
Microsoft Office Telemetry

Analysis report



Author:  

Dr. Aleksandar Milenkoski 

E-mail: amilenkoski@ernw.de

ERNW Enno Rey Netzwerke GmbH

Carl-Bosch-Straße 4

69115 Heidelberg, Germany

http://www.ernw.de

Federal Office for Information Security
Post Box 20 03 63
D-53133 Bonn
Phone: +49 22899 9582-0
E-Mail: bsi@bsi.bund.de
Internet: https://www.bsi.bund.de
© Federal Office for Information Security 2020

mailto:amilenkoski@ernw.de
http://www.ernw.de/
http://www.ernw.de/


Table of Contents

Table of Contents
1 Introduction......................................................................................................................................................................................... 5

1.1 Concepts and Terms................................................................................................................................................................... 5

1.2 Scope.................................................................................................................................................................................................. 7
1.2.1 Technical information........................................................................................................................................................ 7

1.3 Summary......................................................................................................................................................................................... 8

2 Technical Analysis............................................................................................................................................................................. 9

2.1 Functionalities of Aria............................................................................................................................................................ 11

2.2 Delivery of diagnostic events to Aria............................................................................................................................... 14

3 Disabling the output of diagnostic data................................................................................................................................ 21

3.1 Network......................................................................................................................................................................................... 21

3.2 Registry.......................................................................................................................................................................................... 23

3.3 Group policy................................................................................................................................................................................ 23

3.4 Summary....................................................................................................................................................................................... 24

Appendix.............................................................................................................................................................................................. 26

ETW Providers: Word and Diagtrack-Listener........................................................................................................... 26

Telemetry rules: XML tags/attributes and interpretations....................................................................................27

Disabling the output of diagnostic data: .reg file........................................................................................................ 28

Reference Documentation.......................................................................................................................................................... 29

Keywords and Abbreviations..................................................................................................................................................... 30

Figures
Figure 1: Content of office16.admx: Diagnostic data levels......................................................................................................... 6
Figure 2: Office telemetry: A high-level overview (default configuration)...........................................................................9
Figure 3: The diagnostic event Office.TelemetryEngine.FirstProcessed.............................................................................10
Figure 4: urlmon.dll constructing a POST request that encapsulates a diagnostic event...........................................11
Figure 5: Patching aria_logVerbosity and displaying Aria log data.......................................................................................12
Figure 6: Storage of a diagnostic event delivered to Aria........................................................................................................... 13
Figure 7: Aria constructing a POST request that encapsulates diagnostic events..........................................................13
Figure 8: Functions executed in close proximity to aria_diagnosticEventLogger..........................................................16
Figure 9: Pseudo-code of the implementation of mso20_eventDLevelCheck.................................................................17
Figure 10: An Office application (Word) requesting a rule file.................................................................................................18
Figure 11: Portions of telemetry rules................................................................................................................................................. 19
Figure 12: A sustainable and effective approach implementation.........................................................................................22

Tables
Table 1: Function and variable labels (1)............................................................................................................................................. 12
Table 2: Function and variable labels (2)............................................................................................................................................. 15
Table 3: Number of diagnostic events directed and delivered to Aria [the Word Office application with all 

connected experiences enabled, as per the default configuration of Office – see Section 1.2.1]...20

Federal Office for Information Security 3



Introduction 1

1 Introduction
ERNW GmbH was tasked by the German Federal Office for Information Security (orig., ger., Bundesamt fur 
Sicherheit in der Informationstechnik (BSI)) with analyzing the output of telemetry data from Microsoft 
Office and provide recommendations on how to deactivate or minimize it (see Section 1.1 and Section 1.2).

1.1 Concepts and Terms

This section introduces concepts and terms relevant for better understanding the content of this work.

The Windows 10 operating system implements the concept of telemetry. This involves collecting and 
sending diagnostic data to a backend managed by Microsoft, referred to as the Microsoft backend, for storing 
and processing. Diagnostic data is a set of diagnostic events that log information on different aspects of the 
operation of Windows and applications running on it. This includes usage information as well as 
information relevant for diagnosing issues, such as application crash information.

Connected User Experiences and Telemetry is the central telemetry component of Windows 10. The 
Connected User Experiences and Telemetry service, also known as DiagTrack, is the core building block of 
the component. It is responsible for collecting and sending diagnostic events to Microsoft.

DiagTrack primarily relies on Event Tracing for Windows (ETW) [ms_etw] for collecting diagnostic events. 
ETW is the core logging mechanism of Windows. The architecture of ETW is composed of several 
components, some of which are ETW providers, ETW sessions, and ETW consumers. An ETW provider is a 
software entity that produces log data (events). ETW providers are implemented and declared as part of 
instrumented executables using the ETW application programming interface (API) [ms_eapi]. Each ETW 
provider can be uniquely identified by a globally unique identifier (GUID), a 128-bit number. ETW providers 
deliver data to ETW sessions. An ETW session is a software entity that receives data from the ETW providers 
associated with it and delivers this data to ETW consumers. An ETW consumer is software that consumes 
and processes (e.g., displays) the data delivered by ETW sessions. For example, the Event Viewer utility is an 
ETW consumer. ([ERNW_WP4], Section 1.3) documents the architecture of ETW in greater detail.

The DiagTrack service receives diagnostic data from two ETW sessions, Autologger-Diagtrack-
Listener and Diagtrack-Listener. Autologger-Diagtrack-Listener is active during system 
initialization.  Diagtrack-Listener delivers diagnostic events to DiagTrack in the form of a real-time 
feed during system operation. [ERNW_WP4] discusses the architecture and operational principles of 
Connected User Experiences and Telemetry in greater detail.

It is important to emphasize that not only Connected User Experiences and Telemetry, but also applications 
developed by Microsoft may produce and send diagnostic events to the Microsoft backend. An example is 
Microsoft 365 (formerly called Microsoft Office 365), referred to as Office in this work. An Office deployment 
on a Windows instance consists of Office applications, such as Word and Excel, and the client-side 
implementations of connected experiences. Connected experiences are features of Office applications using 
services deployed in the Microsoft backend. They may communicate and exchange data with the Microsoft 
backend during operation. There are non-deactivatable features (Microsoft refers to them as essential 
connected experiences) and deactivatable features (Microsoft refers to them as non-essential connected 
experiences) [ms_cexp]. The non-deactivatable features cannot be deactivated by users. An example non-
deactivatable feature is Licensing [ms_epriv]. It handles licensing of Office applications, such as verifying the 
validity of a deployed license. The deactivatable features may be deactivated by users through standard 
configuration interfaces, such as group policy settings or registry values. An example deactivatable feature is 
Insert Icons. It enables users to insert in documents icons provided by Microsoft online [ms_nepriv]. 

Both Office applications and connected experiences produce diagnostic events that may be sent to 
Microsoft. This work refers to this concept as Office telemetry. Office produces a specific diagnostic event 
when it performs a given activity, which may be triggered by users. Such activities include, for example, 
launching the Office application or saving a document. Diagnostic events produced by Office are sent to 

Federal Office for Information Security 5



1 Introduction

Microsoft by telemetry modules. In this work, the term telemetry module refers to a software entity that 
establishes a network connection to an endpoint that is part of the Microsoft backend and sends diagnostic 
events produced by Office to it. There are Office and Windows telemetry modules. The term Office telemetry 
module refers to a telemetry module distributed with Office. The term Windows telemetry module refers to a 
telemetry module that is not distributed with Office (e.g., it is distributed with Windows).

