
Plaintext-Recovery Attacks Against Datagram TLS

Nadhem J. AlFardan and Kenneth G. Paterson∗

Information Security Group
Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK

{nadhem.alfardan.2009, kenny.paterson}@rhul.ac.uk

Abstract

The Datagram Transport Layer Security (DTLS) proto-
col provides confidentiality and integrity of data exchanged
between a client and a server. We describe an efficient and
full plaintext recovery attack against the OpenSSL imple-
mentation of DTLS, and a partial plaintext recovery attack
against the GnuTLS implementation of DTLS. The attack
against the OpenSSL implementation is a variant of Vaude-
nay’s padding oracle attack and exploits small timing differ-
ences arising during the cryptographic processing of DTLS
packets. It would have been prevented if the OpenSSL im-
plementation had been in accordance with the DTLS RFC.
In contrast, the GnuTLS implementation does follow the
DTLS RFC closely, but is still vulnerable to attack. The
attacks require new insights to overcome the lack of error
messages in DTLS and to amplify the timing differences. We
discuss the reasons why these implementations are insecure,
drawing lessons for secure protocol design and implemen-
tation in general.

Keywords TLS, DTLS, CBC-mode encryption,
padding oracle, attack, timing, OpenSSL, GnuTLS.

1 Introduction

DTLS, OpenSSL and GnuTLS: The Datagram Trans-
port Layer Security (DTLS) protocol was first introduced
at NDSS in 2004 [10]. Two years later, the Internet En-
gineering Task Force (IETF) assigned Request for Com-
ments (RFC) 4347 [11] to DTLS. The aim of DTLS is to
provide a datagram-compatible variant of TLSv1.1 [6] that
eliminates the dependency on the Transport Control Proto-
col (TCP). Since its introduction, there has been a growing
interest in the security services offered by DTLS. Leading
implementations of DTLS can be found in OpenSSL1 and

∗This author’s research supported by an EPSRC Leadership Fellow-
ship, EP/H005455/1.

1
http://www.openssl.org

GnuTLS2. Both of these provide source toolkits that imple-
ment TLS and DTLS as well as being general purpose cryp-
tographic libraries that software developers can use. The
first release of OpenSSL to implement DTLS was 0.9.8.
Since its release, DTLS has become a mainstream proto-
col in OpenSSL. There are also a number of commercial
products that have taken advantage of DTLS. For example,
DTLS is used to secure Virtual Private Networks (VPNs)3,4

and wireless traffic5. Platforms such as Microsoft Windows,
Microsoft .NET and Linux can also make use of DTLS6.
In addition, the number of RFC documents that are be-
ing published on DTLS is increasing. Recent examples in-
clude RFC 5415 [1], RFC 5953 [8] and RFC 6012 [13]. A
new version of DTLS is currently under development in the
IETF to bring DTLS into line with TLSv1.2.

Padding oracle attacks: According to [11], the DTLS
protocol is based on TLSv1.1 and provides equivalent secu-
rity guarantees. In particular, then, one would expect imple-
mentations of DTLS to be resilient to attacks on TLS known
prior to the development of TLSv1.1, especially those at-
tacks explicitly mentioned in RFC 4346 [6], the specifica-
tion for TLSv1.1.

One such example is the padding oracle attack intro-
duced by Vaudenay in [15] and applied to OpenSSL by
Canvel et al. in [2]. This attack exploits the MAC-then-
Pad-then-Encrypt construction used by TLS and makes use
of subtle timing differences that may arise in the crypto-
graphic processing carried out during decryption, in order
to glean information about the correctness or otherwise of
the plaintext format underlying a target ciphertext. Specifi-
cally, Canvel et al. used timing of encrypted TLS error mes-
sages in order to distinguish whether the padding occurring

2
http://www.gnu.org/software/gnutls

3
http://www.cisco.com/en/US/products/ps10884/

index.html

4
http://campagnol.sourceforge.net

5
http://www.cisco.com/en/US/docs/wireless/

controller/7.0MR1/configuration/guide/cgi_lwap.

html

6
http://www.eldos.com/sbb/desc-ssl.php

at the end of the plaintext was correctly formatted accord-
ing to the TLS standard or not. Using Vaudenay’s ideas,
this padding oracle information can be leveraged to build a
full plaintext recovery attack. However, because TLS tears
down the connection in the event of any error arising dur-
ing cryptographic processing, and because all the messages
in the attack do provoke such errors, the attack can only
recover significant amounts of plaintext if the same plain-
text bytes are repeated across many TLS connections at the
same location in the data stream.

OpenSSL quickly addressed the attack of [2] by modify-
ing the code to firstly make the error messages are identical
and secondly to ensure that the error messages would al-
ways appear on the network at the same time, an approach
we call uniform error reporting. These countermeasures
eventually appeared in TLSv1.1 as guidance for implemen-
tors a few years later. Since the initial work in this vein,
padding oracle attacks have been generalised in various
ways and applied to other network protocols such as IPsec
[4, 5] and application layer protocols such as ASP.NET
[12, 7], further highlighting the dangers of the MAC-then-
PAD-then-Encrypt cryptographic construction coupled with
non-uniform error reporting.

Our attack on DTLS: Given this history, and the fact that
the DTLS specification is based on that of TLSv1.1, imple-
mentations of DTLS should be immune to padding oracle
attacks and their variants. Our paper shows that this is not
the case for either the OpenSSL or the GnuTLS implemen-
tations of DTLS.

We first focus on OpenSSL, showing that there is a small
timing difference in OpenSSL’s processing of DTLS pack-
ets having valid and invalid padding fields: just like old ver-
sion of OpenSSL’s implementation of TLS, if the padding is
invalid, then the MAC is not checked, while if the padding
is valid, the MAC check is done. This results in a timing
difference for processing of packets with valid and invalid
padding that is on the order of a few tens of microseconds
(µs) on a modern processor.

However, one major difference between TLS and DTLS
is that DTLS provides no error messages when decryption
encounters an error. The detection of these error messages
is essential to the attacks of [2] on TLS. Thus it would ap-
pear that this timing difference cannot be used to build a
padding oracle. This may explain why the OpenSSL code
for DTLS has not been patched to remove the known timing
difference.

By bringing new techniques into play, we show that the
lack of DTLS error messages is not a serious impediment
to the attack – we are able to exploit the DTLS extension
for Heartbeat messages [14] to ensure that the timing differ-
ence shows up in the timing of Heartbeat response messages
rather than error messages. In fact, any upper layer protocol

which has messages that also provoke a response message
with a predictable delay can be used in place of Heartbeat
messages in our attack. We also introduce new techniques
which amplify the identified timing difference. In TLS, this
is easily done by using long messages, since TLS supports
messages up to roughly 214 bytes in size. But this is not pos-
sible in DTLS, since the maximum message size is limited
by the PMTU. To overcome this, we build trains of DTLS
packets which all either have valid or invalid padding and
hence which all contribute to an accumulated timing dif-
ference in the same way. These trains need to be carefully
injected into the network – fast enough so as to ensure each
packet arrives before the processing of the previous one has
completed, but not so fast that DTLS’s buffer for incom-
ing packets gets swamped. Thus the success of the attack
depends on delicate, µs-level timing of network events.

Another major difference between TLS and DTLS is
that, in TLS, any error arising during cryptographic pro-
cessing is treated as fatal, meaning that the TLS connec-
tion is discarded in the event of any error. TLS can af-
ford to do this because it is built on top of a reliable trans-
port protocol, TCP. DTLS, on the other hand, cannot af-
ford to do so, since its underlying transport protocol is UDP.
This means that DTLS does not discard connections in the
event of errors, but merely discards error-generating pack-
ets. So, in contrast to previous attacks on TLS, our attack on
OpenSSL’s DTLS implementation can efficiently recover as
much plaintext as the adversary desires, without having to
wait for the re-establishment of DTLS connections. Our
attack becomes even more efficient in the situation where
DTLS’s anti-replay feature is disabled, which is an option
within the DTLS specification.

Our attack on OpenSSL is easily prevented, by properly
implementing the countermeasures in the TLSv1.1 speci-
fication on which DTLS is based. We have informed the
OpenSSL development team about our attack and a fix to
prevent the attack was incorporated in versions 1.0.0f and
0.9.8s of OpenSSL.

