the
drop and is the mobility of the positively charged ions. Would it be otherwise,
i.e., (see Figure 18.4a), the fast positive, downward-moving ions would
become attached to the rear of the drop, while the slow and fast upward moving
ions would become attached to the lower (front) side of the drop. Therefore, little
net charging would result. However, if (Figure 18.4b), the positive ions
in the rear of the drop will not catch up with the drop, and will be repulsed by the
positive induced charge on the lower side of the drop. In contrast, both the fast
and slow negative ions will be attracted to the lower side of the drop, imparting to
the drop a net negative charge. An experimental verification of the condition for
selective ion capture has been provided by Gott (1933) who showed that when drops
fall through a region of ions of both sign in an external electric field, selective ion
capture occurs only if Setting and an upper
value of for the terminal fall velocity of a drop, we find that selective
capture can only occur if which is still considerably below
characterisitic values for the initiation of lightning in thunderstorms.

2. Drop breakup charging (Figure 18.4c)

From (18-24), we see that an uncharged drop polarized in the fair weather electric
field carries a surface charge density

being the polar angle measured from the lowest point on the drop. Thus, the
lower hemisphere carries a positive charge of

and an equivalent negative charge on the upper hemisphere. Thus, if a
drop of radius 3 mm were sliced at the equator on breakup in an external field of

each fragment would carry a charge of about 0.1 e.s.u., or a charge
density of about 1 e.s.u. per gram of ruptured water. This is equivalent to a cloud
charge density of about assuming a large liquid water content of
In verification of this, Matthews and Mason (1964) studied the charging of single
drops, breaking up in the bag breakup mode in vertical external electric fields up to

They found that with increasing field, the average charge on the drops
increased also, reaching 5.5 e.s.u. per gram of ruptured water. They concluded that
drop breakup in external electric fields could contribute significantly to the charging
of the lower positive charge pocket of a cloud, because the large drop fragments
were found to carry positive charge while the smaller drops carried negative charge.
However, a severe criticism of this mechanism is the simple observation that large
drops generally do not break up as envisioned above but rather as a result of
collision with other drops (see Section 14.5.4.2). The various drop breakup modes
involved in collisional breakup obviously do not provide an ideal partitioning as
considered above for the bag breakup mode of single drops, and so they result in
a much lower charge separation. Unfortunately, no studies on this problem have
been carried out.
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3. Particle Rebound Charging (Figures 14d-f)

Collisions between polarized cloud particles and their subsequent bounce may pro-
vide an additional mechanism for cloud charging. Thus, if such a cloud particle
were to experience on its lower hemisphere a momentary electrical contact with,
and subsequent separation from, a similarly polarized smaller cloud particle in a
fair weather field, there would result a net negative charge on the larger parti-
cle, and a net positive charge of equal magnitude on the smaller one. Separation
of these charges under gravity would serve to reinforce the existing field leading
to a positively charged upper portion and a negatively charged lower portion of
the cloud. The actual amount of charge transferred depends on the contact angle
relative to the direction of the external electric field, the contact time, the separa-
tion probability, the charge relaxation time, the net charge on the drops, and the
magnitudes of the polarization charge.

Elster and Geitel (1913) were the first to point out that such a process of induc-
tive charge transfer, occurring throughout a cloud and followed by the large scale
separation of charge through relative sedimentation under gravity, would serve to
increase the in-cloud electric field in the sense normally observed in thunderstorms.

Elster and Geitel also provided a simple estimate of the maximum charge transfer
that could occur for the case of a sphere of radius which contacts the lowest point

of a sphere of radius In this case, the smaller sphere will acquire
a charge with average density equal to times the density of the charge on the
larger sphere at the point of contact, since the curvature of the larger sphere can
be ignored (the capacitance of the small sphere in contact with a conducting plane
is see also Appendix A-18.6.3). Thus, the maximum charge than
can be acquired by the small sphere is approximately

This is generally a very large charge (for example, it is ten times
larger than the equilibrium charge expected from ion attachment by conduction
under conditions of strong electrification (recall Section 18.3.3 and Figure 18.1)),
and suggests that induction charging may be powerful enough to produce strong
cloud electrification.

However, any quantitative assessment of the efficacy of induction charging must
take into account several other factors as well. For example, let us first consider
the more realistic situation where contact occurs for and the drops initially
carry charges and Then, by a simple extension of the arguments given
above, the charges after contact and separation will be and where

On writing and we
thus find that the charge transferred is given by

where (the problem of finding     for arbitrary on the interval
is discussed in Appendix A-18.6.3). This expression shows that induction

discharging may also occur; i.e., may be negative for sufficiently large and
Since represents the polar angle between the point of contact and the

electric field, and since the latter may have a large horizontal component in some
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cloud regions (recall Figure 18.1), we see that even collisions restricted to the lower
hemisphere of the large drop may result in

On the other hand, if we use (18-45) to estimate the equilibrium charge to
be expected on the larger sphere after many induction charging events with smaller
spheres of radius we find, by setting for equilibrium and neglecting
relative to that (here denotes the expected
value of under the assumed equilibrium conditions). This rough calculation
implies the equilibrium charge on the large drop will have a large negative value,
in spite of possibly frequent discharging events, if is sufficiently large.

Consideration of the expected value of the electrical contact angle brings sev-
eral additional problems into focus (assuming they have not been obvious from the
outset!). Thus, to find we must in effect solve the fairly difficult collision
efficiency problem with the inclusion of electrostatic forces (see Section 18.6.5).
Furthermore, we must determine the of the probability that separa-
tion actually occurs after contact is made. From our discussion in Chapter 14, we
expect that coalescence generally follows a collision between drops of radii less than

even if the drops are uncharged and no external electric field is present.
Collisions between drops of opposite electric charge, or collisions in external elec-
tric fields should reduce the separation efficiency even more. Thus, we suspect
that the effectiveness of inductive charge transfer must be quite small for colliding
water drops. We also expect a tendency for this charge separation mechanism to
be ‘shorted out’ as large drops rapidly acrete smaller, oppositely charged droplets
(e.g., Colgate, 1972; Moore, 1975a,b).

An even more severe rebound problem appears during the collision of ice par-
ticles and supercooled drops (Paluch and Sartor, 1973; Moore, 1975a,b; Colgate
et al., 1977; Sartor, 1981). Thus, laboratory experiments showed that only glanc-
ing collisions will result in separation of cloud drop and ice particle (Aufdermauer
and Johnson, 1972; Shewshuk and Iribarne, 1974; Gaskell, 1979, 1981; Gaskell and
Illingworth, 1980).

On the other hand, the experiments of Latham and Mason (1962), Scott and
Levin (1970), Buser and Aufermauer (1977), Takahashi (1978), and Gaskell (1981)
demonstrated that significant inductive charging occurs during collisions between
ice particles, since for these the separation probability is high, except at temper-
atures near 0°C where the quasi-liquid layer on an ice surface tends to bond two
colliding crystals together.

Nevertheless, during the interaction between such ice particles, an additional
physical barrier to charge separation occurs, namely the relatively long relaxation
time for charge conduction through ice. Gross (1982) determined the relaxation
time for ionic charge transfer during an ice-ice contact as a function of impurities
in ice. He found for pure ice (impurity concentration of mole a
value of about near –20°C, increasing to near –50°C.
Sartor (1970) gives a value of near –10°C and near
–19°C. According to Gross (1982), impurities in ice shorten the relaxation time
considerably, decreasing it at –20°C to for an impurity concentration
of and to for an impurity concentration of

These relaxation times have to be compared with the contact
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times of two colliding ice particles, which turn out to be rather short (Buser, 1976;
Latham and Miller, 1965; Scott and Levin, 1970; Tabor, 1951; Gaskell, 1979;
Sartor, 1970; Caranti and Illingworth, 1980). According to these observations,
the contact time for a particle which collides with a much larger target decreases
with increasing particle size, and ranges between and for a particle
of radius and radius, respectively. Thus, for smaller particles, it
appears that a substantial charge transfer seems possible only if the ice particles
are considerably contaminated or a liquid surface is involved. Since efficient charge
transfer has been observed experimentally during the collision of relatively pure ice
particles, a transfer mechanism other than the one envisioned above, must have
been operating. One possible mechanism involves the transfer of electrons across
surface states with a relaxation time of less than

Considering now that not all the available charge is transferred during contact,
because the contact time may be shorter than the relaxation time for charge
transfer, we must extend (18-45) and write

where and are the initial charges on the two colliding particles of radius
and respectively, and and are given (Chiv, 1978) by

and and are positive numerical constants depending on (Paluch and
Sartor, 1973; Latham and Mason, 1962; Davis, 1964a,b; see also Appendix 18.6.3).
For and as given in (18-45). An experimental
test of (18-46) has been carried out by Latham and Mason (1962). Excellent
agreement between theory and experiment was found.

Assuming and we find for the rate of
charging of the large particle

where is thecollisionefficiency, is the fraction of colliding particles which
rebound, is the angle between the electric field and the line of centers between
the two colliding particles, and is the number concentration of small particles.
From (18-48), it follows after integration that

with

Therefore, as
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For the case the charge transferred to the smaller particle is
simply Therefore,

if it is assumed that each small particle during its life time makes only one contact
with the large particle.

18.5.2.4 Non-Inductive Charging Mechanisms Involving the Collision between
Particles

Numerous experimental studies have shown that electric charging of cloud particles
may occur without the intervention of an external electric field. Some of the more
important charging mechanisms of this type are described briefly in this section.

The non-inductive electric charge transferred to a large particle during impact
with a smaller particle can be formulated analogously to (18-46), except that now
the inductive term is replaced by the observed charge separated
per collision. Various mechanisms may cause such a charge transfer.

1.  The thermo-electric effect (Figure 18.4g)

Reynolds et al. (1957) obtained laboratory evidence that a hail pellet may become
charged as a result of collisions with ice crystals having a temperature different from
that of a pellet. The physical basis of the charge transfer was suggested as being
due to the diffusion of hydrogen ions down the temperature gradient existing in the
region of momentary contact (Brook, 1958). Thus, since ions have a greater
mobility in the ice lattice than ions, a temperature gradient maintained across
a piece of ice will result in an excess of positive charge on the colder portion. Mason
(in Latham and Mason, 1961a) formulated a one-dimensional model for this process
on the basis of an ideal ice structure. Assuming a steady state temperature gradient
across the ice species, he computed the steady state potential difference between
the cold and warm ends of the specimen. Using values given in the literature for
the mobilities of and ions and for the activation energy for dissociation
of a water molecule into and ions, he found

This relation has been verified experimentally by Latham and Mason (1961b). (A
more complex expression for the thermoelectric power which reduces to (18-51)
for pure ice was derived by Jaccard (1963).) Considering that the separated space
charge in the ice specimen could be regaded as equivalent to a surface density of
charge on the ends of the specimen (18-51), Latham and Mason (1961a) found
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where is the static dielectric constant of ice. For two ice rods which are only
temporarily in contact with each other, Latham and Mason (1961a) found, for a
contact time of

For shorter contact times, was less due to insufficient time for charge exchange,
while for longer contact times, was less due to temperature equalization. Apply-
ing this result to the collision of a small, cold ice crystal of temperature grown
by vapor diffusion, and a large, warm graupel particle of temperature grown
by riming, we find from (18-53) that the negative charge imparted to the graupel,
and the positive charge imparted to the snow crystal is given by

Setting and assuming that the contact area is where
is the radius of the crystal, we obtain e.s.u.

per collision, in agreement with the charges observed on ice crystals of the same size
forced to collide with a probe coated with ice and heated 5°C above the temper-
ature of the surrounding air (Latham and Mason, 1961b). Although these values
substantiate the theoretically derived one, they are considerably smaller than the
values observed during the collision of ice crystals with graupel acquiring super-
cooled drops by riming. Latham and Stow (1965) therefore suggested that perhaps
one must include in (18-53) a dependence on the impact velocity by multiplying the

to account for observed charges up to e.s.u. It follows that thermoelectric
charging, although leading, via gravitational sedimentation, qualitatively to the
observed cloud polarity, cannot account quantitatively for the cloud charging.

2. The contact potential effect (Figure 18.4h)

Laboratory experiments of Marshall et al. (1978), Magono and Takahashi (1973a,b),
Takahashi (1978), Buser and Aufdermauer (1977), Hallett and Saunders (1979),
Caranti and Illingworth (1980, 1983), Gaskell and Illingworth (1980), Jayaratne et
al. (1983), Illingworth (1985), Jayaratne and Saunders (1985), Baker et al. (1987),
Saunders and Zhang (1987), Kumar and Saunders (1989), Caranti et al. (1985),
Saunders et al. (1985), Baker and Dash (1989), and Dong and Hallett (1992),
showed that the early experiments of Reynolds et al. (1957) should not be inter-
preted in terms of charging due to ice temperature differences only, but rather in
terms of differences in electric surface potential between the two colliding particles.
This conclusion was based on two experimental facts: (1) the ice surface acquires a
positive charge during diffusional growth and a negative charge during evaporation,
except at temperatures between –3 and 0°C. Charges of opposite sign were found
for condensing and evaporating liquid water surfaces. (2) The charge separated
during the collision of an ice crystal with an ice particle growing by collision with

right-hand side of (18-53) by  where is the impact velocity. However,
one readily finds that the impact velocities, temperature differences, and contact
areas would have to be unrealistically large in order for the thermoelectric effect
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supercooled drops was found to range between 1 and to
e.s.u.) per collision, and was not directly correlated to the temperature

difference between the target and the ice crystals. (3) The riming target was found
to become negatively charged below a temperature of –15 to – 20° C, and positively
charged above –5 to –10°C, implying that one and the same mechanism can be
made responsible for the observed negative charge center as well as for the observed
lower and upper positive charge centers in clouds. One may also readily verify that
an observed charge of e.s.u., transferred during the collision of an
ice crystal with a graupel, would lead to a volume charging rate of

for and With
e.s.u./col-

lision, we obtain
Unfortunately, no comprehensive theory is available at present to describe quan-

titatively the charging mechanism by means of surface potential differences, as these
depend in a complicated manner on the surface texture of the riming graupel, the
impact velocity, impact angle, and temperature difference between the colliding
particles. Nevertheless, Fletcher (1968) showed that such a contact potential is to
be expected. Considering that some water dipoles are aligned at the surface of
ice, he calculated an equilibrium charge carrier density of as a
result of free ions. An area of would therefore carry a chargeof
Due to differences in the surface states of the charge carriers on the two surfaces
in contact, a contact potential between the two colliding bodies must result.

3. The Workman-Reynolds effect (Figure 18.4i)

In Section 5.10, we have mentioned that during freezing of dilute aqueous solutions,
large potential differences occur at the ice/solution interface due to selective ion
incorporation into the ice lattice. Sign and magnitude of the interface potential
was found to be a sensitive function of the concentration of the ions in solution,
the freezing rate, and the type of ions in solution. Since the interface potential
disappeared once the freezing process was completed, any charge separation mech-
anism involving the Workman-Reynolds effect must involve either a shedding of
the still unfrozen solution or a tearing-off of unfrozen solution, by splashing during
the collision with large drops. In a limited manner, shedding of unfrozen liquid is
possible from hailstones growing in the wet regime (see Chapter 16). The splashing
mechanism was studied by Latham and Warwicker (1980) and was found to cause
only very small charges to be separated. In addition, the strong dependence of
the Workman-Reynolds effect on the concentration of the ions in solution and on
the type of ions, (e.g., in solution would charge the ice positively, while
in solution would charge the ice negatively) make the mechanism unlikely to con-
tribute to cloud electrification. The experiments of Shewschuk and Iribarne (1971)
and Crabb (1973) showed further that the presence of salt ions in the surface of a
graupel does not significantly affect its surface potential.
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18.5.2.5 Non-Inductive Charging Mechanisms Involving the Breakup of Pre-
cipitation Particles

1. Breakup of a freezing drop (Figure 18.4k)

Experiments of Mason and Maybank (1960), Evans and Hutchinson (1963), Dye
and Hobbs (1968), Johnson and Hallett (1968), Kolomeychuk et al. (1975), and
Pruppacher and Schlamp (1975) showed that freezing drops may produce an ice
shell which fractures or produce spikes which splinter. If fragmentation of some
type occurred, charges of either sign were observed, although the main ice particle
was often negatively charged and the ice splinters positively. The magnitude of
the charge on the main ice particle ranged between and e.s.u.
Considering that the outer portion of the ice shell can be assumed to have the
temperature of the air, while the drop inside is at 0°C, Mason (1971) attempted to
explain the charging on the basis of the thermoelectric effect. Writing (18-54) as

where is the thickness of the ice shell, and setting
where mm is the drop radius,

and assuming that only 1/100 of the shell fragments, he obtained a charge of about
e.s.u. produced on the ice residue of the shattered drop, in agreement

with the observed charges. However, we have already pointed out in Section 9.2.6
that only a small and highly unpredictable proportion of freezing drops shatters
or produces spikes which fracture, and that only drops larger than diameter
were observed to show any tendency to fragment at all. Furthermore, the thickness
of the fragmenting shell as well as the proportion of the shell which disintegrates
are unknown and most likely highly variable. Breakup of freezing drops is therefore
not likely to be a major cause of organized cloud charging.