Microsoft has released a set of privacy settings for Office, one of which enables users to configure the type 
and amount of diagnostic data that Office may send to the Microsoft backend. When deployed, it is available 
in the form of a group policy setting at the policy path User Configuration\Administrative 
Templates\Microsoft Office 2016\Privacy\Trust Center\Configure the level of 
client software diagnostic data sent by Office to Microsoft. It allows users to configure one 
of the following diagnostic data levels:

• required: this level configures Office to send to Microsoft the “minimum data needed to keep Office 
secure, up-to-date, and performing as expected on the device it's installed” (cit., from the group policy 
setting description);   

• optional: this level configures Office to send to Microsoft “additional data that helps make product 
improvements and provides enhanced information to help detect, diagnose, and remediate issues” (cit., from 
the group policy setting description);   

• neither:  this level configures Office such that “no diagnostic data about Office client software running 
on the user's device is sent to Microsoft” (cit., from the group policy setting description).

When the policy setting is not configured, the level optional is applied. For the sake of simplicity, this 
work refers to the policy setting Configure the level of client software diagnostic data 
sent by Office to Microsoft as Office diagnostic level. Configuring the diagnostic data level 
required, optional, or neither results in setting the registry value HKEY_CURRENT_USER\
Software\Policies\Microsoft\office\common\clienttelemetry\sendtelemetry to 1, 2, 
and 3, respectively.  This can be observed by analyzing the content of the office16.admx file. This file 
implements the Office diagnostic level setting (see Figure 1).

6 Federal Office for Information Security

Figure 1: Content of office16.admx: Diagnostic data levels



Introduction 1

1.2 Scope

The objective of this work is:

• to analyze the impact of the required, optional, and neither diagnostic data levels on the output 
of diagnostic data produced by Office applications and featured connected experiences (see Section 1.1).  
This work discusses in detail only topics that are directly related to this objective. Other topics are either 
not discussed, or are discussed to the extent needed for better understanding the content of this work. 
Such topics include characterizing the network traffic between a telemetry module and the Microsoft 
backend, or analyzing in detail the way in which Office applications and connected experiences produce 
diagnostic events;

• to provide and evaluate approaches for partially or fully disabling the output of diagnostic data produced 
by Office applications and featured connected experiences. This work evaluates such approaches in terms 
of their complexity of technical feasibility and impact on the operation of Office. 

Office telemetry (see Section 1.1) is not to be confused with Office Telemetry Dashboard. Office Telemetry 
Dashboard is an on-premise tool that collects diagnostic data about Office, primarily intended for 
organization-internal application compatibility testing [ms_otd]. This data is different than the diagnostic 
data discussed in this work. The Office Telemetry Dashboard tool is not in the scope of this work. 

The observations presented in this work are based on a static code analysis performed using the IDA 
disassembler and dynamic code analysis performed using the windbg debugger. Debugging symbols for 
Office are not publicly available. 

1.2.1 Technical information

This section provides information on: i) the executable files that are subject of analysis and their execution 
environment (paragraph ‘Operating system’, ‘Microsoft Office 365’, and ‘Executable files’); and ii) the 
configuration settings for Office that are subject of analysis (paragraph ‘Configuration settings’, see Section 
1.1).

Operating system Microsoft Windows 10 Enterprise long-term servicing channel (LTSC), version 10.0.17763, 
build 17763, 64-bit, default configuration.

Microsoft Office 365 Microsoft Office 365 Business, version 1904, build 11601.20230 Click-to-Run, 64-bit, 
licensed, default configuration. 

Installed Office applications (with all connected experiences enabled, as per the default configuration of 
Office):

• Access: %ProgramFiles%\Microsoft Office\root\Office16\MSACCESS.EXE

• Excel: %ProgramFiles%\Microsoft Office\root\Office16\EXCEL.EXE

• OneNote: %ProgramFiles%\Microsoft Office\root\Office16\ONENOTE.EXE

• Outlook: %ProgramFiles%\Microsoft Office\root\Office16\OUTLOOK.EXE

• PowerPoint: %ProgramFiles%\Microsoft Office\root\Office16\POWERPNT.EXE

• Publisher: %ProgramFiles%\Microsoft Office\root\Office16\MSPUB.EXE

• Word: %ProgramFiles%\Microsoft Office\root\Office16\WINWORD.EXE

• Skype for Business: %ProgramFiles%\Microsoft Office\root\Office16\lync.exe

Executable files 

%ProgramFiles%\Microsoft Office\root\vfs\ProgramFilesCommonX64\Microsoft Shared\
OFFICE16\Mso20win32client.dll: file version: 16.0.11601.20184; file size: 7.028.760 bytes.

Federal Office for Information Security 7



1 Introduction

%ProgramFiles%\Microsoft Office\root\Office16\MSOARIANEXT.dll: file version: 
16.0.11601.20174;  file size: 1.318.944 bytes.

Configuration settings: Administrative Template files (ADMX/ADML) and Office Customization Tool for 
Office 365 ProPlus, Office 2019, and Office 2016, version 4936.1000.

1.3 Summary

The Windows 10 operating system implements the concept of telemetry. This involves collecting and 
sending diagnostic data to a backend managed by Microsoft (i.e., the Microsoft backend) for storing and 
processing. Diagnostic data is a set of diagnostic events that log information on different aspects of the 
operation of Windows and applications running on it. This includes usage information as well as 
information relevant for diagnosing issues, such as application crash information. Microsoft Office 365 (i.e.,  
Office) consists of Office applications, such as Word and Excel, and connected experiences. Connected 
experiences are features of Office applications that may communicate and exchange data with the Microsoft 
backend during operation. Both Office applications and connected experiences produce diagnostic events 
that may be sent to Microsoft. Microsoft has released a set of privacy settings for Office, in the form of group 
policy settings. One of them enables users to configure the type and amount of diagnostic data that Office 
may send to the Microsoft backend by configuring the diagnostic data level required, optional, or 
neither. According to the group policy setting description, the diagnostic data level neither configures 
Office such that “no diagnostic data about Office client software running on the user's device is sent to 
Microsoft” (cit., from the group policy setting description).  

It is important to emphasize that:

• the diagnostic data level neither configures Office such that only specific diagnostic events are not sent 
to Microsoft. Other diagnostic events produced by Office applications and featured connected 
experiences are still sent to Microsoft;

• depending on how Office is used, diagnostic data produced by it may be sent to Microsoft through more 
than one telemetry module. Telemetry modules are software entities that collect Office diagnostic events, 
establish a network connection to an endpoint of the Microsoft backend, and send the diagnostic events 
to it.  Office diagnostic data may be sent to Microsoft by telemetry modules distributed with Windows or 
Office itself.

There is no known central configuration setting that disables all telemetry modules. There is also no such 
setting that configures Office to stop producing diagnostic events. Fully disabling the output of diagnostic 
data produced by Office requires the application of a combination of approaches. They involve blocking 
outgoing data streams at network-level and configuring settings using standard system configuration 
interfaces, such as group policy settings or the system’s registry. The approaches vary in their efficacy (in 
terms of amount of disabled diagnostic data output), complexity of technical feasibility, and impact on 
the operation of Office applications and featured connected experiences. Partially or fully disabling the 
output of diagnostic data produced by Office limits Microsoft‘s ability to diagnose and remediate 
problems in using Office.

8 Federal Office for Information Security



Technical Analysis 2

2 Technical Analysis
This section first provides a high-level overview of Office telemetry. It also discusses the impact of the 
required, optional, and neither diagnostic data levels on the output of diagnostic data produced by 
Office (Section 2.1 and Section 2.2).

Figure 2 depicts a high-level overview of the architecture of Office telemetry. When an Office application or 
a featured connected experience is launched, it starts producing diagnostic events. These events may be sent 
to the Microsoft backend by Windows or Office telemetry modules (‘Windows telemetry modules’ and 
‘Office telemetry modules’ in Figure 2, see Section 1.1).