We then switch our focus to the GnuTLS implementa-
tion, and show that, even though it properly implements
the countermeasures in TLSv1.1, it is still vulnerable to
a partial plaintext recovery attack in its default configura-
tion. We show that a small timing channel is introduced
into the decryption process because a plaintext-dependent
sanity check is carried out at an early stage during decryp-
tion, followed later by assigning a zero value to the plain-
text message length in the case when this sanity check fails.
This introduces a detectable timing difference that, when
combined with our new techniques, allows 4 or 5 bits of
plaintext to be recovered per ciphertext block. Our specific
attack on GnuTLS can be prevented by assigning a proper
value to the plaintext message length in the case when the
plaintext-dependent sanity check fails. We have informed

the GnuTLS development team about our attack, and the
code was patched in version 3.0.11 of GnuTLS.

Despite the availability of fixes, we argue that the attacks
are still interesting and provide valuable lessons for protocol
designers and implementors:

• To our knowledge, our attacks are the first of their kind
against any implementations of DTLS. Our OpenSSL
attack is also the first plaintext-recovering attack
against a protocol implemented by OpenSSL since the
work of Canvel et al. [2].

• Our attacks exploit the fact that DTLS has to be error-
tolerant, but we had to find a novel means to circum-
vent the resulting lack of error messages.

• The DTLS specification is rather brief and refers to
the TLSv1.1 specification for many details, particu-
larly those relating to how packets are encrypted and
decrypted. This then requires an implementor to cross-
refer to other standards during implementation, which
may lead to software that does not implement the
known countermeasures.

• Our attack on the GnuTLS implementation of DTLS
and TLS shows that, even if all the known counter-
measures are carefully implemented, DTLS and TLS
implementations may still be vulnerable to attack via
subtle timing side channels.

We expand on these themes later in the paper.

Paper organisation: Section 2 provides further back-
ground on DTLS, TLS and padding oracle attacks, as prepa-
ration for the presentation of our basic attack against the
OpenSSL implementation in Section 3. Then Section 4 dis-
cusses a number of implementation issues for this attack
and discusses refinements of it. Section 5 presents our ex-
perimental results demonstrating efficient and reliable re-
covery of full DTLS plaintexts in the OpenSSL case. Sec-
tion 6 briefly discusses how similar attacks can recover par-
tial plaintexts in the GnuTLS case. Section 7 discusses the
wider implications of our work for secure network protocol
design.

2 Further Background

2.1 Encryption in DTLS

A DTLS client initiates a handshake protocol with a
server to agree on a number of parameters such as the cipher
suite and the keys to use for a symmetric encryption algo-
rithm and a message authentication code (MAC). After the
handshake is complete, DTLS deploys a MAC-then-PAD-
then-Encrypt construction, with CBC being a commonly

used mode of operation. We will assume CBC-mode en-
cryption is in use for the remainder of the paper.

When sending a DTLS packet, the sender first calculates
a MAC over the DTLS payload and other parameters in-
cluding a sequence number [11]. The size of the MAC
output depends on the hash function used (e.g. 160 bits in
the case of HMAC-SHA-1). The MAC is appended to the
DTLS message. The sender then appends padding so that
the payload length is a multiple of b bytes, where b is the
block-size of the selected block cipher (so b = 8 for 3DES
and b = 16 for AES). As with TLS, the padding consists of
p + 1 copies of some byte value p, where 0 ≤ p ≤ 255.
In particular, at least 1 byte of padding must always be
added. So examples of valid padding fields are: “0x00”,
“0x01, 0x01” and “0x02, 0x02, 0x02”. The padding may
extend over multiple blocks, and receivers must support the
removal of such extended padding. The concatenation of
DTLS message, MAC and padding is then encrypted using
CBC-mode of the selected block cipher, using an explicit
IV. Thus, the ciphertext blocks are formed as:

Cj = Ek(Pj ⊕ Cj−1)

where Pi are the plaintext blocks, C0 is the IV, and k is the
key for the block cipher E. The resulting ciphertext, in-
cluding the IV, is then appended to a header which includes
a length field and an explicit sequence number. The de-
cryption process reverses this sequence of steps. First the
ciphertext is decrypted block by block to recover the plain-
text blocks:

Pj = Dk(Cj)⊕ Cj−1,

where D denotes the decryption algorithm of the block ci-
pher. Then the padding is checked and removed, and finally,
the MAC is checked.

2.2 DTLS versus TLS

Applications that operate over the Unreliable Datagram
Protocol (UDP) can easily take advantage of the security
services offered of DTLS. Such applications are generally
unconcerned about the session management services that
TCP provides. Simple Network Management Protocol [8]
is a good example of such applications. Other examples in-
clude voice and video network streaming applications. By
design, DTLS is very similar to TLSv1.1 [6]. In fact, RFC
4347 [11] presents only the changes to TLSv1.1 introduced
by DTLS and refers to RFC 4346 [6] for the rest of the pro-
tocol specification. According to RFC 4347, this approach
has been chosen to minimize the amount of effort needed to
implement the protocol. Thus, to fully understand and be
able to analyse and code DTLS, the reader of RFC 4347 is
expected to be familiar with TLSv1.1.

A number of changes were introduced so that the ser-
vices of TLSv1.1 could be delivered over an unreliable

transport protocol like UDP. The reader can refer to [11]
and [10] for the complete list of changes. We list here some
of the changes relevant to our work:

• In TLS, MAC errors must result in connection termina-
tion. In DTLS, the receiving implementation may sim-
ply discard the offending record and continue with the
connection. According to [11, Section 4.1.2.1], DTLS
implementations should silently discard data with bad
MACs, and the OpenSSL implementation takes this
“discard and continue” option, with no error messages
being sent on the wire. Not sending error messages
clearly complicates the task of the adversary, since it
is the presence of these messages (and their timings)
that allowed previous attacks on TLS; however not ter-
minating the connection in the event of an error proves
to be very useful in building a reliable padding oracle
that can be accessed as many times as the adversary
wishes.

• Unlike TLSv1.1, fragmentation of record messages is
not permitted in DTLS. Instead, a DTLS record must
fit within a single lower layer datagram. Therefore, we
cannot use a large size message in our attacks, a feature
exploited in [2] to amplify timing differences for TLS.

• DTLS optionally supports record replay detection,
whereas this is required in TLS. The technique used
is the same as in IPsec’s AH protocol [9], by maintain-
ing a bitmap window of received records. Records that
are too old to fit in the window and records that have
previously been received are silently discarded. Ac-
cording to [11], the replay detection feature is optional,
since packet duplication is not always malicious, but
can also occur due to routing errors. In this paper, we
mostly focus on the case where the DTLS anti-replay
feature is disabled, but explain how to extend our at-
tack to the case where it is enabled in Section 4.5.

2.3 Heartbeat Extension for TLS and DTLS

The Heartbeat extension [14] provides a new protocol for
TLS and DTLS allowing a keep-alive functionality. This is
very useful in the case of DTLS, which runs on top of un-
reliable transport protocols that have no concept of session
management. The only mechanism available at the DTLS
layer to determine if a peer is still alive is performing a
costly renegotiation. The Heartbeat extension uses Heart-
beat request and response messages between two entities
having an established DTLS connection. A Heartbeat re-
quest message can be sent by either of the entities and is
protected using the same DTLS ciphersuite and keys used
for protecting other payloads. According to [14], whenever
a Heartbeat request message is received, it has to be an-
swered with a corresponding Heartbeat response message.

Both messages have specific lengths that can be detected by
the adversary. Although we exploit Heartbeat request mes-
sages in our attack against OpenSSL, other type of mes-
sages could also be used. The only constraint is that they
should always predictably generate responses that can be
detected by the adversary. We demonstrate this in our at-
tack against GnuTLS.