2. Splintering during riming (Figure 18.4l)

Experiments of Latham and Mason (1961b) showed that small drops of 20 to
diameter, impacting on an ice sphere of 5 mm diameter, eject positively charged
ice splinters while the riming ice sphere becomes negatively charged. A charge of

e.s.u. per drop was found to be acquired by the graupel. Considering
this value and a volume charging rate of
Mason (1971) found for e.s.u.,

and where
are the radius, number concentration, and fall velocities of the graupel parti-

cles, and is the number concentration of drops. We notice from this result that
this mechanism does provide for the observed polarity of a cloud, but contributes
only a fraction of the required charging rate. More seriously, however, later stud-
ies of Hallett and Mossop (1974), Mossop (1976, 1978), and Hallett and Saunders
(1979) showed (see Sections 9.2.6 and 16.1.6) that splintering during riming is lim-
ited to the temperature range between –5 and –8°C and requires the presence of
drops with a radius of impacting at a critical impact speed. Therefore, this
mechanism likely contributes only in a very limited manner to cloud charging.
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3. Drop breakup (Figure 18.4m)

In Sections 10.3.5 and 14.5.4.2, we have shown that drops may break up by hydro-
dynamic instability or by collision. Elster and Geitel (1885), and Lenard (1892)
observed that the small drops produced by a water fall were negatively charged.
Later experiments of Simpson (1909, 1927), Lenard (1921), Zeleny (1933), and
Chapman (1952) confirmed the early observation and showed that drop breakup
causes electrification. During drop breakup, electrons are stripped-off and attached
to air molecules, leaving the main body of water positively charged. Typically,

e.s.u. per gram of broken up water was found to be separated. It is
obvious from the charge sign on the drops and on the air molecules that this mech-
anism could account only for the positively charged region in the lower portions
of a cloud. However, even if a cloud liquid water content of is assumed,
and the entire liquid water mass were to breakup three times within a span of
10 minutes, a volume charging rate of only about could be
achieved (Mason, 1971). This value is too small to account for the charging rates
observed in clouds.

4. Graupel melting (Figure 18.4n)

Experiments of Dinger and Gunn (1946) showed that ice which contains air bub-
bles (such as found in graupel particles and hailstones) acquires a positive charge
on melting. This finding was later confirmed by Chalmers (1956), Magono et
al. (1963, 1965), Kikuchi (1965), MacCready and Proudfit (1965), Dinger (1965),
Drake and Mason (1966), Iribarne and Mason (1967), Drake (1968), and Martin
and Hutchinson (1977). Dinger and Gunn (1946), Blanchard (1963), and Iribarne
and Mason (1967) showed that the charging is due to the ejection of negatively
charged minute droplets produced by air bubbles bursting at the surface of the
meltwater. The charging was found to be a function of the radius of the escaping
air bubbles, the bubble content of the ice, and the ion content of the meltwater.
The mechanism of charging is assumed to be associated with an electric double
layer at a water/air interface of the air bubble cavity, with an excess of negative
ions near the air/water interface and a diffuse positive space charge extending into
the meltwater. Shearing of the electric double layer during the escape of the air
bubble transfers negative charge to the drops from the bursting bubble cap. Elec-
tric charges between a few tenths and about 7 e.s.u. per gram of melted ice was
found, depending mostly on the bubble content of the melting ice specimen. Ma-
son (1972) assumed a value of 2 e.s.u. per gram resulting from the melting of
millimeter-sized graupel particles, and an ice water content of to obtain
a spatial charge concentration of approximately sufficient to explain
the positive space charge often found near the 0°C level in a cloud. However, the
mechanism cannot explain the positive space charge often found, even above the
melting level (MacCready and Proudfit, 1965; Marshall and Winn, 1982; Marshall
and Marsh, 1986).
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18.5.2.6 Growth of the Electric Field

In order to test the importance of each of the cloud charging mechanisms just
discussed, numerous cloud modeling studies have been performed by which the
time rate of change of the cloud electric field is computed. Some of the early
studies (Latham and Mason, 1962, later used again by Mason, 1971, 1972, 1988;
Müller-Hillebrand, 1954, 1955; Ziv and Levin,1974; Scott and Levin, 1975a,b) were
based on a one-dimensional or parallel plate capacitor cloud geometry. Considering
the local current density of falling, charged precipitation particles, given by

where the summation is taken over particle categories, and
a total leakage current density where represents current densities
which are non-linear in the electric field (e.g., point discharge currents), the time
rate of change of the electric field is given by

From measurements of point discharge currents, Mason (1971) has suggested an
empirical representation of the total leakage current density of the form

Evaluating (18-56) for the case of two particle types, namely
large graupel particles and small ice crystals charging by induction during their
collision in the growing electric field, and assuming a constant concentration of
small ice crystals of of radius a fall velocity difference of
between the large and small particles, a collision and separation efficiency of unity,
and a graupel precipitation rate initially of 1 mm and reaching 37 mm
after 540 sec, Mason (1971) found that the electric field grew exponentially and
reached a value of after 9 minutes.

Illingworth and Latham (1975), however, pointed out that real clouds of finite
extent could not be as easily electrified. The parallel plate capacitor cloud also
completely ignores the effects of the air-motions in a cloud. Therefore, in later
cloud electrification models (Tzur and Levin, 1981; Helsdon, 1980; Chiu, 1978;
Chiu and Orville, 1976; Takahashi, 1978c, 1979, 1983a, 1984; Kuettner et al., 1981;
Illingworth and Latham, 1977; Dye et al., 1986; Rawlins, 1982; Asama and Kikuchi,
1987; Helsdon and Farley, 1987; Ziegler et al., 1991; Norville et al., 1991), the cloud
charging mechanisms were embedded in two- and three-dimensional cloud models.
It would lead us much too far afield should we venture to discuss these various
models in detail, including their advantages and disadvantages, and the results
derived from them. The models are also not strictly comparable, since not all
of them considered the same charging mechanisms. In addition, many different
approaches are used to describe cloud microphysical processes, some of which are
heavily parameterized.

Nevertheless, from the more recent model studies, a few pertinent conclusions
can be drawn: (1) All cloud charging mechanisms mentioned above appear to con-
tribute to some degree at some time to the charging of a cloud. Among these,
however, the non-inductive mechanism involving the collision of graupel with snow
crystals in the presence of supercooled water, dominates all others and is able to
explain the tripolar charge distribution often observed. A secondary, but never-
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theless significant role is played by the inductive mechanism involving the collision
of polarized ice particles with smaller snow crystals. Drop-drop interactions, on
the other hand, tend to produce electric fields which grow little and reach sizeable
values only if heavy precipitation is sustained and large separation efficiencies are
assumed. (2) While the non-inductive ice-ice mechanism tends towards a steady
state electric field, as the same charge is separated during each collision, the in-
ductive ice-ice mechanism causes a continuously building electric field and explains
the often observed exponential increase of the field with time. (3) Both ice-ice
mechanisms together appear to produce, within 20 minutes, an electric field of up
to a tripolar cloud structure with net negative and positive charge
centers of 1 to and peak charging rates of the negative
charge center appearing near – 20° C, an upper positive charge center appearing at
considerably lower temperatures, and a lower positive charge center between –10
and 0°C. These findings meet the major requirements listed in Section 18.5.1.

18.6 Effect of Electric Fields and Charges on Microphysical
Processes

We shall now describe some observed and/or predicted modifications in the be-
havior of isolated and interacting cloud particles in consequence of the presence of
ions, particle charges, and ambient electric fields.

18.6.1 DROP AND ICE CRYSTAL NUCLEATION

Many expansion chamber experiments (for a summary, see Mason, 1971; and Rathje
and Stranski, 1955) have shown that, in the presence of singly charged, negative
small ions, the onset of an appreciable rate of drop formation (J = 1 in the nota-
tion of Chapter 7) in otherwise clean moist air, requires critical saturation ratios

of 3.7 to 4.2, i.e., critical supersaturations of 270 to 320%. For pos-
itive ions, the corresponding critical saturation ratio is Both results
apply to temperatures between –5 and –8°C. Note by comparison with Figure 7.5
that, for the same temperature interval, homogeneous nucleation at the rate J = 1
occurs for 4.6 Thus, we see that the presence of negative ions de-
creases the supersaturation required for drop nucleation below the value required
under homogeneous conditions, while positive ions raise the critical supersatura-
tion. This electric sign effect was qualitatively explained by Loeb et al. (1938).
They argued that embryonic water drops are in a pseudo-crystalline state in which
the molecules assume a definite structural arrangement. In order to minimize the
surface energy of such an arrangement, the water molecules at the surface tend to
be oriented with their oxygen atoms outward, since the polarizability of an oxygen
atom is considerably larger than that of a hydrogen atom. Thus, the capture of neg-
atively charged ions will enhance the original tendency of the embryonic drops to
orient approaching water molecules with their hydrogen atoms inward and thereby
facilitate drop nucleation; by the same argument, positive ions will hinder nucle-
ation. However, the small differences due to sign aside, the main point to be made
is that since supersaturations in clouds rarely exceed a few percent (see Figure 2.1),
small ions cannot affect the nucleation rate under natural conditions. Studies of



828 CHAPTER 18

the effect of net electric charges on aerosol particles and of external electric fields
on heterogeneous drop nucleation are not available in the literature.

Work carried out prior to 1963 suggested qualitatively that electric fields and
charges enhance ice nucleation (Pruppacher, 1963b). Subsequent more quantitative
experimental studies confirmed these effects, but indicated that, under atmospheric
conditions, only charges are likely to affect ice nucleation. Gabarashvili and Gliki
(1967) and Gabarashvili and Kartsivadze (1968, 1969) found that supercooled drops
containing particles of quartz or napthalene were nucleated to ice at significantly
warmer temperatures when the particles carried a net negative charge than when
they were neutral or carried a net positive charge. Abbas and Latham (1969a) and
Morgan and Langer (1973) observed that charged nuclei produced during corona
discharges or by sparks promoted ice nucleation of supercooled drops. The effect
of charge sign was not reported. Pruppacher (1973b) found that the freezing tem-
perature of supercooled water drops of 100 to radius, freely suspended in
the air stream of a wind tunnel, was considerably raised when contacted by pre-
dominantly negatively charged amorphous sulfur particles which, when uncharged
are known to be poor ice forming nuclei.

The effect of external electric fields on ice nucleation has been studied under
essentially two different experimental conditions. Pruppacher (1963c) observed in
laboratory experiments that millimeter-sized drops, forced in an external electric
field to deform and thus to rapidly spread over a solid surface, froze at temperatures
up to 10°C warmer than when the drops were unaffected by the field. These results
are consistent with the observations of Doolittle and Vali (1975), who found that
an electric field had no effect on the freezing of supercooled drops if they remained
motionless with respect to the supporting surface. Other studies have dealt with
drops in free fall. For example, Dawson and Cardell (1973) observed millimeter-
sized drops suspended in the air stream of a wind tunnel at temperatures of –8 to
–15°C and detected no electrofreezing effect for external fields up to
Coalescence between drops did not alter this outcome. In contrast to these studies,
however, Abbas and Latham (1969a) and Smith et al. (1971) found that millimeter-
sized drops falling in air of –5 to –12° C through intense fields froze if disruptions
caused small filaments to be drawn out from or between drops.

18.6.2 DIFFUSIONAL GROWTH OF ICE CRYSTALS

Numerous laboratory studies suggest that both the growth mode and the growth
rate of ice crystals are significantly affected by external electric fields. Studies
prior to 1973 have been reviewed by Evans (1973) and by Crowther and Saunders
(1973). From their summaries, it appears that in intense electric fields ice crystals
tend to assume the shape of a needle or spike, independently of temperature, which
is oriented in the direction of the field lines. To understand this behavior, we may
consider a corner of an ice crystal pointing in the direction of the field lines: The
local field enhancement caused by the large curvature of the corner causes the
formation of ions in its neighborhood. Some of these ions are captured by the
polar water molecules, which then move in the field to enhance the vapor flux to
the crystals corner. As the corner grows into a needle or spike, the process is self-
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propagating as side branches which might compete for water vapor are suppressed.
The growth rate of the crystal is further increased by the field enhancement of the
migration distance of water molecules at the ice surface. Both effects have been
observed to enhance the growth rate of an ice crystal by factors of 10 to 1000 over
the rate in the absence of electric fields. For such significant effects to occur, the
field strength has to reach several No growth enhancement has been
observed if

18.6.3 DROP DEFORMATION, DISRUPTION AND CORONA PRODUCTION

It is well-known that a drop in an electric field will elongate along the field direction,
due to the interaction of the field and the polarization charge induced on the drop.
For situations in which gravitational and aerodynamic forces are negligible, the
distorted shape is approximately prolate spheroidal, with an eccentricity which
increases with increasing field strength until, finally, disruption occurs at a critical
field value. Zeleny (1915, 1917) was the first to observe that drops raised to a critical
electric potential would disintegrate if held fixed at the end of a glass capillary. He
pointed out that the disintegration begins as a hydrodynamic instability rather than
the formation of ion currents. Taylor (1954) modeled this situation theoretically for
an uncharged drop by assuming a spheroidal shape, and then setting up equations of
equilibrium between surface tension and electrical stresses at the poles and equator
of the drop. As a result of this analysis, he estimated the critical field for
disruption (in e.s.u.) to be given by

where is the undeformed radius of the drop in cm, is its surface tension,
and In a more refined numerical study, Brazier-Smith (1971) aban-
donned the constraining assumption of a spheroidal shape by formulating an itera-
tive method in which the critical electric field for drop instability was computed in
a succession of stages. The drop shape at each stage was based on the deformation
imposed by the external electric field on the shape it had in the previous stage. In
this way, Brazier-Smith found showing that the spheroidal assump-
tion of Taylor was a good approximation to the true behavior. However, it must be
pointed out that neither Taylor (1964) nor Brazier-Smith (1971) included in their
theory the very important contribution of aerodynamic forces which, as we have
seen in Section 10.3.2, control the shape of a falling drop in the absence of a field.
We are therefore not surprised that the values found experimentally for deviate
somewhat from the calulated one. Thus, Wilson and Taylor (1925), experimenting
with soap bubbles, found while Nolan (1926), Macky (1931), Abbas
and Latham (1969b), and Griffiths and Latham (1972), experimenting with drops
falling through an intense vertical electric field, observed
and 1.81, respectively. The experiments of Latham (1965) and of Mathews (1967)
showed that the deviations found result not only from a neglect of the aerodynamic
effects in the theoretical models, but also from differing experimental conditions.
Thus, the drops fell through fields of very limited vertical extent, and allowance
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was generally not made for observations showing that the mass loss of a drop in an
intense electric field was found to increase with increasing time of exposure to the
field.

More realistic experiments were carried out by Dawson and Richards (1970),
Richards and Dawson (1971), and by Rasmussen et al. (1985), who floated drops
at their terminal velocity in the vertical air stream of a wind tunnel in which
the drops were allowed to oscillate freely while being exposed to a vertical electric
field. These studies showed that the electrical instability ensues at the drop’s upper
surface and that is not constant but increases with increasing drop size. Thus,

was found to increase from 1.63 to 1.92 and
from 1.67 to 1.80 according to Richards and Dawson
(1971), and Rasmussen et al. (1985), respectively.

Richards and Dawson’s (1971) values for the critical electric field for onset of
instability in charged water drops falling in air at terminal velocity are shown
in Figure 18.5. We see that, for the wind tunnel results are in good
agreement with the simple Taylor limit of (18-57), plotted as curve (1) in the figure.
However, for larger sizes, (18-57) progressively underestimates The principal
reason for this growing difference is that aerodynamic forces tend to flatten the
drops into shapes resembling oblate spheroids, the more so as the size increases
(recall Section 10.3.2), thereby stabilizing the drops against the vertical field.

It is also interesting to note from Figure 18.5 that, for drops of the
critical field for breakup remains nearly constant at about This result
is consistent with the observations of Griffiths and Latham (1972), who showed
that at 1000 mb the onset of corona discharge (which accompanies instability)
from water drops of in air at 1000 mb occurs in a vertical field of

decreasing to about at 500 mb.
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The experimental and theoretical studies discussed above show that the critical
electricfieldsnecessary for the disintegration of a single drop, and thus necessary for
dielectric breakdown in clouds, are considerably larger than the maximum electric
fields observed in natural clouds. This conclusion is not altered if the results of
experiments with horizontal instead of verticle electric fields are considered. Thus,
Ausmann and Brook (1967) derived from experiments with drops falling
through a horizontal electric field of limited extent. Kamra et al. (1993) studied
drops suspended freely for long periods of time in the vertical air stream of a wind
tunnel, and found This rather low value was explained in terms of the
previously mentioned experimental results of Latham (1965) and Mathews (1967).
Using this result, one finds  and for drops of and
6.6 mm, respectively. These values are still larger than the maximum electric fields
observed in atmospheric clouds.