Windows telemetry modules Some Windows telemetry modules are the Connected User Experiences and 
Telemetry service and the (Object Linking and Embedding) OLE32 Extensions for Win32 Windows 
component.

the Connected User Experiences and Telemetry service: The DiagTrack service, the core building block of 
Connected User Experiences and Telemetry, receives diagnostic events from the Diagtrack-Listener 
ETW session (see Section 1.1). An Office application may produce diagnostic events using ETW providers 
that are associated with Diagtrack-Listener.  This means that these events are consumed by 
Connected User Experiences and Telemetry. Depending on its configuration, Connected User Experiences 
and Telemetry may send the events to Microsoft. 

The section ‘ETW Providers: Word and Diagtrack-Listener’ in the Appendix lists the GUIDs of the ETW 
providers that: i) may be used by Word for producing diagnostic events; and ii) are associated with 
Diagtrack-Listener when Word runs. We identified the GUIDs of the ETW providers that may be used 

Federal Office for Information Security 9

Figure 2: Office telemetry: A high-level overview (default configuration)



2 Technical Analysis

by Word for producing diagnostic events with the logman utility: logman query providers -pid 
[PID], where[PID]stands for process ID. We identified the GUIDs of the ETW providers associated with 
Diagtrack-Listener by executing the Get-EtwTraceProvider -SessionName "Diagtrack-
Listener" PowerShell command.  The section ‘ETW Providers: Word and Diagtrack-Listener’ in the 
Appendix lists the matching GUIDs. They may differ depending on system and Office state and 
configuration. 

Figure 3 depicts the ETW provider with GUID D1318FE0-16B7-4FB-b5F9-BA3CD54CD9CC producing 
the diagnostic event named Office.TelemetryEngine.FirstProcessed (displayed with the 
Message Analyzer utility). This event is produced by a running Office application (Word) with a process 
ID (PID) of 7116. The ETW provider is associated with the Diagtrack-Listener ETW session (see section 
‘ETW Providers: Word and Diagtrack-Listener’ in the Appendix). The event 
Office.TelemetryEngine.FirstProcessed is collected by Connected User Experiences and 
Telemetry when the telemetry level Enhanced(Limited)is configured [ms_el].

OLE32 Extensions for Win32: When a user inserts an icon provided by Microsoft in a Word document (i.e., 
when a user uses the Insert Icon connected experience, see Section 1.1), Office uses the Windows OLE 
technology. This results in the %SystemRoot%\urlmon.dll Dynamic Link Library (DLL) library file 
sending diagnostic events to the 
hubblecontent.osi.office.net/contentsvc/api/telemetry/ux? endpoint of the Microsoft 
backend. urlmon.dll is part of the OLE32 Extensions for Win32 component. Figure 4 shows 
urlmon.dll constructing a POST request directed to 
hubblecontent.osi.office.net/contentsvc/api/telemetry/ux? (label [1]) using the 
WinINet library (label [2], [ms_wini]). The POST request encapsulates a diagnostic event in JavaScript Object 
Notation  (JSON) format (label [3], displayed with Fiddler [fid]).

Office telemetry modules By default, Office uses the telemetry module implemented in the 
%ProgramFiles%\Microsoft Office\root\Office16\MSOARIANEXT.dll DLL library file. This 
work refers to this telemetry module as Aria (‘Aria’ in Figure 2).  MSOARIANEXT.dll is loaded in the 
context of an Office application when launched. Aria is responsible for encapsulating diagnostic events 
produced by Office into POST requests and sending these requests to Microsoft. We observed that Aria sends 
diagnostic events to the self.events.data.microsoft.com/OneCollector/1.0 endpoint (see 
Figure 2). Office delivers diagnostic events to Aria by invoking functions implemented in 
MSOARIANEXT.dll. 

It is important to emphasize that there are multiple criteria based on which only specific diagnostic events 
produced by Office are actually delivered to Aria and sent to Microsoft. Section 2.2 discusses these criteria. 
This includes the impact of the required, optional, and neither diagnostic data levels on the output 
of diagnostic data produced by Office (see Section 1.2). Section 2.1 discusses the main functionalities of Aria.

If the registry value HKEY_CURRENT_USER\Software\Policies\Microsoft\office\common\
clienttelemetry\EnableWriteTelemetryEventsToNexus is set to 1, Office applications do not 
use Aria, but the telemetry module referred to as Nexus in this work. We observed that this module sends 
diagnostic events to the nexus.officeapps.live.com/nexus/upload endpoint of the Microsoft 
backend (see Figure 2). A detailed analysis of Nexus is out of scope.

10 Federal Office for Information Security

Figure 3: The diagnostic event Office.TelemetryEngine.FirstProcessed



Technical Analysis 2

2.1 Functionalities of Aria

This section provides a high-level overview of the functionalities of the Aria telemetry module. The focus is 
on the functionalities that are relevant to the objectives of this work. Since debugging symbols are not 
available (see Section 1.2), this section refers to mentioned functions and variables using labels we assigned. 
Table 1 lists labels assigned to function and variables located at specific offsets from the base addresses of 
executables (i.e., images). In Table 1, in section ‘Functions’ and ‘Variables’: the column ‘Label’/‘Label [data 
type]’ lists function and variable labels, and the type of the data stored in variables; the column ‘Offset’, sub-
column ‘Image’, lists image names;  the column ‘Offset’, sub-column ‘Value’, lists offsets from the base 
addresses of images.

By default, Office uses the Aria Office telemetry module for sending diagnostic events to the Microsoft 
backend. Office applications load the MSOARIANEXT.dll library file when launched, which is where Aria is 
implemented. Office then delivers diagnostic events to Aria by invoking functions implemented in 
MSOARIANEXT.dll. Aria stores these events, encapsulates them in POST requests, and sends them to 
Microsoft.

Federal Office for Information Security 11

Figure 4: urlmon.dll constructing a POST request that encapsulates a diagnostic event



2 Technical Analysis

Functions

Label Offset

Image Value

aria_diagnosticEventLogger MSOARIANEXT.dll 0x28A60

aria_offlineStorageTimeout MSOARIANEXT.dll 0xD35DC

Variables

Label  [data type] Offset

Image Value

aria_logVerbosity [byte] MSOARIANEXT.dll 0x12F9E0

Table 1: Function and variable labels (1)

In order to observe the functionalities of Aria, we patched the value of the aria_logVerbosity variable 
to 0x4 when MSOARIANEXT.dll is loaded (see Table 1 and Figure 5). The value of this variable controls the 
verbosity level of the log data produced by Aria. The value 0x4 configures the highest verbosity level. Aria 
log data provides information on the inner working principles of Aria. It can be displayed by a debugger 
attached to an Office application that has loaded MSOARIANEXT.dll (see Figure 5).

Once MSOARIANEXT.dll is loaded, Office starts delivering diagnostic events to Aria. The 
aria_diagnosticEventLogger function implemented in MSOARIANEXT.dll (see Table 1) is 
executed for each event delivered to Aria. Among other things, the execution of 
aria_diagnosticEventLogger results in storing the delivered event in an in-memory database that 
Aria manages (‘in-memory event storage’ in Figure 2). Figure 6 depicts Aria log data that provides 
information on the storage of the diagnostic event named Office.Performance.Boot.