2.4 Padding Oracle Attacks

The concept of a padding oracle was first introduced by
Vaudenay [15]. In Vaudenay’s formulation, a padding or-
acle is a notional algorithm which, when presented with
a CBC-mode ciphertext, returns VALID if the underly-
ing plaintext has padding that is correctly formatted and
INVALID otherwise. Here, correctness is with respect
to some padding scheme. For example, for TLS/DTLS
padding, correctness means that the decryption of the ci-
phertext is a byte string ending in one of the valid padding
patterns “0x00”, “0x01, 0x01”, etc. Vaudenay showed that,
for certain padding schemes, repeated access to a padding
oracle can be used to decrypt arbitrary target ciphertext
blocks (and indeed complete ciphertexts in a block-by-
block manner). His techniques apply to the TLS/DTLS
padding scheme and, for completeness, we show in Algo-
rithm 1 how to decrypt a complete block from a target ci-
phertext C∗, given access to a padding oracle. In this al-
gorithm, for ease of presentation, we number the bytes of
the target ciphertext block C∗

t from 0 to b− 1 starting with
the rightmost byte; we also use C∗

t−1 to denote the cipher-
text block preceding the target block in the ciphertext C∗.
For any block B, we write B[i], 0 ≤ i < b to denote its
bytes. The attack requires on average 128 and at most 256
queries to the padding oracle to decrypt each byte of the tar-
get block. The attack as presented uses 2-block ciphertexts,
but is easily adapted to use longer ciphertexts simply by en-
suring that blocks R,C∗

t are always placed at the end of the
ciphertext.

In practice, to mount a padding oracle attack, an adver-
sary must find some way of actually realizing a padding or-
acle for a specific implementation. In the original presenta-
tion for TLS in [15], Vaudenay posited that such an oracle
could be built by sending a message to a TLS server and
then waiting for a reply in the form of an error message. In
TLSv1.0, a decryption failed message would indi-
cate a padding error, while a bad record mac message
would indicate that padding was correct, but that MAC ver-
ification had failed. There are (at least) two challenges to
building a TLS padding oracle in this way:

1. The two TLS errors, decryption failed and
bad record mac, are classified as fatal, causing the
immediate termination of the TLS connection after ev-
ery query to the padding oracle. Informally, we say

Algorithm 1: Decrypting a block using a padding ora-
cle PO for TLS/DTLS.

Data: C∗
t−1, C

∗
t

Result: P ∗
t = Dk(C∗

t)⊕ C∗
t−1

Let R be a random b-byte block.;
for i = 0 to b− 1 do

for byte = 0 to 255 do
R[i] = byte;
C = R||C∗

t ;
if PO(C) = VALID then

P [i] = R[i]⊕ C∗
t−1[i]⊕ i;

Break;

for j = 0 to i do
R[j] = R[j]⊕ (i)⊕ (i+ 1);

Output P ;

that the padding oracle behaves as a bomb oracle.
The adversary must wait for a new TLS connection to
be established before making another query, but each
new connection will have fresh keying material. This
makes the attack impractical unless connections are re-
established quickly. Moreover, unless the same plain-
text is repeated in a known ciphertext block across
many connections, the adversary can only efficiently
recover the last byte of each block in the bomb oracle
case.

2. The two error messages are encrypted, making it more
difficult for the adversary to distinguish them.

The work of Canvel et al. [2] addressed the second issue
here, by developing a different realization for the padding
oracle. Their realization relies on the fact that, for a TLS
implementation, the processing of a message with valid
padding may take longer than the processing of a message
with invalid padding. The reason for this is that the padding
is checked for validity before the MAC verification is per-
formed, and so a TLS implementation that aborts process-
ing immediately after detecting an error (of any kind) will
exhibit a timing difference in message processing for pack-
ets with valid and invalid padding: in the former case, the
MAC verification will take place, while in the latter it will
not. The timing difference would then show up as a differ-
ence in the time at which the error messages appear on the
network. As observed in [2], this is exactly how TLS was
implemented in OpenSSL.

In the attack in [2], the timing difference was amplified
by working with long messages, since these take longer to
pass through MAC verification. Canvel et al. reported tim-
ing differences of as much as 2 milliseconds for these long

messages7. Because of noise introduced by various sources,
the padding oracle so obtained is not fully reliable, so the
server had to be queried a number of times for every mes-
sage and a statistical model used to analyse the observed
timings. Moreover, the oracle is still a bomb oracle, so
only one query per TLS connection can be made. Even so,
Canvel et al. [2] were able to use this approach to extract
TLS-encrypted passwords for an IMAP e-mail server run-
ning stunnel, an application using the OpenSSL implemen-
tation of TLS. The attack was perceived as serious enough
that the OpenSSL code for TLS was updated from releases
0.9.6i and 0.9.7a, to ensure that the processing time for TLS
messages is essentially the same, whether or not the padding
is correct, and to send the same encrypted error message,
bad record mac, in both cases. Eventually, the same
countermeasures appeared in the specification for TLSv1.1
[6], with the requirement that they must be implemented.

3 Building A Padding Oracle for the
OpenSSL Implementation of DTLS

3.1 Assumptions on the Adversary

The objective of the attack is to recover DTLS-protected
plaintext. We assume that the adversary:

• Has access to the ciphertext. This can be achieved by
the adversary gaining access to a network device like
a switch or a router, or by ARP spoofing, or by eaves-
dropping in a wireless environment.

• Can send arbitrary DTLS messages to the original re-
cipient. This can be achieved by injecting packets into
the network while spoofing the IP and UDP headers.

• Is aware of the encryption algorithm’s block size, b.
The adversary can infer this by either monitoring the
connection’s handshake messages, or the size of the
encrypted messages over time.

• Can detect and record a number of Heartbeat request
packets.

The above assumptions apply when anti-replay is deac-
tivated. We note that anti-replay is enabled by default for
both the OpenSSL and GnuTLS implementations of DTLS,
and we had to modify the server source code to disable it
in our experiments. When anti-replay is activated, then we
also need to assume that the adversary can stop messages of
his choice from reaching their final destination. For exam-
ple, the adversary may achieve this by exploiting his control

7We measured the MAC verification time for DTLS messages with pay-
load sizes of up to 1456 bytes and found the time to be in the tens of µs
instead.

over a router or a firewall in the data path. In presenting our
attack below, we assume that anti-replay is disabled, i.e. we
assume that the targeted system does not perform sequence
number checking for incoming DTLS messages. We ex-
plain how to modify the attack to handle the case where
anti-replay is enabled in Section 4.5.

3.2 A Padding Oracle for the OpenSSL Imple-
mentation of DTLS

In this section, we explain how to construct a padding
oracle for the OpenSSL implementation of DTLS. This or-
acle can then be used in the standard way to decrypt ar-
bitrary ciphertext blocks and thence arbitrary amounts of
plaintext data, as described in Section 2.4. The key obser-
vation we use is that, in the current OpenSSL implemen-
tation of DTLS, if the padding underlying a ciphertext is
valid, then the MAC on the message is checked, whereas
if the padding is invalid, then the MAC is not checked and
the ciphertext is rejected immediately. This contravenes the
requirement for equal processing times in TLSv1.1 that is
inherited by reference in the DTLS specification. As a con-
sequence of this deviation, we would expect the processing
time for a DTLS packet with invalid padding to be slightly
less than that of a DTLS packet with valid padding. The
actual time difference depends on a number of factors in-
cluding the algorithms used, the clock-speed of the target
system, the size of the DTLS packet, other processes run-
ning on the target system, and the network conditions. For
example, we measured the MAC verification time on our
testing machine running OpenSSL with HMAC-SHA-1 and
found it to be in in the order of tens of µs – see Figure 1.

So far, this is identical to the timing side channel ex-
ploited in [2]. However, DTLS does not have any error
messages, so we cannot use existing methods to observe
the difference in processing times. This may explain why
the implementors of DTLS in OpenSSL chose not to imple-
ment the required countermeasures. Instead, we introduce
an alternative means to detect the timing difference, by ex-
ploiting Heartbeat messages. The basic idea is quite simple.
Suppose we send to the target system a packet train consist-
ing of a DTLS packet PC carrying the ciphertext C (whose
padding validity we wish to test) immediately followed by
a Heartbeat request message. Then this train will result in a
detectable Heartbeat response message being sent back on
the network, and, assuming orderly processing on the tar-
get system, the total amount of time needed to process PC

and to produce the Heartbeat response message will reflect
whether or not MAC verification was carried out when pro-
cessing C. From an adversary’s perspective, only send and
receive times of packets can be captured, so the adversary
will measure the time difference between sending the initial
packet train and receiving the Heartbeat response packet,

which we refer to as the round trip time (RTT). If this time
difference is larger than some threshold T , the adversary
will assume the padding was valid (and so the MAC verifi-
cation was carried out), while if it is lower than this thresh-
old, the adversary will assume the padding was invalid. The
threshold can be set by doing some initial system profiling
to measure the typical timing difference between packets
carrying ciphertexts having valid and invalid padding. No-
tice also that DTLS Heartbeat packets are not essential to
building the oracle: any upper layer protocol having suit-
ably predictable and detectable response messages can be
used.