Of course, one may argue that drops in strong electric fields will generally also
carry net charges, which can be expected to affect their stability as well. A com-
bined theoretical and experimental study of the more general problem of charged
drops falling through an electric field was first carried out by Abbas and Latham
(1969b), who attempted to extend Taylor’s analysis by including drop charge and
some terms representing hydrostatic and aerodynamic effects. From their compu-
tations (also reported in Latham and Meyers (1970)), they obtained the following
relationship between the critical field for disruption and the drop charge Q (in
e.s.u.):

where is the Rayleigh charge limit given by (17-46). They also found that (18-
58), their experimental results, and the experiments of Ausman and Brook showed
agreement to within 3% for and

It is interesting to note that (18-58) does not yield the Rayleigh limit
for however, (18-58) was not intended to be applicable for
On the other hand, (18-58) does closely approximate the Taylor limit, (18-57), for
Q = 0. Levine obtained a result similar to (18-58), but with the coefficient 1.5
multiplying replaced by 1.0, in order to achieve the Rayleigh limit for zero
field.

It is obvious from (18-58) that a drop charge lowers the critical field for in-
stability. For example, from (18-58) we find for
Q = 2 e.s.u. and The study of Brazier-Smith (1972), in which
the constraining assumption of a spheroidal shape is abandoned (but which does
not include aerodynamic effects), yields for the same con-
ditions. Despite the rather unrealistically large charge assumed in the previous
example, we note that the critical field strengths required for drop instability are
still considerably larger than those typically observed in thunderstorms.

Thus far, we have considered only the instability of single drops. One would
expect that pairs of drops in close proximity would behave quite differently. In
this case, a strong enhancement of the field between the drops is expected due to
the mutual interaction of the polarization charges. This effect will be particularly
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strong if the field is nearly parallel to the line of centers of the drops. A theoretical
and experimental study of this problem was performed by Latham and Roxburgh
(1966). They employed the basic calculational procedure of Taylor (1964), de-
scribed above, along with the theoretical values of Davis (1964a,b) for the local
field enhancement in the gap between two spheres situated in an electric field.
(Davis’s analysis is discussed in Appendix A-18.6.3.) The computations of Latham
and Roxburg showed that the field required to initiate instability in one of a pair of
closely separated drops may be several orders of magnitude less than that needed
to disrupt either drop in isolation. The calculated critical fields for mm
were also found to agree well with their experimental values.

On the other hand, Brazier-Smith (1971) applied the same numerical method
used for single drops to this problem, and obtained critical field values consistently
higher (by about a factor of 2 for close separations of equal drops, decreasing to
a factor of about 1.1 for a separation of than those found by Latham and
Roxburgh. Brazier-Smith explained the agreement between the theoretical and
experimental results of Latham and Roxburgh by noting that both actually dealt
with the problem of supported drops, rather than of free drops as proposed and as
studied by Brazier-Smith.

The relevance of these studies to pairs of drops falling under natural conditions
may be somewhat limited, since hydrodynamic forces were ignored. By analogy
with the previous case of studies on isolated drops, we might expect that hydrody-
namic forces would tend to suppress the onset of electrical instability for interacting
drop pairs. However, the effect is probably not as great in the present instance,
since the deformations and instabilities occur in the vicinity of closely adjacent
surfaces where air-flow effects may be relatively unimportant.

Crabb and Latham (1974) have made measurements on the critical field required
to produce corona from a pair of water drops, of radii 2.7 mm and 0.65 mm,
colliding with a relative velocity of which is similar to their difference
in terminal velocities. The critical field ranged from about for head-on
collisions to about for glancing collisions; these values are, of course,
considerably less than those required to produce corona from single drops, and
suggest that corona from colliding raindrops may be capable of triggering lightning.
Similar results and conclusions follow from the experiments of Griffiths and Latham
(1974) on corona production from ice crystals or hailstones. They found that the
critical field for sustained positive or negative corona depends on the size, shape,
and surface features of the particle, but may be as low as at pressures
corresponding to those where lightning is initiated.

In the previous paragraphs, we have been concerned with the electric field at
which a drop becomes distorted to such an extent that disruption follows. We
shall now briefly consider the distortion which a drop experiences when exposed
to external electric fields less than critical. Values for the ratio of the minor to
the major axis of a drop in an external electric field have been computed as
a function of by O’Konski and Thatcher (1953), Taylor (1964), Abbas
and Latham (1969a,b), Brazier-Smith (1971), Brazier-Smith et al. (1971), and
Zrnic et al. (1984). With the exception of Brazier-Smith, all authors assumed
that a drop retains its spheroidal shape while being deformed. Also, none of the
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computations included aerodynamic effects.
In Section 10.3.2, we have shown that hydrodynamic forces acting on a falling

drop induce on it an oblate spheroidal shape with a value that is smaller the
larger the drop. This effect obviously counteracts the prolate spheroidal deforma-
tion produced by the electrostatic stress of a vertical external electric field.
As long as the electric field is relatively small, the flow around the drop and the sur-
face tension stress will dominate drop shape. This situation is expected to change
drastically as the electrostatic stress begins to dominate the other stresses. Thus,
large drops with a small value for are expected to yield more readily to
the deforming electrostatic stress, and vice versa. The first expectation has been
verified experimentally by Kamra and Ahire (1993), who found that oscillating
drops of changed their shape (given by the time averaged axis
ratio only relatively little for Unfortunately, no larger
electric fields were applied. The second expectation has been verified theoretically
by Chuang and Beard (1990), who computed the equilibrium shape of a drop ex-
posed to an external electric field by means of an extension of the hydrodynamic
drop shape model of Beard and Chuang (1987) (see Section 10.3.2). Their results
are exhibited in Figure 18.6. We note that, as expected, the curves for vs. E
and for tend to cross each other when the fields become sufficiently
large, hence, causing larger drops to become more deformed. However, a com-
parison of these theoretical results with the observed values for the electric fields
for breakup, also shown in Figure 18.5, demonstrates that the theoretical predic-
tions significantly overestimate the electric field required to achieve critical drop
deformation. This discrepancy is a result of the fact that the theoretical model
disregards drop oscillations and assumes all forces on the drop to be in equilibrium
all the time. Freely falling drops oscillate, however, generally in a prolate/oblate
mode (see Section 10.3.3). Since, for a given external electric field, the induced
charge on the drop’s upper-side is the same in both modes, the charge on a prolate
deformed drop is distributed over a much smaller area than on an oblate deformed
drop, causing the electric force per unit area of the drop to be much larger in its
prolate mode than in its oblate mode, and also larger than in its equilibrium shape.
Oscillating drops are therefore expected to deform in an external electric field more
readily than a drop which is prevented from oscillating and is forced to keep an
equilibrium shape. In order to demonstrate the expected drop deformation for an
oscillating drop, we have included in Figure 18.6 the dashed curves which, for low
values of E , are consistent with the computations of Chuang and Beard (1990)
and the experiments of Kamra and Ahire (1993), and for large values of E, are
consistent with the critical electric fields observed by Richards and Dawson (1971).
Note the dashed curves deviate considerably from the equilibrium curves.

The effects of electric charges on drop shape in the absence of an external electric
field, determined by Chuang and Beard (1990), are exhibited in Figure 18.7. We
note that increasing charges enhance the oblate drop deformation, as expected from
(18-58).

It is, of course, expected that electric fields and charges also affect the oscillation
frequency of a drop. This has been verified theoretically by Brazier-Smith et al.
(1971), and recently by detailed theoretical modeling of Feng and Beard (1990,
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1991a,b). These studies show that the oscillation frequency is reduced by charges
and fields.

Weinheimer and Few (1987) showed that electrical fields may also affect the fall
of snow crystals. On comparing the aerodynamic torques due to Stokes flow, using
the solutions of Jeffreys (1922) with the electric torques on falling snow crystals
using the formulations of Stratton (1941) and McCormick and Hendry (1977), they
found that snow crystals with dimensions of 200 to align in an external
electric field of In fields of only crystals with diameters
of less than would align. Columnar crystals were found to align more easily
than plates, except for dendrites.

18.6.4 DROP TERMINAL VELOCITIES

A drop of mass bearing charge of magnitude and falling in a vertical electric
field E , will experience a combined gravitational and electrical forceof
If the drop is small enough to retain a spherical shape, the computational schemes
of Section 10.3.6 for spherical drops may be used to determine its terminal velocity,
the only modification required being merely the replacement of by
Table 18.1 gives some selected values for drop terminal velocities computed in this
manner by Gay et al. (1974) for water drops in air. Note the pronounced increase
in terminal velocity which charged drops experience in an external electric field.
Experiments carried out by Gay et al. for the same range of drop sizes, drop
charges, and external electric fields, yielded terminal velocities which were in good
agreement with those theoretically predicted.

For deformed drops, the computational schemes of Section 10.3.6 cannot be
used unless the drop deformation is known as a function of drop size, charge, and
field strength. Unfortunately, there are at present no satisfactory experimental or
theoretical descriptions of this functional relationship. However, some information
concerning the electric field dependence of terminal velocities of large uncharged
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drops falling in vertical fields has been obtained by Dawson and Warrender (1973).
As we know from the previous section, a vertical field tends to counter the oblate
spheroidal deformation of large falling drops, induced by hydrodynamic forces.
Therefore, we would expect to see an increase in terminal velocity with increasing
field strength, owing to the resulting decrease in the drop cross-section presented to
the flow. The extent of the increase found by Dawson and Warrender for millimeter-
sized drops was rather small: typically, for
example, for a drop of mm they found if E was
increased from 0 to

18.6.5 COLLISIONAL GROWTH RATE OF CLOUD PARTICLES

We would also expect to see a significant change in the collision and coalescence (or
sticking) efficiencies of cloud particles which are subjected to electrostatic forces
of magnitude comparable to the acting hydrodynamic and gravitational forces.
Several theoretical and experimental investigations of the possible electrostatic in-
fluences have been carried out. For example, in a field experiment Latham (1969)
found that the growth rate of radius drops colliding with diameter
drops (all carrying negligible charge) was enhanced if the external electric field
strength exceeded At field strengths of the growth rate
was about 20% higher than for the case of no field. No further enhancement was
noted until the field reached in larger fields, the growth rate rapidly
increased again, achieving for a 100% increase over the rate for zero
field. Qualitatively similar results were obtained in laboratory investigations by
Phan Dong and Dinh-Van (1973). They showed that the number of collection
events for a given time period in a cloud of uncharged drops in air was affected
only by field strengths exceeding The collection rate increased linearly
with further increasing field strength.

Some effects of drop charge on growth by collision and coalescence have been
studied by Woods (1965). In the absence of an external electric field, oppositely
charged drops of required a charge e.s.u. for a discernible
increase in growth. Above this threshold, the number of collection events increased
approximately linearly with increasing charge. Drops of exhibited a
similar trend, but no clear threshold for the onset of a charge effect could be
detected. Charges of equal sign reduced the number of collection events below that
occurring for uncharged drops if and inhibited collection completely if

Similar electrostatic effects on the growth rate of ice crystals colliding with
ice crystals have been observed by Latham (1969), Latham and Saunders (1970),
Crowther and Saunders (1973), and Saunders and Wahab (1975). In these experi-
ments, threshold fields of 100 to were required for a discernible effect.
For larger fields, the growth rate increased rapidly, reaching values 80 to 100%
larger than for the zero field case if In the absence of a field,
only about 10% of the ice crystals were aggregated, the aggregates consisting of up
to 6 component crystals. In fields of near 100% of the ice crystals
were aggregated, each consisting of up to 10 crystals. In addition, Saunders and
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Wahab (1975) found that aggregation in electric fields was most efficient at tem-
peratures near –8°C, i.e., in the temperature region where columnar crystals are
the favored growth habit. At this temperature, the crystal aggregates consisted of
short columns joined at their basal or prism planes.

The effect of electric fields on the growth rate of ice crystals growing by collision
with supercooled drops was studied by Latham (1969). He found a threshold field
of for a discernible effect. In the presence of larger fields, the growth
rate increased rapidly, reaching about 150% at and about 200% near

of the growth rate in the absence of a field. No studies on the effect
of charges on the growth rate of ice crystals colliding with other ice crystals are
available in the literature.

Several theoretical studies of the effect of electrostatic forces on the collision
efficiency of water drops in air have been carried out. For most cases of interest,
very complex hydrodynamic and electrostatic interactions are involved, and the
solutions can be obtained only through numerical integration procedures. However,
a few approximate analytical solutions are also available for special combinations
of drop mass, charge, and electric fields. Two of these asymptotic estimates of
collision efficiencies are especially simple and helpful in providing some additional
physical insight into the more complex situations, and so we shall now turn to a
discussion of them, following Atkinson and Paluch (1968) (similar results appear
in Paluch, 1970).

First, let us consider the case of large drops bearing large charges. If a pair
of such drops has a sufficiently large initial relative velocity, the relative motion
can be described adequately within the theoretical framework of the classical two-
body problem, in which two particles approach each other in a frictionless medium
and are subjected to an inverse square law mutual attraction. The solution of
this problem is well-known (e.g., see Goldstein, 1965), and may be expressed as

where is the impact parameter of the encounter,
is the apsidal (orbital turning point) distance, is the kinetic energy of the
relative motion for large separations, and is the decrease in electrical energy
that occurs as the particles are brought from infinity to the minimal separation

at the turning point of the orbit. Considering the definition of the collision
efficiency E (Section 14.4.2), we may view for and
as the collision efficiency for two point particles which approach to within the drop
collision distance In this manner we obtain the estimate

where is the initial relative velocity, is the drop charge in e.s.u., and
Numerical computations of the trajectories which evolve when the effects of

polarization (image) charges and drag are included, produce results which can be
fitted within a few percent to the relationship
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for the ranges and where K =
Thus, we see that the simple two-body model and (18-61) describe

the essential behavior for this class of interactions.
The other approximate analytical result applies to the case of highly (and op-

positely) charged small drops in the Stokes regime The model in this
case involves the assumptions of negligible drop inertia and hydrodynamic inter-
action, so that the Stokes drag on each drop just balances the applied forces from
gravity, the Coulomb interaction, and the external electric field   thus, for drop
1, we write

where is the center to center distance between the drops and is the unit vector
along the line of centers from drop 1 to drop 2 On subtracting (18-61)
from the similar equation for drop 2 and letting both gravity and the external field
act in the positive we find the velocity of drop 2 relative to drop 1 has
the components

where and is the mobility of drop On eliminating
time from (18-62), the governing equation for the relative trajectories is obtained:

Integration of this equation yields the family of trajectories
where is the integration constant. We may determine in terms of the
impact parameter by noting that for Furthermore, inspection of
the resulting trajectories reveals that collisions will occur only for those
trajectories which approach the origin from the direction: i.e., the criterion
for is that as and approach zero. Therefore, we obtain

or

For highly charged drops, (18-64) predicts collision efficiencies two to three orders
of magnitude larger than the geometric value of unity. For example, (18-64) gives

for e.s.u., and
e.s.u.; and for

e.s.u., e.s.u. Laboratory experiments by Krasnogorskaya
and Neizvestnyy (1973) and Abbott (1975) have shown (18-64) to be within the
range of experimental scatter for However, for smaller E, Abbott
found that (18-64) progressively underestimates the experimental values. From the
numerical examples given above, we see that typically corresponds to
drop charges much larger than those found in clouds (recall Figure 17.1). Therefore,
for small drops and realistic charges, it is necessary to employ a more complete
physical-mathematical model and numerical methods of solution.
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A complete description of the electrostatic forces acting on a pair of drops is
available from the work of Davis (1964a,b), who solved the boundary value prob-
lem of two charged conducting spheres subjected to a background electric field.
(A description of this solution is given in Appendix A-18.6.3.) For the hydrody-
namic forces, the various flow fields and flow-interaction descriptions discussed in
Chapter 14 may be used. The two types of forces may then be superposed and
the drop trajectories integrated numerically to determine the extent of electrostatic
influences on the collision efficiency problem.