12 Federal Office for Information Security

Figure 5: Patching aria_logVerbosity and displaying Aria log data



Technical Analysis 2

Federal Office for Information Security 13

Figure 6: Storage of a diagnostic event delivered to Aria

Figure 7: Aria constructing a POST request that encapsulates diagnostic events



2 Technical Analysis

If Internet connection is available, Aria schedules the sending of the diagnostic events stored in its in-
memory database to the self.events.data.microsoft.com/OneCollector/1.0 endpoint of the 
Microsoft backend. To this end, Aria executes functions of the WinINet library, such as 
HttpOpenRequestA, HttpAddRequestHeadersA, and HttpSendRequestW [ms_wini].  WinINet 
constructs POST requests such that each request encapsulates multiple diagnostic events. 
HttpSendRequestW issues POST requests to 
self.events.data.microsoft.com/OneCollector/1.0 through an encrypted communication 
channel. 

The events encapsulated in POST requests are serialized with the Bond Compact Binary protocol [ms_bond]. 
This protocol achieves high payload compactness. It is therefore suitable for scenarios where data has to be 
frequently sent over a network connection and the caused network overhead due to data transfer needs to 
be kept at minimum. Figure 7 depicts Aria constructing a POST request in order to send diagnostic events to 
self.events.data.microsoft.com/OneCollector/1.0 (label [1]).  The first event stored as part 
of this request is named Office.System.SystemHealthErrorsWithTag [ms_req]. Figure 7 also 
depicts the POST request as observed with Fiddler (label [2]). Fiddler acts as the man-in-the-middle between 
the Windows 10 instance where an Office application runs and the Microsoft backend.

When a user closes an Office application, if Internet connection is available, Aria sends to 
self.events.data.microsoft.com/OneCollector/1.0 the diagnostic events that have not been 
already sent. If Internet connection is not available, Aria stores these diagnostic events in persistent storage 
(‘on-disk event storage’ in Figure 2). This storage is an SQLite database. It is stored in the %HOMEPATH%\
AppData\Local\Microsoft\Office\OTele\ folder, in a database (.db) file.1 Aria stores diagnostic 
events in persistent storage during a timeout interval by invoking the aria_offlineStorageTimeout 
function (see Table 1). Windows terminates the Office application when the timeout expires.

2.2 Delivery of diagnostic events to Aria

This section discusses how diagnostic events produced by Office are delivered to Aria. The focus is on the 
criteria based on which only specific diagnostic events are delivered to Aria.  Since debugging symbols are 
not available (see Section 1.2), this section refers to mentioned functions and variables using labels we 
assigned (see Table 2).  Functions are located at specific offsets from the base addresses of images. Variables 
are located at offsets from the value of a parameter passed to a function, from a variable value, or from the 
base address of an image. As per Microsoft’s function calling convention, the first parameter of a function 
receiving integers as parameters is stored in the rcx register, whereas the second in the rdx register 
[ms_cc]. In Table 2:

• in section ‘Functions’: the column ‘Label’ lists function labels; the column ‘Offset’, sub-column ‘Image’, 
lists image names;  the column ‘Offset’, sub-column ‘Value’, lists offsets from the base addresses of 
images;

• in section ‘Variables’: the column ‘Label [data type]’ lists variable labels and the type of the data stored in 
variables;  the column ‘Offset’, sub-column ‘Image/Function/Variable’, lists image names, function 
labels, or variable labels; the column ‘Offset’, sub-column ‘Parameter’, lists function parameters (where 
applicable); the column ‘Offset’, sub-column ‘Value’, lists offsets from the base addresses of images, from 
function parameter values, or from variable values.

1 msaccess.exe.db for Access; excel.exe.db for Excel; onenote.exe.db for OneNote; 
outlook.exe.db for Outlook; powerpnt.exe.db for PowerPoint; mspub.exe.db for Publisher; 
winword.exe.db for Word; lync.exe.db for Skype for Business.

14 Federal Office for Information Security



Technical Analysis 2

Functions

Label Offset

Image Value

mso20_eventCheck Mso20win32client.dll 0x3D76C

mso20_transportToAria2 Mso20win32client.dll 0x331CC

mso20_eventDLevelCheck Mso20win32client.dll 0x1C52F4

mso20_transportToAria1 Mso20win32client.dll 0x1523F0

mso20_transportToAria Mso20win32client.dll 0x152610

Variables

Label [data type] Offset

Image/Function/Variable Parameter Value

event_activation [byte] mso20_eventCheck rdx 0x10

event_diagnosticLevel [byte] mso20_eventDLevelCheck rcx 0x6

event_criticality [byte] mso20_transportToAria1 rdx 0x71

setSettings [pointer] mso20win32client.dll / 0x633200

setTelemetryLevel [byte] setSettings / 0x162

Table 2: Function and variable labels (2)

Figure 8 depicts the functions executed in close proximity to the aria_diagnosticEventLogger 
function, resulting in its execution (see Section 2.1). These functions are implemented in the 
Mso20win32client.dll DLL library file (see Section 1.2.1). Among other things, they evaluate properties 
of the diagnostic events directed to Aria. These properties serve as event descriptors and their values can be 
accessed as variables in the context of specific functions. The variables in Table 2 with names starting with 
event_ store values of event properties. The event properties mentioned in this section are:

• activation policy: If set to 0x2, this property marks the event as deactivated. The value of this event 
property is stored in the event_activation variable (see Table 2);

• diagnostic level: This property is the diagnostic data level associated with the event (see Section 
1.2). The value of this event property is stored in the event_diagnosticLevel variable (see Table 2). 
Possible values of diagnostic level are:

• 0xA: marks the diagnostic data level required (internally named B);

• 0x64: marks the diagnostic data level optional (internally named F);

• 0x6E: marks the diagnostic data level internally named N;

• 0x78: marks the diagnostic data level internally named A;2

• criticality: This property is the level of event criticality. The value of this event property is stored in 
the event_criticality variable (see Table 2). Possible values of criticality are:

2 We extracted the possible values of diagnostic level and their internal names from the context of the 
function implemented at offset 0x394520 from the base address of Mso20win32client.dll.

Federal Office for Information Security 15



2 Technical Analysis

• 0x1: marks a non-critical event;

• 0xBF, 0xC0, 0xC1, and 0xC2: mark critical events of different criticalities (with internal names): 0XBF - 
CriticalBusinessImpact, 0xC0 – CriticalCensus, 0xC1 – CriticalExperimentation, 
and 0xC2 – CriticalUsage.3

The criteria based on which only specific diagnostic events are delivered to Aria take into account the values 
of these event properties. This section discusses only the activation policy, diagnostic level, and 
criticality event properties, since they are relevant to the objective of this work (see Section 1.2). There 
are other properties that are not discussed in this section.

For each diagnostic event directed to Aria, first the mso20_eventCheck function is invoked. This function 
evaluates different aspects of the event, such as whether the name of the event is valid or too long. It also 
evaluates the value of the activation policy event property. If an evaluation in mso20_eventCheck 
fails,  the function returns a zero value and the function execution sequence depicted in Figure 8 is 
interrupted. The diagnostic event will not be delivered to Aria.  mso20_eventCheck returns zero if the 
diagnostic event is marked as deactivated, that is, if the event property activation policy(or 
equivalently, the event_activation variable) is set to 0x2. Therefore, deactivated events are not 
delivered to Aria  (see ‘[event_activation]’ in Figure 8).

If mso20_eventCheck returns a non-zero value, the function mso20_transportToAria2 is executed. 
This function invokes the function mso20_eventDLevelCheck. mso20_eventDLevelCheck 
evaluates the diagnostic level property of the event (or equivalently, the 

3 We extracted the possible values of criticality and their internal names from the context of the function 
implemented at offset 0xB0660 from the base address of Mso20win32client.dll and by matching events 
of different criticalities sent to Microsoft with events specified in a rule file. Rule files are discussed later in this 
section.

16 Federal Office for Information Security

Figure 8: Functions executed in close proximity to aria_diagnosticEventLogger



Technical Analysis 2

event_diagnosticLevel variable) and returns 0 or 1. If it returns 0, the function execution sequence 
depicted in Figure 8 is interrupted. The diagnostic event will not be delivered to Aria.