In reality, the timing of packets is influenced by
many factors beyond just DTLS’s cryptographic process-
ing. Moreover, as we noted above, the timing difference
will be rather small for normal-sized packets. So the DTLS
padding oracle as presented would be much too error-prone.
To enhance the accuracy of the oracle, the adversary can:

• Choose a specific, favourable DTLS packet payload
length, l.

• Send n copies of packet PC in a train followed by a
Heartbeat request instead of just one copy of PC . Here,
the idea is that each copy of PC will be processed in
the same way, so the larger the accumulated time dif-
ference will become and the easier it will become to
distinguish between valid and invalid padding. This
exploits the fact that DTLS does not tear-down DTLS
connections in the event of errors (recall that when the
padding oracle is used in a plaintext recovery attack,
all the ciphertexts sent in the attack will be invalid in
some way – they will either have invalid padding or in-
valid MACs). It also assumes that all the packets in the
train can be made to arrive at the target system in such
a way that no adverse delays are introduced during the
processing of these packets.

• Send m packet trains (each containing n copies of PC),
and use an applicable statistical model to analyse the
observed RTTs.

Algorithm 2 describes our basic DTLS padding oracle
for a ciphertext C. In the algorithm, RTTq denotes the re-
sponse time in the q-th trial, T denotes the threshold for de-
ciding on whether C has valid or invalid padding, and sim-
ple averaging is used to process the gathered RTTs. Other
statistical measures could be used in place of averaging
here, an idea that we discuss in more detail in the next sec-
tion. There we also explore the many practical issues that
arise in building this padding oracle, addressing issues such
as packet timing, system profiling, parameter selection to
tune the attack, and dealing with anti-replay.

Algorithm 2: Padding Oracle for OpenSSL implemen-
tation of DTLS

Data: C
Result: VALID or INVALID
for q = 1 to m do

RTTq = Timer(C);
RTT=Mean(RTT1, RTT2, ..., RTTm);
if RTT ≥ T then

return VALID;
else

return INVALID;

Timer(C)
Set Ts = current time;
Send n copies of PC , a DTLS packet containing C, to
the targeted system;
Send a Heartbeat request packet to the targeted system;
Set Te = time when Heartbeat response packet is seen;
return (Te − Ts)

4 Practical Considerations

In this section, we discuss a number of practical issues
that arise in implementing our attack. All of our remarks
are specific to the OpenSSL implementation of DTLS.

4.1 Timing and OpenSSL Cryptographic Opera-
tions

Our attack relies on detecting the time difference in-
troduced by MAC verification that is performed for pack-
ets having valid padding but not for packets having invalid
padding. Failure to detect this time difference would result
in the padding oracle providing an incorrect answer. Fig-
ure 1 shows, for a variety of DTLS payload sizes, the time
taken by OpenSSL in our set-up to perform decryption with
3DES or AES-256 alongside the time taken for MAC veri-
fication using HMAC-SHA-1. The hardware specifications
of our set-up are listed in Section 5. We note the following
features evident from this figure:

• In general, decryption is slower than MAC verification,
especially in the case of 3DES.

• The MAC processing time for a single packet is on the
order of a few tens of µs, which is well below that
reported in [2] and below the level of jitter expected in
a typical network.

• 3DES is much slower than AES-256: for a packet
size of 1456 bytes, the factor is about 4. For reasons
that will be explained below, using a slower decryp-
tion algorithm increases the effectiveness of the attack.

Hence the attack parameters (l,m, n) may need to be
tuned depending on which block cipher is in use.

• With AES-256, the processing time rapidly drops from
about 50 µs to about 20 µs when the DTLS payload
size reaches 512 bytes. We do not know the reason
for this behaviour, but the adversary also needs to be
aware of it when selecting attack parameters.

Although we have targeted HMAC-SHA-1 in our attack,
the fundamentals of the attack still apply when other MAC
algorithms are in use. At the time of writing, OpenSSL
only supports HMAC-MD5 and HMAC-SHA-1. More de-
tail about how packets are processed and the source of the
timing difference is provided in Appendix A.

4.2 System Profiling

System profiling refers to the process by which the ad-
versary collects information about the targeted system prior
to carrying out an attack. This provides the adversary with
the expected values for the RTTs (for valid and invalid
padding) under some conditions such as system load, the
DTLS payload length, l, and the number of packets in the
train, n. This profiling in turn allows the threshold value T

for the attack to be set.
Given a captured ciphertext, it is easy to construct cipher-

texts having any desired length l and having either invalid
or valid padding, simply by manipulating the last 2 blocks
of the captured ciphertext and prepending random blocks
(or truncating it if a shorter ciphertext is needed). Given
such pairs of ciphertexts and a Heartbeat request message,
the adversary can then construct packet trains containing
the required number of packets n. These trains can then
be repeatedly sent to the target system and the RTTs mea-
sured, to obtain two empirical PDFs, one for trains with
validly padded packets and the other for trains with invalid
padding. From these PDFs, the threshold T can be set by,
for example, calculating the mean of each distribution and
setting T to be the mid-point between the means. In prac-
tice, we tend to obtain small numbers of extreme outliers
in such profiling experiments, and removing these before
calculating the means by using a simple cut-off generally
improves the performance of the attack. More sophisticated
statistical methods can of course be employed, but we have
found profiling followed by thresholding to be already ade-
quate for our attacks to be successful.

4.3 An Attack Without System Profiling

System profiling is not even strictly necessary – for a
given byte position i in the target block, an adversary can
simply measure the RTTs for a packet train (consisting of n
DTLS packets with the target ciphertext block being located

20 40 60 80
0

50

100

150

200

250

DTLS Payload Size in Bytes

Ti
m
e
in
M
ic
ro
se
co
nd
s

SHA�1

3DES

64 368 688 1008 1328 1456

(a) 3DES and SHA-1

20 40 60 80
0

50

100

150

200

250

DTLS Payload Size in Bytes

Ti
m
e
in
M
ic
ro
se
co
nd
s

SHA�1

AES�256

64 368 688 1008 1328 1456

(b) AES-256 and SHA-1

Figure 1. Timing of cryptographic operations for DTLS payloads of sizes between 64 and 1456 bytes

at the end of each packet, followed by a Heartbeat request
packet), for each of the 256 possible byte values in position
i in the block preceding the target ciphertext block. Then
the adversary can select as the correct byte value (i.e. the
one giving valid padding) the one that maximises the RTT
across the 256 measured RTT values. Accuracy can be fur-
ther improved by repeating the trial for each byte m times,
removing outliers, and using the maximum of the average
RTTs. In fact, we have observed in our experiments that
repeating the trial for each byte value m times, removing
outliers, and then selecting the byte value that maximizes
the minimum of the m measured RTTs for each byte value
gives substantially higher success probabilities for the at-
tack. We will illustrate this in Section 5 where we discuss
our experimental results in more detail. This, then, is the
preferred version of our attack. Note that, strictly speaking,
this version of the attack does not build a padding oracle,
but rather considers all possible 256 byte values simultane-
ously.

Even more sophisticated statistical techniques, such as
sequential estimation (as in [2]) or likelihood estimation,
can be used in place of averaging or selecting the minimum
when processing the results of the m trials per byte. How-
ever, these more advanced approaches were not needed in
order to successfully launch our attack. They could be use-
ful in further reducing the amount of data sent or Heartbeat
request messages consumed in an attack.

Finally, we note two further advantages of using an at-
tack without profiling. Firstly, the process of profiling it-
self will require Heartbeat request messages to be gathered.
Secondly, the attack environment may change over time
during the attack itself, as varying network or server loads
are experienced, for example. The attack without profiling
described here automatically adjusts for such changes, at
least if they do not occur within the time taken to recover a
single byte of plaintext.