Such studies have been carried out by Sartor (1960), Davis (1965), and Krasno-
gorskaya (1965) using Stokes flow, and by Lindblad and Semonin (1963), Plumlee
and Semonin (1965), and in and Plumlee (1966) using Proudman and Pearson flow
(see Section 10.2.2.3). In all studies, except that of Krasnogorskaya, the electric
force expressions of Davis were used. The results of these studies, applicable to
collector drops of low Reynolds number only, show that for a given charge or field,
the effect on the collision efficiency increases with decreasing size of the collec-
tor drop, and that for a given collector drop, the effect increases with decreasing
size of the collected drop. Furthermore, for a given drop pair, a critical charge
and/or field is generally found to be necessary for electrostatic effects to be no-
ticeable. For example, Davis (1965) concluded that in the absence of electric fields
and for the threshold charge is with in cm. Simi-
larly, Krasnogorskaya found e.s.u. for Semonin and Plumlee
found e.s.u. for and
Lindblad and Semonin and Semonin and Plumlee found that the threshold vertical
field for a noticeable enhancement of the collision efficiency for uncharged drops
was for and for

and for and
and for and

In order to determine the effect of electric fields and charges on the collision
efficiency of larger drops, Schlamp et al. (1976, 1979) employed the superposi-
tion scheme (see Section 14.3) in conjunction with numerically determined flow
fields around drops (see Section 10.2.2.4) and Davis expressions for the electrosta-
tic forces. The equation of motion for the was thus written as

with an analogous equation for the The electric forces were those
given by the Davis relations (A. 18-2 to A. 18-4). The computations were carried
out for and for the case that the external
electric field was assumed to be parallel to gravity pointing downward due to a net
positive charge in the upper part of the cloud, and for the case that the
was positively charged and initially above the smaller, negatively charged
(Schlamp et al., 1976). The case where the was negatively charged and
either above or below the positively charged was treated by Schlamp et al.
(1979). The electric fields assumed ranged between 0 and while the
charge on the drops was assumed to be given by a relation of the form
(see Equation 18.43) with implying e.s.u.).
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Selected results from the collision efficiency study of Schlamp et al. (1976) for
the case of a positively charged above a negatively charged in a
negative electric field are shown in Figures 18.8a,b,c, with legends
given in Tables 18.2 to 18.4.

From these figures, we note that the collision efficiency of small highly charged
drops in thunderstorm fields may be up to times larger than the corresponding
efficiency for the same drop pairs in weakly electrified clouds. Therefore, studies
of cloud electrification via precipitation charging mechanisms should obviously ac-
count for the electrostatic influence on the collision efficiency. On the other hand,
the figures also suggest that the weak charges and fields present in young clouds
will probably not significantly promote the early stages of drop spectral evolution
by collision and coalescence. However, because of the complex non-linear nature
of the collection growth problem, the actual quantitative importance of any col-
loidal destabilization induced by electrostatic forces can only be determined by
comprehensive simulations of the collection process which include the full coupling
between changes in electrification and in the drop spectrum.

Figures 18.8a,b,c show further that the influence of electrostatic effects decreases
with increasing becoming negligible, even in the presence of the highest electric
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fields and charges observed in clouds if Also, as expected, for a given
drop pair, the effect of electric fields and charges on the collision efficiency generally
increases with increasing drop charge in the absence of an external field, and with
increasing field strength in the absence of charges. For a given the effect on
the collision efficiency of either electric charges or an external electric field depends
on the drop size ratio the effect being largest for least for
intermediate and increasing again for We also note that, for a given
the collision efficiency generally increases with increasing radius of the i.e.,
with increasing and thus decreasing relative velocity between the drops.

The collision efficiencies computed by Schlamp et al. (1979) for the case of a
negatively charged colliding with a positively charged in a negative
electric field (i.e., positive), were found to differ considerably from the values
for a positively charged computed by Schlamp et al. (1976). This is due
mainly to the fact that the relative velocity difference of the drops and, hence, their
interaction time are significantly different for the two cases. In addition, in some
cases, collisions were found to occur both on the front as well as the rear hemisphere
of the or on the rear hemisphere only. Such rear collisions are exemplified
in Figure 18.9. In contrast, collisions with a positively charged drop in a negative
field occurred only on the front hemisphere of the These results lead
to the conclusion (Schlamp et al., 1979) that, in the latter case, the electrostatic
forces dominate collision, while in the former case, collision is controlled by the
hydrodynamic forces, which merely become enhanced by the electrostatic forces.

Unfortunately, no experimental verification is available for the collision efficien-
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cies computed by Schlamp et al. (1976, 1979), except for the study of Barker et al.
(1983) who determined the collection efficiency of of 40 to radius
colliding with of radius. The small drops were uncharged while
the drops of radii between 40 and and between 80 and were either
uncharged or carried a charge of and e.s.u, respectively. While
the collision efficiency obtained with uncharged drops was near 0.8, agreeing well
with the values computed by Schlamp et al., the efficiencies obtained with charged

were up to twice as large as those for uncharged Unfortunately,
Schlamp et al. (1979, 1976) did not apply their model to the case of charged

and uncharged so that no comparison with theory can be made.
Some quantitative support for curves 3 and 5 in Figure 18.8a was provided by the
analytical study of List and Freire (1981).

In addition to increasing the collision efficiency, electric fields and charges may
raise the growth rate of cloud drops by increasing the fraction of ‘colliding’ drops
which coalesce. In Section 14.5.4.1, we pointed out that drops of are
likely to rebound from each other rather than coalesce, due to the presence of an
air film temporarily trapped between their deformed surfaces as they collide. We
would expect that this barrier to coalescence would be weakened by the forces
of electrostatic attraction, and also by the local surface deformations which may
result. These expectations have been verified by Lindblad (1964) and Semonin
(1966), who found that, for millimeter-sized drops, the apparent delay time between
collision and coalescence was strongly reduced if the potential difference across the
colliding drops was raised to several Volts. Also, Goyer et al. (1960) observed that
~ 34% of radius drops colliding with 300 to radius drops coalesced
if the electric field across them was raised to while 95% of the
colliding drops coalesced if the field was raised to Jayaratne and
Mason (1964) found that a critical electric field of was required to
affect the coalescence of radius drops impacting on a large essentially flat
water target. Freier (1960) observed that the probability of coalescence between

drops began to be affected when the electric field exceeded
In agreement with this result, Jennings (1975) found that colliding drops always
coalesced if Generally, the studies performed so far show that the
larger the colliding drops, the higher the field required to enhance the efficiency with
which the drops coalesce. This is expected from our discussion in Section 14.5.4.1,
where we pointed out that the larger the colliding drops, the more pronounced is the
deformation which the drops experience on collision, and thus the more extensive
the air film trapped between the drops.

The effect of charges of opposite sign on the coalescence of water drops in air
has been studied by Jayaratne and Mason (1964), Park (1970), Whelpdale and List
(1971), and by Brazier-Smith et al. (1972). From these studies, it appears that for
drops of coalescence is affected only if the charge on the drops
is larger than e.s.u. For charges of magnitude to e.s.u., the two
colliding drops were found always to coalesce.

A very detailed study with freely falling drop pairs of and
were carried out by Czys and Ochs (1988) with drops charged to

and Their study showed that,
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regardless of charge, collisions which occurred at impact angles less than 43° always
resulted in coalescence. Coalescence at larger impact angles depended critically on

For e.s.u.) no coalescence occurred.
For temporary coalescence was observed.
Coalescence occurred always if e.s.u.). A
glance at Figure 18.1 shows us that the charge requirement for 100% coalescence is
met only in highly electrified thunderclouds. In all other clouds, the charge residing
on drops of is probably less than that required for no rebound.

Unfortunately, no theoretical studies of the electrostatic enhancement of ice
particle collision efficiencies are available in the literature. However, some related
studies have been carried out. For example, the force expressions of Davis (1964a,b)
for the case of two electrically conducting spheres have been extended by Hall and
Beard (1975) and by Grover (1976a) to include the case of electrical interaction
between a conducting sphere and a dielectric sphere, and by Davis (1969) for the
case of electrical interaction between a conducting plate and a dielectric sphere. The
results of these studies show that the calculated force constants are not sensitive
to the dielectric constant of the sphere if and agree essentially with the
values found for taken to represent a conducting sphere. Only for sphere
separations smaller than are there noticeable deviations from the conducting
case. According to Halmbey and Harrott (1956), the static dielectric constant
for water as a function of temperature is given by

with T in °C, for at –35°C, according to Hodge
and Angell, 1978). The static dielectric constant of ice has been determined by
Gränicher (1963). His values are plotted in Figure 18.10. Since, for 0°C
and (parallel to the the conducting sphere assumption and thus
the solution of Davis (1964a,b) may be taken to represent reasonably well the forces
of interaction between either charged water spheres or charged ice spheres in an
external electric field.

The effect of ice crystal shape on the force of interaction has been studied ex-
perimentally by Latham et al. (1965), and Latham and Saunders (1970) for the
case of two uncharged metallic ice crystal models of various shapes arranged in
various configurations. The measured forces could be made to agree closely with
the force expressions of Davis merely by introducing a simple shape factor which
was essentially independent of the direction and strength of the background field,
and of the separation of the crystals. Depending on the combination of crystal
shapes, was found to range between ~ 0.5 and ~ 6; thus, in most cases, the
forces between ice crystals are greater than between drops of the same volume as
the crystals and separated by the same distance. Shape factors for the electrical
interaction between a sphere and an ice crystal-shaped body were not determined.
If charge resided on the crystal model, no corresponding simple modification of the
Davis expressions was found to be adequate, since then the shape factor depended
in an undetermined manner on the amount of charge present.

Martin et al. (1981) considered the effects of electric charges on the efficiency
with which supercooled drops collide with planar snow crystals, which they ideal-
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ized as thin oblate spheroids. Using the trajectory method, they solved

to determine the trajectory of a drop around the crystal, and by switching the
subcripts d and c to determine the trajectory of a crystal around the drop. The
flow fields and around the crystal and drop, respectively, were numerically
determined (see Section 10.2.2.4). The electric force acting on a drop
was assumed to result from an interaction between the charge on the drop and
the electric field around the ice crystal carrying a surface electric charge They
assumed the ice crystal is a perfect electric conductor satisfying the condition

electric charges outside the ice spheroid, they solved in oblate spheroidal
coordinates (see Happel and Brenner, 1965, p. 513) to determine and, thus,
and The force exerted on the crystal by the spherical symmetric charge
on the drop was assumed to be given by the Coulomb force
where is the center to center distance between the interacting drop and crystal,

with and for
with equivalent to e.s.u., and

e.s.u. The results of this computation are displayed
in Figure 18.11. We note from this figure that electric charges of opposite sign on
drops and crystals considerably enhance the efficiency with which a planar crystals
collide with drops. Of course, this enhancement becomes more pronounced the
larger the charges on the drop and crystal.

where is the electric potential for the crystal. Taking this potential to
be zero far away from the crystal and assuming no background electric field and no

and is the unit vector along this line. In determining the trajectories, it was
assumed that the effects due to mutally induced charges could be neglected, and
that the electric force on the crytal would not tip the crystal so that its largest
dimension was always oriented horizontally. Computations were carried out for
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18.6.6 SCAVENGING OF AEROSOL PARTICLES

As would be expected from the discussions of the previous sections, the efficiency
with which aecosol particles are scavenged by cloud and raindrops can be strongly
enhanced by the presence of drop charge and external electric fields. Grover and
Beard (1975) and Grover (1976b) demonstrated this behavior through theoretical
studies of the effect of charges and fields on the inertial impaction of aerosols.
Grover et al. (1977) have carried out similar computations, including also the effect
of phoretic forces. They studied the efficiency of scavenging of aerosol particles
by water drops in air by means of the particle trajectory method discussed in
Section 17.4.2.3, using an expanded version of (17-35), viz.,

where the thermophoretic force and the diffusiophoretic force were com-
puted from (17-19) and (17-27), respectively, using numerically determined vapor
density and temperature fields around evaporating water drops in air, and where the
electric force on the aerosol particle due to the charge on the drop of radius

was determined from the Davis (1964a,b) expressions in (A.18-3) and (A.18-4).
The dynamic and electric effects of the aerosol particle on the drop were neglected.
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As we have already pointed out in Chapter 17, the trajectory method can only
be used to determine the efficiency with which relatively large particles of

are captured by cloud drops, since effects due to Brownian diffusion are not
included in this method. Wang et al. (1978) extended the ‘particle flux’ described
in Section 17.4.2.5 to the case for electrically charged drops and aerosol particles.
Although this method includes the capture due to Brownian diffusion and phoretic
forces, it neglects particle capture by inertial impaction. Including the electric
force, the current density of aerosol particles moving toward a stationary water
drop is then, from (17-37),

where are the number concentration, diffusivity and mobility of the
aerosol particles, respectively, and where and are given by (17-19) and
(17-27). For simplicity, Wang et al. (1978) assumed where

is the center to center distance between drop and aerosol particle. Analogously
to (17-43a), the collision kernel for a moving drop becomes

however, now with and

A combination of the flux model and the trajectory model of Grover et al. (1977)
has been given by Wang et al. (1978), assuming a variety of radii for the aerosol
particles and drops. As an example, the collision efficiency as a function of particle-
size is given for drops of radii and

in Figures 17.17a,b. We note that the flux and trajectory
method combined give a consistent description of the Greenfield gap, and the sen-
sitivity of the depth, width, and position of this gap to phoretic and electric forces.
We note that the presence of opposite electric charges on drop and aerosol particles
causes a pronounced filling-in of the gap, while the effects of electric charges on
particle capture becomes negligible for and We also note
that a complete ‘bridging’ of the Greenfield gap is achieved neither through the
effect of phoretic forces at typical atmospheric humidity nor through the effects
of electric forces due to electric charges, as they are found in thunderstorm con-
ditions. The results given in Figures 17.17a,b also show that, for given and
relative humidity, the collision efficiency increases with increasing electric charge
(for drops and particles bearing charge of opposite sign). Also, for given and rel-
ative humidity, the electrostatic influence on the collision efficiency increases with
decreasing drop radius. Similarly, for a given drop radius and relative
humidity, the efficiency increases with decreasing particle radius.

These theoretical trends were confirmed experimentally by Wang et al. (1983),
who showed that the collision efficiency increased: (1) as increased from 1.6 ×

to for (2)
as decreased from 300 to for
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and (3) as decreased from 0.10 to for
and

A quantitative verification of the predictions of the trajectory model of Grover
et al. (1977) was given by Wang and Pruppacher (1977b) for a few selected drop
sizes and charges and aerosol particle of radius carrying charges of either

or Their results are tabulated in Table 18.5.
Additional experiments have been carried out by Byrne and Jennings (1993),

Barlow and Latham (1983), Lai et al. (1978), and Adam Semonin (1970). Unfor-
tunately, most of these experiments were carried out for a variety of combinations
of and so that a quantitative comparison is neither possible among
the experimental results themselves nor between the experimental and theoretical
results. We nevertheless found it instructive to follow Barlow and Latham (1983)
and plot the experimentally determined collision efficiencies available in one graph
for and for submicron particles
of opposite charge. This is illustrated in Figure 18.12 which demonstrates that
the collision efficiency increases with increasing drop charge, although with a wide
scatter of values being the result of the wide range of combinations of
and An additional reason for the scatter lies in the fact that for electrically
charged drops and aerosol particles, rear collision are possible, and may or may
not have been considered in computing the experimental collision efficiency (see
Figure 18.13).

In evaluating the trajectory method (Grover and Beard, 1975), one may assume
that the electric interaction between drop and aerosol particle is given by a simple
Coulomb force between point charges rather than by the Davis (1964a,b) forces.
In dimensionless form, (18-67) is then given by
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where and are given by and respectively,
and being

the center to center distance between the interacting drop and aerosol particle, and
where with According to Grover and Beard (1975),
we may define the electric force by

so that (18-71) becomes

where Grover and Beard (1975) analyzed (18-73) and compared the
results with those obtained by using the Davis (1964a,b) forces. The comparison
showed that the point charge model is sufficiently accurate for the charges found
in atmospheric clouds as long as

Kraemer and Johnstone (1955) defined a dimensionless Coulomb force parameter
by the relation

Assuming free streaming flow all the way to the drop surface, Kraemer and John-
ston found that the efficiency with which charged drops collide with charged aerosol
particles is given approximately by This prediction was experimentally veri-
fied by Wang et al. (1983) for

and
Martin et al. (1980c) applied the trajectory method of Grover et al. (1977)

and the flux method of Wang et al. (1978) to plate-like snow crystals which were
idealized by thin oblate spheroids of axis ratio Using the flow fields around
thin oblate spheroids, Martin et al. (1980c) analyzed the trajectories of aerosol
particles by determining the electric force on the particle from where

and is the electric potential around the crystal computed in oblate
spheroidal coordinates. In Figure 18.14, a plot of typical trajectories is given. We
note that aerosol particles are preferentially deposited near the rim of falling plate-
like snow crystals. In fact, we notice that rim deposition is even possible in the rear
of the crystal. Using the flux model, Martin et al. (1980c) found for the collision
kernel

where and
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From (18-75), the collision efficiency may be
found. Examples for the variation of the collision efficiency with particle radius
are given in Figures 18.15a,b where the results of the trajectory and flux models
have been combined. We note from these figures that electrical charges on crystal
and aerosol particle significantly raise the collision efficiency above their uncharged
values. Particularly, we note that electrical effects allow collision between crystals
and particles, even for crystals which are sufficiently small, so that they are not
able to capture aerosol particles above a certain size by hydrodynamic effecs alone.