Figure 9 depicts a pseudo-code of the implementation of  mso20_eventDLevelCheck. This function 
decides whether a diagnostic event will be delivered to Aria by taking the diagnostic data levels required, 
optional, and neither into account.  The setTelemetryLevel variable (see Table 2) stores the value 
of the registry value HKEY_CURRENT_USER\Software\Policies\Microsoft\office\common\
clienttelemetry\sendtelemetry, which users set by configuring the Office diagnostic level 
policy setting.  If event_diagnosticLevel is set to:

• 0x78 (i.e., A):  mso20_eventDLevelCheck returns 1 and the diagnostic event is directed further to 
Aria;

• 0xA (i.e., required, or B):  mso20_eventDLevelCheck returns 1 if the user has configured the policy 
setting Office diagnostic level to required (the registry value sendtelemetry is 1)or 
Optional (the registry value sendtelemetry is 2). The diagnostic event is directed further to Aria (see 
‘[event_diagnosticLevel]’ in Figure 8);

• 0x64 (i.e., optional, or F): mso20_eventDLevelCheck returns 1 if the user has configured the policy 
setting Office diagnostic level to optional (the registry value sendtelemetry is 2).  The 
diagnostic event is directed further to Aria (see ‘[event_diagnosticLevel]’ in Figure 8);

• 0x6E (i.e., N): mso20_eventDLevelCheck returns 1 if the value stored at offset 0x188 of the 
setSettings variable is set to 1.  The diagnostic event is directed further to Aria. The role of the value 
stored at offset 0x188 of setSettings is not in the scope of this work. 

In summary, a configured diagnostic data level required, optional, or neither is a criterion based on 
which a specific diagnostic event is delivered to Aria and sent to Microsoft only if the event’s property 
diagnostic level is 0xA or 0x64.

If mso20_eventDLevelCheck returns 1, the function  mso20_transportToAria1 is executed. 
Among other things, this function evaluates the event property criticality(or equivalently, the 
event_criticality variable). The value of this event property is relevant if the stream of diagnostic 
events is sampled. In such a case, only some diagnostic events are directed further to Aria and eventually 

Federal Office for Information Security 17

Figure 9: Pseudo-code of the implementation of mso20_eventDLevelCheck



2 Technical Analysis

sent to Microsoft. Which events are directed further to Aria depends on the value of the criticality event 
property of each event. If the stream is sampled,  mso20_transportToAria1 delivers to Aria only the 
diagnostic events that are marked as critical – events with the criticality property set to 
CriticalBusinessImpact,  CriticalCensus, CriticalExperimentation, or CriticalUsage 
(see ‘[event_criticality]’ in Figure 8). To deliver a diagnostic event to Aria,  mso20_transportToAria1 
invokes the mso20_transportToAria function. This function invokes the 
aria_diagnosticEventLogger  function, at which point the diagnostic event is eventually sent to 
Microsoft (see Section 2.1).

The concept of event criticality is best observed in the context of telemetry rules. Telemetry rules are 
specified in Extensible Markup Language (XML) format and are stored in rule files (‘rule file’ in Figure 2).  
Rule files are stored in the %HOMEPATH%\AppData\Local\Microsoft\Office\16.0\ folder, such 
that each Office application has a dedicated rule file.4 An Office application may request a rule file from the 
nexusrules.officeapps.live.com/nexus/rules endpoint of the Microsoft backend (see Figure 
10, label [1] marks a request for a rule file, label [2] marks a response from 
nexusrules.officeapps.live.com, displayed with Fiddler). 

Each rule stored in a rule file may contain sub-rules and is uniquely identified by a rule ID.  Among other 
things, telemetry rules specify critical diagnostic events and event data sources. Some sources of diagnostic 
events are: ETW providers, uniquely identified by their GUIDs, and Unified Logging System (ULS) tags, 
uniquely identified by ULS tag IDs (e.g., avuo1, bhyud). ULS is an application logging mechanism. Each 
diagnostic event specified by a rule is associated with an event name and event criticality, also known as 
sampling policy. An Office application parses its rule file when started and matches over its lifetime 

4 msaccess.exe_Rules.xml for Access; excel.exe_Rules.xml for Excel; onenote.exe_Rules.xml 
for OneNote; outlook.exe_Rules.xml for Outlook; powerpnt.exe_Rules.xml for PowerPoint; 
mspub.exe_Rules.xml for Publisher; winword.exe_Rules.xml for Word; lync.exe_Rules.xml 
for Skype for Business.

18 Federal Office for Information Security

Figure 10: An Office application (Word) requesting a rule file



Technical Analysis 2

produced diagnostic events to rules. Matching events are directed to Aria. Therefore, rules may be 
understood as remotely deployed generators of diagnostic events dynamically configuring the diagnostic 
event collection process of Office (see ‘configuration data flow’ in Figure 2). 

Figure 11 depicts portions of telemetry rules for Word. The rules specify events associated with the different 
event criticalities -  CriticalBusinessImpact,  CriticalCensus, CriticalExperimentation, 
and CriticalUsage. In Figure 11: the XML tag R specifies a rule; the XML attribute EN specifies an event 
name;  the  XML attribute SP specifies sampling policy (i.e., event criticality); the XML tag Etw specifies an 
ETW provider as an event data source; and the XML tag UTS specifies an ULS event data source. 

In addition to event names, criticalities, and event data sources, telemetry rules typically specify other event 
descriptors and operations over data, such as logical comparisons. A detailed analysis of telemetry rules is 
out of scope. To facilitate further research, the section ‘Telemetry rules: XML tags/attributes and 
interpretations’ in the Appendix non-exhaustively lists XML tags and attributes (column ‘XML 
tag/attribute’), and their associated Office-internal interpretations (column ‘Interpretations’). We extracted 
these interpretations as string literals from Mso20win32client.dll. Depending on its placement in a 
rule file, a single entry in the column ‘XML tags/attribute’ may be an XML tag or an attribute and may have 
more than one interpretation (comma-separated in column ‘Interpretations’).

Table 3 shows the number of diagnostic events directed and delivered to Aria, in the scenario where we 
conducted the following activities in Word: i) launching Word; ii) creating a new document; iii) writing the 
sentence “Test.”; iv) saving the document using the ‘Save as’ feature; and v) closing Word. Under an event 
directed to Aria, we understand a diagnostic event reaching the mso20_transportToAria1 function in 
Mso20win32client.dll. Under an event delivered to Aria, we understand a diagnostic event reaching 
the mso20_transportToAria function in Mso20win32client.dll and subsequently the 
aria_diagnosticEventLogger function in MSOARIANEXT.dll (see Figure 8).

For each diagnostic data level configured using the policy setting Office diagnostic level, Table 3 
categorizes diagnostic events with respect to their criticality (column ‘Event criticality’) and diagnostic level 
(table section ‘Event diagnostic level’).  Section ‘Total number of events delivered to Aria’ of Table 3 shows 
the number of diagnostic events that are delivered to Aria and eventually sent to Microsoft (see Section 2.1). 

Federal Office for Information Security 19

Figure 11: Portions of telemetry rules



2 Technical Analysis

Table 3 effectively shows the impact of configuring the policy setting Office diagnostic level on the 
output of diagnostic data produced by Office applications and featured connected experiences.