4.4 Measuring Success Under Budgetary Con-
straints

The attack is such that a byte is successfully decrypted
only if all the preceding bytes in the same block are success-
fully decrypted. Hence, under a reasonable independence
assumption, if the probability of successfully decrypting a
byte is p, then the probability of successfully decrypting a
block of size b will be pb = pb. For AES, b = 16, so for suc-
cessful decryption of a whole block with a reasonable prob-
ability, we need p to be rather close to 1. For example, with
p = 0.99 and b = 16 we have pb = 0.85. The adversary
can tune the attack parameters (l,m, n) so as to increase
the success probability p of the attack and can try to find
the optimal combination that results in the highest success
probability. However, in practice, an adversary will have a
limit on, for example, the maximum number of bytes that
he wishes to send in order to recover a byte. As discussed
below, when anti-replay is enabled, Heartbeat request pack-
ets (or their equivalents) will become a precious resource.
Since each train consumes one such packet in this situation,
it may be desirable to increase l, the packet size and n, the
number of packets per train, so as to maximize the ampli-
fication effect, whilst minimizing m, the number of trains
sent per byte. However, as our later experimental results
will show, simply increasing l and n does not always help,
especially in the case of AES-256.

4.5 Attacks with Anti-Replay Enabled

Attacking DTLS becomes slightly more complex when
anti-replay is enabled. Since the OpenSSL implementation
of DTLS first checks the sequence number against the anti-
replay window before doing any cryptographic processing,
the adversary has to take care that all packets sent in trains
do not have sequence numbers that are marked as having

previously arrived. Fortunately, the anti-replay window is
only updated if the MAC on a packet is successfully veri-
fied, and all the packets used in the attack will fail the MAC
verification (with the exception of the Heartbeat packets), so
the window is not updated as a consequence of these attack
packets.

With anti-replay enabled, each Heartbeat request packet
can be used only once, since its sequence number will be
marked in the window as having been seen once the packet
arrives. Moreover, the adversary has to ensure that the se-
quence number for each Heartbeat request packet used does
fall within (or to the right of) the current anti-replay win-
dow, otherwise the Heartbeat request will be discarded and
no response generated.

Thus Heartbeat request packets become a precious re-
source in the situation where anti-replay is enabled: the at-
tack can only proceed as quickly as they become available.
Hence decryption in this setting may be rather slow and “op-
portunistic” – every time a packet is seen on the wire by the
adversary, a new packet train can be launched and a byte
value tested.

Given these issues, it is apparent that the adversary
should try to use as few Heartbeat request packets as possi-
ble, which means minimizing m for a given target success
probability p. A further enhancement arises by building
packet trains that test multiple byte values simultaneously.
For example, the adversary could build two sets of m trains,
each train containing 128n packets, with half of the possi-
ble byte values being tested in each train n times each. This
would represent the first step in a binary search for the cor-
rect byte value, requiring only 8 steps and therefore 16m
Heartbeat request packets to extract a byte. The number
of Heartbeat requests consumed could be halved again with
initial system profiling. In contrast, our basic attack would
consume 256m Heartbeat request packets for the same re-
sult. We have not tested this version of the attack, but our
experience indicates that it would work well whenever us-
ing long packet trains does not degrade performance.

Finally, we recall that packets from any suitable appli-
cation layer protocol could be used in place of Heartbeat
request packets, so long as the corresponding application al-
ways sends a detectable response packet with a predictable
response time. So the success of our attack does not depend
completely on the availability of Heartbeat request packets
in the case where anti-replay is enabled.

5 Implementation and Results for OpenSSL

5.1 Implementation

In our laboratory set-up, we have a client, the adversary
and the targeted system all connected to a 100Mbps Eth-
ernet switch on the same VLAN. The targeted system was

a machine running a single core processor operating at a
speed of 1.87 GHz and having 2 GByte of RAM.

We ran version 1.0.0a of OpenSSL on the client and the
server. We used the built-in OpenSSL utilities for the client8
and the server9, s client and s server respectively.
s client implements a generic client which connects to
a remote host using DTLS, while s server implements a
generic server which listens for connections on a given UDP
port using DTLS. We implemented the Heartbeat Extension
feature by installing the appropriate OpenSSL patch10. We
deactivated anti-replay by directly modifying the OpenSSL
code.

5.2 Results

The results shown in this section reflect our specific
set-up. Of course, the values would change as the set-up
changes – for example, the timings are heavily dependent
on the clock-speed of the processor used on the target sys-
tem. However, the fundamentals of the attack would remain
the same.

5.2.1 Experimentally observed PDFs:

The figures we discuss hereafter show PDFs observed in
our experiments for different attack parameters and encryp-
tion algorithms. In all the figures, the x-axis represents
RTTs while the y-axis represents the probability of observ-
ing these RTTs. In all figures, outliers have been removed.
Each figure shows two PDFs, PDF1 (in red) and PDF2 (in
blue), that correspond to having valid and invalid padding
in the packets in the trains, respectively. We recall that l
denotes the DTLS payload size, m denotes the number of
trials per byte, and n denotes the number of DTLS packets
per trial. Figures 2 and 3 show PDFs for n equal to 10 and
varying the value of l, for 3DES and AES-256 respectively.
We note the following:

• It is generally easier to distinguish between the two
PDFs in the case of 3DES.

• Generally, there is an increasing overlap between the
two PDFs as the value of l, the DTLS payload size,
increases. This is more evident in the case of AES-
256.

• In the case of AES-256, increasing l makes the PDFs
much harder to distinguish. The reason for this is that
the adversary spends more time preparing and sending
packets as the packet size increases, while the targeted
system may already have finished AES decryption and

8
http://www.openssl.org/docs/apps/s_client.html

9
http://www.openssl.org/docs/apps/s_server.html

10
http://sctp.fh-muenster.de/dtls-patches.html

MAC verification and be waiting for the next packet.
Thus long packets tend to arrive “late” at the targeted
system.

Figures 4 and 5 show the PDFs for l = 1024 and varying
the value of n, for 3DES and AES respectively. We note the
following:

• In the case of 3DES, increasing the value of n helps
in making the two PDFs more distinguishable. This is
the case with AES-256 when small DTLS payloads are
used.

• With AES, increasing the value of n when using large
DTLS payloads makes the PDFs harder to distinguish.
Figures 6 and 5 show this effect when AES-256 is used
for l = 256 and l = 1024 respectively.

• By appropriately choosing the attack parameters, it is
possible to obtain PDFs that are very easy to distin-
guish. For example, the last graph in Figure 6 shows
the PDFs for AES-256 when l = 256 and n = 160,
where the peaks are separated by more than 500µs
while the distributions are entirely contained within 50
µs of the peaks.

5.2.2 Success Probability:

Table 1 shows the success probability, p, of decrypting a
byte under different attack parameters (l,m, n) when AES-
256 is used. We recall that the success probability for a
block is then given by pb where b is the block length in
bytes.

These tables were obtained using the preferred version of
our attack described in Section 4.3, where no system profil-
ing is used, outliers are removed, and, for each byte, we use
the minimum RTT value from the m values available, and
then select the correct byte as being the one that gives the
maximum amongst these values. Each entry in the tables is
calculated using 100 runs of the attack.

We can clearly see that the probability of success in-
creases as the number of trials, m, increases. Success prob-
abilities p equal to 0.99 or above are easily achieved for
moderate values of l, m and n, making our preferred at-
tack both efficient and highly reliable for these parameter
choices.