Miller and Wang (1989) extended the model of Martin et al. (1980c) to columnar
snow crystals. Their results are given in Figure 17.19 in the previous chapter. We
note again the significant increase of the collision efficiency due to the effect of
charges.

A qualitative experimental verification of the results of Martin et al. (1980c) has
been given by Murakami et al. (1985c) who studied the effect of electric charges on
planar snow crystals of 1.3 mm diameter. Their results are given in Figure 17.25a
in the previous chapter. We note that electric charges on the snow crystals raise the
collection efficiency by up to one order of magnitude above the efficiency observed
for uncharged crystals.
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APPENDIX TO CHAPTER 2

A-2.1.5 Nearest Neighbor Distance Between Cloud Drops

Let be the probability that the nearest neighbor to a given drop is located between a
distance and from it. This probability is simply the product of the probability of no
nearest neighbor between 0 and which is and the probability of a drop occurring
between and which is where is the average number concentration of drops.
Therefore, we obtain the relation

From this we find where hence From
the condition we see that and so

From A.2-2 the average nearest neighbor distance is

in which we have set The integral is where is the gamma function, so
that finally we obtain

(Hertz, 1909; Underwood, 1969). In terms of the liquid water content, where
is the characteristic drop radius, the result is
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The simple estimate of (2-10) is this seen to be quite accurate.

APPENDIX TO CHAPTER 4

A-4.8 Convenient Formulations for Determining the Saturation Vapor Pressure
Over Water and Ice

(a) According to Lowe and Ficke (1974) and Lowe (1981 pers. comm.)

with T(ºC) and in mb.

for water

Range of validity: -50 to +50°C for water,-50 to 0°C for ice.

(b) According to the Magnus equation (Herbert, in: Landolt-Börnstein, New Series, Volume
4a, 1987)
for water:

for ice:

with in hPa, T in °K, hPa.
and

with in hPa, T in °K, hPa.
and

APPENDIX TO CHAPTER 7

A-7.1 Relations From Statistical Mechanics

Our purpose here is primarily to summarize relations from statistical mechanics which are used
in this chapter. Where possible in the limited space available, we have also sketched in relevant

854

for ice
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derivations. Of course, detailed treatments are available in any good reference on the subject (e.g.,
Landau and Lifshitz, 1958; Huang, 1963, Morse, 1969).

We need connecting links between thermodynamics and statistical mechanics. The most
fundamental of these is the basic postulate, first stated by Boltzmann, which relates the entropy S for
a thermodynamic macrostate of a system to the microstate distribution function

The macrostate corresponds to an ensemble of systems with different microstates, and measures
the probability that a system selected at random from the ensemble is in the microstate characterized
by quantum numbers where is the number of degrees of freedom of the
system. Of course, is subject to the normalization condition

Canonical Ensemble

Consider a thermodynamic macrostate described by a system of N particles held at constant
temperature T and volume V. The ensemble corresponding to this thermodynamic situation must be
comprised of systems which also have constant T, V, and N. The energy of each system need not
be constant, but the mean energy for the ensemble must satisfy the constraint

where U and F are respectively the internal energy and Helmholtz function for the thermodynamic
system.

By the use of Lagrange multipliers one may readily solve for the which satisfies (A.7-1) and is
subject to the constraints (A.7-2) and (A.7-3). On realizing that F is the thermodynamic function
which is minimized for equilibrium at constant T and V (see (4-7)), and that S is maximized, the
proper identification of the multipliers is straightforward and the following results are obtained:

where

The ensemble corresponding to this distribution is called the canonical ensemble, and Q is called the
canonical partition function. The result (A.7-5) provides another important link between ther-
modynamics and statistical mechanics.

If the interparticle forces in the system are negligible, the system energy will then be the sum of
the separate energies of the individual particles, each depending only on its own set of quantum
numbers. Then the sum in (A.7-5) will become a product of N factors, each of which will be a
single-particle partition function. However, if the particles are indistinguishable, we must be careful
to avoid counting the system microstates which are the same except for a reshuffling of the quantum
numbers among the particles; rather, these must be regarded as the same microstate, which therefore
is to be counted only once. For the cases of interest to us this bookkeeping problem can be resolved
merely by dividing the product of N factors by N!. Thus, for example, the canonical partition
function for a perfect gas of N molecules has the form

where q is the partition function per molecule, i.e.,

where the sum runs over the allowed energies of the molecule, and is the free energy per
molecule.
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The same process of factorization may be continued if the molecular energy can be written as the
sum of separate contributions due to translation, rotation, etc.; then we can also write, in obvious
notation,

Let us calculate the translational partition function for a molecule in the volume V. For the
classical context of interest to us, the energy levels are closely spaced and we may, for the sake of
computational convenience, replace the indicated sum over energy levels by an integral over the
Hamiltonian where is the momentum of the molecule, and m is its mass. For this
purpose we must also take into account the fact that there are microstates corresponding
to the phase space volume element where h is Planck’s constant; this follows directly from the
Heisenberg uncertainty principle. Thus we have, using Cartesian coordinates,

In the same way one may obtain the rotational partition function for a molecule having the
principal moments of inertia

where is called the rotation symmetry number, and counts the number of physically indistinguish-
able orientations of the molecule.

Grand Canonical Ensemble

Let us now devise an ensemble (the grand canonical ensemble) in which we drop the requirement
that the number of particles be fixed; instead, we require only that the average number of particles
be specified as In other respects the ensemble is to be chosen as before. A microstate for this
ensemble is then specified by both the number of particles N the selected sample system has, and the
quantum numbers which will determine its energy Thus for an equilibrium
macrostate the distribution function must satisfy the following conditions:

where is the chemical potential per particle, and is the grand potential, whose
differential is

The solution to (A.7-11) may be obtained via Lagrange multipliers as in the previous case; the
results are:

where the grand canonical partition function is

We see that is the sum of the canonical partition functions Q(N) for ensembles with different

is maximum
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values of N, each weighted by the factor

The relation (A.7-14) provides still another very useful connection between thermodynamics and
statistical mechanics.

APPENDIX TO CHAPTER 10

A-10.1 Equation of Fluid Flow

The following is a somewhat descriptive development of the pertinent governing equations of fluid
flow. More complete derivations may be found elsewhere (e.g.. Landau and Lifshitz, 1959;
Batchelor, 1967; White, 1974).

1. Continuity Equation

Consider a fluid of density moving with velocity both functions of position and time t. If we
follow a small fluid element of volume and mass in its motion, the principle of
conservation of mass tells us that

where d/dt denotes differentiation following the moving element. The rate of change of is
evidently given by the flux of out of the surface enclosing Therefore, from the divergence
theorem we have to first order in (or, more concisely, simply from the definition of the
divergence),

where is the unit outward normal associated with the surface element dS. The principle of mass
conservation therefore becomes

which is known as the continuity equation. If then and the flow is termed
incompressible.

The first order change in any function due to changes in time dt and position is

which allows us to express d/dt as

Using (A. 10-2), we can obtain another form of the continuity equation, involving the local time
derivative
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2. Navier-Stokes Equation

An interior volume V of fluid with boundary surface S may be accelerated by external body forces,
and by surface forces exerted on S by the fluid outside V. If we denote the external force per unit
mass acting on volume element dV by and the surface stress acting on surface element dS with
outward normal by the equation of motion of the fluid volume is

In terms of the usual suffix notation, where suffices i, j take the values 1, 2, 3 corresponding to the
components of vectors and second rank tensors along the x, y, z axes, respectively, the equation of
motion is

If the volume V has a characteristic dimension then and Consequently, if we let
while preserving the shape of the volume, (A. 10-5) reduces to the condition of local equilibrium:

If (A. 10-6) is applied to a small tetrahedron whose slant face has unit normal and whose other
faces are parallel to the coordinate planes, we easily find

where is the stress in the direction acting on a surface element whose normal is in the
direction, and we have used the usual convention of summation over a double index. Since and

are vectors, the quantities are components of a second rank tensor called the stress tensor,
which describes completely the system of stresses in a fluid.

It is also easy to show that is symmetric, i.e.,

This is an immediate consequence of applying the condition that there must be zero net torque on a
small cube of fluid whose faces are parallel to the coordinate planes.

The effect of pressure in the fluid is to contribute an inward (compressional) normal stress
on any surface element. Thus we may write

where (Kronecker delta symbol) is unity for i = j and zero otherwise, and where includes the
stress contribution due to the viscosity of the fluid. For ordinary (Newtonian) fluids, of which air and
water are examples, the viscous stress is proportional to the amount of relative motion taking place
near the point in question. Thus, at least for small velocity gradients, must be a linear function of
the derivatives By also imposing the conditions that must be symmetric and that
for pure rotation, in which case no internal friction can arise in the fluid, one obtains

for an incompressible fluid. The factor is called the dynamic viscosity. For the problems of interest
to us may be assumed constant.

On substituting (A. 10-7) into (A. 10-5), and using the divergence theorem to transform the surface
integral into a volume integral, we obtain
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Furthermore, if we use the mass continuity principle in the form we can write

If this last result is substituted into (A.10-11) we obtain, in view of the arbitrariness of the choice of
volume V,

In vector notation, this (Navier-Stokes) equation of motion for the fluid is

where isthe kinematic viscosity, and we have assumed the flow is incompressible.

A-10.2.2 Stream Function Formulation for Axisymmetric, Incompressible Flow

Consider steady incompressible flow past a fixed axisymmetric body. Let us describe the flow in
terms of a right-handed, orthogonal, curvilinear coordinate system with its origin at the center of the
body, and with coordinates where and describe position in any meridian plane. We
may express the velocity field in this system as The condition then becomes

where the h’s are the scale factors associated with the coordinates; i.e., is the element of arc
length associated with This equation is satisfied by choosing

where is the stream function. For example, in cylindrical coordinates we have
so that

Similarly, in spherical coordinates we have so that

It is easy to see that along a streamline by writing (A. 10-15) in the form

where is the unit vector in the direction. Therefore, we have
0. Since is normal to the line in any meridian plane, this line must be parallel to u
everywhere.

Using the vector identities and the steady
state Navier-Stokes equation becomes

On taking the curl of this equation, we obtain
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In the system we have

Using (A.10-15) this becomes

where

After carrying out all the indicated differentiations in (A. 10-20), using (A. 10-18) and (A. 10-21) to
(A. 10-23), we obtain the governing equation for the flow in terms of the stream function:

where In spherical coordinates, (A. 10-24) becomes

where

For Stokes flow, the pressure may be easily recovered from the stream function by noting that

where is the radial distance from the symmetry axis.

A-10.3.3 Drop Oscillations

We follow here the treatment given in of Landau and Lifshitz (1959). Assuming potential flow
within the drop, the velocity potential satisfies To solve this equation, the shape of the
deformed drop must be specified. Since the shape is governed by (10-80), we must determine the sum

for a slightly deformed sphere. To accomplish this, first note that the area of a surface
given in spherical coordinates is

Assuming with (A. 10-28) becomes

Therefore, the variation in S due to a variation is

This last result has been obtained by integrating the second and third terms in (A. 10-30) by parts with
respect to and respectively.

860



APPENDICES 861

Another expression for is available from (10-78) and (10-79), viz.,

where the integral is taken over the closed surface. In spherical coordinates,
to first order in Therefore, on comparing (A.10-31) and (A. 10-32) we obtain

the result

For small amplitude potential flow, the Navier-Stokes equation reduces to
Therefore, in terms of the velocity potential

where is the constant exterior pressure (gravity effects are ignored). Then from (10-80), (A. 10-33),
and (A. 10-34), the boundary condition at for is

To eliminate reference to we differentiate (A. 10-35) with respect to time, and note that
The result at is

If we seek a solution in the form of a stationary wave, then where In
spherical coordinates, therefore, the velocity potential is of the form

where is the associated Legendre function. Finally, on substituting (A.10-37) into (A. 10-
36), and using the fact that satisfies

we find a discrete set of allowed angular frequencies, namely

Since is independent of m, there are 2 n + 1 different oscillatory modes
corresponding to each Thus the asymmetric modes have the same frequencies as the axisym-
metric modes of the same n.

A-10.3.5 Rayleigh-Taylor Instability of Two Superposed Fluids

We consider the stability of two superposed inviscid fluids in a vertical circular cylinder, following
the treatment given in Chapter 4 of Yih (1965).

Denote the lower fluid density by and the upper by Let the axis of the cylinder be
along the vertical z-axis. Assume potential flow, and let the velocity potentials be and

The boundary conditions at the cylinder wall are that the radial velocities must vanish, so that in
cylindrical coordinates we have
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The kinematic condition at the fluid interface is that the vertical velocity is continuous, or

where is the displacement of the interface. (When there is no motion, the interface is at z = 0.) If p
and denote the perturbation pressures associated with the potential flow, then from arguments
parallel to those used in deriving (A. 10-33) we have the following dynamic boundary condition at the
interface:

Assuming the upper fluid extends to and the lower fluid to and recognizing that
suitable particular solution forms for the velocity potentials are

where is the Bessel function of the order. The eigenvalues are roots of the equation

These solutions thus satisfy the conditions (A. 10-39).
To satisfy (A. 10-40), we set

and find

by imposing (A. 10-40) at z = 0 is regarded as an infinitesimal disturbance).
For small amplitude inviscid flow, the Navier-Stokes equation in the presence of gravity reduces to

so that the pressures can be found from the (Bernoulli) equations

On substituting (A.10-42), (A.10-43), and (A.10-45) into (A.10-41) for z = 0, we obtain

Finally, by eliminating and a from (A. 10-44) and (A. 10-46), the value of a is determined in
terms of the physical parameters and and the eigenvalue k:

Therefore, if

the fluid is unstable, since then the amplitude of the disturbance will grow exponentially in time. It is
noteworthy that this result is valid for any cross-sectional shape, which only affects the eigenvalues
of k. In particular, (A. 10-48) holds for the case i.e., two semi-infinite fluids with an interface.

APPENDIX TO CHAPTER 11

A-11.4 Mutal Sedimentation and Diffusion of Aerosol Particles

The solution to (11-24) is facilitated by making the change of variable from to where
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Substitution of (A.11-1) into (11-24) reduces the latter to the standard diffusion equation for

From the initial and boundary conditions specified in Section 11.4, namely that
constant and we find the corresponding conditions on
and This problem may be reduced to one without boundary conditions by extending
the solution to include the region where we assume an initial distribution which simulates
the actual boundary condition at for all This can be accomplished by choosing

so that for the extended region the initial condition is

Our problem is now one of solving the diffusion equation for a specified initial distribution in an
unbounded medium. This can be accomplished by expanding the desired solution as a Fourier
integral:

On substituting (A.11-4) into (A.11-2) we find the solution is
where is obtained by substituting the initial distribution for into (A.11-

5). Therefore, (A.11-4) may be expressed as an integral over the specified initial distribution as
follows:

The integration over is easily carried out, when the solution for becomes

The solution may now be completed by substituting (A.11-3) into (A.11-7) and integrating. The
result in terms of is given by (11-25), where

APPENDIX TO CHAPTER 14

A-14.3 Superposition Method for Stokes Flow
As an illustration of the use of the superposition method, we shall consider the special case of
two spheres falling in the x-direction in Stokes flow. The situation is depicted in Figure A.14-1.
For the velocity field generated by sphere-1 we write where is the polar
angle between and the Then according to (14-7) the hydrodynamic forces on the two
spheres are

where d is the separation of the sphere centers, and is the angle
between the line of centers and the direction of fall. The unit vectors and satisfy the
following
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relations: (a) along the line of centers, (b)
Therefore the forces may be expressed as

where

Assuming Stokes flow, from (10-35) and (A. 10-17) we have

and similarly for As a result the dimensionless forces are

where and
According to (A.14-13) and (A.14-15), the dimensionless drag (x-component) force acting on either
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sphere of an equal pair falling side by side is

For motion along the line of centers the result is

For touching spheres we have for and for These values
compare rather poorly with the known rigorous results for and for
(see Appendix A-14.4.2), showing the superposition scheme to be indeed rather inaccurate for
spheres of comparable size in close proximity. (If the spheres are free to rotate as they fall side by
side, a slight reduction in drag results: Note spheres falling side by side experience a
greater resistance than when falling along their line of centers, in agreement with intuition since the
latter configuration is the more streamlined of the two.

We also see from (A.14-4) and (A. 14-16) that there are no transverse (lift) forces acting on spheres
falling side by side in Stokes flow: for This result happens to be true rigorously
for Stokes flow.