When the diagnostic data level neither is configured, events of the diagnostic levels 0xA and 0x64 are not 
directed to Aria. When the diagnostic data level required is configured, only events of the diagnostic level 
0x64 are not directed to Aria (see Figure 8). When the diagnostic data level optional is configured, events 
of all diagnostic levels are directed to Aria, including a high number of events of the diagnostic level 0x64. 
Since the stream of diagnostic events is sampled, only the diagnostic events marked as critical  (i.e., with the 
criticality event property set to CriticalBusinessImpact, CriticalCensus, 
CriticalExperimentation, or CriticalUsage) are delivered to Aria and eventually sent to 
Microsoft. This shows the impact of diagnostic event criticality on the output of diagnostic data produced 
by Office applications and featured connected experiences.

Event criticality
Diagnostic data level

neither required optional

Event diagnostic level: 0xA

Critical 0 10 10

Non-critical 0 1 1

Total 0 11 11

Event diagnostic level: 0x78

Critical 20 19 21

Non-critical 8 8 8

Total 28 27 29

Event diagnostic level: 0x6E

Critical 2 2 2

Non-critical 28 29 28

Total 30 31 30

Event diagnostic level: 0x64

Critical 0 0 8

Non-critical 0 0 199

Total 0 0 207

Total number of events delivered to Aria

22 31 41

Table 3: Number of diagnostic events directed and delivered to Aria [the Word Office application with all connected 
experiences enabled, as per the default configuration of Office – see Section 1.2.1]

20 Federal Office for Information Security



Disabling the output of diagnostic data 3

3 Disabling the output of diagnostic data
This section discusses different approaches for partially or fully disabling the output of diagnostic data 
produced by Office. It evaluates the approaches in terms of their complexity of technical feasibility and 
impact on the operation of Office. The approaches can be applied at network- (Section 3.1), registry- (Section 
3.2), or group policy-level (Section 3.3). Although the approaches focus on diagnostic data, due to technical 
reasons, some of them involve disabling the output of non-diagnostic data required for non-essential 
connected experiences to function (see Section 1.1). The approaches discussed in this section do not disable 
the output of non-diagnostic data required for Office applications and non-deactivatable features, such as 
Licensing, to properly function. 

This section focuses on approaches that can be applied using standard configuration interfaces, such as the 
system’s registry or group policy settings. Other approaches, although technically feasible, are not discussed 
in this section. For example, the output of diagnostic data from the Aria telemetry module may be disabled 
by setting the second parameter of the mso20_eventCheck function (i.e., the event_activation 
variable) to 0x2 while an Office application runs. This configures the activation policy event property 
such that each diagnostic event directed to Aria is marked as deactivated (see Section 2.2). 

The Connected User Experiences and Telemetry service may collect diagnostic data produced by Office and 
send it to Microsoft (see Section 2).  [ERNW_WP4.1] discusses approaches on disabling the output of 
diagnostic data from this service. This telemetry module is not in the scope of this section.

3.1 Network

This approach involves blocking using a firewall outgoing diagnostic data streams from a Windows instance 
to endpoints of the Microsoft backend. This includes the endpoints to which Office and Windows telemetry 
modules send diagnostic events (see Section 1.1). In the context of this work, we observed that the Aria and 
Nexus Office telemetry modules send diagnostic events to 
self.events.data.microsoft.com/OneCollector/1.0 and nexus.officeapps.live.com/
nexus/upload. We also observed that OLE32 Extensions for Win32 sends diagnostic events 
tohubblecontent.osi.office.net/contentsvc/api/telemetry/. [ERNW_WP4.1] provides 
information on the endpoints to which the Connected User Experiences and Telemetry service sends 
diagnostic events.

If applied to known endpoints, this approach is easily technically feasible - it is implemented by configuring 
firewall rules. However, its sustainability and efficacy, in terms of amount of disabled diagnostic data output, 
are challenged by the following factors:

• software updates and re-configuration: The endpoints of the Microsoft backend to which telemetry 
modules send diagnostic data may change over time, for example, due to software updates re-
configuring the modules. This challenges the sustainability of this approach;

• user activities: Office produces a specific diagnostic event when it performs a given activity, often 
triggered by users. Diagnostic events are delivered to telemetry modules, after which they send the 
events to endpoints of the Microsoft backend. For example, Aria sends to Microsoft diagnostic events 
produced when users perform a variety of activities, such as launching an Office application or saving a 
document (see Section 2.1). OLE32 Extensions for Win32 handles more specific diagnostic events. For 
example, it sends diagnostic events to Microsoft when a user uses the Insert Icon connected experience 
(see Section 2). To what specific endpoints diagnostic events produced by Office may be sent largely 
depends on performed user activities. To achieve full approach efficacy, these activities should be known 
before configuring firewall rules.

Federal Office for Information Security 21



3 Disabling the output of diagnostic data

The sustainable and effective implementation of this approach involves performing the following steps:

1) identifying all activities that users may perform in the context of Office applications and featured 
connected experiences (‘identify user activities’ in Figure 12);

2) while performing the activities, observing the endpoints of the Microsoft backend to which diagnostic 
events are sent. This can be done by using a network sniffer acting as the man-in-the-middle between the 
Windows instance in which Office runs and the Microsoft backend (e.g., Fiddler, ‘perform activities & 
observe endpoints’ in Figure 12);

3) configuring firewall rules that block outgoing diagnostic data streams from the Windows instance to the 
observed endpoints (‘configure firewall rules’ in Figure 12). If an endpoint is in the form of a hostname and 
an Uniform Resource Locator (URL) path (e.g.,  
self.events.data.microsoft.com/OneCollector/1.0), it is important that configured firewall 
rules specify the endpoint by its hostname and the full URL path. This is because:

• there may be multiple IP addresses associated with a single hostname. For example, 
self.events.data.microsoft.com is associated with multiple IP addresses. This makes 
blocking outgoing data streams only to a specific IP address, or a hostname, inefficient;

• some hostnames specify endpoints that not only collect diagnostic events, but also deliver content to 
Office. For example, in addition to collecting diagnostic events at the URL path /contentsvc/api/
telemetry/, hubblecontent.osi.office.net delivers on request icon data when the Insert 
Icon connected experience is used. Blocking outgoing data streams only to the hostname 
hubblecontent.osi.office.net, without specifying an URL path, impacts the operation of the 
Insert Icon connected experience.  

Windows Defender Firewall, the Windows built-in firewall, does not support blocking outgoing data 
streams to endpoints specified by hostnames and URL paths. Therefore, the implementation of this 
approach requires a third-party firewall solution that supports such blocking. This feature is typical 
for enterprise network filtering solutions.

An alternative, technically simpler, approach to blocking outgoing streams to specific endpoints is to 
block all outgoing data streams from an Office application. However, this may render Office 
applications and featured connected experiences unusable, disabling both non-deactivatable and 
deactivatable features. This includes verifying or changing a license [ms_lic], inserting icons, and 
deploying new, or using existing, application extensions (i.e., add-ins). 

Given non-changing user activities, step 2) and 3) should be regularly repeated so that the implementation 
of the approach is sustainable over long-term periods. 

22 Federal Office for Information Security

Figure 12: A sustainable and effective approach implementation 



Disabling the output of diagnostic data 3

3.2 Registry

Setting the registry value HKEY_CURRENT_USER\Software\Policies\Microsoft\office\
common\clienttelemetry\DisableTelemetry to 1 disables the Aria and Nexus Office telemetry 
modules (see Section 2). For example, if DisableTelemetry is set to 1, Office applications do not load the 
MSOARIANEXT.dll library file, which implements Aria (see Section 2.1). The registry value 
DisableTelemetry cannot be configured through the privacy policy settings for Office that Microsoft 
has released (see Section 1.1). It has to be configured by editing the system’s registry. DisableTelemetry is 
not present in the registry by default. Its default value, if a user does not explicitly create and configure 
DisableTelemetry, is 0. It is important to emphasize that the DisableTelemetry registry value is not 
officially documented by Microsoft. Therefore, its impact on the output of Office diagnostic data may be 
subject to change without public notice. 