Table 2 shows analogous success probabilities for 3DES.
Note however that in these tables, we report figures for sub-
stantially larger values of l than we did for AES-256. This is
indicative of the fact that our attacks are still quite success-
ful for 3DES even with long payloads, giving an additional
amplification opportunity. As further confirmation of the
practicality of our attacks,Table 3 provides success proba-
bilities for AES-256 for l = 192 and various values of m
and n, with the probabilities being based on 1000 runs of

❍❍❍❍❍n
l 128 160 192 224 256 288

1 0.00 0.15 0.41 0.32 0.00 0.01
2 0.02 0.24 0.32 0.40 0.00 0.01
5 0.05 0.08 0.49 0.02 0.00 0.01

10 0.04 0.12 0.36 0.00 0.01 0.01
20 0.01 0.13 0.34 0.05 0.02 0.01
50 0.10 0.33 0.38 0.03 0.00 0.01

m = 1
❍❍❍❍❍n

l 128 160 192 224 256 288

1 0.99 0.99 1.00 0.99 1.00 0.99
2 0.99 1.00 0.99 1.00 1.00 0.98
5 0.99 1.00 1.00 1.00 1.00 0.98

10 0.98 1.00 0.99 1.00 1.00 0.99
20 0.99 0.99 1.00 1.00 1.00 0.99
50 0.99 0.99 1.00 1.00 0.98 0.95

m = 5
❍❍❍❍❍n

l 128 160 192 224 256 288

1 0.99 0.99 1.00 0.99 1.00 0.99
2 0.99 1.00 0.99 1.00 1.00 0.99
5 0.99 1.00 1.00 1.00 1.00 0.98

10 0.98 1.00 0.99 1.00 1.00 0.99
20 0.99 0.99 1.00 1.00 1.00 0.99
50 0.99 0.99 1.00 1.00 0.99 0.95

m = 10

Table 1. Success probabilities per byte for

AES, for various attack parameters.

the attack. For example, already for m = 10 and n = 2, the
success probability is 0.996, meaning that an entire block of
plaintext can be recovered correctly with probability 0.94,
at a cost of (roughly) 7000 bytes of network traffic per byte.

6 Attacking the GnuTLS Implementation of
DTLS

We have examined the GnuTLS implementation of
DTLS, with the intention of finding similar attacks. The
code for decryption11 is such that a MAC computation is
carried out whether or not the padding is validly formatted,
and only then is the packet dropped. Thus a first inspection
of the code would indicate that there is no timing difference
in decryption processing that can be exploited in an attack.

11See http://git.savannah.gnu.org/gitweb/?p=

gnutls.git;a=blob;f=lib/gnutls_cipher.c

540 560 580 600 620 640

0.05

0.10

0.15

0.20

0.25

0.30

(a) l = 256

1240 1260 1280 1300 1320 1340

0.02

0.04

0.06

0.08

(b) l = 1024

1660 1680 1700 1720

0.01

0.02

0.03

0.04

0.05

0.06

(c) l = 1456

Figure 2. 3DES – PDFs for n = 10 and varying l.

520 530 540 550 560 570 580

0.05

0.10

0.15

0.20

(a) l = 256

1210 1215 1220 1225 1230

0.05

0.10

0.15

(b) l = 1024

1580 1590 1600 1610 1620 1630

0.02

0.04

0.06

0.08

0.10

0.12

(c) l = 1456

Figure 3. AES-256 – PDFs for n = 10 and varying l.

However, the code does include the lines shown in Figure
7. These lines are executed after CBC-mode decryption is
complete. We explain their function next.

Lines 550-562 carry out a sanity check on the plaintext,
making sure that the plaintext is long enough to contain
as much padding as is indicated in the last byte of plain-
text, which is assigned to variable pad (note that decryp-
tion is done in place, so the plaintext is held in the ar-
ray ciphertext.data}. If this test fails, then a flag
pad_failed is set. Line 564 calculates length, which
should be the length of the message remaining after the
padding and MAC field have been removed. Notice that
this value could be negative as a result of decryption of
an attacker-chosen ciphertext. Lines 576 and 577 eventu-
ally set it to 0 if this is the case. Lines 568-574 carry out
the padding check, but only if the preceding sanity check
did not fail. If the padding check fails, then again the flag
pad_failed is set. Lines 582-593 perform the MAC
computation (though the computed MAC value is not com-
pared to the received MAC value until later). The code then
goes on to return a negative value if any of the sanity check,
padding format check or MAC verification have failed, and
this eventually results in GnuTLS printing an error message
to the screen. Unless the debugging level is changed, no
other error messages are produced. Otherwise, if no check
fails, the code returns a value indicating the length of the
message.

Notice that, in the above code, if the sanity check fails,

then length is set to 0 and the MAC check is carried out
on a message consisting of just a few header fields. On the
other hand, when the sanity check passes, the MAC check
is carried out on a message consisting of header fields and
as many message bytes are left after removal of padding
and the MAC field. Since performing MAC verification on
a string takes an amount of time roughly proportional to
the length of that string, we see that decryption processing
should be faster when the sanity test fails than it is when
the sanity test passes. But the result of this sanity test de-
pends on the value of the last plaintext byte, and hence the
decryption processing time may leak information about that
byte.

These observations lead to a partial plaintext recovery
attack against GnuTLS that we explain next. For ease of
presentation, we assume that the MAC size is 32 bytes (as
would be produced by HMAC-SHA-256), but a similar at-
tack would apply for 20-byte MACs. Now the padding
length field pad is obtained from the last byte of the de-
crypted ciphertext (see line 550 in Figure 7). Consider an
adversary who builds a DTLS packet whose encrypted pay-
load (excluding the IV) is 160 bytes in length and that ends
with two blocks R,C∗

t , where C∗
t is the target ciphertext

block. Then, recalling our numbering convention for the
bytes of a block and the CBC-mode decryption procedure,
the sanity check in the GnuTLS code fails precisely when:

R[0]⊕Dk(C
∗
t)[0] > 127.

1240 1260 1280 1300 1320 1340

0.02

0.04

0.06

0.08

(a) n = 10

3900 3950 4000 4050 4100 4150 4200

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(b) n = 40

14600 14800 15000 15200 15400

0.01

0.02

0.03

0.04

(c) n = 160

Figure 4. 3DES – PDFs for l = 1024 and varying n.

1210 1215 1220 1225 1230

0.05

0.10

0.15

(a) n = 10

5280 5290 5300 5310 5320

0.02

0.04

0.06

0.08

0.10

(b) n = 40

79060 79080 79100

0.01

0.02

0.03

0.04

(c) n = 160

Figure 5. AES-256 – PDFs for l = 1024 and varying n.

Thus, if the targeted system responds quickly to the ad-
versary’s packet, he can infer that the most significant bit
(MSB) of R[0] ⊕ Dk(C∗

t)[0] is most likely set to 1. From
this, the MSB of P ∗

t [0], the rightmost byte of the plaintext
corresponding to C∗

t , is easily deduced. The attacker can
then target the second-MSB of P ∗

t [0], by setting R[0] so
that the MSB of R[0]⊕Dk(C∗

t)[0] equals 0 and then using
a DTLS packet of length 96 bytes (again excluding the IV).
This provides a test of the form:

R[0]⊕Dk(C
∗
t)[0] > 63

with the side information that R[0] ⊕ Dk(C∗
t)[0] ≤ 127,

from which the adversary learns that the second-MSB of
R[0]⊕Dk(C∗

t)[0] is set to 1 if the targeted system responds
quickly. An alternative approach to this is setting R[0] so
that the MSB of R[0] ⊕ Dk(C∗

t)[0] equals 1 instead of 0
and then using a DTLS packet of length 224 bytes (again
excluding the IV). This provides a test of the form:

R[0]⊕Dk(C
∗
t)[0] > 191

The adversary can learn that the second-MSB of R[0] ⊕
Dk(C∗

t)[0] is set to 1 when the targeted system responds
quickly. This alternative approach gives the adversary the
opportunity to use packets with sizes that result in better
success probabilities, and hence is preferable. For both ap-
proaches, iterating, the attacker can extract the 4 MSBs of
P ∗
t [0] when the block cipher is AES, and the 5 MSBs of

P ∗
t [0] when it is 3DES. The least significant bits (LSBs)

cannot be extracted using our attack because the packet size
must be a multiple of the block size b.

This provides a theoretical description of our attack.
Of course, the adversary can use the same techniques as
worked for OpenSSL to amplify his attack: using packet
trains, multiple trials, and removal of outliers. A practical
issue arises because GnuTLS does not implement the Heart-
beat extension, but here we can use any application layer
protocol with predictable timing differences.