APPENDIX TO CHAPTER 15

A-15.3.1.2 Correlations in a Stochastic Coalescence Process (Bayewitz et al., 1974)

1.  Formulation of the Stochastic Model

Suppose that at time t + dt the aerosol contains droplets of size k, for k = 1, 2,      , L. Suppose
also that the aerosol is well-mixed, and that the probability per unit time of coalescences between
any pair of droplets is a constant. Let N denote the total number of droplets present:

For notational purposes it is convenient to describe the state as an ordered list.
This facilitates the description of neighboring states; e.g., is meant

to denote another state, identical to the first except for an additional double droplet.
Now we pose the following question: From what states could the distribution at t + dt have

evolved in time dt, assuming that at most one coalescence could occur in the entire system during the
interval? The answer is that there are three possible routes: (1) a coalescence occurs between two
droplets of the same size; (2) a coalescence occurs between two droplets of different size; (3) no
coalescence occurs.

We now consider the first route. If the system is to reach the desired distribution at t + dt through a
coalescence of two droplets of size m, it must be, at time t, in the state N + 1,

Let the probability of this state be denoted by
Since the probability that any two droplets will coalesce in dt is A dt. the

probability that any two droplets of size m will coalesce in the interval (t, t + dt) is just
Accordingly, the product of these probabilities, summed over m to account for all the possible
mutually exclusive outcomes, gives the total transition probability in dt for route 1):

Similarly, if the system is to reach the desired distribution through a coalescence of droplets of
size m and n, it must be, at time t, in the state

The probability of coalescence of two particles of sizes m and n in the interval (t, t + dt) is
Hence the desired transition probability for route 2) is

The condition m<n is included to avoid counting the same coalescence event twice. The transition
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probability for the desired distribution at time and no coalescence between and is

The probability of having the desired distribution at time t + dt is just the sum
of the three mutually exclusive probabilities assembled above. From this mathematical statement one
immediately obtains the fundamental equation for the stochastic description:

2. Total Number of Particles

The probability of having N droplets of arbitrary size at time t is evidently just

Therefore, summing over (A. 15-4) leads to the equation governing

[This equation may also be arrived at more directly. Thus, the probability of having N + 1 droplets of
arbitrary size is and the number of ways of producing a set of N droplets of arbitrary size from
the set of N + 1 arbitrary droplets via binary coalescences is Therefore, the ‘rate of production’
of the probability associated with the set of N droplets of arbitrary size is just the first term on
the right side of (A. 15-6). Similar arguments account also for the second (loss rate) term on the right
side.]

The coupled, linear equation set contained in (A. 15-6) may be solved sequentially. For the initial
conditions for and for the solution to (A. 15-6) is

Therefore, the mean number of droplets at time t is

It is of interest to compare (A. 15-8) with the corresponding result from the SCE. As we have seen,
the SCE arises from the quasi-stochastic model in which N is uniquely determined. For the present
situation in which every pair of the N droplets has the same coalescence probability, the equation
governing N is evidently given by The solution for is

[This is the result obtained by Bayewitz et al. (though in a slightly different manner), and they refer
to it as following from the SCE. However, this is not quite so: on summing the discrete SCE over
the index k, we get thus the solution for is                   .
However, the two expressions for N differ very little except in the limit of large t (i.e., then
(A. 15-9) predicts while the SCE yields In general, the SCE approximates the
coalescence rate of droplets of size k, by the expression Fortunately, the
resulting error is unimportant.]
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Evaluation of (A.15-8) and (A.15-9) shows that N(t) according to the SCE is an excellent
approximation to the true mean even for droplet counts as small as Therefore, it
appears the SCE theory produces total particle counts in excellent agreement with the true stochastic
averages, even for very small initial populations, at least for collection kernels which are not strongly
size dependent.

3.  Size Spectrum

For an initial population of droplets of unit size, there is a surprisingly simple solution for
(A. 15-4) in terms of

where is the probability of having a specified distribution given that there are N droplets. The
expression for is

The numerator is the multinomial coefficient which counts the number of ways a specified
etc.) distribution of units of mass in N droplets can be obtained, and the denominator counts the
total number of ways of distributing units of mass in N droplets. (The form of the denominator
may be explained in the following manner: Imagine the units of mass in a row, so that there are

spaces between them. A particular distribution of N droplets may be achieved by partitioning
the row in N – 1 places. At least one mass unit is to go in each segment of the row
Therefore, the number of possible distributions is the number of ways of selecting any N – 1 of the

spaces as partition locations.)
Bayewitz et al. demonstrate that (A.15-11) is the solution to (A. 15-4) by direct substitution into the

differential equation, followed by numerical evaluation in simple cases which verifies uniqueness of
the solution.

It is now possible to determine the function P(n, m; t) defined by (15-16):

Numerical evaluation in a few cases (m = 2, 5; indicates that as time increases P(n, m;t)
approaches a Poisson distribution. As we discussed in Section 15.2.1.1, Gillespie (1972) showed this
to be true also for a variable collection coefficient in the absence of correlations.

4.  Correlations in Poorly-Mixed Systems

As we have noted, real clouds are not well-mixed, and this can be expected to give rise to correlation
problems. Bayewitz et al. have considered the consequences of poor mixing by partitioning the cloud
into small, isolated compartments of volume This approach has the merit of dictating only slight
changes in the mathematics.

Let us now compare the descriptions of droplet growth in each compartment as provided by the
SCE and the full stochastic equations. From (A. 15-9) with A replaced by where K is the
constant collection kernel, one may obtain the mean stochastic droplet concentration in any
compartment, viz. Similarly, from (A. 15-9) we have the corresponding droplet concen-
tration according to the SCE: Computations show that for as small as 10, f exceeds
only slightly. Thus the results indicate the total droplet concentration is rather insensitive to poor
mixing as simulated by the partitioning model.

Now let us consider the size spectrum in the partitioned system. Let be the mean fraction
of the total mass of any compartment consisting of particles of mass m. With being the total mass
in each compartment (recall droplets of unit mass), we have
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where

The corresponding mass fraction from the SCE is In the present case of an
initially homogeneous aerosol and a constant collision kernel, is just the Smoluchowski
solution (12-43); therefore,

In this expression is the concentration of droplets of unit mass at t = 0.
Figure A. 15-1 compares and at Kt = 0.02 and with For small (small

there are seen to be substantial differences between the spectra predicted by the full stochastic
model and the SCE, especially in the tails of the spectra. These differences decrease sharply with
increasing and more moderately with time.

A-15.3.2 Particular Solutions to the SCE

Our purpose here is to evaluate the general solutions (15-40) and (15-47) for two choices of the initial
spectrum. First, let us assume Then so that

Substitution of this result into (15-40) and (15-47) leads to the solutions (15-48) and (15-49),
respectively.

For our second choice of the initial spectrum we choose the family of gamma distributions given
by (12-129). The Laplace transform of the initial spectrum is therefore

using the defining equation

for Therefore,
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This integral may be evaluated by means of the well known residue theorem (e.g., Morse and
Feshbach, vol. I, 1953), according to which the integral of a function of the complex variable z
around a closed contour C is equal to times the sum of the residues of the function at its singular
points within C. It is assumed that the function is analytic except at the singular points. The residue
at an isolated singular point is just the coefficient of in an expansion of the function in
powers of From (A.15-19) we thus see that what is called for is an expansion of about

so that the integrand may be expressed as

Assuming integral p (the result holds for all p > 0), the residue occurs for and
the contour may be closed in the left half of the s plane, for negative real s. Therefore, we obtain

Substitution of this result into (15-40) and (15-47) leads to the solutions (15-53) and (15-54),
respectively.

A-15.3.1.3 A monte Carlo Algorithm for Stochastic Coalescence

Our purpose here is to present Gillespie’s (1975b) exact simulation algorithm. This requires focusing
not on the average drop volume spectrum function which appears in the SCE. but rather on a
quantity which Gillespie calls the ‘coalescence probability density function.’ An explicit
expression for in terms of the basic probability of coalescence of a pair of drops with labels i
and j in time dt can be derived, and the derivation is rigorous in that it is free of any no-correlation
assumptions. A Monte Carlo simulation procedure is then based on to calculate the
stochastic evolution of a set of drops.

1.  Coalescence Probability Density Function

Consider a well-mixed cloud containing N drops at time t. Label these drops in any convenient way
by the index i (i = 1,2, . . . , N), and let denote the volume of drop i. We define the ‘coalescence
probability density function’ by the following statement:

Now let us define also the set of numbers as follows:

(As in Section 15.2.1. where is the collection kernel and V is the volume of the
well-mixed cloud.) An expression for (A.15-21) in terms of the quantities (A. 15-22) can be derived as
follows: The probability in (A.15-21) is the product of: (1) the probability that none of the droplets
coalesce in the time interval times (2) the probability that droplets i and j coalesce in the
next differential time interval times (3) the probability that no other droplets
coalesce in that same differential time interval.

To calculate the probability (1), imagine the time interval to be divided into m subintervals
of equal length For small the probability that drops k and will not coalesce in the
first is hence the probability that all drop pairs will not coalesce in any of the m

is
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We now obtain (1) by taking the limit of this expression as our subdivision of becomes
infinitesimally fine:

From (A. 15-22) the probabilities (2) and (3) immediately follow:

and

Therefore, on setting (A.15-21) equal to the product of (A.15-23)–(A.15-25) and dividing through by
we obtain

This result holds for and otherwise.

2. Basic Simulation Algorithm

The simulation algorithm based on is as follows:
Step 0: Set t = 0. Specify initial values for the N drop volumes and calculate the

corresponding matrix elements Specify a series of sampling times and
also a stopping time

Step 1: By employing suitable Monte Carlo techniques (see next section), generate a random
triplet distributed according to the joint probability density function

Step 2: Using the values i. and j obtained in Step 1, advance the time variable t by remove
drops i and j, and insert a new drop of volume Adjust the drop numbering scheme in any
convenient way to reflect the fact that the cloud now contains one less drop than before, and make
whatever rearrangements and recalculations of the matrix elements are required.

Step 3: If t has just been advanced through one of the sample times display the drop volume
spectrum at time as a frequency histogram of the current values. If (or if only one drop
remains), terminate the calculation: otherwise, return to Step 1.

By carrying out this algorithm from time 0 to time t. one realization of the stochastic collection
process is obtained. Several such realizations, starting from the same initial data, must be carried out
to get a statistically complete picture. Let

Then for k runs the average number of drops at time t with volumes between v and is

(The expression becomes exact in the limit Similarly, the rms fluctuation about this average is

If then the results found in separate runs will be nearly identical. If then an
accurate estimate of is not really necessary; of more interest is the scatter of for several trials.
Probably should provide an adequate picture of the state of the spectrum in general. Finally,
the connection between and the usual average spectrum function n(v, t) belonging to the
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SCE is as follows: Let

Then

3. Implementing the Monte Carlo Step

Gillespie provides three Monte Carlo methods for implementing Step 1 of the simulation algorithm.
Here we shall summarize only one of these, the ‘first-coalescence’ method, because of its intuitive
appeal and relative simplicity. However, it is probably not as efficient as the other two methods.

Consider any two cloud drops k and at time t. From (A. 15-22) it is easy to show that

would be the probability for k and to coalescence in the time interval were it not
for the fact that k or might coalesce with some other drop prior to time This being the case.
Gillespie generates a tentative coalescence time for the drop pair according to (A. 15-32) (in
a manner described below). This is done for all pairs, and of these N(N – 1)/2 tentative next
coalescences, the one which occurs first is chosen as the actual next coalescence. Thus, we put

This procedure is a physically plausible way to pick values for i, and j. Gillespie proves that it is, in
fact, the correct way; i.e., if we let be the probability that the procedure just described
will result in the next coalescence being between drops i and j and occurring in the time interval

then it can be shown that
We now consider the problem of generating the numbers The goal is to generate a sequence of

random numbers distributed according to some given probability density function in the
present case has the exponential form (A. 15-32). One way to accomplish this by means of the
so-called ‘method of inversion’ (e.g., Gillespie, 1975c), which can be described in the following
manner: For defined on the interval [a. b], consider the corresponding probability distribution
function

Then to generate distributed according to we simply draw a random number r from a uniform
random number generator (a source of pseudorandom numbers distributed uniformly on [0, 1]), and
then choose for that value which satisfies i.e., we take

As applied to (A. 15-32), this procedure yields the sequence of numbers

where is on the interval [0, 1] and k = 1, , N – 1;

APPENDIX TO CHAPTER 18

A-18.6.3 Two Charged Conducting Spheres in a Background Electric Field

Here we summarize the work of Davis (1964a, b), who solved the boundary value problem of two
electrically conducting spheres of given radii and charges, separated by a given distance and situated
in an external electric field of given uniform strength far away from the spheres. Figure A. 14-1
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depicts the geometry of this problem, if we now assume that describes the angle between the
background field and the line of centers of the spheres (i.e., if we replace by in the figure). To
solve this problem the electrostatic potential function must be determined which satisfies the
boundary conditions (1) that at large distances from the spheres the potential corresponds to that of
the uniform field, and (2) thai the two spheres are equipotential surfaces carrying charges and
respectively. The governing equation for is Laplace’s equation, which Davis solved in
bispherical coordinates (a description of this system is given in Appendix A-14.4.2).

Given the solution for the force (in e.s.u.) acting on either sphere may then be obtained by
integrating the electrical stress over its surface:

where is an arbitrary unit vector, the unit normal to the surface element dS, and is the
dielectric constant of the medium in which the conducting spheres are imbedded. The forces on the two
spheres must of course satisfy the relation

so that the integration in (A.18-1) need be carried out for only one of the spheres. Referring to Figure
A. 14-1, the components of the electrical force on sphere 2 along and at right angles to the line of
centers were found by Davis to be given respectively by

and

where the coefficients are complicated functions, tabulated in Davis (1964a, b), of the
distance between the spheres and of The corresponding force components in the x and y
directions of Figure A. 14-1 are then given by

Davis’s solution may also be used to calculate the charge transferred between the two spheres if
they make electrical contact. Most convenient for this purpose are the following expressions from
Davis (his Eq. (24) from 1964b):

where and are the potentials of the two spheres, the are the calculated
coefficients of induction by the Reciprocation Theorem; e.g., see of Smythe (1950)),
and are the calculated charges which the spheres would have if they were at zero potential (i.e.,
grounded). Note that the only place enters into (A. 17-6) is in the functional dependence of the
effective charges and

Now suppose the spheres touch, so that and the original charges become
Then from(A.18-6) we have

where A similar expression may be written down for The charge
transferred is then given by

Of course, another way to evaluate is by setting the electric field equal to zero at the point of
contact. From Eq. (31) of Davis, the field strength at the near surface point of sphere 2 is
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where and are functions of separation distance and tabulated by Davis. From
(A. 18-8) with we therefore immediately find also that
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LIST OF PRINCIPAL SYMBOLS

radius of spherical drop, radius of rigid sphere, radius
of circle circumscribed to basal plane of ice crystal,
semi-major axis of oblate spheroid, radius of curva-
ture of interface, radius of circular cylinder
mean drop radius
equivalent radius of deformed drop, crystallographic
lattice parameter in direction
radius of the large drop, of the small drop
critical radius of cloud drop during condensation
radius of spherical ice crystal, potential drop radius
radius of spherical embryo consisting of molecules,
of spherical germ consisting of molecules
activity of component in mixture
activity of water in aqueous solution, of solute in
aqueous solution
cross-sectional area of body oriented perpendicular
to viscous flow
virial coefficient

semi-minor axis of oblate spheroid
mobility of positive, negative ions

concentration of component
concentration of molecules
number of components
specific heat of water, of ice
specific heat of water vapor at constant pressure, of
air at constant pressure
crystal lattice parameter in c-axis direction
equilibrium concentration of of single mole-
cules
electrostatic capacitance
hydrodynamic drag force coefficient
compressibility factor for dry air, water vapor, moist
air
molar heat capacity of water, of ice, of water vapor
at constant pressure, of air at constant pressure
number concentration of water molecules in water
concentration of water molecules at saturation with
respect to water, to ice
concentration of gas molecules of given species in the
gas phase, in the liquid phase
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C



936 LIST OF PRINCIPAL SYMBOLS

diameter of spherical drop, of rigid sphere, of circle
circumscribed to basal plane of ice crystal, of grau-
pel, of hailstone
average nearest neighbor distance between cloud
drops
mean migration distance of water molecules by sur-
face diffusion on ice
hydrodynamic drag on body in viscous medium, dif-
fusivity of aerosol particles in air
diffusivity of water vapor in air
diffusivity of positive ions, of negative ions in air
equivalent diameter of raindrop
Stokes drag
self diffusivity of water molecules in water, in ice

partial pressure of water vapor in moist air, vapor
pressure of pure water vapor
water vapor pressure over spherically curved water
surface, over spherically curved ice surface
saturation vapor pressure over plane water surface,
over plane ice surface, over plane aqueous solution
surface
elementary electric charge
unit vector
electric field vector
magnitude of electric field (electric field intensity)
energy of system of quantum number
collision efficiency
collection efficiency
coalescence efficiency
deposition efficiency
precipitation efficiency
energy per molecule for cleaving a crystal
hydrogen bond energy
lattice energy of ice

shedding frequency of vortices from rear of a rigid
sphere
rational activity coefficient of water, of salt, in aque-
ous solution
unsteady, steady concentration of
mean ventilation coefficient for vapor diffusion, for
heat diffusion
bulk Helmholtz free energy change per unit volume
Helmholtz free energy of system, scavenging factor
force on body, hydrodynamic force on sphere-1, on
sphere-2
electric force on body
thermophoretic, diffusiophoretic force on aerosol par-
ticle