The advantage of this approach is its simple technical feasibility– it is implemented by configuring a registry 
value. It is also effective in disabling the output of diagnostic data from the Aria and Nexus telemetry 
modules. It also does not impact the operation of Office applications and featured connected experiences. 
However, it disables the output of diagnostic data only from the Aria and Nexus Office telemetry modules. It 
does not disable, for example, the output of diagnostic data produced by connected experiences, sent to 
Microsoft by Windows telemetry modules (see Section 2). For example, when DisableTelemetry is set to 
1, OLE32 Extensions for Win32 still sends diagnostic events to 
hubblecontent.osi.office.net/contentsvc/api/telemetry when a user uses the Insert Icon 
connected experience in Word.

In addition to DisableTelemetry, there are other registry values that are relevant for disabling the 
output of diagnostic data produced by Office. They can be configured through group policy settings and are 
therefore discussed in Section 3.3.

3.3 Group policy

This approach involves configuring group policy settings. Configuring the policy setting:

• at the policy path User Configuration\Administrative Templates\Microsoft Office 
2016\Privacy\Trust Center\Configure the level of client software diagnostic 
data sent by Office to Microsoft to Enabled; 

• and Type of diagnostic data to Neither partially disables the output of diagnostic data from 
Aria such that only events of diagnostic level 0x78 and 0x6E are sent to Microsoft (see Table 3);

• at the policy path User Configuration\Administrative Templates\Microsoft Office 
2016\Privacy\Trust Center\Allow the use of connected experiences in Office to 
Disabled disables all non-essential connected experiences and therefore disables the output of 
diagnostic data produced by them. However, the disabled connected experiences are then not available to 
users. This does not include non-deactivatable features, such as Licensing. Users may enable or disable a 
certain group of non-essential connected experiences by configuring the policy settings at the policy 
paths [ms_pc]:

• User Configuration\Administrative Templates\Microsoft Office 2016\Privacy\
Trust Center\Allow the use of connected experiences that analyze content;

• User Configuration\Administrative Templates\Microsoft Office 2016\Privacy\
Trust Center\Allow the use of connected experiences that download online 
content; and

Federal Office for Information Security 23



3 Disabling the output of diagnostic data

• User Configuration\Administrative Templates\Microsoft Office 2016\Privacy\
Trust Center\Allow the use of additional optional connected experiences in 
Office.

Configuring the policy settings above results in the setting of registry values:

• Allow the use of connected experiences in Office sets the registry value 
HKEY_CURRENT_USER\Software\Policies\Microsoft\office\16.0\common\privacy\
disconnectedstate (1 – Enabled; 2 – Disabled);

• Allow the use of connected experiences that analyze content sets the registry value 
HKEY_CURRENT_USER\Software\Policies\Microsoft\office\16.0\common\privacy\ 
usercontentdisabled (1 – Enabled; 2 – Disabled);

• Allow the use of connected experiences that download online content sets the registry 
value HKEY_CURRENT_USER\Software\Policies\Microsoft\office\16.0\common\
privacy\downloadcontentdisabled (1 – Enabled; 2 – Disabled);

• Allow the use of additional optional connected experiences in Office sets the registry 
value HKEY_CURRENT_USER\Software\Policies\Microsoft\office\16.0\common\
privacy\controllerconnectedservicesenabled (1 – Enabled; 2 – Disabled).   

The advantage of this approach is its simple technical feasibility – it is implemented by configuring policy 
settings. It is also effective in disabling the output of diagnostic data produced by non-essential connected 
experiences and partially disabling this output from the Aria telemetry module. However, non-essential 
connected experiences are not available to users. In addition, the output of diagnostic data from Aria is not 
fully, but only partially, disabled.  

3.4 Summary

The approaches presented in Section 3.1, Section 3.2, and Section 3.3 vary in their efficacy (in terms of 
amount of disabled diagnostic data output), complexity of technical feasibility, and impact on the operation 
of Office applications and featured connected experiences. With the goal to maximize the amount of 
disabled diagnostic data output with a minimum technical complexity, users may disable the Aria and Nexus 
telemetry modules as well as all non-essential connected experiences by configuring registry values.

The section ‘Disabling the output of diagnostic data: .reg file’ in the Appendix presents the content of a 
Registration Entries (.reg) file.  When applied, it disables the Aria and Nexus Office telemetry modules by 
setting the registry value  DisableTelemetry to 1 (see Section 3.2). It also disables all non-essential 
connected experiences by setting the registry values controllerconnectedservicesenabled, 
downloadcontentdisabled, and usercontentdisabled to 2 (see Section 3.3). Users may modify the 
values of controllerconnectedservicesenabled, downloadcontentdisabled, and 
usercontentdisabled in the .reg file to enable only specific groups of connected experiences (see 
Section 3.3).  In addition, the file sets the registry values  HKEY_CURRENT_USER\Software\Policies\
Microsoft\office\16.0\common\qmenable and HKEY_CURRENT_USER\Software\Policies\
Microsoft\office\16.0\common\sendcustomerdata to 0. This is equivalent to configuring the 
policy settings User Configuration\Administrative Templates\Microsoft Office 2016\
Privacy\Trust  Center\Enable Customer Experience Improvement Program and User 
Configuration\Administrative Templates\Microsoft Office 2016\Privacy\Trust 
Center\Send personal information to Disabled.5 

5 The CIS Microsoft Office 2016 Benchmark ([cis_of], Section 2.24.1) recommends configuring these policy 
settings to Disabled.  The impact of the settings on the output of diagnostic data produced by Office is not 
in the scope of this work (see Section 1.2).

24 Federal Office for Information Security



Disabling the output of diagnostic data 3

In addition to disabling Aria and Nexus as well as all non-essential connected experiences, users may block 
any remaining outgoing streams of diagnostic data at network-level (see Section 3.1). Users may also disable 
the output of Office diagnostic data from Connected User Experiences and Telemetry (see Section 2, 
[ERNW_WP4.1]). It is important to note that partially or fully disabling the output of diagnostic data 
produced by Office limits Microsoft‘s ability to diagnose and remediate problems in using Office [ms_req].

Federal Office for Information Security 25



 Appendix

Appendix

ETW Providers: Word and Diagtrack-Listener

ETW provider GUIDs (total number: 52)