We have conducted experiments to test whether the
timing difference is sufficient to allow the attack for
DTLS, with experimental results being presented in Fig-
ure 8 for HMAC-SHA-256 and AES-256, a ciphertext
length of 176 bytes and 5 packets in a single train.
Here, we see a separation between the two distribu-
tions, the red distribution for packets where the inequality
“pad > ciphertext.size - tag_size” is satis-
fied and the sanity test fails, and the blue distribution for
when the inequality is not satisfied and the sanity test
passes.

With the second approach described above, where longer
packets are used, we were able to achieve success probabili-
ties of 0.738,0.744, 0.737 and 0.756 for individually extract-
ing the first, second, third and fourth MSBs of the last plain-
text byte, respectively, meaning that the four MSBs can be
recovered correctly with probability 0.306, using (roughly)
43000 bytes of network traffic. These probabilities were
achieved with n = 5, m = 10 and measured over 1000 at-

520 530 540 550 560 570 580

0.05

0.10

0.15

0.20

(a) n = 10

1350 1400 1450 1500 1550

0.02

0.04

0.06

0.08

(b) n = 40

4600 4700 4800 4900 5000 5100 5200

0.02

0.04

0.06

0.08

(c) n = 160

Figure 6. AES-256 – PDFs for l = 256 and varying n.

n p
1 0.017
2 0.210
5 0.205

10 0.012
20 0.035
50 0.147

m = 1

n p
1 0.961
2 0.983
5 0.983
10 0.985
20 0.989
50 0.965

m = 5

n p
1 0.983
2 0.996
5 0.995

10 0.994
20 0.995
50 0.973

m = 10

Table 3. Success probabilities per byte for AES-256, for l = 192, based on 1000 trials.

100 200 300 400

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Figure 8. PDFs for AES-256 with HMAC-

SHA256, l = 176, n = 5, based on 1000 trials,

with outliers removed (GnuTLS).

tack runs. We used percentile filters, similar to the approach
used in [3], to achieve these probability values. As ex-
pected, increasing the value of m significantly increases the
success probability. For example, we were able to achieve
success probabilities of 0.797 and 0.990 for recovering the
four MSBs when m = 50 and m = 100, respectively.

To implement these tests, we used the same hardware
set-up as the one we used for OpenSSL. We ran version
3.0.0 of GnuTLS on the client and the server. We used
the built-in GnuTLS utilities for the client and the server,
gnutls cli and gnutls serv respectively. We again
disabled anti-replay by directly modifying the source code.

We have shared our findings with the GnuTLS develop-
ment team. A fix to prevent our specific attack has been
incorporated in version 3.0.11 of GnuTLS.

7 Discussion

We have demonstrated plaintext recovering attacks
against the OpenSSL and GnuTLS implementations of
DTLS. These are easily prevented by modifying the code
so that the receiver’s cryptographic processing time is inde-
pendent of how decryption fails. However, we contend that
the attacks are still interesting for a number of reasons.

Firstly, the fix to prevent our OpenSSL attack is already
mandated in the specification for TLSv1.1, and is imple-
mented in OpenSSL’s implementation of TLS, but not in
its implementation of DTLS. Without more insight into the
software development processes followed by the OpenSSL
project, we can only speculate that the experience about
how to securely implement TLS’s MAC-then-PAD-then-
Encrypt construction was not carried over to the separate
DTLS implementation. This, then, may also indicate of a
lack of truly expert code review in the OpenSSL project.
This is concerning given the prominence and wide applica-
tion of the OpenSSL code, but also understandable given
its volunteer-led effort. By contrast, GnuTLS’s implemen-
tation has common code for the TLS and DTLS packet de-
cryption procedure, meaning that countermeasures imple-
mented for TLS are immediately carried over to DTLS.
However, as we saw, even this was not sufficient to fully

550 pad = ciphertext.data[ciphertext.size - 1] + 1; /* pad */

551

552 if ((int) pad > (int) ciphertext.size - tag_size)

553 {

................

561 pad_failed = GNUTLS_E_DECRYPTION_FAILED;

562 }

563

564 length = ciphertext.size - tag_size - pad;

................

568 if (ver != GNUTLS_SSL3 && pad_failed == 0)

569 for (i = 2; i < pad; i++)

570 {

571 if (ciphertext.data[ciphertext.size - i] !=

572 ciphertext.data[ciphertext.size - 1])

573 pad_failed = GNUTLS_E_DECRYPTION_FAILED;

574 }

575

576 if (length < 0)

577 length = 0;

................

582 preamble_size =

583 make_preamble (UINT64DATA(*sequence), type,

584 length, ver, preamble);

585 _gnutls_auth_cipher_add_auth (¶ms->read.cipher_state, preamble,

preamble_size);

586 _gnutls_auth_cipher_add_auth (¶ms->read.cipher_state, ciphertext.data,

length);

................

593 ret = _gnutls_auth_cipher_tag(¶ms->read.cipher_state, tag, tag_size);

Figure 7. Extract from GnuTLS decryption code, release 3.0.0

protect the GnuTLS implementation against the type of at-
tack developed in this paper.

A second reason that the obvious and mandated coun-
termeasures were not implemented in OpenSSL may stem
from DTLS’s lack of error messages, which makes the
previous attacks apparently impossible against DTLS. We
proved otherwise, exploiting DTLS Heartbeat request and
response messages to obtain the required timing informa-
tion. This kind of approach may be more widely applicable
than DTLS.

A third possible explanation is that the DTLS specifica-
tion relies heavily on cross-references to the TLSv1.1 speci-
fication, and indeed only gives specification details at points
where TLS and DTLS differ. So an implementor needs to
be familiar with both specifications in order to implement
DTLS properly. We suggest that “specification by diff”
is not a good approach to specifying secure protocols, since
it requires an implementor to jump back and forth between
specifications and may allow important details to fall into
the gap between.

Secondly, a comparison between our attacks on DTLS
and previous attacks on TLS is instructive. Our attacks are

in some sense more challenging because of the lack of ex-
plicit error messages, but also easier to carry out because
of DTLS’s tolerance of errors, meaning that DTLS connec-
tions are not torn-down whenever an error is encountered as
they are in TLS. Ultimately, this error-tolerance comes from
DTLS’s use of an unreliable transport protocol. For similar
reasons, the anti-replay feature in DTLS is made optional in
the specification. In this context, our work shows how non-
security features of lower layer protocols can have a major
influence on security at higher layers. This phenomenon is
seemingly not that well-explored in the literature, present-
ing an interesting challenge for future work.

References

[1] P. Calhoun, M. Montemurro, and D. Stanley. Control
And Provisioning of Wireless Access Points (CAP-
WAP) Protocol Specification. RFC 5415, Internet En-
gineering Task Force, March 2009.

[2] Brice Canvel, Alain P. Hiltgen, Serge Vaudenay,
and Martin Vuagnoux. Password Interception in a

❍❍❍❍❍n
l 128 256 512 1024 1280 1456

1 0.00 0.12 0.39 0.06 0.01 0.13
2 0.03 0.12 0.26 0.03 0.03 0.18
5 0.03 0.20 0.23 0.30 0.07 0.02

10 0.04 0.17 0.09 0.38 0.08 0.04
20 0.14 0.10 0.08 0.22 0.09 0.07
50 0.04 0.08 0.17 0.41 0.15 0.05

m = 1
❍❍❍❍❍n

l 128 256 512 1024 1280 1456

1 0.99 1.00 1.00 1.00 1.00 0.93
2 0.99 1.00 0.99 0.99 0.93 0.92
5 0.99 1.00 1.00 0.90 0.93 0.83

10 0.99 1.00 0.92 0.89 0.81 0.57
20 0.97 1.00 0.91 0.92 0.77 0.54
50 0.98 1.00 0.90 0.89 0.68 0.59

m = 5
❍❍❍❍❍n

l 128 256 512 1024 1280 1456

1 0.99 1.00 1.00 0.99 1.00 0.93
2 0.99 1.00 1.00 0.99 0.93 0.92
5 0.99 1.00 1.00 0.91 0.94 0.83

10 0.98 1.00 0.93 0.89 0.81 0.57
20 0.98 1.00 0.92 0.92 0.77 0.54
50 0.99 1.00 0.91 0.89 0.68 0.59

m = 10

Table 2. Success probabilities per byte for

3DES, for various attack parameters.