D

e

F
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energy of activation for the diffusion of a water mole-
cule across the ice-water interface, per mole
activation energy for the diffusion of water molecules
in bulk water and ice, per molecule, per mole
energy of formation, of germ formation
energy of adsorption, of desorption, per molecule
activation energy for surface diffusion per molecule

acceleration of gravity, magnitude of acceleration of
gravity
partial molar Gibbs free energy of component in
mixture
Gibbs free energy of system, linear growth rate of ice
crystal face

thickness of planar ice crystal, thickness of quasi-
liquid layer on ice, Planck’s constant
molar enthalpy, enthalpy per unit mass
partial molar enthalpy of component in mixture
partial molar enthalpy of water in aqueous solution,
of water vapor in air
molar enthalpy of ice
molar enthalpy of mixing of water in aqueous solu-
tion
perpendicular distance from crystal center to prism
plane, basal plane
enthalpy of system
height of prism
molar activation enthalpy for vacancy formation in
water, in ice
molar activation enthalpy for self-diffusion in water,
in ice
molar activation enthalpy for vacancy migration in
water, in ice
molar enthalpy of evaporation, of melting, sublima-
tion
Van’t Hoff coefficient for non-ideal aqueous salt so-
lution
number of water molecules per embryo
moment of inertia

number of hydrogen bonds per molecule
current density of particles due to thermophoresis,
due to diffusiophoresis, due to convective diffusion
mass flux density of water vapor, of heat, of electrical
charge
nucleation rate, total particle flux due to ther-
mophoresis, due to diffusiophoresis, due to convec-
tive diffusion

G

h

H
H

i

I
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positive, negative ion current

Boltzmann constant, reaction rate constant, wave
number
heat conductivity of water vapor, of air, of water, of
ice
mean mass transfer coefficient for water vapor in air
collection kernel
collection kernel for Brownian coagulation
collection kernel for thermophoresis, for diffusio-
phoresis
collection kernel for gravitational collection
molar equilibrium freezing point depression
Henry’s law constant
Henry’s law constant (dimensionless)

length
latent heat of phase change per unit mass, per mole
latent heat of evaporation of pure water, of melting
of ice, of sublimation of ice, per unit mass
latent heat of evaporation of pure water, of melting
of ice, of sublimation of ice, per mole
molar latent heat of evaporation of water from an
aqueous solution, of melting of ice in an aqueous so-
lution
length of columnar snow crystal, angular momentum
of coalesced drop pair

mass of gas
mass of drops
mass of molecule, mass of water molecule
mass of aerosol particle, of water drop, of snow crys-
tal
mass of nucleus
mass of aerosol deposit
mass of salt particle, of salt deposit
compatibility parameter for ice on a solid substrate
against water vapor, against water
compatibility parameter for water on a solid sub-
strate
mass of water-soluble portion of aerosol deposit
mass of insoluble portion of aerosol particle, of
aerosol deposit
mass of water vapor adsorbed on solid substrate
mass of water vapor, of water, of air, of ice
molecular weight
molecular weight of air, of water, of salt, of moist air
molality of aqueous solution

k

K

l

L

M

L*
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number of moles of component in mixture
number of cloud drops of radius a per unit volume
and per unit size interval
number of raindrops of diameter per unit volume
and per unit size interval
number of aerosol particles of radius per unit vol-
ume and per unit size interval
number of adsorption sites available on solid sub-
strate
number of vapor molecules adsorbed on solid sub-
strate
number of moles of water vapor, of water, of salt, of
air
unit outward normal vector from surface element
number of positive ions, of negative ions, per unit
volume of air
total number of particles in system
Avogadro number
Reynolds number based on diameter
Péclet number
Schmidt number
Sherwood number
Prandtl number
Nusselt number
Froude number
Strouhal number
Weber number
Bond number
Stokes number
Knudson number
Best number
Physical property number
number of cloud condensation nuclei, of ice forming
nuclei, per unit volume of air
number of in volume, on surface of substrate
total number of single water molecules in volume
number of water molecules in gas phase, at water
saturation, at ice saturation, in volume
number of water molecules in water contacting unit
area of ice germ
number of molecules
number of water molecules in unit volume of water
number of unfrozen drops, of frozen drops of drop
population in volume
pressure, number of elementary charges, percentage
of broken hydrogen bonds in water

N
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partial pressure of component in mixture
partial pressure of dry air in gas mixture, pressure of
dry air
pressure of water inside a motionless water drop
free stream pressure
static pressure
pressure inside, outside of a water drop
melting pressure of ice
frontal stagnation pressure on a sphere
perimeter of a body, precipitation amount
momentum of molecule
ratio of the small drop size to large drop size

heat
specific humidity of moist air
electric charge of ion species partition function of

of monomer
partition function of a molecule
canonical partition function of gas of
grand canonical partition function of gas of
electric charge, electric charge on drop of radius
electric charge on aerosol particle of radius
amount of heat

position vector, radial distance
radius of aerosol particle, radial distance
radius of dry nucleus, radius of curvature of solid
substrate
radius of water-insoluble portion of aerosol particle
deposition rate
precipitation rate, Reynolds number based on radius,
radius of air bubble in water
maximum ice enhancement ratio
specific gas constant for water vapor, for dry air, for
moist air
universal gas constant
principal radii of curvature

separation between the surfaces of two spheres
molar entropy, radius of aerosol particle
supersaturation of moist air with respect to a plane
water surface, with respect to a plane ice surface
entropy
zero-point entropy
surface area
saturation ratio of moist air with respect to a plane
water surface, with respect to a plane ice surface
time
absolute temperature

q

s

S

T
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temperature at drop surface
temperatuce of environment
equilibrium freezing temperature
virtual temperature of air
median freezing temperature of population of drops

components of hydrodynamic stress tension
melting temperature of ice
surface temperature of ice crystal
Tripole point temperature

flow velocity vector, magnitude of flow velocity
velocity of water vapor, of dry air
magnitude of internal velocity in falling drop
volume of aerosol particle, volume of drop
internal energy of system, interaction potential be-
tween molecules, vertical velocity of air
free stream velocity of viscous flow, terminal fall ve-
locity of particle
Stokes velocity

velocity, magnitude of velocity
mole volume
mole volume of component in mixture
mole volume of pure water, of pure salt, of ice
mole volume of pure water vapor, of dry air, of moist
air
partial molar volume of water, of salt, in aqueous
solution
volume of aerosol particle, volume of drop
volume of molecule
propagation speed of steps on crystal surface
mean speed of gas molecules
volume of system, volume of
Stokes fall velocity of particle
volume of crystallographic unit cell
volume of solution
liquid portion of drop condensed on mixed aerosol
particle
volume of ice crystal
volume of
drop volume

variance of system
liquid water content of cloud
cloud ice content
mixing ratio of unsaturated moist air
mixing ratio of moist air saturated with water vapor
flux of molecules to and from a surface

u
U

v

V
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work for cleaving a crystal
vertical velocity of air, number of distinguishable mi-
crostates in ice, scavenging ratio
length coordinate
mole fraction ofcomponent in mixture
mole fraction of water vapor, of dry air, in moist air
mole fraction of water, of salt, in aqueous solution

length coordinate
linear collision efficiency

(vertical) length coordinate
Zeldovichfactor

angle, phase
condensationcoefficient
deposition coefficient
thermal accommodation coefficient
mean activity coefficient of salt ions in aqueous so-
lution
lapse rate: dry adiabatic, saturation adiabatic-,
cloud-, in environment
cooling rate
Gibbs adsorption of component at interface , of
salt at solution/vapor interface, of water at solu-
tion/vapor interface, of water at water/vapor inter-
face
shear rate
crystallographic misfit
thickness of momentum boundary layer, of diffusion
boundary layer
ratio of molecular weight of water to molecular
weight of air, average elastic strain produced inside
ice germ, turbulent energy dissipation rate
volume-, mass fraction, of water-soluble substance in
mixed aerosol particle
dielectric constant of water, of ice
vorticity
dynamic viscosity of viscous medium, of air, of water
angle
contact angle for water on solid substrate, angular
coordinate counted from foreward stagnation point
on falling sphere
angle between the line of centers of interacting
spheres and direction of fall
compressibility of water
wave length of waves on surface of water, mean free
distance between collision of falling rain drops, step
energy per unit length, eddy size

W

Z
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mean free path of air molecules
electric conductivity, slope of Marshall-Palmer rain
drop distribution, scavenging coefficient
chemical potential, chemical potential of an
entrainment rate
chemical potential of component in mixture
chemical potential of pure water vapor, of pure wa-
ter, of ice
chemical potential of water vapor in air, of water in
aqueous solution, of salt in aqueous solution
number of ions into which a salt molecule dissociates
in water, jump frequency ofmolecules, kinematic vis-
cosity of viscous medium
kinematic viscosity of air, of water
frequency ofvibration of water molecule adsorbed on
solid substrate
frequency of oscillation of a water molecule
spreading pressure
density of viscous medium, of moist air
density of water, of ice, of dry air, of moist air, of
water vapor
bulk density of ice crystal
density of aqueous salt solution
bulk density of nucleus, of aerosol particle
bulk density ofwater-insoluble, ofwater-soluble, por-
tion of aerosol particle
surface tension



TABLE OF PHYSICAL CONSTANTS

Absolute temperature of ice point
Gas constant for 1 mole of ideal gas

Gas constant for 1 g of dry air

Gas constant for 1 g of water vapor

Boltzman’s constant
Planck’s constant
Avogadro’s number
Molecular weight of dry air
Molecular weight of water

NACA Standard Atmosphere
(sea level values)

electronic charge

944
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A
activationenergyfor self-diffusion and

viscous flow, 96
activity, 109
adaptation time, 542–546
adiabat

cloud, 492
dry, 489
reversible saturation, 492
saturation pseudo, 492
wet, 492

adsorption
chemical, 137
definition of, 128
isotherm, 138
of gases on ice surfaces, 155–157
of salt, 132
of water vapor on solid surfaces,

137–145
physical, 137

aerosol particles, 225
Brownian coagulation of, 454–463
Brownian motion of, 447–449
coagulation in turbulent flow of,

465
diffusivity of, 449
formation of by bulk to particle

conversion, 240–247
at the solid earth surface, 240
at the surface of oceans, 243
from extraterrestrial sources, 247

formation of by drop to particle
conversion, 233–236

formation of by gas-to-particle con-
version, 226–233

large, giant, Aitken, 225
mass concentration, 255
mobility and drift velocity of, 450–

451
number concentration, 252
of the accumulation mode, 225
of the coarse mode, 225

of the nuclei mode, 225
rate of emission of paticulate mat-

ter, 248
residence time of, 248
sedimentation of, 451–454
size distribution of, 261–269
stratospheric and arctic aerosol,

260
total mass and number concen-

tration of, 252–261
total mass and number concen-

tration of particles, 260
vertical variation, 270–286
water-soluble fraction of, 251

air parcel model, 497–501
angle of contact, 135–137
Antonoff’s  rule, 160
aqueous solutions

hydration in, 98
structure of, 98–99
structure-breaking effect in, 99

atomaric defects in ice, 80

B
Bernoulli’s law, 375
Best number

definition of, 417
bond number, 418
bubble-burst-mechanism, 244
bulk density, 50
bunching of monomolecular layers, 151

C
capacitances of various crystal forms,

548
charge distribution in clouds, 804–811
charging mechanisms in clouds, 811–

827
chemical potential

of water in aqueous solutions, 107–
109

945
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of water vapor in humid air, 107–
109

cirrus clouds
ice water content of, 56
microstructure of, 55
size spectra for crystals, 56
snow crystals in, 55

Clausius-Clapeyron equation, 116
for bulk phases, 116
for phases with used interfaces,

169
cloud chemistry, 700
cloud condensation nuclei (CCN), 287

chemical composition of, 287–296
definition of, 287
mode of action and mixed CCN,

296–297
number concentration of, 287–296

cloud drops
theoretical formulation of, 24

Best distribution, 27
gamma distribution, 26
Khrgian-Mazin distribution, 26
lognormal distribution, 26

cloud-interstitial aerosol
definition of, 716

clouds
accumulation zones in, 23
bimodality of size distribution in,

18
consisting of ice particles, 38
drop concentration in, 15, 16
drop size distribution in, 15, 24
liquid water content of, 18, 23
mean distance between drops in,

27
microstructure of, 15
radar echo of, 24
radar studies of, 24
relative humidity of, 10
spatial distribution of the drop

size in, 18
coagulation

Brownian, 454–463
effect of turbulence on, 465
gravitational, 463–472

laminar, 463–472
turbulence, 463–472

coalescence of water drops in air, 594–
596

collection efficiency
definition of, 591

collision
basic model, 568–569
of large snow crystals with small

water drops, 599–606
of small snow crystals with large

water drops, 606–607
of snow crystals with snow crys-

tals, 607–610
of snow crystals with water drops

in air, 599–607
of water drops with water drops,

581–594
the superposition method, 571–

574
collision efficiency, 470

definition of, 541–571
‘compatibility parameter’, 137
concentration of water insoluble par-

ticles
in bulk cloud and rain water, 708–

709
in bulk water of melted snow, 708–

709
concentration of water soluble com-

pounds, 701–715
in bulk cloud and rain water, 701–

708
in bulk water of melted snow, 701–

708
in individual cloud and raindrops,

711–715
condensation coefficient, 164
condensation growth

in cumuliform clouds, 512–531
in stratiform clouds and fogs, 531–

536
contact angle, 135
convective condensation level, 491
cooling of air, 485

adiabatic, 488–489
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isobaric, 488
critical point, 122
critical radius, 173

D
Davies number

definition of, 417
defects in ice

atomaric, 80
Bjerrum defects, 81
chemical, 81
interstitial molecules, 81
ionized states, 81
molecular vacancies, 81
stacking faults, 81

Definition of
van’t Hoff factor, 110

definition of
absolute humidity, 107
equilibrium freezing point depres-

sion, 124
equilibrium freezing temperature,

124
hygroscopic nature of salt, 112
mean activity coefficient, 111
mixing ratio, 107
molal coefficient, 111
molality, 110
mole fraction of water vapor, 107
practical osmotic coefficient, 111
relative humidity, 107
saturation ratio, 107
specific humidity, 107
supersaturation, 107

deposition coefficient, 165
desorption of gases, 775–777
diffusion

models for gases, 757–772
of heat, 507–509
of water vapor, 502–506

diffusion boundary layer, 721
diffusiophoresis, 726
diffusivity of water vapor, 503
direct interception

definition of, 470
dislocations, 150

947

edge, 150
screw, 150

drag, 367
on circular cylinders, 428
on circular disks and oblate spher-

oids, 422
on graupel, 433
on hailstones, 433
on rigid spheres, 367–369
on snow crystals, 433
on water drops in air, 388, 390

drag coefficient, 368
drop breakup

collisional, 598
hydrodynamic of single drops, 410–

415
drop number concentration, 12, 13
drop oscillation

frequency of, 400
modes of, 400–404

drop shape, 393–399

E
effect of curvature on latent heat of

phase change, 168
effect of electric fields and charges,

827–852
on collisional growth rate of cloud

particles, 836–845
on diffusional growth of ice crys-

tals, 828
on drop deformation, disruption

and corona, 829–835
on drop terminal velocity, 835
on drops and ice crystal nucle-

ation, 827–828
on scavenging of aerosol particles,

846–852
electrical conductivity in clouds, 798–

804
conductivity in strongly electri-

fied clouds, 802
conductivity in weakly electrified

clouds, 799
energy of activation for diffusion of

water molecules, 206
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entrainment, 492–497
entrainment parameter, 499
entrainment rate, 493
equation of state, 105
equilibrium, 100, 127

between a pure water drop and
humid air, 170–172

between an aqueous solution and
humid air, 172–175

between bul aqueous salt solu-
tions and ice, 123–125

between bulk aqueous salt solu-
tions and water vapor, 109

between the bulk phases of wa-
ter, ice and aequeous solu-
tions, 100–125

conditions for ice particles, 178–
184

crystal shape for ice, 148
experimental verification of vari-

ous relationships, 184–190
for phases separated by a curved

interface, 127, 167
general conditions for, 102–104

etch-pits, 150
etching

thermal, 150
evaporation

of snow crystals, 550–560
of water drops, 537–546

F
facetted surfaces, 151
fair weather electrical state, 792–797

conduction current density, 793
conductivity, 794
definition of, 792
electric field strength, 792–795
mobility and diffusivity of ions,