30336ED4-E327-447C-9DE0-51B652C86108 7ACF487E-104B-533E-F68A-A7E9B0431EDB

03BBE5B8-C788-4D0B-B47E-5B5731398A89 7B1AE42D-B4F2-414D-9C97-913F19049964

05F95EFE-7F75-49C7-A994-60A55CC09571 7C29709D-3C02-47FB-8A39-D8287522FADB

0616F7DD-722A-4DF1-B87A-414FA870D8B7 7E32A1C4-D502-5B7C-39E8-2B7B0B5F0424

072665FB-8953-5A85-931D-D06AEAB3D109 86CC27EA-6F87-47F7-8B43-3473527D4A87

077B8C4A-E425-578D-F1AC-6FDF1220FF68 8CCCA27D-F1D8-4DDA-B5DD-339AEE937731

0BCA4784-8257-51A0-D9EC-24FE1FE4C90D 93112DE2-0AA3-4ED7-91E3-4264555220C1

18608E62-A628-49D9-8C02-55972E097D24 9CA335ED-C0A6-4B4D-B084-9C9B5143AFF0

1A211EE8-52DB-4AF0-BB66-FB8C9F20B0E2 A40B455C-253C-4311-AC6D-6E667EDCCEFC

1AFF6089-E863-4D36-BDFD-3581F07440BE A6D3C9AC-9128-522A-495A-1821191173C2

1CBA82B8-2B26-4D68-8447-1A3B85805B6A B1642597-285E-560A-7F60-7E02F5DA22C0

2F50C5D0-E25E-4F89-AB4A-31C63B518D7A B6FD710B-F783-4B1C-AB9C-C68099DCC0C7

319DC449-ADA5-50F7-428E-957DB6791668 BC71577F-76E9-583A-ECD6-62D0250D900F

32980F26-C8F5-5767-6B26-635B3FA83C61 C7E09E2A-C663-5399-AF79-2FCCD321D19A

364E2BEB-6EFC-47DC-B8B1-49AAE1D83922 CA967C75-04BF-40B5-9A16-98B5F9332A92

3720DDA7-CAEA-4AF3-A138-375AAFC3F1D6 D0F1A5C6-FC43-48AE-99BF-EFB1C38BE9D1

3C302A2A-F195-4FED-BD7B-C91BA3F33879 DCB453DB-C652-48BE-A0F8-A64459D5162E

3C430B0A-397A-4E1D-9A83-9C388405C00C EA289C62-8C36-4904-9726-15ECD282AED5

3C74AFB9-8D82-44E3-B52C-365DBF48382A EBADF775-48AA-4BF3-8F8E-EC68D113C98E

4E7ADD1A-6945-435A-82B6-612688BA9F57 F0558438-F56A-5987-47DA-040CA75AEF05

540DC156-E9D6-42DC-A225-29794149A495 F168D2FA-5642-58BB-361E-127980C64A1B

673CF800-208A-5327-3F4B-2BE44A66627A F25BCD2E-2690-55DC-3BC4-07B65B1B41C9

703FCC13-B66F-5868-DDD9-E2DB7F381FFB F3A71A4B-6118-4257-8CCB-39A33BA059D4

7067398C-BAE7-4191-BF16-C436DE658BAF F4576912-C358-4374-A354-9040D45ABCC1

77AB313B-93DA-4AA5-A20F-9339FF5AE1E3 FF32ADA1-5A4B-583C-889E-A3C027B201F5

785E3EA5-A921-427C-8EDB-0583D49C7636 D1318FE0-16B7-4F5B-B5F9-BA3CD54CD9CC

26 Federal Office for Information Security



Appendix 

Telemetry rules: XML tags/attributes and interpretations

XML tag/attribute Interpretations

ETW ETW source

S sources, source, stop after

R rule source, resets, right, regex

TI timer

T triggers, token, out type

C column, count

G group, provider ID, guid

F file, filter, float

ATT Aria tenant token

TR this rule

A app event, aggregator

TO timeout

ID rule ID

V rule version, constant

TH threshold

SQ sequence

SR string regex

EPS ETW provider source

UTS ULS tag source

SS state source

UCSS ULS category severity source

UACS ULS all categories source

US union source

ER enable rules

E enabled

EN event name

RIS rule interfaces

Federal Office for Information Security 27



 Appendix

ST starts

DL diagnostic level

DC data classifications

SP sampling policy

Dca data categories 

DR disable rules

L left

W wstring

I8/16/32/64 INT8/16/32/64

U8/16/32/64 UINT8/16/32/64

D double

B bool

BIN binary

FT filetime

U unary operator

O operator, nullable

I interval, index

N name

Disabling the output of diagnostic data: .reg file 

Windows Registry Editor Version 5.00

[HKEY_CURRENT_USER\Software\Policies\Microsoft\office\common\clienttelemetry]
"DisableTelemetry"=dword:00000001

[HKEY_CURRENT_USER\Software\Policies\Microsoft\office\16.0\common]
"sendcustomerdata"=dword:00000000
"qmenable"=dword:00000000

[HKEY_CURRENT_USER\Software\Policies\Microsoft\office\16.0\common\privacy]
"usercontentdisabled"=dword:00000002
"downloadcontentdisabled"=dword:00000002
"controllerconnectedservicesenabled"=dword:00000002

28 Federal Office for Information Security



Reference Documentation 

Reference Documentation
ms_etw https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing [Retrieved: 

09/04/2020]
ms_eapi https://docs.microsoft.com/en-us/windows/win32/etw/event-tracing-reference 

[Retrieved: 09/04/2020]
ERNW_WP4 ERNW GmbH: SiSyPHuS Win10 (Studie zu Systemaufbau, Protokollierung, Härtung und 

Sicherheitsfunktionen in Windows 10): Work Package 4
ms_cexp https://docs.microsoft.com/en-us/deployoffice/privacy/connected-experiences 

[Retrieved: 09/04/2020]
ms_epriv https://docs.microsoft.com/en-us/deployoffice/privacy/essential-services [Retrieved: 

09/04/2020]
ms_nepriv https://docs.microsoft.com/en-us/deployoffice/privacy/connected-experiences 

[Retrieved: 09/04/2020]
ms_otd https://docs.microsoft.com/en-us/deployoffice/compat/compatibility-and-telemetry-

in-office [Retrieved: 09/04/2020]
ms_el https://docs.microsoft.com/en-us/windows/privacy/enhanced-diagnostic-data-

windows-analytics-events-and-fields [Retrieved: 09/04/2020]
ms_wini https://docs.microsoft.com/en-us/windows/win32/wininet/portal [Retrieved: 

09/04/2020]
fid https://www.telerik.com/fiddler [Retrieved: 09/04/2020]
ms_bond https://github.com/microsoft/bond [Retrieved: 09/04/2020]
ms_req https://docs.microsoft.com/en-us/deployoffice/privacy/required-diagnostic-data 

[Retrieved: 09/04/2020]
ms_cc https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=vs-2019 

[Retrieved: 09/04/2020]
ERNW_WP4.1 ERNW GmbH: SiSyPHuS Win10 (Studie zu Systemaufbau, Protokollierung, Härtung und 

Sicherheitsfunktionen in Windows 10): Work Package 4.1
ms_lic https://docs.microsoft.com/en-us/deployoffice/overview-licensing-activation-

microsoft-365-apps [Retrieved: 09/04/2020]
ms_pc https://docs.microsoft.com/en-us/deployoffice/privacy/manage-privacy-controls 

[Retrieved: 09/04/2020]
cis_of Center for Internet Security: CIS Microsoft Office 2016 Benchmark

Federal Office for Information Security 29



 Keywords and Abbreviations

Keywords and Abbreviations
application programming interface........................................................................................................................................................ 5
Bundesamt fur Sicherheit in der Informationstechnik................................................................................................................. 5
Dynamic Link Library.......................................................................................................................................................................... 10, 15
Event Tracing for Windows............................................................................................................................................. 5, 9f., 18f., 26f.
Extensible Markup Language......................................................................................................................................................... 18f., 27
globally unique identifier...................................................................................................................................................................... 5, 10
JavaScript Object Notation....................................................................................................................................................................... 10
long-term servicing channel...................................................................................................................................................................... 7
Object Linking and Embedding............................................................................................................................................... 9f., 21, 23
process ID.......................................................................................................................................................................................................... 10
Unified Logging System.................................................................................................................................................................... 18f., 27
Uniform Resource Locator....................................................................................................................................................................... 22

30 Federal Office for Information Security


	Table of Contents
	1 Introduction
	1.1 Concepts and Terms
	1.2 Scope
	1.2.1 Technical information

	1.3 Summary

	2 Technical Analysis
	2.1 Functionalities of Aria
	2.2 Delivery of diagnostic events to Aria

	3 Disabling the output of diagnostic data
	3.1 Network
	3.2 Registry
	3.3 Group policy
	3.4 Summary

	Appendix
	ETW Providers: Word and Diagtrack-Listener
	Telemetry rules: XML tags/attributes and interpretations
	Disabling the output of diagnostic data: .reg file

	Reference Documentation
	Keywords and Abbreviations