SSL/TLS Channel. In Dan Boneh, editor, CRYPTO,
volume 2729 of Lecture Notes in Computer Science,
pages 583–599. Springer, 2003.

[3] Scott A. Crosby, Dan S. Wallach, and Rudolf H. Riedi.
Opportunities and Limits of Remote Timing Attacks.
ACM Trans. Inf. Syst. Secur., 12(3), 2009.

[4] Jean Paul Degabriele and Kenneth G. Paterson. At-
tacking the ipsec standards in encryption-only config-
urations. In IEEE Symposium on Security and Privacy,
pages 335–349, 2007.

[5] Jean Paul Degabriele and Kenneth G. Paterson. On the
(in)security of IPsec in MAC-then-encrypt configura-
tions. In ACM Conference on Computer and Commu-
nications Security, pages 493–504, 2010.

[6] T. Dierks and E. Rescorla. The Transport Layer Secu-
rity (TLS) Protocol Version 1.1. RFC 4346, Internet
Engineering Task Force, April 2006.

[7] Thai Duong and Juliano Rizzo. Cryptography in the
Web: The Case of Cryptographic Design Flaws in
ASP.NET. In IEEE Symposium on Security and Pri-
vacy. IEEE Computer Society, May 2011.

[8] W. Hardaker. Transport Layer Security (TLS) Trans-
port Model for the Simple Network Management Pro-
tocol (SNMP). RFC 5953, Internet Engineering Task
Force, August 2010.

[9] S. Kent and R. Atkinson. IP Authentication Header.
RFC 2402, Internet Engineering Task Force, Novem-
ber 1998.

[10] Nagendra Modadugu and Eric Rescorla. The Design
and Implementation of Datagram TLS. In NDSS. The
Internet Society, 2004.

[11] E. Rescorla and N. Modadugu. Datagram Transport
Layer Security. RFC 4347, Internet Engineering Task
Force, April 2006.

[12] Juliano Rizzo and Thai Duong. Practical Padding Or-
acle Attacks. In 4th USENIX Workshop on Offensive
Technologies (WOOT’10), August 2010.

[13] J. Salowey, T. Petch, R. Gerhards, and H. Feng.
Datagram Transport Layer Security (DTLS) Transport
Mapping for Syslog. RFC 6012, Internet Engineering
Task Force, October 2010.

[14] R. Seggelmann and M. Williams. Transport
Layer Security (TLS) and Datagram Trans-
port Layer Security (DTLS) Heartbeat Exten-
sion. Draft RFC, Internet Engineering Task
Force. http://tools.ietf.org/html/

draft-ietf-tls-dtls-heartbeat-02.

[15] Serge Vaudenay. Security Flaws Induced by CBC
Padding - Applications to SSL, IPSEC, WTLS ... In
Lars R. Knudsen, editor, EUROCRYPT, volume 2332
of Lecture Notes in Computer Science, pages 534–
546. Springer, 2002.

A Timing and Packet Processing

In this appendix we look in detail at how a receiver pro-
cesses a packet, with a view to building a simple model of
how RTTs are affected by the attack parameters. To this
end, Figure 9 shows a simplified time-line of how packet i,
having valid padding, is processed by the receiver.

In the time-line we have:

• ti,0: The time at which packet i arrives in the OpenSSL
buffer. The buffer holds DTLS packets waiting to be
processed.

• ti,1: The time at which the decryption and padding
check are completed for packet i.

• ti,2: The time at which the MAC check is completed
for packet i.

• ti,3: The time at which OpenSSL is ready to process
the next DTLS packet, packet i+ 1.

• OSt: Any additional time spent by the operating sys-
tem in relation to the processing of the packet. We
assume this to be a constant, independent of i.

In the case of a packet with invalid padding, the MAC
verification is not performed and hence we have ti,2 = ti,1.
Figure 10 is the analogue of Figure 9 for the case of in-
valid padding, and illustrates that, for a fixed DTLS packet
length, the time taken to process a packet with invalid
padding is less than that taken to process a packet with valid
padding.

In Section 3, we defined RTT to be the time taken be-
tween sending the first packet in a train to receiving a Heart-
beat response packet. Next, we analyse the different contri-
butions to RTT . As an example, the time-line in Figure 11
shows a train made of two identical data packets (so n = 2),
both having valid padding, followed by a Heartbeat request
packet, which then provokes a Heartbeat response packet.
In Figure 11 we have:

• Ts: The time at which the adversary sends the first
DTLS packet, packet 1.

• Tf : The time at which the Heartbeat response packet
is sent by the receiver

• Te: The time at which the Heartbeat response packet
is received by the adversary.

• t1,0 − Ts: The time it takes for packet 1 to reach the
receiver.

• Te − Tf : The time it takes for the Heartbeat response
packet to reach the adversary after being sent by the
targeted system.

• Te − Ts: The RTT for the packet train.

Figure 11 shows the second data packet, packet 2, arriv-
ing after the completion of processing of packet 1 , i.e. so
that t2,0 > t1,3. The same applies to the Heartbeat request
packet arriving after the completion of processing of packet
2. In this situation, the receiver enters a wait state until the
next packet arrives and the arrival time of a packet and its
processing start time are the same. In general, this situa-
tion results in some or all of the timing difference arising
because of the MAC verification being “absorbed” into the
wait state of the receiver, and hence is sub-optimal in terms
of detecting the time difference.

In the opposite situation, where packet 2 arrives before
processing of packet 1 is complete, packets are buffered.
Then packet 2 is immediately available for processing at
the receiver as soon as processing of packet 1 is complete,
and none of the MAC verification time is absorbed. The
buffer is managed by OpenSSL and its maximum size is 100
DTLS packets. Figures 12 and 13 illustrate this situation for
packet trains having valid and invalid padding, respectively,
with the white boxes representing the amount of time spent
by packets in the buffer. It is evident from these figures
how the time arising from MAC verification (in the case of
valid padding) accumulates packet-by-packet to create an
amplified time difference in the RTT for the train.

The upshot of this analysis is that, from the adversary’s
perspective, it is desirable to select the attack parameters so
that the receiver’s buffer always contains some (but not too
many) packets. In this way, the receiver is never waiting for
a packet to arrive and the MAC processing time accumu-
lates across the whole packet train.

We have experimentally verified the essential basic cor-
rectness of this model for packet processing in the following
way. Let RTT1 denote the RTT for a train that uses packets
having valid padding, and let RTT2 denote the RTT for a
train that uses packets having invalid padding. Let δ denote
the time difference between the two RTTs, so that:

δ = RTT1 −RTT2

Then, if we artificially inject delays in between packets
from the train as they leave the adversary’s machine, we
would expect to see the value of δ steadily decrease and
eventually reach zero as the size of the artificial delay in-
creases. Figure 14 shows the results of such an experiment
which confirms this behaviour. Somewhat surprisingly, Fig-
ure 14 also shows that adding small artificial delays can ac-
tually increase the time difference δ, making this difference
in RTTs easier for the adversary to detect.

Decryption and Padding Check MAC Check OSt

ti,0 ti,1 ti,2 ti,3

Figure 9. Packet processing time-line – valid padding

Decryption and Padding Check OSt

ti,0 ti,1 ti,3

Figure 10. Packet processing time-line – invalid padding

packet 1

t1,0 t1,1 t1,2 t1,3 packet 2

t2,0 t2,1 t2,2 t2,3
Heartbeat Request

Heartbeat Response

Ts Tf Te

Figure 11. Time-line for a train with n = 2 (not to scale).

packet 1

t1,0 t1,1 t1,2 t1,3 packet 2

t2,0 t2,1 t2,2 t2,3 Heartbeat Request
Heartbeat Response

Ts Tf Te

Figure 12. Time-line for packet train with valid padding and packet buffering.

packet 1

t1,0 t1,1 t1,3 packet 2

t2,0 t2,1 t2,3 Heartbeat Request
Heartbeat Response

Ts Tf Te

Figure 13. Time-line for packet train with invalid padding and packet buffering.

10 20 30 40 50
0

100

200

300

400

500

600

700

Artificial Delay

Ti
m
e
in
M
ic
ro
se
co
nd
s

Figure 14. Value of δ, the difference in RTTs for valid and invalid padding, against artificial delay.