793
fall behavior

of conical modes and graupel, 444
of cylinders, 433
of drops, 409
of hailstones, 445
of oblate spheroids, 428

of rigid spheres, 384
of snow crystals, 444

flow past a sphere, 365
Carrier’s modification for, 372
matched asymptotic expansion for,

372
Oseen, 370
potential flow and boundary layer

theory, 374
Stokes, 369

fog
definition of condensation nuclei,

291
ice fog, 58
liquid water content of, 15
number concentration of, 15
relative humidity of, 10

fogs
drop size distribution in, 24
mean distance between drops in,

27
microstructure of, 12, 15

freezing potential, 162
freezing time

of water drops, 674–679
Froude number

definition of, 573

G
gaseous constituents

concentrations, 217
fast varying, 217
of the atmosphere, 216
quasi-constant, 216
slowly varying, 216
sources and sinks, 217

Gibbs adsorption isotherm, 131
Gibbs phase rule, 104
Gibbs-Duhem relation, 101
glaciation, 53
graupel

bubble concentration in, 662
bubble size in, 662
bulk density of, 58
dimensions of, 58
drag on, 433–437
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fall pattern, 444–446
fall velocity of, 438–444
growth rate of, 679–687
ice crystallites in, 662
melting of, 692–697
number concentration of, 58
shape of, 58
thin sections of, 73

growth
dry growth regime

definition of, 659
numerical approximation techniques,

636–645
method of Berry and Reinhardt,

637–639
method of moments, 639–645

of aqueous solution drops by dif-
fusion of water vapor, 509–
536

of drops by collision, 617–658
continuous model, 617–620
stochastic model, 617, 622–645

of drops by collision (num. ap-
prox. techniques)

in combination with drop breakup,
650–658

of ice particles by accretion of su-
percooled drops, 659–689

of snow crystals by collision with
other snow crystals, 689–691

of snow crystals by diffusion of
water vapor, 546–567

of water drops by diffusion of wa-
ter vapor, 502–536

wet growth regime
definition of, 659

growth of electric field in clouds, 826

H
hailstones

air bubbles in, 73
bubble concentration in, 662
bubble size in, 662
bulk density of, 58
crystallites, 73
definition of

spongy ice, 72
dimensions of, 58
drag on, 433–437
fall pattern, 444–446
fall velocity of, 438–444
growth rate of, 679–687
ice crystallites in, 662
melting of, 692–697
number concentration of, 58
shape of, 58
thin sections of, 73

Hawaiian rainbands
studies on, 31

Hertz-Knudsen equation, 165
heterogeneous nucleation, 287
‘Hill’s spherical vortex’

definition of, 390
holograms, 29
homogeneous nucleation, 191
hopper structure, 151
hydrodynamic behavior, 361

of rigid spheres, 364–383
of snow crystals, graupel and hail-

stones, 433–446
of water drops in air, 385–433

hydrophilic walls, 138
hydrophobic walls, 138
hygropause, 487
hysteresis loop, 186

I
ice, 145

activation energy to form a va-
cancy in, 84

activation enthalpy for a lattice
vacancy to migrate in, 84

‘aged’ surface of, 146
aqueous solution interface, 161–

163
atomaric defects in, 80
Bernal-Fowler (BF) rules for, 80
dielectric relaxation time for, 86
diffusivity in, 85
equilibrium crystal shape for, 148
‘fresh’ surface of, 146
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growth mode of in supercooled
water, 663–668

growth rate of ice in supercooled
water, 668–674

hexagonal rings in, 79
hydrogen bond energy in, 83
hydrogen bonds in, 79
lattice energy of, 83
nearest neighbors in, 78
real surface of, 150
self-diffusion mechanism of H2O

through ice, 84
space group of, 78
specific heat of, 86
structure in supercooled water,

663–668
structure of, 78–86
sublimation energy of, 83
surface energy of, 145
symmetry of, 78
unit cell of, 79
valence angle in, 82
work of cohesion of, 145
zero-point entropy of, 81

ice clouds
definition of

aggregation, 39
clumping, 39
deposition, 39
graupel particle, 39
hailstones, 40
ice crystals, 39
rimed snow crystals, 39
riming, 39
sleet, 40
small-hail particle, 39
snow crystals, 39
snow pellet, 39
snowflakes, 39
soft hail particle, 39
type-a ice pellets, 40
type-b ice pellet, 39

microstructure of, 38
ice fog, 58
ice forming nuclei (IN), 287, 309–341

contact nucleation, 339

definition of disregistry, 330
definition of IN-storms, 310
main requirements for, 326
modes of action, 309
number concentration of, 309
sources and chemical composition

of, 317
ice point, 104, 120
ice-vapor interface, 145
ice-water interface, 157–161
impact velocity

of drop on graupel, 661
impaction scavenging, 720–744

by convective Brownian motion,
720–724

by gravitational impaction, 730–
732

by inertial impaction, 730
by thermo- and diffusiophoresis,

724–729
by turbulence, 732
the trajectory and flux models

for,732–744
inertia parameter

definition of, 573
inertial subrange, 467
interface

water-vapor, 129–135
interface energy between ice and su-

percooled water, 157

K
Kelvin equation, 170
Kirchoff’s’ equations, 116
Knudsen number

definition of, 448
Köhler equations, 173
Kolmogorov microscale length

definition of, 466

L
Langevin equation

definition of, 447
Laplace formula, 128
lapse rate

dry adiabatic, 489
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moist adiabatic, 489
saturation adiabatic, 492

latent heat of phase change, 115–116
definition of, 115
temperature dependence of, 116

level of free convection, 491
lifting condensation level, 490
liquid water contents, 12

M
Markoff process

definition of, 447
mass transfer coefficient

definition of
for snow crystals, 551
for water drops, 537

melting
of graupel and hailstones, 692–

697
of ice particles, 691–699
of snow flakes, 697–699

melting pressure of ice, 120
meteor

definition of, 247
meteorid

definition of, 247
meteorites

definition of, 247
micrometeorites

definition of, 248
Mischkerne

definition of, 251
mixed particles

definition of, 251
mode of drop oscillation, 401

N
Navier-Stokes equation, 362

numerical approach, 378
nucleation, 287

definition of, 191
definition of embryos, 192
definition of germ, 192
heterogeneous, 287
homogeneous, 191
of ice

classical model, 341
discrepancy between concentra-

tions of IN and ice particles,
355

enhancement factor, 355
extensions to the classical model,

344
of freezing of supercooled wa-

ter drops, 347
secondary ice particles, 355
statistical mechanics model, 345

of ice in supercooled water, 205–
215

classical model, 207
energy of germ formation, 207
molar activation energy, 209
molecular model, 207
nucleation rate, 205

of water drops, 297–305
experimental verification, 306
on a curved substrate, 302
on a planar substrate, 298

of water drops and ice crystals
from water vapor, 192–205

classical description, 194
energy of germ formation, 198
experimental verification, 204
molecular model, 194
nucleation rate, 199
statistical mechanics description,

192
scavenging, 716–718
theory of heterogeneous ice, 341

Nusselt number
definition of, 541

O
oscillation frequency, 401
Ostwald’s rule of stages, 203

P
Péclet number

definiton of, 721
partition coefficient, 162
Péclet number

definition of, 538
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phase rule
for bulk phase, 104

phase rule for systems with curved in-
terface, 128–129

‘physical property’ number, 418
polar stratospheric clouds

definition of, 283
polymorphy, 120
potential flow, 366
potential radius, 174
precipitation

consisting of ice particle, 38

Q
‘quasi-liquid’ layer, 153, 155
quasi-stationary distributions, 472
quasi-stationary self-preserving distri-

butions, 480

R
radar, 23
rain

liquid water content of, 30
microstructure of, 30
rainfall rate of, 30

raindrops
breakup

by collision, 598, 645–650
hydrodynamic,645–650

equilibrium spectrum of, 653
fit to the observed spectra of, 37
mean free distance between col-

lisions, 655
mean free time between collisions,

655
35

size distribution of, 30
Best, 34
Marshall-Palmer (MP), 34

rainfall rate, 30
Raoult’s law, 108, 110
rational activity coefficient, 109
Rayleigh limit

definition of, 806
Rayleigh-Taylor instability

definition of, 411

retention coefficient, 162
Reynolds number

definition of, 364
rigid spheres, 361
rime deposits

density of, 660–661

S
saltation, 241
saturation vapor pressure

over ice, 117
over water, 117

scavenging, 700, 715–787
of aerosol particles by cloud drops,

raindrops and ice particles,
715–744

of gases by cloud drops, raindrops
and ice particles, 744–784

of gases by ice particles, 783–784
of gases by water drops, 749–782
scavenging coefficient, 720–787

definition of, 720
for aerosol particles, 723, 725,

727, 784–787
for convective Brownian diffu-

sion, 723
for diffusiophoresis, 727
for gases, 784–787
for thermophoresis, 725

scavenging factor, 785
scavenging ratio, 785

Schumann-Ludlam limit, 659
segregation

coefficient, 162
process, 161

self-preserving distributions (SPD), 474
shedding efficiency

definition of, 682
Sherwood number

definition of, 551
for snow crystals, 551
for water drops, 537

singular hypothesis, 350
snow crystal

by diffusion of water vapor, 546–
574
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evaporation of, 550–560
growth by collision with other snow

crystals, 689–692
growth by collision with super-

cooled drops, 684–687
growth rate of in a water satu-

rated environment, 546–558
inherent growth rate of, 563
linear growth rate of faces, 561
migration distance on, 565
multiplication by riming, 687–689
step propagation velocity on, 564
surface diffusion on, 565

snow crystal habit change, 561–567
snow crystals

aggregates of, 58
bulk density of, 40, 50
definition of

bullet, 49
combination of bullets, 49
glaciation, 53
polycrystalline crystals, 49
rosette, 49
single ice crystals, 44
spatial crystals, 49

dimensional relations of, 50
dimensional relationships, 58
dimensions of, 50
drag on, 433–437
faces, 40
fall pattern, 444–446
fall velocity of, 438–444
flow field past, 433–437
habit change, 40–50
number concentrations of, 40
rimed and unrimed, 53
shape of, 40–50
size distribution of, 53
size-mass relationships for, 50
unrimed, planar, 444

snow flake
melting of, 697–699

snow flakes
fall pattern, 445
fall velocity, 440

snowflakes

‘bright band’, 61
bulk density of, 58
dimensional relationships, 58
dimensions of, 58
‘melting layer’, 61
number concentration of, 58
number of component crystals in,

59
shape of, 58
size distribution of, 59

soaking
definition of, 660

spongy ice
definition of, 660

spreading pressure, 141
Stephan flow, 726
stochastic hypothesis, 348
Stokes flow, 365
Stokes number

definition of, 573
Stokes terminal velocity, 416
stream function, 366
Strouhal number, 383
structure of aqueous solutions, 98–99
structure of ice, 78–86
structure of water, 86–97
structure of water molecule, 74–76
structure of water vapor, 77–78
surface

hydrophilic, 136
hydrophobic, 136

surface tension, 126
definition of, 126
effect of drop radius on, 133–135
effect of temperature on, 130
of an aqueous salt solution, 130–

133
of water, 130

T
temperature scale, 118
terminal velocity

of graupel and hailstones, 439
of plate-like and columnar crys-

tals, 438
of water drops in air, 415
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tetrahedron, 78
thermal accommodation coefficient, 165
thermal conductivity of dry air and

water vapor, 508
thermodynamic surface of water, 122
thermophoresis, 724
triple point, 104, 120
turbulence

effect on fall mode of particles,
610–616

effect on the collision of drops,
585–591

energy dissipation rate in clouds,
584

spectral energy density inside and
outside clouds, 584

V
variance of a system, 104
ventilation coefficient

for snow crystals, 550–554
for water drops, 537–542
ventilation  coefficient

definition of, 537

W
water

activation energy for self-diffusion
and viscous flow, 96

density of, 86
enthalpy of evaporation, 97
enthalpy of melting of, 97
singularity behavior of, 94
specific heat, 92
structure of, 86–97
the self-diffusion coefficient of, 95
viscosity of, 93

water drops
break up of, 410–415, 598
evaporation of, 537–546
fall behavior of, 409–410
freezing time, 674–679
growth

by diffusion ofwater vapor, 504–
536

internal circulation in, 385–393
oscillation of, 400–408
shape of, 393–399
terminal fall velocity of, 415–421

water molecule, 74, 75
bond length of, 74
dipole moment of, 74
electron configuration in, 75
lone-pair hybrids of, 76
structure of, 74–76

water vapor, 74, 75
clusters in, 77
specific heat of, 74
structure of, 77–78

Weber number
definition of, 405

wet deposition, 787–791
deposition efficiency, 787
deposition rate, 790
precipitation efficiency, 787

wetbulb temperature, 490
‘wetting coefficient’, 137
Wulff’s Theorem, 147–149

Y
Young’s relation, 136

Z
Zeldovitch factor, 201



ATMOSPHERIC AND OCEANOGRAPHIC SCIENCES LIBRARY

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.
17.

18.

F.T.M. Nieuwstadt and H. van Dop (eds.): Atmospheric Turbulence and Air
Pollution Modelling. 1982; rev. ed. 1984

ISBN 90-277-1365-6; Pb (1984) 90-277-1807-5
L.T. Matveev: Cloud Dynamics. Translated from Russian. 1984

ISBN 90-277-1737-0
H. Flohn and R. Fantechi (eds.): The Climate of Europe: Past, Present and
Future. Natural and Man-Induced Climate Changes: A European Perspective.
1984 ISBN 90-277-1745-1
V.E. Zuev, A.A. Zemlyanov, Yu.D. Kopytin, and A.V. Kuzikovskii: High-Power
Laser Radiation in Atmospheric Aerosols. Nonlinear Optics of Aerodispersed
Media. Translated from Russian. 1985 ISBN 90-277-1736-2
G. Brasseur and S. Solomon: Aeronomy of the Middle Atmosphere. Chemistry
and Physics of the Stratosphere and Mesosphere. 1984; rev. ed. 1986

ISBN (1986) 90-277-2343-5; Pb 90-277-2344-3
E.M. Feigelson (ed.): Radiation in a Cloudy Atmosphere. Translated from
Russian. 1984 ISBN 90-277-1803-2
A.S. Monin: An Introduction to the Theory of Climate. Translated from
Russian. 1986 ISBN 90-277-1935-7
S. Hastenrath: Climate Dynamics of the Tropics, Updated Edition from
Climate and Circulation of the Tropics. 1985; rev. ed. 1991

ISBN 0-7923-1213-9; Pb 0-7923-1346-1
M.I. Budyko: The Evolution of the Biosphere. Translated from Russian. 1986

ISBN 90-277-2140-8
R.S. Bortkovskii: Air-Sea Exchange of Heat and Moisture During Storms.
Translated from Russian, rev. ed. 1987 ISBN 90-277-2346-X
V.E. Zuev and V.S. Komarov: Statistical Models of the Temperature and
Gaseous Components of the Atmosphere. Translated from Russian. 1987

ISBN 90-277-2466-0
H. Volland: Atmospheric Tidal and Planetary Waves. 1988

ISBN 90-277-2630-2
R.B. Stull: An Introduction to Boundary Layer Meteorology. 1988

ISBN 90-277-2768-6; Pb 90-277-2769-4
M.E. Berlyand: Prediction and Regulation of Air Pollution. Translated from
Russian, rev. ed. 1991 ISBN 0-7923-1000-4
F. Baer, N.L. Canfield and J.M. Mitchell (eds.): Climate in Human Perspective.
A tribute to Helmut E. Landsberg (1906-1985). 1991 ISBN 0-7923-1072-1
Ding Yihui: Monsoons over China. 1994 ISBN 0-7923-1757-2
A. Henderson-Sellers and A.-M. Hansen: Climate Change Atlas. Greenhouse
Simulations from the Model Evaluation Consortium for Climate Assessment.
1995 ISBN 0-7923-3465-5
H.R. Pruppacher and J.D. Klett: Microphysics of Clouds and Precipitation, 2nd
rev. ed. 1997 ISBN 0-7923-4211 -9; Pb 0-7923-4409-X

KLUWER ACADEMIC PUBLISHERS – DORDRECHT / BOSTON / LONDON


	cover.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	fulltext_010.pdf
	fulltext_011.pdf
	fulltext_012.pdf
	fulltext_013.pdf
	fulltext_014.pdf
	fulltext_015.pdf
	fulltext_016.pdf
	fulltext_017.pdf
	back-matter.pdf

